1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     // TODO: SelfMultiply can be poison, but not undef.
3086     if (SelfMultiply)
3087       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3088           Op.getOperand(0), DemandedElts, false, Depth + 1);
3089     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3090     break;
3091   }
3092   case ISD::MULHU: {
3093     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3094     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3095     Known = KnownBits::mulhu(Known, Known2);
3096     break;
3097   }
3098   case ISD::MULHS: {
3099     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3100     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101     Known = KnownBits::mulhs(Known, Known2);
3102     break;
3103   }
3104   case ISD::UMUL_LOHI: {
3105     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3106     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3107     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3108     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3109     if (Op.getResNo() == 0)
3110       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3111     else
3112       Known = KnownBits::mulhu(Known, Known2);
3113     break;
3114   }
3115   case ISD::SMUL_LOHI: {
3116     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3117     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3118     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3119     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3120     if (Op.getResNo() == 0)
3121       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3122     else
3123       Known = KnownBits::mulhs(Known, Known2);
3124     break;
3125   }
3126   case ISD::UDIV: {
3127     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3128     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3129     Known = KnownBits::udiv(Known, Known2);
3130     break;
3131   }
3132   case ISD::SELECT:
3133   case ISD::VSELECT:
3134     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3135     // If we don't know any bits, early out.
3136     if (Known.isUnknown())
3137       break;
3138     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3139 
3140     // Only known if known in both the LHS and RHS.
3141     Known = KnownBits::commonBits(Known, Known2);
3142     break;
3143   case ISD::SELECT_CC:
3144     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3145     // If we don't know any bits, early out.
3146     if (Known.isUnknown())
3147       break;
3148     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3149 
3150     // Only known if known in both the LHS and RHS.
3151     Known = KnownBits::commonBits(Known, Known2);
3152     break;
3153   case ISD::SMULO:
3154   case ISD::UMULO:
3155     if (Op.getResNo() != 1)
3156       break;
3157     // The boolean result conforms to getBooleanContents.
3158     // If we know the result of a setcc has the top bits zero, use this info.
3159     // We know that we have an integer-based boolean since these operations
3160     // are only available for integer.
3161     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3162             TargetLowering::ZeroOrOneBooleanContent &&
3163         BitWidth > 1)
3164       Known.Zero.setBitsFrom(1);
3165     break;
3166   case ISD::SETCC:
3167   case ISD::STRICT_FSETCC:
3168   case ISD::STRICT_FSETCCS: {
3169     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3170     // If we know the result of a setcc has the top bits zero, use this info.
3171     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3172             TargetLowering::ZeroOrOneBooleanContent &&
3173         BitWidth > 1)
3174       Known.Zero.setBitsFrom(1);
3175     break;
3176   }
3177   case ISD::SHL:
3178     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3179     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3180     Known = KnownBits::shl(Known, Known2);
3181 
3182     // Minimum shift low bits are known zero.
3183     if (const APInt *ShMinAmt =
3184             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3185       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3186     break;
3187   case ISD::SRL:
3188     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3189     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3190     Known = KnownBits::lshr(Known, Known2);
3191 
3192     // Minimum shift high bits are known zero.
3193     if (const APInt *ShMinAmt =
3194             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3195       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3196     break;
3197   case ISD::SRA:
3198     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3199     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known = KnownBits::ashr(Known, Known2);
3201     // TODO: Add minimum shift high known sign bits.
3202     break;
3203   case ISD::FSHL:
3204   case ISD::FSHR:
3205     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3206       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3207 
3208       // For fshl, 0-shift returns the 1st arg.
3209       // For fshr, 0-shift returns the 2nd arg.
3210       if (Amt == 0) {
3211         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3212                                  DemandedElts, Depth + 1);
3213         break;
3214       }
3215 
3216       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3217       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3218       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3219       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3220       if (Opcode == ISD::FSHL) {
3221         Known.One <<= Amt;
3222         Known.Zero <<= Amt;
3223         Known2.One.lshrInPlace(BitWidth - Amt);
3224         Known2.Zero.lshrInPlace(BitWidth - Amt);
3225       } else {
3226         Known.One <<= BitWidth - Amt;
3227         Known.Zero <<= BitWidth - Amt;
3228         Known2.One.lshrInPlace(Amt);
3229         Known2.Zero.lshrInPlace(Amt);
3230       }
3231       Known.One |= Known2.One;
3232       Known.Zero |= Known2.Zero;
3233     }
3234     break;
3235   case ISD::SIGN_EXTEND_INREG: {
3236     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3237     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3238     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3239     break;
3240   }
3241   case ISD::CTTZ:
3242   case ISD::CTTZ_ZERO_UNDEF: {
3243     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3244     // If we have a known 1, its position is our upper bound.
3245     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3246     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3247     Known.Zero.setBitsFrom(LowBits);
3248     break;
3249   }
3250   case ISD::CTLZ:
3251   case ISD::CTLZ_ZERO_UNDEF: {
3252     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3253     // If we have a known 1, its position is our upper bound.
3254     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3255     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3256     Known.Zero.setBitsFrom(LowBits);
3257     break;
3258   }
3259   case ISD::CTPOP: {
3260     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3261     // If we know some of the bits are zero, they can't be one.
3262     unsigned PossibleOnes = Known2.countMaxPopulation();
3263     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3264     break;
3265   }
3266   case ISD::PARITY: {
3267     // Parity returns 0 everywhere but the LSB.
3268     Known.Zero.setBitsFrom(1);
3269     break;
3270   }
3271   case ISD::LOAD: {
3272     LoadSDNode *LD = cast<LoadSDNode>(Op);
3273     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3274     if (ISD::isNON_EXTLoad(LD) && Cst) {
3275       // Determine any common known bits from the loaded constant pool value.
3276       Type *CstTy = Cst->getType();
3277       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3278         // If its a vector splat, then we can (quickly) reuse the scalar path.
3279         // NOTE: We assume all elements match and none are UNDEF.
3280         if (CstTy->isVectorTy()) {
3281           if (const Constant *Splat = Cst->getSplatValue()) {
3282             Cst = Splat;
3283             CstTy = Cst->getType();
3284           }
3285         }
3286         // TODO - do we need to handle different bitwidths?
3287         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3288           // Iterate across all vector elements finding common known bits.
3289           Known.One.setAllBits();
3290           Known.Zero.setAllBits();
3291           for (unsigned i = 0; i != NumElts; ++i) {
3292             if (!DemandedElts[i])
3293               continue;
3294             if (Constant *Elt = Cst->getAggregateElement(i)) {
3295               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3296                 const APInt &Value = CInt->getValue();
3297                 Known.One &= Value;
3298                 Known.Zero &= ~Value;
3299                 continue;
3300               }
3301               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3302                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3303                 Known.One &= Value;
3304                 Known.Zero &= ~Value;
3305                 continue;
3306               }
3307             }
3308             Known.One.clearAllBits();
3309             Known.Zero.clearAllBits();
3310             break;
3311           }
3312         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3313           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3314             Known = KnownBits::makeConstant(CInt->getValue());
3315           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3316             Known =
3317                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3318           }
3319         }
3320       }
3321     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3322       // If this is a ZEXTLoad and we are looking at the loaded value.
3323       EVT VT = LD->getMemoryVT();
3324       unsigned MemBits = VT.getScalarSizeInBits();
3325       Known.Zero.setBitsFrom(MemBits);
3326     } else if (const MDNode *Ranges = LD->getRanges()) {
3327       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3328         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3329     }
3330     break;
3331   }
3332   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3333     EVT InVT = Op.getOperand(0).getValueType();
3334     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3335     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3336     Known = Known.zext(BitWidth);
3337     break;
3338   }
3339   case ISD::ZERO_EXTEND: {
3340     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3341     Known = Known.zext(BitWidth);
3342     break;
3343   }
3344   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3345     EVT InVT = Op.getOperand(0).getValueType();
3346     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3347     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3348     // If the sign bit is known to be zero or one, then sext will extend
3349     // it to the top bits, else it will just zext.
3350     Known = Known.sext(BitWidth);
3351     break;
3352   }
3353   case ISD::SIGN_EXTEND: {
3354     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3355     // If the sign bit is known to be zero or one, then sext will extend
3356     // it to the top bits, else it will just zext.
3357     Known = Known.sext(BitWidth);
3358     break;
3359   }
3360   case ISD::ANY_EXTEND_VECTOR_INREG: {
3361     EVT InVT = Op.getOperand(0).getValueType();
3362     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3363     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3364     Known = Known.anyext(BitWidth);
3365     break;
3366   }
3367   case ISD::ANY_EXTEND: {
3368     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3369     Known = Known.anyext(BitWidth);
3370     break;
3371   }
3372   case ISD::TRUNCATE: {
3373     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3374     Known = Known.trunc(BitWidth);
3375     break;
3376   }
3377   case ISD::AssertZext: {
3378     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3379     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3380     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3381     Known.Zero |= (~InMask);
3382     Known.One  &= (~Known.Zero);
3383     break;
3384   }
3385   case ISD::AssertAlign: {
3386     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3387     assert(LogOfAlign != 0);
3388 
3389     // TODO: Should use maximum with source
3390     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3391     // well as clearing one bits.
3392     Known.Zero.setLowBits(LogOfAlign);
3393     Known.One.clearLowBits(LogOfAlign);
3394     break;
3395   }
3396   case ISD::FGETSIGN:
3397     // All bits are zero except the low bit.
3398     Known.Zero.setBitsFrom(1);
3399     break;
3400   case ISD::USUBO:
3401   case ISD::SSUBO:
3402     if (Op.getResNo() == 1) {
3403       // If we know the result of a setcc has the top bits zero, use this info.
3404       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3405               TargetLowering::ZeroOrOneBooleanContent &&
3406           BitWidth > 1)
3407         Known.Zero.setBitsFrom(1);
3408       break;
3409     }
3410     LLVM_FALLTHROUGH;
3411   case ISD::SUB:
3412   case ISD::SUBC: {
3413     assert(Op.getResNo() == 0 &&
3414            "We only compute knownbits for the difference here.");
3415 
3416     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3417     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3418     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3419                                         Known, Known2);
3420     break;
3421   }
3422   case ISD::UADDO:
3423   case ISD::SADDO:
3424   case ISD::ADDCARRY:
3425     if (Op.getResNo() == 1) {
3426       // If we know the result of a setcc has the top bits zero, use this info.
3427       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3428               TargetLowering::ZeroOrOneBooleanContent &&
3429           BitWidth > 1)
3430         Known.Zero.setBitsFrom(1);
3431       break;
3432     }
3433     LLVM_FALLTHROUGH;
3434   case ISD::ADD:
3435   case ISD::ADDC:
3436   case ISD::ADDE: {
3437     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3438 
3439     // With ADDE and ADDCARRY, a carry bit may be added in.
3440     KnownBits Carry(1);
3441     if (Opcode == ISD::ADDE)
3442       // Can't track carry from glue, set carry to unknown.
3443       Carry.resetAll();
3444     else if (Opcode == ISD::ADDCARRY)
3445       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3446       // the trouble (how often will we find a known carry bit). And I haven't
3447       // tested this very much yet, but something like this might work:
3448       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3449       //   Carry = Carry.zextOrTrunc(1, false);
3450       Carry.resetAll();
3451     else
3452       Carry.setAllZero();
3453 
3454     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3455     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3456     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3457     break;
3458   }
3459   case ISD::SREM: {
3460     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3462     Known = KnownBits::srem(Known, Known2);
3463     break;
3464   }
3465   case ISD::UREM: {
3466     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3467     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3468     Known = KnownBits::urem(Known, Known2);
3469     break;
3470   }
3471   case ISD::EXTRACT_ELEMENT: {
3472     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3473     const unsigned Index = Op.getConstantOperandVal(1);
3474     const unsigned EltBitWidth = Op.getValueSizeInBits();
3475 
3476     // Remove low part of known bits mask
3477     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3478     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3479 
3480     // Remove high part of known bit mask
3481     Known = Known.trunc(EltBitWidth);
3482     break;
3483   }
3484   case ISD::EXTRACT_VECTOR_ELT: {
3485     SDValue InVec = Op.getOperand(0);
3486     SDValue EltNo = Op.getOperand(1);
3487     EVT VecVT = InVec.getValueType();
3488     // computeKnownBits not yet implemented for scalable vectors.
3489     if (VecVT.isScalableVector())
3490       break;
3491     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3492     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3493 
3494     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3495     // anything about the extended bits.
3496     if (BitWidth > EltBitWidth)
3497       Known = Known.trunc(EltBitWidth);
3498 
3499     // If we know the element index, just demand that vector element, else for
3500     // an unknown element index, ignore DemandedElts and demand them all.
3501     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3502     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3503     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3504       DemandedSrcElts =
3505           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3506 
3507     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3508     if (BitWidth > EltBitWidth)
3509       Known = Known.anyext(BitWidth);
3510     break;
3511   }
3512   case ISD::INSERT_VECTOR_ELT: {
3513     // If we know the element index, split the demand between the
3514     // source vector and the inserted element, otherwise assume we need
3515     // the original demanded vector elements and the value.
3516     SDValue InVec = Op.getOperand(0);
3517     SDValue InVal = Op.getOperand(1);
3518     SDValue EltNo = Op.getOperand(2);
3519     bool DemandedVal = true;
3520     APInt DemandedVecElts = DemandedElts;
3521     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3522     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3523       unsigned EltIdx = CEltNo->getZExtValue();
3524       DemandedVal = !!DemandedElts[EltIdx];
3525       DemandedVecElts.clearBit(EltIdx);
3526     }
3527     Known.One.setAllBits();
3528     Known.Zero.setAllBits();
3529     if (DemandedVal) {
3530       Known2 = computeKnownBits(InVal, Depth + 1);
3531       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3532     }
3533     if (!!DemandedVecElts) {
3534       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3535       Known = KnownBits::commonBits(Known, Known2);
3536     }
3537     break;
3538   }
3539   case ISD::BITREVERSE: {
3540     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3541     Known = Known2.reverseBits();
3542     break;
3543   }
3544   case ISD::BSWAP: {
3545     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3546     Known = Known2.byteSwap();
3547     break;
3548   }
3549   case ISD::ABS: {
3550     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3551     Known = Known2.abs();
3552     break;
3553   }
3554   case ISD::USUBSAT: {
3555     // The result of usubsat will never be larger than the LHS.
3556     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3557     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3558     break;
3559   }
3560   case ISD::UMIN: {
3561     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3562     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3563     Known = KnownBits::umin(Known, Known2);
3564     break;
3565   }
3566   case ISD::UMAX: {
3567     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3568     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3569     Known = KnownBits::umax(Known, Known2);
3570     break;
3571   }
3572   case ISD::SMIN:
3573   case ISD::SMAX: {
3574     // If we have a clamp pattern, we know that the number of sign bits will be
3575     // the minimum of the clamp min/max range.
3576     bool IsMax = (Opcode == ISD::SMAX);
3577     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3578     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3579       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3580         CstHigh =
3581             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3582     if (CstLow && CstHigh) {
3583       if (!IsMax)
3584         std::swap(CstLow, CstHigh);
3585 
3586       const APInt &ValueLow = CstLow->getAPIntValue();
3587       const APInt &ValueHigh = CstHigh->getAPIntValue();
3588       if (ValueLow.sle(ValueHigh)) {
3589         unsigned LowSignBits = ValueLow.getNumSignBits();
3590         unsigned HighSignBits = ValueHigh.getNumSignBits();
3591         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3592         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3593           Known.One.setHighBits(MinSignBits);
3594           break;
3595         }
3596         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3597           Known.Zero.setHighBits(MinSignBits);
3598           break;
3599         }
3600       }
3601     }
3602 
3603     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3604     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3605     if (IsMax)
3606       Known = KnownBits::smax(Known, Known2);
3607     else
3608       Known = KnownBits::smin(Known, Known2);
3609     break;
3610   }
3611   case ISD::FP_TO_UINT_SAT: {
3612     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3613     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3614     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3615     break;
3616   }
3617   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3618     if (Op.getResNo() == 1) {
3619       // The boolean result conforms to getBooleanContents.
3620       // If we know the result of a setcc has the top bits zero, use this info.
3621       // We know that we have an integer-based boolean since these operations
3622       // are only available for integer.
3623       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3624               TargetLowering::ZeroOrOneBooleanContent &&
3625           BitWidth > 1)
3626         Known.Zero.setBitsFrom(1);
3627       break;
3628     }
3629     LLVM_FALLTHROUGH;
3630   case ISD::ATOMIC_CMP_SWAP:
3631   case ISD::ATOMIC_SWAP:
3632   case ISD::ATOMIC_LOAD_ADD:
3633   case ISD::ATOMIC_LOAD_SUB:
3634   case ISD::ATOMIC_LOAD_AND:
3635   case ISD::ATOMIC_LOAD_CLR:
3636   case ISD::ATOMIC_LOAD_OR:
3637   case ISD::ATOMIC_LOAD_XOR:
3638   case ISD::ATOMIC_LOAD_NAND:
3639   case ISD::ATOMIC_LOAD_MIN:
3640   case ISD::ATOMIC_LOAD_MAX:
3641   case ISD::ATOMIC_LOAD_UMIN:
3642   case ISD::ATOMIC_LOAD_UMAX:
3643   case ISD::ATOMIC_LOAD: {
3644     unsigned MemBits =
3645         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3646     // If we are looking at the loaded value.
3647     if (Op.getResNo() == 0) {
3648       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3649         Known.Zero.setBitsFrom(MemBits);
3650     }
3651     break;
3652   }
3653   case ISD::FrameIndex:
3654   case ISD::TargetFrameIndex:
3655     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3656                                        Known, getMachineFunction());
3657     break;
3658 
3659   default:
3660     if (Opcode < ISD::BUILTIN_OP_END)
3661       break;
3662     LLVM_FALLTHROUGH;
3663   case ISD::INTRINSIC_WO_CHAIN:
3664   case ISD::INTRINSIC_W_CHAIN:
3665   case ISD::INTRINSIC_VOID:
3666     // Allow the target to implement this method for its nodes.
3667     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3668     break;
3669   }
3670 
3671   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3672   return Known;
3673 }
3674 
3675 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3676                                                              SDValue N1) const {
3677   // X + 0 never overflow
3678   if (isNullConstant(N1))
3679     return OFK_Never;
3680 
3681   KnownBits N1Known = computeKnownBits(N1);
3682   if (N1Known.Zero.getBoolValue()) {
3683     KnownBits N0Known = computeKnownBits(N0);
3684 
3685     bool overflow;
3686     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3687     if (!overflow)
3688       return OFK_Never;
3689   }
3690 
3691   // mulhi + 1 never overflow
3692   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3693       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3694     return OFK_Never;
3695 
3696   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3697     KnownBits N0Known = computeKnownBits(N0);
3698 
3699     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3700       return OFK_Never;
3701   }
3702 
3703   return OFK_Sometime;
3704 }
3705 
3706 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3707   EVT OpVT = Val.getValueType();
3708   unsigned BitWidth = OpVT.getScalarSizeInBits();
3709 
3710   // Is the constant a known power of 2?
3711   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3712     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3713 
3714   // A left-shift of a constant one will have exactly one bit set because
3715   // shifting the bit off the end is undefined.
3716   if (Val.getOpcode() == ISD::SHL) {
3717     auto *C = isConstOrConstSplat(Val.getOperand(0));
3718     if (C && C->getAPIntValue() == 1)
3719       return true;
3720   }
3721 
3722   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3723   // one bit set.
3724   if (Val.getOpcode() == ISD::SRL) {
3725     auto *C = isConstOrConstSplat(Val.getOperand(0));
3726     if (C && C->getAPIntValue().isSignMask())
3727       return true;
3728   }
3729 
3730   // Are all operands of a build vector constant powers of two?
3731   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3732     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3733           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3734             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3735           return false;
3736         }))
3737       return true;
3738 
3739   // Is the operand of a splat vector a constant power of two?
3740   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3741     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3742       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3743         return true;
3744 
3745   // More could be done here, though the above checks are enough
3746   // to handle some common cases.
3747 
3748   // Fall back to computeKnownBits to catch other known cases.
3749   KnownBits Known = computeKnownBits(Val);
3750   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3751 }
3752 
3753 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3754   EVT VT = Op.getValueType();
3755 
3756   // TODO: Assume we don't know anything for now.
3757   if (VT.isScalableVector())
3758     return 1;
3759 
3760   APInt DemandedElts = VT.isVector()
3761                            ? APInt::getAllOnes(VT.getVectorNumElements())
3762                            : APInt(1, 1);
3763   return ComputeNumSignBits(Op, DemandedElts, Depth);
3764 }
3765 
3766 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3767                                           unsigned Depth) const {
3768   EVT VT = Op.getValueType();
3769   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3770   unsigned VTBits = VT.getScalarSizeInBits();
3771   unsigned NumElts = DemandedElts.getBitWidth();
3772   unsigned Tmp, Tmp2;
3773   unsigned FirstAnswer = 1;
3774 
3775   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3776     const APInt &Val = C->getAPIntValue();
3777     return Val.getNumSignBits();
3778   }
3779 
3780   if (Depth >= MaxRecursionDepth)
3781     return 1;  // Limit search depth.
3782 
3783   if (!DemandedElts || VT.isScalableVector())
3784     return 1;  // No demanded elts, better to assume we don't know anything.
3785 
3786   unsigned Opcode = Op.getOpcode();
3787   switch (Opcode) {
3788   default: break;
3789   case ISD::AssertSext:
3790     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3791     return VTBits-Tmp+1;
3792   case ISD::AssertZext:
3793     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3794     return VTBits-Tmp;
3795 
3796   case ISD::BUILD_VECTOR:
3797     Tmp = VTBits;
3798     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3799       if (!DemandedElts[i])
3800         continue;
3801 
3802       SDValue SrcOp = Op.getOperand(i);
3803       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3804 
3805       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3806       if (SrcOp.getValueSizeInBits() != VTBits) {
3807         assert(SrcOp.getValueSizeInBits() > VTBits &&
3808                "Expected BUILD_VECTOR implicit truncation");
3809         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3810         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3811       }
3812       Tmp = std::min(Tmp, Tmp2);
3813     }
3814     return Tmp;
3815 
3816   case ISD::VECTOR_SHUFFLE: {
3817     // Collect the minimum number of sign bits that are shared by every vector
3818     // element referenced by the shuffle.
3819     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3820     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3821     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3822     for (unsigned i = 0; i != NumElts; ++i) {
3823       int M = SVN->getMaskElt(i);
3824       if (!DemandedElts[i])
3825         continue;
3826       // For UNDEF elements, we don't know anything about the common state of
3827       // the shuffle result.
3828       if (M < 0)
3829         return 1;
3830       if ((unsigned)M < NumElts)
3831         DemandedLHS.setBit((unsigned)M % NumElts);
3832       else
3833         DemandedRHS.setBit((unsigned)M % NumElts);
3834     }
3835     Tmp = std::numeric_limits<unsigned>::max();
3836     if (!!DemandedLHS)
3837       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3838     if (!!DemandedRHS) {
3839       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3840       Tmp = std::min(Tmp, Tmp2);
3841     }
3842     // If we don't know anything, early out and try computeKnownBits fall-back.
3843     if (Tmp == 1)
3844       break;
3845     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3846     return Tmp;
3847   }
3848 
3849   case ISD::BITCAST: {
3850     SDValue N0 = Op.getOperand(0);
3851     EVT SrcVT = N0.getValueType();
3852     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3853 
3854     // Ignore bitcasts from unsupported types..
3855     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3856       break;
3857 
3858     // Fast handling of 'identity' bitcasts.
3859     if (VTBits == SrcBits)
3860       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3861 
3862     bool IsLE = getDataLayout().isLittleEndian();
3863 
3864     // Bitcast 'large element' scalar/vector to 'small element' vector.
3865     if ((SrcBits % VTBits) == 0) {
3866       assert(VT.isVector() && "Expected bitcast to vector");
3867 
3868       unsigned Scale = SrcBits / VTBits;
3869       APInt SrcDemandedElts =
3870           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3871 
3872       // Fast case - sign splat can be simply split across the small elements.
3873       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3874       if (Tmp == SrcBits)
3875         return VTBits;
3876 
3877       // Slow case - determine how far the sign extends into each sub-element.
3878       Tmp2 = VTBits;
3879       for (unsigned i = 0; i != NumElts; ++i)
3880         if (DemandedElts[i]) {
3881           unsigned SubOffset = i % Scale;
3882           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3883           SubOffset = SubOffset * VTBits;
3884           if (Tmp <= SubOffset)
3885             return 1;
3886           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3887         }
3888       return Tmp2;
3889     }
3890     break;
3891   }
3892 
3893   case ISD::FP_TO_SINT_SAT:
3894     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3895     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3896     return VTBits - Tmp + 1;
3897   case ISD::SIGN_EXTEND:
3898     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3899     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3900   case ISD::SIGN_EXTEND_INREG:
3901     // Max of the input and what this extends.
3902     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3903     Tmp = VTBits-Tmp+1;
3904     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3905     return std::max(Tmp, Tmp2);
3906   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3907     SDValue Src = Op.getOperand(0);
3908     EVT SrcVT = Src.getValueType();
3909     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3910     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3911     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3912   }
3913   case ISD::SRA:
3914     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915     // SRA X, C -> adds C sign bits.
3916     if (const APInt *ShAmt =
3917             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3918       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3919     return Tmp;
3920   case ISD::SHL:
3921     if (const APInt *ShAmt =
3922             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3923       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3924       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3925       if (ShAmt->ult(Tmp))
3926         return Tmp - ShAmt->getZExtValue();
3927     }
3928     break;
3929   case ISD::AND:
3930   case ISD::OR:
3931   case ISD::XOR:    // NOT is handled here.
3932     // Logical binary ops preserve the number of sign bits at the worst.
3933     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3934     if (Tmp != 1) {
3935       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3936       FirstAnswer = std::min(Tmp, Tmp2);
3937       // We computed what we know about the sign bits as our first
3938       // answer. Now proceed to the generic code that uses
3939       // computeKnownBits, and pick whichever answer is better.
3940     }
3941     break;
3942 
3943   case ISD::SELECT:
3944   case ISD::VSELECT:
3945     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3946     if (Tmp == 1) return 1;  // Early out.
3947     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3948     return std::min(Tmp, Tmp2);
3949   case ISD::SELECT_CC:
3950     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3951     if (Tmp == 1) return 1;  // Early out.
3952     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3953     return std::min(Tmp, Tmp2);
3954 
3955   case ISD::SMIN:
3956   case ISD::SMAX: {
3957     // If we have a clamp pattern, we know that the number of sign bits will be
3958     // the minimum of the clamp min/max range.
3959     bool IsMax = (Opcode == ISD::SMAX);
3960     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3961     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3962       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3963         CstHigh =
3964             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3965     if (CstLow && CstHigh) {
3966       if (!IsMax)
3967         std::swap(CstLow, CstHigh);
3968       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3969         Tmp = CstLow->getAPIntValue().getNumSignBits();
3970         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3971         return std::min(Tmp, Tmp2);
3972       }
3973     }
3974 
3975     // Fallback - just get the minimum number of sign bits of the operands.
3976     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3977     if (Tmp == 1)
3978       return 1;  // Early out.
3979     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3980     return std::min(Tmp, Tmp2);
3981   }
3982   case ISD::UMIN:
3983   case ISD::UMAX:
3984     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3985     if (Tmp == 1)
3986       return 1;  // Early out.
3987     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3988     return std::min(Tmp, Tmp2);
3989   case ISD::SADDO:
3990   case ISD::UADDO:
3991   case ISD::SSUBO:
3992   case ISD::USUBO:
3993   case ISD::SMULO:
3994   case ISD::UMULO:
3995     if (Op.getResNo() != 1)
3996       break;
3997     // The boolean result conforms to getBooleanContents.  Fall through.
3998     // If setcc returns 0/-1, all bits are sign bits.
3999     // We know that we have an integer-based boolean since these operations
4000     // are only available for integer.
4001     if (TLI->getBooleanContents(VT.isVector(), false) ==
4002         TargetLowering::ZeroOrNegativeOneBooleanContent)
4003       return VTBits;
4004     break;
4005   case ISD::SETCC:
4006   case ISD::STRICT_FSETCC:
4007   case ISD::STRICT_FSETCCS: {
4008     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4009     // If setcc returns 0/-1, all bits are sign bits.
4010     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4011         TargetLowering::ZeroOrNegativeOneBooleanContent)
4012       return VTBits;
4013     break;
4014   }
4015   case ISD::ROTL:
4016   case ISD::ROTR:
4017     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4018 
4019     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4020     if (Tmp == VTBits)
4021       return VTBits;
4022 
4023     if (ConstantSDNode *C =
4024             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4025       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4026 
4027       // Handle rotate right by N like a rotate left by 32-N.
4028       if (Opcode == ISD::ROTR)
4029         RotAmt = (VTBits - RotAmt) % VTBits;
4030 
4031       // If we aren't rotating out all of the known-in sign bits, return the
4032       // number that are left.  This handles rotl(sext(x), 1) for example.
4033       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4034     }
4035     break;
4036   case ISD::ADD:
4037   case ISD::ADDC:
4038     // Add can have at most one carry bit.  Thus we know that the output
4039     // is, at worst, one more bit than the inputs.
4040     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4041     if (Tmp == 1) return 1; // Early out.
4042 
4043     // Special case decrementing a value (ADD X, -1):
4044     if (ConstantSDNode *CRHS =
4045             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4046       if (CRHS->isAllOnes()) {
4047         KnownBits Known =
4048             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4049 
4050         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4051         // sign bits set.
4052         if ((Known.Zero | 1).isAllOnes())
4053           return VTBits;
4054 
4055         // If we are subtracting one from a positive number, there is no carry
4056         // out of the result.
4057         if (Known.isNonNegative())
4058           return Tmp;
4059       }
4060 
4061     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4062     if (Tmp2 == 1) return 1; // Early out.
4063     return std::min(Tmp, Tmp2) - 1;
4064   case ISD::SUB:
4065     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4066     if (Tmp2 == 1) return 1; // Early out.
4067 
4068     // Handle NEG.
4069     if (ConstantSDNode *CLHS =
4070             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4071       if (CLHS->isZero()) {
4072         KnownBits Known =
4073             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4074         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4075         // sign bits set.
4076         if ((Known.Zero | 1).isAllOnes())
4077           return VTBits;
4078 
4079         // If the input is known to be positive (the sign bit is known clear),
4080         // the output of the NEG has the same number of sign bits as the input.
4081         if (Known.isNonNegative())
4082           return Tmp2;
4083 
4084         // Otherwise, we treat this like a SUB.
4085       }
4086 
4087     // Sub can have at most one carry bit.  Thus we know that the output
4088     // is, at worst, one more bit than the inputs.
4089     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4090     if (Tmp == 1) return 1; // Early out.
4091     return std::min(Tmp, Tmp2) - 1;
4092   case ISD::MUL: {
4093     // The output of the Mul can be at most twice the valid bits in the inputs.
4094     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4095     if (SignBitsOp0 == 1)
4096       break;
4097     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4098     if (SignBitsOp1 == 1)
4099       break;
4100     unsigned OutValidBits =
4101         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4102     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4103   }
4104   case ISD::SREM:
4105     // The sign bit is the LHS's sign bit, except when the result of the
4106     // remainder is zero. The magnitude of the result should be less than or
4107     // equal to the magnitude of the LHS. Therefore, the result should have
4108     // at least as many sign bits as the left hand side.
4109     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110   case ISD::TRUNCATE: {
4111     // Check if the sign bits of source go down as far as the truncated value.
4112     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4113     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4114     if (NumSrcSignBits > (NumSrcBits - VTBits))
4115       return NumSrcSignBits - (NumSrcBits - VTBits);
4116     break;
4117   }
4118   case ISD::EXTRACT_ELEMENT: {
4119     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4120     const int BitWidth = Op.getValueSizeInBits();
4121     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4122 
4123     // Get reverse index (starting from 1), Op1 value indexes elements from
4124     // little end. Sign starts at big end.
4125     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4126 
4127     // If the sign portion ends in our element the subtraction gives correct
4128     // result. Otherwise it gives either negative or > bitwidth result
4129     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4130   }
4131   case ISD::INSERT_VECTOR_ELT: {
4132     // If we know the element index, split the demand between the
4133     // source vector and the inserted element, otherwise assume we need
4134     // the original demanded vector elements and the value.
4135     SDValue InVec = Op.getOperand(0);
4136     SDValue InVal = Op.getOperand(1);
4137     SDValue EltNo = Op.getOperand(2);
4138     bool DemandedVal = true;
4139     APInt DemandedVecElts = DemandedElts;
4140     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4141     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4142       unsigned EltIdx = CEltNo->getZExtValue();
4143       DemandedVal = !!DemandedElts[EltIdx];
4144       DemandedVecElts.clearBit(EltIdx);
4145     }
4146     Tmp = std::numeric_limits<unsigned>::max();
4147     if (DemandedVal) {
4148       // TODO - handle implicit truncation of inserted elements.
4149       if (InVal.getScalarValueSizeInBits() != VTBits)
4150         break;
4151       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4152       Tmp = std::min(Tmp, Tmp2);
4153     }
4154     if (!!DemandedVecElts) {
4155       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4156       Tmp = std::min(Tmp, Tmp2);
4157     }
4158     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4159     return Tmp;
4160   }
4161   case ISD::EXTRACT_VECTOR_ELT: {
4162     SDValue InVec = Op.getOperand(0);
4163     SDValue EltNo = Op.getOperand(1);
4164     EVT VecVT = InVec.getValueType();
4165     // ComputeNumSignBits not yet implemented for scalable vectors.
4166     if (VecVT.isScalableVector())
4167       break;
4168     const unsigned BitWidth = Op.getValueSizeInBits();
4169     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4170     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4171 
4172     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4173     // anything about sign bits. But if the sizes match we can derive knowledge
4174     // about sign bits from the vector operand.
4175     if (BitWidth != EltBitWidth)
4176       break;
4177 
4178     // If we know the element index, just demand that vector element, else for
4179     // an unknown element index, ignore DemandedElts and demand them all.
4180     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4181     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4182     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4183       DemandedSrcElts =
4184           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4185 
4186     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4187   }
4188   case ISD::EXTRACT_SUBVECTOR: {
4189     // Offset the demanded elts by the subvector index.
4190     SDValue Src = Op.getOperand(0);
4191     // Bail until we can represent demanded elements for scalable vectors.
4192     if (Src.getValueType().isScalableVector())
4193       break;
4194     uint64_t Idx = Op.getConstantOperandVal(1);
4195     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4196     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4197     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4198   }
4199   case ISD::CONCAT_VECTORS: {
4200     // Determine the minimum number of sign bits across all demanded
4201     // elts of the input vectors. Early out if the result is already 1.
4202     Tmp = std::numeric_limits<unsigned>::max();
4203     EVT SubVectorVT = Op.getOperand(0).getValueType();
4204     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4205     unsigned NumSubVectors = Op.getNumOperands();
4206     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4207       APInt DemandedSub =
4208           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4209       if (!DemandedSub)
4210         continue;
4211       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4212       Tmp = std::min(Tmp, Tmp2);
4213     }
4214     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4215     return Tmp;
4216   }
4217   case ISD::INSERT_SUBVECTOR: {
4218     // Demand any elements from the subvector and the remainder from the src its
4219     // inserted into.
4220     SDValue Src = Op.getOperand(0);
4221     SDValue Sub = Op.getOperand(1);
4222     uint64_t Idx = Op.getConstantOperandVal(2);
4223     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4224     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4225     APInt DemandedSrcElts = DemandedElts;
4226     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4227 
4228     Tmp = std::numeric_limits<unsigned>::max();
4229     if (!!DemandedSubElts) {
4230       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4231       if (Tmp == 1)
4232         return 1; // early-out
4233     }
4234     if (!!DemandedSrcElts) {
4235       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4236       Tmp = std::min(Tmp, Tmp2);
4237     }
4238     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4239     return Tmp;
4240   }
4241   case ISD::ATOMIC_CMP_SWAP:
4242   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4243   case ISD::ATOMIC_SWAP:
4244   case ISD::ATOMIC_LOAD_ADD:
4245   case ISD::ATOMIC_LOAD_SUB:
4246   case ISD::ATOMIC_LOAD_AND:
4247   case ISD::ATOMIC_LOAD_CLR:
4248   case ISD::ATOMIC_LOAD_OR:
4249   case ISD::ATOMIC_LOAD_XOR:
4250   case ISD::ATOMIC_LOAD_NAND:
4251   case ISD::ATOMIC_LOAD_MIN:
4252   case ISD::ATOMIC_LOAD_MAX:
4253   case ISD::ATOMIC_LOAD_UMIN:
4254   case ISD::ATOMIC_LOAD_UMAX:
4255   case ISD::ATOMIC_LOAD: {
4256     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4257     // If we are looking at the loaded value.
4258     if (Op.getResNo() == 0) {
4259       if (Tmp == VTBits)
4260         return 1; // early-out
4261       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4262         return VTBits - Tmp + 1;
4263       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4264         return VTBits - Tmp;
4265     }
4266     break;
4267   }
4268   }
4269 
4270   // If we are looking at the loaded value of the SDNode.
4271   if (Op.getResNo() == 0) {
4272     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4273     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4274       unsigned ExtType = LD->getExtensionType();
4275       switch (ExtType) {
4276       default: break;
4277       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4278         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4279         return VTBits - Tmp + 1;
4280       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4281         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4282         return VTBits - Tmp;
4283       case ISD::NON_EXTLOAD:
4284         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4285           // We only need to handle vectors - computeKnownBits should handle
4286           // scalar cases.
4287           Type *CstTy = Cst->getType();
4288           if (CstTy->isVectorTy() &&
4289               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4290               VTBits == CstTy->getScalarSizeInBits()) {
4291             Tmp = VTBits;
4292             for (unsigned i = 0; i != NumElts; ++i) {
4293               if (!DemandedElts[i])
4294                 continue;
4295               if (Constant *Elt = Cst->getAggregateElement(i)) {
4296                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4297                   const APInt &Value = CInt->getValue();
4298                   Tmp = std::min(Tmp, Value.getNumSignBits());
4299                   continue;
4300                 }
4301                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4302                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4303                   Tmp = std::min(Tmp, Value.getNumSignBits());
4304                   continue;
4305                 }
4306               }
4307               // Unknown type. Conservatively assume no bits match sign bit.
4308               return 1;
4309             }
4310             return Tmp;
4311           }
4312         }
4313         break;
4314       }
4315     }
4316   }
4317 
4318   // Allow the target to implement this method for its nodes.
4319   if (Opcode >= ISD::BUILTIN_OP_END ||
4320       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4321       Opcode == ISD::INTRINSIC_W_CHAIN ||
4322       Opcode == ISD::INTRINSIC_VOID) {
4323     unsigned NumBits =
4324         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4325     if (NumBits > 1)
4326       FirstAnswer = std::max(FirstAnswer, NumBits);
4327   }
4328 
4329   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4330   // use this information.
4331   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4332   return std::max(FirstAnswer, Known.countMinSignBits());
4333 }
4334 
4335 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4336                                                  unsigned Depth) const {
4337   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4338   return Op.getScalarValueSizeInBits() - SignBits + 1;
4339 }
4340 
4341 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4342                                                  const APInt &DemandedElts,
4343                                                  unsigned Depth) const {
4344   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4345   return Op.getScalarValueSizeInBits() - SignBits + 1;
4346 }
4347 
4348 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4349                                                     unsigned Depth) const {
4350   // Early out for FREEZE.
4351   if (Op.getOpcode() == ISD::FREEZE)
4352     return true;
4353 
4354   // TODO: Assume we don't know anything for now.
4355   EVT VT = Op.getValueType();
4356   if (VT.isScalableVector())
4357     return false;
4358 
4359   APInt DemandedElts = VT.isVector()
4360                            ? APInt::getAllOnes(VT.getVectorNumElements())
4361                            : APInt(1, 1);
4362   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4363 }
4364 
4365 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4366                                                     const APInt &DemandedElts,
4367                                                     bool PoisonOnly,
4368                                                     unsigned Depth) const {
4369   unsigned Opcode = Op.getOpcode();
4370 
4371   // Early out for FREEZE.
4372   if (Opcode == ISD::FREEZE)
4373     return true;
4374 
4375   if (Depth >= MaxRecursionDepth)
4376     return false; // Limit search depth.
4377 
4378   if (isIntOrFPConstant(Op))
4379     return true;
4380 
4381   switch (Opcode) {
4382   case ISD::UNDEF:
4383     return PoisonOnly;
4384 
4385   case ISD::BUILD_VECTOR:
4386     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4387     // this shouldn't affect the result.
4388     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4389       if (!DemandedElts[i])
4390         continue;
4391       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4392                                             Depth + 1))
4393         return false;
4394     }
4395     return true;
4396 
4397   // TODO: Search for noundef attributes from library functions.
4398 
4399   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4400 
4401   default:
4402     // Allow the target to implement this method for its nodes.
4403     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4404         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4405       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4406           Op, DemandedElts, *this, PoisonOnly, Depth);
4407     break;
4408   }
4409 
4410   return false;
4411 }
4412 
4413 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4414   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4415       !isa<ConstantSDNode>(Op.getOperand(1)))
4416     return false;
4417 
4418   if (Op.getOpcode() == ISD::OR &&
4419       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4420     return false;
4421 
4422   return true;
4423 }
4424 
4425 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4426   // If we're told that NaNs won't happen, assume they won't.
4427   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4428     return true;
4429 
4430   if (Depth >= MaxRecursionDepth)
4431     return false; // Limit search depth.
4432 
4433   // TODO: Handle vectors.
4434   // If the value is a constant, we can obviously see if it is a NaN or not.
4435   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4436     return !C->getValueAPF().isNaN() ||
4437            (SNaN && !C->getValueAPF().isSignaling());
4438   }
4439 
4440   unsigned Opcode = Op.getOpcode();
4441   switch (Opcode) {
4442   case ISD::FADD:
4443   case ISD::FSUB:
4444   case ISD::FMUL:
4445   case ISD::FDIV:
4446   case ISD::FREM:
4447   case ISD::FSIN:
4448   case ISD::FCOS: {
4449     if (SNaN)
4450       return true;
4451     // TODO: Need isKnownNeverInfinity
4452     return false;
4453   }
4454   case ISD::FCANONICALIZE:
4455   case ISD::FEXP:
4456   case ISD::FEXP2:
4457   case ISD::FTRUNC:
4458   case ISD::FFLOOR:
4459   case ISD::FCEIL:
4460   case ISD::FROUND:
4461   case ISD::FROUNDEVEN:
4462   case ISD::FRINT:
4463   case ISD::FNEARBYINT: {
4464     if (SNaN)
4465       return true;
4466     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4467   }
4468   case ISD::FABS:
4469   case ISD::FNEG:
4470   case ISD::FCOPYSIGN: {
4471     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4472   }
4473   case ISD::SELECT:
4474     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4475            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4476   case ISD::FP_EXTEND:
4477   case ISD::FP_ROUND: {
4478     if (SNaN)
4479       return true;
4480     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4481   }
4482   case ISD::SINT_TO_FP:
4483   case ISD::UINT_TO_FP:
4484     return true;
4485   case ISD::FMA:
4486   case ISD::FMAD: {
4487     if (SNaN)
4488       return true;
4489     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4490            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4491            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4492   }
4493   case ISD::FSQRT: // Need is known positive
4494   case ISD::FLOG:
4495   case ISD::FLOG2:
4496   case ISD::FLOG10:
4497   case ISD::FPOWI:
4498   case ISD::FPOW: {
4499     if (SNaN)
4500       return true;
4501     // TODO: Refine on operand
4502     return false;
4503   }
4504   case ISD::FMINNUM:
4505   case ISD::FMAXNUM: {
4506     // Only one needs to be known not-nan, since it will be returned if the
4507     // other ends up being one.
4508     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4509            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4510   }
4511   case ISD::FMINNUM_IEEE:
4512   case ISD::FMAXNUM_IEEE: {
4513     if (SNaN)
4514       return true;
4515     // This can return a NaN if either operand is an sNaN, or if both operands
4516     // are NaN.
4517     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4518             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4519            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4520             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4521   }
4522   case ISD::FMINIMUM:
4523   case ISD::FMAXIMUM: {
4524     // TODO: Does this quiet or return the origina NaN as-is?
4525     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4526            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4527   }
4528   case ISD::EXTRACT_VECTOR_ELT: {
4529     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4530   }
4531   default:
4532     if (Opcode >= ISD::BUILTIN_OP_END ||
4533         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4534         Opcode == ISD::INTRINSIC_W_CHAIN ||
4535         Opcode == ISD::INTRINSIC_VOID) {
4536       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4537     }
4538 
4539     return false;
4540   }
4541 }
4542 
4543 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4544   assert(Op.getValueType().isFloatingPoint() &&
4545          "Floating point type expected");
4546 
4547   // If the value is a constant, we can obviously see if it is a zero or not.
4548   // TODO: Add BuildVector support.
4549   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4550     return !C->isZero();
4551   return false;
4552 }
4553 
4554 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4555   assert(!Op.getValueType().isFloatingPoint() &&
4556          "Floating point types unsupported - use isKnownNeverZeroFloat");
4557 
4558   // If the value is a constant, we can obviously see if it is a zero or not.
4559   if (ISD::matchUnaryPredicate(Op,
4560                                [](ConstantSDNode *C) { return !C->isZero(); }))
4561     return true;
4562 
4563   // TODO: Recognize more cases here.
4564   switch (Op.getOpcode()) {
4565   default: break;
4566   case ISD::OR:
4567     if (isKnownNeverZero(Op.getOperand(1)) ||
4568         isKnownNeverZero(Op.getOperand(0)))
4569       return true;
4570     break;
4571   }
4572 
4573   return false;
4574 }
4575 
4576 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4577   // Check the obvious case.
4578   if (A == B) return true;
4579 
4580   // For for negative and positive zero.
4581   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4582     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4583       if (CA->isZero() && CB->isZero()) return true;
4584 
4585   // Otherwise they may not be equal.
4586   return false;
4587 }
4588 
4589 // FIXME: unify with llvm::haveNoCommonBitsSet.
4590 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4591   assert(A.getValueType() == B.getValueType() &&
4592          "Values must have the same type");
4593   // Match masked merge pattern (X & ~M) op (Y & M)
4594   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4595     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4596       if (isBitwiseNot(NotM, true)) {
4597         SDValue NotOperand = NotM->getOperand(0);
4598         return NotOperand == And->getOperand(0) ||
4599                NotOperand == And->getOperand(1);
4600       }
4601       return false;
4602     };
4603     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4604         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4605         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4606         MatchNoCommonBitsPattern(B->getOperand(1), A))
4607       return true;
4608   }
4609   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4610                                         computeKnownBits(B));
4611 }
4612 
4613 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4614                                SelectionDAG &DAG) {
4615   if (cast<ConstantSDNode>(Step)->isZero())
4616     return DAG.getConstant(0, DL, VT);
4617 
4618   return SDValue();
4619 }
4620 
4621 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4622                                 ArrayRef<SDValue> Ops,
4623                                 SelectionDAG &DAG) {
4624   int NumOps = Ops.size();
4625   assert(NumOps != 0 && "Can't build an empty vector!");
4626   assert(!VT.isScalableVector() &&
4627          "BUILD_VECTOR cannot be used with scalable types");
4628   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4629          "Incorrect element count in BUILD_VECTOR!");
4630 
4631   // BUILD_VECTOR of UNDEFs is UNDEF.
4632   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4633     return DAG.getUNDEF(VT);
4634 
4635   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4636   SDValue IdentitySrc;
4637   bool IsIdentity = true;
4638   for (int i = 0; i != NumOps; ++i) {
4639     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4640         Ops[i].getOperand(0).getValueType() != VT ||
4641         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4642         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4643         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4644       IsIdentity = false;
4645       break;
4646     }
4647     IdentitySrc = Ops[i].getOperand(0);
4648   }
4649   if (IsIdentity)
4650     return IdentitySrc;
4651 
4652   return SDValue();
4653 }
4654 
4655 /// Try to simplify vector concatenation to an input value, undef, or build
4656 /// vector.
4657 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4658                                   ArrayRef<SDValue> Ops,
4659                                   SelectionDAG &DAG) {
4660   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4661   assert(llvm::all_of(Ops,
4662                       [Ops](SDValue Op) {
4663                         return Ops[0].getValueType() == Op.getValueType();
4664                       }) &&
4665          "Concatenation of vectors with inconsistent value types!");
4666   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4667              VT.getVectorElementCount() &&
4668          "Incorrect element count in vector concatenation!");
4669 
4670   if (Ops.size() == 1)
4671     return Ops[0];
4672 
4673   // Concat of UNDEFs is UNDEF.
4674   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4675     return DAG.getUNDEF(VT);
4676 
4677   // Scan the operands and look for extract operations from a single source
4678   // that correspond to insertion at the same location via this concatenation:
4679   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4680   SDValue IdentitySrc;
4681   bool IsIdentity = true;
4682   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4683     SDValue Op = Ops[i];
4684     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4685     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4686         Op.getOperand(0).getValueType() != VT ||
4687         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4688         Op.getConstantOperandVal(1) != IdentityIndex) {
4689       IsIdentity = false;
4690       break;
4691     }
4692     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4693            "Unexpected identity source vector for concat of extracts");
4694     IdentitySrc = Op.getOperand(0);
4695   }
4696   if (IsIdentity) {
4697     assert(IdentitySrc && "Failed to set source vector of extracts");
4698     return IdentitySrc;
4699   }
4700 
4701   // The code below this point is only designed to work for fixed width
4702   // vectors, so we bail out for now.
4703   if (VT.isScalableVector())
4704     return SDValue();
4705 
4706   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4707   // simplified to one big BUILD_VECTOR.
4708   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4709   EVT SVT = VT.getScalarType();
4710   SmallVector<SDValue, 16> Elts;
4711   for (SDValue Op : Ops) {
4712     EVT OpVT = Op.getValueType();
4713     if (Op.isUndef())
4714       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4715     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4716       Elts.append(Op->op_begin(), Op->op_end());
4717     else
4718       return SDValue();
4719   }
4720 
4721   // BUILD_VECTOR requires all inputs to be of the same type, find the
4722   // maximum type and extend them all.
4723   for (SDValue Op : Elts)
4724     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4725 
4726   if (SVT.bitsGT(VT.getScalarType())) {
4727     for (SDValue &Op : Elts) {
4728       if (Op.isUndef())
4729         Op = DAG.getUNDEF(SVT);
4730       else
4731         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4732                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4733                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4734     }
4735   }
4736 
4737   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4738   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4739   return V;
4740 }
4741 
4742 /// Gets or creates the specified node.
4743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4744   FoldingSetNodeID ID;
4745   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4746   void *IP = nullptr;
4747   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4748     return SDValue(E, 0);
4749 
4750   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4751                               getVTList(VT));
4752   CSEMap.InsertNode(N, IP);
4753 
4754   InsertNode(N);
4755   SDValue V = SDValue(N, 0);
4756   NewSDValueDbgMsg(V, "Creating new node: ", this);
4757   return V;
4758 }
4759 
4760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4761                               SDValue Operand) {
4762   SDNodeFlags Flags;
4763   if (Inserter)
4764     Flags = Inserter->getFlags();
4765   return getNode(Opcode, DL, VT, Operand, Flags);
4766 }
4767 
4768 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4769                               SDValue Operand, const SDNodeFlags Flags) {
4770   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4771          "Operand is DELETED_NODE!");
4772   // Constant fold unary operations with an integer constant operand. Even
4773   // opaque constant will be folded, because the folding of unary operations
4774   // doesn't create new constants with different values. Nevertheless, the
4775   // opaque flag is preserved during folding to prevent future folding with
4776   // other constants.
4777   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4778     const APInt &Val = C->getAPIntValue();
4779     switch (Opcode) {
4780     default: break;
4781     case ISD::SIGN_EXTEND:
4782       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4783                          C->isTargetOpcode(), C->isOpaque());
4784     case ISD::TRUNCATE:
4785       if (C->isOpaque())
4786         break;
4787       LLVM_FALLTHROUGH;
4788     case ISD::ZERO_EXTEND:
4789       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4790                          C->isTargetOpcode(), C->isOpaque());
4791     case ISD::ANY_EXTEND:
4792       // Some targets like RISCV prefer to sign extend some types.
4793       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4794         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4795                            C->isTargetOpcode(), C->isOpaque());
4796       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4797                          C->isTargetOpcode(), C->isOpaque());
4798     case ISD::UINT_TO_FP:
4799     case ISD::SINT_TO_FP: {
4800       APFloat apf(EVTToAPFloatSemantics(VT),
4801                   APInt::getZero(VT.getSizeInBits()));
4802       (void)apf.convertFromAPInt(Val,
4803                                  Opcode==ISD::SINT_TO_FP,
4804                                  APFloat::rmNearestTiesToEven);
4805       return getConstantFP(apf, DL, VT);
4806     }
4807     case ISD::BITCAST:
4808       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4809         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4810       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4811         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4812       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4813         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4814       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4815         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4816       break;
4817     case ISD::ABS:
4818       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4819                          C->isOpaque());
4820     case ISD::BITREVERSE:
4821       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4822                          C->isOpaque());
4823     case ISD::BSWAP:
4824       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4825                          C->isOpaque());
4826     case ISD::CTPOP:
4827       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4828                          C->isOpaque());
4829     case ISD::CTLZ:
4830     case ISD::CTLZ_ZERO_UNDEF:
4831       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4832                          C->isOpaque());
4833     case ISD::CTTZ:
4834     case ISD::CTTZ_ZERO_UNDEF:
4835       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4836                          C->isOpaque());
4837     case ISD::FP16_TO_FP: {
4838       bool Ignored;
4839       APFloat FPV(APFloat::IEEEhalf(),
4840                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4841 
4842       // This can return overflow, underflow, or inexact; we don't care.
4843       // FIXME need to be more flexible about rounding mode.
4844       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4845                         APFloat::rmNearestTiesToEven, &Ignored);
4846       return getConstantFP(FPV, DL, VT);
4847     }
4848     case ISD::STEP_VECTOR: {
4849       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4850         return V;
4851       break;
4852     }
4853     }
4854   }
4855 
4856   // Constant fold unary operations with a floating point constant operand.
4857   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4858     APFloat V = C->getValueAPF();    // make copy
4859     switch (Opcode) {
4860     case ISD::FNEG:
4861       V.changeSign();
4862       return getConstantFP(V, DL, VT);
4863     case ISD::FABS:
4864       V.clearSign();
4865       return getConstantFP(V, DL, VT);
4866     case ISD::FCEIL: {
4867       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4868       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4869         return getConstantFP(V, DL, VT);
4870       break;
4871     }
4872     case ISD::FTRUNC: {
4873       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4874       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4875         return getConstantFP(V, DL, VT);
4876       break;
4877     }
4878     case ISD::FFLOOR: {
4879       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4880       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4881         return getConstantFP(V, DL, VT);
4882       break;
4883     }
4884     case ISD::FP_EXTEND: {
4885       bool ignored;
4886       // This can return overflow, underflow, or inexact; we don't care.
4887       // FIXME need to be more flexible about rounding mode.
4888       (void)V.convert(EVTToAPFloatSemantics(VT),
4889                       APFloat::rmNearestTiesToEven, &ignored);
4890       return getConstantFP(V, DL, VT);
4891     }
4892     case ISD::FP_TO_SINT:
4893     case ISD::FP_TO_UINT: {
4894       bool ignored;
4895       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4896       // FIXME need to be more flexible about rounding mode.
4897       APFloat::opStatus s =
4898           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4899       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4900         break;
4901       return getConstant(IntVal, DL, VT);
4902     }
4903     case ISD::BITCAST:
4904       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4905         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4906       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4907         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4908       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4909         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4910       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4911         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4912       break;
4913     case ISD::FP_TO_FP16: {
4914       bool Ignored;
4915       // This can return overflow, underflow, or inexact; we don't care.
4916       // FIXME need to be more flexible about rounding mode.
4917       (void)V.convert(APFloat::IEEEhalf(),
4918                       APFloat::rmNearestTiesToEven, &Ignored);
4919       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4920     }
4921     }
4922   }
4923 
4924   // Constant fold unary operations with a vector integer or float operand.
4925   switch (Opcode) {
4926   default:
4927     // FIXME: Entirely reasonable to perform folding of other unary
4928     // operations here as the need arises.
4929     break;
4930   case ISD::FNEG:
4931   case ISD::FABS:
4932   case ISD::FCEIL:
4933   case ISD::FTRUNC:
4934   case ISD::FFLOOR:
4935   case ISD::FP_EXTEND:
4936   case ISD::FP_TO_SINT:
4937   case ISD::FP_TO_UINT:
4938   case ISD::TRUNCATE:
4939   case ISD::ANY_EXTEND:
4940   case ISD::ZERO_EXTEND:
4941   case ISD::SIGN_EXTEND:
4942   case ISD::UINT_TO_FP:
4943   case ISD::SINT_TO_FP:
4944   case ISD::ABS:
4945   case ISD::BITREVERSE:
4946   case ISD::BSWAP:
4947   case ISD::CTLZ:
4948   case ISD::CTLZ_ZERO_UNDEF:
4949   case ISD::CTTZ:
4950   case ISD::CTTZ_ZERO_UNDEF:
4951   case ISD::CTPOP: {
4952     SDValue Ops = {Operand};
4953     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4954       return Fold;
4955   }
4956   }
4957 
4958   unsigned OpOpcode = Operand.getNode()->getOpcode();
4959   switch (Opcode) {
4960   case ISD::STEP_VECTOR:
4961     assert(VT.isScalableVector() &&
4962            "STEP_VECTOR can only be used with scalable types");
4963     assert(OpOpcode == ISD::TargetConstant &&
4964            VT.getVectorElementType() == Operand.getValueType() &&
4965            "Unexpected step operand");
4966     break;
4967   case ISD::FREEZE:
4968     assert(VT == Operand.getValueType() && "Unexpected VT!");
4969     break;
4970   case ISD::TokenFactor:
4971   case ISD::MERGE_VALUES:
4972   case ISD::CONCAT_VECTORS:
4973     return Operand;         // Factor, merge or concat of one node?  No need.
4974   case ISD::BUILD_VECTOR: {
4975     // Attempt to simplify BUILD_VECTOR.
4976     SDValue Ops[] = {Operand};
4977     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4978       return V;
4979     break;
4980   }
4981   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4982   case ISD::FP_EXTEND:
4983     assert(VT.isFloatingPoint() &&
4984            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4985     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4986     assert((!VT.isVector() ||
4987             VT.getVectorElementCount() ==
4988             Operand.getValueType().getVectorElementCount()) &&
4989            "Vector element count mismatch!");
4990     assert(Operand.getValueType().bitsLT(VT) &&
4991            "Invalid fpext node, dst < src!");
4992     if (Operand.isUndef())
4993       return getUNDEF(VT);
4994     break;
4995   case ISD::FP_TO_SINT:
4996   case ISD::FP_TO_UINT:
4997     if (Operand.isUndef())
4998       return getUNDEF(VT);
4999     break;
5000   case ISD::SINT_TO_FP:
5001   case ISD::UINT_TO_FP:
5002     // [us]itofp(undef) = 0, because the result value is bounded.
5003     if (Operand.isUndef())
5004       return getConstantFP(0.0, DL, VT);
5005     break;
5006   case ISD::SIGN_EXTEND:
5007     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5008            "Invalid SIGN_EXTEND!");
5009     assert(VT.isVector() == Operand.getValueType().isVector() &&
5010            "SIGN_EXTEND result type type should be vector iff the operand "
5011            "type is vector!");
5012     if (Operand.getValueType() == VT) return Operand;   // noop extension
5013     assert((!VT.isVector() ||
5014             VT.getVectorElementCount() ==
5015                 Operand.getValueType().getVectorElementCount()) &&
5016            "Vector element count mismatch!");
5017     assert(Operand.getValueType().bitsLT(VT) &&
5018            "Invalid sext node, dst < src!");
5019     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5020       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5021     if (OpOpcode == ISD::UNDEF)
5022       // sext(undef) = 0, because the top bits will all be the same.
5023       return getConstant(0, DL, VT);
5024     break;
5025   case ISD::ZERO_EXTEND:
5026     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5027            "Invalid ZERO_EXTEND!");
5028     assert(VT.isVector() == Operand.getValueType().isVector() &&
5029            "ZERO_EXTEND result type type should be vector iff the operand "
5030            "type is vector!");
5031     if (Operand.getValueType() == VT) return Operand;   // noop extension
5032     assert((!VT.isVector() ||
5033             VT.getVectorElementCount() ==
5034                 Operand.getValueType().getVectorElementCount()) &&
5035            "Vector element count mismatch!");
5036     assert(Operand.getValueType().bitsLT(VT) &&
5037            "Invalid zext node, dst < src!");
5038     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5039       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5040     if (OpOpcode == ISD::UNDEF)
5041       // zext(undef) = 0, because the top bits will be zero.
5042       return getConstant(0, DL, VT);
5043     break;
5044   case ISD::ANY_EXTEND:
5045     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5046            "Invalid ANY_EXTEND!");
5047     assert(VT.isVector() == Operand.getValueType().isVector() &&
5048            "ANY_EXTEND result type type should be vector iff the operand "
5049            "type is vector!");
5050     if (Operand.getValueType() == VT) return Operand;   // noop extension
5051     assert((!VT.isVector() ||
5052             VT.getVectorElementCount() ==
5053                 Operand.getValueType().getVectorElementCount()) &&
5054            "Vector element count mismatch!");
5055     assert(Operand.getValueType().bitsLT(VT) &&
5056            "Invalid anyext node, dst < src!");
5057 
5058     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5059         OpOpcode == ISD::ANY_EXTEND)
5060       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5061       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5062     if (OpOpcode == ISD::UNDEF)
5063       return getUNDEF(VT);
5064 
5065     // (ext (trunc x)) -> x
5066     if (OpOpcode == ISD::TRUNCATE) {
5067       SDValue OpOp = Operand.getOperand(0);
5068       if (OpOp.getValueType() == VT) {
5069         transferDbgValues(Operand, OpOp);
5070         return OpOp;
5071       }
5072     }
5073     break;
5074   case ISD::TRUNCATE:
5075     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5076            "Invalid TRUNCATE!");
5077     assert(VT.isVector() == Operand.getValueType().isVector() &&
5078            "TRUNCATE result type type should be vector iff the operand "
5079            "type is vector!");
5080     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5081     assert((!VT.isVector() ||
5082             VT.getVectorElementCount() ==
5083                 Operand.getValueType().getVectorElementCount()) &&
5084            "Vector element count mismatch!");
5085     assert(Operand.getValueType().bitsGT(VT) &&
5086            "Invalid truncate node, src < dst!");
5087     if (OpOpcode == ISD::TRUNCATE)
5088       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5089     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5090         OpOpcode == ISD::ANY_EXTEND) {
5091       // If the source is smaller than the dest, we still need an extend.
5092       if (Operand.getOperand(0).getValueType().getScalarType()
5093             .bitsLT(VT.getScalarType()))
5094         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5095       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5096         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5097       return Operand.getOperand(0);
5098     }
5099     if (OpOpcode == ISD::UNDEF)
5100       return getUNDEF(VT);
5101     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5102       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5103     break;
5104   case ISD::ANY_EXTEND_VECTOR_INREG:
5105   case ISD::ZERO_EXTEND_VECTOR_INREG:
5106   case ISD::SIGN_EXTEND_VECTOR_INREG:
5107     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5108     assert(Operand.getValueType().bitsLE(VT) &&
5109            "The input must be the same size or smaller than the result.");
5110     assert(VT.getVectorMinNumElements() <
5111                Operand.getValueType().getVectorMinNumElements() &&
5112            "The destination vector type must have fewer lanes than the input.");
5113     break;
5114   case ISD::ABS:
5115     assert(VT.isInteger() && VT == Operand.getValueType() &&
5116            "Invalid ABS!");
5117     if (OpOpcode == ISD::UNDEF)
5118       return getUNDEF(VT);
5119     break;
5120   case ISD::BSWAP:
5121     assert(VT.isInteger() && VT == Operand.getValueType() &&
5122            "Invalid BSWAP!");
5123     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5124            "BSWAP types must be a multiple of 16 bits!");
5125     if (OpOpcode == ISD::UNDEF)
5126       return getUNDEF(VT);
5127     // bswap(bswap(X)) -> X.
5128     if (OpOpcode == ISD::BSWAP)
5129       return Operand.getOperand(0);
5130     break;
5131   case ISD::BITREVERSE:
5132     assert(VT.isInteger() && VT == Operand.getValueType() &&
5133            "Invalid BITREVERSE!");
5134     if (OpOpcode == ISD::UNDEF)
5135       return getUNDEF(VT);
5136     break;
5137   case ISD::BITCAST:
5138     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5139            "Cannot BITCAST between types of different sizes!");
5140     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5141     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5142       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5143     if (OpOpcode == ISD::UNDEF)
5144       return getUNDEF(VT);
5145     break;
5146   case ISD::SCALAR_TO_VECTOR:
5147     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5148            (VT.getVectorElementType() == Operand.getValueType() ||
5149             (VT.getVectorElementType().isInteger() &&
5150              Operand.getValueType().isInteger() &&
5151              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5152            "Illegal SCALAR_TO_VECTOR node!");
5153     if (OpOpcode == ISD::UNDEF)
5154       return getUNDEF(VT);
5155     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5156     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5157         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5158         Operand.getConstantOperandVal(1) == 0 &&
5159         Operand.getOperand(0).getValueType() == VT)
5160       return Operand.getOperand(0);
5161     break;
5162   case ISD::FNEG:
5163     // Negation of an unknown bag of bits is still completely undefined.
5164     if (OpOpcode == ISD::UNDEF)
5165       return getUNDEF(VT);
5166 
5167     if (OpOpcode == ISD::FNEG)  // --X -> X
5168       return Operand.getOperand(0);
5169     break;
5170   case ISD::FABS:
5171     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5172       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5173     break;
5174   case ISD::VSCALE:
5175     assert(VT == Operand.getValueType() && "Unexpected VT!");
5176     break;
5177   case ISD::CTPOP:
5178     if (Operand.getValueType().getScalarType() == MVT::i1)
5179       return Operand;
5180     break;
5181   case ISD::CTLZ:
5182   case ISD::CTTZ:
5183     if (Operand.getValueType().getScalarType() == MVT::i1)
5184       return getNOT(DL, Operand, Operand.getValueType());
5185     break;
5186   case ISD::VECREDUCE_SMIN:
5187   case ISD::VECREDUCE_UMAX:
5188     if (Operand.getValueType().getScalarType() == MVT::i1)
5189       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5190     break;
5191   case ISD::VECREDUCE_SMAX:
5192   case ISD::VECREDUCE_UMIN:
5193     if (Operand.getValueType().getScalarType() == MVT::i1)
5194       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5195     break;
5196   }
5197 
5198   SDNode *N;
5199   SDVTList VTs = getVTList(VT);
5200   SDValue Ops[] = {Operand};
5201   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5202     FoldingSetNodeID ID;
5203     AddNodeIDNode(ID, Opcode, VTs, Ops);
5204     void *IP = nullptr;
5205     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5206       E->intersectFlagsWith(Flags);
5207       return SDValue(E, 0);
5208     }
5209 
5210     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5211     N->setFlags(Flags);
5212     createOperands(N, Ops);
5213     CSEMap.InsertNode(N, IP);
5214   } else {
5215     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5216     createOperands(N, Ops);
5217   }
5218 
5219   InsertNode(N);
5220   SDValue V = SDValue(N, 0);
5221   NewSDValueDbgMsg(V, "Creating new node: ", this);
5222   return V;
5223 }
5224 
5225 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5226                                        const APInt &C2) {
5227   switch (Opcode) {
5228   case ISD::ADD:  return C1 + C2;
5229   case ISD::SUB:  return C1 - C2;
5230   case ISD::MUL:  return C1 * C2;
5231   case ISD::AND:  return C1 & C2;
5232   case ISD::OR:   return C1 | C2;
5233   case ISD::XOR:  return C1 ^ C2;
5234   case ISD::SHL:  return C1 << C2;
5235   case ISD::SRL:  return C1.lshr(C2);
5236   case ISD::SRA:  return C1.ashr(C2);
5237   case ISD::ROTL: return C1.rotl(C2);
5238   case ISD::ROTR: return C1.rotr(C2);
5239   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5240   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5241   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5242   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5243   case ISD::SADDSAT: return C1.sadd_sat(C2);
5244   case ISD::UADDSAT: return C1.uadd_sat(C2);
5245   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5246   case ISD::USUBSAT: return C1.usub_sat(C2);
5247   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5248   case ISD::USHLSAT: return C1.ushl_sat(C2);
5249   case ISD::UDIV:
5250     if (!C2.getBoolValue())
5251       break;
5252     return C1.udiv(C2);
5253   case ISD::UREM:
5254     if (!C2.getBoolValue())
5255       break;
5256     return C1.urem(C2);
5257   case ISD::SDIV:
5258     if (!C2.getBoolValue())
5259       break;
5260     return C1.sdiv(C2);
5261   case ISD::SREM:
5262     if (!C2.getBoolValue())
5263       break;
5264     return C1.srem(C2);
5265   case ISD::MULHS: {
5266     unsigned FullWidth = C1.getBitWidth() * 2;
5267     APInt C1Ext = C1.sext(FullWidth);
5268     APInt C2Ext = C2.sext(FullWidth);
5269     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5270   }
5271   case ISD::MULHU: {
5272     unsigned FullWidth = C1.getBitWidth() * 2;
5273     APInt C1Ext = C1.zext(FullWidth);
5274     APInt C2Ext = C2.zext(FullWidth);
5275     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5276   }
5277   }
5278   return llvm::None;
5279 }
5280 
5281 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5282                                        const GlobalAddressSDNode *GA,
5283                                        const SDNode *N2) {
5284   if (GA->getOpcode() != ISD::GlobalAddress)
5285     return SDValue();
5286   if (!TLI->isOffsetFoldingLegal(GA))
5287     return SDValue();
5288   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5289   if (!C2)
5290     return SDValue();
5291   int64_t Offset = C2->getSExtValue();
5292   switch (Opcode) {
5293   case ISD::ADD: break;
5294   case ISD::SUB: Offset = -uint64_t(Offset); break;
5295   default: return SDValue();
5296   }
5297   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5298                           GA->getOffset() + uint64_t(Offset));
5299 }
5300 
5301 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5302   switch (Opcode) {
5303   case ISD::SDIV:
5304   case ISD::UDIV:
5305   case ISD::SREM:
5306   case ISD::UREM: {
5307     // If a divisor is zero/undef or any element of a divisor vector is
5308     // zero/undef, the whole op is undef.
5309     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5310     SDValue Divisor = Ops[1];
5311     if (Divisor.isUndef() || isNullConstant(Divisor))
5312       return true;
5313 
5314     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5315            llvm::any_of(Divisor->op_values(),
5316                         [](SDValue V) { return V.isUndef() ||
5317                                         isNullConstant(V); });
5318     // TODO: Handle signed overflow.
5319   }
5320   // TODO: Handle oversized shifts.
5321   default:
5322     return false;
5323   }
5324 }
5325 
5326 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5327                                              EVT VT, ArrayRef<SDValue> Ops) {
5328   // If the opcode is a target-specific ISD node, there's nothing we can
5329   // do here and the operand rules may not line up with the below, so
5330   // bail early.
5331   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5332   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5333   // foldCONCAT_VECTORS in getNode before this is called.
5334   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5335     return SDValue();
5336 
5337   unsigned NumOps = Ops.size();
5338   if (NumOps == 0)
5339     return SDValue();
5340 
5341   if (isUndef(Opcode, Ops))
5342     return getUNDEF(VT);
5343 
5344   // Handle binops special cases.
5345   if (NumOps == 2) {
5346     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5347       return CFP;
5348 
5349     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5350       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5351         if (C1->isOpaque() || C2->isOpaque())
5352           return SDValue();
5353 
5354         Optional<APInt> FoldAttempt =
5355             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5356         if (!FoldAttempt)
5357           return SDValue();
5358 
5359         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5360         assert((!Folded || !VT.isVector()) &&
5361                "Can't fold vectors ops with scalar operands");
5362         return Folded;
5363       }
5364     }
5365 
5366     // fold (add Sym, c) -> Sym+c
5367     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5368       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5369     if (TLI->isCommutativeBinOp(Opcode))
5370       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5371         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5372   }
5373 
5374   // This is for vector folding only from here on.
5375   if (!VT.isVector())
5376     return SDValue();
5377 
5378   ElementCount NumElts = VT.getVectorElementCount();
5379 
5380   // See if we can fold through bitcasted integer ops.
5381   // TODO: Can we handle undef elements?
5382   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5383       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5384       Ops[0].getOpcode() == ISD::BITCAST &&
5385       Ops[1].getOpcode() == ISD::BITCAST) {
5386     SDValue N1 = peekThroughBitcasts(Ops[0]);
5387     SDValue N2 = peekThroughBitcasts(Ops[1]);
5388     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5389     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5390     EVT BVVT = N1.getValueType();
5391     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5392       bool IsLE = getDataLayout().isLittleEndian();
5393       unsigned EltBits = VT.getScalarSizeInBits();
5394       SmallVector<APInt> RawBits1, RawBits2;
5395       BitVector UndefElts1, UndefElts2;
5396       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5397           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5398           UndefElts1.none() && UndefElts2.none()) {
5399         SmallVector<APInt> RawBits;
5400         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5401           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5402           if (!Fold)
5403             break;
5404           RawBits.push_back(Fold.getValue());
5405         }
5406         if (RawBits.size() == NumElts.getFixedValue()) {
5407           // We have constant folded, but we need to cast this again back to
5408           // the original (possibly legalized) type.
5409           SmallVector<APInt> DstBits;
5410           BitVector DstUndefs;
5411           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5412                                            DstBits, RawBits, DstUndefs,
5413                                            BitVector(RawBits.size(), false));
5414           EVT BVEltVT = BV1->getOperand(0).getValueType();
5415           unsigned BVEltBits = BVEltVT.getSizeInBits();
5416           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5417           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5418             if (DstUndefs[I])
5419               continue;
5420             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5421           }
5422           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5423         }
5424       }
5425     }
5426   }
5427 
5428   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5429   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5430   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5431       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5432     APInt RHSVal;
5433     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5434       APInt NewStep = Opcode == ISD::MUL
5435                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5436                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5437       return getStepVector(DL, VT, NewStep);
5438     }
5439   }
5440 
5441   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5442     return !Op.getValueType().isVector() ||
5443            Op.getValueType().getVectorElementCount() == NumElts;
5444   };
5445 
5446   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5447     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5448            Op.getOpcode() == ISD::BUILD_VECTOR ||
5449            Op.getOpcode() == ISD::SPLAT_VECTOR;
5450   };
5451 
5452   // All operands must be vector types with the same number of elements as
5453   // the result type and must be either UNDEF or a build/splat vector
5454   // or UNDEF scalars.
5455   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5456       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5457     return SDValue();
5458 
5459   // If we are comparing vectors, then the result needs to be a i1 boolean
5460   // that is then sign-extended back to the legal result type.
5461   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5462 
5463   // Find legal integer scalar type for constant promotion and
5464   // ensure that its scalar size is at least as large as source.
5465   EVT LegalSVT = VT.getScalarType();
5466   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5467     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5468     if (LegalSVT.bitsLT(VT.getScalarType()))
5469       return SDValue();
5470   }
5471 
5472   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5473   // only have one operand to check. For fixed-length vector types we may have
5474   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5475   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5476 
5477   // Constant fold each scalar lane separately.
5478   SmallVector<SDValue, 4> ScalarResults;
5479   for (unsigned I = 0; I != NumVectorElts; I++) {
5480     SmallVector<SDValue, 4> ScalarOps;
5481     for (SDValue Op : Ops) {
5482       EVT InSVT = Op.getValueType().getScalarType();
5483       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5484           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5485         if (Op.isUndef())
5486           ScalarOps.push_back(getUNDEF(InSVT));
5487         else
5488           ScalarOps.push_back(Op);
5489         continue;
5490       }
5491 
5492       SDValue ScalarOp =
5493           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5494       EVT ScalarVT = ScalarOp.getValueType();
5495 
5496       // Build vector (integer) scalar operands may need implicit
5497       // truncation - do this before constant folding.
5498       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5499         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5500 
5501       ScalarOps.push_back(ScalarOp);
5502     }
5503 
5504     // Constant fold the scalar operands.
5505     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5506 
5507     // Legalize the (integer) scalar constant if necessary.
5508     if (LegalSVT != SVT)
5509       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5510 
5511     // Scalar folding only succeeded if the result is a constant or UNDEF.
5512     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5513         ScalarResult.getOpcode() != ISD::ConstantFP)
5514       return SDValue();
5515     ScalarResults.push_back(ScalarResult);
5516   }
5517 
5518   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5519                                    : getBuildVector(VT, DL, ScalarResults);
5520   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5521   return V;
5522 }
5523 
5524 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5525                                          EVT VT, SDValue N1, SDValue N2) {
5526   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5527   //       should. That will require dealing with a potentially non-default
5528   //       rounding mode, checking the "opStatus" return value from the APFloat
5529   //       math calculations, and possibly other variations.
5530   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5531   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5532   if (N1CFP && N2CFP) {
5533     APFloat C1 = N1CFP->getValueAPF(); // make copy
5534     const APFloat &C2 = N2CFP->getValueAPF();
5535     switch (Opcode) {
5536     case ISD::FADD:
5537       C1.add(C2, APFloat::rmNearestTiesToEven);
5538       return getConstantFP(C1, DL, VT);
5539     case ISD::FSUB:
5540       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5541       return getConstantFP(C1, DL, VT);
5542     case ISD::FMUL:
5543       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5544       return getConstantFP(C1, DL, VT);
5545     case ISD::FDIV:
5546       C1.divide(C2, APFloat::rmNearestTiesToEven);
5547       return getConstantFP(C1, DL, VT);
5548     case ISD::FREM:
5549       C1.mod(C2);
5550       return getConstantFP(C1, DL, VT);
5551     case ISD::FCOPYSIGN:
5552       C1.copySign(C2);
5553       return getConstantFP(C1, DL, VT);
5554     case ISD::FMINNUM:
5555       return getConstantFP(minnum(C1, C2), DL, VT);
5556     case ISD::FMAXNUM:
5557       return getConstantFP(maxnum(C1, C2), DL, VT);
5558     case ISD::FMINIMUM:
5559       return getConstantFP(minimum(C1, C2), DL, VT);
5560     case ISD::FMAXIMUM:
5561       return getConstantFP(maximum(C1, C2), DL, VT);
5562     default: break;
5563     }
5564   }
5565   if (N1CFP && Opcode == ISD::FP_ROUND) {
5566     APFloat C1 = N1CFP->getValueAPF();    // make copy
5567     bool Unused;
5568     // This can return overflow, underflow, or inexact; we don't care.
5569     // FIXME need to be more flexible about rounding mode.
5570     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5571                       &Unused);
5572     return getConstantFP(C1, DL, VT);
5573   }
5574 
5575   switch (Opcode) {
5576   case ISD::FSUB:
5577     // -0.0 - undef --> undef (consistent with "fneg undef")
5578     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5579       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5580         return getUNDEF(VT);
5581     LLVM_FALLTHROUGH;
5582 
5583   case ISD::FADD:
5584   case ISD::FMUL:
5585   case ISD::FDIV:
5586   case ISD::FREM:
5587     // If both operands are undef, the result is undef. If 1 operand is undef,
5588     // the result is NaN. This should match the behavior of the IR optimizer.
5589     if (N1.isUndef() && N2.isUndef())
5590       return getUNDEF(VT);
5591     if (N1.isUndef() || N2.isUndef())
5592       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5593   }
5594   return SDValue();
5595 }
5596 
5597 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5598   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5599 
5600   // There's no need to assert on a byte-aligned pointer. All pointers are at
5601   // least byte aligned.
5602   if (A == Align(1))
5603     return Val;
5604 
5605   FoldingSetNodeID ID;
5606   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5607   ID.AddInteger(A.value());
5608 
5609   void *IP = nullptr;
5610   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5611     return SDValue(E, 0);
5612 
5613   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5614                                          Val.getValueType(), A);
5615   createOperands(N, {Val});
5616 
5617   CSEMap.InsertNode(N, IP);
5618   InsertNode(N);
5619 
5620   SDValue V(N, 0);
5621   NewSDValueDbgMsg(V, "Creating new node: ", this);
5622   return V;
5623 }
5624 
5625 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5626                               SDValue N1, SDValue N2) {
5627   SDNodeFlags Flags;
5628   if (Inserter)
5629     Flags = Inserter->getFlags();
5630   return getNode(Opcode, DL, VT, N1, N2, Flags);
5631 }
5632 
5633 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5634                                                 SDValue &N2) const {
5635   if (!TLI->isCommutativeBinOp(Opcode))
5636     return;
5637 
5638   // Canonicalize:
5639   //   binop(const, nonconst) -> binop(nonconst, const)
5640   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5641   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5642   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5643   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5644   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5645     std::swap(N1, N2);
5646 
5647   // Canonicalize:
5648   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5649   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5650            N2.getOpcode() == ISD::STEP_VECTOR)
5651     std::swap(N1, N2);
5652 }
5653 
5654 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5655                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5656   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5657          N2.getOpcode() != ISD::DELETED_NODE &&
5658          "Operand is DELETED_NODE!");
5659 
5660   canonicalizeCommutativeBinop(Opcode, N1, N2);
5661 
5662   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5663   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5664 
5665   // Don't allow undefs in vector splats - we might be returning N2 when folding
5666   // to zero etc.
5667   ConstantSDNode *N2CV =
5668       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5669 
5670   switch (Opcode) {
5671   default: break;
5672   case ISD::TokenFactor:
5673     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5674            N2.getValueType() == MVT::Other && "Invalid token factor!");
5675     // Fold trivial token factors.
5676     if (N1.getOpcode() == ISD::EntryToken) return N2;
5677     if (N2.getOpcode() == ISD::EntryToken) return N1;
5678     if (N1 == N2) return N1;
5679     break;
5680   case ISD::BUILD_VECTOR: {
5681     // Attempt to simplify BUILD_VECTOR.
5682     SDValue Ops[] = {N1, N2};
5683     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5684       return V;
5685     break;
5686   }
5687   case ISD::CONCAT_VECTORS: {
5688     SDValue Ops[] = {N1, N2};
5689     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5690       return V;
5691     break;
5692   }
5693   case ISD::AND:
5694     assert(VT.isInteger() && "This operator does not apply to FP types!");
5695     assert(N1.getValueType() == N2.getValueType() &&
5696            N1.getValueType() == VT && "Binary operator types must match!");
5697     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5698     // worth handling here.
5699     if (N2CV && N2CV->isZero())
5700       return N2;
5701     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5702       return N1;
5703     break;
5704   case ISD::OR:
5705   case ISD::XOR:
5706   case ISD::ADD:
5707   case ISD::SUB:
5708     assert(VT.isInteger() && "This operator does not apply to FP types!");
5709     assert(N1.getValueType() == N2.getValueType() &&
5710            N1.getValueType() == VT && "Binary operator types must match!");
5711     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5712     // it's worth handling here.
5713     if (N2CV && N2CV->isZero())
5714       return N1;
5715     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5716         VT.getVectorElementType() == MVT::i1)
5717       return getNode(ISD::XOR, DL, VT, N1, N2);
5718     break;
5719   case ISD::MUL:
5720     assert(VT.isInteger() && "This operator does not apply to FP types!");
5721     assert(N1.getValueType() == N2.getValueType() &&
5722            N1.getValueType() == VT && "Binary operator types must match!");
5723     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5724       return getNode(ISD::AND, DL, VT, N1, N2);
5725     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5726       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5727       const APInt &N2CImm = N2C->getAPIntValue();
5728       return getVScale(DL, VT, MulImm * N2CImm);
5729     }
5730     break;
5731   case ISD::UDIV:
5732   case ISD::UREM:
5733   case ISD::MULHU:
5734   case ISD::MULHS:
5735   case ISD::SDIV:
5736   case ISD::SREM:
5737   case ISD::SADDSAT:
5738   case ISD::SSUBSAT:
5739   case ISD::UADDSAT:
5740   case ISD::USUBSAT:
5741     assert(VT.isInteger() && "This operator does not apply to FP types!");
5742     assert(N1.getValueType() == N2.getValueType() &&
5743            N1.getValueType() == VT && "Binary operator types must match!");
5744     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5745       // fold (add_sat x, y) -> (or x, y) for bool types.
5746       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5747         return getNode(ISD::OR, DL, VT, N1, N2);
5748       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5749       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5750         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5751     }
5752     break;
5753   case ISD::SMIN:
5754   case ISD::UMAX:
5755     assert(VT.isInteger() && "This operator does not apply to FP types!");
5756     assert(N1.getValueType() == N2.getValueType() &&
5757            N1.getValueType() == VT && "Binary operator types must match!");
5758     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5759       return getNode(ISD::OR, DL, VT, N1, N2);
5760     break;
5761   case ISD::SMAX:
5762   case ISD::UMIN:
5763     assert(VT.isInteger() && "This operator does not apply to FP types!");
5764     assert(N1.getValueType() == N2.getValueType() &&
5765            N1.getValueType() == VT && "Binary operator types must match!");
5766     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5767       return getNode(ISD::AND, DL, VT, N1, N2);
5768     break;
5769   case ISD::FADD:
5770   case ISD::FSUB:
5771   case ISD::FMUL:
5772   case ISD::FDIV:
5773   case ISD::FREM:
5774     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5775     assert(N1.getValueType() == N2.getValueType() &&
5776            N1.getValueType() == VT && "Binary operator types must match!");
5777     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5778       return V;
5779     break;
5780   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5781     assert(N1.getValueType() == VT &&
5782            N1.getValueType().isFloatingPoint() &&
5783            N2.getValueType().isFloatingPoint() &&
5784            "Invalid FCOPYSIGN!");
5785     break;
5786   case ISD::SHL:
5787     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5788       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5789       const APInt &ShiftImm = N2C->getAPIntValue();
5790       return getVScale(DL, VT, MulImm << ShiftImm);
5791     }
5792     LLVM_FALLTHROUGH;
5793   case ISD::SRA:
5794   case ISD::SRL:
5795     if (SDValue V = simplifyShift(N1, N2))
5796       return V;
5797     LLVM_FALLTHROUGH;
5798   case ISD::ROTL:
5799   case ISD::ROTR:
5800     assert(VT == N1.getValueType() &&
5801            "Shift operators return type must be the same as their first arg");
5802     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5803            "Shifts only work on integers");
5804     assert((!VT.isVector() || VT == N2.getValueType()) &&
5805            "Vector shift amounts must be in the same as their first arg");
5806     // Verify that the shift amount VT is big enough to hold valid shift
5807     // amounts.  This catches things like trying to shift an i1024 value by an
5808     // i8, which is easy to fall into in generic code that uses
5809     // TLI.getShiftAmount().
5810     assert(N2.getValueType().getScalarSizeInBits() >=
5811                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5812            "Invalid use of small shift amount with oversized value!");
5813 
5814     // Always fold shifts of i1 values so the code generator doesn't need to
5815     // handle them.  Since we know the size of the shift has to be less than the
5816     // size of the value, the shift/rotate count is guaranteed to be zero.
5817     if (VT == MVT::i1)
5818       return N1;
5819     if (N2CV && N2CV->isZero())
5820       return N1;
5821     break;
5822   case ISD::FP_ROUND:
5823     assert(VT.isFloatingPoint() &&
5824            N1.getValueType().isFloatingPoint() &&
5825            VT.bitsLE(N1.getValueType()) &&
5826            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5827            "Invalid FP_ROUND!");
5828     if (N1.getValueType() == VT) return N1;  // noop conversion.
5829     break;
5830   case ISD::AssertSext:
5831   case ISD::AssertZext: {
5832     EVT EVT = cast<VTSDNode>(N2)->getVT();
5833     assert(VT == N1.getValueType() && "Not an inreg extend!");
5834     assert(VT.isInteger() && EVT.isInteger() &&
5835            "Cannot *_EXTEND_INREG FP types");
5836     assert(!EVT.isVector() &&
5837            "AssertSExt/AssertZExt type should be the vector element type "
5838            "rather than the vector type!");
5839     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5840     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5841     break;
5842   }
5843   case ISD::SIGN_EXTEND_INREG: {
5844     EVT EVT = cast<VTSDNode>(N2)->getVT();
5845     assert(VT == N1.getValueType() && "Not an inreg extend!");
5846     assert(VT.isInteger() && EVT.isInteger() &&
5847            "Cannot *_EXTEND_INREG FP types");
5848     assert(EVT.isVector() == VT.isVector() &&
5849            "SIGN_EXTEND_INREG type should be vector iff the operand "
5850            "type is vector!");
5851     assert((!EVT.isVector() ||
5852             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5853            "Vector element counts must match in SIGN_EXTEND_INREG");
5854     assert(EVT.bitsLE(VT) && "Not extending!");
5855     if (EVT == VT) return N1;  // Not actually extending
5856 
5857     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5858       unsigned FromBits = EVT.getScalarSizeInBits();
5859       Val <<= Val.getBitWidth() - FromBits;
5860       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5861       return getConstant(Val, DL, ConstantVT);
5862     };
5863 
5864     if (N1C) {
5865       const APInt &Val = N1C->getAPIntValue();
5866       return SignExtendInReg(Val, VT);
5867     }
5868 
5869     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5870       SmallVector<SDValue, 8> Ops;
5871       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5872       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5873         SDValue Op = N1.getOperand(i);
5874         if (Op.isUndef()) {
5875           Ops.push_back(getUNDEF(OpVT));
5876           continue;
5877         }
5878         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5879         APInt Val = C->getAPIntValue();
5880         Ops.push_back(SignExtendInReg(Val, OpVT));
5881       }
5882       return getBuildVector(VT, DL, Ops);
5883     }
5884     break;
5885   }
5886   case ISD::FP_TO_SINT_SAT:
5887   case ISD::FP_TO_UINT_SAT: {
5888     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5889            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5890     assert(N1.getValueType().isVector() == VT.isVector() &&
5891            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5892            "vector!");
5893     assert((!VT.isVector() || VT.getVectorNumElements() ==
5894                                   N1.getValueType().getVectorNumElements()) &&
5895            "Vector element counts must match in FP_TO_*INT_SAT");
5896     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5897            "Type to saturate to must be a scalar.");
5898     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5899            "Not extending!");
5900     break;
5901   }
5902   case ISD::EXTRACT_VECTOR_ELT:
5903     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5904            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5905              element type of the vector.");
5906 
5907     // Extract from an undefined value or using an undefined index is undefined.
5908     if (N1.isUndef() || N2.isUndef())
5909       return getUNDEF(VT);
5910 
5911     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5912     // vectors. For scalable vectors we will provide appropriate support for
5913     // dealing with arbitrary indices.
5914     if (N2C && N1.getValueType().isFixedLengthVector() &&
5915         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5916       return getUNDEF(VT);
5917 
5918     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5919     // expanding copies of large vectors from registers. This only works for
5920     // fixed length vectors, since we need to know the exact number of
5921     // elements.
5922     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5923         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5924       unsigned Factor =
5925         N1.getOperand(0).getValueType().getVectorNumElements();
5926       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5927                      N1.getOperand(N2C->getZExtValue() / Factor),
5928                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5929     }
5930 
5931     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5932     // lowering is expanding large vector constants.
5933     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5934                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5935       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5936               N1.getValueType().isFixedLengthVector()) &&
5937              "BUILD_VECTOR used for scalable vectors");
5938       unsigned Index =
5939           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5940       SDValue Elt = N1.getOperand(Index);
5941 
5942       if (VT != Elt.getValueType())
5943         // If the vector element type is not legal, the BUILD_VECTOR operands
5944         // are promoted and implicitly truncated, and the result implicitly
5945         // extended. Make that explicit here.
5946         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5947 
5948       return Elt;
5949     }
5950 
5951     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5952     // operations are lowered to scalars.
5953     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5954       // If the indices are the same, return the inserted element else
5955       // if the indices are known different, extract the element from
5956       // the original vector.
5957       SDValue N1Op2 = N1.getOperand(2);
5958       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5959 
5960       if (N1Op2C && N2C) {
5961         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5962           if (VT == N1.getOperand(1).getValueType())
5963             return N1.getOperand(1);
5964           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5965         }
5966         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5967       }
5968     }
5969 
5970     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5971     // when vector types are scalarized and v1iX is legal.
5972     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5973     // Here we are completely ignoring the extract element index (N2),
5974     // which is fine for fixed width vectors, since any index other than 0
5975     // is undefined anyway. However, this cannot be ignored for scalable
5976     // vectors - in theory we could support this, but we don't want to do this
5977     // without a profitability check.
5978     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5979         N1.getValueType().isFixedLengthVector() &&
5980         N1.getValueType().getVectorNumElements() == 1) {
5981       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5982                      N1.getOperand(1));
5983     }
5984     break;
5985   case ISD::EXTRACT_ELEMENT:
5986     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5987     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5988            (N1.getValueType().isInteger() == VT.isInteger()) &&
5989            N1.getValueType() != VT &&
5990            "Wrong types for EXTRACT_ELEMENT!");
5991 
5992     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5993     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5994     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5995     if (N1.getOpcode() == ISD::BUILD_PAIR)
5996       return N1.getOperand(N2C->getZExtValue());
5997 
5998     // EXTRACT_ELEMENT of a constant int is also very common.
5999     if (N1C) {
6000       unsigned ElementSize = VT.getSizeInBits();
6001       unsigned Shift = ElementSize * N2C->getZExtValue();
6002       const APInt &Val = N1C->getAPIntValue();
6003       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6004     }
6005     break;
6006   case ISD::EXTRACT_SUBVECTOR: {
6007     EVT N1VT = N1.getValueType();
6008     assert(VT.isVector() && N1VT.isVector() &&
6009            "Extract subvector VTs must be vectors!");
6010     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6011            "Extract subvector VTs must have the same element type!");
6012     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6013            "Cannot extract a scalable vector from a fixed length vector!");
6014     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6015             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6016            "Extract subvector must be from larger vector to smaller vector!");
6017     assert(N2C && "Extract subvector index must be a constant");
6018     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6019             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6020                 N1VT.getVectorMinNumElements()) &&
6021            "Extract subvector overflow!");
6022     assert(N2C->getAPIntValue().getBitWidth() ==
6023                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6024            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6025 
6026     // Trivial extraction.
6027     if (VT == N1VT)
6028       return N1;
6029 
6030     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6031     if (N1.isUndef())
6032       return getUNDEF(VT);
6033 
6034     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6035     // the concat have the same type as the extract.
6036     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6037         VT == N1.getOperand(0).getValueType()) {
6038       unsigned Factor = VT.getVectorMinNumElements();
6039       return N1.getOperand(N2C->getZExtValue() / Factor);
6040     }
6041 
6042     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6043     // during shuffle legalization.
6044     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6045         VT == N1.getOperand(1).getValueType())
6046       return N1.getOperand(1);
6047     break;
6048   }
6049   }
6050 
6051   // Perform trivial constant folding.
6052   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6053     return SV;
6054 
6055   // Canonicalize an UNDEF to the RHS, even over a constant.
6056   if (N1.isUndef()) {
6057     if (TLI->isCommutativeBinOp(Opcode)) {
6058       std::swap(N1, N2);
6059     } else {
6060       switch (Opcode) {
6061       case ISD::SIGN_EXTEND_INREG:
6062       case ISD::SUB:
6063         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6064       case ISD::UDIV:
6065       case ISD::SDIV:
6066       case ISD::UREM:
6067       case ISD::SREM:
6068       case ISD::SSUBSAT:
6069       case ISD::USUBSAT:
6070         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6071       }
6072     }
6073   }
6074 
6075   // Fold a bunch of operators when the RHS is undef.
6076   if (N2.isUndef()) {
6077     switch (Opcode) {
6078     case ISD::XOR:
6079       if (N1.isUndef())
6080         // Handle undef ^ undef -> 0 special case. This is a common
6081         // idiom (misuse).
6082         return getConstant(0, DL, VT);
6083       LLVM_FALLTHROUGH;
6084     case ISD::ADD:
6085     case ISD::SUB:
6086     case ISD::UDIV:
6087     case ISD::SDIV:
6088     case ISD::UREM:
6089     case ISD::SREM:
6090       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6091     case ISD::MUL:
6092     case ISD::AND:
6093     case ISD::SSUBSAT:
6094     case ISD::USUBSAT:
6095       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6096     case ISD::OR:
6097     case ISD::SADDSAT:
6098     case ISD::UADDSAT:
6099       return getAllOnesConstant(DL, VT);
6100     }
6101   }
6102 
6103   // Memoize this node if possible.
6104   SDNode *N;
6105   SDVTList VTs = getVTList(VT);
6106   SDValue Ops[] = {N1, N2};
6107   if (VT != MVT::Glue) {
6108     FoldingSetNodeID ID;
6109     AddNodeIDNode(ID, Opcode, VTs, Ops);
6110     void *IP = nullptr;
6111     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6112       E->intersectFlagsWith(Flags);
6113       return SDValue(E, 0);
6114     }
6115 
6116     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6117     N->setFlags(Flags);
6118     createOperands(N, Ops);
6119     CSEMap.InsertNode(N, IP);
6120   } else {
6121     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6122     createOperands(N, Ops);
6123   }
6124 
6125   InsertNode(N);
6126   SDValue V = SDValue(N, 0);
6127   NewSDValueDbgMsg(V, "Creating new node: ", this);
6128   return V;
6129 }
6130 
6131 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6132                               SDValue N1, SDValue N2, SDValue N3) {
6133   SDNodeFlags Flags;
6134   if (Inserter)
6135     Flags = Inserter->getFlags();
6136   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6137 }
6138 
6139 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6140                               SDValue N1, SDValue N2, SDValue N3,
6141                               const SDNodeFlags Flags) {
6142   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6143          N2.getOpcode() != ISD::DELETED_NODE &&
6144          N3.getOpcode() != ISD::DELETED_NODE &&
6145          "Operand is DELETED_NODE!");
6146   // Perform various simplifications.
6147   switch (Opcode) {
6148   case ISD::FMA: {
6149     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6150     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6151            N3.getValueType() == VT && "FMA types must match!");
6152     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6153     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6154     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6155     if (N1CFP && N2CFP && N3CFP) {
6156       APFloat  V1 = N1CFP->getValueAPF();
6157       const APFloat &V2 = N2CFP->getValueAPF();
6158       const APFloat &V3 = N3CFP->getValueAPF();
6159       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6160       return getConstantFP(V1, DL, VT);
6161     }
6162     break;
6163   }
6164   case ISD::BUILD_VECTOR: {
6165     // Attempt to simplify BUILD_VECTOR.
6166     SDValue Ops[] = {N1, N2, N3};
6167     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6168       return V;
6169     break;
6170   }
6171   case ISD::CONCAT_VECTORS: {
6172     SDValue Ops[] = {N1, N2, N3};
6173     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6174       return V;
6175     break;
6176   }
6177   case ISD::SETCC: {
6178     assert(VT.isInteger() && "SETCC result type must be an integer!");
6179     assert(N1.getValueType() == N2.getValueType() &&
6180            "SETCC operands must have the same type!");
6181     assert(VT.isVector() == N1.getValueType().isVector() &&
6182            "SETCC type should be vector iff the operand type is vector!");
6183     assert((!VT.isVector() || VT.getVectorElementCount() ==
6184                                   N1.getValueType().getVectorElementCount()) &&
6185            "SETCC vector element counts must match!");
6186     // Use FoldSetCC to simplify SETCC's.
6187     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6188       return V;
6189     // Vector constant folding.
6190     SDValue Ops[] = {N1, N2, N3};
6191     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6192       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6193       return V;
6194     }
6195     break;
6196   }
6197   case ISD::SELECT:
6198   case ISD::VSELECT:
6199     if (SDValue V = simplifySelect(N1, N2, N3))
6200       return V;
6201     break;
6202   case ISD::VECTOR_SHUFFLE:
6203     llvm_unreachable("should use getVectorShuffle constructor!");
6204   case ISD::VECTOR_SPLICE: {
6205     if (cast<ConstantSDNode>(N3)->isNullValue())
6206       return N1;
6207     break;
6208   }
6209   case ISD::INSERT_VECTOR_ELT: {
6210     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6211     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6212     // for scalable vectors where we will generate appropriate code to
6213     // deal with out-of-bounds cases correctly.
6214     if (N3C && N1.getValueType().isFixedLengthVector() &&
6215         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6216       return getUNDEF(VT);
6217 
6218     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6219     if (N3.isUndef())
6220       return getUNDEF(VT);
6221 
6222     // If the inserted element is an UNDEF, just use the input vector.
6223     if (N2.isUndef())
6224       return N1;
6225 
6226     break;
6227   }
6228   case ISD::INSERT_SUBVECTOR: {
6229     // Inserting undef into undef is still undef.
6230     if (N1.isUndef() && N2.isUndef())
6231       return getUNDEF(VT);
6232 
6233     EVT N2VT = N2.getValueType();
6234     assert(VT == N1.getValueType() &&
6235            "Dest and insert subvector source types must match!");
6236     assert(VT.isVector() && N2VT.isVector() &&
6237            "Insert subvector VTs must be vectors!");
6238     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6239            "Cannot insert a scalable vector into a fixed length vector!");
6240     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6241             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6242            "Insert subvector must be from smaller vector to larger vector!");
6243     assert(isa<ConstantSDNode>(N3) &&
6244            "Insert subvector index must be constant");
6245     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6246             (N2VT.getVectorMinNumElements() +
6247              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6248                 VT.getVectorMinNumElements()) &&
6249            "Insert subvector overflow!");
6250     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6251                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6252            "Constant index for INSERT_SUBVECTOR has an invalid size");
6253 
6254     // Trivial insertion.
6255     if (VT == N2VT)
6256       return N2;
6257 
6258     // If this is an insert of an extracted vector into an undef vector, we
6259     // can just use the input to the extract.
6260     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6261         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6262       return N2.getOperand(0);
6263     break;
6264   }
6265   case ISD::BITCAST:
6266     // Fold bit_convert nodes from a type to themselves.
6267     if (N1.getValueType() == VT)
6268       return N1;
6269     break;
6270   }
6271 
6272   // Memoize node if it doesn't produce a flag.
6273   SDNode *N;
6274   SDVTList VTs = getVTList(VT);
6275   SDValue Ops[] = {N1, N2, N3};
6276   if (VT != MVT::Glue) {
6277     FoldingSetNodeID ID;
6278     AddNodeIDNode(ID, Opcode, VTs, Ops);
6279     void *IP = nullptr;
6280     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6281       E->intersectFlagsWith(Flags);
6282       return SDValue(E, 0);
6283     }
6284 
6285     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6286     N->setFlags(Flags);
6287     createOperands(N, Ops);
6288     CSEMap.InsertNode(N, IP);
6289   } else {
6290     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6291     createOperands(N, Ops);
6292   }
6293 
6294   InsertNode(N);
6295   SDValue V = SDValue(N, 0);
6296   NewSDValueDbgMsg(V, "Creating new node: ", this);
6297   return V;
6298 }
6299 
6300 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6301                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6302   SDValue Ops[] = { N1, N2, N3, N4 };
6303   return getNode(Opcode, DL, VT, Ops);
6304 }
6305 
6306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6307                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6308                               SDValue N5) {
6309   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6310   return getNode(Opcode, DL, VT, Ops);
6311 }
6312 
6313 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6314 /// the incoming stack arguments to be loaded from the stack.
6315 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6316   SmallVector<SDValue, 8> ArgChains;
6317 
6318   // Include the original chain at the beginning of the list. When this is
6319   // used by target LowerCall hooks, this helps legalize find the
6320   // CALLSEQ_BEGIN node.
6321   ArgChains.push_back(Chain);
6322 
6323   // Add a chain value for each stack argument.
6324   for (SDNode *U : getEntryNode().getNode()->uses())
6325     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6326       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6327         if (FI->getIndex() < 0)
6328           ArgChains.push_back(SDValue(L, 1));
6329 
6330   // Build a tokenfactor for all the chains.
6331   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6332 }
6333 
6334 /// getMemsetValue - Vectorized representation of the memset value
6335 /// operand.
6336 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6337                               const SDLoc &dl) {
6338   assert(!Value.isUndef());
6339 
6340   unsigned NumBits = VT.getScalarSizeInBits();
6341   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6342     assert(C->getAPIntValue().getBitWidth() == 8);
6343     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6344     if (VT.isInteger()) {
6345       bool IsOpaque = VT.getSizeInBits() > 64 ||
6346           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6347       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6348     }
6349     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6350                              VT);
6351   }
6352 
6353   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6354   EVT IntVT = VT.getScalarType();
6355   if (!IntVT.isInteger())
6356     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6357 
6358   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6359   if (NumBits > 8) {
6360     // Use a multiplication with 0x010101... to extend the input to the
6361     // required length.
6362     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6363     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6364                         DAG.getConstant(Magic, dl, IntVT));
6365   }
6366 
6367   if (VT != Value.getValueType() && !VT.isInteger())
6368     Value = DAG.getBitcast(VT.getScalarType(), Value);
6369   if (VT != Value.getValueType())
6370     Value = DAG.getSplatBuildVector(VT, dl, Value);
6371 
6372   return Value;
6373 }
6374 
6375 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6376 /// used when a memcpy is turned into a memset when the source is a constant
6377 /// string ptr.
6378 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6379                                   const TargetLowering &TLI,
6380                                   const ConstantDataArraySlice &Slice) {
6381   // Handle vector with all elements zero.
6382   if (Slice.Array == nullptr) {
6383     if (VT.isInteger())
6384       return DAG.getConstant(0, dl, VT);
6385     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6386       return DAG.getConstantFP(0.0, dl, VT);
6387     if (VT.isVector()) {
6388       unsigned NumElts = VT.getVectorNumElements();
6389       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6390       return DAG.getNode(ISD::BITCAST, dl, VT,
6391                          DAG.getConstant(0, dl,
6392                                          EVT::getVectorVT(*DAG.getContext(),
6393                                                           EltVT, NumElts)));
6394     }
6395     llvm_unreachable("Expected type!");
6396   }
6397 
6398   assert(!VT.isVector() && "Can't handle vector type here!");
6399   unsigned NumVTBits = VT.getSizeInBits();
6400   unsigned NumVTBytes = NumVTBits / 8;
6401   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6402 
6403   APInt Val(NumVTBits, 0);
6404   if (DAG.getDataLayout().isLittleEndian()) {
6405     for (unsigned i = 0; i != NumBytes; ++i)
6406       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6407   } else {
6408     for (unsigned i = 0; i != NumBytes; ++i)
6409       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6410   }
6411 
6412   // If the "cost" of materializing the integer immediate is less than the cost
6413   // of a load, then it is cost effective to turn the load into the immediate.
6414   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6415   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6416     return DAG.getConstant(Val, dl, VT);
6417   return SDValue();
6418 }
6419 
6420 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6421                                            const SDLoc &DL,
6422                                            const SDNodeFlags Flags) {
6423   EVT VT = Base.getValueType();
6424   SDValue Index;
6425 
6426   if (Offset.isScalable())
6427     Index = getVScale(DL, Base.getValueType(),
6428                       APInt(Base.getValueSizeInBits().getFixedSize(),
6429                             Offset.getKnownMinSize()));
6430   else
6431     Index = getConstant(Offset.getFixedSize(), DL, VT);
6432 
6433   return getMemBasePlusOffset(Base, Index, DL, Flags);
6434 }
6435 
6436 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6437                                            const SDLoc &DL,
6438                                            const SDNodeFlags Flags) {
6439   assert(Offset.getValueType().isInteger());
6440   EVT BasePtrVT = Ptr.getValueType();
6441   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6442 }
6443 
6444 /// Returns true if memcpy source is constant data.
6445 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6446   uint64_t SrcDelta = 0;
6447   GlobalAddressSDNode *G = nullptr;
6448   if (Src.getOpcode() == ISD::GlobalAddress)
6449     G = cast<GlobalAddressSDNode>(Src);
6450   else if (Src.getOpcode() == ISD::ADD &&
6451            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6452            Src.getOperand(1).getOpcode() == ISD::Constant) {
6453     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6454     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6455   }
6456   if (!G)
6457     return false;
6458 
6459   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6460                                   SrcDelta + G->getOffset());
6461 }
6462 
6463 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6464                                       SelectionDAG &DAG) {
6465   // On Darwin, -Os means optimize for size without hurting performance, so
6466   // only really optimize for size when -Oz (MinSize) is used.
6467   if (MF.getTarget().getTargetTriple().isOSDarwin())
6468     return MF.getFunction().hasMinSize();
6469   return DAG.shouldOptForSize();
6470 }
6471 
6472 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6473                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6474                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6475                           SmallVector<SDValue, 16> &OutStoreChains) {
6476   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6477   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6478   SmallVector<SDValue, 16> GluedLoadChains;
6479   for (unsigned i = From; i < To; ++i) {
6480     OutChains.push_back(OutLoadChains[i]);
6481     GluedLoadChains.push_back(OutLoadChains[i]);
6482   }
6483 
6484   // Chain for all loads.
6485   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6486                                   GluedLoadChains);
6487 
6488   for (unsigned i = From; i < To; ++i) {
6489     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6490     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6491                                   ST->getBasePtr(), ST->getMemoryVT(),
6492                                   ST->getMemOperand());
6493     OutChains.push_back(NewStore);
6494   }
6495 }
6496 
6497 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6498                                        SDValue Chain, SDValue Dst, SDValue Src,
6499                                        uint64_t Size, Align Alignment,
6500                                        bool isVol, bool AlwaysInline,
6501                                        MachinePointerInfo DstPtrInfo,
6502                                        MachinePointerInfo SrcPtrInfo,
6503                                        const AAMDNodes &AAInfo) {
6504   // Turn a memcpy of undef to nop.
6505   // FIXME: We need to honor volatile even is Src is undef.
6506   if (Src.isUndef())
6507     return Chain;
6508 
6509   // Expand memcpy to a series of load and store ops if the size operand falls
6510   // below a certain threshold.
6511   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6512   // rather than maybe a humongous number of loads and stores.
6513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6514   const DataLayout &DL = DAG.getDataLayout();
6515   LLVMContext &C = *DAG.getContext();
6516   std::vector<EVT> MemOps;
6517   bool DstAlignCanChange = false;
6518   MachineFunction &MF = DAG.getMachineFunction();
6519   MachineFrameInfo &MFI = MF.getFrameInfo();
6520   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6521   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6522   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6523     DstAlignCanChange = true;
6524   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6525   if (!SrcAlign || Alignment > *SrcAlign)
6526     SrcAlign = Alignment;
6527   assert(SrcAlign && "SrcAlign must be set");
6528   ConstantDataArraySlice Slice;
6529   // If marked as volatile, perform a copy even when marked as constant.
6530   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6531   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6532   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6533   const MemOp Op = isZeroConstant
6534                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6535                                     /*IsZeroMemset*/ true, isVol)
6536                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6537                                      *SrcAlign, isVol, CopyFromConstant);
6538   if (!TLI.findOptimalMemOpLowering(
6539           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6540           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6541     return SDValue();
6542 
6543   if (DstAlignCanChange) {
6544     Type *Ty = MemOps[0].getTypeForEVT(C);
6545     Align NewAlign = DL.getABITypeAlign(Ty);
6546 
6547     // Don't promote to an alignment that would require dynamic stack
6548     // realignment.
6549     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6550     if (!TRI->hasStackRealignment(MF))
6551       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6552         NewAlign = NewAlign / 2;
6553 
6554     if (NewAlign > Alignment) {
6555       // Give the stack frame object a larger alignment if needed.
6556       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6557         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6558       Alignment = NewAlign;
6559     }
6560   }
6561 
6562   // Prepare AAInfo for loads/stores after lowering this memcpy.
6563   AAMDNodes NewAAInfo = AAInfo;
6564   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6565 
6566   MachineMemOperand::Flags MMOFlags =
6567       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6568   SmallVector<SDValue, 16> OutLoadChains;
6569   SmallVector<SDValue, 16> OutStoreChains;
6570   SmallVector<SDValue, 32> OutChains;
6571   unsigned NumMemOps = MemOps.size();
6572   uint64_t SrcOff = 0, DstOff = 0;
6573   for (unsigned i = 0; i != NumMemOps; ++i) {
6574     EVT VT = MemOps[i];
6575     unsigned VTSize = VT.getSizeInBits() / 8;
6576     SDValue Value, Store;
6577 
6578     if (VTSize > Size) {
6579       // Issuing an unaligned load / store pair  that overlaps with the previous
6580       // pair. Adjust the offset accordingly.
6581       assert(i == NumMemOps-1 && i != 0);
6582       SrcOff -= VTSize - Size;
6583       DstOff -= VTSize - Size;
6584     }
6585 
6586     if (CopyFromConstant &&
6587         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6588       // It's unlikely a store of a vector immediate can be done in a single
6589       // instruction. It would require a load from a constantpool first.
6590       // We only handle zero vectors here.
6591       // FIXME: Handle other cases where store of vector immediate is done in
6592       // a single instruction.
6593       ConstantDataArraySlice SubSlice;
6594       if (SrcOff < Slice.Length) {
6595         SubSlice = Slice;
6596         SubSlice.move(SrcOff);
6597       } else {
6598         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6599         SubSlice.Array = nullptr;
6600         SubSlice.Offset = 0;
6601         SubSlice.Length = VTSize;
6602       }
6603       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6604       if (Value.getNode()) {
6605         Store = DAG.getStore(
6606             Chain, dl, Value,
6607             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6608             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6609         OutChains.push_back(Store);
6610       }
6611     }
6612 
6613     if (!Store.getNode()) {
6614       // The type might not be legal for the target.  This should only happen
6615       // if the type is smaller than a legal type, as on PPC, so the right
6616       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6617       // to Load/Store if NVT==VT.
6618       // FIXME does the case above also need this?
6619       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6620       assert(NVT.bitsGE(VT));
6621 
6622       bool isDereferenceable =
6623         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6624       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6625       if (isDereferenceable)
6626         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6627 
6628       Value = DAG.getExtLoad(
6629           ISD::EXTLOAD, dl, NVT, Chain,
6630           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6631           SrcPtrInfo.getWithOffset(SrcOff), VT,
6632           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6633       OutLoadChains.push_back(Value.getValue(1));
6634 
6635       Store = DAG.getTruncStore(
6636           Chain, dl, Value,
6637           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6638           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6639       OutStoreChains.push_back(Store);
6640     }
6641     SrcOff += VTSize;
6642     DstOff += VTSize;
6643     Size -= VTSize;
6644   }
6645 
6646   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6647                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6648   unsigned NumLdStInMemcpy = OutStoreChains.size();
6649 
6650   if (NumLdStInMemcpy) {
6651     // It may be that memcpy might be converted to memset if it's memcpy
6652     // of constants. In such a case, we won't have loads and stores, but
6653     // just stores. In the absence of loads, there is nothing to gang up.
6654     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6655       // If target does not care, just leave as it.
6656       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6657         OutChains.push_back(OutLoadChains[i]);
6658         OutChains.push_back(OutStoreChains[i]);
6659       }
6660     } else {
6661       // Ld/St less than/equal limit set by target.
6662       if (NumLdStInMemcpy <= GluedLdStLimit) {
6663           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6664                                         NumLdStInMemcpy, OutLoadChains,
6665                                         OutStoreChains);
6666       } else {
6667         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6668         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6669         unsigned GlueIter = 0;
6670 
6671         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6672           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6673           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6674 
6675           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6676                                        OutLoadChains, OutStoreChains);
6677           GlueIter += GluedLdStLimit;
6678         }
6679 
6680         // Residual ld/st.
6681         if (RemainingLdStInMemcpy) {
6682           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6683                                         RemainingLdStInMemcpy, OutLoadChains,
6684                                         OutStoreChains);
6685         }
6686       }
6687     }
6688   }
6689   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6690 }
6691 
6692 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6693                                         SDValue Chain, SDValue Dst, SDValue Src,
6694                                         uint64_t Size, Align Alignment,
6695                                         bool isVol, bool AlwaysInline,
6696                                         MachinePointerInfo DstPtrInfo,
6697                                         MachinePointerInfo SrcPtrInfo,
6698                                         const AAMDNodes &AAInfo) {
6699   // Turn a memmove of undef to nop.
6700   // FIXME: We need to honor volatile even is Src is undef.
6701   if (Src.isUndef())
6702     return Chain;
6703 
6704   // Expand memmove to a series of load and store ops if the size operand falls
6705   // below a certain threshold.
6706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6707   const DataLayout &DL = DAG.getDataLayout();
6708   LLVMContext &C = *DAG.getContext();
6709   std::vector<EVT> MemOps;
6710   bool DstAlignCanChange = false;
6711   MachineFunction &MF = DAG.getMachineFunction();
6712   MachineFrameInfo &MFI = MF.getFrameInfo();
6713   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6714   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6715   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6716     DstAlignCanChange = true;
6717   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6718   if (!SrcAlign || Alignment > *SrcAlign)
6719     SrcAlign = Alignment;
6720   assert(SrcAlign && "SrcAlign must be set");
6721   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6722   if (!TLI.findOptimalMemOpLowering(
6723           MemOps, Limit,
6724           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6725                       /*IsVolatile*/ true),
6726           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6727           MF.getFunction().getAttributes()))
6728     return SDValue();
6729 
6730   if (DstAlignCanChange) {
6731     Type *Ty = MemOps[0].getTypeForEVT(C);
6732     Align NewAlign = DL.getABITypeAlign(Ty);
6733     if (NewAlign > Alignment) {
6734       // Give the stack frame object a larger alignment if needed.
6735       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6736         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6737       Alignment = NewAlign;
6738     }
6739   }
6740 
6741   // Prepare AAInfo for loads/stores after lowering this memmove.
6742   AAMDNodes NewAAInfo = AAInfo;
6743   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6744 
6745   MachineMemOperand::Flags MMOFlags =
6746       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6747   uint64_t SrcOff = 0, DstOff = 0;
6748   SmallVector<SDValue, 8> LoadValues;
6749   SmallVector<SDValue, 8> LoadChains;
6750   SmallVector<SDValue, 8> OutChains;
6751   unsigned NumMemOps = MemOps.size();
6752   for (unsigned i = 0; i < NumMemOps; i++) {
6753     EVT VT = MemOps[i];
6754     unsigned VTSize = VT.getSizeInBits() / 8;
6755     SDValue Value;
6756 
6757     bool isDereferenceable =
6758       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6759     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6760     if (isDereferenceable)
6761       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6762 
6763     Value = DAG.getLoad(
6764         VT, dl, Chain,
6765         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6766         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6767     LoadValues.push_back(Value);
6768     LoadChains.push_back(Value.getValue(1));
6769     SrcOff += VTSize;
6770   }
6771   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6772   OutChains.clear();
6773   for (unsigned i = 0; i < NumMemOps; i++) {
6774     EVT VT = MemOps[i];
6775     unsigned VTSize = VT.getSizeInBits() / 8;
6776     SDValue Store;
6777 
6778     Store = DAG.getStore(
6779         Chain, dl, LoadValues[i],
6780         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6781         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6782     OutChains.push_back(Store);
6783     DstOff += VTSize;
6784   }
6785 
6786   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6787 }
6788 
6789 /// Lower the call to 'memset' intrinsic function into a series of store
6790 /// operations.
6791 ///
6792 /// \param DAG Selection DAG where lowered code is placed.
6793 /// \param dl Link to corresponding IR location.
6794 /// \param Chain Control flow dependency.
6795 /// \param Dst Pointer to destination memory location.
6796 /// \param Src Value of byte to write into the memory.
6797 /// \param Size Number of bytes to write.
6798 /// \param Alignment Alignment of the destination in bytes.
6799 /// \param isVol True if destination is volatile.
6800 /// \param DstPtrInfo IR information on the memory pointer.
6801 /// \returns New head in the control flow, if lowering was successful, empty
6802 /// SDValue otherwise.
6803 ///
6804 /// The function tries to replace 'llvm.memset' intrinsic with several store
6805 /// operations and value calculation code. This is usually profitable for small
6806 /// memory size.
6807 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6808                                SDValue Chain, SDValue Dst, SDValue Src,
6809                                uint64_t Size, Align Alignment, bool isVol,
6810                                MachinePointerInfo DstPtrInfo,
6811                                const AAMDNodes &AAInfo) {
6812   // Turn a memset of undef to nop.
6813   // FIXME: We need to honor volatile even is Src is undef.
6814   if (Src.isUndef())
6815     return Chain;
6816 
6817   // Expand memset to a series of load/store ops if the size operand
6818   // falls below a certain threshold.
6819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6820   std::vector<EVT> MemOps;
6821   bool DstAlignCanChange = false;
6822   MachineFunction &MF = DAG.getMachineFunction();
6823   MachineFrameInfo &MFI = MF.getFrameInfo();
6824   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6825   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6826   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6827     DstAlignCanChange = true;
6828   bool IsZeroVal =
6829       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6830   if (!TLI.findOptimalMemOpLowering(
6831           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6832           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6833           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6834     return SDValue();
6835 
6836   if (DstAlignCanChange) {
6837     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6838     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6839     if (NewAlign > Alignment) {
6840       // Give the stack frame object a larger alignment if needed.
6841       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6842         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6843       Alignment = NewAlign;
6844     }
6845   }
6846 
6847   SmallVector<SDValue, 8> OutChains;
6848   uint64_t DstOff = 0;
6849   unsigned NumMemOps = MemOps.size();
6850 
6851   // Find the largest store and generate the bit pattern for it.
6852   EVT LargestVT = MemOps[0];
6853   for (unsigned i = 1; i < NumMemOps; i++)
6854     if (MemOps[i].bitsGT(LargestVT))
6855       LargestVT = MemOps[i];
6856   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6857 
6858   // Prepare AAInfo for loads/stores after lowering this memset.
6859   AAMDNodes NewAAInfo = AAInfo;
6860   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6861 
6862   for (unsigned i = 0; i < NumMemOps; i++) {
6863     EVT VT = MemOps[i];
6864     unsigned VTSize = VT.getSizeInBits() / 8;
6865     if (VTSize > Size) {
6866       // Issuing an unaligned load / store pair  that overlaps with the previous
6867       // pair. Adjust the offset accordingly.
6868       assert(i == NumMemOps-1 && i != 0);
6869       DstOff -= VTSize - Size;
6870     }
6871 
6872     // If this store is smaller than the largest store see whether we can get
6873     // the smaller value for free with a truncate.
6874     SDValue Value = MemSetValue;
6875     if (VT.bitsLT(LargestVT)) {
6876       if (!LargestVT.isVector() && !VT.isVector() &&
6877           TLI.isTruncateFree(LargestVT, VT))
6878         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6879       else
6880         Value = getMemsetValue(Src, VT, DAG, dl);
6881     }
6882     assert(Value.getValueType() == VT && "Value with wrong type.");
6883     SDValue Store = DAG.getStore(
6884         Chain, dl, Value,
6885         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6886         DstPtrInfo.getWithOffset(DstOff), Alignment,
6887         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6888         NewAAInfo);
6889     OutChains.push_back(Store);
6890     DstOff += VT.getSizeInBits() / 8;
6891     Size -= VTSize;
6892   }
6893 
6894   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6895 }
6896 
6897 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6898                                             unsigned AS) {
6899   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6900   // pointer operands can be losslessly bitcasted to pointers of address space 0
6901   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6902     report_fatal_error("cannot lower memory intrinsic in address space " +
6903                        Twine(AS));
6904   }
6905 }
6906 
6907 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6908                                 SDValue Src, SDValue Size, Align Alignment,
6909                                 bool isVol, bool AlwaysInline, bool isTailCall,
6910                                 MachinePointerInfo DstPtrInfo,
6911                                 MachinePointerInfo SrcPtrInfo,
6912                                 const AAMDNodes &AAInfo) {
6913   // Check to see if we should lower the memcpy to loads and stores first.
6914   // For cases within the target-specified limits, this is the best choice.
6915   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6916   if (ConstantSize) {
6917     // Memcpy with size zero? Just return the original chain.
6918     if (ConstantSize->isZero())
6919       return Chain;
6920 
6921     SDValue Result = getMemcpyLoadsAndStores(
6922         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6923         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6924     if (Result.getNode())
6925       return Result;
6926   }
6927 
6928   // Then check to see if we should lower the memcpy with target-specific
6929   // code. If the target chooses to do this, this is the next best.
6930   if (TSI) {
6931     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6932         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6933         DstPtrInfo, SrcPtrInfo);
6934     if (Result.getNode())
6935       return Result;
6936   }
6937 
6938   // If we really need inline code and the target declined to provide it,
6939   // use a (potentially long) sequence of loads and stores.
6940   if (AlwaysInline) {
6941     assert(ConstantSize && "AlwaysInline requires a constant size!");
6942     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6943                                    ConstantSize->getZExtValue(), Alignment,
6944                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6945   }
6946 
6947   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6948   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6949 
6950   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6951   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6952   // respect volatile, so they may do things like read or write memory
6953   // beyond the given memory regions. But fixing this isn't easy, and most
6954   // people don't care.
6955 
6956   // Emit a library call.
6957   TargetLowering::ArgListTy Args;
6958   TargetLowering::ArgListEntry Entry;
6959   Entry.Ty = Type::getInt8PtrTy(*getContext());
6960   Entry.Node = Dst; Args.push_back(Entry);
6961   Entry.Node = Src; Args.push_back(Entry);
6962 
6963   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6964   Entry.Node = Size; Args.push_back(Entry);
6965   // FIXME: pass in SDLoc
6966   TargetLowering::CallLoweringInfo CLI(*this);
6967   CLI.setDebugLoc(dl)
6968       .setChain(Chain)
6969       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6970                     Dst.getValueType().getTypeForEVT(*getContext()),
6971                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6972                                       TLI->getPointerTy(getDataLayout())),
6973                     std::move(Args))
6974       .setDiscardResult()
6975       .setTailCall(isTailCall);
6976 
6977   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6978   return CallResult.second;
6979 }
6980 
6981 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6982                                       SDValue Dst, unsigned DstAlign,
6983                                       SDValue Src, unsigned SrcAlign,
6984                                       SDValue Size, Type *SizeTy,
6985                                       unsigned ElemSz, bool isTailCall,
6986                                       MachinePointerInfo DstPtrInfo,
6987                                       MachinePointerInfo SrcPtrInfo) {
6988   // Emit a library call.
6989   TargetLowering::ArgListTy Args;
6990   TargetLowering::ArgListEntry Entry;
6991   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6992   Entry.Node = Dst;
6993   Args.push_back(Entry);
6994 
6995   Entry.Node = Src;
6996   Args.push_back(Entry);
6997 
6998   Entry.Ty = SizeTy;
6999   Entry.Node = Size;
7000   Args.push_back(Entry);
7001 
7002   RTLIB::Libcall LibraryCall =
7003       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7004   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7005     report_fatal_error("Unsupported element size");
7006 
7007   TargetLowering::CallLoweringInfo CLI(*this);
7008   CLI.setDebugLoc(dl)
7009       .setChain(Chain)
7010       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7011                     Type::getVoidTy(*getContext()),
7012                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7013                                       TLI->getPointerTy(getDataLayout())),
7014                     std::move(Args))
7015       .setDiscardResult()
7016       .setTailCall(isTailCall);
7017 
7018   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7019   return CallResult.second;
7020 }
7021 
7022 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7023                                  SDValue Src, SDValue Size, Align Alignment,
7024                                  bool isVol, bool isTailCall,
7025                                  MachinePointerInfo DstPtrInfo,
7026                                  MachinePointerInfo SrcPtrInfo,
7027                                  const AAMDNodes &AAInfo) {
7028   // Check to see if we should lower the memmove to loads and stores first.
7029   // For cases within the target-specified limits, this is the best choice.
7030   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7031   if (ConstantSize) {
7032     // Memmove with size zero? Just return the original chain.
7033     if (ConstantSize->isZero())
7034       return Chain;
7035 
7036     SDValue Result = getMemmoveLoadsAndStores(
7037         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7038         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7039     if (Result.getNode())
7040       return Result;
7041   }
7042 
7043   // Then check to see if we should lower the memmove with target-specific
7044   // code. If the target chooses to do this, this is the next best.
7045   if (TSI) {
7046     SDValue Result =
7047         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7048                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7049     if (Result.getNode())
7050       return Result;
7051   }
7052 
7053   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7054   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7055 
7056   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7057   // not be safe.  See memcpy above for more details.
7058 
7059   // Emit a library call.
7060   TargetLowering::ArgListTy Args;
7061   TargetLowering::ArgListEntry Entry;
7062   Entry.Ty = Type::getInt8PtrTy(*getContext());
7063   Entry.Node = Dst; Args.push_back(Entry);
7064   Entry.Node = Src; Args.push_back(Entry);
7065 
7066   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7067   Entry.Node = Size; Args.push_back(Entry);
7068   // FIXME:  pass in SDLoc
7069   TargetLowering::CallLoweringInfo CLI(*this);
7070   CLI.setDebugLoc(dl)
7071       .setChain(Chain)
7072       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7073                     Dst.getValueType().getTypeForEVT(*getContext()),
7074                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7075                                       TLI->getPointerTy(getDataLayout())),
7076                     std::move(Args))
7077       .setDiscardResult()
7078       .setTailCall(isTailCall);
7079 
7080   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7081   return CallResult.second;
7082 }
7083 
7084 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7085                                        SDValue Dst, unsigned DstAlign,
7086                                        SDValue Src, unsigned SrcAlign,
7087                                        SDValue Size, Type *SizeTy,
7088                                        unsigned ElemSz, bool isTailCall,
7089                                        MachinePointerInfo DstPtrInfo,
7090                                        MachinePointerInfo SrcPtrInfo) {
7091   // Emit a library call.
7092   TargetLowering::ArgListTy Args;
7093   TargetLowering::ArgListEntry Entry;
7094   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7095   Entry.Node = Dst;
7096   Args.push_back(Entry);
7097 
7098   Entry.Node = Src;
7099   Args.push_back(Entry);
7100 
7101   Entry.Ty = SizeTy;
7102   Entry.Node = Size;
7103   Args.push_back(Entry);
7104 
7105   RTLIB::Libcall LibraryCall =
7106       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7107   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7108     report_fatal_error("Unsupported element size");
7109 
7110   TargetLowering::CallLoweringInfo CLI(*this);
7111   CLI.setDebugLoc(dl)
7112       .setChain(Chain)
7113       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7114                     Type::getVoidTy(*getContext()),
7115                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7116                                       TLI->getPointerTy(getDataLayout())),
7117                     std::move(Args))
7118       .setDiscardResult()
7119       .setTailCall(isTailCall);
7120 
7121   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7122   return CallResult.second;
7123 }
7124 
7125 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7126                                 SDValue Src, SDValue Size, Align Alignment,
7127                                 bool isVol, bool isTailCall,
7128                                 MachinePointerInfo DstPtrInfo,
7129                                 const AAMDNodes &AAInfo) {
7130   // Check to see if we should lower the memset to stores first.
7131   // For cases within the target-specified limits, this is the best choice.
7132   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7133   if (ConstantSize) {
7134     // Memset with size zero? Just return the original chain.
7135     if (ConstantSize->isZero())
7136       return Chain;
7137 
7138     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7139                                      ConstantSize->getZExtValue(), Alignment,
7140                                      isVol, DstPtrInfo, AAInfo);
7141 
7142     if (Result.getNode())
7143       return Result;
7144   }
7145 
7146   // Then check to see if we should lower the memset with target-specific
7147   // code. If the target chooses to do this, this is the next best.
7148   if (TSI) {
7149     SDValue Result = TSI->EmitTargetCodeForMemset(
7150         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7151     if (Result.getNode())
7152       return Result;
7153   }
7154 
7155   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7156 
7157   // Emit a library call.
7158   TargetLowering::ArgListTy Args;
7159   TargetLowering::ArgListEntry Entry;
7160   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7161   Args.push_back(Entry);
7162   Entry.Node = Src;
7163   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7164   Args.push_back(Entry);
7165   Entry.Node = Size;
7166   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7167   Args.push_back(Entry);
7168 
7169   // FIXME: pass in SDLoc
7170   TargetLowering::CallLoweringInfo CLI(*this);
7171   CLI.setDebugLoc(dl)
7172       .setChain(Chain)
7173       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7174                     Dst.getValueType().getTypeForEVT(*getContext()),
7175                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7176                                       TLI->getPointerTy(getDataLayout())),
7177                     std::move(Args))
7178       .setDiscardResult()
7179       .setTailCall(isTailCall);
7180 
7181   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7182   return CallResult.second;
7183 }
7184 
7185 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7186                                       SDValue Dst, unsigned DstAlign,
7187                                       SDValue Value, SDValue Size, Type *SizeTy,
7188                                       unsigned ElemSz, bool isTailCall,
7189                                       MachinePointerInfo DstPtrInfo) {
7190   // Emit a library call.
7191   TargetLowering::ArgListTy Args;
7192   TargetLowering::ArgListEntry Entry;
7193   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7194   Entry.Node = Dst;
7195   Args.push_back(Entry);
7196 
7197   Entry.Ty = Type::getInt8Ty(*getContext());
7198   Entry.Node = Value;
7199   Args.push_back(Entry);
7200 
7201   Entry.Ty = SizeTy;
7202   Entry.Node = Size;
7203   Args.push_back(Entry);
7204 
7205   RTLIB::Libcall LibraryCall =
7206       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7207   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7208     report_fatal_error("Unsupported element size");
7209 
7210   TargetLowering::CallLoweringInfo CLI(*this);
7211   CLI.setDebugLoc(dl)
7212       .setChain(Chain)
7213       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7214                     Type::getVoidTy(*getContext()),
7215                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7216                                       TLI->getPointerTy(getDataLayout())),
7217                     std::move(Args))
7218       .setDiscardResult()
7219       .setTailCall(isTailCall);
7220 
7221   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7222   return CallResult.second;
7223 }
7224 
7225 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7226                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7227                                 MachineMemOperand *MMO) {
7228   FoldingSetNodeID ID;
7229   ID.AddInteger(MemVT.getRawBits());
7230   AddNodeIDNode(ID, Opcode, VTList, Ops);
7231   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7232   void* IP = nullptr;
7233   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7234     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7235     return SDValue(E, 0);
7236   }
7237 
7238   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7239                                     VTList, MemVT, MMO);
7240   createOperands(N, Ops);
7241 
7242   CSEMap.InsertNode(N, IP);
7243   InsertNode(N);
7244   return SDValue(N, 0);
7245 }
7246 
7247 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7248                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7249                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7250                                        MachineMemOperand *MMO) {
7251   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7252          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7253   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7254 
7255   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7256   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7257 }
7258 
7259 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7260                                 SDValue Chain, SDValue Ptr, SDValue Val,
7261                                 MachineMemOperand *MMO) {
7262   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7263           Opcode == ISD::ATOMIC_LOAD_SUB ||
7264           Opcode == ISD::ATOMIC_LOAD_AND ||
7265           Opcode == ISD::ATOMIC_LOAD_CLR ||
7266           Opcode == ISD::ATOMIC_LOAD_OR ||
7267           Opcode == ISD::ATOMIC_LOAD_XOR ||
7268           Opcode == ISD::ATOMIC_LOAD_NAND ||
7269           Opcode == ISD::ATOMIC_LOAD_MIN ||
7270           Opcode == ISD::ATOMIC_LOAD_MAX ||
7271           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7272           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7273           Opcode == ISD::ATOMIC_LOAD_FADD ||
7274           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7275           Opcode == ISD::ATOMIC_SWAP ||
7276           Opcode == ISD::ATOMIC_STORE) &&
7277          "Invalid Atomic Op");
7278 
7279   EVT VT = Val.getValueType();
7280 
7281   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7282                                                getVTList(VT, MVT::Other);
7283   SDValue Ops[] = {Chain, Ptr, Val};
7284   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7285 }
7286 
7287 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7288                                 EVT VT, SDValue Chain, SDValue Ptr,
7289                                 MachineMemOperand *MMO) {
7290   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7291 
7292   SDVTList VTs = getVTList(VT, MVT::Other);
7293   SDValue Ops[] = {Chain, Ptr};
7294   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7295 }
7296 
7297 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7298 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7299   if (Ops.size() == 1)
7300     return Ops[0];
7301 
7302   SmallVector<EVT, 4> VTs;
7303   VTs.reserve(Ops.size());
7304   for (const SDValue &Op : Ops)
7305     VTs.push_back(Op.getValueType());
7306   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7307 }
7308 
7309 SDValue SelectionDAG::getMemIntrinsicNode(
7310     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7311     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7312     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7313   if (!Size && MemVT.isScalableVector())
7314     Size = MemoryLocation::UnknownSize;
7315   else if (!Size)
7316     Size = MemVT.getStoreSize();
7317 
7318   MachineFunction &MF = getMachineFunction();
7319   MachineMemOperand *MMO =
7320       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7321 
7322   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7323 }
7324 
7325 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7326                                           SDVTList VTList,
7327                                           ArrayRef<SDValue> Ops, EVT MemVT,
7328                                           MachineMemOperand *MMO) {
7329   assert((Opcode == ISD::INTRINSIC_VOID ||
7330           Opcode == ISD::INTRINSIC_W_CHAIN ||
7331           Opcode == ISD::PREFETCH ||
7332           ((int)Opcode <= std::numeric_limits<int>::max() &&
7333            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7334          "Opcode is not a memory-accessing opcode!");
7335 
7336   // Memoize the node unless it returns a flag.
7337   MemIntrinsicSDNode *N;
7338   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7339     FoldingSetNodeID ID;
7340     AddNodeIDNode(ID, Opcode, VTList, Ops);
7341     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7342         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7343     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7344     void *IP = nullptr;
7345     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7346       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7347       return SDValue(E, 0);
7348     }
7349 
7350     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7351                                       VTList, MemVT, MMO);
7352     createOperands(N, Ops);
7353 
7354   CSEMap.InsertNode(N, IP);
7355   } else {
7356     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7357                                       VTList, MemVT, MMO);
7358     createOperands(N, Ops);
7359   }
7360   InsertNode(N);
7361   SDValue V(N, 0);
7362   NewSDValueDbgMsg(V, "Creating new node: ", this);
7363   return V;
7364 }
7365 
7366 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7367                                       SDValue Chain, int FrameIndex,
7368                                       int64_t Size, int64_t Offset) {
7369   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7370   const auto VTs = getVTList(MVT::Other);
7371   SDValue Ops[2] = {
7372       Chain,
7373       getFrameIndex(FrameIndex,
7374                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7375                     true)};
7376 
7377   FoldingSetNodeID ID;
7378   AddNodeIDNode(ID, Opcode, VTs, Ops);
7379   ID.AddInteger(FrameIndex);
7380   ID.AddInteger(Size);
7381   ID.AddInteger(Offset);
7382   void *IP = nullptr;
7383   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7384     return SDValue(E, 0);
7385 
7386   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7387       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7388   createOperands(N, Ops);
7389   CSEMap.InsertNode(N, IP);
7390   InsertNode(N);
7391   SDValue V(N, 0);
7392   NewSDValueDbgMsg(V, "Creating new node: ", this);
7393   return V;
7394 }
7395 
7396 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7397                                          uint64_t Guid, uint64_t Index,
7398                                          uint32_t Attr) {
7399   const unsigned Opcode = ISD::PSEUDO_PROBE;
7400   const auto VTs = getVTList(MVT::Other);
7401   SDValue Ops[] = {Chain};
7402   FoldingSetNodeID ID;
7403   AddNodeIDNode(ID, Opcode, VTs, Ops);
7404   ID.AddInteger(Guid);
7405   ID.AddInteger(Index);
7406   void *IP = nullptr;
7407   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7408     return SDValue(E, 0);
7409 
7410   auto *N = newSDNode<PseudoProbeSDNode>(
7411       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7412   createOperands(N, Ops);
7413   CSEMap.InsertNode(N, IP);
7414   InsertNode(N);
7415   SDValue V(N, 0);
7416   NewSDValueDbgMsg(V, "Creating new node: ", this);
7417   return V;
7418 }
7419 
7420 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7421 /// MachinePointerInfo record from it.  This is particularly useful because the
7422 /// code generator has many cases where it doesn't bother passing in a
7423 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7424 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7425                                            SelectionDAG &DAG, SDValue Ptr,
7426                                            int64_t Offset = 0) {
7427   // If this is FI+Offset, we can model it.
7428   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7429     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7430                                              FI->getIndex(), Offset);
7431 
7432   // If this is (FI+Offset1)+Offset2, we can model it.
7433   if (Ptr.getOpcode() != ISD::ADD ||
7434       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7435       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7436     return Info;
7437 
7438   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7439   return MachinePointerInfo::getFixedStack(
7440       DAG.getMachineFunction(), FI,
7441       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7442 }
7443 
7444 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7445 /// MachinePointerInfo record from it.  This is particularly useful because the
7446 /// code generator has many cases where it doesn't bother passing in a
7447 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7448 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7449                                            SelectionDAG &DAG, SDValue Ptr,
7450                                            SDValue OffsetOp) {
7451   // If the 'Offset' value isn't a constant, we can't handle this.
7452   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7453     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7454   if (OffsetOp.isUndef())
7455     return InferPointerInfo(Info, DAG, Ptr);
7456   return Info;
7457 }
7458 
7459 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7460                               EVT VT, const SDLoc &dl, SDValue Chain,
7461                               SDValue Ptr, SDValue Offset,
7462                               MachinePointerInfo PtrInfo, EVT MemVT,
7463                               Align Alignment,
7464                               MachineMemOperand::Flags MMOFlags,
7465                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7466   assert(Chain.getValueType() == MVT::Other &&
7467         "Invalid chain type");
7468 
7469   MMOFlags |= MachineMemOperand::MOLoad;
7470   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7471   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7472   // clients.
7473   if (PtrInfo.V.isNull())
7474     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7475 
7476   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7477   MachineFunction &MF = getMachineFunction();
7478   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7479                                                    Alignment, AAInfo, Ranges);
7480   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7481 }
7482 
7483 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7484                               EVT VT, const SDLoc &dl, SDValue Chain,
7485                               SDValue Ptr, SDValue Offset, EVT MemVT,
7486                               MachineMemOperand *MMO) {
7487   if (VT == MemVT) {
7488     ExtType = ISD::NON_EXTLOAD;
7489   } else if (ExtType == ISD::NON_EXTLOAD) {
7490     assert(VT == MemVT && "Non-extending load from different memory type!");
7491   } else {
7492     // Extending load.
7493     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7494            "Should only be an extending load, not truncating!");
7495     assert(VT.isInteger() == MemVT.isInteger() &&
7496            "Cannot convert from FP to Int or Int -> FP!");
7497     assert(VT.isVector() == MemVT.isVector() &&
7498            "Cannot use an ext load to convert to or from a vector!");
7499     assert((!VT.isVector() ||
7500             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7501            "Cannot use an ext load to change the number of vector elements!");
7502   }
7503 
7504   bool Indexed = AM != ISD::UNINDEXED;
7505   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7506 
7507   SDVTList VTs = Indexed ?
7508     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7509   SDValue Ops[] = { Chain, Ptr, Offset };
7510   FoldingSetNodeID ID;
7511   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7512   ID.AddInteger(MemVT.getRawBits());
7513   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7514       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7515   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7516   void *IP = nullptr;
7517   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7518     cast<LoadSDNode>(E)->refineAlignment(MMO);
7519     return SDValue(E, 0);
7520   }
7521   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7522                                   ExtType, MemVT, MMO);
7523   createOperands(N, Ops);
7524 
7525   CSEMap.InsertNode(N, IP);
7526   InsertNode(N);
7527   SDValue V(N, 0);
7528   NewSDValueDbgMsg(V, "Creating new node: ", this);
7529   return V;
7530 }
7531 
7532 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7533                               SDValue Ptr, MachinePointerInfo PtrInfo,
7534                               MaybeAlign Alignment,
7535                               MachineMemOperand::Flags MMOFlags,
7536                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7537   SDValue Undef = getUNDEF(Ptr.getValueType());
7538   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7539                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7540 }
7541 
7542 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7543                               SDValue Ptr, MachineMemOperand *MMO) {
7544   SDValue Undef = getUNDEF(Ptr.getValueType());
7545   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7546                  VT, MMO);
7547 }
7548 
7549 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7550                                  EVT VT, SDValue Chain, SDValue Ptr,
7551                                  MachinePointerInfo PtrInfo, EVT MemVT,
7552                                  MaybeAlign Alignment,
7553                                  MachineMemOperand::Flags MMOFlags,
7554                                  const AAMDNodes &AAInfo) {
7555   SDValue Undef = getUNDEF(Ptr.getValueType());
7556   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7557                  MemVT, Alignment, MMOFlags, AAInfo);
7558 }
7559 
7560 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7561                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7562                                  MachineMemOperand *MMO) {
7563   SDValue Undef = getUNDEF(Ptr.getValueType());
7564   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7565                  MemVT, MMO);
7566 }
7567 
7568 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7569                                      SDValue Base, SDValue Offset,
7570                                      ISD::MemIndexedMode AM) {
7571   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7572   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7573   // Don't propagate the invariant or dereferenceable flags.
7574   auto MMOFlags =
7575       LD->getMemOperand()->getFlags() &
7576       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7577   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7578                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7579                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7580 }
7581 
7582 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7583                                SDValue Ptr, MachinePointerInfo PtrInfo,
7584                                Align Alignment,
7585                                MachineMemOperand::Flags MMOFlags,
7586                                const AAMDNodes &AAInfo) {
7587   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7588 
7589   MMOFlags |= MachineMemOperand::MOStore;
7590   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7591 
7592   if (PtrInfo.V.isNull())
7593     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7594 
7595   MachineFunction &MF = getMachineFunction();
7596   uint64_t Size =
7597       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7598   MachineMemOperand *MMO =
7599       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7600   return getStore(Chain, dl, Val, Ptr, MMO);
7601 }
7602 
7603 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7604                                SDValue Ptr, MachineMemOperand *MMO) {
7605   assert(Chain.getValueType() == MVT::Other &&
7606         "Invalid chain type");
7607   EVT VT = Val.getValueType();
7608   SDVTList VTs = getVTList(MVT::Other);
7609   SDValue Undef = getUNDEF(Ptr.getValueType());
7610   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7611   FoldingSetNodeID ID;
7612   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7613   ID.AddInteger(VT.getRawBits());
7614   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7615       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7616   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7617   void *IP = nullptr;
7618   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7619     cast<StoreSDNode>(E)->refineAlignment(MMO);
7620     return SDValue(E, 0);
7621   }
7622   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7623                                    ISD::UNINDEXED, false, VT, MMO);
7624   createOperands(N, Ops);
7625 
7626   CSEMap.InsertNode(N, IP);
7627   InsertNode(N);
7628   SDValue V(N, 0);
7629   NewSDValueDbgMsg(V, "Creating new node: ", this);
7630   return V;
7631 }
7632 
7633 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7634                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7635                                     EVT SVT, Align Alignment,
7636                                     MachineMemOperand::Flags MMOFlags,
7637                                     const AAMDNodes &AAInfo) {
7638   assert(Chain.getValueType() == MVT::Other &&
7639         "Invalid chain type");
7640 
7641   MMOFlags |= MachineMemOperand::MOStore;
7642   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7643 
7644   if (PtrInfo.V.isNull())
7645     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7646 
7647   MachineFunction &MF = getMachineFunction();
7648   MachineMemOperand *MMO = MF.getMachineMemOperand(
7649       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7650       Alignment, AAInfo);
7651   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7652 }
7653 
7654 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7655                                     SDValue Ptr, EVT SVT,
7656                                     MachineMemOperand *MMO) {
7657   EVT VT = Val.getValueType();
7658 
7659   assert(Chain.getValueType() == MVT::Other &&
7660         "Invalid chain type");
7661   if (VT == SVT)
7662     return getStore(Chain, dl, Val, Ptr, MMO);
7663 
7664   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7665          "Should only be a truncating store, not extending!");
7666   assert(VT.isInteger() == SVT.isInteger() &&
7667          "Can't do FP-INT conversion!");
7668   assert(VT.isVector() == SVT.isVector() &&
7669          "Cannot use trunc store to convert to or from a vector!");
7670   assert((!VT.isVector() ||
7671           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7672          "Cannot use trunc store to change the number of vector elements!");
7673 
7674   SDVTList VTs = getVTList(MVT::Other);
7675   SDValue Undef = getUNDEF(Ptr.getValueType());
7676   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7677   FoldingSetNodeID ID;
7678   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7679   ID.AddInteger(SVT.getRawBits());
7680   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7681       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7682   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7683   void *IP = nullptr;
7684   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7685     cast<StoreSDNode>(E)->refineAlignment(MMO);
7686     return SDValue(E, 0);
7687   }
7688   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7689                                    ISD::UNINDEXED, true, SVT, MMO);
7690   createOperands(N, Ops);
7691 
7692   CSEMap.InsertNode(N, IP);
7693   InsertNode(N);
7694   SDValue V(N, 0);
7695   NewSDValueDbgMsg(V, "Creating new node: ", this);
7696   return V;
7697 }
7698 
7699 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7700                                       SDValue Base, SDValue Offset,
7701                                       ISD::MemIndexedMode AM) {
7702   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7703   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7704   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7705   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7706   FoldingSetNodeID ID;
7707   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7708   ID.AddInteger(ST->getMemoryVT().getRawBits());
7709   ID.AddInteger(ST->getRawSubclassData());
7710   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7711   void *IP = nullptr;
7712   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7713     return SDValue(E, 0);
7714 
7715   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7716                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7717                                    ST->getMemOperand());
7718   createOperands(N, Ops);
7719 
7720   CSEMap.InsertNode(N, IP);
7721   InsertNode(N);
7722   SDValue V(N, 0);
7723   NewSDValueDbgMsg(V, "Creating new node: ", this);
7724   return V;
7725 }
7726 
7727 SDValue SelectionDAG::getLoadVP(
7728     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7729     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7730     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7731     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7732     const MDNode *Ranges, bool IsExpanding) {
7733   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7734 
7735   MMOFlags |= MachineMemOperand::MOLoad;
7736   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7737   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7738   // clients.
7739   if (PtrInfo.V.isNull())
7740     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7741 
7742   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7743   MachineFunction &MF = getMachineFunction();
7744   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7745                                                    Alignment, AAInfo, Ranges);
7746   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7747                    MMO, IsExpanding);
7748 }
7749 
7750 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7751                                 ISD::LoadExtType ExtType, EVT VT,
7752                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7753                                 SDValue Offset, SDValue Mask, SDValue EVL,
7754                                 EVT MemVT, MachineMemOperand *MMO,
7755                                 bool IsExpanding) {
7756   bool Indexed = AM != ISD::UNINDEXED;
7757   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7758 
7759   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7760                          : getVTList(VT, MVT::Other);
7761   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7762   FoldingSetNodeID ID;
7763   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7764   ID.AddInteger(VT.getRawBits());
7765   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7766       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7767   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7768   void *IP = nullptr;
7769   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7770     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7771     return SDValue(E, 0);
7772   }
7773   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7774                                     ExtType, IsExpanding, MemVT, MMO);
7775   createOperands(N, Ops);
7776 
7777   CSEMap.InsertNode(N, IP);
7778   InsertNode(N);
7779   SDValue V(N, 0);
7780   NewSDValueDbgMsg(V, "Creating new node: ", this);
7781   return V;
7782 }
7783 
7784 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7785                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7786                                 MachinePointerInfo PtrInfo,
7787                                 MaybeAlign Alignment,
7788                                 MachineMemOperand::Flags MMOFlags,
7789                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7790                                 bool IsExpanding) {
7791   SDValue Undef = getUNDEF(Ptr.getValueType());
7792   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7793                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7794                    IsExpanding);
7795 }
7796 
7797 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7798                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7799                                 MachineMemOperand *MMO, bool IsExpanding) {
7800   SDValue Undef = getUNDEF(Ptr.getValueType());
7801   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7802                    Mask, EVL, VT, MMO, IsExpanding);
7803 }
7804 
7805 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7806                                    EVT VT, SDValue Chain, SDValue Ptr,
7807                                    SDValue Mask, SDValue EVL,
7808                                    MachinePointerInfo PtrInfo, EVT MemVT,
7809                                    MaybeAlign Alignment,
7810                                    MachineMemOperand::Flags MMOFlags,
7811                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7812   SDValue Undef = getUNDEF(Ptr.getValueType());
7813   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7814                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7815                    IsExpanding);
7816 }
7817 
7818 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7819                                    EVT VT, SDValue Chain, SDValue Ptr,
7820                                    SDValue Mask, SDValue EVL, EVT MemVT,
7821                                    MachineMemOperand *MMO, bool IsExpanding) {
7822   SDValue Undef = getUNDEF(Ptr.getValueType());
7823   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7824                    EVL, MemVT, MMO, IsExpanding);
7825 }
7826 
7827 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7828                                        SDValue Base, SDValue Offset,
7829                                        ISD::MemIndexedMode AM) {
7830   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7831   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7832   // Don't propagate the invariant or dereferenceable flags.
7833   auto MMOFlags =
7834       LD->getMemOperand()->getFlags() &
7835       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7836   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7837                    LD->getChain(), Base, Offset, LD->getMask(),
7838                    LD->getVectorLength(), LD->getPointerInfo(),
7839                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7840                    nullptr, LD->isExpandingLoad());
7841 }
7842 
7843 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7844                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7845                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7846                                  ISD::MemIndexedMode AM, bool IsTruncating,
7847                                  bool IsCompressing) {
7848   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7849   bool Indexed = AM != ISD::UNINDEXED;
7850   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7851   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7852                          : getVTList(MVT::Other);
7853   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7854   FoldingSetNodeID ID;
7855   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7856   ID.AddInteger(MemVT.getRawBits());
7857   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7858       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7859   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7860   void *IP = nullptr;
7861   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7862     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7863     return SDValue(E, 0);
7864   }
7865   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7866                                      IsTruncating, IsCompressing, MemVT, MMO);
7867   createOperands(N, Ops);
7868 
7869   CSEMap.InsertNode(N, IP);
7870   InsertNode(N);
7871   SDValue V(N, 0);
7872   NewSDValueDbgMsg(V, "Creating new node: ", this);
7873   return V;
7874 }
7875 
7876 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7877                                       SDValue Val, SDValue Ptr, SDValue Mask,
7878                                       SDValue EVL, MachinePointerInfo PtrInfo,
7879                                       EVT SVT, Align Alignment,
7880                                       MachineMemOperand::Flags MMOFlags,
7881                                       const AAMDNodes &AAInfo,
7882                                       bool IsCompressing) {
7883   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7884 
7885   MMOFlags |= MachineMemOperand::MOStore;
7886   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7887 
7888   if (PtrInfo.V.isNull())
7889     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7890 
7891   MachineFunction &MF = getMachineFunction();
7892   MachineMemOperand *MMO = MF.getMachineMemOperand(
7893       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7894       Alignment, AAInfo);
7895   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7896                          IsCompressing);
7897 }
7898 
7899 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7900                                       SDValue Val, SDValue Ptr, SDValue Mask,
7901                                       SDValue EVL, EVT SVT,
7902                                       MachineMemOperand *MMO,
7903                                       bool IsCompressing) {
7904   EVT VT = Val.getValueType();
7905 
7906   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7907   if (VT == SVT)
7908     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7909                       EVL, VT, MMO, ISD::UNINDEXED,
7910                       /*IsTruncating*/ false, IsCompressing);
7911 
7912   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7913          "Should only be a truncating store, not extending!");
7914   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7915   assert(VT.isVector() == SVT.isVector() &&
7916          "Cannot use trunc store to convert to or from a vector!");
7917   assert((!VT.isVector() ||
7918           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7919          "Cannot use trunc store to change the number of vector elements!");
7920 
7921   SDVTList VTs = getVTList(MVT::Other);
7922   SDValue Undef = getUNDEF(Ptr.getValueType());
7923   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7924   FoldingSetNodeID ID;
7925   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7926   ID.AddInteger(SVT.getRawBits());
7927   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7928       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7929   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7930   void *IP = nullptr;
7931   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7932     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7933     return SDValue(E, 0);
7934   }
7935   auto *N =
7936       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7937                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7938   createOperands(N, Ops);
7939 
7940   CSEMap.InsertNode(N, IP);
7941   InsertNode(N);
7942   SDValue V(N, 0);
7943   NewSDValueDbgMsg(V, "Creating new node: ", this);
7944   return V;
7945 }
7946 
7947 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7948                                         SDValue Base, SDValue Offset,
7949                                         ISD::MemIndexedMode AM) {
7950   auto *ST = cast<VPStoreSDNode>(OrigStore);
7951   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7952   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7953   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7954                    Offset,         ST->getMask(),  ST->getVectorLength()};
7955   FoldingSetNodeID ID;
7956   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7957   ID.AddInteger(ST->getMemoryVT().getRawBits());
7958   ID.AddInteger(ST->getRawSubclassData());
7959   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7960   void *IP = nullptr;
7961   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7962     return SDValue(E, 0);
7963 
7964   auto *N = newSDNode<VPStoreSDNode>(
7965       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7966       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7967   createOperands(N, Ops);
7968 
7969   CSEMap.InsertNode(N, IP);
7970   InsertNode(N);
7971   SDValue V(N, 0);
7972   NewSDValueDbgMsg(V, "Creating new node: ", this);
7973   return V;
7974 }
7975 
7976 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7977                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7978                                   ISD::MemIndexType IndexType) {
7979   assert(Ops.size() == 6 && "Incompatible number of operands");
7980 
7981   FoldingSetNodeID ID;
7982   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7983   ID.AddInteger(VT.getRawBits());
7984   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7985       dl.getIROrder(), VTs, VT, MMO, IndexType));
7986   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7987   void *IP = nullptr;
7988   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7989     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7990     return SDValue(E, 0);
7991   }
7992 
7993   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7994                                       VT, MMO, IndexType);
7995   createOperands(N, Ops);
7996 
7997   assert(N->getMask().getValueType().getVectorElementCount() ==
7998              N->getValueType(0).getVectorElementCount() &&
7999          "Vector width mismatch between mask and data");
8000   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8001              N->getValueType(0).getVectorElementCount().isScalable() &&
8002          "Scalable flags of index and data do not match");
8003   assert(ElementCount::isKnownGE(
8004              N->getIndex().getValueType().getVectorElementCount(),
8005              N->getValueType(0).getVectorElementCount()) &&
8006          "Vector width mismatch between index and data");
8007   assert(isa<ConstantSDNode>(N->getScale()) &&
8008          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8009          "Scale should be a constant power of 2");
8010 
8011   CSEMap.InsertNode(N, IP);
8012   InsertNode(N);
8013   SDValue V(N, 0);
8014   NewSDValueDbgMsg(V, "Creating new node: ", this);
8015   return V;
8016 }
8017 
8018 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8019                                    ArrayRef<SDValue> Ops,
8020                                    MachineMemOperand *MMO,
8021                                    ISD::MemIndexType IndexType) {
8022   assert(Ops.size() == 7 && "Incompatible number of operands");
8023 
8024   FoldingSetNodeID ID;
8025   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8026   ID.AddInteger(VT.getRawBits());
8027   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8028       dl.getIROrder(), VTs, VT, MMO, IndexType));
8029   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8030   void *IP = nullptr;
8031   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8032     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8033     return SDValue(E, 0);
8034   }
8035   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8036                                        VT, MMO, IndexType);
8037   createOperands(N, Ops);
8038 
8039   assert(N->getMask().getValueType().getVectorElementCount() ==
8040              N->getValue().getValueType().getVectorElementCount() &&
8041          "Vector width mismatch between mask and data");
8042   assert(
8043       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8044           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8045       "Scalable flags of index and data do not match");
8046   assert(ElementCount::isKnownGE(
8047              N->getIndex().getValueType().getVectorElementCount(),
8048              N->getValue().getValueType().getVectorElementCount()) &&
8049          "Vector width mismatch between index and data");
8050   assert(isa<ConstantSDNode>(N->getScale()) &&
8051          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8052          "Scale should be a constant power of 2");
8053 
8054   CSEMap.InsertNode(N, IP);
8055   InsertNode(N);
8056   SDValue V(N, 0);
8057   NewSDValueDbgMsg(V, "Creating new node: ", this);
8058   return V;
8059 }
8060 
8061 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8062                                     SDValue Base, SDValue Offset, SDValue Mask,
8063                                     SDValue PassThru, EVT MemVT,
8064                                     MachineMemOperand *MMO,
8065                                     ISD::MemIndexedMode AM,
8066                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8067   bool Indexed = AM != ISD::UNINDEXED;
8068   assert((Indexed || Offset.isUndef()) &&
8069          "Unindexed masked load with an offset!");
8070   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8071                          : getVTList(VT, MVT::Other);
8072   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8073   FoldingSetNodeID ID;
8074   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8075   ID.AddInteger(MemVT.getRawBits());
8076   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8077       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8078   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8079   void *IP = nullptr;
8080   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8081     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8082     return SDValue(E, 0);
8083   }
8084   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8085                                         AM, ExtTy, isExpanding, MemVT, MMO);
8086   createOperands(N, Ops);
8087 
8088   CSEMap.InsertNode(N, IP);
8089   InsertNode(N);
8090   SDValue V(N, 0);
8091   NewSDValueDbgMsg(V, "Creating new node: ", this);
8092   return V;
8093 }
8094 
8095 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8096                                            SDValue Base, SDValue Offset,
8097                                            ISD::MemIndexedMode AM) {
8098   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8099   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8100   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8101                        Offset, LD->getMask(), LD->getPassThru(),
8102                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8103                        LD->getExtensionType(), LD->isExpandingLoad());
8104 }
8105 
8106 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8107                                      SDValue Val, SDValue Base, SDValue Offset,
8108                                      SDValue Mask, EVT MemVT,
8109                                      MachineMemOperand *MMO,
8110                                      ISD::MemIndexedMode AM, bool IsTruncating,
8111                                      bool IsCompressing) {
8112   assert(Chain.getValueType() == MVT::Other &&
8113         "Invalid chain type");
8114   bool Indexed = AM != ISD::UNINDEXED;
8115   assert((Indexed || Offset.isUndef()) &&
8116          "Unindexed masked store with an offset!");
8117   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8118                          : getVTList(MVT::Other);
8119   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8120   FoldingSetNodeID ID;
8121   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8122   ID.AddInteger(MemVT.getRawBits());
8123   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8124       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8125   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8126   void *IP = nullptr;
8127   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8128     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8129     return SDValue(E, 0);
8130   }
8131   auto *N =
8132       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8133                                    IsTruncating, IsCompressing, MemVT, MMO);
8134   createOperands(N, Ops);
8135 
8136   CSEMap.InsertNode(N, IP);
8137   InsertNode(N);
8138   SDValue V(N, 0);
8139   NewSDValueDbgMsg(V, "Creating new node: ", this);
8140   return V;
8141 }
8142 
8143 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8144                                             SDValue Base, SDValue Offset,
8145                                             ISD::MemIndexedMode AM) {
8146   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8147   assert(ST->getOffset().isUndef() &&
8148          "Masked store is already a indexed store!");
8149   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8150                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8151                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8152 }
8153 
8154 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8155                                       ArrayRef<SDValue> Ops,
8156                                       MachineMemOperand *MMO,
8157                                       ISD::MemIndexType IndexType,
8158                                       ISD::LoadExtType ExtTy) {
8159   assert(Ops.size() == 6 && "Incompatible number of operands");
8160 
8161   FoldingSetNodeID ID;
8162   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8163   ID.AddInteger(MemVT.getRawBits());
8164   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8165       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8166   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8167   void *IP = nullptr;
8168   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8169     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8170     return SDValue(E, 0);
8171   }
8172 
8173   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8174   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8175                                           VTs, MemVT, MMO, IndexType, ExtTy);
8176   createOperands(N, Ops);
8177 
8178   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8179          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8180   assert(N->getMask().getValueType().getVectorElementCount() ==
8181              N->getValueType(0).getVectorElementCount() &&
8182          "Vector width mismatch between mask and data");
8183   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8184              N->getValueType(0).getVectorElementCount().isScalable() &&
8185          "Scalable flags of index and data do not match");
8186   assert(ElementCount::isKnownGE(
8187              N->getIndex().getValueType().getVectorElementCount(),
8188              N->getValueType(0).getVectorElementCount()) &&
8189          "Vector width mismatch between index and data");
8190   assert(isa<ConstantSDNode>(N->getScale()) &&
8191          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8192          "Scale should be a constant power of 2");
8193 
8194   CSEMap.InsertNode(N, IP);
8195   InsertNode(N);
8196   SDValue V(N, 0);
8197   NewSDValueDbgMsg(V, "Creating new node: ", this);
8198   return V;
8199 }
8200 
8201 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8202                                        ArrayRef<SDValue> Ops,
8203                                        MachineMemOperand *MMO,
8204                                        ISD::MemIndexType IndexType,
8205                                        bool IsTrunc) {
8206   assert(Ops.size() == 6 && "Incompatible number of operands");
8207 
8208   FoldingSetNodeID ID;
8209   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8210   ID.AddInteger(MemVT.getRawBits());
8211   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8212       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8213   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8214   void *IP = nullptr;
8215   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8216     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8217     return SDValue(E, 0);
8218   }
8219 
8220   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8221   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8222                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8223   createOperands(N, Ops);
8224 
8225   assert(N->getMask().getValueType().getVectorElementCount() ==
8226              N->getValue().getValueType().getVectorElementCount() &&
8227          "Vector width mismatch between mask and data");
8228   assert(
8229       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8230           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8231       "Scalable flags of index and data do not match");
8232   assert(ElementCount::isKnownGE(
8233              N->getIndex().getValueType().getVectorElementCount(),
8234              N->getValue().getValueType().getVectorElementCount()) &&
8235          "Vector width mismatch between index and data");
8236   assert(isa<ConstantSDNode>(N->getScale()) &&
8237          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8238          "Scale should be a constant power of 2");
8239 
8240   CSEMap.InsertNode(N, IP);
8241   InsertNode(N);
8242   SDValue V(N, 0);
8243   NewSDValueDbgMsg(V, "Creating new node: ", this);
8244   return V;
8245 }
8246 
8247 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8248   // select undef, T, F --> T (if T is a constant), otherwise F
8249   // select, ?, undef, F --> F
8250   // select, ?, T, undef --> T
8251   if (Cond.isUndef())
8252     return isConstantValueOfAnyType(T) ? T : F;
8253   if (T.isUndef())
8254     return F;
8255   if (F.isUndef())
8256     return T;
8257 
8258   // select true, T, F --> T
8259   // select false, T, F --> F
8260   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8261     return CondC->isZero() ? F : T;
8262 
8263   // TODO: This should simplify VSELECT with constant condition using something
8264   // like this (but check boolean contents to be complete?):
8265   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8266   //    return T;
8267   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8268   //    return F;
8269 
8270   // select ?, T, T --> T
8271   if (T == F)
8272     return T;
8273 
8274   return SDValue();
8275 }
8276 
8277 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8278   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8279   if (X.isUndef())
8280     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8281   // shift X, undef --> undef (because it may shift by the bitwidth)
8282   if (Y.isUndef())
8283     return getUNDEF(X.getValueType());
8284 
8285   // shift 0, Y --> 0
8286   // shift X, 0 --> X
8287   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8288     return X;
8289 
8290   // shift X, C >= bitwidth(X) --> undef
8291   // All vector elements must be too big (or undef) to avoid partial undefs.
8292   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8293     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8294   };
8295   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8296     return getUNDEF(X.getValueType());
8297 
8298   return SDValue();
8299 }
8300 
8301 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8302                                       SDNodeFlags Flags) {
8303   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8304   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8305   // operation is poison. That result can be relaxed to undef.
8306   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8307   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8308   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8309                 (YC && YC->getValueAPF().isNaN());
8310   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8311                 (YC && YC->getValueAPF().isInfinity());
8312 
8313   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8314     return getUNDEF(X.getValueType());
8315 
8316   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8317     return getUNDEF(X.getValueType());
8318 
8319   if (!YC)
8320     return SDValue();
8321 
8322   // X + -0.0 --> X
8323   if (Opcode == ISD::FADD)
8324     if (YC->getValueAPF().isNegZero())
8325       return X;
8326 
8327   // X - +0.0 --> X
8328   if (Opcode == ISD::FSUB)
8329     if (YC->getValueAPF().isPosZero())
8330       return X;
8331 
8332   // X * 1.0 --> X
8333   // X / 1.0 --> X
8334   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8335     if (YC->getValueAPF().isExactlyValue(1.0))
8336       return X;
8337 
8338   // X * 0.0 --> 0.0
8339   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8340     if (YC->getValueAPF().isZero())
8341       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8342 
8343   return SDValue();
8344 }
8345 
8346 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8347                                SDValue Ptr, SDValue SV, unsigned Align) {
8348   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8349   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8350 }
8351 
8352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8353                               ArrayRef<SDUse> Ops) {
8354   switch (Ops.size()) {
8355   case 0: return getNode(Opcode, DL, VT);
8356   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8357   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8358   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8359   default: break;
8360   }
8361 
8362   // Copy from an SDUse array into an SDValue array for use with
8363   // the regular getNode logic.
8364   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8365   return getNode(Opcode, DL, VT, NewOps);
8366 }
8367 
8368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8369                               ArrayRef<SDValue> Ops) {
8370   SDNodeFlags Flags;
8371   if (Inserter)
8372     Flags = Inserter->getFlags();
8373   return getNode(Opcode, DL, VT, Ops, Flags);
8374 }
8375 
8376 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8377                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8378   unsigned NumOps = Ops.size();
8379   switch (NumOps) {
8380   case 0: return getNode(Opcode, DL, VT);
8381   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8382   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8383   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8384   default: break;
8385   }
8386 
8387 #ifndef NDEBUG
8388   for (auto &Op : Ops)
8389     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8390            "Operand is DELETED_NODE!");
8391 #endif
8392 
8393   switch (Opcode) {
8394   default: break;
8395   case ISD::BUILD_VECTOR:
8396     // Attempt to simplify BUILD_VECTOR.
8397     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8398       return V;
8399     break;
8400   case ISD::CONCAT_VECTORS:
8401     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8402       return V;
8403     break;
8404   case ISD::SELECT_CC:
8405     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8406     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8407            "LHS and RHS of condition must have same type!");
8408     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8409            "True and False arms of SelectCC must have same type!");
8410     assert(Ops[2].getValueType() == VT &&
8411            "select_cc node must be of same type as true and false value!");
8412     break;
8413   case ISD::BR_CC:
8414     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8415     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8416            "LHS/RHS of comparison should match types!");
8417     break;
8418   }
8419 
8420   // Memoize nodes.
8421   SDNode *N;
8422   SDVTList VTs = getVTList(VT);
8423 
8424   if (VT != MVT::Glue) {
8425     FoldingSetNodeID ID;
8426     AddNodeIDNode(ID, Opcode, VTs, Ops);
8427     void *IP = nullptr;
8428 
8429     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8430       return SDValue(E, 0);
8431 
8432     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8433     createOperands(N, Ops);
8434 
8435     CSEMap.InsertNode(N, IP);
8436   } else {
8437     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8438     createOperands(N, Ops);
8439   }
8440 
8441   N->setFlags(Flags);
8442   InsertNode(N);
8443   SDValue V(N, 0);
8444   NewSDValueDbgMsg(V, "Creating new node: ", this);
8445   return V;
8446 }
8447 
8448 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8449                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8450   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8451 }
8452 
8453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8454                               ArrayRef<SDValue> Ops) {
8455   SDNodeFlags Flags;
8456   if (Inserter)
8457     Flags = Inserter->getFlags();
8458   return getNode(Opcode, DL, VTList, Ops, Flags);
8459 }
8460 
8461 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8462                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8463   if (VTList.NumVTs == 1)
8464     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8465 
8466 #ifndef NDEBUG
8467   for (auto &Op : Ops)
8468     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8469            "Operand is DELETED_NODE!");
8470 #endif
8471 
8472   switch (Opcode) {
8473   case ISD::STRICT_FP_EXTEND:
8474     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8475            "Invalid STRICT_FP_EXTEND!");
8476     assert(VTList.VTs[0].isFloatingPoint() &&
8477            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8478     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8479            "STRICT_FP_EXTEND result type should be vector iff the operand "
8480            "type is vector!");
8481     assert((!VTList.VTs[0].isVector() ||
8482             VTList.VTs[0].getVectorNumElements() ==
8483             Ops[1].getValueType().getVectorNumElements()) &&
8484            "Vector element count mismatch!");
8485     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8486            "Invalid fpext node, dst <= src!");
8487     break;
8488   case ISD::STRICT_FP_ROUND:
8489     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8490     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8491            "STRICT_FP_ROUND result type should be vector iff the operand "
8492            "type is vector!");
8493     assert((!VTList.VTs[0].isVector() ||
8494             VTList.VTs[0].getVectorNumElements() ==
8495             Ops[1].getValueType().getVectorNumElements()) &&
8496            "Vector element count mismatch!");
8497     assert(VTList.VTs[0].isFloatingPoint() &&
8498            Ops[1].getValueType().isFloatingPoint() &&
8499            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8500            isa<ConstantSDNode>(Ops[2]) &&
8501            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8502             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8503            "Invalid STRICT_FP_ROUND!");
8504     break;
8505 #if 0
8506   // FIXME: figure out how to safely handle things like
8507   // int foo(int x) { return 1 << (x & 255); }
8508   // int bar() { return foo(256); }
8509   case ISD::SRA_PARTS:
8510   case ISD::SRL_PARTS:
8511   case ISD::SHL_PARTS:
8512     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8513         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8514       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8515     else if (N3.getOpcode() == ISD::AND)
8516       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8517         // If the and is only masking out bits that cannot effect the shift,
8518         // eliminate the and.
8519         unsigned NumBits = VT.getScalarSizeInBits()*2;
8520         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8521           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8522       }
8523     break;
8524 #endif
8525   }
8526 
8527   // Memoize the node unless it returns a flag.
8528   SDNode *N;
8529   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8530     FoldingSetNodeID ID;
8531     AddNodeIDNode(ID, Opcode, VTList, Ops);
8532     void *IP = nullptr;
8533     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8534       return SDValue(E, 0);
8535 
8536     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8537     createOperands(N, Ops);
8538     CSEMap.InsertNode(N, IP);
8539   } else {
8540     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8541     createOperands(N, Ops);
8542   }
8543 
8544   N->setFlags(Flags);
8545   InsertNode(N);
8546   SDValue V(N, 0);
8547   NewSDValueDbgMsg(V, "Creating new node: ", this);
8548   return V;
8549 }
8550 
8551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8552                               SDVTList VTList) {
8553   return getNode(Opcode, DL, VTList, None);
8554 }
8555 
8556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8557                               SDValue N1) {
8558   SDValue Ops[] = { N1 };
8559   return getNode(Opcode, DL, VTList, Ops);
8560 }
8561 
8562 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8563                               SDValue N1, SDValue N2) {
8564   SDValue Ops[] = { N1, N2 };
8565   return getNode(Opcode, DL, VTList, Ops);
8566 }
8567 
8568 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8569                               SDValue N1, SDValue N2, SDValue N3) {
8570   SDValue Ops[] = { N1, N2, N3 };
8571   return getNode(Opcode, DL, VTList, Ops);
8572 }
8573 
8574 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8575                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8576   SDValue Ops[] = { N1, N2, N3, N4 };
8577   return getNode(Opcode, DL, VTList, Ops);
8578 }
8579 
8580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8581                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8582                               SDValue N5) {
8583   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8584   return getNode(Opcode, DL, VTList, Ops);
8585 }
8586 
8587 SDVTList SelectionDAG::getVTList(EVT VT) {
8588   return makeVTList(SDNode::getValueTypeList(VT), 1);
8589 }
8590 
8591 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8592   FoldingSetNodeID ID;
8593   ID.AddInteger(2U);
8594   ID.AddInteger(VT1.getRawBits());
8595   ID.AddInteger(VT2.getRawBits());
8596 
8597   void *IP = nullptr;
8598   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8599   if (!Result) {
8600     EVT *Array = Allocator.Allocate<EVT>(2);
8601     Array[0] = VT1;
8602     Array[1] = VT2;
8603     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8604     VTListMap.InsertNode(Result, IP);
8605   }
8606   return Result->getSDVTList();
8607 }
8608 
8609 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8610   FoldingSetNodeID ID;
8611   ID.AddInteger(3U);
8612   ID.AddInteger(VT1.getRawBits());
8613   ID.AddInteger(VT2.getRawBits());
8614   ID.AddInteger(VT3.getRawBits());
8615 
8616   void *IP = nullptr;
8617   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8618   if (!Result) {
8619     EVT *Array = Allocator.Allocate<EVT>(3);
8620     Array[0] = VT1;
8621     Array[1] = VT2;
8622     Array[2] = VT3;
8623     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8624     VTListMap.InsertNode(Result, IP);
8625   }
8626   return Result->getSDVTList();
8627 }
8628 
8629 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8630   FoldingSetNodeID ID;
8631   ID.AddInteger(4U);
8632   ID.AddInteger(VT1.getRawBits());
8633   ID.AddInteger(VT2.getRawBits());
8634   ID.AddInteger(VT3.getRawBits());
8635   ID.AddInteger(VT4.getRawBits());
8636 
8637   void *IP = nullptr;
8638   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8639   if (!Result) {
8640     EVT *Array = Allocator.Allocate<EVT>(4);
8641     Array[0] = VT1;
8642     Array[1] = VT2;
8643     Array[2] = VT3;
8644     Array[3] = VT4;
8645     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8646     VTListMap.InsertNode(Result, IP);
8647   }
8648   return Result->getSDVTList();
8649 }
8650 
8651 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8652   unsigned NumVTs = VTs.size();
8653   FoldingSetNodeID ID;
8654   ID.AddInteger(NumVTs);
8655   for (unsigned index = 0; index < NumVTs; index++) {
8656     ID.AddInteger(VTs[index].getRawBits());
8657   }
8658 
8659   void *IP = nullptr;
8660   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8661   if (!Result) {
8662     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8663     llvm::copy(VTs, Array);
8664     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8665     VTListMap.InsertNode(Result, IP);
8666   }
8667   return Result->getSDVTList();
8668 }
8669 
8670 
8671 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8672 /// specified operands.  If the resultant node already exists in the DAG,
8673 /// this does not modify the specified node, instead it returns the node that
8674 /// already exists.  If the resultant node does not exist in the DAG, the
8675 /// input node is returned.  As a degenerate case, if you specify the same
8676 /// input operands as the node already has, the input node is returned.
8677 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8678   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8679 
8680   // Check to see if there is no change.
8681   if (Op == N->getOperand(0)) return N;
8682 
8683   // See if the modified node already exists.
8684   void *InsertPos = nullptr;
8685   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8686     return Existing;
8687 
8688   // Nope it doesn't.  Remove the node from its current place in the maps.
8689   if (InsertPos)
8690     if (!RemoveNodeFromCSEMaps(N))
8691       InsertPos = nullptr;
8692 
8693   // Now we update the operands.
8694   N->OperandList[0].set(Op);
8695 
8696   updateDivergence(N);
8697   // If this gets put into a CSE map, add it.
8698   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8699   return N;
8700 }
8701 
8702 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8703   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8704 
8705   // Check to see if there is no change.
8706   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8707     return N;   // No operands changed, just return the input node.
8708 
8709   // See if the modified node already exists.
8710   void *InsertPos = nullptr;
8711   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8712     return Existing;
8713 
8714   // Nope it doesn't.  Remove the node from its current place in the maps.
8715   if (InsertPos)
8716     if (!RemoveNodeFromCSEMaps(N))
8717       InsertPos = nullptr;
8718 
8719   // Now we update the operands.
8720   if (N->OperandList[0] != Op1)
8721     N->OperandList[0].set(Op1);
8722   if (N->OperandList[1] != Op2)
8723     N->OperandList[1].set(Op2);
8724 
8725   updateDivergence(N);
8726   // If this gets put into a CSE map, add it.
8727   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8728   return N;
8729 }
8730 
8731 SDNode *SelectionDAG::
8732 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8733   SDValue Ops[] = { Op1, Op2, Op3 };
8734   return UpdateNodeOperands(N, Ops);
8735 }
8736 
8737 SDNode *SelectionDAG::
8738 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8739                    SDValue Op3, SDValue Op4) {
8740   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8741   return UpdateNodeOperands(N, Ops);
8742 }
8743 
8744 SDNode *SelectionDAG::
8745 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8746                    SDValue Op3, SDValue Op4, SDValue Op5) {
8747   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8748   return UpdateNodeOperands(N, Ops);
8749 }
8750 
8751 SDNode *SelectionDAG::
8752 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8753   unsigned NumOps = Ops.size();
8754   assert(N->getNumOperands() == NumOps &&
8755          "Update with wrong number of operands");
8756 
8757   // If no operands changed just return the input node.
8758   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8759     return N;
8760 
8761   // See if the modified node already exists.
8762   void *InsertPos = nullptr;
8763   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8764     return Existing;
8765 
8766   // Nope it doesn't.  Remove the node from its current place in the maps.
8767   if (InsertPos)
8768     if (!RemoveNodeFromCSEMaps(N))
8769       InsertPos = nullptr;
8770 
8771   // Now we update the operands.
8772   for (unsigned i = 0; i != NumOps; ++i)
8773     if (N->OperandList[i] != Ops[i])
8774       N->OperandList[i].set(Ops[i]);
8775 
8776   updateDivergence(N);
8777   // If this gets put into a CSE map, add it.
8778   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8779   return N;
8780 }
8781 
8782 /// DropOperands - Release the operands and set this node to have
8783 /// zero operands.
8784 void SDNode::DropOperands() {
8785   // Unlike the code in MorphNodeTo that does this, we don't need to
8786   // watch for dead nodes here.
8787   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8788     SDUse &Use = *I++;
8789     Use.set(SDValue());
8790   }
8791 }
8792 
8793 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8794                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8795   if (NewMemRefs.empty()) {
8796     N->clearMemRefs();
8797     return;
8798   }
8799 
8800   // Check if we can avoid allocating by storing a single reference directly.
8801   if (NewMemRefs.size() == 1) {
8802     N->MemRefs = NewMemRefs[0];
8803     N->NumMemRefs = 1;
8804     return;
8805   }
8806 
8807   MachineMemOperand **MemRefsBuffer =
8808       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8809   llvm::copy(NewMemRefs, MemRefsBuffer);
8810   N->MemRefs = MemRefsBuffer;
8811   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8812 }
8813 
8814 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8815 /// machine opcode.
8816 ///
8817 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8818                                    EVT VT) {
8819   SDVTList VTs = getVTList(VT);
8820   return SelectNodeTo(N, MachineOpc, VTs, None);
8821 }
8822 
8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8824                                    EVT VT, SDValue Op1) {
8825   SDVTList VTs = getVTList(VT);
8826   SDValue Ops[] = { Op1 };
8827   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8828 }
8829 
8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8831                                    EVT VT, SDValue Op1,
8832                                    SDValue Op2) {
8833   SDVTList VTs = getVTList(VT);
8834   SDValue Ops[] = { Op1, Op2 };
8835   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8836 }
8837 
8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8839                                    EVT VT, SDValue Op1,
8840                                    SDValue Op2, SDValue Op3) {
8841   SDVTList VTs = getVTList(VT);
8842   SDValue Ops[] = { Op1, Op2, Op3 };
8843   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8844 }
8845 
8846 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8847                                    EVT VT, ArrayRef<SDValue> Ops) {
8848   SDVTList VTs = getVTList(VT);
8849   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8850 }
8851 
8852 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8853                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8854   SDVTList VTs = getVTList(VT1, VT2);
8855   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8856 }
8857 
8858 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8859                                    EVT VT1, EVT VT2) {
8860   SDVTList VTs = getVTList(VT1, VT2);
8861   return SelectNodeTo(N, MachineOpc, VTs, None);
8862 }
8863 
8864 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8865                                    EVT VT1, EVT VT2, EVT VT3,
8866                                    ArrayRef<SDValue> Ops) {
8867   SDVTList VTs = getVTList(VT1, VT2, VT3);
8868   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8869 }
8870 
8871 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8872                                    EVT VT1, EVT VT2,
8873                                    SDValue Op1, SDValue Op2) {
8874   SDVTList VTs = getVTList(VT1, VT2);
8875   SDValue Ops[] = { Op1, Op2 };
8876   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8877 }
8878 
8879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8880                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8881   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8882   // Reset the NodeID to -1.
8883   New->setNodeId(-1);
8884   if (New != N) {
8885     ReplaceAllUsesWith(N, New);
8886     RemoveDeadNode(N);
8887   }
8888   return New;
8889 }
8890 
8891 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8892 /// the line number information on the merged node since it is not possible to
8893 /// preserve the information that operation is associated with multiple lines.
8894 /// This will make the debugger working better at -O0, were there is a higher
8895 /// probability having other instructions associated with that line.
8896 ///
8897 /// For IROrder, we keep the smaller of the two
8898 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8899   DebugLoc NLoc = N->getDebugLoc();
8900   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8901     N->setDebugLoc(DebugLoc());
8902   }
8903   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8904   N->setIROrder(Order);
8905   return N;
8906 }
8907 
8908 /// MorphNodeTo - This *mutates* the specified node to have the specified
8909 /// return type, opcode, and operands.
8910 ///
8911 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8912 /// node of the specified opcode and operands, it returns that node instead of
8913 /// the current one.  Note that the SDLoc need not be the same.
8914 ///
8915 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8916 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8917 /// node, and because it doesn't require CSE recalculation for any of
8918 /// the node's users.
8919 ///
8920 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8921 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8922 /// the legalizer which maintain worklists that would need to be updated when
8923 /// deleting things.
8924 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8925                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8926   // If an identical node already exists, use it.
8927   void *IP = nullptr;
8928   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8929     FoldingSetNodeID ID;
8930     AddNodeIDNode(ID, Opc, VTs, Ops);
8931     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8932       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8933   }
8934 
8935   if (!RemoveNodeFromCSEMaps(N))
8936     IP = nullptr;
8937 
8938   // Start the morphing.
8939   N->NodeType = Opc;
8940   N->ValueList = VTs.VTs;
8941   N->NumValues = VTs.NumVTs;
8942 
8943   // Clear the operands list, updating used nodes to remove this from their
8944   // use list.  Keep track of any operands that become dead as a result.
8945   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8946   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8947     SDUse &Use = *I++;
8948     SDNode *Used = Use.getNode();
8949     Use.set(SDValue());
8950     if (Used->use_empty())
8951       DeadNodeSet.insert(Used);
8952   }
8953 
8954   // For MachineNode, initialize the memory references information.
8955   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8956     MN->clearMemRefs();
8957 
8958   // Swap for an appropriately sized array from the recycler.
8959   removeOperands(N);
8960   createOperands(N, Ops);
8961 
8962   // Delete any nodes that are still dead after adding the uses for the
8963   // new operands.
8964   if (!DeadNodeSet.empty()) {
8965     SmallVector<SDNode *, 16> DeadNodes;
8966     for (SDNode *N : DeadNodeSet)
8967       if (N->use_empty())
8968         DeadNodes.push_back(N);
8969     RemoveDeadNodes(DeadNodes);
8970   }
8971 
8972   if (IP)
8973     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8974   return N;
8975 }
8976 
8977 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8978   unsigned OrigOpc = Node->getOpcode();
8979   unsigned NewOpc;
8980   switch (OrigOpc) {
8981   default:
8982     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8983 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8984   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8985 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8986   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8987 #include "llvm/IR/ConstrainedOps.def"
8988   }
8989 
8990   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8991 
8992   // We're taking this node out of the chain, so we need to re-link things.
8993   SDValue InputChain = Node->getOperand(0);
8994   SDValue OutputChain = SDValue(Node, 1);
8995   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8996 
8997   SmallVector<SDValue, 3> Ops;
8998   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8999     Ops.push_back(Node->getOperand(i));
9000 
9001   SDVTList VTs = getVTList(Node->getValueType(0));
9002   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9003 
9004   // MorphNodeTo can operate in two ways: if an existing node with the
9005   // specified operands exists, it can just return it.  Otherwise, it
9006   // updates the node in place to have the requested operands.
9007   if (Res == Node) {
9008     // If we updated the node in place, reset the node ID.  To the isel,
9009     // this should be just like a newly allocated machine node.
9010     Res->setNodeId(-1);
9011   } else {
9012     ReplaceAllUsesWith(Node, Res);
9013     RemoveDeadNode(Node);
9014   }
9015 
9016   return Res;
9017 }
9018 
9019 /// getMachineNode - These are used for target selectors to create a new node
9020 /// with specified return type(s), MachineInstr opcode, and operands.
9021 ///
9022 /// Note that getMachineNode returns the resultant node.  If there is already a
9023 /// node of the specified opcode and operands, it returns that node instead of
9024 /// the current one.
9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9026                                             EVT VT) {
9027   SDVTList VTs = getVTList(VT);
9028   return getMachineNode(Opcode, dl, VTs, None);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT, SDValue Op1) {
9033   SDVTList VTs = getVTList(VT);
9034   SDValue Ops[] = { Op1 };
9035   return getMachineNode(Opcode, dl, VTs, Ops);
9036 }
9037 
9038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9039                                             EVT VT, SDValue Op1, SDValue Op2) {
9040   SDVTList VTs = getVTList(VT);
9041   SDValue Ops[] = { Op1, Op2 };
9042   return getMachineNode(Opcode, dl, VTs, Ops);
9043 }
9044 
9045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9046                                             EVT VT, SDValue Op1, SDValue Op2,
9047                                             SDValue Op3) {
9048   SDVTList VTs = getVTList(VT);
9049   SDValue Ops[] = { Op1, Op2, Op3 };
9050   return getMachineNode(Opcode, dl, VTs, Ops);
9051 }
9052 
9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9054                                             EVT VT, ArrayRef<SDValue> Ops) {
9055   SDVTList VTs = getVTList(VT);
9056   return getMachineNode(Opcode, dl, VTs, Ops);
9057 }
9058 
9059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9060                                             EVT VT1, EVT VT2, SDValue Op1,
9061                                             SDValue Op2) {
9062   SDVTList VTs = getVTList(VT1, VT2);
9063   SDValue Ops[] = { Op1, Op2 };
9064   return getMachineNode(Opcode, dl, VTs, Ops);
9065 }
9066 
9067 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9068                                             EVT VT1, EVT VT2, SDValue Op1,
9069                                             SDValue Op2, SDValue Op3) {
9070   SDVTList VTs = getVTList(VT1, VT2);
9071   SDValue Ops[] = { Op1, Op2, Op3 };
9072   return getMachineNode(Opcode, dl, VTs, Ops);
9073 }
9074 
9075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9076                                             EVT VT1, EVT VT2,
9077                                             ArrayRef<SDValue> Ops) {
9078   SDVTList VTs = getVTList(VT1, VT2);
9079   return getMachineNode(Opcode, dl, VTs, Ops);
9080 }
9081 
9082 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9083                                             EVT VT1, EVT VT2, EVT VT3,
9084                                             SDValue Op1, SDValue Op2) {
9085   SDVTList VTs = getVTList(VT1, VT2, VT3);
9086   SDValue Ops[] = { Op1, Op2 };
9087   return getMachineNode(Opcode, dl, VTs, Ops);
9088 }
9089 
9090 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9091                                             EVT VT1, EVT VT2, EVT VT3,
9092                                             SDValue Op1, SDValue Op2,
9093                                             SDValue Op3) {
9094   SDVTList VTs = getVTList(VT1, VT2, VT3);
9095   SDValue Ops[] = { Op1, Op2, Op3 };
9096   return getMachineNode(Opcode, dl, VTs, Ops);
9097 }
9098 
9099 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9100                                             EVT VT1, EVT VT2, EVT VT3,
9101                                             ArrayRef<SDValue> Ops) {
9102   SDVTList VTs = getVTList(VT1, VT2, VT3);
9103   return getMachineNode(Opcode, dl, VTs, Ops);
9104 }
9105 
9106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9107                                             ArrayRef<EVT> ResultTys,
9108                                             ArrayRef<SDValue> Ops) {
9109   SDVTList VTs = getVTList(ResultTys);
9110   return getMachineNode(Opcode, dl, VTs, Ops);
9111 }
9112 
9113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9114                                             SDVTList VTs,
9115                                             ArrayRef<SDValue> Ops) {
9116   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9117   MachineSDNode *N;
9118   void *IP = nullptr;
9119 
9120   if (DoCSE) {
9121     FoldingSetNodeID ID;
9122     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9123     IP = nullptr;
9124     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9125       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9126     }
9127   }
9128 
9129   // Allocate a new MachineSDNode.
9130   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9131   createOperands(N, Ops);
9132 
9133   if (DoCSE)
9134     CSEMap.InsertNode(N, IP);
9135 
9136   InsertNode(N);
9137   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9138   return N;
9139 }
9140 
9141 /// getTargetExtractSubreg - A convenience function for creating
9142 /// TargetOpcode::EXTRACT_SUBREG nodes.
9143 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9144                                              SDValue Operand) {
9145   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9146   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9147                                   VT, Operand, SRIdxVal);
9148   return SDValue(Subreg, 0);
9149 }
9150 
9151 /// getTargetInsertSubreg - A convenience function for creating
9152 /// TargetOpcode::INSERT_SUBREG nodes.
9153 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9154                                             SDValue Operand, SDValue Subreg) {
9155   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9156   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9157                                   VT, Operand, Subreg, SRIdxVal);
9158   return SDValue(Result, 0);
9159 }
9160 
9161 /// getNodeIfExists - Get the specified node if it's already available, or
9162 /// else return NULL.
9163 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9164                                       ArrayRef<SDValue> Ops) {
9165   SDNodeFlags Flags;
9166   if (Inserter)
9167     Flags = Inserter->getFlags();
9168   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9169 }
9170 
9171 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9172                                       ArrayRef<SDValue> Ops,
9173                                       const SDNodeFlags Flags) {
9174   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9175     FoldingSetNodeID ID;
9176     AddNodeIDNode(ID, Opcode, VTList, Ops);
9177     void *IP = nullptr;
9178     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9179       E->intersectFlagsWith(Flags);
9180       return E;
9181     }
9182   }
9183   return nullptr;
9184 }
9185 
9186 /// doesNodeExist - Check if a node exists without modifying its flags.
9187 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9188                                  ArrayRef<SDValue> Ops) {
9189   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9190     FoldingSetNodeID ID;
9191     AddNodeIDNode(ID, Opcode, VTList, Ops);
9192     void *IP = nullptr;
9193     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9194       return true;
9195   }
9196   return false;
9197 }
9198 
9199 /// getDbgValue - Creates a SDDbgValue node.
9200 ///
9201 /// SDNode
9202 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9203                                       SDNode *N, unsigned R, bool IsIndirect,
9204                                       const DebugLoc &DL, unsigned O) {
9205   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9206          "Expected inlined-at fields to agree");
9207   return new (DbgInfo->getAlloc())
9208       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9209                  {}, IsIndirect, DL, O,
9210                  /*IsVariadic=*/false);
9211 }
9212 
9213 /// Constant
9214 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9215                                               DIExpression *Expr,
9216                                               const Value *C,
9217                                               const DebugLoc &DL, unsigned O) {
9218   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9219          "Expected inlined-at fields to agree");
9220   return new (DbgInfo->getAlloc())
9221       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9222                  /*IsIndirect=*/false, DL, O,
9223                  /*IsVariadic=*/false);
9224 }
9225 
9226 /// FrameIndex
9227 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9228                                                 DIExpression *Expr, unsigned FI,
9229                                                 bool IsIndirect,
9230                                                 const DebugLoc &DL,
9231                                                 unsigned O) {
9232   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9233          "Expected inlined-at fields to agree");
9234   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9235 }
9236 
9237 /// FrameIndex with dependencies
9238 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9239                                                 DIExpression *Expr, unsigned FI,
9240                                                 ArrayRef<SDNode *> Dependencies,
9241                                                 bool IsIndirect,
9242                                                 const DebugLoc &DL,
9243                                                 unsigned O) {
9244   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9245          "Expected inlined-at fields to agree");
9246   return new (DbgInfo->getAlloc())
9247       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9248                  Dependencies, IsIndirect, DL, O,
9249                  /*IsVariadic=*/false);
9250 }
9251 
9252 /// VReg
9253 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9254                                           unsigned VReg, bool IsIndirect,
9255                                           const DebugLoc &DL, unsigned O) {
9256   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9257          "Expected inlined-at fields to agree");
9258   return new (DbgInfo->getAlloc())
9259       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9260                  {}, IsIndirect, DL, O,
9261                  /*IsVariadic=*/false);
9262 }
9263 
9264 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9265                                           ArrayRef<SDDbgOperand> Locs,
9266                                           ArrayRef<SDNode *> Dependencies,
9267                                           bool IsIndirect, const DebugLoc &DL,
9268                                           unsigned O, bool IsVariadic) {
9269   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9270          "Expected inlined-at fields to agree");
9271   return new (DbgInfo->getAlloc())
9272       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9273                  DL, O, IsVariadic);
9274 }
9275 
9276 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9277                                      unsigned OffsetInBits, unsigned SizeInBits,
9278                                      bool InvalidateDbg) {
9279   SDNode *FromNode = From.getNode();
9280   SDNode *ToNode = To.getNode();
9281   assert(FromNode && ToNode && "Can't modify dbg values");
9282 
9283   // PR35338
9284   // TODO: assert(From != To && "Redundant dbg value transfer");
9285   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9286   if (From == To || FromNode == ToNode)
9287     return;
9288 
9289   if (!FromNode->getHasDebugValue())
9290     return;
9291 
9292   SDDbgOperand FromLocOp =
9293       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9294   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9295 
9296   SmallVector<SDDbgValue *, 2> ClonedDVs;
9297   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9298     if (Dbg->isInvalidated())
9299       continue;
9300 
9301     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9302 
9303     // Create a new location ops vector that is equal to the old vector, but
9304     // with each instance of FromLocOp replaced with ToLocOp.
9305     bool Changed = false;
9306     auto NewLocOps = Dbg->copyLocationOps();
9307     std::replace_if(
9308         NewLocOps.begin(), NewLocOps.end(),
9309         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9310           bool Match = Op == FromLocOp;
9311           Changed |= Match;
9312           return Match;
9313         },
9314         ToLocOp);
9315     // Ignore this SDDbgValue if we didn't find a matching location.
9316     if (!Changed)
9317       continue;
9318 
9319     DIVariable *Var = Dbg->getVariable();
9320     auto *Expr = Dbg->getExpression();
9321     // If a fragment is requested, update the expression.
9322     if (SizeInBits) {
9323       // When splitting a larger (e.g., sign-extended) value whose
9324       // lower bits are described with an SDDbgValue, do not attempt
9325       // to transfer the SDDbgValue to the upper bits.
9326       if (auto FI = Expr->getFragmentInfo())
9327         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9328           continue;
9329       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9330                                                              SizeInBits);
9331       if (!Fragment)
9332         continue;
9333       Expr = *Fragment;
9334     }
9335 
9336     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9337     // Clone the SDDbgValue and move it to To.
9338     SDDbgValue *Clone = getDbgValueList(
9339         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9340         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9341         Dbg->isVariadic());
9342     ClonedDVs.push_back(Clone);
9343 
9344     if (InvalidateDbg) {
9345       // Invalidate value and indicate the SDDbgValue should not be emitted.
9346       Dbg->setIsInvalidated();
9347       Dbg->setIsEmitted();
9348     }
9349   }
9350 
9351   for (SDDbgValue *Dbg : ClonedDVs) {
9352     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9353            "Transferred DbgValues should depend on the new SDNode");
9354     AddDbgValue(Dbg, false);
9355   }
9356 }
9357 
9358 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9359   if (!N.getHasDebugValue())
9360     return;
9361 
9362   SmallVector<SDDbgValue *, 2> ClonedDVs;
9363   for (auto DV : GetDbgValues(&N)) {
9364     if (DV->isInvalidated())
9365       continue;
9366     switch (N.getOpcode()) {
9367     default:
9368       break;
9369     case ISD::ADD:
9370       SDValue N0 = N.getOperand(0);
9371       SDValue N1 = N.getOperand(1);
9372       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9373           isConstantIntBuildVectorOrConstantInt(N1)) {
9374         uint64_t Offset = N.getConstantOperandVal(1);
9375 
9376         // Rewrite an ADD constant node into a DIExpression. Since we are
9377         // performing arithmetic to compute the variable's *value* in the
9378         // DIExpression, we need to mark the expression with a
9379         // DW_OP_stack_value.
9380         auto *DIExpr = DV->getExpression();
9381         auto NewLocOps = DV->copyLocationOps();
9382         bool Changed = false;
9383         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9384           // We're not given a ResNo to compare against because the whole
9385           // node is going away. We know that any ISD::ADD only has one
9386           // result, so we can assume any node match is using the result.
9387           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9388               NewLocOps[i].getSDNode() != &N)
9389             continue;
9390           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9391           SmallVector<uint64_t, 3> ExprOps;
9392           DIExpression::appendOffset(ExprOps, Offset);
9393           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9394           Changed = true;
9395         }
9396         (void)Changed;
9397         assert(Changed && "Salvage target doesn't use N");
9398 
9399         auto AdditionalDependencies = DV->getAdditionalDependencies();
9400         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9401                                             NewLocOps, AdditionalDependencies,
9402                                             DV->isIndirect(), DV->getDebugLoc(),
9403                                             DV->getOrder(), DV->isVariadic());
9404         ClonedDVs.push_back(Clone);
9405         DV->setIsInvalidated();
9406         DV->setIsEmitted();
9407         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9408                    N0.getNode()->dumprFull(this);
9409                    dbgs() << " into " << *DIExpr << '\n');
9410       }
9411     }
9412   }
9413 
9414   for (SDDbgValue *Dbg : ClonedDVs) {
9415     assert(!Dbg->getSDNodes().empty() &&
9416            "Salvaged DbgValue should depend on a new SDNode");
9417     AddDbgValue(Dbg, false);
9418   }
9419 }
9420 
9421 /// Creates a SDDbgLabel node.
9422 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9423                                       const DebugLoc &DL, unsigned O) {
9424   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9425          "Expected inlined-at fields to agree");
9426   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9427 }
9428 
9429 namespace {
9430 
9431 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9432 /// pointed to by a use iterator is deleted, increment the use iterator
9433 /// so that it doesn't dangle.
9434 ///
9435 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9436   SDNode::use_iterator &UI;
9437   SDNode::use_iterator &UE;
9438 
9439   void NodeDeleted(SDNode *N, SDNode *E) override {
9440     // Increment the iterator as needed.
9441     while (UI != UE && N == *UI)
9442       ++UI;
9443   }
9444 
9445 public:
9446   RAUWUpdateListener(SelectionDAG &d,
9447                      SDNode::use_iterator &ui,
9448                      SDNode::use_iterator &ue)
9449     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9450 };
9451 
9452 } // end anonymous namespace
9453 
9454 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9455 /// This can cause recursive merging of nodes in the DAG.
9456 ///
9457 /// This version assumes From has a single result value.
9458 ///
9459 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9460   SDNode *From = FromN.getNode();
9461   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9462          "Cannot replace with this method!");
9463   assert(From != To.getNode() && "Cannot replace uses of with self");
9464 
9465   // Preserve Debug Values
9466   transferDbgValues(FromN, To);
9467 
9468   // Iterate over all the existing uses of From. New uses will be added
9469   // to the beginning of the use list, which we avoid visiting.
9470   // This specifically avoids visiting uses of From that arise while the
9471   // replacement is happening, because any such uses would be the result
9472   // of CSE: If an existing node looks like From after one of its operands
9473   // is replaced by To, we don't want to replace of all its users with To
9474   // too. See PR3018 for more info.
9475   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9476   RAUWUpdateListener Listener(*this, UI, UE);
9477   while (UI != UE) {
9478     SDNode *User = *UI;
9479 
9480     // This node is about to morph, remove its old self from the CSE maps.
9481     RemoveNodeFromCSEMaps(User);
9482 
9483     // A user can appear in a use list multiple times, and when this
9484     // happens the uses are usually next to each other in the list.
9485     // To help reduce the number of CSE recomputations, process all
9486     // the uses of this user that we can find this way.
9487     do {
9488       SDUse &Use = UI.getUse();
9489       ++UI;
9490       Use.set(To);
9491       if (To->isDivergent() != From->isDivergent())
9492         updateDivergence(User);
9493     } while (UI != UE && *UI == User);
9494     // Now that we have modified User, add it back to the CSE maps.  If it
9495     // already exists there, recursively merge the results together.
9496     AddModifiedNodeToCSEMaps(User);
9497   }
9498 
9499   // If we just RAUW'd the root, take note.
9500   if (FromN == getRoot())
9501     setRoot(To);
9502 }
9503 
9504 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9505 /// This can cause recursive merging of nodes in the DAG.
9506 ///
9507 /// This version assumes that for each value of From, there is a
9508 /// corresponding value in To in the same position with the same type.
9509 ///
9510 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9511 #ifndef NDEBUG
9512   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9513     assert((!From->hasAnyUseOfValue(i) ||
9514             From->getValueType(i) == To->getValueType(i)) &&
9515            "Cannot use this version of ReplaceAllUsesWith!");
9516 #endif
9517 
9518   // Handle the trivial case.
9519   if (From == To)
9520     return;
9521 
9522   // Preserve Debug Info. Only do this if there's a use.
9523   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9524     if (From->hasAnyUseOfValue(i)) {
9525       assert((i < To->getNumValues()) && "Invalid To location");
9526       transferDbgValues(SDValue(From, i), SDValue(To, i));
9527     }
9528 
9529   // Iterate over just the existing users of From. See the comments in
9530   // the ReplaceAllUsesWith above.
9531   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9532   RAUWUpdateListener Listener(*this, UI, UE);
9533   while (UI != UE) {
9534     SDNode *User = *UI;
9535 
9536     // This node is about to morph, remove its old self from the CSE maps.
9537     RemoveNodeFromCSEMaps(User);
9538 
9539     // A user can appear in a use list multiple times, and when this
9540     // happens the uses are usually next to each other in the list.
9541     // To help reduce the number of CSE recomputations, process all
9542     // the uses of this user that we can find this way.
9543     do {
9544       SDUse &Use = UI.getUse();
9545       ++UI;
9546       Use.setNode(To);
9547       if (To->isDivergent() != From->isDivergent())
9548         updateDivergence(User);
9549     } while (UI != UE && *UI == User);
9550 
9551     // Now that we have modified User, add it back to the CSE maps.  If it
9552     // already exists there, recursively merge the results together.
9553     AddModifiedNodeToCSEMaps(User);
9554   }
9555 
9556   // If we just RAUW'd the root, take note.
9557   if (From == getRoot().getNode())
9558     setRoot(SDValue(To, getRoot().getResNo()));
9559 }
9560 
9561 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9562 /// This can cause recursive merging of nodes in the DAG.
9563 ///
9564 /// This version can replace From with any result values.  To must match the
9565 /// number and types of values returned by From.
9566 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9567   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9568     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9569 
9570   // Preserve Debug Info.
9571   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9572     transferDbgValues(SDValue(From, i), To[i]);
9573 
9574   // Iterate over just the existing users of From. See the comments in
9575   // the ReplaceAllUsesWith above.
9576   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9577   RAUWUpdateListener Listener(*this, UI, UE);
9578   while (UI != UE) {
9579     SDNode *User = *UI;
9580 
9581     // This node is about to morph, remove its old self from the CSE maps.
9582     RemoveNodeFromCSEMaps(User);
9583 
9584     // A user can appear in a use list multiple times, and when this happens the
9585     // uses are usually next to each other in the list.  To help reduce the
9586     // number of CSE and divergence recomputations, process all the uses of this
9587     // user that we can find this way.
9588     bool To_IsDivergent = false;
9589     do {
9590       SDUse &Use = UI.getUse();
9591       const SDValue &ToOp = To[Use.getResNo()];
9592       ++UI;
9593       Use.set(ToOp);
9594       To_IsDivergent |= ToOp->isDivergent();
9595     } while (UI != UE && *UI == User);
9596 
9597     if (To_IsDivergent != From->isDivergent())
9598       updateDivergence(User);
9599 
9600     // Now that we have modified User, add it back to the CSE maps.  If it
9601     // already exists there, recursively merge the results together.
9602     AddModifiedNodeToCSEMaps(User);
9603   }
9604 
9605   // If we just RAUW'd the root, take note.
9606   if (From == getRoot().getNode())
9607     setRoot(SDValue(To[getRoot().getResNo()]));
9608 }
9609 
9610 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9611 /// uses of other values produced by From.getNode() alone.  The Deleted
9612 /// vector is handled the same way as for ReplaceAllUsesWith.
9613 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9614   // Handle the really simple, really trivial case efficiently.
9615   if (From == To) return;
9616 
9617   // Handle the simple, trivial, case efficiently.
9618   if (From.getNode()->getNumValues() == 1) {
9619     ReplaceAllUsesWith(From, To);
9620     return;
9621   }
9622 
9623   // Preserve Debug Info.
9624   transferDbgValues(From, To);
9625 
9626   // Iterate over just the existing users of From. See the comments in
9627   // the ReplaceAllUsesWith above.
9628   SDNode::use_iterator UI = From.getNode()->use_begin(),
9629                        UE = From.getNode()->use_end();
9630   RAUWUpdateListener Listener(*this, UI, UE);
9631   while (UI != UE) {
9632     SDNode *User = *UI;
9633     bool UserRemovedFromCSEMaps = false;
9634 
9635     // A user can appear in a use list multiple times, and when this
9636     // happens the uses are usually next to each other in the list.
9637     // To help reduce the number of CSE recomputations, process all
9638     // the uses of this user that we can find this way.
9639     do {
9640       SDUse &Use = UI.getUse();
9641 
9642       // Skip uses of different values from the same node.
9643       if (Use.getResNo() != From.getResNo()) {
9644         ++UI;
9645         continue;
9646       }
9647 
9648       // If this node hasn't been modified yet, it's still in the CSE maps,
9649       // so remove its old self from the CSE maps.
9650       if (!UserRemovedFromCSEMaps) {
9651         RemoveNodeFromCSEMaps(User);
9652         UserRemovedFromCSEMaps = true;
9653       }
9654 
9655       ++UI;
9656       Use.set(To);
9657       if (To->isDivergent() != From->isDivergent())
9658         updateDivergence(User);
9659     } while (UI != UE && *UI == User);
9660     // We are iterating over all uses of the From node, so if a use
9661     // doesn't use the specific value, no changes are made.
9662     if (!UserRemovedFromCSEMaps)
9663       continue;
9664 
9665     // Now that we have modified User, add it back to the CSE maps.  If it
9666     // already exists there, recursively merge the results together.
9667     AddModifiedNodeToCSEMaps(User);
9668   }
9669 
9670   // If we just RAUW'd the root, take note.
9671   if (From == getRoot())
9672     setRoot(To);
9673 }
9674 
9675 namespace {
9676 
9677   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9678   /// to record information about a use.
9679   struct UseMemo {
9680     SDNode *User;
9681     unsigned Index;
9682     SDUse *Use;
9683   };
9684 
9685   /// operator< - Sort Memos by User.
9686   bool operator<(const UseMemo &L, const UseMemo &R) {
9687     return (intptr_t)L.User < (intptr_t)R.User;
9688   }
9689 
9690 } // end anonymous namespace
9691 
9692 bool SelectionDAG::calculateDivergence(SDNode *N) {
9693   if (TLI->isSDNodeAlwaysUniform(N)) {
9694     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9695            "Conflicting divergence information!");
9696     return false;
9697   }
9698   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9699     return true;
9700   for (auto &Op : N->ops()) {
9701     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9702       return true;
9703   }
9704   return false;
9705 }
9706 
9707 void SelectionDAG::updateDivergence(SDNode *N) {
9708   SmallVector<SDNode *, 16> Worklist(1, N);
9709   do {
9710     N = Worklist.pop_back_val();
9711     bool IsDivergent = calculateDivergence(N);
9712     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9713       N->SDNodeBits.IsDivergent = IsDivergent;
9714       llvm::append_range(Worklist, N->uses());
9715     }
9716   } while (!Worklist.empty());
9717 }
9718 
9719 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9720   DenseMap<SDNode *, unsigned> Degree;
9721   Order.reserve(AllNodes.size());
9722   for (auto &N : allnodes()) {
9723     unsigned NOps = N.getNumOperands();
9724     Degree[&N] = NOps;
9725     if (0 == NOps)
9726       Order.push_back(&N);
9727   }
9728   for (size_t I = 0; I != Order.size(); ++I) {
9729     SDNode *N = Order[I];
9730     for (auto U : N->uses()) {
9731       unsigned &UnsortedOps = Degree[U];
9732       if (0 == --UnsortedOps)
9733         Order.push_back(U);
9734     }
9735   }
9736 }
9737 
9738 #ifndef NDEBUG
9739 void SelectionDAG::VerifyDAGDivergence() {
9740   std::vector<SDNode *> TopoOrder;
9741   CreateTopologicalOrder(TopoOrder);
9742   for (auto *N : TopoOrder) {
9743     assert(calculateDivergence(N) == N->isDivergent() &&
9744            "Divergence bit inconsistency detected");
9745   }
9746 }
9747 #endif
9748 
9749 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9750 /// uses of other values produced by From.getNode() alone.  The same value
9751 /// may appear in both the From and To list.  The Deleted vector is
9752 /// handled the same way as for ReplaceAllUsesWith.
9753 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9754                                               const SDValue *To,
9755                                               unsigned Num){
9756   // Handle the simple, trivial case efficiently.
9757   if (Num == 1)
9758     return ReplaceAllUsesOfValueWith(*From, *To);
9759 
9760   transferDbgValues(*From, *To);
9761 
9762   // Read up all the uses and make records of them. This helps
9763   // processing new uses that are introduced during the
9764   // replacement process.
9765   SmallVector<UseMemo, 4> Uses;
9766   for (unsigned i = 0; i != Num; ++i) {
9767     unsigned FromResNo = From[i].getResNo();
9768     SDNode *FromNode = From[i].getNode();
9769     for (SDNode::use_iterator UI = FromNode->use_begin(),
9770          E = FromNode->use_end(); UI != E; ++UI) {
9771       SDUse &Use = UI.getUse();
9772       if (Use.getResNo() == FromResNo) {
9773         UseMemo Memo = { *UI, i, &Use };
9774         Uses.push_back(Memo);
9775       }
9776     }
9777   }
9778 
9779   // Sort the uses, so that all the uses from a given User are together.
9780   llvm::sort(Uses);
9781 
9782   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9783        UseIndex != UseIndexEnd; ) {
9784     // We know that this user uses some value of From.  If it is the right
9785     // value, update it.
9786     SDNode *User = Uses[UseIndex].User;
9787 
9788     // This node is about to morph, remove its old self from the CSE maps.
9789     RemoveNodeFromCSEMaps(User);
9790 
9791     // The Uses array is sorted, so all the uses for a given User
9792     // are next to each other in the list.
9793     // To help reduce the number of CSE recomputations, process all
9794     // the uses of this user that we can find this way.
9795     do {
9796       unsigned i = Uses[UseIndex].Index;
9797       SDUse &Use = *Uses[UseIndex].Use;
9798       ++UseIndex;
9799 
9800       Use.set(To[i]);
9801     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9802 
9803     // Now that we have modified User, add it back to the CSE maps.  If it
9804     // already exists there, recursively merge the results together.
9805     AddModifiedNodeToCSEMaps(User);
9806   }
9807 }
9808 
9809 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9810 /// based on their topological order. It returns the maximum id and a vector
9811 /// of the SDNodes* in assigned order by reference.
9812 unsigned SelectionDAG::AssignTopologicalOrder() {
9813   unsigned DAGSize = 0;
9814 
9815   // SortedPos tracks the progress of the algorithm. Nodes before it are
9816   // sorted, nodes after it are unsorted. When the algorithm completes
9817   // it is at the end of the list.
9818   allnodes_iterator SortedPos = allnodes_begin();
9819 
9820   // Visit all the nodes. Move nodes with no operands to the front of
9821   // the list immediately. Annotate nodes that do have operands with their
9822   // operand count. Before we do this, the Node Id fields of the nodes
9823   // may contain arbitrary values. After, the Node Id fields for nodes
9824   // before SortedPos will contain the topological sort index, and the
9825   // Node Id fields for nodes At SortedPos and after will contain the
9826   // count of outstanding operands.
9827   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9828     checkForCycles(&N, this);
9829     unsigned Degree = N.getNumOperands();
9830     if (Degree == 0) {
9831       // A node with no uses, add it to the result array immediately.
9832       N.setNodeId(DAGSize++);
9833       allnodes_iterator Q(&N);
9834       if (Q != SortedPos)
9835         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9836       assert(SortedPos != AllNodes.end() && "Overran node list");
9837       ++SortedPos;
9838     } else {
9839       // Temporarily use the Node Id as scratch space for the degree count.
9840       N.setNodeId(Degree);
9841     }
9842   }
9843 
9844   // Visit all the nodes. As we iterate, move nodes into sorted order,
9845   // such that by the time the end is reached all nodes will be sorted.
9846   for (SDNode &Node : allnodes()) {
9847     SDNode *N = &Node;
9848     checkForCycles(N, this);
9849     // N is in sorted position, so all its uses have one less operand
9850     // that needs to be sorted.
9851     for (SDNode *P : N->uses()) {
9852       unsigned Degree = P->getNodeId();
9853       assert(Degree != 0 && "Invalid node degree");
9854       --Degree;
9855       if (Degree == 0) {
9856         // All of P's operands are sorted, so P may sorted now.
9857         P->setNodeId(DAGSize++);
9858         if (P->getIterator() != SortedPos)
9859           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9860         assert(SortedPos != AllNodes.end() && "Overran node list");
9861         ++SortedPos;
9862       } else {
9863         // Update P's outstanding operand count.
9864         P->setNodeId(Degree);
9865       }
9866     }
9867     if (Node.getIterator() == SortedPos) {
9868 #ifndef NDEBUG
9869       allnodes_iterator I(N);
9870       SDNode *S = &*++I;
9871       dbgs() << "Overran sorted position:\n";
9872       S->dumprFull(this); dbgs() << "\n";
9873       dbgs() << "Checking if this is due to cycles\n";
9874       checkForCycles(this, true);
9875 #endif
9876       llvm_unreachable(nullptr);
9877     }
9878   }
9879 
9880   assert(SortedPos == AllNodes.end() &&
9881          "Topological sort incomplete!");
9882   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9883          "First node in topological sort is not the entry token!");
9884   assert(AllNodes.front().getNodeId() == 0 &&
9885          "First node in topological sort has non-zero id!");
9886   assert(AllNodes.front().getNumOperands() == 0 &&
9887          "First node in topological sort has operands!");
9888   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9889          "Last node in topologic sort has unexpected id!");
9890   assert(AllNodes.back().use_empty() &&
9891          "Last node in topologic sort has users!");
9892   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9893   return DAGSize;
9894 }
9895 
9896 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9897 /// value is produced by SD.
9898 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9899   for (SDNode *SD : DB->getSDNodes()) {
9900     if (!SD)
9901       continue;
9902     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9903     SD->setHasDebugValue(true);
9904   }
9905   DbgInfo->add(DB, isParameter);
9906 }
9907 
9908 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9909 
9910 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9911                                                    SDValue NewMemOpChain) {
9912   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9913   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9914   // The new memory operation must have the same position as the old load in
9915   // terms of memory dependency. Create a TokenFactor for the old load and new
9916   // memory operation and update uses of the old load's output chain to use that
9917   // TokenFactor.
9918   if (OldChain == NewMemOpChain || OldChain.use_empty())
9919     return NewMemOpChain;
9920 
9921   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9922                                 OldChain, NewMemOpChain);
9923   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9924   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9925   return TokenFactor;
9926 }
9927 
9928 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9929                                                    SDValue NewMemOp) {
9930   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9931   SDValue OldChain = SDValue(OldLoad, 1);
9932   SDValue NewMemOpChain = NewMemOp.getValue(1);
9933   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9934 }
9935 
9936 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9937                                                      Function **OutFunction) {
9938   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9939 
9940   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9941   auto *Module = MF->getFunction().getParent();
9942   auto *Function = Module->getFunction(Symbol);
9943 
9944   if (OutFunction != nullptr)
9945       *OutFunction = Function;
9946 
9947   if (Function != nullptr) {
9948     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9949     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9950   }
9951 
9952   std::string ErrorStr;
9953   raw_string_ostream ErrorFormatter(ErrorStr);
9954   ErrorFormatter << "Undefined external symbol ";
9955   ErrorFormatter << '"' << Symbol << '"';
9956   report_fatal_error(Twine(ErrorFormatter.str()));
9957 }
9958 
9959 //===----------------------------------------------------------------------===//
9960 //                              SDNode Class
9961 //===----------------------------------------------------------------------===//
9962 
9963 bool llvm::isNullConstant(SDValue V) {
9964   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9965   return Const != nullptr && Const->isZero();
9966 }
9967 
9968 bool llvm::isNullFPConstant(SDValue V) {
9969   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9970   return Const != nullptr && Const->isZero() && !Const->isNegative();
9971 }
9972 
9973 bool llvm::isAllOnesConstant(SDValue V) {
9974   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9975   return Const != nullptr && Const->isAllOnes();
9976 }
9977 
9978 bool llvm::isOneConstant(SDValue V) {
9979   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9980   return Const != nullptr && Const->isOne();
9981 }
9982 
9983 SDValue llvm::peekThroughBitcasts(SDValue V) {
9984   while (V.getOpcode() == ISD::BITCAST)
9985     V = V.getOperand(0);
9986   return V;
9987 }
9988 
9989 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9990   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9991     V = V.getOperand(0);
9992   return V;
9993 }
9994 
9995 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9996   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9997     V = V.getOperand(0);
9998   return V;
9999 }
10000 
10001 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10002   if (V.getOpcode() != ISD::XOR)
10003     return false;
10004   V = peekThroughBitcasts(V.getOperand(1));
10005   unsigned NumBits = V.getScalarValueSizeInBits();
10006   ConstantSDNode *C =
10007       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10008   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10009 }
10010 
10011 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10012                                           bool AllowTruncation) {
10013   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10014     return CN;
10015 
10016   // SplatVectors can truncate their operands. Ignore that case here unless
10017   // AllowTruncation is set.
10018   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10019     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10020     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10021       EVT CVT = CN->getValueType(0);
10022       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10023       if (AllowTruncation || CVT == VecEltVT)
10024         return CN;
10025     }
10026   }
10027 
10028   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10029     BitVector UndefElements;
10030     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10031 
10032     // BuildVectors can truncate their operands. Ignore that case here unless
10033     // AllowTruncation is set.
10034     if (CN && (UndefElements.none() || AllowUndefs)) {
10035       EVT CVT = CN->getValueType(0);
10036       EVT NSVT = N.getValueType().getScalarType();
10037       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10038       if (AllowTruncation || (CVT == NSVT))
10039         return CN;
10040     }
10041   }
10042 
10043   return nullptr;
10044 }
10045 
10046 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10047                                           bool AllowUndefs,
10048                                           bool AllowTruncation) {
10049   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10050     return CN;
10051 
10052   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10053     BitVector UndefElements;
10054     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10055 
10056     // BuildVectors can truncate their operands. Ignore that case here unless
10057     // AllowTruncation is set.
10058     if (CN && (UndefElements.none() || AllowUndefs)) {
10059       EVT CVT = CN->getValueType(0);
10060       EVT NSVT = N.getValueType().getScalarType();
10061       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10062       if (AllowTruncation || (CVT == NSVT))
10063         return CN;
10064     }
10065   }
10066 
10067   return nullptr;
10068 }
10069 
10070 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10071   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10072     return CN;
10073 
10074   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10075     BitVector UndefElements;
10076     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10077     if (CN && (UndefElements.none() || AllowUndefs))
10078       return CN;
10079   }
10080 
10081   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10082     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10083       return CN;
10084 
10085   return nullptr;
10086 }
10087 
10088 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10089                                               const APInt &DemandedElts,
10090                                               bool AllowUndefs) {
10091   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10092     return CN;
10093 
10094   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10095     BitVector UndefElements;
10096     ConstantFPSDNode *CN =
10097         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10098     if (CN && (UndefElements.none() || AllowUndefs))
10099       return CN;
10100   }
10101 
10102   return nullptr;
10103 }
10104 
10105 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10106   // TODO: may want to use peekThroughBitcast() here.
10107   ConstantSDNode *C =
10108       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10109   return C && C->isZero();
10110 }
10111 
10112 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10113   // TODO: may want to use peekThroughBitcast() here.
10114   unsigned BitWidth = N.getScalarValueSizeInBits();
10115   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10116   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10117 }
10118 
10119 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10120   N = peekThroughBitcasts(N);
10121   unsigned BitWidth = N.getScalarValueSizeInBits();
10122   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10123   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10124 }
10125 
10126 HandleSDNode::~HandleSDNode() {
10127   DropOperands();
10128 }
10129 
10130 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10131                                          const DebugLoc &DL,
10132                                          const GlobalValue *GA, EVT VT,
10133                                          int64_t o, unsigned TF)
10134     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10135   TheGlobal = GA;
10136 }
10137 
10138 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10139                                          EVT VT, unsigned SrcAS,
10140                                          unsigned DestAS)
10141     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10142       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10143 
10144 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10145                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10146     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10147   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10148   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10149   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10150   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10151 
10152   // We check here that the size of the memory operand fits within the size of
10153   // the MMO. This is because the MMO might indicate only a possible address
10154   // range instead of specifying the affected memory addresses precisely.
10155   // TODO: Make MachineMemOperands aware of scalable vectors.
10156   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10157          "Size mismatch!");
10158 }
10159 
10160 /// Profile - Gather unique data for the node.
10161 ///
10162 void SDNode::Profile(FoldingSetNodeID &ID) const {
10163   AddNodeIDNode(ID, this);
10164 }
10165 
10166 namespace {
10167 
10168   struct EVTArray {
10169     std::vector<EVT> VTs;
10170 
10171     EVTArray() {
10172       VTs.reserve(MVT::VALUETYPE_SIZE);
10173       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10174         VTs.push_back(MVT((MVT::SimpleValueType)i));
10175     }
10176   };
10177 
10178 } // end anonymous namespace
10179 
10180 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10181 static ManagedStatic<EVTArray> SimpleVTArray;
10182 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10183 
10184 /// getValueTypeList - Return a pointer to the specified value type.
10185 ///
10186 const EVT *SDNode::getValueTypeList(EVT VT) {
10187   if (VT.isExtended()) {
10188     sys::SmartScopedLock<true> Lock(*VTMutex);
10189     return &(*EVTs->insert(VT).first);
10190   }
10191   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10192   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10193 }
10194 
10195 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10196 /// indicated value.  This method ignores uses of other values defined by this
10197 /// operation.
10198 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10199   assert(Value < getNumValues() && "Bad value!");
10200 
10201   // TODO: Only iterate over uses of a given value of the node
10202   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10203     if (UI.getUse().getResNo() == Value) {
10204       if (NUses == 0)
10205         return false;
10206       --NUses;
10207     }
10208   }
10209 
10210   // Found exactly the right number of uses?
10211   return NUses == 0;
10212 }
10213 
10214 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10215 /// value. This method ignores uses of other values defined by this operation.
10216 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10217   assert(Value < getNumValues() && "Bad value!");
10218 
10219   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10220     if (UI.getUse().getResNo() == Value)
10221       return true;
10222 
10223   return false;
10224 }
10225 
10226 /// isOnlyUserOf - Return true if this node is the only use of N.
10227 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10228   bool Seen = false;
10229   for (const SDNode *User : N->uses()) {
10230     if (User == this)
10231       Seen = true;
10232     else
10233       return false;
10234   }
10235 
10236   return Seen;
10237 }
10238 
10239 /// Return true if the only users of N are contained in Nodes.
10240 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10241   bool Seen = false;
10242   for (const SDNode *User : N->uses()) {
10243     if (llvm::is_contained(Nodes, User))
10244       Seen = true;
10245     else
10246       return false;
10247   }
10248 
10249   return Seen;
10250 }
10251 
10252 /// isOperand - Return true if this node is an operand of N.
10253 bool SDValue::isOperandOf(const SDNode *N) const {
10254   return is_contained(N->op_values(), *this);
10255 }
10256 
10257 bool SDNode::isOperandOf(const SDNode *N) const {
10258   return any_of(N->op_values(),
10259                 [this](SDValue Op) { return this == Op.getNode(); });
10260 }
10261 
10262 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10263 /// be a chain) reaches the specified operand without crossing any
10264 /// side-effecting instructions on any chain path.  In practice, this looks
10265 /// through token factors and non-volatile loads.  In order to remain efficient,
10266 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10267 ///
10268 /// Note that we only need to examine chains when we're searching for
10269 /// side-effects; SelectionDAG requires that all side-effects are represented
10270 /// by chains, even if another operand would force a specific ordering. This
10271 /// constraint is necessary to allow transformations like splitting loads.
10272 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10273                                              unsigned Depth) const {
10274   if (*this == Dest) return true;
10275 
10276   // Don't search too deeply, we just want to be able to see through
10277   // TokenFactor's etc.
10278   if (Depth == 0) return false;
10279 
10280   // If this is a token factor, all inputs to the TF happen in parallel.
10281   if (getOpcode() == ISD::TokenFactor) {
10282     // First, try a shallow search.
10283     if (is_contained((*this)->ops(), Dest)) {
10284       // We found the chain we want as an operand of this TokenFactor.
10285       // Essentially, we reach the chain without side-effects if we could
10286       // serialize the TokenFactor into a simple chain of operations with
10287       // Dest as the last operation. This is automatically true if the
10288       // chain has one use: there are no other ordering constraints.
10289       // If the chain has more than one use, we give up: some other
10290       // use of Dest might force a side-effect between Dest and the current
10291       // node.
10292       if (Dest.hasOneUse())
10293         return true;
10294     }
10295     // Next, try a deep search: check whether every operand of the TokenFactor
10296     // reaches Dest.
10297     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10298       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10299     });
10300   }
10301 
10302   // Loads don't have side effects, look through them.
10303   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10304     if (Ld->isUnordered())
10305       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10306   }
10307   return false;
10308 }
10309 
10310 bool SDNode::hasPredecessor(const SDNode *N) const {
10311   SmallPtrSet<const SDNode *, 32> Visited;
10312   SmallVector<const SDNode *, 16> Worklist;
10313   Worklist.push_back(this);
10314   return hasPredecessorHelper(N, Visited, Worklist);
10315 }
10316 
10317 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10318   this->Flags.intersectWith(Flags);
10319 }
10320 
10321 SDValue
10322 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10323                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10324                                   bool AllowPartials) {
10325   // The pattern must end in an extract from index 0.
10326   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10327       !isNullConstant(Extract->getOperand(1)))
10328     return SDValue();
10329 
10330   // Match against one of the candidate binary ops.
10331   SDValue Op = Extract->getOperand(0);
10332   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10333         return Op.getOpcode() == unsigned(BinOp);
10334       }))
10335     return SDValue();
10336 
10337   // Floating-point reductions may require relaxed constraints on the final step
10338   // of the reduction because they may reorder intermediate operations.
10339   unsigned CandidateBinOp = Op.getOpcode();
10340   if (Op.getValueType().isFloatingPoint()) {
10341     SDNodeFlags Flags = Op->getFlags();
10342     switch (CandidateBinOp) {
10343     case ISD::FADD:
10344       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10345         return SDValue();
10346       break;
10347     default:
10348       llvm_unreachable("Unhandled FP opcode for binop reduction");
10349     }
10350   }
10351 
10352   // Matching failed - attempt to see if we did enough stages that a partial
10353   // reduction from a subvector is possible.
10354   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10355     if (!AllowPartials || !Op)
10356       return SDValue();
10357     EVT OpVT = Op.getValueType();
10358     EVT OpSVT = OpVT.getScalarType();
10359     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10360     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10361       return SDValue();
10362     BinOp = (ISD::NodeType)CandidateBinOp;
10363     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10364                    getVectorIdxConstant(0, SDLoc(Op)));
10365   };
10366 
10367   // At each stage, we're looking for something that looks like:
10368   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10369   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10370   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10371   // %a = binop <8 x i32> %op, %s
10372   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10373   // we expect something like:
10374   // <4,5,6,7,u,u,u,u>
10375   // <2,3,u,u,u,u,u,u>
10376   // <1,u,u,u,u,u,u,u>
10377   // While a partial reduction match would be:
10378   // <2,3,u,u,u,u,u,u>
10379   // <1,u,u,u,u,u,u,u>
10380   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10381   SDValue PrevOp;
10382   for (unsigned i = 0; i < Stages; ++i) {
10383     unsigned MaskEnd = (1 << i);
10384 
10385     if (Op.getOpcode() != CandidateBinOp)
10386       return PartialReduction(PrevOp, MaskEnd);
10387 
10388     SDValue Op0 = Op.getOperand(0);
10389     SDValue Op1 = Op.getOperand(1);
10390 
10391     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10392     if (Shuffle) {
10393       Op = Op1;
10394     } else {
10395       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10396       Op = Op0;
10397     }
10398 
10399     // The first operand of the shuffle should be the same as the other operand
10400     // of the binop.
10401     if (!Shuffle || Shuffle->getOperand(0) != Op)
10402       return PartialReduction(PrevOp, MaskEnd);
10403 
10404     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10405     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10406       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10407         return PartialReduction(PrevOp, MaskEnd);
10408 
10409     PrevOp = Op;
10410   }
10411 
10412   // Handle subvector reductions, which tend to appear after the shuffle
10413   // reduction stages.
10414   while (Op.getOpcode() == CandidateBinOp) {
10415     unsigned NumElts = Op.getValueType().getVectorNumElements();
10416     SDValue Op0 = Op.getOperand(0);
10417     SDValue Op1 = Op.getOperand(1);
10418     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10419         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10420         Op0.getOperand(0) != Op1.getOperand(0))
10421       break;
10422     SDValue Src = Op0.getOperand(0);
10423     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10424     if (NumSrcElts != (2 * NumElts))
10425       break;
10426     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10427           Op1.getConstantOperandAPInt(1) == NumElts) &&
10428         !(Op1.getConstantOperandAPInt(1) == 0 &&
10429           Op0.getConstantOperandAPInt(1) == NumElts))
10430       break;
10431     Op = Src;
10432   }
10433 
10434   BinOp = (ISD::NodeType)CandidateBinOp;
10435   return Op;
10436 }
10437 
10438 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10439   assert(N->getNumValues() == 1 &&
10440          "Can't unroll a vector with multiple results!");
10441 
10442   EVT VT = N->getValueType(0);
10443   unsigned NE = VT.getVectorNumElements();
10444   EVT EltVT = VT.getVectorElementType();
10445   SDLoc dl(N);
10446 
10447   SmallVector<SDValue, 8> Scalars;
10448   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10449 
10450   // If ResNE is 0, fully unroll the vector op.
10451   if (ResNE == 0)
10452     ResNE = NE;
10453   else if (NE > ResNE)
10454     NE = ResNE;
10455 
10456   unsigned i;
10457   for (i= 0; i != NE; ++i) {
10458     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10459       SDValue Operand = N->getOperand(j);
10460       EVT OperandVT = Operand.getValueType();
10461       if (OperandVT.isVector()) {
10462         // A vector operand; extract a single element.
10463         EVT OperandEltVT = OperandVT.getVectorElementType();
10464         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10465                               Operand, getVectorIdxConstant(i, dl));
10466       } else {
10467         // A scalar operand; just use it as is.
10468         Operands[j] = Operand;
10469       }
10470     }
10471 
10472     switch (N->getOpcode()) {
10473     default: {
10474       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10475                                 N->getFlags()));
10476       break;
10477     }
10478     case ISD::VSELECT:
10479       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10480       break;
10481     case ISD::SHL:
10482     case ISD::SRA:
10483     case ISD::SRL:
10484     case ISD::ROTL:
10485     case ISD::ROTR:
10486       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10487                                getShiftAmountOperand(Operands[0].getValueType(),
10488                                                      Operands[1])));
10489       break;
10490     case ISD::SIGN_EXTEND_INREG: {
10491       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10492       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10493                                 Operands[0],
10494                                 getValueType(ExtVT)));
10495     }
10496     }
10497   }
10498 
10499   for (; i < ResNE; ++i)
10500     Scalars.push_back(getUNDEF(EltVT));
10501 
10502   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10503   return getBuildVector(VecVT, dl, Scalars);
10504 }
10505 
10506 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10507     SDNode *N, unsigned ResNE) {
10508   unsigned Opcode = N->getOpcode();
10509   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10510           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10511           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10512          "Expected an overflow opcode");
10513 
10514   EVT ResVT = N->getValueType(0);
10515   EVT OvVT = N->getValueType(1);
10516   EVT ResEltVT = ResVT.getVectorElementType();
10517   EVT OvEltVT = OvVT.getVectorElementType();
10518   SDLoc dl(N);
10519 
10520   // If ResNE is 0, fully unroll the vector op.
10521   unsigned NE = ResVT.getVectorNumElements();
10522   if (ResNE == 0)
10523     ResNE = NE;
10524   else if (NE > ResNE)
10525     NE = ResNE;
10526 
10527   SmallVector<SDValue, 8> LHSScalars;
10528   SmallVector<SDValue, 8> RHSScalars;
10529   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10530   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10531 
10532   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10533   SDVTList VTs = getVTList(ResEltVT, SVT);
10534   SmallVector<SDValue, 8> ResScalars;
10535   SmallVector<SDValue, 8> OvScalars;
10536   for (unsigned i = 0; i < NE; ++i) {
10537     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10538     SDValue Ov =
10539         getSelect(dl, OvEltVT, Res.getValue(1),
10540                   getBoolConstant(true, dl, OvEltVT, ResVT),
10541                   getConstant(0, dl, OvEltVT));
10542 
10543     ResScalars.push_back(Res);
10544     OvScalars.push_back(Ov);
10545   }
10546 
10547   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10548   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10549 
10550   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10551   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10552   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10553                         getBuildVector(NewOvVT, dl, OvScalars));
10554 }
10555 
10556 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10557                                                   LoadSDNode *Base,
10558                                                   unsigned Bytes,
10559                                                   int Dist) const {
10560   if (LD->isVolatile() || Base->isVolatile())
10561     return false;
10562   // TODO: probably too restrictive for atomics, revisit
10563   if (!LD->isSimple())
10564     return false;
10565   if (LD->isIndexed() || Base->isIndexed())
10566     return false;
10567   if (LD->getChain() != Base->getChain())
10568     return false;
10569   EVT VT = LD->getValueType(0);
10570   if (VT.getSizeInBits() / 8 != Bytes)
10571     return false;
10572 
10573   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10574   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10575 
10576   int64_t Offset = 0;
10577   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10578     return (Dist * Bytes == Offset);
10579   return false;
10580 }
10581 
10582 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10583 /// if it cannot be inferred.
10584 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10585   // If this is a GlobalAddress + cst, return the alignment.
10586   const GlobalValue *GV = nullptr;
10587   int64_t GVOffset = 0;
10588   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10589     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10590     KnownBits Known(PtrWidth);
10591     llvm::computeKnownBits(GV, Known, getDataLayout());
10592     unsigned AlignBits = Known.countMinTrailingZeros();
10593     if (AlignBits)
10594       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10595   }
10596 
10597   // If this is a direct reference to a stack slot, use information about the
10598   // stack slot's alignment.
10599   int FrameIdx = INT_MIN;
10600   int64_t FrameOffset = 0;
10601   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10602     FrameIdx = FI->getIndex();
10603   } else if (isBaseWithConstantOffset(Ptr) &&
10604              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10605     // Handle FI+Cst
10606     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10607     FrameOffset = Ptr.getConstantOperandVal(1);
10608   }
10609 
10610   if (FrameIdx != INT_MIN) {
10611     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10612     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10613   }
10614 
10615   return None;
10616 }
10617 
10618 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10619 /// which is split (or expanded) into two not necessarily identical pieces.
10620 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10621   // Currently all types are split in half.
10622   EVT LoVT, HiVT;
10623   if (!VT.isVector())
10624     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10625   else
10626     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10627 
10628   return std::make_pair(LoVT, HiVT);
10629 }
10630 
10631 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10632 /// type, dependent on an enveloping VT that has been split into two identical
10633 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10634 std::pair<EVT, EVT>
10635 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10636                                        bool *HiIsEmpty) const {
10637   EVT EltTp = VT.getVectorElementType();
10638   // Examples:
10639   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10640   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10641   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10642   //   etc.
10643   ElementCount VTNumElts = VT.getVectorElementCount();
10644   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10645   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10646          "Mixing fixed width and scalable vectors when enveloping a type");
10647   EVT LoVT, HiVT;
10648   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10649     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10650     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10651     *HiIsEmpty = false;
10652   } else {
10653     // Flag that hi type has zero storage size, but return split envelop type
10654     // (this would be easier if vector types with zero elements were allowed).
10655     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10656     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10657     *HiIsEmpty = true;
10658   }
10659   return std::make_pair(LoVT, HiVT);
10660 }
10661 
10662 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10663 /// low/high part.
10664 std::pair<SDValue, SDValue>
10665 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10666                           const EVT &HiVT) {
10667   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10668          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10669          "Splitting vector with an invalid mixture of fixed and scalable "
10670          "vector types");
10671   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10672              N.getValueType().getVectorMinNumElements() &&
10673          "More vector elements requested than available!");
10674   SDValue Lo, Hi;
10675   Lo =
10676       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10677   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10678   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10679   // IDX with the runtime scaling factor of the result vector type. For
10680   // fixed-width result vectors, that runtime scaling factor is 1.
10681   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10682                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10683   return std::make_pair(Lo, Hi);
10684 }
10685 
10686 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10687                                                    const SDLoc &DL) {
10688   // Split the vector length parameter.
10689   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10690   EVT VT = N.getValueType();
10691   assert(VecVT.getVectorElementCount().isKnownEven() &&
10692          "Expecting the mask to be an evenly-sized vector");
10693   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10694   SDValue HalfNumElts =
10695       VecVT.isFixedLengthVector()
10696           ? getConstant(HalfMinNumElts, DL, VT)
10697           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10698   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10699   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10700   return std::make_pair(Lo, Hi);
10701 }
10702 
10703 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10704 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10705   EVT VT = N.getValueType();
10706   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10707                                 NextPowerOf2(VT.getVectorNumElements()));
10708   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10709                  getVectorIdxConstant(0, DL));
10710 }
10711 
10712 void SelectionDAG::ExtractVectorElements(SDValue Op,
10713                                          SmallVectorImpl<SDValue> &Args,
10714                                          unsigned Start, unsigned Count,
10715                                          EVT EltVT) {
10716   EVT VT = Op.getValueType();
10717   if (Count == 0)
10718     Count = VT.getVectorNumElements();
10719   if (EltVT == EVT())
10720     EltVT = VT.getVectorElementType();
10721   SDLoc SL(Op);
10722   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10723     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10724                            getVectorIdxConstant(i, SL)));
10725   }
10726 }
10727 
10728 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10729 unsigned GlobalAddressSDNode::getAddressSpace() const {
10730   return getGlobal()->getType()->getAddressSpace();
10731 }
10732 
10733 Type *ConstantPoolSDNode::getType() const {
10734   if (isMachineConstantPoolEntry())
10735     return Val.MachineCPVal->getType();
10736   return Val.ConstVal->getType();
10737 }
10738 
10739 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10740                                         unsigned &SplatBitSize,
10741                                         bool &HasAnyUndefs,
10742                                         unsigned MinSplatBits,
10743                                         bool IsBigEndian) const {
10744   EVT VT = getValueType(0);
10745   assert(VT.isVector() && "Expected a vector type");
10746   unsigned VecWidth = VT.getSizeInBits();
10747   if (MinSplatBits > VecWidth)
10748     return false;
10749 
10750   // FIXME: The widths are based on this node's type, but build vectors can
10751   // truncate their operands.
10752   SplatValue = APInt(VecWidth, 0);
10753   SplatUndef = APInt(VecWidth, 0);
10754 
10755   // Get the bits. Bits with undefined values (when the corresponding element
10756   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10757   // in SplatValue. If any of the values are not constant, give up and return
10758   // false.
10759   unsigned int NumOps = getNumOperands();
10760   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10761   unsigned EltWidth = VT.getScalarSizeInBits();
10762 
10763   for (unsigned j = 0; j < NumOps; ++j) {
10764     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10765     SDValue OpVal = getOperand(i);
10766     unsigned BitPos = j * EltWidth;
10767 
10768     if (OpVal.isUndef())
10769       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10770     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10771       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10772     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10773       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10774     else
10775       return false;
10776   }
10777 
10778   // The build_vector is all constants or undefs. Find the smallest element
10779   // size that splats the vector.
10780   HasAnyUndefs = (SplatUndef != 0);
10781 
10782   // FIXME: This does not work for vectors with elements less than 8 bits.
10783   while (VecWidth > 8) {
10784     unsigned HalfSize = VecWidth / 2;
10785     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10786     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10787     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10788     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10789 
10790     // If the two halves do not match (ignoring undef bits), stop here.
10791     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10792         MinSplatBits > HalfSize)
10793       break;
10794 
10795     SplatValue = HighValue | LowValue;
10796     SplatUndef = HighUndef & LowUndef;
10797 
10798     VecWidth = HalfSize;
10799   }
10800 
10801   SplatBitSize = VecWidth;
10802   return true;
10803 }
10804 
10805 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10806                                          BitVector *UndefElements) const {
10807   unsigned NumOps = getNumOperands();
10808   if (UndefElements) {
10809     UndefElements->clear();
10810     UndefElements->resize(NumOps);
10811   }
10812   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10813   if (!DemandedElts)
10814     return SDValue();
10815   SDValue Splatted;
10816   for (unsigned i = 0; i != NumOps; ++i) {
10817     if (!DemandedElts[i])
10818       continue;
10819     SDValue Op = getOperand(i);
10820     if (Op.isUndef()) {
10821       if (UndefElements)
10822         (*UndefElements)[i] = true;
10823     } else if (!Splatted) {
10824       Splatted = Op;
10825     } else if (Splatted != Op) {
10826       return SDValue();
10827     }
10828   }
10829 
10830   if (!Splatted) {
10831     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10832     assert(getOperand(FirstDemandedIdx).isUndef() &&
10833            "Can only have a splat without a constant for all undefs.");
10834     return getOperand(FirstDemandedIdx);
10835   }
10836 
10837   return Splatted;
10838 }
10839 
10840 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10841   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10842   return getSplatValue(DemandedElts, UndefElements);
10843 }
10844 
10845 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10846                                             SmallVectorImpl<SDValue> &Sequence,
10847                                             BitVector *UndefElements) const {
10848   unsigned NumOps = getNumOperands();
10849   Sequence.clear();
10850   if (UndefElements) {
10851     UndefElements->clear();
10852     UndefElements->resize(NumOps);
10853   }
10854   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10855   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10856     return false;
10857 
10858   // Set the undefs even if we don't find a sequence (like getSplatValue).
10859   if (UndefElements)
10860     for (unsigned I = 0; I != NumOps; ++I)
10861       if (DemandedElts[I] && getOperand(I).isUndef())
10862         (*UndefElements)[I] = true;
10863 
10864   // Iteratively widen the sequence length looking for repetitions.
10865   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10866     Sequence.append(SeqLen, SDValue());
10867     for (unsigned I = 0; I != NumOps; ++I) {
10868       if (!DemandedElts[I])
10869         continue;
10870       SDValue &SeqOp = Sequence[I % SeqLen];
10871       SDValue Op = getOperand(I);
10872       if (Op.isUndef()) {
10873         if (!SeqOp)
10874           SeqOp = Op;
10875         continue;
10876       }
10877       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10878         Sequence.clear();
10879         break;
10880       }
10881       SeqOp = Op;
10882     }
10883     if (!Sequence.empty())
10884       return true;
10885   }
10886 
10887   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10888   return false;
10889 }
10890 
10891 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10892                                             BitVector *UndefElements) const {
10893   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10894   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10895 }
10896 
10897 ConstantSDNode *
10898 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10899                                         BitVector *UndefElements) const {
10900   return dyn_cast_or_null<ConstantSDNode>(
10901       getSplatValue(DemandedElts, UndefElements));
10902 }
10903 
10904 ConstantSDNode *
10905 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10906   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10907 }
10908 
10909 ConstantFPSDNode *
10910 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10911                                           BitVector *UndefElements) const {
10912   return dyn_cast_or_null<ConstantFPSDNode>(
10913       getSplatValue(DemandedElts, UndefElements));
10914 }
10915 
10916 ConstantFPSDNode *
10917 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10918   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10919 }
10920 
10921 int32_t
10922 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10923                                                    uint32_t BitWidth) const {
10924   if (ConstantFPSDNode *CN =
10925           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10926     bool IsExact;
10927     APSInt IntVal(BitWidth);
10928     const APFloat &APF = CN->getValueAPF();
10929     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10930             APFloat::opOK ||
10931         !IsExact)
10932       return -1;
10933 
10934     return IntVal.exactLogBase2();
10935   }
10936   return -1;
10937 }
10938 
10939 bool BuildVectorSDNode::getConstantRawBits(
10940     bool IsLittleEndian, unsigned DstEltSizeInBits,
10941     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10942   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10943   if (!isConstant())
10944     return false;
10945 
10946   unsigned NumSrcOps = getNumOperands();
10947   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10948   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10949          "Invalid bitcast scale");
10950 
10951   // Extract raw src bits.
10952   SmallVector<APInt> SrcBitElements(NumSrcOps,
10953                                     APInt::getNullValue(SrcEltSizeInBits));
10954   BitVector SrcUndeElements(NumSrcOps, false);
10955 
10956   for (unsigned I = 0; I != NumSrcOps; ++I) {
10957     SDValue Op = getOperand(I);
10958     if (Op.isUndef()) {
10959       SrcUndeElements.set(I);
10960       continue;
10961     }
10962     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10963     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10964     assert((CInt || CFP) && "Unknown constant");
10965     SrcBitElements[I] =
10966         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10967              : CFP->getValueAPF().bitcastToAPInt();
10968   }
10969 
10970   // Recast to dst width.
10971   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10972                 SrcBitElements, UndefElements, SrcUndeElements);
10973   return true;
10974 }
10975 
10976 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10977                                       unsigned DstEltSizeInBits,
10978                                       SmallVectorImpl<APInt> &DstBitElements,
10979                                       ArrayRef<APInt> SrcBitElements,
10980                                       BitVector &DstUndefElements,
10981                                       const BitVector &SrcUndefElements) {
10982   unsigned NumSrcOps = SrcBitElements.size();
10983   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10984   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10985          "Invalid bitcast scale");
10986   assert(NumSrcOps == SrcUndefElements.size() &&
10987          "Vector size mismatch");
10988 
10989   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10990   DstUndefElements.clear();
10991   DstUndefElements.resize(NumDstOps, false);
10992   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10993 
10994   // Concatenate src elements constant bits together into dst element.
10995   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10996     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10997     for (unsigned I = 0; I != NumDstOps; ++I) {
10998       DstUndefElements.set(I);
10999       APInt &DstBits = DstBitElements[I];
11000       for (unsigned J = 0; J != Scale; ++J) {
11001         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11002         if (SrcUndefElements[Idx])
11003           continue;
11004         DstUndefElements.reset(I);
11005         const APInt &SrcBits = SrcBitElements[Idx];
11006         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11007                "Illegal constant bitwidths");
11008         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11009       }
11010     }
11011     return;
11012   }
11013 
11014   // Split src element constant bits into dst elements.
11015   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11016   for (unsigned I = 0; I != NumSrcOps; ++I) {
11017     if (SrcUndefElements[I]) {
11018       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11019       continue;
11020     }
11021     const APInt &SrcBits = SrcBitElements[I];
11022     for (unsigned J = 0; J != Scale; ++J) {
11023       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11024       APInt &DstBits = DstBitElements[Idx];
11025       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11026     }
11027   }
11028 }
11029 
11030 bool BuildVectorSDNode::isConstant() const {
11031   for (const SDValue &Op : op_values()) {
11032     unsigned Opc = Op.getOpcode();
11033     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11034       return false;
11035   }
11036   return true;
11037 }
11038 
11039 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11040   // Find the first non-undef value in the shuffle mask.
11041   unsigned i, e;
11042   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11043     /* search */;
11044 
11045   // If all elements are undefined, this shuffle can be considered a splat
11046   // (although it should eventually get simplified away completely).
11047   if (i == e)
11048     return true;
11049 
11050   // Make sure all remaining elements are either undef or the same as the first
11051   // non-undef value.
11052   for (int Idx = Mask[i]; i != e; ++i)
11053     if (Mask[i] >= 0 && Mask[i] != Idx)
11054       return false;
11055   return true;
11056 }
11057 
11058 // Returns the SDNode if it is a constant integer BuildVector
11059 // or constant integer.
11060 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11061   if (isa<ConstantSDNode>(N))
11062     return N.getNode();
11063   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11064     return N.getNode();
11065   // Treat a GlobalAddress supporting constant offset folding as a
11066   // constant integer.
11067   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11068     if (GA->getOpcode() == ISD::GlobalAddress &&
11069         TLI->isOffsetFoldingLegal(GA))
11070       return GA;
11071   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11072       isa<ConstantSDNode>(N.getOperand(0)))
11073     return N.getNode();
11074   return nullptr;
11075 }
11076 
11077 // Returns the SDNode if it is a constant float BuildVector
11078 // or constant float.
11079 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11080   if (isa<ConstantFPSDNode>(N))
11081     return N.getNode();
11082 
11083   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11084     return N.getNode();
11085 
11086   return nullptr;
11087 }
11088 
11089 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11090   assert(!Node->OperandList && "Node already has operands");
11091   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11092          "too many operands to fit into SDNode");
11093   SDUse *Ops = OperandRecycler.allocate(
11094       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11095 
11096   bool IsDivergent = false;
11097   for (unsigned I = 0; I != Vals.size(); ++I) {
11098     Ops[I].setUser(Node);
11099     Ops[I].setInitial(Vals[I]);
11100     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11101       IsDivergent |= Ops[I].getNode()->isDivergent();
11102   }
11103   Node->NumOperands = Vals.size();
11104   Node->OperandList = Ops;
11105   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11106     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11107     Node->SDNodeBits.IsDivergent = IsDivergent;
11108   }
11109   checkForCycles(Node);
11110 }
11111 
11112 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11113                                      SmallVectorImpl<SDValue> &Vals) {
11114   size_t Limit = SDNode::getMaxNumOperands();
11115   while (Vals.size() > Limit) {
11116     unsigned SliceIdx = Vals.size() - Limit;
11117     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11118     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11119     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11120     Vals.emplace_back(NewTF);
11121   }
11122   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11123 }
11124 
11125 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11126                                         EVT VT, SDNodeFlags Flags) {
11127   switch (Opcode) {
11128   default:
11129     return SDValue();
11130   case ISD::ADD:
11131   case ISD::OR:
11132   case ISD::XOR:
11133   case ISD::UMAX:
11134     return getConstant(0, DL, VT);
11135   case ISD::MUL:
11136     return getConstant(1, DL, VT);
11137   case ISD::AND:
11138   case ISD::UMIN:
11139     return getAllOnesConstant(DL, VT);
11140   case ISD::SMAX:
11141     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11142   case ISD::SMIN:
11143     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11144   case ISD::FADD:
11145     return getConstantFP(-0.0, DL, VT);
11146   case ISD::FMUL:
11147     return getConstantFP(1.0, DL, VT);
11148   case ISD::FMINNUM:
11149   case ISD::FMAXNUM: {
11150     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11151     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11152     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11153                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11154                         APFloat::getLargest(Semantics);
11155     if (Opcode == ISD::FMAXNUM)
11156       NeutralAF.changeSign();
11157 
11158     return getConstantFP(NeutralAF, DL, VT);
11159   }
11160   }
11161 }
11162 
11163 #ifndef NDEBUG
11164 static void checkForCyclesHelper(const SDNode *N,
11165                                  SmallPtrSetImpl<const SDNode*> &Visited,
11166                                  SmallPtrSetImpl<const SDNode*> &Checked,
11167                                  const llvm::SelectionDAG *DAG) {
11168   // If this node has already been checked, don't check it again.
11169   if (Checked.count(N))
11170     return;
11171 
11172   // If a node has already been visited on this depth-first walk, reject it as
11173   // a cycle.
11174   if (!Visited.insert(N).second) {
11175     errs() << "Detected cycle in SelectionDAG\n";
11176     dbgs() << "Offending node:\n";
11177     N->dumprFull(DAG); dbgs() << "\n";
11178     abort();
11179   }
11180 
11181   for (const SDValue &Op : N->op_values())
11182     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11183 
11184   Checked.insert(N);
11185   Visited.erase(N);
11186 }
11187 #endif
11188 
11189 void llvm::checkForCycles(const llvm::SDNode *N,
11190                           const llvm::SelectionDAG *DAG,
11191                           bool force) {
11192 #ifndef NDEBUG
11193   bool check = force;
11194 #ifdef EXPENSIVE_CHECKS
11195   check = true;
11196 #endif  // EXPENSIVE_CHECKS
11197   if (check) {
11198     assert(N && "Checking nonexistent SDNode");
11199     SmallPtrSet<const SDNode*, 32> visited;
11200     SmallPtrSet<const SDNode*, 32> checked;
11201     checkForCyclesHelper(N, visited, checked, DAG);
11202   }
11203 #endif  // !NDEBUG
11204 }
11205 
11206 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11207   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11208 }
11209