1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat. 2591 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2592 int SplatIndex = -1; 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (0 <= SplatIndex && SplatIndex != M) 2603 return false; 2604 SplatIndex = M; 2605 } 2606 return true; 2607 } 2608 case ISD::EXTRACT_SUBVECTOR: { 2609 // Offset the demanded elts by the subvector index. 2610 SDValue Src = V.getOperand(0); 2611 // We don't support scalable vectors at the moment. 2612 if (Src.getValueType().isScalableVector()) 2613 return false; 2614 uint64_t Idx = V.getConstantOperandVal(1); 2615 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2616 APInt UndefSrcElts; 2617 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2618 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2619 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2620 return true; 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 // Widen the demanded elts by the src element count. 2628 SDValue Src = V.getOperand(0); 2629 // We don't support scalable vectors at the moment. 2630 if (Src.getValueType().isScalableVector()) 2631 return false; 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt UndefSrcElts; 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2635 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2636 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2637 return true; 2638 } 2639 break; 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 /// Helper wrapper to main isSplatValue function. 2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2648 EVT VT = V.getValueType(); 2649 assert(VT.isVector() && "Vector type expected"); 2650 2651 APInt UndefElts; 2652 APInt DemandedElts; 2653 2654 // For now we don't support this with scalable vectors. 2655 if (!VT.isScalableVector()) 2656 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2657 return isSplatValue(V, DemandedElts, UndefElts) && 2658 (AllowUndefs || !UndefElts); 2659 } 2660 2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2662 V = peekThroughExtractSubvectors(V); 2663 2664 EVT VT = V.getValueType(); 2665 unsigned Opcode = V.getOpcode(); 2666 switch (Opcode) { 2667 default: { 2668 APInt UndefElts; 2669 APInt DemandedElts; 2670 2671 if (!VT.isScalableVector()) 2672 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2673 2674 if (isSplatValue(V, DemandedElts, UndefElts)) { 2675 if (VT.isScalableVector()) { 2676 // DemandedElts and UndefElts are ignored for scalable vectors, since 2677 // the only supported cases are SPLAT_VECTOR nodes. 2678 SplatIdx = 0; 2679 } else { 2680 // Handle case where all demanded elements are UNDEF. 2681 if (DemandedElts.isSubsetOf(UndefElts)) { 2682 SplatIdx = 0; 2683 return getUNDEF(VT); 2684 } 2685 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2686 } 2687 return V; 2688 } 2689 break; 2690 } 2691 case ISD::SPLAT_VECTOR: 2692 SplatIdx = 0; 2693 return V; 2694 case ISD::VECTOR_SHUFFLE: { 2695 if (VT.isScalableVector()) 2696 return SDValue(); 2697 2698 // Check if this is a shuffle node doing a splat. 2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2700 // getTargetVShiftNode currently struggles without the splat source. 2701 auto *SVN = cast<ShuffleVectorSDNode>(V); 2702 if (!SVN->isSplat()) 2703 break; 2704 int Idx = SVN->getSplatIndex(); 2705 int NumElts = V.getValueType().getVectorNumElements(); 2706 SplatIdx = Idx % NumElts; 2707 return V.getOperand(Idx / NumElts); 2708 } 2709 } 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2715 int SplatIdx; 2716 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2717 EVT SVT = SrcVector.getValueType().getScalarType(); 2718 EVT LegalSVT = SVT; 2719 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2720 if (!SVT.isInteger()) 2721 return SDValue(); 2722 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2723 if (LegalSVT.bitsLT(SVT)) 2724 return SDValue(); 2725 } 2726 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2727 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2728 } 2729 return SDValue(); 2730 } 2731 2732 const APInt * 2733 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2734 const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 unsigned BitWidth = V.getScalarValueSizeInBits(); 2739 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2740 // Shifting more than the bitwidth is not valid. 2741 const APInt &ShAmt = SA->getAPIntValue(); 2742 if (ShAmt.ult(BitWidth)) 2743 return &ShAmt; 2744 } 2745 return nullptr; 2746 } 2747 2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2749 SDValue V, const APInt &DemandedElts) const { 2750 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2751 V.getOpcode() == ISD::SRA) && 2752 "Unknown shift node"); 2753 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2754 return ValidAmt; 2755 unsigned BitWidth = V.getScalarValueSizeInBits(); 2756 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2757 if (!BV) 2758 return nullptr; 2759 const APInt *MinShAmt = nullptr; 2760 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2761 if (!DemandedElts[i]) 2762 continue; 2763 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2764 if (!SA) 2765 return nullptr; 2766 // Shifting more than the bitwidth is not valid. 2767 const APInt &ShAmt = SA->getAPIntValue(); 2768 if (ShAmt.uge(BitWidth)) 2769 return nullptr; 2770 if (MinShAmt && MinShAmt->ule(ShAmt)) 2771 continue; 2772 MinShAmt = &ShAmt; 2773 } 2774 return MinShAmt; 2775 } 2776 2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2778 SDValue V, const APInt &DemandedElts) const { 2779 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2780 V.getOpcode() == ISD::SRA) && 2781 "Unknown shift node"); 2782 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2783 return ValidAmt; 2784 unsigned BitWidth = V.getScalarValueSizeInBits(); 2785 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2786 if (!BV) 2787 return nullptr; 2788 const APInt *MaxShAmt = nullptr; 2789 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2793 if (!SA) 2794 return nullptr; 2795 // Shifting more than the bitwidth is not valid. 2796 const APInt &ShAmt = SA->getAPIntValue(); 2797 if (ShAmt.uge(BitWidth)) 2798 return nullptr; 2799 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2800 continue; 2801 MaxShAmt = &ShAmt; 2802 } 2803 return MaxShAmt; 2804 } 2805 2806 /// Determine which bits of Op are known to be either zero or one and return 2807 /// them in Known. For vectors, the known bits are those that are shared by 2808 /// every vector element. 2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2810 EVT VT = Op.getValueType(); 2811 2812 // TOOD: Until we have a plan for how to represent demanded elements for 2813 // scalable vectors, we can just bail out for now. 2814 if (Op.getValueType().isScalableVector()) { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 return KnownBits(BitWidth); 2817 } 2818 2819 APInt DemandedElts = VT.isVector() 2820 ? APInt::getAllOnes(VT.getVectorNumElements()) 2821 : APInt(1, 1); 2822 return computeKnownBits(Op, DemandedElts, Depth); 2823 } 2824 2825 /// Determine which bits of Op are known to be either zero or one and return 2826 /// them in Known. The DemandedElts argument allows us to only collect the known 2827 /// bits that are shared by the requested vector elements. 2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2829 unsigned Depth) const { 2830 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2831 2832 KnownBits Known(BitWidth); // Don't know anything. 2833 2834 // TOOD: Until we have a plan for how to represent demanded elements for 2835 // scalable vectors, we can just bail out for now. 2836 if (Op.getValueType().isScalableVector()) 2837 return Known; 2838 2839 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2840 // We know all of the bits for a constant! 2841 return KnownBits::makeConstant(C->getAPIntValue()); 2842 } 2843 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2844 // We know all of the bits for a constant fp! 2845 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2846 } 2847 2848 if (Depth >= MaxRecursionDepth) 2849 return Known; // Limit search depth. 2850 2851 KnownBits Known2; 2852 unsigned NumElts = DemandedElts.getBitWidth(); 2853 assert((!Op.getValueType().isVector() || 2854 NumElts == Op.getValueType().getVectorNumElements()) && 2855 "Unexpected vector size"); 2856 2857 if (!DemandedElts) 2858 return Known; // No demanded elts, better to assume we don't know anything. 2859 2860 unsigned Opcode = Op.getOpcode(); 2861 switch (Opcode) { 2862 case ISD::BUILD_VECTOR: 2863 // Collect the known bits that are shared by every demanded vector element. 2864 Known.Zero.setAllBits(); Known.One.setAllBits(); 2865 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2866 if (!DemandedElts[i]) 2867 continue; 2868 2869 SDValue SrcOp = Op.getOperand(i); 2870 Known2 = computeKnownBits(SrcOp, Depth + 1); 2871 2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2873 if (SrcOp.getValueSizeInBits() != BitWidth) { 2874 assert(SrcOp.getValueSizeInBits() > BitWidth && 2875 "Expected BUILD_VECTOR implicit truncation"); 2876 Known2 = Known2.trunc(BitWidth); 2877 } 2878 2879 // Known bits are the values that are shared by every demanded element. 2880 Known = KnownBits::commonBits(Known, Known2); 2881 2882 // If we don't know any bits, early out. 2883 if (Known.isUnknown()) 2884 break; 2885 } 2886 break; 2887 case ISD::VECTOR_SHUFFLE: { 2888 // Collect the known bits that are shared by every vector element referenced 2889 // by the shuffle. 2890 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2893 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i]) 2896 continue; 2897 2898 int M = SVN->getMaskElt(i); 2899 if (M < 0) { 2900 // For UNDEF elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 Known.resetAll(); 2903 DemandedLHS.clearAllBits(); 2904 DemandedRHS.clearAllBits(); 2905 break; 2906 } 2907 2908 if ((unsigned)M < NumElts) 2909 DemandedLHS.setBit((unsigned)M % NumElts); 2910 else 2911 DemandedRHS.setBit((unsigned)M % NumElts); 2912 } 2913 // Known bits are the values that are shared by every demanded element. 2914 if (!!DemandedLHS) { 2915 SDValue LHS = Op.getOperand(0); 2916 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 // If we don't know any bits, early out. 2920 if (Known.isUnknown()) 2921 break; 2922 if (!!DemandedRHS) { 2923 SDValue RHS = Op.getOperand(1); 2924 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2925 Known = KnownBits::commonBits(Known, Known2); 2926 } 2927 break; 2928 } 2929 case ISD::CONCAT_VECTORS: { 2930 // Split DemandedElts and test each of the demanded subvectors. 2931 Known.Zero.setAllBits(); Known.One.setAllBits(); 2932 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2933 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2934 unsigned NumSubVectors = Op.getNumOperands(); 2935 for (unsigned i = 0; i != NumSubVectors; ++i) { 2936 APInt DemandedSub = 2937 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2938 if (!!DemandedSub) { 2939 SDValue Sub = Op.getOperand(i); 2940 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2941 Known = KnownBits::commonBits(Known, Known2); 2942 } 2943 // If we don't know any bits, early out. 2944 if (Known.isUnknown()) 2945 break; 2946 } 2947 break; 2948 } 2949 case ISD::INSERT_SUBVECTOR: { 2950 // Demand any elements from the subvector and the remainder from the src its 2951 // inserted into. 2952 SDValue Src = Op.getOperand(0); 2953 SDValue Sub = Op.getOperand(1); 2954 uint64_t Idx = Op.getConstantOperandVal(2); 2955 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2956 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2957 APInt DemandedSrcElts = DemandedElts; 2958 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2959 2960 Known.One.setAllBits(); 2961 Known.Zero.setAllBits(); 2962 if (!!DemandedSubElts) { 2963 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2964 if (Known.isUnknown()) 2965 break; // early-out. 2966 } 2967 if (!!DemandedSrcElts) { 2968 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 // Bail until we can represent demanded elements for scalable vectors. 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2982 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2983 break; 2984 } 2985 case ISD::SCALAR_TO_VECTOR: { 2986 // We know about scalar_to_vector as much as we know about it source, 2987 // which becomes the first element of otherwise unknown vector. 2988 if (DemandedElts != 1) 2989 break; 2990 2991 SDValue N0 = Op.getOperand(0); 2992 Known = computeKnownBits(N0, Depth + 1); 2993 if (N0.getValueSizeInBits() != BitWidth) 2994 Known = Known.trunc(BitWidth); 2995 2996 break; 2997 } 2998 case ISD::BITCAST: { 2999 SDValue N0 = Op.getOperand(0); 3000 EVT SubVT = N0.getValueType(); 3001 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3002 3003 // Ignore bitcasts from unsupported types. 3004 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3005 break; 3006 3007 // Fast handling of 'identity' bitcasts. 3008 if (BitWidth == SubBitWidth) { 3009 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3010 break; 3011 } 3012 3013 bool IsLE = getDataLayout().isLittleEndian(); 3014 3015 // Bitcast 'small element' vector to 'large element' scalar/vector. 3016 if ((BitWidth % SubBitWidth) == 0) { 3017 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3018 3019 // Collect known bits for the (larger) output by collecting the known 3020 // bits from each set of sub elements and shift these into place. 3021 // We need to separately call computeKnownBits for each set of 3022 // sub elements as the knownbits for each is likely to be different. 3023 unsigned SubScale = BitWidth / SubBitWidth; 3024 APInt SubDemandedElts(NumElts * SubScale, 0); 3025 for (unsigned i = 0; i != NumElts; ++i) 3026 if (DemandedElts[i]) 3027 SubDemandedElts.setBit(i * SubScale); 3028 3029 for (unsigned i = 0; i != SubScale; ++i) { 3030 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3031 Depth + 1); 3032 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3033 Known.insertBits(Known2, SubBitWidth * Shifts); 3034 } 3035 } 3036 3037 // Bitcast 'large element' scalar/vector to 'small element' vector. 3038 if ((SubBitWidth % BitWidth) == 0) { 3039 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3040 3041 // Collect known bits for the (smaller) output by collecting the known 3042 // bits from the overlapping larger input elements and extracting the 3043 // sub sections we actually care about. 3044 unsigned SubScale = SubBitWidth / BitWidth; 3045 APInt SubDemandedElts = 3046 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3047 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3048 3049 Known.Zero.setAllBits(); Known.One.setAllBits(); 3050 for (unsigned i = 0; i != NumElts; ++i) 3051 if (DemandedElts[i]) { 3052 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3053 unsigned Offset = (Shifts % SubScale) * BitWidth; 3054 Known = KnownBits::commonBits(Known, 3055 Known2.extractBits(BitWidth, Offset)); 3056 // If we don't know any bits, early out. 3057 if (Known.isUnknown()) 3058 break; 3059 } 3060 } 3061 break; 3062 } 3063 case ISD::AND: 3064 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3065 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3066 3067 Known &= Known2; 3068 break; 3069 case ISD::OR: 3070 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3071 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 3073 Known |= Known2; 3074 break; 3075 case ISD::XOR: 3076 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3078 3079 Known ^= Known2; 3080 break; 3081 case ISD::MUL: { 3082 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3085 // TODO: SelfMultiply can be poison, but not undef. 3086 if (SelfMultiply) 3087 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3088 Op.getOperand(0), DemandedElts, false, Depth + 1); 3089 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3090 break; 3091 } 3092 case ISD::MULHU: { 3093 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3094 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3095 Known = KnownBits::mulhu(Known, Known2); 3096 break; 3097 } 3098 case ISD::MULHS: { 3099 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3100 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3101 Known = KnownBits::mulhs(Known, Known2); 3102 break; 3103 } 3104 case ISD::UMUL_LOHI: { 3105 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3106 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3107 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3108 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3109 if (Op.getResNo() == 0) 3110 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3111 else 3112 Known = KnownBits::mulhu(Known, Known2); 3113 break; 3114 } 3115 case ISD::SMUL_LOHI: { 3116 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3117 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3118 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3119 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3120 if (Op.getResNo() == 0) 3121 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3122 else 3123 Known = KnownBits::mulhs(Known, Known2); 3124 break; 3125 } 3126 case ISD::UDIV: { 3127 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3128 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3129 Known = KnownBits::udiv(Known, Known2); 3130 break; 3131 } 3132 case ISD::SELECT: 3133 case ISD::VSELECT: 3134 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3135 // If we don't know any bits, early out. 3136 if (Known.isUnknown()) 3137 break; 3138 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3139 3140 // Only known if known in both the LHS and RHS. 3141 Known = KnownBits::commonBits(Known, Known2); 3142 break; 3143 case ISD::SELECT_CC: 3144 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3145 // If we don't know any bits, early out. 3146 if (Known.isUnknown()) 3147 break; 3148 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3149 3150 // Only known if known in both the LHS and RHS. 3151 Known = KnownBits::commonBits(Known, Known2); 3152 break; 3153 case ISD::SMULO: 3154 case ISD::UMULO: 3155 if (Op.getResNo() != 1) 3156 break; 3157 // The boolean result conforms to getBooleanContents. 3158 // If we know the result of a setcc has the top bits zero, use this info. 3159 // We know that we have an integer-based boolean since these operations 3160 // are only available for integer. 3161 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3162 TargetLowering::ZeroOrOneBooleanContent && 3163 BitWidth > 1) 3164 Known.Zero.setBitsFrom(1); 3165 break; 3166 case ISD::SETCC: 3167 case ISD::STRICT_FSETCC: 3168 case ISD::STRICT_FSETCCS: { 3169 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3170 // If we know the result of a setcc has the top bits zero, use this info. 3171 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3172 TargetLowering::ZeroOrOneBooleanContent && 3173 BitWidth > 1) 3174 Known.Zero.setBitsFrom(1); 3175 break; 3176 } 3177 case ISD::SHL: 3178 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3179 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3180 Known = KnownBits::shl(Known, Known2); 3181 3182 // Minimum shift low bits are known zero. 3183 if (const APInt *ShMinAmt = 3184 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3185 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3186 break; 3187 case ISD::SRL: 3188 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3190 Known = KnownBits::lshr(Known, Known2); 3191 3192 // Minimum shift high bits are known zero. 3193 if (const APInt *ShMinAmt = 3194 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3195 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3196 break; 3197 case ISD::SRA: 3198 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3199 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3200 Known = KnownBits::ashr(Known, Known2); 3201 // TODO: Add minimum shift high known sign bits. 3202 break; 3203 case ISD::FSHL: 3204 case ISD::FSHR: 3205 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3206 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3207 3208 // For fshl, 0-shift returns the 1st arg. 3209 // For fshr, 0-shift returns the 2nd arg. 3210 if (Amt == 0) { 3211 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3212 DemandedElts, Depth + 1); 3213 break; 3214 } 3215 3216 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3217 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3218 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3219 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3220 if (Opcode == ISD::FSHL) { 3221 Known.One <<= Amt; 3222 Known.Zero <<= Amt; 3223 Known2.One.lshrInPlace(BitWidth - Amt); 3224 Known2.Zero.lshrInPlace(BitWidth - Amt); 3225 } else { 3226 Known.One <<= BitWidth - Amt; 3227 Known.Zero <<= BitWidth - Amt; 3228 Known2.One.lshrInPlace(Amt); 3229 Known2.Zero.lshrInPlace(Amt); 3230 } 3231 Known.One |= Known2.One; 3232 Known.Zero |= Known2.Zero; 3233 } 3234 break; 3235 case ISD::SIGN_EXTEND_INREG: { 3236 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3237 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3238 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3239 break; 3240 } 3241 case ISD::CTTZ: 3242 case ISD::CTTZ_ZERO_UNDEF: { 3243 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3244 // If we have a known 1, its position is our upper bound. 3245 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3246 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3247 Known.Zero.setBitsFrom(LowBits); 3248 break; 3249 } 3250 case ISD::CTLZ: 3251 case ISD::CTLZ_ZERO_UNDEF: { 3252 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3253 // If we have a known 1, its position is our upper bound. 3254 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3255 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3256 Known.Zero.setBitsFrom(LowBits); 3257 break; 3258 } 3259 case ISD::CTPOP: { 3260 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3261 // If we know some of the bits are zero, they can't be one. 3262 unsigned PossibleOnes = Known2.countMaxPopulation(); 3263 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3264 break; 3265 } 3266 case ISD::PARITY: { 3267 // Parity returns 0 everywhere but the LSB. 3268 Known.Zero.setBitsFrom(1); 3269 break; 3270 } 3271 case ISD::LOAD: { 3272 LoadSDNode *LD = cast<LoadSDNode>(Op); 3273 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3274 if (ISD::isNON_EXTLoad(LD) && Cst) { 3275 // Determine any common known bits from the loaded constant pool value. 3276 Type *CstTy = Cst->getType(); 3277 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3278 // If its a vector splat, then we can (quickly) reuse the scalar path. 3279 // NOTE: We assume all elements match and none are UNDEF. 3280 if (CstTy->isVectorTy()) { 3281 if (const Constant *Splat = Cst->getSplatValue()) { 3282 Cst = Splat; 3283 CstTy = Cst->getType(); 3284 } 3285 } 3286 // TODO - do we need to handle different bitwidths? 3287 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3288 // Iterate across all vector elements finding common known bits. 3289 Known.One.setAllBits(); 3290 Known.Zero.setAllBits(); 3291 for (unsigned i = 0; i != NumElts; ++i) { 3292 if (!DemandedElts[i]) 3293 continue; 3294 if (Constant *Elt = Cst->getAggregateElement(i)) { 3295 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3296 const APInt &Value = CInt->getValue(); 3297 Known.One &= Value; 3298 Known.Zero &= ~Value; 3299 continue; 3300 } 3301 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3302 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3303 Known.One &= Value; 3304 Known.Zero &= ~Value; 3305 continue; 3306 } 3307 } 3308 Known.One.clearAllBits(); 3309 Known.Zero.clearAllBits(); 3310 break; 3311 } 3312 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3313 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3314 Known = KnownBits::makeConstant(CInt->getValue()); 3315 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3316 Known = 3317 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3318 } 3319 } 3320 } 3321 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3322 // If this is a ZEXTLoad and we are looking at the loaded value. 3323 EVT VT = LD->getMemoryVT(); 3324 unsigned MemBits = VT.getScalarSizeInBits(); 3325 Known.Zero.setBitsFrom(MemBits); 3326 } else if (const MDNode *Ranges = LD->getRanges()) { 3327 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3328 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3329 } 3330 break; 3331 } 3332 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3333 EVT InVT = Op.getOperand(0).getValueType(); 3334 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3335 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3336 Known = Known.zext(BitWidth); 3337 break; 3338 } 3339 case ISD::ZERO_EXTEND: { 3340 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 Known = Known.zext(BitWidth); 3342 break; 3343 } 3344 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3345 EVT InVT = Op.getOperand(0).getValueType(); 3346 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3347 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3348 // If the sign bit is known to be zero or one, then sext will extend 3349 // it to the top bits, else it will just zext. 3350 Known = Known.sext(BitWidth); 3351 break; 3352 } 3353 case ISD::SIGN_EXTEND: { 3354 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3355 // If the sign bit is known to be zero or one, then sext will extend 3356 // it to the top bits, else it will just zext. 3357 Known = Known.sext(BitWidth); 3358 break; 3359 } 3360 case ISD::ANY_EXTEND_VECTOR_INREG: { 3361 EVT InVT = Op.getOperand(0).getValueType(); 3362 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3363 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3364 Known = Known.anyext(BitWidth); 3365 break; 3366 } 3367 case ISD::ANY_EXTEND: { 3368 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 Known = Known.anyext(BitWidth); 3370 break; 3371 } 3372 case ISD::TRUNCATE: { 3373 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3374 Known = Known.trunc(BitWidth); 3375 break; 3376 } 3377 case ISD::AssertZext: { 3378 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3379 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3380 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3381 Known.Zero |= (~InMask); 3382 Known.One &= (~Known.Zero); 3383 break; 3384 } 3385 case ISD::AssertAlign: { 3386 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3387 assert(LogOfAlign != 0); 3388 3389 // TODO: Should use maximum with source 3390 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3391 // well as clearing one bits. 3392 Known.Zero.setLowBits(LogOfAlign); 3393 Known.One.clearLowBits(LogOfAlign); 3394 break; 3395 } 3396 case ISD::FGETSIGN: 3397 // All bits are zero except the low bit. 3398 Known.Zero.setBitsFrom(1); 3399 break; 3400 case ISD::USUBO: 3401 case ISD::SSUBO: 3402 if (Op.getResNo() == 1) { 3403 // If we know the result of a setcc has the top bits zero, use this info. 3404 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3405 TargetLowering::ZeroOrOneBooleanContent && 3406 BitWidth > 1) 3407 Known.Zero.setBitsFrom(1); 3408 break; 3409 } 3410 LLVM_FALLTHROUGH; 3411 case ISD::SUB: 3412 case ISD::SUBC: { 3413 assert(Op.getResNo() == 0 && 3414 "We only compute knownbits for the difference here."); 3415 3416 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3417 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3418 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3419 Known, Known2); 3420 break; 3421 } 3422 case ISD::UADDO: 3423 case ISD::SADDO: 3424 case ISD::ADDCARRY: 3425 if (Op.getResNo() == 1) { 3426 // If we know the result of a setcc has the top bits zero, use this info. 3427 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3428 TargetLowering::ZeroOrOneBooleanContent && 3429 BitWidth > 1) 3430 Known.Zero.setBitsFrom(1); 3431 break; 3432 } 3433 LLVM_FALLTHROUGH; 3434 case ISD::ADD: 3435 case ISD::ADDC: 3436 case ISD::ADDE: { 3437 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3438 3439 // With ADDE and ADDCARRY, a carry bit may be added in. 3440 KnownBits Carry(1); 3441 if (Opcode == ISD::ADDE) 3442 // Can't track carry from glue, set carry to unknown. 3443 Carry.resetAll(); 3444 else if (Opcode == ISD::ADDCARRY) 3445 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3446 // the trouble (how often will we find a known carry bit). And I haven't 3447 // tested this very much yet, but something like this might work: 3448 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3449 // Carry = Carry.zextOrTrunc(1, false); 3450 Carry.resetAll(); 3451 else 3452 Carry.setAllZero(); 3453 3454 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3455 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3456 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3457 break; 3458 } 3459 case ISD::SREM: { 3460 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3461 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3462 Known = KnownBits::srem(Known, Known2); 3463 break; 3464 } 3465 case ISD::UREM: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3468 Known = KnownBits::urem(Known, Known2); 3469 break; 3470 } 3471 case ISD::EXTRACT_ELEMENT: { 3472 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3473 const unsigned Index = Op.getConstantOperandVal(1); 3474 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3475 3476 // Remove low part of known bits mask 3477 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3478 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3479 3480 // Remove high part of known bit mask 3481 Known = Known.trunc(EltBitWidth); 3482 break; 3483 } 3484 case ISD::EXTRACT_VECTOR_ELT: { 3485 SDValue InVec = Op.getOperand(0); 3486 SDValue EltNo = Op.getOperand(1); 3487 EVT VecVT = InVec.getValueType(); 3488 // computeKnownBits not yet implemented for scalable vectors. 3489 if (VecVT.isScalableVector()) 3490 break; 3491 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3492 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3493 3494 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3495 // anything about the extended bits. 3496 if (BitWidth > EltBitWidth) 3497 Known = Known.trunc(EltBitWidth); 3498 3499 // If we know the element index, just demand that vector element, else for 3500 // an unknown element index, ignore DemandedElts and demand them all. 3501 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3502 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3503 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3504 DemandedSrcElts = 3505 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3506 3507 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3508 if (BitWidth > EltBitWidth) 3509 Known = Known.anyext(BitWidth); 3510 break; 3511 } 3512 case ISD::INSERT_VECTOR_ELT: { 3513 // If we know the element index, split the demand between the 3514 // source vector and the inserted element, otherwise assume we need 3515 // the original demanded vector elements and the value. 3516 SDValue InVec = Op.getOperand(0); 3517 SDValue InVal = Op.getOperand(1); 3518 SDValue EltNo = Op.getOperand(2); 3519 bool DemandedVal = true; 3520 APInt DemandedVecElts = DemandedElts; 3521 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3522 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3523 unsigned EltIdx = CEltNo->getZExtValue(); 3524 DemandedVal = !!DemandedElts[EltIdx]; 3525 DemandedVecElts.clearBit(EltIdx); 3526 } 3527 Known.One.setAllBits(); 3528 Known.Zero.setAllBits(); 3529 if (DemandedVal) { 3530 Known2 = computeKnownBits(InVal, Depth + 1); 3531 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3532 } 3533 if (!!DemandedVecElts) { 3534 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3535 Known = KnownBits::commonBits(Known, Known2); 3536 } 3537 break; 3538 } 3539 case ISD::BITREVERSE: { 3540 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3541 Known = Known2.reverseBits(); 3542 break; 3543 } 3544 case ISD::BSWAP: { 3545 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3546 Known = Known2.byteSwap(); 3547 break; 3548 } 3549 case ISD::ABS: { 3550 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3551 Known = Known2.abs(); 3552 break; 3553 } 3554 case ISD::USUBSAT: { 3555 // The result of usubsat will never be larger than the LHS. 3556 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3557 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3558 break; 3559 } 3560 case ISD::UMIN: { 3561 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3562 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3563 Known = KnownBits::umin(Known, Known2); 3564 break; 3565 } 3566 case ISD::UMAX: { 3567 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3568 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3569 Known = KnownBits::umax(Known, Known2); 3570 break; 3571 } 3572 case ISD::SMIN: 3573 case ISD::SMAX: { 3574 // If we have a clamp pattern, we know that the number of sign bits will be 3575 // the minimum of the clamp min/max range. 3576 bool IsMax = (Opcode == ISD::SMAX); 3577 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3578 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3579 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3580 CstHigh = 3581 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3582 if (CstLow && CstHigh) { 3583 if (!IsMax) 3584 std::swap(CstLow, CstHigh); 3585 3586 const APInt &ValueLow = CstLow->getAPIntValue(); 3587 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3588 if (ValueLow.sle(ValueHigh)) { 3589 unsigned LowSignBits = ValueLow.getNumSignBits(); 3590 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3591 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3592 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3593 Known.One.setHighBits(MinSignBits); 3594 break; 3595 } 3596 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3597 Known.Zero.setHighBits(MinSignBits); 3598 break; 3599 } 3600 } 3601 } 3602 3603 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3604 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3605 if (IsMax) 3606 Known = KnownBits::smax(Known, Known2); 3607 else 3608 Known = KnownBits::smin(Known, Known2); 3609 break; 3610 } 3611 case ISD::FP_TO_UINT_SAT: { 3612 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3613 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3614 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3615 break; 3616 } 3617 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3618 if (Op.getResNo() == 1) { 3619 // The boolean result conforms to getBooleanContents. 3620 // If we know the result of a setcc has the top bits zero, use this info. 3621 // We know that we have an integer-based boolean since these operations 3622 // are only available for integer. 3623 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3624 TargetLowering::ZeroOrOneBooleanContent && 3625 BitWidth > 1) 3626 Known.Zero.setBitsFrom(1); 3627 break; 3628 } 3629 LLVM_FALLTHROUGH; 3630 case ISD::ATOMIC_CMP_SWAP: 3631 case ISD::ATOMIC_SWAP: 3632 case ISD::ATOMIC_LOAD_ADD: 3633 case ISD::ATOMIC_LOAD_SUB: 3634 case ISD::ATOMIC_LOAD_AND: 3635 case ISD::ATOMIC_LOAD_CLR: 3636 case ISD::ATOMIC_LOAD_OR: 3637 case ISD::ATOMIC_LOAD_XOR: 3638 case ISD::ATOMIC_LOAD_NAND: 3639 case ISD::ATOMIC_LOAD_MIN: 3640 case ISD::ATOMIC_LOAD_MAX: 3641 case ISD::ATOMIC_LOAD_UMIN: 3642 case ISD::ATOMIC_LOAD_UMAX: 3643 case ISD::ATOMIC_LOAD: { 3644 unsigned MemBits = 3645 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3646 // If we are looking at the loaded value. 3647 if (Op.getResNo() == 0) { 3648 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3649 Known.Zero.setBitsFrom(MemBits); 3650 } 3651 break; 3652 } 3653 case ISD::FrameIndex: 3654 case ISD::TargetFrameIndex: 3655 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3656 Known, getMachineFunction()); 3657 break; 3658 3659 default: 3660 if (Opcode < ISD::BUILTIN_OP_END) 3661 break; 3662 LLVM_FALLTHROUGH; 3663 case ISD::INTRINSIC_WO_CHAIN: 3664 case ISD::INTRINSIC_W_CHAIN: 3665 case ISD::INTRINSIC_VOID: 3666 // Allow the target to implement this method for its nodes. 3667 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3668 break; 3669 } 3670 3671 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3672 return Known; 3673 } 3674 3675 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3676 SDValue N1) const { 3677 // X + 0 never overflow 3678 if (isNullConstant(N1)) 3679 return OFK_Never; 3680 3681 KnownBits N1Known = computeKnownBits(N1); 3682 if (N1Known.Zero.getBoolValue()) { 3683 KnownBits N0Known = computeKnownBits(N0); 3684 3685 bool overflow; 3686 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3687 if (!overflow) 3688 return OFK_Never; 3689 } 3690 3691 // mulhi + 1 never overflow 3692 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3693 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3694 return OFK_Never; 3695 3696 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3697 KnownBits N0Known = computeKnownBits(N0); 3698 3699 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3700 return OFK_Never; 3701 } 3702 3703 return OFK_Sometime; 3704 } 3705 3706 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3707 EVT OpVT = Val.getValueType(); 3708 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3709 3710 // Is the constant a known power of 2? 3711 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3712 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3713 3714 // A left-shift of a constant one will have exactly one bit set because 3715 // shifting the bit off the end is undefined. 3716 if (Val.getOpcode() == ISD::SHL) { 3717 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3718 if (C && C->getAPIntValue() == 1) 3719 return true; 3720 } 3721 3722 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3723 // one bit set. 3724 if (Val.getOpcode() == ISD::SRL) { 3725 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3726 if (C && C->getAPIntValue().isSignMask()) 3727 return true; 3728 } 3729 3730 // Are all operands of a build vector constant powers of two? 3731 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3732 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3733 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3734 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3735 return false; 3736 })) 3737 return true; 3738 3739 // Is the operand of a splat vector a constant power of two? 3740 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3741 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3742 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3743 return true; 3744 3745 // More could be done here, though the above checks are enough 3746 // to handle some common cases. 3747 3748 // Fall back to computeKnownBits to catch other known cases. 3749 KnownBits Known = computeKnownBits(Val); 3750 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3751 } 3752 3753 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3754 EVT VT = Op.getValueType(); 3755 3756 // TODO: Assume we don't know anything for now. 3757 if (VT.isScalableVector()) 3758 return 1; 3759 3760 APInt DemandedElts = VT.isVector() 3761 ? APInt::getAllOnes(VT.getVectorNumElements()) 3762 : APInt(1, 1); 3763 return ComputeNumSignBits(Op, DemandedElts, Depth); 3764 } 3765 3766 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3767 unsigned Depth) const { 3768 EVT VT = Op.getValueType(); 3769 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3770 unsigned VTBits = VT.getScalarSizeInBits(); 3771 unsigned NumElts = DemandedElts.getBitWidth(); 3772 unsigned Tmp, Tmp2; 3773 unsigned FirstAnswer = 1; 3774 3775 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3776 const APInt &Val = C->getAPIntValue(); 3777 return Val.getNumSignBits(); 3778 } 3779 3780 if (Depth >= MaxRecursionDepth) 3781 return 1; // Limit search depth. 3782 3783 if (!DemandedElts || VT.isScalableVector()) 3784 return 1; // No demanded elts, better to assume we don't know anything. 3785 3786 unsigned Opcode = Op.getOpcode(); 3787 switch (Opcode) { 3788 default: break; 3789 case ISD::AssertSext: 3790 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3791 return VTBits-Tmp+1; 3792 case ISD::AssertZext: 3793 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3794 return VTBits-Tmp; 3795 3796 case ISD::BUILD_VECTOR: 3797 Tmp = VTBits; 3798 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3799 if (!DemandedElts[i]) 3800 continue; 3801 3802 SDValue SrcOp = Op.getOperand(i); 3803 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3804 3805 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3806 if (SrcOp.getValueSizeInBits() != VTBits) { 3807 assert(SrcOp.getValueSizeInBits() > VTBits && 3808 "Expected BUILD_VECTOR implicit truncation"); 3809 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3810 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3811 } 3812 Tmp = std::min(Tmp, Tmp2); 3813 } 3814 return Tmp; 3815 3816 case ISD::VECTOR_SHUFFLE: { 3817 // Collect the minimum number of sign bits that are shared by every vector 3818 // element referenced by the shuffle. 3819 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3820 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3821 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3822 for (unsigned i = 0; i != NumElts; ++i) { 3823 int M = SVN->getMaskElt(i); 3824 if (!DemandedElts[i]) 3825 continue; 3826 // For UNDEF elements, we don't know anything about the common state of 3827 // the shuffle result. 3828 if (M < 0) 3829 return 1; 3830 if ((unsigned)M < NumElts) 3831 DemandedLHS.setBit((unsigned)M % NumElts); 3832 else 3833 DemandedRHS.setBit((unsigned)M % NumElts); 3834 } 3835 Tmp = std::numeric_limits<unsigned>::max(); 3836 if (!!DemandedLHS) 3837 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3838 if (!!DemandedRHS) { 3839 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3840 Tmp = std::min(Tmp, Tmp2); 3841 } 3842 // If we don't know anything, early out and try computeKnownBits fall-back. 3843 if (Tmp == 1) 3844 break; 3845 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3846 return Tmp; 3847 } 3848 3849 case ISD::BITCAST: { 3850 SDValue N0 = Op.getOperand(0); 3851 EVT SrcVT = N0.getValueType(); 3852 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3853 3854 // Ignore bitcasts from unsupported types.. 3855 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3856 break; 3857 3858 // Fast handling of 'identity' bitcasts. 3859 if (VTBits == SrcBits) 3860 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3861 3862 bool IsLE = getDataLayout().isLittleEndian(); 3863 3864 // Bitcast 'large element' scalar/vector to 'small element' vector. 3865 if ((SrcBits % VTBits) == 0) { 3866 assert(VT.isVector() && "Expected bitcast to vector"); 3867 3868 unsigned Scale = SrcBits / VTBits; 3869 APInt SrcDemandedElts = 3870 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3871 3872 // Fast case - sign splat can be simply split across the small elements. 3873 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3874 if (Tmp == SrcBits) 3875 return VTBits; 3876 3877 // Slow case - determine how far the sign extends into each sub-element. 3878 Tmp2 = VTBits; 3879 for (unsigned i = 0; i != NumElts; ++i) 3880 if (DemandedElts[i]) { 3881 unsigned SubOffset = i % Scale; 3882 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3883 SubOffset = SubOffset * VTBits; 3884 if (Tmp <= SubOffset) 3885 return 1; 3886 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3887 } 3888 return Tmp2; 3889 } 3890 break; 3891 } 3892 3893 case ISD::FP_TO_SINT_SAT: 3894 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3895 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3896 return VTBits - Tmp + 1; 3897 case ISD::SIGN_EXTEND: 3898 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3899 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3900 case ISD::SIGN_EXTEND_INREG: 3901 // Max of the input and what this extends. 3902 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3903 Tmp = VTBits-Tmp+1; 3904 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3905 return std::max(Tmp, Tmp2); 3906 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3907 SDValue Src = Op.getOperand(0); 3908 EVT SrcVT = Src.getValueType(); 3909 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3910 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3911 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3912 } 3913 case ISD::SRA: 3914 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3915 // SRA X, C -> adds C sign bits. 3916 if (const APInt *ShAmt = 3917 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3918 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3919 return Tmp; 3920 case ISD::SHL: 3921 if (const APInt *ShAmt = 3922 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3923 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3924 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3925 if (ShAmt->ult(Tmp)) 3926 return Tmp - ShAmt->getZExtValue(); 3927 } 3928 break; 3929 case ISD::AND: 3930 case ISD::OR: 3931 case ISD::XOR: // NOT is handled here. 3932 // Logical binary ops preserve the number of sign bits at the worst. 3933 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3934 if (Tmp != 1) { 3935 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3936 FirstAnswer = std::min(Tmp, Tmp2); 3937 // We computed what we know about the sign bits as our first 3938 // answer. Now proceed to the generic code that uses 3939 // computeKnownBits, and pick whichever answer is better. 3940 } 3941 break; 3942 3943 case ISD::SELECT: 3944 case ISD::VSELECT: 3945 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3946 if (Tmp == 1) return 1; // Early out. 3947 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3948 return std::min(Tmp, Tmp2); 3949 case ISD::SELECT_CC: 3950 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3951 if (Tmp == 1) return 1; // Early out. 3952 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3953 return std::min(Tmp, Tmp2); 3954 3955 case ISD::SMIN: 3956 case ISD::SMAX: { 3957 // If we have a clamp pattern, we know that the number of sign bits will be 3958 // the minimum of the clamp min/max range. 3959 bool IsMax = (Opcode == ISD::SMAX); 3960 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3961 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3962 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3963 CstHigh = 3964 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3965 if (CstLow && CstHigh) { 3966 if (!IsMax) 3967 std::swap(CstLow, CstHigh); 3968 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3969 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3970 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3971 return std::min(Tmp, Tmp2); 3972 } 3973 } 3974 3975 // Fallback - just get the minimum number of sign bits of the operands. 3976 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3977 if (Tmp == 1) 3978 return 1; // Early out. 3979 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3980 return std::min(Tmp, Tmp2); 3981 } 3982 case ISD::UMIN: 3983 case ISD::UMAX: 3984 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3985 if (Tmp == 1) 3986 return 1; // Early out. 3987 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3988 return std::min(Tmp, Tmp2); 3989 case ISD::SADDO: 3990 case ISD::UADDO: 3991 case ISD::SSUBO: 3992 case ISD::USUBO: 3993 case ISD::SMULO: 3994 case ISD::UMULO: 3995 if (Op.getResNo() != 1) 3996 break; 3997 // The boolean result conforms to getBooleanContents. Fall through. 3998 // If setcc returns 0/-1, all bits are sign bits. 3999 // We know that we have an integer-based boolean since these operations 4000 // are only available for integer. 4001 if (TLI->getBooleanContents(VT.isVector(), false) == 4002 TargetLowering::ZeroOrNegativeOneBooleanContent) 4003 return VTBits; 4004 break; 4005 case ISD::SETCC: 4006 case ISD::STRICT_FSETCC: 4007 case ISD::STRICT_FSETCCS: { 4008 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4009 // If setcc returns 0/-1, all bits are sign bits. 4010 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4011 TargetLowering::ZeroOrNegativeOneBooleanContent) 4012 return VTBits; 4013 break; 4014 } 4015 case ISD::ROTL: 4016 case ISD::ROTR: 4017 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4018 4019 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4020 if (Tmp == VTBits) 4021 return VTBits; 4022 4023 if (ConstantSDNode *C = 4024 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4025 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4026 4027 // Handle rotate right by N like a rotate left by 32-N. 4028 if (Opcode == ISD::ROTR) 4029 RotAmt = (VTBits - RotAmt) % VTBits; 4030 4031 // If we aren't rotating out all of the known-in sign bits, return the 4032 // number that are left. This handles rotl(sext(x), 1) for example. 4033 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4034 } 4035 break; 4036 case ISD::ADD: 4037 case ISD::ADDC: 4038 // Add can have at most one carry bit. Thus we know that the output 4039 // is, at worst, one more bit than the inputs. 4040 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4041 if (Tmp == 1) return 1; // Early out. 4042 4043 // Special case decrementing a value (ADD X, -1): 4044 if (ConstantSDNode *CRHS = 4045 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4046 if (CRHS->isAllOnes()) { 4047 KnownBits Known = 4048 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4049 4050 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4051 // sign bits set. 4052 if ((Known.Zero | 1).isAllOnes()) 4053 return VTBits; 4054 4055 // If we are subtracting one from a positive number, there is no carry 4056 // out of the result. 4057 if (Known.isNonNegative()) 4058 return Tmp; 4059 } 4060 4061 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4062 if (Tmp2 == 1) return 1; // Early out. 4063 return std::min(Tmp, Tmp2) - 1; 4064 case ISD::SUB: 4065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4066 if (Tmp2 == 1) return 1; // Early out. 4067 4068 // Handle NEG. 4069 if (ConstantSDNode *CLHS = 4070 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4071 if (CLHS->isZero()) { 4072 KnownBits Known = 4073 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4074 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4075 // sign bits set. 4076 if ((Known.Zero | 1).isAllOnes()) 4077 return VTBits; 4078 4079 // If the input is known to be positive (the sign bit is known clear), 4080 // the output of the NEG has the same number of sign bits as the input. 4081 if (Known.isNonNegative()) 4082 return Tmp2; 4083 4084 // Otherwise, we treat this like a SUB. 4085 } 4086 4087 // Sub can have at most one carry bit. Thus we know that the output 4088 // is, at worst, one more bit than the inputs. 4089 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4090 if (Tmp == 1) return 1; // Early out. 4091 return std::min(Tmp, Tmp2) - 1; 4092 case ISD::MUL: { 4093 // The output of the Mul can be at most twice the valid bits in the inputs. 4094 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4095 if (SignBitsOp0 == 1) 4096 break; 4097 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4098 if (SignBitsOp1 == 1) 4099 break; 4100 unsigned OutValidBits = 4101 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4102 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4103 } 4104 case ISD::SREM: 4105 // The sign bit is the LHS's sign bit, except when the result of the 4106 // remainder is zero. The magnitude of the result should be less than or 4107 // equal to the magnitude of the LHS. Therefore, the result should have 4108 // at least as many sign bits as the left hand side. 4109 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4110 case ISD::TRUNCATE: { 4111 // Check if the sign bits of source go down as far as the truncated value. 4112 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4113 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4114 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4115 return NumSrcSignBits - (NumSrcBits - VTBits); 4116 break; 4117 } 4118 case ISD::EXTRACT_ELEMENT: { 4119 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4120 const int BitWidth = Op.getValueSizeInBits(); 4121 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4122 4123 // Get reverse index (starting from 1), Op1 value indexes elements from 4124 // little end. Sign starts at big end. 4125 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4126 4127 // If the sign portion ends in our element the subtraction gives correct 4128 // result. Otherwise it gives either negative or > bitwidth result 4129 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4130 } 4131 case ISD::INSERT_VECTOR_ELT: { 4132 // If we know the element index, split the demand between the 4133 // source vector and the inserted element, otherwise assume we need 4134 // the original demanded vector elements and the value. 4135 SDValue InVec = Op.getOperand(0); 4136 SDValue InVal = Op.getOperand(1); 4137 SDValue EltNo = Op.getOperand(2); 4138 bool DemandedVal = true; 4139 APInt DemandedVecElts = DemandedElts; 4140 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4141 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4142 unsigned EltIdx = CEltNo->getZExtValue(); 4143 DemandedVal = !!DemandedElts[EltIdx]; 4144 DemandedVecElts.clearBit(EltIdx); 4145 } 4146 Tmp = std::numeric_limits<unsigned>::max(); 4147 if (DemandedVal) { 4148 // TODO - handle implicit truncation of inserted elements. 4149 if (InVal.getScalarValueSizeInBits() != VTBits) 4150 break; 4151 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4152 Tmp = std::min(Tmp, Tmp2); 4153 } 4154 if (!!DemandedVecElts) { 4155 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4156 Tmp = std::min(Tmp, Tmp2); 4157 } 4158 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4159 return Tmp; 4160 } 4161 case ISD::EXTRACT_VECTOR_ELT: { 4162 SDValue InVec = Op.getOperand(0); 4163 SDValue EltNo = Op.getOperand(1); 4164 EVT VecVT = InVec.getValueType(); 4165 // ComputeNumSignBits not yet implemented for scalable vectors. 4166 if (VecVT.isScalableVector()) 4167 break; 4168 const unsigned BitWidth = Op.getValueSizeInBits(); 4169 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4170 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4171 4172 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4173 // anything about sign bits. But if the sizes match we can derive knowledge 4174 // about sign bits from the vector operand. 4175 if (BitWidth != EltBitWidth) 4176 break; 4177 4178 // If we know the element index, just demand that vector element, else for 4179 // an unknown element index, ignore DemandedElts and demand them all. 4180 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4181 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4182 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4183 DemandedSrcElts = 4184 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4185 4186 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4187 } 4188 case ISD::EXTRACT_SUBVECTOR: { 4189 // Offset the demanded elts by the subvector index. 4190 SDValue Src = Op.getOperand(0); 4191 // Bail until we can represent demanded elements for scalable vectors. 4192 if (Src.getValueType().isScalableVector()) 4193 break; 4194 uint64_t Idx = Op.getConstantOperandVal(1); 4195 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4196 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4197 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4198 } 4199 case ISD::CONCAT_VECTORS: { 4200 // Determine the minimum number of sign bits across all demanded 4201 // elts of the input vectors. Early out if the result is already 1. 4202 Tmp = std::numeric_limits<unsigned>::max(); 4203 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4204 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4205 unsigned NumSubVectors = Op.getNumOperands(); 4206 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4207 APInt DemandedSub = 4208 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4209 if (!DemandedSub) 4210 continue; 4211 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4212 Tmp = std::min(Tmp, Tmp2); 4213 } 4214 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4215 return Tmp; 4216 } 4217 case ISD::INSERT_SUBVECTOR: { 4218 // Demand any elements from the subvector and the remainder from the src its 4219 // inserted into. 4220 SDValue Src = Op.getOperand(0); 4221 SDValue Sub = Op.getOperand(1); 4222 uint64_t Idx = Op.getConstantOperandVal(2); 4223 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4224 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4225 APInt DemandedSrcElts = DemandedElts; 4226 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4227 4228 Tmp = std::numeric_limits<unsigned>::max(); 4229 if (!!DemandedSubElts) { 4230 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4231 if (Tmp == 1) 4232 return 1; // early-out 4233 } 4234 if (!!DemandedSrcElts) { 4235 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4236 Tmp = std::min(Tmp, Tmp2); 4237 } 4238 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4239 return Tmp; 4240 } 4241 case ISD::ATOMIC_CMP_SWAP: 4242 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4243 case ISD::ATOMIC_SWAP: 4244 case ISD::ATOMIC_LOAD_ADD: 4245 case ISD::ATOMIC_LOAD_SUB: 4246 case ISD::ATOMIC_LOAD_AND: 4247 case ISD::ATOMIC_LOAD_CLR: 4248 case ISD::ATOMIC_LOAD_OR: 4249 case ISD::ATOMIC_LOAD_XOR: 4250 case ISD::ATOMIC_LOAD_NAND: 4251 case ISD::ATOMIC_LOAD_MIN: 4252 case ISD::ATOMIC_LOAD_MAX: 4253 case ISD::ATOMIC_LOAD_UMIN: 4254 case ISD::ATOMIC_LOAD_UMAX: 4255 case ISD::ATOMIC_LOAD: { 4256 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4257 // If we are looking at the loaded value. 4258 if (Op.getResNo() == 0) { 4259 if (Tmp == VTBits) 4260 return 1; // early-out 4261 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4262 return VTBits - Tmp + 1; 4263 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4264 return VTBits - Tmp; 4265 } 4266 break; 4267 } 4268 } 4269 4270 // If we are looking at the loaded value of the SDNode. 4271 if (Op.getResNo() == 0) { 4272 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4273 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4274 unsigned ExtType = LD->getExtensionType(); 4275 switch (ExtType) { 4276 default: break; 4277 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4278 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4279 return VTBits - Tmp + 1; 4280 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4281 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4282 return VTBits - Tmp; 4283 case ISD::NON_EXTLOAD: 4284 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4285 // We only need to handle vectors - computeKnownBits should handle 4286 // scalar cases. 4287 Type *CstTy = Cst->getType(); 4288 if (CstTy->isVectorTy() && 4289 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4290 VTBits == CstTy->getScalarSizeInBits()) { 4291 Tmp = VTBits; 4292 for (unsigned i = 0; i != NumElts; ++i) { 4293 if (!DemandedElts[i]) 4294 continue; 4295 if (Constant *Elt = Cst->getAggregateElement(i)) { 4296 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4297 const APInt &Value = CInt->getValue(); 4298 Tmp = std::min(Tmp, Value.getNumSignBits()); 4299 continue; 4300 } 4301 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4302 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4303 Tmp = std::min(Tmp, Value.getNumSignBits()); 4304 continue; 4305 } 4306 } 4307 // Unknown type. Conservatively assume no bits match sign bit. 4308 return 1; 4309 } 4310 return Tmp; 4311 } 4312 } 4313 break; 4314 } 4315 } 4316 } 4317 4318 // Allow the target to implement this method for its nodes. 4319 if (Opcode >= ISD::BUILTIN_OP_END || 4320 Opcode == ISD::INTRINSIC_WO_CHAIN || 4321 Opcode == ISD::INTRINSIC_W_CHAIN || 4322 Opcode == ISD::INTRINSIC_VOID) { 4323 unsigned NumBits = 4324 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4325 if (NumBits > 1) 4326 FirstAnswer = std::max(FirstAnswer, NumBits); 4327 } 4328 4329 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4330 // use this information. 4331 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4332 return std::max(FirstAnswer, Known.countMinSignBits()); 4333 } 4334 4335 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4336 unsigned Depth) const { 4337 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4338 return Op.getScalarValueSizeInBits() - SignBits + 1; 4339 } 4340 4341 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4342 const APInt &DemandedElts, 4343 unsigned Depth) const { 4344 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4345 return Op.getScalarValueSizeInBits() - SignBits + 1; 4346 } 4347 4348 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4349 unsigned Depth) const { 4350 // Early out for FREEZE. 4351 if (Op.getOpcode() == ISD::FREEZE) 4352 return true; 4353 4354 // TODO: Assume we don't know anything for now. 4355 EVT VT = Op.getValueType(); 4356 if (VT.isScalableVector()) 4357 return false; 4358 4359 APInt DemandedElts = VT.isVector() 4360 ? APInt::getAllOnes(VT.getVectorNumElements()) 4361 : APInt(1, 1); 4362 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4363 } 4364 4365 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4366 const APInt &DemandedElts, 4367 bool PoisonOnly, 4368 unsigned Depth) const { 4369 unsigned Opcode = Op.getOpcode(); 4370 4371 // Early out for FREEZE. 4372 if (Opcode == ISD::FREEZE) 4373 return true; 4374 4375 if (Depth >= MaxRecursionDepth) 4376 return false; // Limit search depth. 4377 4378 if (isIntOrFPConstant(Op)) 4379 return true; 4380 4381 switch (Opcode) { 4382 case ISD::UNDEF: 4383 return PoisonOnly; 4384 4385 case ISD::BUILD_VECTOR: 4386 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4387 // this shouldn't affect the result. 4388 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4389 if (!DemandedElts[i]) 4390 continue; 4391 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4392 Depth + 1)) 4393 return false; 4394 } 4395 return true; 4396 4397 // TODO: Search for noundef attributes from library functions. 4398 4399 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4400 4401 default: 4402 // Allow the target to implement this method for its nodes. 4403 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4404 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4405 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4406 Op, DemandedElts, *this, PoisonOnly, Depth); 4407 break; 4408 } 4409 4410 return false; 4411 } 4412 4413 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4414 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4415 !isa<ConstantSDNode>(Op.getOperand(1))) 4416 return false; 4417 4418 if (Op.getOpcode() == ISD::OR && 4419 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4420 return false; 4421 4422 return true; 4423 } 4424 4425 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4426 // If we're told that NaNs won't happen, assume they won't. 4427 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4428 return true; 4429 4430 if (Depth >= MaxRecursionDepth) 4431 return false; // Limit search depth. 4432 4433 // TODO: Handle vectors. 4434 // If the value is a constant, we can obviously see if it is a NaN or not. 4435 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4436 return !C->getValueAPF().isNaN() || 4437 (SNaN && !C->getValueAPF().isSignaling()); 4438 } 4439 4440 unsigned Opcode = Op.getOpcode(); 4441 switch (Opcode) { 4442 case ISD::FADD: 4443 case ISD::FSUB: 4444 case ISD::FMUL: 4445 case ISD::FDIV: 4446 case ISD::FREM: 4447 case ISD::FSIN: 4448 case ISD::FCOS: { 4449 if (SNaN) 4450 return true; 4451 // TODO: Need isKnownNeverInfinity 4452 return false; 4453 } 4454 case ISD::FCANONICALIZE: 4455 case ISD::FEXP: 4456 case ISD::FEXP2: 4457 case ISD::FTRUNC: 4458 case ISD::FFLOOR: 4459 case ISD::FCEIL: 4460 case ISD::FROUND: 4461 case ISD::FROUNDEVEN: 4462 case ISD::FRINT: 4463 case ISD::FNEARBYINT: { 4464 if (SNaN) 4465 return true; 4466 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4467 } 4468 case ISD::FABS: 4469 case ISD::FNEG: 4470 case ISD::FCOPYSIGN: { 4471 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4472 } 4473 case ISD::SELECT: 4474 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4475 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4476 case ISD::FP_EXTEND: 4477 case ISD::FP_ROUND: { 4478 if (SNaN) 4479 return true; 4480 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4481 } 4482 case ISD::SINT_TO_FP: 4483 case ISD::UINT_TO_FP: 4484 return true; 4485 case ISD::FMA: 4486 case ISD::FMAD: { 4487 if (SNaN) 4488 return true; 4489 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4490 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4491 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4492 } 4493 case ISD::FSQRT: // Need is known positive 4494 case ISD::FLOG: 4495 case ISD::FLOG2: 4496 case ISD::FLOG10: 4497 case ISD::FPOWI: 4498 case ISD::FPOW: { 4499 if (SNaN) 4500 return true; 4501 // TODO: Refine on operand 4502 return false; 4503 } 4504 case ISD::FMINNUM: 4505 case ISD::FMAXNUM: { 4506 // Only one needs to be known not-nan, since it will be returned if the 4507 // other ends up being one. 4508 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4509 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4510 } 4511 case ISD::FMINNUM_IEEE: 4512 case ISD::FMAXNUM_IEEE: { 4513 if (SNaN) 4514 return true; 4515 // This can return a NaN if either operand is an sNaN, or if both operands 4516 // are NaN. 4517 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4518 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4519 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4520 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4521 } 4522 case ISD::FMINIMUM: 4523 case ISD::FMAXIMUM: { 4524 // TODO: Does this quiet or return the origina NaN as-is? 4525 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4526 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4527 } 4528 case ISD::EXTRACT_VECTOR_ELT: { 4529 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4530 } 4531 default: 4532 if (Opcode >= ISD::BUILTIN_OP_END || 4533 Opcode == ISD::INTRINSIC_WO_CHAIN || 4534 Opcode == ISD::INTRINSIC_W_CHAIN || 4535 Opcode == ISD::INTRINSIC_VOID) { 4536 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4537 } 4538 4539 return false; 4540 } 4541 } 4542 4543 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4544 assert(Op.getValueType().isFloatingPoint() && 4545 "Floating point type expected"); 4546 4547 // If the value is a constant, we can obviously see if it is a zero or not. 4548 // TODO: Add BuildVector support. 4549 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4550 return !C->isZero(); 4551 return false; 4552 } 4553 4554 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4555 assert(!Op.getValueType().isFloatingPoint() && 4556 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4557 4558 // If the value is a constant, we can obviously see if it is a zero or not. 4559 if (ISD::matchUnaryPredicate(Op, 4560 [](ConstantSDNode *C) { return !C->isZero(); })) 4561 return true; 4562 4563 // TODO: Recognize more cases here. 4564 switch (Op.getOpcode()) { 4565 default: break; 4566 case ISD::OR: 4567 if (isKnownNeverZero(Op.getOperand(1)) || 4568 isKnownNeverZero(Op.getOperand(0))) 4569 return true; 4570 break; 4571 } 4572 4573 return false; 4574 } 4575 4576 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4577 // Check the obvious case. 4578 if (A == B) return true; 4579 4580 // For for negative and positive zero. 4581 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4582 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4583 if (CA->isZero() && CB->isZero()) return true; 4584 4585 // Otherwise they may not be equal. 4586 return false; 4587 } 4588 4589 // FIXME: unify with llvm::haveNoCommonBitsSet. 4590 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4591 assert(A.getValueType() == B.getValueType() && 4592 "Values must have the same type"); 4593 // Match masked merge pattern (X & ~M) op (Y & M) 4594 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4595 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4596 if (isBitwiseNot(NotM, true)) { 4597 SDValue NotOperand = NotM->getOperand(0); 4598 return NotOperand == And->getOperand(0) || 4599 NotOperand == And->getOperand(1); 4600 } 4601 return false; 4602 }; 4603 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4604 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4605 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4606 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4607 return true; 4608 } 4609 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4610 computeKnownBits(B)); 4611 } 4612 4613 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4614 SelectionDAG &DAG) { 4615 if (cast<ConstantSDNode>(Step)->isZero()) 4616 return DAG.getConstant(0, DL, VT); 4617 4618 return SDValue(); 4619 } 4620 4621 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4622 ArrayRef<SDValue> Ops, 4623 SelectionDAG &DAG) { 4624 int NumOps = Ops.size(); 4625 assert(NumOps != 0 && "Can't build an empty vector!"); 4626 assert(!VT.isScalableVector() && 4627 "BUILD_VECTOR cannot be used with scalable types"); 4628 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4629 "Incorrect element count in BUILD_VECTOR!"); 4630 4631 // BUILD_VECTOR of UNDEFs is UNDEF. 4632 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4633 return DAG.getUNDEF(VT); 4634 4635 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4636 SDValue IdentitySrc; 4637 bool IsIdentity = true; 4638 for (int i = 0; i != NumOps; ++i) { 4639 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4640 Ops[i].getOperand(0).getValueType() != VT || 4641 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4642 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4643 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4644 IsIdentity = false; 4645 break; 4646 } 4647 IdentitySrc = Ops[i].getOperand(0); 4648 } 4649 if (IsIdentity) 4650 return IdentitySrc; 4651 4652 return SDValue(); 4653 } 4654 4655 /// Try to simplify vector concatenation to an input value, undef, or build 4656 /// vector. 4657 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4658 ArrayRef<SDValue> Ops, 4659 SelectionDAG &DAG) { 4660 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4661 assert(llvm::all_of(Ops, 4662 [Ops](SDValue Op) { 4663 return Ops[0].getValueType() == Op.getValueType(); 4664 }) && 4665 "Concatenation of vectors with inconsistent value types!"); 4666 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4667 VT.getVectorElementCount() && 4668 "Incorrect element count in vector concatenation!"); 4669 4670 if (Ops.size() == 1) 4671 return Ops[0]; 4672 4673 // Concat of UNDEFs is UNDEF. 4674 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4675 return DAG.getUNDEF(VT); 4676 4677 // Scan the operands and look for extract operations from a single source 4678 // that correspond to insertion at the same location via this concatenation: 4679 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4680 SDValue IdentitySrc; 4681 bool IsIdentity = true; 4682 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4683 SDValue Op = Ops[i]; 4684 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4685 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4686 Op.getOperand(0).getValueType() != VT || 4687 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4688 Op.getConstantOperandVal(1) != IdentityIndex) { 4689 IsIdentity = false; 4690 break; 4691 } 4692 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4693 "Unexpected identity source vector for concat of extracts"); 4694 IdentitySrc = Op.getOperand(0); 4695 } 4696 if (IsIdentity) { 4697 assert(IdentitySrc && "Failed to set source vector of extracts"); 4698 return IdentitySrc; 4699 } 4700 4701 // The code below this point is only designed to work for fixed width 4702 // vectors, so we bail out for now. 4703 if (VT.isScalableVector()) 4704 return SDValue(); 4705 4706 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4707 // simplified to one big BUILD_VECTOR. 4708 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4709 EVT SVT = VT.getScalarType(); 4710 SmallVector<SDValue, 16> Elts; 4711 for (SDValue Op : Ops) { 4712 EVT OpVT = Op.getValueType(); 4713 if (Op.isUndef()) 4714 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4715 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4716 Elts.append(Op->op_begin(), Op->op_end()); 4717 else 4718 return SDValue(); 4719 } 4720 4721 // BUILD_VECTOR requires all inputs to be of the same type, find the 4722 // maximum type and extend them all. 4723 for (SDValue Op : Elts) 4724 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4725 4726 if (SVT.bitsGT(VT.getScalarType())) { 4727 for (SDValue &Op : Elts) { 4728 if (Op.isUndef()) 4729 Op = DAG.getUNDEF(SVT); 4730 else 4731 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4732 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4733 : DAG.getSExtOrTrunc(Op, DL, SVT); 4734 } 4735 } 4736 4737 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4738 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4739 return V; 4740 } 4741 4742 /// Gets or creates the specified node. 4743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4744 FoldingSetNodeID ID; 4745 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4746 void *IP = nullptr; 4747 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4748 return SDValue(E, 0); 4749 4750 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4751 getVTList(VT)); 4752 CSEMap.InsertNode(N, IP); 4753 4754 InsertNode(N); 4755 SDValue V = SDValue(N, 0); 4756 NewSDValueDbgMsg(V, "Creating new node: ", this); 4757 return V; 4758 } 4759 4760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4761 SDValue Operand) { 4762 SDNodeFlags Flags; 4763 if (Inserter) 4764 Flags = Inserter->getFlags(); 4765 return getNode(Opcode, DL, VT, Operand, Flags); 4766 } 4767 4768 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4769 SDValue Operand, const SDNodeFlags Flags) { 4770 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4771 "Operand is DELETED_NODE!"); 4772 // Constant fold unary operations with an integer constant operand. Even 4773 // opaque constant will be folded, because the folding of unary operations 4774 // doesn't create new constants with different values. Nevertheless, the 4775 // opaque flag is preserved during folding to prevent future folding with 4776 // other constants. 4777 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4778 const APInt &Val = C->getAPIntValue(); 4779 switch (Opcode) { 4780 default: break; 4781 case ISD::SIGN_EXTEND: 4782 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4783 C->isTargetOpcode(), C->isOpaque()); 4784 case ISD::TRUNCATE: 4785 if (C->isOpaque()) 4786 break; 4787 LLVM_FALLTHROUGH; 4788 case ISD::ZERO_EXTEND: 4789 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4790 C->isTargetOpcode(), C->isOpaque()); 4791 case ISD::ANY_EXTEND: 4792 // Some targets like RISCV prefer to sign extend some types. 4793 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4794 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4795 C->isTargetOpcode(), C->isOpaque()); 4796 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4797 C->isTargetOpcode(), C->isOpaque()); 4798 case ISD::UINT_TO_FP: 4799 case ISD::SINT_TO_FP: { 4800 APFloat apf(EVTToAPFloatSemantics(VT), 4801 APInt::getZero(VT.getSizeInBits())); 4802 (void)apf.convertFromAPInt(Val, 4803 Opcode==ISD::SINT_TO_FP, 4804 APFloat::rmNearestTiesToEven); 4805 return getConstantFP(apf, DL, VT); 4806 } 4807 case ISD::BITCAST: 4808 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4809 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4810 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4811 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4812 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4813 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4814 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4815 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4816 break; 4817 case ISD::ABS: 4818 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4819 C->isOpaque()); 4820 case ISD::BITREVERSE: 4821 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4822 C->isOpaque()); 4823 case ISD::BSWAP: 4824 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4825 C->isOpaque()); 4826 case ISD::CTPOP: 4827 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4828 C->isOpaque()); 4829 case ISD::CTLZ: 4830 case ISD::CTLZ_ZERO_UNDEF: 4831 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4832 C->isOpaque()); 4833 case ISD::CTTZ: 4834 case ISD::CTTZ_ZERO_UNDEF: 4835 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4836 C->isOpaque()); 4837 case ISD::FP16_TO_FP: { 4838 bool Ignored; 4839 APFloat FPV(APFloat::IEEEhalf(), 4840 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4841 4842 // This can return overflow, underflow, or inexact; we don't care. 4843 // FIXME need to be more flexible about rounding mode. 4844 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4845 APFloat::rmNearestTiesToEven, &Ignored); 4846 return getConstantFP(FPV, DL, VT); 4847 } 4848 case ISD::STEP_VECTOR: { 4849 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4850 return V; 4851 break; 4852 } 4853 } 4854 } 4855 4856 // Constant fold unary operations with a floating point constant operand. 4857 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4858 APFloat V = C->getValueAPF(); // make copy 4859 switch (Opcode) { 4860 case ISD::FNEG: 4861 V.changeSign(); 4862 return getConstantFP(V, DL, VT); 4863 case ISD::FABS: 4864 V.clearSign(); 4865 return getConstantFP(V, DL, VT); 4866 case ISD::FCEIL: { 4867 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4868 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4869 return getConstantFP(V, DL, VT); 4870 break; 4871 } 4872 case ISD::FTRUNC: { 4873 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4874 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4875 return getConstantFP(V, DL, VT); 4876 break; 4877 } 4878 case ISD::FFLOOR: { 4879 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4880 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4881 return getConstantFP(V, DL, VT); 4882 break; 4883 } 4884 case ISD::FP_EXTEND: { 4885 bool ignored; 4886 // This can return overflow, underflow, or inexact; we don't care. 4887 // FIXME need to be more flexible about rounding mode. 4888 (void)V.convert(EVTToAPFloatSemantics(VT), 4889 APFloat::rmNearestTiesToEven, &ignored); 4890 return getConstantFP(V, DL, VT); 4891 } 4892 case ISD::FP_TO_SINT: 4893 case ISD::FP_TO_UINT: { 4894 bool ignored; 4895 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4896 // FIXME need to be more flexible about rounding mode. 4897 APFloat::opStatus s = 4898 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4899 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4900 break; 4901 return getConstant(IntVal, DL, VT); 4902 } 4903 case ISD::BITCAST: 4904 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4905 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4906 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4907 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4908 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4909 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4910 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4911 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4912 break; 4913 case ISD::FP_TO_FP16: { 4914 bool Ignored; 4915 // This can return overflow, underflow, or inexact; we don't care. 4916 // FIXME need to be more flexible about rounding mode. 4917 (void)V.convert(APFloat::IEEEhalf(), 4918 APFloat::rmNearestTiesToEven, &Ignored); 4919 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4920 } 4921 } 4922 } 4923 4924 // Constant fold unary operations with a vector integer or float operand. 4925 switch (Opcode) { 4926 default: 4927 // FIXME: Entirely reasonable to perform folding of other unary 4928 // operations here as the need arises. 4929 break; 4930 case ISD::FNEG: 4931 case ISD::FABS: 4932 case ISD::FCEIL: 4933 case ISD::FTRUNC: 4934 case ISD::FFLOOR: 4935 case ISD::FP_EXTEND: 4936 case ISD::FP_TO_SINT: 4937 case ISD::FP_TO_UINT: 4938 case ISD::TRUNCATE: 4939 case ISD::ANY_EXTEND: 4940 case ISD::ZERO_EXTEND: 4941 case ISD::SIGN_EXTEND: 4942 case ISD::UINT_TO_FP: 4943 case ISD::SINT_TO_FP: 4944 case ISD::ABS: 4945 case ISD::BITREVERSE: 4946 case ISD::BSWAP: 4947 case ISD::CTLZ: 4948 case ISD::CTLZ_ZERO_UNDEF: 4949 case ISD::CTTZ: 4950 case ISD::CTTZ_ZERO_UNDEF: 4951 case ISD::CTPOP: { 4952 SDValue Ops = {Operand}; 4953 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4954 return Fold; 4955 } 4956 } 4957 4958 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4959 switch (Opcode) { 4960 case ISD::STEP_VECTOR: 4961 assert(VT.isScalableVector() && 4962 "STEP_VECTOR can only be used with scalable types"); 4963 assert(OpOpcode == ISD::TargetConstant && 4964 VT.getVectorElementType() == Operand.getValueType() && 4965 "Unexpected step operand"); 4966 break; 4967 case ISD::FREEZE: 4968 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4969 break; 4970 case ISD::TokenFactor: 4971 case ISD::MERGE_VALUES: 4972 case ISD::CONCAT_VECTORS: 4973 return Operand; // Factor, merge or concat of one node? No need. 4974 case ISD::BUILD_VECTOR: { 4975 // Attempt to simplify BUILD_VECTOR. 4976 SDValue Ops[] = {Operand}; 4977 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4978 return V; 4979 break; 4980 } 4981 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4982 case ISD::FP_EXTEND: 4983 assert(VT.isFloatingPoint() && 4984 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4985 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4986 assert((!VT.isVector() || 4987 VT.getVectorElementCount() == 4988 Operand.getValueType().getVectorElementCount()) && 4989 "Vector element count mismatch!"); 4990 assert(Operand.getValueType().bitsLT(VT) && 4991 "Invalid fpext node, dst < src!"); 4992 if (Operand.isUndef()) 4993 return getUNDEF(VT); 4994 break; 4995 case ISD::FP_TO_SINT: 4996 case ISD::FP_TO_UINT: 4997 if (Operand.isUndef()) 4998 return getUNDEF(VT); 4999 break; 5000 case ISD::SINT_TO_FP: 5001 case ISD::UINT_TO_FP: 5002 // [us]itofp(undef) = 0, because the result value is bounded. 5003 if (Operand.isUndef()) 5004 return getConstantFP(0.0, DL, VT); 5005 break; 5006 case ISD::SIGN_EXTEND: 5007 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5008 "Invalid SIGN_EXTEND!"); 5009 assert(VT.isVector() == Operand.getValueType().isVector() && 5010 "SIGN_EXTEND result type type should be vector iff the operand " 5011 "type is vector!"); 5012 if (Operand.getValueType() == VT) return Operand; // noop extension 5013 assert((!VT.isVector() || 5014 VT.getVectorElementCount() == 5015 Operand.getValueType().getVectorElementCount()) && 5016 "Vector element count mismatch!"); 5017 assert(Operand.getValueType().bitsLT(VT) && 5018 "Invalid sext node, dst < src!"); 5019 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5020 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5021 if (OpOpcode == ISD::UNDEF) 5022 // sext(undef) = 0, because the top bits will all be the same. 5023 return getConstant(0, DL, VT); 5024 break; 5025 case ISD::ZERO_EXTEND: 5026 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5027 "Invalid ZERO_EXTEND!"); 5028 assert(VT.isVector() == Operand.getValueType().isVector() && 5029 "ZERO_EXTEND result type type should be vector iff the operand " 5030 "type is vector!"); 5031 if (Operand.getValueType() == VT) return Operand; // noop extension 5032 assert((!VT.isVector() || 5033 VT.getVectorElementCount() == 5034 Operand.getValueType().getVectorElementCount()) && 5035 "Vector element count mismatch!"); 5036 assert(Operand.getValueType().bitsLT(VT) && 5037 "Invalid zext node, dst < src!"); 5038 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5039 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5040 if (OpOpcode == ISD::UNDEF) 5041 // zext(undef) = 0, because the top bits will be zero. 5042 return getConstant(0, DL, VT); 5043 break; 5044 case ISD::ANY_EXTEND: 5045 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5046 "Invalid ANY_EXTEND!"); 5047 assert(VT.isVector() == Operand.getValueType().isVector() && 5048 "ANY_EXTEND result type type should be vector iff the operand " 5049 "type is vector!"); 5050 if (Operand.getValueType() == VT) return Operand; // noop extension 5051 assert((!VT.isVector() || 5052 VT.getVectorElementCount() == 5053 Operand.getValueType().getVectorElementCount()) && 5054 "Vector element count mismatch!"); 5055 assert(Operand.getValueType().bitsLT(VT) && 5056 "Invalid anyext node, dst < src!"); 5057 5058 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5059 OpOpcode == ISD::ANY_EXTEND) 5060 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5061 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5062 if (OpOpcode == ISD::UNDEF) 5063 return getUNDEF(VT); 5064 5065 // (ext (trunc x)) -> x 5066 if (OpOpcode == ISD::TRUNCATE) { 5067 SDValue OpOp = Operand.getOperand(0); 5068 if (OpOp.getValueType() == VT) { 5069 transferDbgValues(Operand, OpOp); 5070 return OpOp; 5071 } 5072 } 5073 break; 5074 case ISD::TRUNCATE: 5075 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5076 "Invalid TRUNCATE!"); 5077 assert(VT.isVector() == Operand.getValueType().isVector() && 5078 "TRUNCATE result type type should be vector iff the operand " 5079 "type is vector!"); 5080 if (Operand.getValueType() == VT) return Operand; // noop truncate 5081 assert((!VT.isVector() || 5082 VT.getVectorElementCount() == 5083 Operand.getValueType().getVectorElementCount()) && 5084 "Vector element count mismatch!"); 5085 assert(Operand.getValueType().bitsGT(VT) && 5086 "Invalid truncate node, src < dst!"); 5087 if (OpOpcode == ISD::TRUNCATE) 5088 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5089 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5090 OpOpcode == ISD::ANY_EXTEND) { 5091 // If the source is smaller than the dest, we still need an extend. 5092 if (Operand.getOperand(0).getValueType().getScalarType() 5093 .bitsLT(VT.getScalarType())) 5094 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5095 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5096 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5097 return Operand.getOperand(0); 5098 } 5099 if (OpOpcode == ISD::UNDEF) 5100 return getUNDEF(VT); 5101 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5102 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5103 break; 5104 case ISD::ANY_EXTEND_VECTOR_INREG: 5105 case ISD::ZERO_EXTEND_VECTOR_INREG: 5106 case ISD::SIGN_EXTEND_VECTOR_INREG: 5107 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5108 assert(Operand.getValueType().bitsLE(VT) && 5109 "The input must be the same size or smaller than the result."); 5110 assert(VT.getVectorMinNumElements() < 5111 Operand.getValueType().getVectorMinNumElements() && 5112 "The destination vector type must have fewer lanes than the input."); 5113 break; 5114 case ISD::ABS: 5115 assert(VT.isInteger() && VT == Operand.getValueType() && 5116 "Invalid ABS!"); 5117 if (OpOpcode == ISD::UNDEF) 5118 return getUNDEF(VT); 5119 break; 5120 case ISD::BSWAP: 5121 assert(VT.isInteger() && VT == Operand.getValueType() && 5122 "Invalid BSWAP!"); 5123 assert((VT.getScalarSizeInBits() % 16 == 0) && 5124 "BSWAP types must be a multiple of 16 bits!"); 5125 if (OpOpcode == ISD::UNDEF) 5126 return getUNDEF(VT); 5127 // bswap(bswap(X)) -> X. 5128 if (OpOpcode == ISD::BSWAP) 5129 return Operand.getOperand(0); 5130 break; 5131 case ISD::BITREVERSE: 5132 assert(VT.isInteger() && VT == Operand.getValueType() && 5133 "Invalid BITREVERSE!"); 5134 if (OpOpcode == ISD::UNDEF) 5135 return getUNDEF(VT); 5136 break; 5137 case ISD::BITCAST: 5138 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5139 "Cannot BITCAST between types of different sizes!"); 5140 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5141 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5142 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5143 if (OpOpcode == ISD::UNDEF) 5144 return getUNDEF(VT); 5145 break; 5146 case ISD::SCALAR_TO_VECTOR: 5147 assert(VT.isVector() && !Operand.getValueType().isVector() && 5148 (VT.getVectorElementType() == Operand.getValueType() || 5149 (VT.getVectorElementType().isInteger() && 5150 Operand.getValueType().isInteger() && 5151 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5152 "Illegal SCALAR_TO_VECTOR node!"); 5153 if (OpOpcode == ISD::UNDEF) 5154 return getUNDEF(VT); 5155 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5156 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5157 isa<ConstantSDNode>(Operand.getOperand(1)) && 5158 Operand.getConstantOperandVal(1) == 0 && 5159 Operand.getOperand(0).getValueType() == VT) 5160 return Operand.getOperand(0); 5161 break; 5162 case ISD::FNEG: 5163 // Negation of an unknown bag of bits is still completely undefined. 5164 if (OpOpcode == ISD::UNDEF) 5165 return getUNDEF(VT); 5166 5167 if (OpOpcode == ISD::FNEG) // --X -> X 5168 return Operand.getOperand(0); 5169 break; 5170 case ISD::FABS: 5171 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5172 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5173 break; 5174 case ISD::VSCALE: 5175 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5176 break; 5177 case ISD::CTPOP: 5178 if (Operand.getValueType().getScalarType() == MVT::i1) 5179 return Operand; 5180 break; 5181 case ISD::CTLZ: 5182 case ISD::CTTZ: 5183 if (Operand.getValueType().getScalarType() == MVT::i1) 5184 return getNOT(DL, Operand, Operand.getValueType()); 5185 break; 5186 case ISD::VECREDUCE_SMIN: 5187 case ISD::VECREDUCE_UMAX: 5188 if (Operand.getValueType().getScalarType() == MVT::i1) 5189 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5190 break; 5191 case ISD::VECREDUCE_SMAX: 5192 case ISD::VECREDUCE_UMIN: 5193 if (Operand.getValueType().getScalarType() == MVT::i1) 5194 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5195 break; 5196 } 5197 5198 SDNode *N; 5199 SDVTList VTs = getVTList(VT); 5200 SDValue Ops[] = {Operand}; 5201 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5202 FoldingSetNodeID ID; 5203 AddNodeIDNode(ID, Opcode, VTs, Ops); 5204 void *IP = nullptr; 5205 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5206 E->intersectFlagsWith(Flags); 5207 return SDValue(E, 0); 5208 } 5209 5210 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5211 N->setFlags(Flags); 5212 createOperands(N, Ops); 5213 CSEMap.InsertNode(N, IP); 5214 } else { 5215 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5216 createOperands(N, Ops); 5217 } 5218 5219 InsertNode(N); 5220 SDValue V = SDValue(N, 0); 5221 NewSDValueDbgMsg(V, "Creating new node: ", this); 5222 return V; 5223 } 5224 5225 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5226 const APInt &C2) { 5227 switch (Opcode) { 5228 case ISD::ADD: return C1 + C2; 5229 case ISD::SUB: return C1 - C2; 5230 case ISD::MUL: return C1 * C2; 5231 case ISD::AND: return C1 & C2; 5232 case ISD::OR: return C1 | C2; 5233 case ISD::XOR: return C1 ^ C2; 5234 case ISD::SHL: return C1 << C2; 5235 case ISD::SRL: return C1.lshr(C2); 5236 case ISD::SRA: return C1.ashr(C2); 5237 case ISD::ROTL: return C1.rotl(C2); 5238 case ISD::ROTR: return C1.rotr(C2); 5239 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5240 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5241 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5242 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5243 case ISD::SADDSAT: return C1.sadd_sat(C2); 5244 case ISD::UADDSAT: return C1.uadd_sat(C2); 5245 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5246 case ISD::USUBSAT: return C1.usub_sat(C2); 5247 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5248 case ISD::USHLSAT: return C1.ushl_sat(C2); 5249 case ISD::UDIV: 5250 if (!C2.getBoolValue()) 5251 break; 5252 return C1.udiv(C2); 5253 case ISD::UREM: 5254 if (!C2.getBoolValue()) 5255 break; 5256 return C1.urem(C2); 5257 case ISD::SDIV: 5258 if (!C2.getBoolValue()) 5259 break; 5260 return C1.sdiv(C2); 5261 case ISD::SREM: 5262 if (!C2.getBoolValue()) 5263 break; 5264 return C1.srem(C2); 5265 case ISD::MULHS: { 5266 unsigned FullWidth = C1.getBitWidth() * 2; 5267 APInt C1Ext = C1.sext(FullWidth); 5268 APInt C2Ext = C2.sext(FullWidth); 5269 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5270 } 5271 case ISD::MULHU: { 5272 unsigned FullWidth = C1.getBitWidth() * 2; 5273 APInt C1Ext = C1.zext(FullWidth); 5274 APInt C2Ext = C2.zext(FullWidth); 5275 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5276 } 5277 } 5278 return llvm::None; 5279 } 5280 5281 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5282 const GlobalAddressSDNode *GA, 5283 const SDNode *N2) { 5284 if (GA->getOpcode() != ISD::GlobalAddress) 5285 return SDValue(); 5286 if (!TLI->isOffsetFoldingLegal(GA)) 5287 return SDValue(); 5288 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5289 if (!C2) 5290 return SDValue(); 5291 int64_t Offset = C2->getSExtValue(); 5292 switch (Opcode) { 5293 case ISD::ADD: break; 5294 case ISD::SUB: Offset = -uint64_t(Offset); break; 5295 default: return SDValue(); 5296 } 5297 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5298 GA->getOffset() + uint64_t(Offset)); 5299 } 5300 5301 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5302 switch (Opcode) { 5303 case ISD::SDIV: 5304 case ISD::UDIV: 5305 case ISD::SREM: 5306 case ISD::UREM: { 5307 // If a divisor is zero/undef or any element of a divisor vector is 5308 // zero/undef, the whole op is undef. 5309 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5310 SDValue Divisor = Ops[1]; 5311 if (Divisor.isUndef() || isNullConstant(Divisor)) 5312 return true; 5313 5314 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5315 llvm::any_of(Divisor->op_values(), 5316 [](SDValue V) { return V.isUndef() || 5317 isNullConstant(V); }); 5318 // TODO: Handle signed overflow. 5319 } 5320 // TODO: Handle oversized shifts. 5321 default: 5322 return false; 5323 } 5324 } 5325 5326 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5327 EVT VT, ArrayRef<SDValue> Ops) { 5328 // If the opcode is a target-specific ISD node, there's nothing we can 5329 // do here and the operand rules may not line up with the below, so 5330 // bail early. 5331 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5332 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5333 // foldCONCAT_VECTORS in getNode before this is called. 5334 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5335 return SDValue(); 5336 5337 unsigned NumOps = Ops.size(); 5338 if (NumOps == 0) 5339 return SDValue(); 5340 5341 if (isUndef(Opcode, Ops)) 5342 return getUNDEF(VT); 5343 5344 // Handle binops special cases. 5345 if (NumOps == 2) { 5346 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5347 return CFP; 5348 5349 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5350 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5351 if (C1->isOpaque() || C2->isOpaque()) 5352 return SDValue(); 5353 5354 Optional<APInt> FoldAttempt = 5355 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5356 if (!FoldAttempt) 5357 return SDValue(); 5358 5359 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5360 assert((!Folded || !VT.isVector()) && 5361 "Can't fold vectors ops with scalar operands"); 5362 return Folded; 5363 } 5364 } 5365 5366 // fold (add Sym, c) -> Sym+c 5367 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5368 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5369 if (TLI->isCommutativeBinOp(Opcode)) 5370 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5371 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5372 } 5373 5374 // This is for vector folding only from here on. 5375 if (!VT.isVector()) 5376 return SDValue(); 5377 5378 ElementCount NumElts = VT.getVectorElementCount(); 5379 5380 // See if we can fold through bitcasted integer ops. 5381 // TODO: Can we handle undef elements? 5382 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5383 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5384 Ops[0].getOpcode() == ISD::BITCAST && 5385 Ops[1].getOpcode() == ISD::BITCAST) { 5386 SDValue N1 = peekThroughBitcasts(Ops[0]); 5387 SDValue N2 = peekThroughBitcasts(Ops[1]); 5388 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5389 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5390 EVT BVVT = N1.getValueType(); 5391 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5392 bool IsLE = getDataLayout().isLittleEndian(); 5393 unsigned EltBits = VT.getScalarSizeInBits(); 5394 SmallVector<APInt> RawBits1, RawBits2; 5395 BitVector UndefElts1, UndefElts2; 5396 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5397 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5398 UndefElts1.none() && UndefElts2.none()) { 5399 SmallVector<APInt> RawBits; 5400 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5401 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5402 if (!Fold) 5403 break; 5404 RawBits.push_back(Fold.getValue()); 5405 } 5406 if (RawBits.size() == NumElts.getFixedValue()) { 5407 // We have constant folded, but we need to cast this again back to 5408 // the original (possibly legalized) type. 5409 SmallVector<APInt> DstBits; 5410 BitVector DstUndefs; 5411 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5412 DstBits, RawBits, DstUndefs, 5413 BitVector(RawBits.size(), false)); 5414 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5415 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5416 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5417 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5418 if (DstUndefs[I]) 5419 continue; 5420 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5421 } 5422 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5423 } 5424 } 5425 } 5426 } 5427 5428 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5429 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5430 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5431 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5432 APInt RHSVal; 5433 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5434 APInt NewStep = Opcode == ISD::MUL 5435 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5436 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5437 return getStepVector(DL, VT, NewStep); 5438 } 5439 } 5440 5441 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5442 return !Op.getValueType().isVector() || 5443 Op.getValueType().getVectorElementCount() == NumElts; 5444 }; 5445 5446 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5447 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5448 Op.getOpcode() == ISD::BUILD_VECTOR || 5449 Op.getOpcode() == ISD::SPLAT_VECTOR; 5450 }; 5451 5452 // All operands must be vector types with the same number of elements as 5453 // the result type and must be either UNDEF or a build/splat vector 5454 // or UNDEF scalars. 5455 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5456 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5457 return SDValue(); 5458 5459 // If we are comparing vectors, then the result needs to be a i1 boolean 5460 // that is then sign-extended back to the legal result type. 5461 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5462 5463 // Find legal integer scalar type for constant promotion and 5464 // ensure that its scalar size is at least as large as source. 5465 EVT LegalSVT = VT.getScalarType(); 5466 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5467 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5468 if (LegalSVT.bitsLT(VT.getScalarType())) 5469 return SDValue(); 5470 } 5471 5472 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5473 // only have one operand to check. For fixed-length vector types we may have 5474 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5475 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5476 5477 // Constant fold each scalar lane separately. 5478 SmallVector<SDValue, 4> ScalarResults; 5479 for (unsigned I = 0; I != NumVectorElts; I++) { 5480 SmallVector<SDValue, 4> ScalarOps; 5481 for (SDValue Op : Ops) { 5482 EVT InSVT = Op.getValueType().getScalarType(); 5483 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5484 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5485 if (Op.isUndef()) 5486 ScalarOps.push_back(getUNDEF(InSVT)); 5487 else 5488 ScalarOps.push_back(Op); 5489 continue; 5490 } 5491 5492 SDValue ScalarOp = 5493 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5494 EVT ScalarVT = ScalarOp.getValueType(); 5495 5496 // Build vector (integer) scalar operands may need implicit 5497 // truncation - do this before constant folding. 5498 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5499 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5500 5501 ScalarOps.push_back(ScalarOp); 5502 } 5503 5504 // Constant fold the scalar operands. 5505 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5506 5507 // Legalize the (integer) scalar constant if necessary. 5508 if (LegalSVT != SVT) 5509 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5510 5511 // Scalar folding only succeeded if the result is a constant or UNDEF. 5512 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5513 ScalarResult.getOpcode() != ISD::ConstantFP) 5514 return SDValue(); 5515 ScalarResults.push_back(ScalarResult); 5516 } 5517 5518 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5519 : getBuildVector(VT, DL, ScalarResults); 5520 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5521 return V; 5522 } 5523 5524 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5525 EVT VT, SDValue N1, SDValue N2) { 5526 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5527 // should. That will require dealing with a potentially non-default 5528 // rounding mode, checking the "opStatus" return value from the APFloat 5529 // math calculations, and possibly other variations. 5530 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5531 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5532 if (N1CFP && N2CFP) { 5533 APFloat C1 = N1CFP->getValueAPF(); // make copy 5534 const APFloat &C2 = N2CFP->getValueAPF(); 5535 switch (Opcode) { 5536 case ISD::FADD: 5537 C1.add(C2, APFloat::rmNearestTiesToEven); 5538 return getConstantFP(C1, DL, VT); 5539 case ISD::FSUB: 5540 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5541 return getConstantFP(C1, DL, VT); 5542 case ISD::FMUL: 5543 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5544 return getConstantFP(C1, DL, VT); 5545 case ISD::FDIV: 5546 C1.divide(C2, APFloat::rmNearestTiesToEven); 5547 return getConstantFP(C1, DL, VT); 5548 case ISD::FREM: 5549 C1.mod(C2); 5550 return getConstantFP(C1, DL, VT); 5551 case ISD::FCOPYSIGN: 5552 C1.copySign(C2); 5553 return getConstantFP(C1, DL, VT); 5554 case ISD::FMINNUM: 5555 return getConstantFP(minnum(C1, C2), DL, VT); 5556 case ISD::FMAXNUM: 5557 return getConstantFP(maxnum(C1, C2), DL, VT); 5558 case ISD::FMINIMUM: 5559 return getConstantFP(minimum(C1, C2), DL, VT); 5560 case ISD::FMAXIMUM: 5561 return getConstantFP(maximum(C1, C2), DL, VT); 5562 default: break; 5563 } 5564 } 5565 if (N1CFP && Opcode == ISD::FP_ROUND) { 5566 APFloat C1 = N1CFP->getValueAPF(); // make copy 5567 bool Unused; 5568 // This can return overflow, underflow, or inexact; we don't care. 5569 // FIXME need to be more flexible about rounding mode. 5570 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5571 &Unused); 5572 return getConstantFP(C1, DL, VT); 5573 } 5574 5575 switch (Opcode) { 5576 case ISD::FSUB: 5577 // -0.0 - undef --> undef (consistent with "fneg undef") 5578 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5579 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5580 return getUNDEF(VT); 5581 LLVM_FALLTHROUGH; 5582 5583 case ISD::FADD: 5584 case ISD::FMUL: 5585 case ISD::FDIV: 5586 case ISD::FREM: 5587 // If both operands are undef, the result is undef. If 1 operand is undef, 5588 // the result is NaN. This should match the behavior of the IR optimizer. 5589 if (N1.isUndef() && N2.isUndef()) 5590 return getUNDEF(VT); 5591 if (N1.isUndef() || N2.isUndef()) 5592 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5593 } 5594 return SDValue(); 5595 } 5596 5597 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5598 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5599 5600 // There's no need to assert on a byte-aligned pointer. All pointers are at 5601 // least byte aligned. 5602 if (A == Align(1)) 5603 return Val; 5604 5605 FoldingSetNodeID ID; 5606 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5607 ID.AddInteger(A.value()); 5608 5609 void *IP = nullptr; 5610 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5611 return SDValue(E, 0); 5612 5613 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5614 Val.getValueType(), A); 5615 createOperands(N, {Val}); 5616 5617 CSEMap.InsertNode(N, IP); 5618 InsertNode(N); 5619 5620 SDValue V(N, 0); 5621 NewSDValueDbgMsg(V, "Creating new node: ", this); 5622 return V; 5623 } 5624 5625 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5626 SDValue N1, SDValue N2) { 5627 SDNodeFlags Flags; 5628 if (Inserter) 5629 Flags = Inserter->getFlags(); 5630 return getNode(Opcode, DL, VT, N1, N2, Flags); 5631 } 5632 5633 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5634 SDValue &N2) const { 5635 if (!TLI->isCommutativeBinOp(Opcode)) 5636 return; 5637 5638 // Canonicalize: 5639 // binop(const, nonconst) -> binop(nonconst, const) 5640 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5641 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5642 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5643 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5644 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5645 std::swap(N1, N2); 5646 5647 // Canonicalize: 5648 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5649 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5650 N2.getOpcode() == ISD::STEP_VECTOR) 5651 std::swap(N1, N2); 5652 } 5653 5654 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5655 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5656 assert(N1.getOpcode() != ISD::DELETED_NODE && 5657 N2.getOpcode() != ISD::DELETED_NODE && 5658 "Operand is DELETED_NODE!"); 5659 5660 canonicalizeCommutativeBinop(Opcode, N1, N2); 5661 5662 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5663 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5664 5665 // Don't allow undefs in vector splats - we might be returning N2 when folding 5666 // to zero etc. 5667 ConstantSDNode *N2CV = 5668 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5669 5670 switch (Opcode) { 5671 default: break; 5672 case ISD::TokenFactor: 5673 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5674 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5675 // Fold trivial token factors. 5676 if (N1.getOpcode() == ISD::EntryToken) return N2; 5677 if (N2.getOpcode() == ISD::EntryToken) return N1; 5678 if (N1 == N2) return N1; 5679 break; 5680 case ISD::BUILD_VECTOR: { 5681 // Attempt to simplify BUILD_VECTOR. 5682 SDValue Ops[] = {N1, N2}; 5683 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5684 return V; 5685 break; 5686 } 5687 case ISD::CONCAT_VECTORS: { 5688 SDValue Ops[] = {N1, N2}; 5689 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5690 return V; 5691 break; 5692 } 5693 case ISD::AND: 5694 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5695 assert(N1.getValueType() == N2.getValueType() && 5696 N1.getValueType() == VT && "Binary operator types must match!"); 5697 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5698 // worth handling here. 5699 if (N2CV && N2CV->isZero()) 5700 return N2; 5701 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5702 return N1; 5703 break; 5704 case ISD::OR: 5705 case ISD::XOR: 5706 case ISD::ADD: 5707 case ISD::SUB: 5708 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5709 assert(N1.getValueType() == N2.getValueType() && 5710 N1.getValueType() == VT && "Binary operator types must match!"); 5711 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5712 // it's worth handling here. 5713 if (N2CV && N2CV->isZero()) 5714 return N1; 5715 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5716 VT.getVectorElementType() == MVT::i1) 5717 return getNode(ISD::XOR, DL, VT, N1, N2); 5718 break; 5719 case ISD::MUL: 5720 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5721 assert(N1.getValueType() == N2.getValueType() && 5722 N1.getValueType() == VT && "Binary operator types must match!"); 5723 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5724 return getNode(ISD::AND, DL, VT, N1, N2); 5725 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5726 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5727 const APInt &N2CImm = N2C->getAPIntValue(); 5728 return getVScale(DL, VT, MulImm * N2CImm); 5729 } 5730 break; 5731 case ISD::UDIV: 5732 case ISD::UREM: 5733 case ISD::MULHU: 5734 case ISD::MULHS: 5735 case ISD::SDIV: 5736 case ISD::SREM: 5737 case ISD::SADDSAT: 5738 case ISD::SSUBSAT: 5739 case ISD::UADDSAT: 5740 case ISD::USUBSAT: 5741 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5742 assert(N1.getValueType() == N2.getValueType() && 5743 N1.getValueType() == VT && "Binary operator types must match!"); 5744 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5745 // fold (add_sat x, y) -> (or x, y) for bool types. 5746 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5747 return getNode(ISD::OR, DL, VT, N1, N2); 5748 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5749 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5750 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5751 } 5752 break; 5753 case ISD::SMIN: 5754 case ISD::UMAX: 5755 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5756 assert(N1.getValueType() == N2.getValueType() && 5757 N1.getValueType() == VT && "Binary operator types must match!"); 5758 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5759 return getNode(ISD::OR, DL, VT, N1, N2); 5760 break; 5761 case ISD::SMAX: 5762 case ISD::UMIN: 5763 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5764 assert(N1.getValueType() == N2.getValueType() && 5765 N1.getValueType() == VT && "Binary operator types must match!"); 5766 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5767 return getNode(ISD::AND, DL, VT, N1, N2); 5768 break; 5769 case ISD::FADD: 5770 case ISD::FSUB: 5771 case ISD::FMUL: 5772 case ISD::FDIV: 5773 case ISD::FREM: 5774 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5775 assert(N1.getValueType() == N2.getValueType() && 5776 N1.getValueType() == VT && "Binary operator types must match!"); 5777 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5778 return V; 5779 break; 5780 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5781 assert(N1.getValueType() == VT && 5782 N1.getValueType().isFloatingPoint() && 5783 N2.getValueType().isFloatingPoint() && 5784 "Invalid FCOPYSIGN!"); 5785 break; 5786 case ISD::SHL: 5787 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5788 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5789 const APInt &ShiftImm = N2C->getAPIntValue(); 5790 return getVScale(DL, VT, MulImm << ShiftImm); 5791 } 5792 LLVM_FALLTHROUGH; 5793 case ISD::SRA: 5794 case ISD::SRL: 5795 if (SDValue V = simplifyShift(N1, N2)) 5796 return V; 5797 LLVM_FALLTHROUGH; 5798 case ISD::ROTL: 5799 case ISD::ROTR: 5800 assert(VT == N1.getValueType() && 5801 "Shift operators return type must be the same as their first arg"); 5802 assert(VT.isInteger() && N2.getValueType().isInteger() && 5803 "Shifts only work on integers"); 5804 assert((!VT.isVector() || VT == N2.getValueType()) && 5805 "Vector shift amounts must be in the same as their first arg"); 5806 // Verify that the shift amount VT is big enough to hold valid shift 5807 // amounts. This catches things like trying to shift an i1024 value by an 5808 // i8, which is easy to fall into in generic code that uses 5809 // TLI.getShiftAmount(). 5810 assert(N2.getValueType().getScalarSizeInBits() >= 5811 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5812 "Invalid use of small shift amount with oversized value!"); 5813 5814 // Always fold shifts of i1 values so the code generator doesn't need to 5815 // handle them. Since we know the size of the shift has to be less than the 5816 // size of the value, the shift/rotate count is guaranteed to be zero. 5817 if (VT == MVT::i1) 5818 return N1; 5819 if (N2CV && N2CV->isZero()) 5820 return N1; 5821 break; 5822 case ISD::FP_ROUND: 5823 assert(VT.isFloatingPoint() && 5824 N1.getValueType().isFloatingPoint() && 5825 VT.bitsLE(N1.getValueType()) && 5826 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5827 "Invalid FP_ROUND!"); 5828 if (N1.getValueType() == VT) return N1; // noop conversion. 5829 break; 5830 case ISD::AssertSext: 5831 case ISD::AssertZext: { 5832 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5833 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5834 assert(VT.isInteger() && EVT.isInteger() && 5835 "Cannot *_EXTEND_INREG FP types"); 5836 assert(!EVT.isVector() && 5837 "AssertSExt/AssertZExt type should be the vector element type " 5838 "rather than the vector type!"); 5839 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5840 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5841 break; 5842 } 5843 case ISD::SIGN_EXTEND_INREG: { 5844 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5845 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5846 assert(VT.isInteger() && EVT.isInteger() && 5847 "Cannot *_EXTEND_INREG FP types"); 5848 assert(EVT.isVector() == VT.isVector() && 5849 "SIGN_EXTEND_INREG type should be vector iff the operand " 5850 "type is vector!"); 5851 assert((!EVT.isVector() || 5852 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5853 "Vector element counts must match in SIGN_EXTEND_INREG"); 5854 assert(EVT.bitsLE(VT) && "Not extending!"); 5855 if (EVT == VT) return N1; // Not actually extending 5856 5857 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5858 unsigned FromBits = EVT.getScalarSizeInBits(); 5859 Val <<= Val.getBitWidth() - FromBits; 5860 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5861 return getConstant(Val, DL, ConstantVT); 5862 }; 5863 5864 if (N1C) { 5865 const APInt &Val = N1C->getAPIntValue(); 5866 return SignExtendInReg(Val, VT); 5867 } 5868 5869 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5870 SmallVector<SDValue, 8> Ops; 5871 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5872 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5873 SDValue Op = N1.getOperand(i); 5874 if (Op.isUndef()) { 5875 Ops.push_back(getUNDEF(OpVT)); 5876 continue; 5877 } 5878 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5879 APInt Val = C->getAPIntValue(); 5880 Ops.push_back(SignExtendInReg(Val, OpVT)); 5881 } 5882 return getBuildVector(VT, DL, Ops); 5883 } 5884 break; 5885 } 5886 case ISD::FP_TO_SINT_SAT: 5887 case ISD::FP_TO_UINT_SAT: { 5888 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5889 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5890 assert(N1.getValueType().isVector() == VT.isVector() && 5891 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5892 "vector!"); 5893 assert((!VT.isVector() || VT.getVectorNumElements() == 5894 N1.getValueType().getVectorNumElements()) && 5895 "Vector element counts must match in FP_TO_*INT_SAT"); 5896 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5897 "Type to saturate to must be a scalar."); 5898 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5899 "Not extending!"); 5900 break; 5901 } 5902 case ISD::EXTRACT_VECTOR_ELT: 5903 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5904 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5905 element type of the vector."); 5906 5907 // Extract from an undefined value or using an undefined index is undefined. 5908 if (N1.isUndef() || N2.isUndef()) 5909 return getUNDEF(VT); 5910 5911 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5912 // vectors. For scalable vectors we will provide appropriate support for 5913 // dealing with arbitrary indices. 5914 if (N2C && N1.getValueType().isFixedLengthVector() && 5915 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5916 return getUNDEF(VT); 5917 5918 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5919 // expanding copies of large vectors from registers. This only works for 5920 // fixed length vectors, since we need to know the exact number of 5921 // elements. 5922 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5923 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5924 unsigned Factor = 5925 N1.getOperand(0).getValueType().getVectorNumElements(); 5926 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5927 N1.getOperand(N2C->getZExtValue() / Factor), 5928 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5929 } 5930 5931 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5932 // lowering is expanding large vector constants. 5933 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5934 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5935 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5936 N1.getValueType().isFixedLengthVector()) && 5937 "BUILD_VECTOR used for scalable vectors"); 5938 unsigned Index = 5939 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5940 SDValue Elt = N1.getOperand(Index); 5941 5942 if (VT != Elt.getValueType()) 5943 // If the vector element type is not legal, the BUILD_VECTOR operands 5944 // are promoted and implicitly truncated, and the result implicitly 5945 // extended. Make that explicit here. 5946 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5947 5948 return Elt; 5949 } 5950 5951 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5952 // operations are lowered to scalars. 5953 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5954 // If the indices are the same, return the inserted element else 5955 // if the indices are known different, extract the element from 5956 // the original vector. 5957 SDValue N1Op2 = N1.getOperand(2); 5958 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5959 5960 if (N1Op2C && N2C) { 5961 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5962 if (VT == N1.getOperand(1).getValueType()) 5963 return N1.getOperand(1); 5964 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5965 } 5966 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5967 } 5968 } 5969 5970 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5971 // when vector types are scalarized and v1iX is legal. 5972 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5973 // Here we are completely ignoring the extract element index (N2), 5974 // which is fine for fixed width vectors, since any index other than 0 5975 // is undefined anyway. However, this cannot be ignored for scalable 5976 // vectors - in theory we could support this, but we don't want to do this 5977 // without a profitability check. 5978 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5979 N1.getValueType().isFixedLengthVector() && 5980 N1.getValueType().getVectorNumElements() == 1) { 5981 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5982 N1.getOperand(1)); 5983 } 5984 break; 5985 case ISD::EXTRACT_ELEMENT: 5986 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5987 assert(!N1.getValueType().isVector() && !VT.isVector() && 5988 (N1.getValueType().isInteger() == VT.isInteger()) && 5989 N1.getValueType() != VT && 5990 "Wrong types for EXTRACT_ELEMENT!"); 5991 5992 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5993 // 64-bit integers into 32-bit parts. Instead of building the extract of 5994 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5995 if (N1.getOpcode() == ISD::BUILD_PAIR) 5996 return N1.getOperand(N2C->getZExtValue()); 5997 5998 // EXTRACT_ELEMENT of a constant int is also very common. 5999 if (N1C) { 6000 unsigned ElementSize = VT.getSizeInBits(); 6001 unsigned Shift = ElementSize * N2C->getZExtValue(); 6002 const APInt &Val = N1C->getAPIntValue(); 6003 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6004 } 6005 break; 6006 case ISD::EXTRACT_SUBVECTOR: { 6007 EVT N1VT = N1.getValueType(); 6008 assert(VT.isVector() && N1VT.isVector() && 6009 "Extract subvector VTs must be vectors!"); 6010 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6011 "Extract subvector VTs must have the same element type!"); 6012 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6013 "Cannot extract a scalable vector from a fixed length vector!"); 6014 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6015 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6016 "Extract subvector must be from larger vector to smaller vector!"); 6017 assert(N2C && "Extract subvector index must be a constant"); 6018 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6019 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6020 N1VT.getVectorMinNumElements()) && 6021 "Extract subvector overflow!"); 6022 assert(N2C->getAPIntValue().getBitWidth() == 6023 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6024 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6025 6026 // Trivial extraction. 6027 if (VT == N1VT) 6028 return N1; 6029 6030 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6031 if (N1.isUndef()) 6032 return getUNDEF(VT); 6033 6034 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6035 // the concat have the same type as the extract. 6036 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6037 VT == N1.getOperand(0).getValueType()) { 6038 unsigned Factor = VT.getVectorMinNumElements(); 6039 return N1.getOperand(N2C->getZExtValue() / Factor); 6040 } 6041 6042 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6043 // during shuffle legalization. 6044 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6045 VT == N1.getOperand(1).getValueType()) 6046 return N1.getOperand(1); 6047 break; 6048 } 6049 } 6050 6051 // Perform trivial constant folding. 6052 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6053 return SV; 6054 6055 // Canonicalize an UNDEF to the RHS, even over a constant. 6056 if (N1.isUndef()) { 6057 if (TLI->isCommutativeBinOp(Opcode)) { 6058 std::swap(N1, N2); 6059 } else { 6060 switch (Opcode) { 6061 case ISD::SIGN_EXTEND_INREG: 6062 case ISD::SUB: 6063 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6064 case ISD::UDIV: 6065 case ISD::SDIV: 6066 case ISD::UREM: 6067 case ISD::SREM: 6068 case ISD::SSUBSAT: 6069 case ISD::USUBSAT: 6070 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6071 } 6072 } 6073 } 6074 6075 // Fold a bunch of operators when the RHS is undef. 6076 if (N2.isUndef()) { 6077 switch (Opcode) { 6078 case ISD::XOR: 6079 if (N1.isUndef()) 6080 // Handle undef ^ undef -> 0 special case. This is a common 6081 // idiom (misuse). 6082 return getConstant(0, DL, VT); 6083 LLVM_FALLTHROUGH; 6084 case ISD::ADD: 6085 case ISD::SUB: 6086 case ISD::UDIV: 6087 case ISD::SDIV: 6088 case ISD::UREM: 6089 case ISD::SREM: 6090 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6091 case ISD::MUL: 6092 case ISD::AND: 6093 case ISD::SSUBSAT: 6094 case ISD::USUBSAT: 6095 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6096 case ISD::OR: 6097 case ISD::SADDSAT: 6098 case ISD::UADDSAT: 6099 return getAllOnesConstant(DL, VT); 6100 } 6101 } 6102 6103 // Memoize this node if possible. 6104 SDNode *N; 6105 SDVTList VTs = getVTList(VT); 6106 SDValue Ops[] = {N1, N2}; 6107 if (VT != MVT::Glue) { 6108 FoldingSetNodeID ID; 6109 AddNodeIDNode(ID, Opcode, VTs, Ops); 6110 void *IP = nullptr; 6111 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6112 E->intersectFlagsWith(Flags); 6113 return SDValue(E, 0); 6114 } 6115 6116 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6117 N->setFlags(Flags); 6118 createOperands(N, Ops); 6119 CSEMap.InsertNode(N, IP); 6120 } else { 6121 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6122 createOperands(N, Ops); 6123 } 6124 6125 InsertNode(N); 6126 SDValue V = SDValue(N, 0); 6127 NewSDValueDbgMsg(V, "Creating new node: ", this); 6128 return V; 6129 } 6130 6131 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6132 SDValue N1, SDValue N2, SDValue N3) { 6133 SDNodeFlags Flags; 6134 if (Inserter) 6135 Flags = Inserter->getFlags(); 6136 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6137 } 6138 6139 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6140 SDValue N1, SDValue N2, SDValue N3, 6141 const SDNodeFlags Flags) { 6142 assert(N1.getOpcode() != ISD::DELETED_NODE && 6143 N2.getOpcode() != ISD::DELETED_NODE && 6144 N3.getOpcode() != ISD::DELETED_NODE && 6145 "Operand is DELETED_NODE!"); 6146 // Perform various simplifications. 6147 switch (Opcode) { 6148 case ISD::FMA: { 6149 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6150 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6151 N3.getValueType() == VT && "FMA types must match!"); 6152 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6153 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6154 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6155 if (N1CFP && N2CFP && N3CFP) { 6156 APFloat V1 = N1CFP->getValueAPF(); 6157 const APFloat &V2 = N2CFP->getValueAPF(); 6158 const APFloat &V3 = N3CFP->getValueAPF(); 6159 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6160 return getConstantFP(V1, DL, VT); 6161 } 6162 break; 6163 } 6164 case ISD::BUILD_VECTOR: { 6165 // Attempt to simplify BUILD_VECTOR. 6166 SDValue Ops[] = {N1, N2, N3}; 6167 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6168 return V; 6169 break; 6170 } 6171 case ISD::CONCAT_VECTORS: { 6172 SDValue Ops[] = {N1, N2, N3}; 6173 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6174 return V; 6175 break; 6176 } 6177 case ISD::SETCC: { 6178 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6179 assert(N1.getValueType() == N2.getValueType() && 6180 "SETCC operands must have the same type!"); 6181 assert(VT.isVector() == N1.getValueType().isVector() && 6182 "SETCC type should be vector iff the operand type is vector!"); 6183 assert((!VT.isVector() || VT.getVectorElementCount() == 6184 N1.getValueType().getVectorElementCount()) && 6185 "SETCC vector element counts must match!"); 6186 // Use FoldSetCC to simplify SETCC's. 6187 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6188 return V; 6189 // Vector constant folding. 6190 SDValue Ops[] = {N1, N2, N3}; 6191 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6192 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6193 return V; 6194 } 6195 break; 6196 } 6197 case ISD::SELECT: 6198 case ISD::VSELECT: 6199 if (SDValue V = simplifySelect(N1, N2, N3)) 6200 return V; 6201 break; 6202 case ISD::VECTOR_SHUFFLE: 6203 llvm_unreachable("should use getVectorShuffle constructor!"); 6204 case ISD::VECTOR_SPLICE: { 6205 if (cast<ConstantSDNode>(N3)->isNullValue()) 6206 return N1; 6207 break; 6208 } 6209 case ISD::INSERT_VECTOR_ELT: { 6210 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6211 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6212 // for scalable vectors where we will generate appropriate code to 6213 // deal with out-of-bounds cases correctly. 6214 if (N3C && N1.getValueType().isFixedLengthVector() && 6215 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6216 return getUNDEF(VT); 6217 6218 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6219 if (N3.isUndef()) 6220 return getUNDEF(VT); 6221 6222 // If the inserted element is an UNDEF, just use the input vector. 6223 if (N2.isUndef()) 6224 return N1; 6225 6226 break; 6227 } 6228 case ISD::INSERT_SUBVECTOR: { 6229 // Inserting undef into undef is still undef. 6230 if (N1.isUndef() && N2.isUndef()) 6231 return getUNDEF(VT); 6232 6233 EVT N2VT = N2.getValueType(); 6234 assert(VT == N1.getValueType() && 6235 "Dest and insert subvector source types must match!"); 6236 assert(VT.isVector() && N2VT.isVector() && 6237 "Insert subvector VTs must be vectors!"); 6238 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6239 "Cannot insert a scalable vector into a fixed length vector!"); 6240 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6241 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6242 "Insert subvector must be from smaller vector to larger vector!"); 6243 assert(isa<ConstantSDNode>(N3) && 6244 "Insert subvector index must be constant"); 6245 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6246 (N2VT.getVectorMinNumElements() + 6247 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6248 VT.getVectorMinNumElements()) && 6249 "Insert subvector overflow!"); 6250 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6251 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6252 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6253 6254 // Trivial insertion. 6255 if (VT == N2VT) 6256 return N2; 6257 6258 // If this is an insert of an extracted vector into an undef vector, we 6259 // can just use the input to the extract. 6260 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6261 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6262 return N2.getOperand(0); 6263 break; 6264 } 6265 case ISD::BITCAST: 6266 // Fold bit_convert nodes from a type to themselves. 6267 if (N1.getValueType() == VT) 6268 return N1; 6269 break; 6270 } 6271 6272 // Memoize node if it doesn't produce a flag. 6273 SDNode *N; 6274 SDVTList VTs = getVTList(VT); 6275 SDValue Ops[] = {N1, N2, N3}; 6276 if (VT != MVT::Glue) { 6277 FoldingSetNodeID ID; 6278 AddNodeIDNode(ID, Opcode, VTs, Ops); 6279 void *IP = nullptr; 6280 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6281 E->intersectFlagsWith(Flags); 6282 return SDValue(E, 0); 6283 } 6284 6285 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6286 N->setFlags(Flags); 6287 createOperands(N, Ops); 6288 CSEMap.InsertNode(N, IP); 6289 } else { 6290 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6291 createOperands(N, Ops); 6292 } 6293 6294 InsertNode(N); 6295 SDValue V = SDValue(N, 0); 6296 NewSDValueDbgMsg(V, "Creating new node: ", this); 6297 return V; 6298 } 6299 6300 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6301 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6302 SDValue Ops[] = { N1, N2, N3, N4 }; 6303 return getNode(Opcode, DL, VT, Ops); 6304 } 6305 6306 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6307 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6308 SDValue N5) { 6309 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6310 return getNode(Opcode, DL, VT, Ops); 6311 } 6312 6313 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6314 /// the incoming stack arguments to be loaded from the stack. 6315 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6316 SmallVector<SDValue, 8> ArgChains; 6317 6318 // Include the original chain at the beginning of the list. When this is 6319 // used by target LowerCall hooks, this helps legalize find the 6320 // CALLSEQ_BEGIN node. 6321 ArgChains.push_back(Chain); 6322 6323 // Add a chain value for each stack argument. 6324 for (SDNode *U : getEntryNode().getNode()->uses()) 6325 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6326 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6327 if (FI->getIndex() < 0) 6328 ArgChains.push_back(SDValue(L, 1)); 6329 6330 // Build a tokenfactor for all the chains. 6331 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6332 } 6333 6334 /// getMemsetValue - Vectorized representation of the memset value 6335 /// operand. 6336 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6337 const SDLoc &dl) { 6338 assert(!Value.isUndef()); 6339 6340 unsigned NumBits = VT.getScalarSizeInBits(); 6341 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6342 assert(C->getAPIntValue().getBitWidth() == 8); 6343 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6344 if (VT.isInteger()) { 6345 bool IsOpaque = VT.getSizeInBits() > 64 || 6346 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6347 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6348 } 6349 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6350 VT); 6351 } 6352 6353 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6354 EVT IntVT = VT.getScalarType(); 6355 if (!IntVT.isInteger()) 6356 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6357 6358 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6359 if (NumBits > 8) { 6360 // Use a multiplication with 0x010101... to extend the input to the 6361 // required length. 6362 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6363 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6364 DAG.getConstant(Magic, dl, IntVT)); 6365 } 6366 6367 if (VT != Value.getValueType() && !VT.isInteger()) 6368 Value = DAG.getBitcast(VT.getScalarType(), Value); 6369 if (VT != Value.getValueType()) 6370 Value = DAG.getSplatBuildVector(VT, dl, Value); 6371 6372 return Value; 6373 } 6374 6375 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6376 /// used when a memcpy is turned into a memset when the source is a constant 6377 /// string ptr. 6378 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6379 const TargetLowering &TLI, 6380 const ConstantDataArraySlice &Slice) { 6381 // Handle vector with all elements zero. 6382 if (Slice.Array == nullptr) { 6383 if (VT.isInteger()) 6384 return DAG.getConstant(0, dl, VT); 6385 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6386 return DAG.getConstantFP(0.0, dl, VT); 6387 if (VT.isVector()) { 6388 unsigned NumElts = VT.getVectorNumElements(); 6389 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6390 return DAG.getNode(ISD::BITCAST, dl, VT, 6391 DAG.getConstant(0, dl, 6392 EVT::getVectorVT(*DAG.getContext(), 6393 EltVT, NumElts))); 6394 } 6395 llvm_unreachable("Expected type!"); 6396 } 6397 6398 assert(!VT.isVector() && "Can't handle vector type here!"); 6399 unsigned NumVTBits = VT.getSizeInBits(); 6400 unsigned NumVTBytes = NumVTBits / 8; 6401 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6402 6403 APInt Val(NumVTBits, 0); 6404 if (DAG.getDataLayout().isLittleEndian()) { 6405 for (unsigned i = 0; i != NumBytes; ++i) 6406 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6407 } else { 6408 for (unsigned i = 0; i != NumBytes; ++i) 6409 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6410 } 6411 6412 // If the "cost" of materializing the integer immediate is less than the cost 6413 // of a load, then it is cost effective to turn the load into the immediate. 6414 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6415 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6416 return DAG.getConstant(Val, dl, VT); 6417 return SDValue(); 6418 } 6419 6420 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6421 const SDLoc &DL, 6422 const SDNodeFlags Flags) { 6423 EVT VT = Base.getValueType(); 6424 SDValue Index; 6425 6426 if (Offset.isScalable()) 6427 Index = getVScale(DL, Base.getValueType(), 6428 APInt(Base.getValueSizeInBits().getFixedSize(), 6429 Offset.getKnownMinSize())); 6430 else 6431 Index = getConstant(Offset.getFixedSize(), DL, VT); 6432 6433 return getMemBasePlusOffset(Base, Index, DL, Flags); 6434 } 6435 6436 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6437 const SDLoc &DL, 6438 const SDNodeFlags Flags) { 6439 assert(Offset.getValueType().isInteger()); 6440 EVT BasePtrVT = Ptr.getValueType(); 6441 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6442 } 6443 6444 /// Returns true if memcpy source is constant data. 6445 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6446 uint64_t SrcDelta = 0; 6447 GlobalAddressSDNode *G = nullptr; 6448 if (Src.getOpcode() == ISD::GlobalAddress) 6449 G = cast<GlobalAddressSDNode>(Src); 6450 else if (Src.getOpcode() == ISD::ADD && 6451 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6452 Src.getOperand(1).getOpcode() == ISD::Constant) { 6453 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6454 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6455 } 6456 if (!G) 6457 return false; 6458 6459 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6460 SrcDelta + G->getOffset()); 6461 } 6462 6463 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6464 SelectionDAG &DAG) { 6465 // On Darwin, -Os means optimize for size without hurting performance, so 6466 // only really optimize for size when -Oz (MinSize) is used. 6467 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6468 return MF.getFunction().hasMinSize(); 6469 return DAG.shouldOptForSize(); 6470 } 6471 6472 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6473 SmallVector<SDValue, 32> &OutChains, unsigned From, 6474 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6475 SmallVector<SDValue, 16> &OutStoreChains) { 6476 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6477 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6478 SmallVector<SDValue, 16> GluedLoadChains; 6479 for (unsigned i = From; i < To; ++i) { 6480 OutChains.push_back(OutLoadChains[i]); 6481 GluedLoadChains.push_back(OutLoadChains[i]); 6482 } 6483 6484 // Chain for all loads. 6485 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6486 GluedLoadChains); 6487 6488 for (unsigned i = From; i < To; ++i) { 6489 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6490 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6491 ST->getBasePtr(), ST->getMemoryVT(), 6492 ST->getMemOperand()); 6493 OutChains.push_back(NewStore); 6494 } 6495 } 6496 6497 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6498 SDValue Chain, SDValue Dst, SDValue Src, 6499 uint64_t Size, Align Alignment, 6500 bool isVol, bool AlwaysInline, 6501 MachinePointerInfo DstPtrInfo, 6502 MachinePointerInfo SrcPtrInfo, 6503 const AAMDNodes &AAInfo) { 6504 // Turn a memcpy of undef to nop. 6505 // FIXME: We need to honor volatile even is Src is undef. 6506 if (Src.isUndef()) 6507 return Chain; 6508 6509 // Expand memcpy to a series of load and store ops if the size operand falls 6510 // below a certain threshold. 6511 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6512 // rather than maybe a humongous number of loads and stores. 6513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6514 const DataLayout &DL = DAG.getDataLayout(); 6515 LLVMContext &C = *DAG.getContext(); 6516 std::vector<EVT> MemOps; 6517 bool DstAlignCanChange = false; 6518 MachineFunction &MF = DAG.getMachineFunction(); 6519 MachineFrameInfo &MFI = MF.getFrameInfo(); 6520 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6521 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6522 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6523 DstAlignCanChange = true; 6524 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6525 if (!SrcAlign || Alignment > *SrcAlign) 6526 SrcAlign = Alignment; 6527 assert(SrcAlign && "SrcAlign must be set"); 6528 ConstantDataArraySlice Slice; 6529 // If marked as volatile, perform a copy even when marked as constant. 6530 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6531 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6532 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6533 const MemOp Op = isZeroConstant 6534 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6535 /*IsZeroMemset*/ true, isVol) 6536 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6537 *SrcAlign, isVol, CopyFromConstant); 6538 if (!TLI.findOptimalMemOpLowering( 6539 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6540 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6541 return SDValue(); 6542 6543 if (DstAlignCanChange) { 6544 Type *Ty = MemOps[0].getTypeForEVT(C); 6545 Align NewAlign = DL.getABITypeAlign(Ty); 6546 6547 // Don't promote to an alignment that would require dynamic stack 6548 // realignment. 6549 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6550 if (!TRI->hasStackRealignment(MF)) 6551 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6552 NewAlign = NewAlign / 2; 6553 6554 if (NewAlign > Alignment) { 6555 // Give the stack frame object a larger alignment if needed. 6556 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6557 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6558 Alignment = NewAlign; 6559 } 6560 } 6561 6562 // Prepare AAInfo for loads/stores after lowering this memcpy. 6563 AAMDNodes NewAAInfo = AAInfo; 6564 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6565 6566 MachineMemOperand::Flags MMOFlags = 6567 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6568 SmallVector<SDValue, 16> OutLoadChains; 6569 SmallVector<SDValue, 16> OutStoreChains; 6570 SmallVector<SDValue, 32> OutChains; 6571 unsigned NumMemOps = MemOps.size(); 6572 uint64_t SrcOff = 0, DstOff = 0; 6573 for (unsigned i = 0; i != NumMemOps; ++i) { 6574 EVT VT = MemOps[i]; 6575 unsigned VTSize = VT.getSizeInBits() / 8; 6576 SDValue Value, Store; 6577 6578 if (VTSize > Size) { 6579 // Issuing an unaligned load / store pair that overlaps with the previous 6580 // pair. Adjust the offset accordingly. 6581 assert(i == NumMemOps-1 && i != 0); 6582 SrcOff -= VTSize - Size; 6583 DstOff -= VTSize - Size; 6584 } 6585 6586 if (CopyFromConstant && 6587 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6588 // It's unlikely a store of a vector immediate can be done in a single 6589 // instruction. It would require a load from a constantpool first. 6590 // We only handle zero vectors here. 6591 // FIXME: Handle other cases where store of vector immediate is done in 6592 // a single instruction. 6593 ConstantDataArraySlice SubSlice; 6594 if (SrcOff < Slice.Length) { 6595 SubSlice = Slice; 6596 SubSlice.move(SrcOff); 6597 } else { 6598 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6599 SubSlice.Array = nullptr; 6600 SubSlice.Offset = 0; 6601 SubSlice.Length = VTSize; 6602 } 6603 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6604 if (Value.getNode()) { 6605 Store = DAG.getStore( 6606 Chain, dl, Value, 6607 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6608 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6609 OutChains.push_back(Store); 6610 } 6611 } 6612 6613 if (!Store.getNode()) { 6614 // The type might not be legal for the target. This should only happen 6615 // if the type is smaller than a legal type, as on PPC, so the right 6616 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6617 // to Load/Store if NVT==VT. 6618 // FIXME does the case above also need this? 6619 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6620 assert(NVT.bitsGE(VT)); 6621 6622 bool isDereferenceable = 6623 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6624 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6625 if (isDereferenceable) 6626 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6627 6628 Value = DAG.getExtLoad( 6629 ISD::EXTLOAD, dl, NVT, Chain, 6630 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6631 SrcPtrInfo.getWithOffset(SrcOff), VT, 6632 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6633 OutLoadChains.push_back(Value.getValue(1)); 6634 6635 Store = DAG.getTruncStore( 6636 Chain, dl, Value, 6637 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6638 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6639 OutStoreChains.push_back(Store); 6640 } 6641 SrcOff += VTSize; 6642 DstOff += VTSize; 6643 Size -= VTSize; 6644 } 6645 6646 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6647 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6648 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6649 6650 if (NumLdStInMemcpy) { 6651 // It may be that memcpy might be converted to memset if it's memcpy 6652 // of constants. In such a case, we won't have loads and stores, but 6653 // just stores. In the absence of loads, there is nothing to gang up. 6654 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6655 // If target does not care, just leave as it. 6656 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6657 OutChains.push_back(OutLoadChains[i]); 6658 OutChains.push_back(OutStoreChains[i]); 6659 } 6660 } else { 6661 // Ld/St less than/equal limit set by target. 6662 if (NumLdStInMemcpy <= GluedLdStLimit) { 6663 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6664 NumLdStInMemcpy, OutLoadChains, 6665 OutStoreChains); 6666 } else { 6667 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6668 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6669 unsigned GlueIter = 0; 6670 6671 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6672 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6673 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6674 6675 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6676 OutLoadChains, OutStoreChains); 6677 GlueIter += GluedLdStLimit; 6678 } 6679 6680 // Residual ld/st. 6681 if (RemainingLdStInMemcpy) { 6682 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6683 RemainingLdStInMemcpy, OutLoadChains, 6684 OutStoreChains); 6685 } 6686 } 6687 } 6688 } 6689 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6690 } 6691 6692 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6693 SDValue Chain, SDValue Dst, SDValue Src, 6694 uint64_t Size, Align Alignment, 6695 bool isVol, bool AlwaysInline, 6696 MachinePointerInfo DstPtrInfo, 6697 MachinePointerInfo SrcPtrInfo, 6698 const AAMDNodes &AAInfo) { 6699 // Turn a memmove of undef to nop. 6700 // FIXME: We need to honor volatile even is Src is undef. 6701 if (Src.isUndef()) 6702 return Chain; 6703 6704 // Expand memmove to a series of load and store ops if the size operand falls 6705 // below a certain threshold. 6706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6707 const DataLayout &DL = DAG.getDataLayout(); 6708 LLVMContext &C = *DAG.getContext(); 6709 std::vector<EVT> MemOps; 6710 bool DstAlignCanChange = false; 6711 MachineFunction &MF = DAG.getMachineFunction(); 6712 MachineFrameInfo &MFI = MF.getFrameInfo(); 6713 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6714 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6715 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6716 DstAlignCanChange = true; 6717 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6718 if (!SrcAlign || Alignment > *SrcAlign) 6719 SrcAlign = Alignment; 6720 assert(SrcAlign && "SrcAlign must be set"); 6721 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6722 if (!TLI.findOptimalMemOpLowering( 6723 MemOps, Limit, 6724 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6725 /*IsVolatile*/ true), 6726 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6727 MF.getFunction().getAttributes())) 6728 return SDValue(); 6729 6730 if (DstAlignCanChange) { 6731 Type *Ty = MemOps[0].getTypeForEVT(C); 6732 Align NewAlign = DL.getABITypeAlign(Ty); 6733 if (NewAlign > Alignment) { 6734 // Give the stack frame object a larger alignment if needed. 6735 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6736 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6737 Alignment = NewAlign; 6738 } 6739 } 6740 6741 // Prepare AAInfo for loads/stores after lowering this memmove. 6742 AAMDNodes NewAAInfo = AAInfo; 6743 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6744 6745 MachineMemOperand::Flags MMOFlags = 6746 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6747 uint64_t SrcOff = 0, DstOff = 0; 6748 SmallVector<SDValue, 8> LoadValues; 6749 SmallVector<SDValue, 8> LoadChains; 6750 SmallVector<SDValue, 8> OutChains; 6751 unsigned NumMemOps = MemOps.size(); 6752 for (unsigned i = 0; i < NumMemOps; i++) { 6753 EVT VT = MemOps[i]; 6754 unsigned VTSize = VT.getSizeInBits() / 8; 6755 SDValue Value; 6756 6757 bool isDereferenceable = 6758 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6759 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6760 if (isDereferenceable) 6761 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6762 6763 Value = DAG.getLoad( 6764 VT, dl, Chain, 6765 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6766 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6767 LoadValues.push_back(Value); 6768 LoadChains.push_back(Value.getValue(1)); 6769 SrcOff += VTSize; 6770 } 6771 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6772 OutChains.clear(); 6773 for (unsigned i = 0; i < NumMemOps; i++) { 6774 EVT VT = MemOps[i]; 6775 unsigned VTSize = VT.getSizeInBits() / 8; 6776 SDValue Store; 6777 6778 Store = DAG.getStore( 6779 Chain, dl, LoadValues[i], 6780 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6781 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6782 OutChains.push_back(Store); 6783 DstOff += VTSize; 6784 } 6785 6786 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6787 } 6788 6789 /// Lower the call to 'memset' intrinsic function into a series of store 6790 /// operations. 6791 /// 6792 /// \param DAG Selection DAG where lowered code is placed. 6793 /// \param dl Link to corresponding IR location. 6794 /// \param Chain Control flow dependency. 6795 /// \param Dst Pointer to destination memory location. 6796 /// \param Src Value of byte to write into the memory. 6797 /// \param Size Number of bytes to write. 6798 /// \param Alignment Alignment of the destination in bytes. 6799 /// \param isVol True if destination is volatile. 6800 /// \param DstPtrInfo IR information on the memory pointer. 6801 /// \returns New head in the control flow, if lowering was successful, empty 6802 /// SDValue otherwise. 6803 /// 6804 /// The function tries to replace 'llvm.memset' intrinsic with several store 6805 /// operations and value calculation code. This is usually profitable for small 6806 /// memory size. 6807 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6808 SDValue Chain, SDValue Dst, SDValue Src, 6809 uint64_t Size, Align Alignment, bool isVol, 6810 MachinePointerInfo DstPtrInfo, 6811 const AAMDNodes &AAInfo) { 6812 // Turn a memset of undef to nop. 6813 // FIXME: We need to honor volatile even is Src is undef. 6814 if (Src.isUndef()) 6815 return Chain; 6816 6817 // Expand memset to a series of load/store ops if the size operand 6818 // falls below a certain threshold. 6819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6820 std::vector<EVT> MemOps; 6821 bool DstAlignCanChange = false; 6822 MachineFunction &MF = DAG.getMachineFunction(); 6823 MachineFrameInfo &MFI = MF.getFrameInfo(); 6824 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6825 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6826 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6827 DstAlignCanChange = true; 6828 bool IsZeroVal = 6829 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6830 if (!TLI.findOptimalMemOpLowering( 6831 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6832 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6833 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6834 return SDValue(); 6835 6836 if (DstAlignCanChange) { 6837 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6838 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6839 if (NewAlign > Alignment) { 6840 // Give the stack frame object a larger alignment if needed. 6841 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6842 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6843 Alignment = NewAlign; 6844 } 6845 } 6846 6847 SmallVector<SDValue, 8> OutChains; 6848 uint64_t DstOff = 0; 6849 unsigned NumMemOps = MemOps.size(); 6850 6851 // Find the largest store and generate the bit pattern for it. 6852 EVT LargestVT = MemOps[0]; 6853 for (unsigned i = 1; i < NumMemOps; i++) 6854 if (MemOps[i].bitsGT(LargestVT)) 6855 LargestVT = MemOps[i]; 6856 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6857 6858 // Prepare AAInfo for loads/stores after lowering this memset. 6859 AAMDNodes NewAAInfo = AAInfo; 6860 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6861 6862 for (unsigned i = 0; i < NumMemOps; i++) { 6863 EVT VT = MemOps[i]; 6864 unsigned VTSize = VT.getSizeInBits() / 8; 6865 if (VTSize > Size) { 6866 // Issuing an unaligned load / store pair that overlaps with the previous 6867 // pair. Adjust the offset accordingly. 6868 assert(i == NumMemOps-1 && i != 0); 6869 DstOff -= VTSize - Size; 6870 } 6871 6872 // If this store is smaller than the largest store see whether we can get 6873 // the smaller value for free with a truncate. 6874 SDValue Value = MemSetValue; 6875 if (VT.bitsLT(LargestVT)) { 6876 if (!LargestVT.isVector() && !VT.isVector() && 6877 TLI.isTruncateFree(LargestVT, VT)) 6878 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6879 else 6880 Value = getMemsetValue(Src, VT, DAG, dl); 6881 } 6882 assert(Value.getValueType() == VT && "Value with wrong type."); 6883 SDValue Store = DAG.getStore( 6884 Chain, dl, Value, 6885 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6886 DstPtrInfo.getWithOffset(DstOff), Alignment, 6887 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6888 NewAAInfo); 6889 OutChains.push_back(Store); 6890 DstOff += VT.getSizeInBits() / 8; 6891 Size -= VTSize; 6892 } 6893 6894 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6895 } 6896 6897 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6898 unsigned AS) { 6899 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6900 // pointer operands can be losslessly bitcasted to pointers of address space 0 6901 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6902 report_fatal_error("cannot lower memory intrinsic in address space " + 6903 Twine(AS)); 6904 } 6905 } 6906 6907 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6908 SDValue Src, SDValue Size, Align Alignment, 6909 bool isVol, bool AlwaysInline, bool isTailCall, 6910 MachinePointerInfo DstPtrInfo, 6911 MachinePointerInfo SrcPtrInfo, 6912 const AAMDNodes &AAInfo) { 6913 // Check to see if we should lower the memcpy to loads and stores first. 6914 // For cases within the target-specified limits, this is the best choice. 6915 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6916 if (ConstantSize) { 6917 // Memcpy with size zero? Just return the original chain. 6918 if (ConstantSize->isZero()) 6919 return Chain; 6920 6921 SDValue Result = getMemcpyLoadsAndStores( 6922 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6923 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6924 if (Result.getNode()) 6925 return Result; 6926 } 6927 6928 // Then check to see if we should lower the memcpy with target-specific 6929 // code. If the target chooses to do this, this is the next best. 6930 if (TSI) { 6931 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6932 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6933 DstPtrInfo, SrcPtrInfo); 6934 if (Result.getNode()) 6935 return Result; 6936 } 6937 6938 // If we really need inline code and the target declined to provide it, 6939 // use a (potentially long) sequence of loads and stores. 6940 if (AlwaysInline) { 6941 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6942 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6943 ConstantSize->getZExtValue(), Alignment, 6944 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6945 } 6946 6947 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6948 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6949 6950 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6951 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6952 // respect volatile, so they may do things like read or write memory 6953 // beyond the given memory regions. But fixing this isn't easy, and most 6954 // people don't care. 6955 6956 // Emit a library call. 6957 TargetLowering::ArgListTy Args; 6958 TargetLowering::ArgListEntry Entry; 6959 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6960 Entry.Node = Dst; Args.push_back(Entry); 6961 Entry.Node = Src; Args.push_back(Entry); 6962 6963 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6964 Entry.Node = Size; Args.push_back(Entry); 6965 // FIXME: pass in SDLoc 6966 TargetLowering::CallLoweringInfo CLI(*this); 6967 CLI.setDebugLoc(dl) 6968 .setChain(Chain) 6969 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6970 Dst.getValueType().getTypeForEVT(*getContext()), 6971 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6972 TLI->getPointerTy(getDataLayout())), 6973 std::move(Args)) 6974 .setDiscardResult() 6975 .setTailCall(isTailCall); 6976 6977 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6978 return CallResult.second; 6979 } 6980 6981 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6982 SDValue Dst, unsigned DstAlign, 6983 SDValue Src, unsigned SrcAlign, 6984 SDValue Size, Type *SizeTy, 6985 unsigned ElemSz, bool isTailCall, 6986 MachinePointerInfo DstPtrInfo, 6987 MachinePointerInfo SrcPtrInfo) { 6988 // Emit a library call. 6989 TargetLowering::ArgListTy Args; 6990 TargetLowering::ArgListEntry Entry; 6991 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6992 Entry.Node = Dst; 6993 Args.push_back(Entry); 6994 6995 Entry.Node = Src; 6996 Args.push_back(Entry); 6997 6998 Entry.Ty = SizeTy; 6999 Entry.Node = Size; 7000 Args.push_back(Entry); 7001 7002 RTLIB::Libcall LibraryCall = 7003 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7004 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7005 report_fatal_error("Unsupported element size"); 7006 7007 TargetLowering::CallLoweringInfo CLI(*this); 7008 CLI.setDebugLoc(dl) 7009 .setChain(Chain) 7010 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7011 Type::getVoidTy(*getContext()), 7012 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7013 TLI->getPointerTy(getDataLayout())), 7014 std::move(Args)) 7015 .setDiscardResult() 7016 .setTailCall(isTailCall); 7017 7018 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7019 return CallResult.second; 7020 } 7021 7022 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7023 SDValue Src, SDValue Size, Align Alignment, 7024 bool isVol, bool isTailCall, 7025 MachinePointerInfo DstPtrInfo, 7026 MachinePointerInfo SrcPtrInfo, 7027 const AAMDNodes &AAInfo) { 7028 // Check to see if we should lower the memmove to loads and stores first. 7029 // For cases within the target-specified limits, this is the best choice. 7030 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7031 if (ConstantSize) { 7032 // Memmove with size zero? Just return the original chain. 7033 if (ConstantSize->isZero()) 7034 return Chain; 7035 7036 SDValue Result = getMemmoveLoadsAndStores( 7037 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7038 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7039 if (Result.getNode()) 7040 return Result; 7041 } 7042 7043 // Then check to see if we should lower the memmove with target-specific 7044 // code. If the target chooses to do this, this is the next best. 7045 if (TSI) { 7046 SDValue Result = 7047 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7048 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7049 if (Result.getNode()) 7050 return Result; 7051 } 7052 7053 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7054 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7055 7056 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7057 // not be safe. See memcpy above for more details. 7058 7059 // Emit a library call. 7060 TargetLowering::ArgListTy Args; 7061 TargetLowering::ArgListEntry Entry; 7062 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7063 Entry.Node = Dst; Args.push_back(Entry); 7064 Entry.Node = Src; Args.push_back(Entry); 7065 7066 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7067 Entry.Node = Size; Args.push_back(Entry); 7068 // FIXME: pass in SDLoc 7069 TargetLowering::CallLoweringInfo CLI(*this); 7070 CLI.setDebugLoc(dl) 7071 .setChain(Chain) 7072 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7073 Dst.getValueType().getTypeForEVT(*getContext()), 7074 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7075 TLI->getPointerTy(getDataLayout())), 7076 std::move(Args)) 7077 .setDiscardResult() 7078 .setTailCall(isTailCall); 7079 7080 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7081 return CallResult.second; 7082 } 7083 7084 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7085 SDValue Dst, unsigned DstAlign, 7086 SDValue Src, unsigned SrcAlign, 7087 SDValue Size, Type *SizeTy, 7088 unsigned ElemSz, bool isTailCall, 7089 MachinePointerInfo DstPtrInfo, 7090 MachinePointerInfo SrcPtrInfo) { 7091 // Emit a library call. 7092 TargetLowering::ArgListTy Args; 7093 TargetLowering::ArgListEntry Entry; 7094 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7095 Entry.Node = Dst; 7096 Args.push_back(Entry); 7097 7098 Entry.Node = Src; 7099 Args.push_back(Entry); 7100 7101 Entry.Ty = SizeTy; 7102 Entry.Node = Size; 7103 Args.push_back(Entry); 7104 7105 RTLIB::Libcall LibraryCall = 7106 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7107 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7108 report_fatal_error("Unsupported element size"); 7109 7110 TargetLowering::CallLoweringInfo CLI(*this); 7111 CLI.setDebugLoc(dl) 7112 .setChain(Chain) 7113 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7114 Type::getVoidTy(*getContext()), 7115 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7116 TLI->getPointerTy(getDataLayout())), 7117 std::move(Args)) 7118 .setDiscardResult() 7119 .setTailCall(isTailCall); 7120 7121 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7122 return CallResult.second; 7123 } 7124 7125 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7126 SDValue Src, SDValue Size, Align Alignment, 7127 bool isVol, bool isTailCall, 7128 MachinePointerInfo DstPtrInfo, 7129 const AAMDNodes &AAInfo) { 7130 // Check to see if we should lower the memset to stores first. 7131 // For cases within the target-specified limits, this is the best choice. 7132 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7133 if (ConstantSize) { 7134 // Memset with size zero? Just return the original chain. 7135 if (ConstantSize->isZero()) 7136 return Chain; 7137 7138 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7139 ConstantSize->getZExtValue(), Alignment, 7140 isVol, DstPtrInfo, AAInfo); 7141 7142 if (Result.getNode()) 7143 return Result; 7144 } 7145 7146 // Then check to see if we should lower the memset with target-specific 7147 // code. If the target chooses to do this, this is the next best. 7148 if (TSI) { 7149 SDValue Result = TSI->EmitTargetCodeForMemset( 7150 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7151 if (Result.getNode()) 7152 return Result; 7153 } 7154 7155 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7156 7157 // Emit a library call. 7158 TargetLowering::ArgListTy Args; 7159 TargetLowering::ArgListEntry Entry; 7160 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7161 Args.push_back(Entry); 7162 Entry.Node = Src; 7163 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7164 Args.push_back(Entry); 7165 Entry.Node = Size; 7166 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7167 Args.push_back(Entry); 7168 7169 // FIXME: pass in SDLoc 7170 TargetLowering::CallLoweringInfo CLI(*this); 7171 CLI.setDebugLoc(dl) 7172 .setChain(Chain) 7173 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7174 Dst.getValueType().getTypeForEVT(*getContext()), 7175 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7176 TLI->getPointerTy(getDataLayout())), 7177 std::move(Args)) 7178 .setDiscardResult() 7179 .setTailCall(isTailCall); 7180 7181 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7182 return CallResult.second; 7183 } 7184 7185 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7186 SDValue Dst, unsigned DstAlign, 7187 SDValue Value, SDValue Size, Type *SizeTy, 7188 unsigned ElemSz, bool isTailCall, 7189 MachinePointerInfo DstPtrInfo) { 7190 // Emit a library call. 7191 TargetLowering::ArgListTy Args; 7192 TargetLowering::ArgListEntry Entry; 7193 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7194 Entry.Node = Dst; 7195 Args.push_back(Entry); 7196 7197 Entry.Ty = Type::getInt8Ty(*getContext()); 7198 Entry.Node = Value; 7199 Args.push_back(Entry); 7200 7201 Entry.Ty = SizeTy; 7202 Entry.Node = Size; 7203 Args.push_back(Entry); 7204 7205 RTLIB::Libcall LibraryCall = 7206 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7207 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7208 report_fatal_error("Unsupported element size"); 7209 7210 TargetLowering::CallLoweringInfo CLI(*this); 7211 CLI.setDebugLoc(dl) 7212 .setChain(Chain) 7213 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7214 Type::getVoidTy(*getContext()), 7215 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7216 TLI->getPointerTy(getDataLayout())), 7217 std::move(Args)) 7218 .setDiscardResult() 7219 .setTailCall(isTailCall); 7220 7221 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7222 return CallResult.second; 7223 } 7224 7225 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7226 SDVTList VTList, ArrayRef<SDValue> Ops, 7227 MachineMemOperand *MMO) { 7228 FoldingSetNodeID ID; 7229 ID.AddInteger(MemVT.getRawBits()); 7230 AddNodeIDNode(ID, Opcode, VTList, Ops); 7231 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7232 void* IP = nullptr; 7233 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7234 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7235 return SDValue(E, 0); 7236 } 7237 7238 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7239 VTList, MemVT, MMO); 7240 createOperands(N, Ops); 7241 7242 CSEMap.InsertNode(N, IP); 7243 InsertNode(N); 7244 return SDValue(N, 0); 7245 } 7246 7247 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7248 EVT MemVT, SDVTList VTs, SDValue Chain, 7249 SDValue Ptr, SDValue Cmp, SDValue Swp, 7250 MachineMemOperand *MMO) { 7251 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7252 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7253 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7254 7255 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7256 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7257 } 7258 7259 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7260 SDValue Chain, SDValue Ptr, SDValue Val, 7261 MachineMemOperand *MMO) { 7262 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7263 Opcode == ISD::ATOMIC_LOAD_SUB || 7264 Opcode == ISD::ATOMIC_LOAD_AND || 7265 Opcode == ISD::ATOMIC_LOAD_CLR || 7266 Opcode == ISD::ATOMIC_LOAD_OR || 7267 Opcode == ISD::ATOMIC_LOAD_XOR || 7268 Opcode == ISD::ATOMIC_LOAD_NAND || 7269 Opcode == ISD::ATOMIC_LOAD_MIN || 7270 Opcode == ISD::ATOMIC_LOAD_MAX || 7271 Opcode == ISD::ATOMIC_LOAD_UMIN || 7272 Opcode == ISD::ATOMIC_LOAD_UMAX || 7273 Opcode == ISD::ATOMIC_LOAD_FADD || 7274 Opcode == ISD::ATOMIC_LOAD_FSUB || 7275 Opcode == ISD::ATOMIC_SWAP || 7276 Opcode == ISD::ATOMIC_STORE) && 7277 "Invalid Atomic Op"); 7278 7279 EVT VT = Val.getValueType(); 7280 7281 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7282 getVTList(VT, MVT::Other); 7283 SDValue Ops[] = {Chain, Ptr, Val}; 7284 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7285 } 7286 7287 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7288 EVT VT, SDValue Chain, SDValue Ptr, 7289 MachineMemOperand *MMO) { 7290 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7291 7292 SDVTList VTs = getVTList(VT, MVT::Other); 7293 SDValue Ops[] = {Chain, Ptr}; 7294 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7295 } 7296 7297 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7298 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7299 if (Ops.size() == 1) 7300 return Ops[0]; 7301 7302 SmallVector<EVT, 4> VTs; 7303 VTs.reserve(Ops.size()); 7304 for (const SDValue &Op : Ops) 7305 VTs.push_back(Op.getValueType()); 7306 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7307 } 7308 7309 SDValue SelectionDAG::getMemIntrinsicNode( 7310 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7311 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7312 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7313 if (!Size && MemVT.isScalableVector()) 7314 Size = MemoryLocation::UnknownSize; 7315 else if (!Size) 7316 Size = MemVT.getStoreSize(); 7317 7318 MachineFunction &MF = getMachineFunction(); 7319 MachineMemOperand *MMO = 7320 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7321 7322 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7323 } 7324 7325 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7326 SDVTList VTList, 7327 ArrayRef<SDValue> Ops, EVT MemVT, 7328 MachineMemOperand *MMO) { 7329 assert((Opcode == ISD::INTRINSIC_VOID || 7330 Opcode == ISD::INTRINSIC_W_CHAIN || 7331 Opcode == ISD::PREFETCH || 7332 ((int)Opcode <= std::numeric_limits<int>::max() && 7333 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7334 "Opcode is not a memory-accessing opcode!"); 7335 7336 // Memoize the node unless it returns a flag. 7337 MemIntrinsicSDNode *N; 7338 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7339 FoldingSetNodeID ID; 7340 AddNodeIDNode(ID, Opcode, VTList, Ops); 7341 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7342 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7343 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7344 void *IP = nullptr; 7345 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7346 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7347 return SDValue(E, 0); 7348 } 7349 7350 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7351 VTList, MemVT, MMO); 7352 createOperands(N, Ops); 7353 7354 CSEMap.InsertNode(N, IP); 7355 } else { 7356 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7357 VTList, MemVT, MMO); 7358 createOperands(N, Ops); 7359 } 7360 InsertNode(N); 7361 SDValue V(N, 0); 7362 NewSDValueDbgMsg(V, "Creating new node: ", this); 7363 return V; 7364 } 7365 7366 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7367 SDValue Chain, int FrameIndex, 7368 int64_t Size, int64_t Offset) { 7369 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7370 const auto VTs = getVTList(MVT::Other); 7371 SDValue Ops[2] = { 7372 Chain, 7373 getFrameIndex(FrameIndex, 7374 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7375 true)}; 7376 7377 FoldingSetNodeID ID; 7378 AddNodeIDNode(ID, Opcode, VTs, Ops); 7379 ID.AddInteger(FrameIndex); 7380 ID.AddInteger(Size); 7381 ID.AddInteger(Offset); 7382 void *IP = nullptr; 7383 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7384 return SDValue(E, 0); 7385 7386 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7387 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7388 createOperands(N, Ops); 7389 CSEMap.InsertNode(N, IP); 7390 InsertNode(N); 7391 SDValue V(N, 0); 7392 NewSDValueDbgMsg(V, "Creating new node: ", this); 7393 return V; 7394 } 7395 7396 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7397 uint64_t Guid, uint64_t Index, 7398 uint32_t Attr) { 7399 const unsigned Opcode = ISD::PSEUDO_PROBE; 7400 const auto VTs = getVTList(MVT::Other); 7401 SDValue Ops[] = {Chain}; 7402 FoldingSetNodeID ID; 7403 AddNodeIDNode(ID, Opcode, VTs, Ops); 7404 ID.AddInteger(Guid); 7405 ID.AddInteger(Index); 7406 void *IP = nullptr; 7407 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7408 return SDValue(E, 0); 7409 7410 auto *N = newSDNode<PseudoProbeSDNode>( 7411 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7412 createOperands(N, Ops); 7413 CSEMap.InsertNode(N, IP); 7414 InsertNode(N); 7415 SDValue V(N, 0); 7416 NewSDValueDbgMsg(V, "Creating new node: ", this); 7417 return V; 7418 } 7419 7420 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7421 /// MachinePointerInfo record from it. This is particularly useful because the 7422 /// code generator has many cases where it doesn't bother passing in a 7423 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7424 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7425 SelectionDAG &DAG, SDValue Ptr, 7426 int64_t Offset = 0) { 7427 // If this is FI+Offset, we can model it. 7428 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7429 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7430 FI->getIndex(), Offset); 7431 7432 // If this is (FI+Offset1)+Offset2, we can model it. 7433 if (Ptr.getOpcode() != ISD::ADD || 7434 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7435 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7436 return Info; 7437 7438 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7439 return MachinePointerInfo::getFixedStack( 7440 DAG.getMachineFunction(), FI, 7441 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7442 } 7443 7444 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7445 /// MachinePointerInfo record from it. This is particularly useful because the 7446 /// code generator has many cases where it doesn't bother passing in a 7447 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7448 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7449 SelectionDAG &DAG, SDValue Ptr, 7450 SDValue OffsetOp) { 7451 // If the 'Offset' value isn't a constant, we can't handle this. 7452 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7453 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7454 if (OffsetOp.isUndef()) 7455 return InferPointerInfo(Info, DAG, Ptr); 7456 return Info; 7457 } 7458 7459 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7460 EVT VT, const SDLoc &dl, SDValue Chain, 7461 SDValue Ptr, SDValue Offset, 7462 MachinePointerInfo PtrInfo, EVT MemVT, 7463 Align Alignment, 7464 MachineMemOperand::Flags MMOFlags, 7465 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7466 assert(Chain.getValueType() == MVT::Other && 7467 "Invalid chain type"); 7468 7469 MMOFlags |= MachineMemOperand::MOLoad; 7470 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7471 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7472 // clients. 7473 if (PtrInfo.V.isNull()) 7474 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7475 7476 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7477 MachineFunction &MF = getMachineFunction(); 7478 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7479 Alignment, AAInfo, Ranges); 7480 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7481 } 7482 7483 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7484 EVT VT, const SDLoc &dl, SDValue Chain, 7485 SDValue Ptr, SDValue Offset, EVT MemVT, 7486 MachineMemOperand *MMO) { 7487 if (VT == MemVT) { 7488 ExtType = ISD::NON_EXTLOAD; 7489 } else if (ExtType == ISD::NON_EXTLOAD) { 7490 assert(VT == MemVT && "Non-extending load from different memory type!"); 7491 } else { 7492 // Extending load. 7493 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7494 "Should only be an extending load, not truncating!"); 7495 assert(VT.isInteger() == MemVT.isInteger() && 7496 "Cannot convert from FP to Int or Int -> FP!"); 7497 assert(VT.isVector() == MemVT.isVector() && 7498 "Cannot use an ext load to convert to or from a vector!"); 7499 assert((!VT.isVector() || 7500 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7501 "Cannot use an ext load to change the number of vector elements!"); 7502 } 7503 7504 bool Indexed = AM != ISD::UNINDEXED; 7505 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7506 7507 SDVTList VTs = Indexed ? 7508 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7509 SDValue Ops[] = { Chain, Ptr, Offset }; 7510 FoldingSetNodeID ID; 7511 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7512 ID.AddInteger(MemVT.getRawBits()); 7513 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7514 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7515 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7516 void *IP = nullptr; 7517 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7518 cast<LoadSDNode>(E)->refineAlignment(MMO); 7519 return SDValue(E, 0); 7520 } 7521 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7522 ExtType, MemVT, MMO); 7523 createOperands(N, Ops); 7524 7525 CSEMap.InsertNode(N, IP); 7526 InsertNode(N); 7527 SDValue V(N, 0); 7528 NewSDValueDbgMsg(V, "Creating new node: ", this); 7529 return V; 7530 } 7531 7532 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7533 SDValue Ptr, MachinePointerInfo PtrInfo, 7534 MaybeAlign Alignment, 7535 MachineMemOperand::Flags MMOFlags, 7536 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7537 SDValue Undef = getUNDEF(Ptr.getValueType()); 7538 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7539 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7540 } 7541 7542 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7543 SDValue Ptr, MachineMemOperand *MMO) { 7544 SDValue Undef = getUNDEF(Ptr.getValueType()); 7545 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7546 VT, MMO); 7547 } 7548 7549 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7550 EVT VT, SDValue Chain, SDValue Ptr, 7551 MachinePointerInfo PtrInfo, EVT MemVT, 7552 MaybeAlign Alignment, 7553 MachineMemOperand::Flags MMOFlags, 7554 const AAMDNodes &AAInfo) { 7555 SDValue Undef = getUNDEF(Ptr.getValueType()); 7556 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7557 MemVT, Alignment, MMOFlags, AAInfo); 7558 } 7559 7560 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7561 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7562 MachineMemOperand *MMO) { 7563 SDValue Undef = getUNDEF(Ptr.getValueType()); 7564 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7565 MemVT, MMO); 7566 } 7567 7568 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7569 SDValue Base, SDValue Offset, 7570 ISD::MemIndexedMode AM) { 7571 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7572 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7573 // Don't propagate the invariant or dereferenceable flags. 7574 auto MMOFlags = 7575 LD->getMemOperand()->getFlags() & 7576 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7577 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7578 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7579 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7580 } 7581 7582 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7583 SDValue Ptr, MachinePointerInfo PtrInfo, 7584 Align Alignment, 7585 MachineMemOperand::Flags MMOFlags, 7586 const AAMDNodes &AAInfo) { 7587 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7588 7589 MMOFlags |= MachineMemOperand::MOStore; 7590 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7591 7592 if (PtrInfo.V.isNull()) 7593 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7594 7595 MachineFunction &MF = getMachineFunction(); 7596 uint64_t Size = 7597 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7598 MachineMemOperand *MMO = 7599 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7600 return getStore(Chain, dl, Val, Ptr, MMO); 7601 } 7602 7603 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7604 SDValue Ptr, MachineMemOperand *MMO) { 7605 assert(Chain.getValueType() == MVT::Other && 7606 "Invalid chain type"); 7607 EVT VT = Val.getValueType(); 7608 SDVTList VTs = getVTList(MVT::Other); 7609 SDValue Undef = getUNDEF(Ptr.getValueType()); 7610 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7611 FoldingSetNodeID ID; 7612 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7613 ID.AddInteger(VT.getRawBits()); 7614 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7615 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7616 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7617 void *IP = nullptr; 7618 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7619 cast<StoreSDNode>(E)->refineAlignment(MMO); 7620 return SDValue(E, 0); 7621 } 7622 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7623 ISD::UNINDEXED, false, VT, MMO); 7624 createOperands(N, Ops); 7625 7626 CSEMap.InsertNode(N, IP); 7627 InsertNode(N); 7628 SDValue V(N, 0); 7629 NewSDValueDbgMsg(V, "Creating new node: ", this); 7630 return V; 7631 } 7632 7633 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7634 SDValue Ptr, MachinePointerInfo PtrInfo, 7635 EVT SVT, Align Alignment, 7636 MachineMemOperand::Flags MMOFlags, 7637 const AAMDNodes &AAInfo) { 7638 assert(Chain.getValueType() == MVT::Other && 7639 "Invalid chain type"); 7640 7641 MMOFlags |= MachineMemOperand::MOStore; 7642 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7643 7644 if (PtrInfo.V.isNull()) 7645 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7646 7647 MachineFunction &MF = getMachineFunction(); 7648 MachineMemOperand *MMO = MF.getMachineMemOperand( 7649 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7650 Alignment, AAInfo); 7651 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7652 } 7653 7654 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7655 SDValue Ptr, EVT SVT, 7656 MachineMemOperand *MMO) { 7657 EVT VT = Val.getValueType(); 7658 7659 assert(Chain.getValueType() == MVT::Other && 7660 "Invalid chain type"); 7661 if (VT == SVT) 7662 return getStore(Chain, dl, Val, Ptr, MMO); 7663 7664 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7665 "Should only be a truncating store, not extending!"); 7666 assert(VT.isInteger() == SVT.isInteger() && 7667 "Can't do FP-INT conversion!"); 7668 assert(VT.isVector() == SVT.isVector() && 7669 "Cannot use trunc store to convert to or from a vector!"); 7670 assert((!VT.isVector() || 7671 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7672 "Cannot use trunc store to change the number of vector elements!"); 7673 7674 SDVTList VTs = getVTList(MVT::Other); 7675 SDValue Undef = getUNDEF(Ptr.getValueType()); 7676 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7677 FoldingSetNodeID ID; 7678 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7679 ID.AddInteger(SVT.getRawBits()); 7680 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7681 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7682 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7683 void *IP = nullptr; 7684 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7685 cast<StoreSDNode>(E)->refineAlignment(MMO); 7686 return SDValue(E, 0); 7687 } 7688 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7689 ISD::UNINDEXED, true, SVT, MMO); 7690 createOperands(N, Ops); 7691 7692 CSEMap.InsertNode(N, IP); 7693 InsertNode(N); 7694 SDValue V(N, 0); 7695 NewSDValueDbgMsg(V, "Creating new node: ", this); 7696 return V; 7697 } 7698 7699 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7700 SDValue Base, SDValue Offset, 7701 ISD::MemIndexedMode AM) { 7702 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7703 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7704 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7705 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7706 FoldingSetNodeID ID; 7707 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7708 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7709 ID.AddInteger(ST->getRawSubclassData()); 7710 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7711 void *IP = nullptr; 7712 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7713 return SDValue(E, 0); 7714 7715 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7716 ST->isTruncatingStore(), ST->getMemoryVT(), 7717 ST->getMemOperand()); 7718 createOperands(N, Ops); 7719 7720 CSEMap.InsertNode(N, IP); 7721 InsertNode(N); 7722 SDValue V(N, 0); 7723 NewSDValueDbgMsg(V, "Creating new node: ", this); 7724 return V; 7725 } 7726 7727 SDValue SelectionDAG::getLoadVP( 7728 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7729 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7730 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7731 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7732 const MDNode *Ranges, bool IsExpanding) { 7733 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7734 7735 MMOFlags |= MachineMemOperand::MOLoad; 7736 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7737 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7738 // clients. 7739 if (PtrInfo.V.isNull()) 7740 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7741 7742 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7743 MachineFunction &MF = getMachineFunction(); 7744 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7745 Alignment, AAInfo, Ranges); 7746 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7747 MMO, IsExpanding); 7748 } 7749 7750 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7751 ISD::LoadExtType ExtType, EVT VT, 7752 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7753 SDValue Offset, SDValue Mask, SDValue EVL, 7754 EVT MemVT, MachineMemOperand *MMO, 7755 bool IsExpanding) { 7756 bool Indexed = AM != ISD::UNINDEXED; 7757 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7758 7759 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7760 : getVTList(VT, MVT::Other); 7761 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7762 FoldingSetNodeID ID; 7763 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7764 ID.AddInteger(VT.getRawBits()); 7765 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7766 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7767 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7768 void *IP = nullptr; 7769 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7770 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7771 return SDValue(E, 0); 7772 } 7773 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7774 ExtType, IsExpanding, MemVT, MMO); 7775 createOperands(N, Ops); 7776 7777 CSEMap.InsertNode(N, IP); 7778 InsertNode(N); 7779 SDValue V(N, 0); 7780 NewSDValueDbgMsg(V, "Creating new node: ", this); 7781 return V; 7782 } 7783 7784 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7785 SDValue Ptr, SDValue Mask, SDValue EVL, 7786 MachinePointerInfo PtrInfo, 7787 MaybeAlign Alignment, 7788 MachineMemOperand::Flags MMOFlags, 7789 const AAMDNodes &AAInfo, const MDNode *Ranges, 7790 bool IsExpanding) { 7791 SDValue Undef = getUNDEF(Ptr.getValueType()); 7792 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7793 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7794 IsExpanding); 7795 } 7796 7797 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7798 SDValue Ptr, SDValue Mask, SDValue EVL, 7799 MachineMemOperand *MMO, bool IsExpanding) { 7800 SDValue Undef = getUNDEF(Ptr.getValueType()); 7801 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7802 Mask, EVL, VT, MMO, IsExpanding); 7803 } 7804 7805 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7806 EVT VT, SDValue Chain, SDValue Ptr, 7807 SDValue Mask, SDValue EVL, 7808 MachinePointerInfo PtrInfo, EVT MemVT, 7809 MaybeAlign Alignment, 7810 MachineMemOperand::Flags MMOFlags, 7811 const AAMDNodes &AAInfo, bool IsExpanding) { 7812 SDValue Undef = getUNDEF(Ptr.getValueType()); 7813 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7814 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7815 IsExpanding); 7816 } 7817 7818 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7819 EVT VT, SDValue Chain, SDValue Ptr, 7820 SDValue Mask, SDValue EVL, EVT MemVT, 7821 MachineMemOperand *MMO, bool IsExpanding) { 7822 SDValue Undef = getUNDEF(Ptr.getValueType()); 7823 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7824 EVL, MemVT, MMO, IsExpanding); 7825 } 7826 7827 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7828 SDValue Base, SDValue Offset, 7829 ISD::MemIndexedMode AM) { 7830 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7831 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7832 // Don't propagate the invariant or dereferenceable flags. 7833 auto MMOFlags = 7834 LD->getMemOperand()->getFlags() & 7835 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7836 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7837 LD->getChain(), Base, Offset, LD->getMask(), 7838 LD->getVectorLength(), LD->getPointerInfo(), 7839 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7840 nullptr, LD->isExpandingLoad()); 7841 } 7842 7843 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7844 SDValue Ptr, SDValue Offset, SDValue Mask, 7845 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7846 ISD::MemIndexedMode AM, bool IsTruncating, 7847 bool IsCompressing) { 7848 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7849 bool Indexed = AM != ISD::UNINDEXED; 7850 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7851 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7852 : getVTList(MVT::Other); 7853 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7854 FoldingSetNodeID ID; 7855 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7856 ID.AddInteger(MemVT.getRawBits()); 7857 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7858 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7859 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7860 void *IP = nullptr; 7861 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7862 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7863 return SDValue(E, 0); 7864 } 7865 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7866 IsTruncating, IsCompressing, MemVT, MMO); 7867 createOperands(N, Ops); 7868 7869 CSEMap.InsertNode(N, IP); 7870 InsertNode(N); 7871 SDValue V(N, 0); 7872 NewSDValueDbgMsg(V, "Creating new node: ", this); 7873 return V; 7874 } 7875 7876 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7877 SDValue Val, SDValue Ptr, SDValue Mask, 7878 SDValue EVL, MachinePointerInfo PtrInfo, 7879 EVT SVT, Align Alignment, 7880 MachineMemOperand::Flags MMOFlags, 7881 const AAMDNodes &AAInfo, 7882 bool IsCompressing) { 7883 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7884 7885 MMOFlags |= MachineMemOperand::MOStore; 7886 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7887 7888 if (PtrInfo.V.isNull()) 7889 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7890 7891 MachineFunction &MF = getMachineFunction(); 7892 MachineMemOperand *MMO = MF.getMachineMemOperand( 7893 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7894 Alignment, AAInfo); 7895 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7896 IsCompressing); 7897 } 7898 7899 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7900 SDValue Val, SDValue Ptr, SDValue Mask, 7901 SDValue EVL, EVT SVT, 7902 MachineMemOperand *MMO, 7903 bool IsCompressing) { 7904 EVT VT = Val.getValueType(); 7905 7906 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7907 if (VT == SVT) 7908 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7909 EVL, VT, MMO, ISD::UNINDEXED, 7910 /*IsTruncating*/ false, IsCompressing); 7911 7912 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7913 "Should only be a truncating store, not extending!"); 7914 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7915 assert(VT.isVector() == SVT.isVector() && 7916 "Cannot use trunc store to convert to or from a vector!"); 7917 assert((!VT.isVector() || 7918 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7919 "Cannot use trunc store to change the number of vector elements!"); 7920 7921 SDVTList VTs = getVTList(MVT::Other); 7922 SDValue Undef = getUNDEF(Ptr.getValueType()); 7923 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7924 FoldingSetNodeID ID; 7925 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7926 ID.AddInteger(SVT.getRawBits()); 7927 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7928 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7929 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7930 void *IP = nullptr; 7931 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7932 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7933 return SDValue(E, 0); 7934 } 7935 auto *N = 7936 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7937 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7938 createOperands(N, Ops); 7939 7940 CSEMap.InsertNode(N, IP); 7941 InsertNode(N); 7942 SDValue V(N, 0); 7943 NewSDValueDbgMsg(V, "Creating new node: ", this); 7944 return V; 7945 } 7946 7947 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7948 SDValue Base, SDValue Offset, 7949 ISD::MemIndexedMode AM) { 7950 auto *ST = cast<VPStoreSDNode>(OrigStore); 7951 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7952 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7953 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7954 Offset, ST->getMask(), ST->getVectorLength()}; 7955 FoldingSetNodeID ID; 7956 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7957 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7958 ID.AddInteger(ST->getRawSubclassData()); 7959 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7960 void *IP = nullptr; 7961 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7962 return SDValue(E, 0); 7963 7964 auto *N = newSDNode<VPStoreSDNode>( 7965 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7966 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7967 createOperands(N, Ops); 7968 7969 CSEMap.InsertNode(N, IP); 7970 InsertNode(N); 7971 SDValue V(N, 0); 7972 NewSDValueDbgMsg(V, "Creating new node: ", this); 7973 return V; 7974 } 7975 7976 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7977 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7978 ISD::MemIndexType IndexType) { 7979 assert(Ops.size() == 6 && "Incompatible number of operands"); 7980 7981 FoldingSetNodeID ID; 7982 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7983 ID.AddInteger(VT.getRawBits()); 7984 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7985 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7986 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7987 void *IP = nullptr; 7988 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7989 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7990 return SDValue(E, 0); 7991 } 7992 7993 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7994 VT, MMO, IndexType); 7995 createOperands(N, Ops); 7996 7997 assert(N->getMask().getValueType().getVectorElementCount() == 7998 N->getValueType(0).getVectorElementCount() && 7999 "Vector width mismatch between mask and data"); 8000 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8001 N->getValueType(0).getVectorElementCount().isScalable() && 8002 "Scalable flags of index and data do not match"); 8003 assert(ElementCount::isKnownGE( 8004 N->getIndex().getValueType().getVectorElementCount(), 8005 N->getValueType(0).getVectorElementCount()) && 8006 "Vector width mismatch between index and data"); 8007 assert(isa<ConstantSDNode>(N->getScale()) && 8008 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8009 "Scale should be a constant power of 2"); 8010 8011 CSEMap.InsertNode(N, IP); 8012 InsertNode(N); 8013 SDValue V(N, 0); 8014 NewSDValueDbgMsg(V, "Creating new node: ", this); 8015 return V; 8016 } 8017 8018 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8019 ArrayRef<SDValue> Ops, 8020 MachineMemOperand *MMO, 8021 ISD::MemIndexType IndexType) { 8022 assert(Ops.size() == 7 && "Incompatible number of operands"); 8023 8024 FoldingSetNodeID ID; 8025 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8026 ID.AddInteger(VT.getRawBits()); 8027 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8028 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8029 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8030 void *IP = nullptr; 8031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8032 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8033 return SDValue(E, 0); 8034 } 8035 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8036 VT, MMO, IndexType); 8037 createOperands(N, Ops); 8038 8039 assert(N->getMask().getValueType().getVectorElementCount() == 8040 N->getValue().getValueType().getVectorElementCount() && 8041 "Vector width mismatch between mask and data"); 8042 assert( 8043 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8044 N->getValue().getValueType().getVectorElementCount().isScalable() && 8045 "Scalable flags of index and data do not match"); 8046 assert(ElementCount::isKnownGE( 8047 N->getIndex().getValueType().getVectorElementCount(), 8048 N->getValue().getValueType().getVectorElementCount()) && 8049 "Vector width mismatch between index and data"); 8050 assert(isa<ConstantSDNode>(N->getScale()) && 8051 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8052 "Scale should be a constant power of 2"); 8053 8054 CSEMap.InsertNode(N, IP); 8055 InsertNode(N); 8056 SDValue V(N, 0); 8057 NewSDValueDbgMsg(V, "Creating new node: ", this); 8058 return V; 8059 } 8060 8061 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8062 SDValue Base, SDValue Offset, SDValue Mask, 8063 SDValue PassThru, EVT MemVT, 8064 MachineMemOperand *MMO, 8065 ISD::MemIndexedMode AM, 8066 ISD::LoadExtType ExtTy, bool isExpanding) { 8067 bool Indexed = AM != ISD::UNINDEXED; 8068 assert((Indexed || Offset.isUndef()) && 8069 "Unindexed masked load with an offset!"); 8070 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8071 : getVTList(VT, MVT::Other); 8072 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8073 FoldingSetNodeID ID; 8074 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8075 ID.AddInteger(MemVT.getRawBits()); 8076 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8077 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8078 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8079 void *IP = nullptr; 8080 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8081 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8082 return SDValue(E, 0); 8083 } 8084 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8085 AM, ExtTy, isExpanding, MemVT, MMO); 8086 createOperands(N, Ops); 8087 8088 CSEMap.InsertNode(N, IP); 8089 InsertNode(N); 8090 SDValue V(N, 0); 8091 NewSDValueDbgMsg(V, "Creating new node: ", this); 8092 return V; 8093 } 8094 8095 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8096 SDValue Base, SDValue Offset, 8097 ISD::MemIndexedMode AM) { 8098 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8099 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8100 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8101 Offset, LD->getMask(), LD->getPassThru(), 8102 LD->getMemoryVT(), LD->getMemOperand(), AM, 8103 LD->getExtensionType(), LD->isExpandingLoad()); 8104 } 8105 8106 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8107 SDValue Val, SDValue Base, SDValue Offset, 8108 SDValue Mask, EVT MemVT, 8109 MachineMemOperand *MMO, 8110 ISD::MemIndexedMode AM, bool IsTruncating, 8111 bool IsCompressing) { 8112 assert(Chain.getValueType() == MVT::Other && 8113 "Invalid chain type"); 8114 bool Indexed = AM != ISD::UNINDEXED; 8115 assert((Indexed || Offset.isUndef()) && 8116 "Unindexed masked store with an offset!"); 8117 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8118 : getVTList(MVT::Other); 8119 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8120 FoldingSetNodeID ID; 8121 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8122 ID.AddInteger(MemVT.getRawBits()); 8123 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8124 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8125 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8126 void *IP = nullptr; 8127 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8128 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8129 return SDValue(E, 0); 8130 } 8131 auto *N = 8132 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8133 IsTruncating, IsCompressing, MemVT, MMO); 8134 createOperands(N, Ops); 8135 8136 CSEMap.InsertNode(N, IP); 8137 InsertNode(N); 8138 SDValue V(N, 0); 8139 NewSDValueDbgMsg(V, "Creating new node: ", this); 8140 return V; 8141 } 8142 8143 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8144 SDValue Base, SDValue Offset, 8145 ISD::MemIndexedMode AM) { 8146 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8147 assert(ST->getOffset().isUndef() && 8148 "Masked store is already a indexed store!"); 8149 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8150 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8151 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8152 } 8153 8154 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8155 ArrayRef<SDValue> Ops, 8156 MachineMemOperand *MMO, 8157 ISD::MemIndexType IndexType, 8158 ISD::LoadExtType ExtTy) { 8159 assert(Ops.size() == 6 && "Incompatible number of operands"); 8160 8161 FoldingSetNodeID ID; 8162 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8163 ID.AddInteger(MemVT.getRawBits()); 8164 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8165 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8166 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8167 void *IP = nullptr; 8168 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8169 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8170 return SDValue(E, 0); 8171 } 8172 8173 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8174 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8175 VTs, MemVT, MMO, IndexType, ExtTy); 8176 createOperands(N, Ops); 8177 8178 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8179 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8180 assert(N->getMask().getValueType().getVectorElementCount() == 8181 N->getValueType(0).getVectorElementCount() && 8182 "Vector width mismatch between mask and data"); 8183 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8184 N->getValueType(0).getVectorElementCount().isScalable() && 8185 "Scalable flags of index and data do not match"); 8186 assert(ElementCount::isKnownGE( 8187 N->getIndex().getValueType().getVectorElementCount(), 8188 N->getValueType(0).getVectorElementCount()) && 8189 "Vector width mismatch between index and data"); 8190 assert(isa<ConstantSDNode>(N->getScale()) && 8191 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8192 "Scale should be a constant power of 2"); 8193 8194 CSEMap.InsertNode(N, IP); 8195 InsertNode(N); 8196 SDValue V(N, 0); 8197 NewSDValueDbgMsg(V, "Creating new node: ", this); 8198 return V; 8199 } 8200 8201 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8202 ArrayRef<SDValue> Ops, 8203 MachineMemOperand *MMO, 8204 ISD::MemIndexType IndexType, 8205 bool IsTrunc) { 8206 assert(Ops.size() == 6 && "Incompatible number of operands"); 8207 8208 FoldingSetNodeID ID; 8209 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8210 ID.AddInteger(MemVT.getRawBits()); 8211 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8212 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8213 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8214 void *IP = nullptr; 8215 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8216 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8217 return SDValue(E, 0); 8218 } 8219 8220 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8221 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8222 VTs, MemVT, MMO, IndexType, IsTrunc); 8223 createOperands(N, Ops); 8224 8225 assert(N->getMask().getValueType().getVectorElementCount() == 8226 N->getValue().getValueType().getVectorElementCount() && 8227 "Vector width mismatch between mask and data"); 8228 assert( 8229 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8230 N->getValue().getValueType().getVectorElementCount().isScalable() && 8231 "Scalable flags of index and data do not match"); 8232 assert(ElementCount::isKnownGE( 8233 N->getIndex().getValueType().getVectorElementCount(), 8234 N->getValue().getValueType().getVectorElementCount()) && 8235 "Vector width mismatch between index and data"); 8236 assert(isa<ConstantSDNode>(N->getScale()) && 8237 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8238 "Scale should be a constant power of 2"); 8239 8240 CSEMap.InsertNode(N, IP); 8241 InsertNode(N); 8242 SDValue V(N, 0); 8243 NewSDValueDbgMsg(V, "Creating new node: ", this); 8244 return V; 8245 } 8246 8247 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8248 // select undef, T, F --> T (if T is a constant), otherwise F 8249 // select, ?, undef, F --> F 8250 // select, ?, T, undef --> T 8251 if (Cond.isUndef()) 8252 return isConstantValueOfAnyType(T) ? T : F; 8253 if (T.isUndef()) 8254 return F; 8255 if (F.isUndef()) 8256 return T; 8257 8258 // select true, T, F --> T 8259 // select false, T, F --> F 8260 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8261 return CondC->isZero() ? F : T; 8262 8263 // TODO: This should simplify VSELECT with constant condition using something 8264 // like this (but check boolean contents to be complete?): 8265 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8266 // return T; 8267 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8268 // return F; 8269 8270 // select ?, T, T --> T 8271 if (T == F) 8272 return T; 8273 8274 return SDValue(); 8275 } 8276 8277 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8278 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8279 if (X.isUndef()) 8280 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8281 // shift X, undef --> undef (because it may shift by the bitwidth) 8282 if (Y.isUndef()) 8283 return getUNDEF(X.getValueType()); 8284 8285 // shift 0, Y --> 0 8286 // shift X, 0 --> X 8287 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8288 return X; 8289 8290 // shift X, C >= bitwidth(X) --> undef 8291 // All vector elements must be too big (or undef) to avoid partial undefs. 8292 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8293 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8294 }; 8295 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8296 return getUNDEF(X.getValueType()); 8297 8298 return SDValue(); 8299 } 8300 8301 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8302 SDNodeFlags Flags) { 8303 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8304 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8305 // operation is poison. That result can be relaxed to undef. 8306 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8307 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8308 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8309 (YC && YC->getValueAPF().isNaN()); 8310 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8311 (YC && YC->getValueAPF().isInfinity()); 8312 8313 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8314 return getUNDEF(X.getValueType()); 8315 8316 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8317 return getUNDEF(X.getValueType()); 8318 8319 if (!YC) 8320 return SDValue(); 8321 8322 // X + -0.0 --> X 8323 if (Opcode == ISD::FADD) 8324 if (YC->getValueAPF().isNegZero()) 8325 return X; 8326 8327 // X - +0.0 --> X 8328 if (Opcode == ISD::FSUB) 8329 if (YC->getValueAPF().isPosZero()) 8330 return X; 8331 8332 // X * 1.0 --> X 8333 // X / 1.0 --> X 8334 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8335 if (YC->getValueAPF().isExactlyValue(1.0)) 8336 return X; 8337 8338 // X * 0.0 --> 0.0 8339 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8340 if (YC->getValueAPF().isZero()) 8341 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8342 8343 return SDValue(); 8344 } 8345 8346 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8347 SDValue Ptr, SDValue SV, unsigned Align) { 8348 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8349 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8350 } 8351 8352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8353 ArrayRef<SDUse> Ops) { 8354 switch (Ops.size()) { 8355 case 0: return getNode(Opcode, DL, VT); 8356 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8357 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8358 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8359 default: break; 8360 } 8361 8362 // Copy from an SDUse array into an SDValue array for use with 8363 // the regular getNode logic. 8364 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8365 return getNode(Opcode, DL, VT, NewOps); 8366 } 8367 8368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8369 ArrayRef<SDValue> Ops) { 8370 SDNodeFlags Flags; 8371 if (Inserter) 8372 Flags = Inserter->getFlags(); 8373 return getNode(Opcode, DL, VT, Ops, Flags); 8374 } 8375 8376 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8377 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8378 unsigned NumOps = Ops.size(); 8379 switch (NumOps) { 8380 case 0: return getNode(Opcode, DL, VT); 8381 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8382 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8383 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8384 default: break; 8385 } 8386 8387 #ifndef NDEBUG 8388 for (auto &Op : Ops) 8389 assert(Op.getOpcode() != ISD::DELETED_NODE && 8390 "Operand is DELETED_NODE!"); 8391 #endif 8392 8393 switch (Opcode) { 8394 default: break; 8395 case ISD::BUILD_VECTOR: 8396 // Attempt to simplify BUILD_VECTOR. 8397 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8398 return V; 8399 break; 8400 case ISD::CONCAT_VECTORS: 8401 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8402 return V; 8403 break; 8404 case ISD::SELECT_CC: 8405 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8406 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8407 "LHS and RHS of condition must have same type!"); 8408 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8409 "True and False arms of SelectCC must have same type!"); 8410 assert(Ops[2].getValueType() == VT && 8411 "select_cc node must be of same type as true and false value!"); 8412 break; 8413 case ISD::BR_CC: 8414 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8415 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8416 "LHS/RHS of comparison should match types!"); 8417 break; 8418 } 8419 8420 // Memoize nodes. 8421 SDNode *N; 8422 SDVTList VTs = getVTList(VT); 8423 8424 if (VT != MVT::Glue) { 8425 FoldingSetNodeID ID; 8426 AddNodeIDNode(ID, Opcode, VTs, Ops); 8427 void *IP = nullptr; 8428 8429 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8430 return SDValue(E, 0); 8431 8432 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8433 createOperands(N, Ops); 8434 8435 CSEMap.InsertNode(N, IP); 8436 } else { 8437 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8438 createOperands(N, Ops); 8439 } 8440 8441 N->setFlags(Flags); 8442 InsertNode(N); 8443 SDValue V(N, 0); 8444 NewSDValueDbgMsg(V, "Creating new node: ", this); 8445 return V; 8446 } 8447 8448 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8449 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8450 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8451 } 8452 8453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8454 ArrayRef<SDValue> Ops) { 8455 SDNodeFlags Flags; 8456 if (Inserter) 8457 Flags = Inserter->getFlags(); 8458 return getNode(Opcode, DL, VTList, Ops, Flags); 8459 } 8460 8461 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8462 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8463 if (VTList.NumVTs == 1) 8464 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8465 8466 #ifndef NDEBUG 8467 for (auto &Op : Ops) 8468 assert(Op.getOpcode() != ISD::DELETED_NODE && 8469 "Operand is DELETED_NODE!"); 8470 #endif 8471 8472 switch (Opcode) { 8473 case ISD::STRICT_FP_EXTEND: 8474 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8475 "Invalid STRICT_FP_EXTEND!"); 8476 assert(VTList.VTs[0].isFloatingPoint() && 8477 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8478 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8479 "STRICT_FP_EXTEND result type should be vector iff the operand " 8480 "type is vector!"); 8481 assert((!VTList.VTs[0].isVector() || 8482 VTList.VTs[0].getVectorNumElements() == 8483 Ops[1].getValueType().getVectorNumElements()) && 8484 "Vector element count mismatch!"); 8485 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8486 "Invalid fpext node, dst <= src!"); 8487 break; 8488 case ISD::STRICT_FP_ROUND: 8489 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8490 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8491 "STRICT_FP_ROUND result type should be vector iff the operand " 8492 "type is vector!"); 8493 assert((!VTList.VTs[0].isVector() || 8494 VTList.VTs[0].getVectorNumElements() == 8495 Ops[1].getValueType().getVectorNumElements()) && 8496 "Vector element count mismatch!"); 8497 assert(VTList.VTs[0].isFloatingPoint() && 8498 Ops[1].getValueType().isFloatingPoint() && 8499 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8500 isa<ConstantSDNode>(Ops[2]) && 8501 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8502 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8503 "Invalid STRICT_FP_ROUND!"); 8504 break; 8505 #if 0 8506 // FIXME: figure out how to safely handle things like 8507 // int foo(int x) { return 1 << (x & 255); } 8508 // int bar() { return foo(256); } 8509 case ISD::SRA_PARTS: 8510 case ISD::SRL_PARTS: 8511 case ISD::SHL_PARTS: 8512 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8513 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8514 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8515 else if (N3.getOpcode() == ISD::AND) 8516 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8517 // If the and is only masking out bits that cannot effect the shift, 8518 // eliminate the and. 8519 unsigned NumBits = VT.getScalarSizeInBits()*2; 8520 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8521 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8522 } 8523 break; 8524 #endif 8525 } 8526 8527 // Memoize the node unless it returns a flag. 8528 SDNode *N; 8529 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8530 FoldingSetNodeID ID; 8531 AddNodeIDNode(ID, Opcode, VTList, Ops); 8532 void *IP = nullptr; 8533 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8534 return SDValue(E, 0); 8535 8536 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8537 createOperands(N, Ops); 8538 CSEMap.InsertNode(N, IP); 8539 } else { 8540 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8541 createOperands(N, Ops); 8542 } 8543 8544 N->setFlags(Flags); 8545 InsertNode(N); 8546 SDValue V(N, 0); 8547 NewSDValueDbgMsg(V, "Creating new node: ", this); 8548 return V; 8549 } 8550 8551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8552 SDVTList VTList) { 8553 return getNode(Opcode, DL, VTList, None); 8554 } 8555 8556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8557 SDValue N1) { 8558 SDValue Ops[] = { N1 }; 8559 return getNode(Opcode, DL, VTList, Ops); 8560 } 8561 8562 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8563 SDValue N1, SDValue N2) { 8564 SDValue Ops[] = { N1, N2 }; 8565 return getNode(Opcode, DL, VTList, Ops); 8566 } 8567 8568 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8569 SDValue N1, SDValue N2, SDValue N3) { 8570 SDValue Ops[] = { N1, N2, N3 }; 8571 return getNode(Opcode, DL, VTList, Ops); 8572 } 8573 8574 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8575 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8576 SDValue Ops[] = { N1, N2, N3, N4 }; 8577 return getNode(Opcode, DL, VTList, Ops); 8578 } 8579 8580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8581 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8582 SDValue N5) { 8583 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8584 return getNode(Opcode, DL, VTList, Ops); 8585 } 8586 8587 SDVTList SelectionDAG::getVTList(EVT VT) { 8588 return makeVTList(SDNode::getValueTypeList(VT), 1); 8589 } 8590 8591 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8592 FoldingSetNodeID ID; 8593 ID.AddInteger(2U); 8594 ID.AddInteger(VT1.getRawBits()); 8595 ID.AddInteger(VT2.getRawBits()); 8596 8597 void *IP = nullptr; 8598 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8599 if (!Result) { 8600 EVT *Array = Allocator.Allocate<EVT>(2); 8601 Array[0] = VT1; 8602 Array[1] = VT2; 8603 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8604 VTListMap.InsertNode(Result, IP); 8605 } 8606 return Result->getSDVTList(); 8607 } 8608 8609 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8610 FoldingSetNodeID ID; 8611 ID.AddInteger(3U); 8612 ID.AddInteger(VT1.getRawBits()); 8613 ID.AddInteger(VT2.getRawBits()); 8614 ID.AddInteger(VT3.getRawBits()); 8615 8616 void *IP = nullptr; 8617 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8618 if (!Result) { 8619 EVT *Array = Allocator.Allocate<EVT>(3); 8620 Array[0] = VT1; 8621 Array[1] = VT2; 8622 Array[2] = VT3; 8623 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8624 VTListMap.InsertNode(Result, IP); 8625 } 8626 return Result->getSDVTList(); 8627 } 8628 8629 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8630 FoldingSetNodeID ID; 8631 ID.AddInteger(4U); 8632 ID.AddInteger(VT1.getRawBits()); 8633 ID.AddInteger(VT2.getRawBits()); 8634 ID.AddInteger(VT3.getRawBits()); 8635 ID.AddInteger(VT4.getRawBits()); 8636 8637 void *IP = nullptr; 8638 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8639 if (!Result) { 8640 EVT *Array = Allocator.Allocate<EVT>(4); 8641 Array[0] = VT1; 8642 Array[1] = VT2; 8643 Array[2] = VT3; 8644 Array[3] = VT4; 8645 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8646 VTListMap.InsertNode(Result, IP); 8647 } 8648 return Result->getSDVTList(); 8649 } 8650 8651 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8652 unsigned NumVTs = VTs.size(); 8653 FoldingSetNodeID ID; 8654 ID.AddInteger(NumVTs); 8655 for (unsigned index = 0; index < NumVTs; index++) { 8656 ID.AddInteger(VTs[index].getRawBits()); 8657 } 8658 8659 void *IP = nullptr; 8660 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8661 if (!Result) { 8662 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8663 llvm::copy(VTs, Array); 8664 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8665 VTListMap.InsertNode(Result, IP); 8666 } 8667 return Result->getSDVTList(); 8668 } 8669 8670 8671 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8672 /// specified operands. If the resultant node already exists in the DAG, 8673 /// this does not modify the specified node, instead it returns the node that 8674 /// already exists. If the resultant node does not exist in the DAG, the 8675 /// input node is returned. As a degenerate case, if you specify the same 8676 /// input operands as the node already has, the input node is returned. 8677 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8678 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8679 8680 // Check to see if there is no change. 8681 if (Op == N->getOperand(0)) return N; 8682 8683 // See if the modified node already exists. 8684 void *InsertPos = nullptr; 8685 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8686 return Existing; 8687 8688 // Nope it doesn't. Remove the node from its current place in the maps. 8689 if (InsertPos) 8690 if (!RemoveNodeFromCSEMaps(N)) 8691 InsertPos = nullptr; 8692 8693 // Now we update the operands. 8694 N->OperandList[0].set(Op); 8695 8696 updateDivergence(N); 8697 // If this gets put into a CSE map, add it. 8698 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8699 return N; 8700 } 8701 8702 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8703 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8704 8705 // Check to see if there is no change. 8706 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8707 return N; // No operands changed, just return the input node. 8708 8709 // See if the modified node already exists. 8710 void *InsertPos = nullptr; 8711 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8712 return Existing; 8713 8714 // Nope it doesn't. Remove the node from its current place in the maps. 8715 if (InsertPos) 8716 if (!RemoveNodeFromCSEMaps(N)) 8717 InsertPos = nullptr; 8718 8719 // Now we update the operands. 8720 if (N->OperandList[0] != Op1) 8721 N->OperandList[0].set(Op1); 8722 if (N->OperandList[1] != Op2) 8723 N->OperandList[1].set(Op2); 8724 8725 updateDivergence(N); 8726 // If this gets put into a CSE map, add it. 8727 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8728 return N; 8729 } 8730 8731 SDNode *SelectionDAG:: 8732 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8733 SDValue Ops[] = { Op1, Op2, Op3 }; 8734 return UpdateNodeOperands(N, Ops); 8735 } 8736 8737 SDNode *SelectionDAG:: 8738 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8739 SDValue Op3, SDValue Op4) { 8740 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8741 return UpdateNodeOperands(N, Ops); 8742 } 8743 8744 SDNode *SelectionDAG:: 8745 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8746 SDValue Op3, SDValue Op4, SDValue Op5) { 8747 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8748 return UpdateNodeOperands(N, Ops); 8749 } 8750 8751 SDNode *SelectionDAG:: 8752 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8753 unsigned NumOps = Ops.size(); 8754 assert(N->getNumOperands() == NumOps && 8755 "Update with wrong number of operands"); 8756 8757 // If no operands changed just return the input node. 8758 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8759 return N; 8760 8761 // See if the modified node already exists. 8762 void *InsertPos = nullptr; 8763 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8764 return Existing; 8765 8766 // Nope it doesn't. Remove the node from its current place in the maps. 8767 if (InsertPos) 8768 if (!RemoveNodeFromCSEMaps(N)) 8769 InsertPos = nullptr; 8770 8771 // Now we update the operands. 8772 for (unsigned i = 0; i != NumOps; ++i) 8773 if (N->OperandList[i] != Ops[i]) 8774 N->OperandList[i].set(Ops[i]); 8775 8776 updateDivergence(N); 8777 // If this gets put into a CSE map, add it. 8778 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8779 return N; 8780 } 8781 8782 /// DropOperands - Release the operands and set this node to have 8783 /// zero operands. 8784 void SDNode::DropOperands() { 8785 // Unlike the code in MorphNodeTo that does this, we don't need to 8786 // watch for dead nodes here. 8787 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8788 SDUse &Use = *I++; 8789 Use.set(SDValue()); 8790 } 8791 } 8792 8793 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8794 ArrayRef<MachineMemOperand *> NewMemRefs) { 8795 if (NewMemRefs.empty()) { 8796 N->clearMemRefs(); 8797 return; 8798 } 8799 8800 // Check if we can avoid allocating by storing a single reference directly. 8801 if (NewMemRefs.size() == 1) { 8802 N->MemRefs = NewMemRefs[0]; 8803 N->NumMemRefs = 1; 8804 return; 8805 } 8806 8807 MachineMemOperand **MemRefsBuffer = 8808 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8809 llvm::copy(NewMemRefs, MemRefsBuffer); 8810 N->MemRefs = MemRefsBuffer; 8811 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8812 } 8813 8814 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8815 /// machine opcode. 8816 /// 8817 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8818 EVT VT) { 8819 SDVTList VTs = getVTList(VT); 8820 return SelectNodeTo(N, MachineOpc, VTs, None); 8821 } 8822 8823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8824 EVT VT, SDValue Op1) { 8825 SDVTList VTs = getVTList(VT); 8826 SDValue Ops[] = { Op1 }; 8827 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8828 } 8829 8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8831 EVT VT, SDValue Op1, 8832 SDValue Op2) { 8833 SDVTList VTs = getVTList(VT); 8834 SDValue Ops[] = { Op1, Op2 }; 8835 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8836 } 8837 8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8839 EVT VT, SDValue Op1, 8840 SDValue Op2, SDValue Op3) { 8841 SDVTList VTs = getVTList(VT); 8842 SDValue Ops[] = { Op1, Op2, Op3 }; 8843 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8844 } 8845 8846 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8847 EVT VT, ArrayRef<SDValue> Ops) { 8848 SDVTList VTs = getVTList(VT); 8849 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8850 } 8851 8852 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8853 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8854 SDVTList VTs = getVTList(VT1, VT2); 8855 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8856 } 8857 8858 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8859 EVT VT1, EVT VT2) { 8860 SDVTList VTs = getVTList(VT1, VT2); 8861 return SelectNodeTo(N, MachineOpc, VTs, None); 8862 } 8863 8864 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8865 EVT VT1, EVT VT2, EVT VT3, 8866 ArrayRef<SDValue> Ops) { 8867 SDVTList VTs = getVTList(VT1, VT2, VT3); 8868 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8869 } 8870 8871 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8872 EVT VT1, EVT VT2, 8873 SDValue Op1, SDValue Op2) { 8874 SDVTList VTs = getVTList(VT1, VT2); 8875 SDValue Ops[] = { Op1, Op2 }; 8876 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8877 } 8878 8879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8880 SDVTList VTs,ArrayRef<SDValue> Ops) { 8881 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8882 // Reset the NodeID to -1. 8883 New->setNodeId(-1); 8884 if (New != N) { 8885 ReplaceAllUsesWith(N, New); 8886 RemoveDeadNode(N); 8887 } 8888 return New; 8889 } 8890 8891 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8892 /// the line number information on the merged node since it is not possible to 8893 /// preserve the information that operation is associated with multiple lines. 8894 /// This will make the debugger working better at -O0, were there is a higher 8895 /// probability having other instructions associated with that line. 8896 /// 8897 /// For IROrder, we keep the smaller of the two 8898 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8899 DebugLoc NLoc = N->getDebugLoc(); 8900 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8901 N->setDebugLoc(DebugLoc()); 8902 } 8903 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8904 N->setIROrder(Order); 8905 return N; 8906 } 8907 8908 /// MorphNodeTo - This *mutates* the specified node to have the specified 8909 /// return type, opcode, and operands. 8910 /// 8911 /// Note that MorphNodeTo returns the resultant node. If there is already a 8912 /// node of the specified opcode and operands, it returns that node instead of 8913 /// the current one. Note that the SDLoc need not be the same. 8914 /// 8915 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8916 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8917 /// node, and because it doesn't require CSE recalculation for any of 8918 /// the node's users. 8919 /// 8920 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8921 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8922 /// the legalizer which maintain worklists that would need to be updated when 8923 /// deleting things. 8924 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8925 SDVTList VTs, ArrayRef<SDValue> Ops) { 8926 // If an identical node already exists, use it. 8927 void *IP = nullptr; 8928 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8929 FoldingSetNodeID ID; 8930 AddNodeIDNode(ID, Opc, VTs, Ops); 8931 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8932 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8933 } 8934 8935 if (!RemoveNodeFromCSEMaps(N)) 8936 IP = nullptr; 8937 8938 // Start the morphing. 8939 N->NodeType = Opc; 8940 N->ValueList = VTs.VTs; 8941 N->NumValues = VTs.NumVTs; 8942 8943 // Clear the operands list, updating used nodes to remove this from their 8944 // use list. Keep track of any operands that become dead as a result. 8945 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8946 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8947 SDUse &Use = *I++; 8948 SDNode *Used = Use.getNode(); 8949 Use.set(SDValue()); 8950 if (Used->use_empty()) 8951 DeadNodeSet.insert(Used); 8952 } 8953 8954 // For MachineNode, initialize the memory references information. 8955 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8956 MN->clearMemRefs(); 8957 8958 // Swap for an appropriately sized array from the recycler. 8959 removeOperands(N); 8960 createOperands(N, Ops); 8961 8962 // Delete any nodes that are still dead after adding the uses for the 8963 // new operands. 8964 if (!DeadNodeSet.empty()) { 8965 SmallVector<SDNode *, 16> DeadNodes; 8966 for (SDNode *N : DeadNodeSet) 8967 if (N->use_empty()) 8968 DeadNodes.push_back(N); 8969 RemoveDeadNodes(DeadNodes); 8970 } 8971 8972 if (IP) 8973 CSEMap.InsertNode(N, IP); // Memoize the new node. 8974 return N; 8975 } 8976 8977 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8978 unsigned OrigOpc = Node->getOpcode(); 8979 unsigned NewOpc; 8980 switch (OrigOpc) { 8981 default: 8982 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8983 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8984 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8985 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8986 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8987 #include "llvm/IR/ConstrainedOps.def" 8988 } 8989 8990 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8991 8992 // We're taking this node out of the chain, so we need to re-link things. 8993 SDValue InputChain = Node->getOperand(0); 8994 SDValue OutputChain = SDValue(Node, 1); 8995 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8996 8997 SmallVector<SDValue, 3> Ops; 8998 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8999 Ops.push_back(Node->getOperand(i)); 9000 9001 SDVTList VTs = getVTList(Node->getValueType(0)); 9002 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9003 9004 // MorphNodeTo can operate in two ways: if an existing node with the 9005 // specified operands exists, it can just return it. Otherwise, it 9006 // updates the node in place to have the requested operands. 9007 if (Res == Node) { 9008 // If we updated the node in place, reset the node ID. To the isel, 9009 // this should be just like a newly allocated machine node. 9010 Res->setNodeId(-1); 9011 } else { 9012 ReplaceAllUsesWith(Node, Res); 9013 RemoveDeadNode(Node); 9014 } 9015 9016 return Res; 9017 } 9018 9019 /// getMachineNode - These are used for target selectors to create a new node 9020 /// with specified return type(s), MachineInstr opcode, and operands. 9021 /// 9022 /// Note that getMachineNode returns the resultant node. If there is already a 9023 /// node of the specified opcode and operands, it returns that node instead of 9024 /// the current one. 9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9026 EVT VT) { 9027 SDVTList VTs = getVTList(VT); 9028 return getMachineNode(Opcode, dl, VTs, None); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT, SDValue Op1) { 9033 SDVTList VTs = getVTList(VT); 9034 SDValue Ops[] = { Op1 }; 9035 return getMachineNode(Opcode, dl, VTs, Ops); 9036 } 9037 9038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9039 EVT VT, SDValue Op1, SDValue Op2) { 9040 SDVTList VTs = getVTList(VT); 9041 SDValue Ops[] = { Op1, Op2 }; 9042 return getMachineNode(Opcode, dl, VTs, Ops); 9043 } 9044 9045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9046 EVT VT, SDValue Op1, SDValue Op2, 9047 SDValue Op3) { 9048 SDVTList VTs = getVTList(VT); 9049 SDValue Ops[] = { Op1, Op2, Op3 }; 9050 return getMachineNode(Opcode, dl, VTs, Ops); 9051 } 9052 9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9054 EVT VT, ArrayRef<SDValue> Ops) { 9055 SDVTList VTs = getVTList(VT); 9056 return getMachineNode(Opcode, dl, VTs, Ops); 9057 } 9058 9059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9060 EVT VT1, EVT VT2, SDValue Op1, 9061 SDValue Op2) { 9062 SDVTList VTs = getVTList(VT1, VT2); 9063 SDValue Ops[] = { Op1, Op2 }; 9064 return getMachineNode(Opcode, dl, VTs, Ops); 9065 } 9066 9067 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9068 EVT VT1, EVT VT2, SDValue Op1, 9069 SDValue Op2, SDValue Op3) { 9070 SDVTList VTs = getVTList(VT1, VT2); 9071 SDValue Ops[] = { Op1, Op2, Op3 }; 9072 return getMachineNode(Opcode, dl, VTs, Ops); 9073 } 9074 9075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9076 EVT VT1, EVT VT2, 9077 ArrayRef<SDValue> Ops) { 9078 SDVTList VTs = getVTList(VT1, VT2); 9079 return getMachineNode(Opcode, dl, VTs, Ops); 9080 } 9081 9082 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9083 EVT VT1, EVT VT2, EVT VT3, 9084 SDValue Op1, SDValue Op2) { 9085 SDVTList VTs = getVTList(VT1, VT2, VT3); 9086 SDValue Ops[] = { Op1, Op2 }; 9087 return getMachineNode(Opcode, dl, VTs, Ops); 9088 } 9089 9090 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9091 EVT VT1, EVT VT2, EVT VT3, 9092 SDValue Op1, SDValue Op2, 9093 SDValue Op3) { 9094 SDVTList VTs = getVTList(VT1, VT2, VT3); 9095 SDValue Ops[] = { Op1, Op2, Op3 }; 9096 return getMachineNode(Opcode, dl, VTs, Ops); 9097 } 9098 9099 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9100 EVT VT1, EVT VT2, EVT VT3, 9101 ArrayRef<SDValue> Ops) { 9102 SDVTList VTs = getVTList(VT1, VT2, VT3); 9103 return getMachineNode(Opcode, dl, VTs, Ops); 9104 } 9105 9106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9107 ArrayRef<EVT> ResultTys, 9108 ArrayRef<SDValue> Ops) { 9109 SDVTList VTs = getVTList(ResultTys); 9110 return getMachineNode(Opcode, dl, VTs, Ops); 9111 } 9112 9113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9114 SDVTList VTs, 9115 ArrayRef<SDValue> Ops) { 9116 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9117 MachineSDNode *N; 9118 void *IP = nullptr; 9119 9120 if (DoCSE) { 9121 FoldingSetNodeID ID; 9122 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9123 IP = nullptr; 9124 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9125 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9126 } 9127 } 9128 9129 // Allocate a new MachineSDNode. 9130 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9131 createOperands(N, Ops); 9132 9133 if (DoCSE) 9134 CSEMap.InsertNode(N, IP); 9135 9136 InsertNode(N); 9137 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9138 return N; 9139 } 9140 9141 /// getTargetExtractSubreg - A convenience function for creating 9142 /// TargetOpcode::EXTRACT_SUBREG nodes. 9143 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9144 SDValue Operand) { 9145 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9146 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9147 VT, Operand, SRIdxVal); 9148 return SDValue(Subreg, 0); 9149 } 9150 9151 /// getTargetInsertSubreg - A convenience function for creating 9152 /// TargetOpcode::INSERT_SUBREG nodes. 9153 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9154 SDValue Operand, SDValue Subreg) { 9155 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9156 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9157 VT, Operand, Subreg, SRIdxVal); 9158 return SDValue(Result, 0); 9159 } 9160 9161 /// getNodeIfExists - Get the specified node if it's already available, or 9162 /// else return NULL. 9163 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9164 ArrayRef<SDValue> Ops) { 9165 SDNodeFlags Flags; 9166 if (Inserter) 9167 Flags = Inserter->getFlags(); 9168 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9169 } 9170 9171 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9172 ArrayRef<SDValue> Ops, 9173 const SDNodeFlags Flags) { 9174 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9175 FoldingSetNodeID ID; 9176 AddNodeIDNode(ID, Opcode, VTList, Ops); 9177 void *IP = nullptr; 9178 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9179 E->intersectFlagsWith(Flags); 9180 return E; 9181 } 9182 } 9183 return nullptr; 9184 } 9185 9186 /// doesNodeExist - Check if a node exists without modifying its flags. 9187 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9188 ArrayRef<SDValue> Ops) { 9189 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9190 FoldingSetNodeID ID; 9191 AddNodeIDNode(ID, Opcode, VTList, Ops); 9192 void *IP = nullptr; 9193 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9194 return true; 9195 } 9196 return false; 9197 } 9198 9199 /// getDbgValue - Creates a SDDbgValue node. 9200 /// 9201 /// SDNode 9202 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9203 SDNode *N, unsigned R, bool IsIndirect, 9204 const DebugLoc &DL, unsigned O) { 9205 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9206 "Expected inlined-at fields to agree"); 9207 return new (DbgInfo->getAlloc()) 9208 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9209 {}, IsIndirect, DL, O, 9210 /*IsVariadic=*/false); 9211 } 9212 9213 /// Constant 9214 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9215 DIExpression *Expr, 9216 const Value *C, 9217 const DebugLoc &DL, unsigned O) { 9218 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9219 "Expected inlined-at fields to agree"); 9220 return new (DbgInfo->getAlloc()) 9221 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9222 /*IsIndirect=*/false, DL, O, 9223 /*IsVariadic=*/false); 9224 } 9225 9226 /// FrameIndex 9227 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9228 DIExpression *Expr, unsigned FI, 9229 bool IsIndirect, 9230 const DebugLoc &DL, 9231 unsigned O) { 9232 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9233 "Expected inlined-at fields to agree"); 9234 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9235 } 9236 9237 /// FrameIndex with dependencies 9238 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9239 DIExpression *Expr, unsigned FI, 9240 ArrayRef<SDNode *> Dependencies, 9241 bool IsIndirect, 9242 const DebugLoc &DL, 9243 unsigned O) { 9244 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9245 "Expected inlined-at fields to agree"); 9246 return new (DbgInfo->getAlloc()) 9247 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9248 Dependencies, IsIndirect, DL, O, 9249 /*IsVariadic=*/false); 9250 } 9251 9252 /// VReg 9253 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9254 unsigned VReg, bool IsIndirect, 9255 const DebugLoc &DL, unsigned O) { 9256 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9257 "Expected inlined-at fields to agree"); 9258 return new (DbgInfo->getAlloc()) 9259 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9260 {}, IsIndirect, DL, O, 9261 /*IsVariadic=*/false); 9262 } 9263 9264 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9265 ArrayRef<SDDbgOperand> Locs, 9266 ArrayRef<SDNode *> Dependencies, 9267 bool IsIndirect, const DebugLoc &DL, 9268 unsigned O, bool IsVariadic) { 9269 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9270 "Expected inlined-at fields to agree"); 9271 return new (DbgInfo->getAlloc()) 9272 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9273 DL, O, IsVariadic); 9274 } 9275 9276 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9277 unsigned OffsetInBits, unsigned SizeInBits, 9278 bool InvalidateDbg) { 9279 SDNode *FromNode = From.getNode(); 9280 SDNode *ToNode = To.getNode(); 9281 assert(FromNode && ToNode && "Can't modify dbg values"); 9282 9283 // PR35338 9284 // TODO: assert(From != To && "Redundant dbg value transfer"); 9285 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9286 if (From == To || FromNode == ToNode) 9287 return; 9288 9289 if (!FromNode->getHasDebugValue()) 9290 return; 9291 9292 SDDbgOperand FromLocOp = 9293 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9294 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9295 9296 SmallVector<SDDbgValue *, 2> ClonedDVs; 9297 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9298 if (Dbg->isInvalidated()) 9299 continue; 9300 9301 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9302 9303 // Create a new location ops vector that is equal to the old vector, but 9304 // with each instance of FromLocOp replaced with ToLocOp. 9305 bool Changed = false; 9306 auto NewLocOps = Dbg->copyLocationOps(); 9307 std::replace_if( 9308 NewLocOps.begin(), NewLocOps.end(), 9309 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9310 bool Match = Op == FromLocOp; 9311 Changed |= Match; 9312 return Match; 9313 }, 9314 ToLocOp); 9315 // Ignore this SDDbgValue if we didn't find a matching location. 9316 if (!Changed) 9317 continue; 9318 9319 DIVariable *Var = Dbg->getVariable(); 9320 auto *Expr = Dbg->getExpression(); 9321 // If a fragment is requested, update the expression. 9322 if (SizeInBits) { 9323 // When splitting a larger (e.g., sign-extended) value whose 9324 // lower bits are described with an SDDbgValue, do not attempt 9325 // to transfer the SDDbgValue to the upper bits. 9326 if (auto FI = Expr->getFragmentInfo()) 9327 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9328 continue; 9329 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9330 SizeInBits); 9331 if (!Fragment) 9332 continue; 9333 Expr = *Fragment; 9334 } 9335 9336 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9337 // Clone the SDDbgValue and move it to To. 9338 SDDbgValue *Clone = getDbgValueList( 9339 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9340 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9341 Dbg->isVariadic()); 9342 ClonedDVs.push_back(Clone); 9343 9344 if (InvalidateDbg) { 9345 // Invalidate value and indicate the SDDbgValue should not be emitted. 9346 Dbg->setIsInvalidated(); 9347 Dbg->setIsEmitted(); 9348 } 9349 } 9350 9351 for (SDDbgValue *Dbg : ClonedDVs) { 9352 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9353 "Transferred DbgValues should depend on the new SDNode"); 9354 AddDbgValue(Dbg, false); 9355 } 9356 } 9357 9358 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9359 if (!N.getHasDebugValue()) 9360 return; 9361 9362 SmallVector<SDDbgValue *, 2> ClonedDVs; 9363 for (auto DV : GetDbgValues(&N)) { 9364 if (DV->isInvalidated()) 9365 continue; 9366 switch (N.getOpcode()) { 9367 default: 9368 break; 9369 case ISD::ADD: 9370 SDValue N0 = N.getOperand(0); 9371 SDValue N1 = N.getOperand(1); 9372 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9373 isConstantIntBuildVectorOrConstantInt(N1)) { 9374 uint64_t Offset = N.getConstantOperandVal(1); 9375 9376 // Rewrite an ADD constant node into a DIExpression. Since we are 9377 // performing arithmetic to compute the variable's *value* in the 9378 // DIExpression, we need to mark the expression with a 9379 // DW_OP_stack_value. 9380 auto *DIExpr = DV->getExpression(); 9381 auto NewLocOps = DV->copyLocationOps(); 9382 bool Changed = false; 9383 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9384 // We're not given a ResNo to compare against because the whole 9385 // node is going away. We know that any ISD::ADD only has one 9386 // result, so we can assume any node match is using the result. 9387 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9388 NewLocOps[i].getSDNode() != &N) 9389 continue; 9390 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9391 SmallVector<uint64_t, 3> ExprOps; 9392 DIExpression::appendOffset(ExprOps, Offset); 9393 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9394 Changed = true; 9395 } 9396 (void)Changed; 9397 assert(Changed && "Salvage target doesn't use N"); 9398 9399 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9400 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9401 NewLocOps, AdditionalDependencies, 9402 DV->isIndirect(), DV->getDebugLoc(), 9403 DV->getOrder(), DV->isVariadic()); 9404 ClonedDVs.push_back(Clone); 9405 DV->setIsInvalidated(); 9406 DV->setIsEmitted(); 9407 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9408 N0.getNode()->dumprFull(this); 9409 dbgs() << " into " << *DIExpr << '\n'); 9410 } 9411 } 9412 } 9413 9414 for (SDDbgValue *Dbg : ClonedDVs) { 9415 assert(!Dbg->getSDNodes().empty() && 9416 "Salvaged DbgValue should depend on a new SDNode"); 9417 AddDbgValue(Dbg, false); 9418 } 9419 } 9420 9421 /// Creates a SDDbgLabel node. 9422 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9423 const DebugLoc &DL, unsigned O) { 9424 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9425 "Expected inlined-at fields to agree"); 9426 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9427 } 9428 9429 namespace { 9430 9431 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9432 /// pointed to by a use iterator is deleted, increment the use iterator 9433 /// so that it doesn't dangle. 9434 /// 9435 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9436 SDNode::use_iterator &UI; 9437 SDNode::use_iterator &UE; 9438 9439 void NodeDeleted(SDNode *N, SDNode *E) override { 9440 // Increment the iterator as needed. 9441 while (UI != UE && N == *UI) 9442 ++UI; 9443 } 9444 9445 public: 9446 RAUWUpdateListener(SelectionDAG &d, 9447 SDNode::use_iterator &ui, 9448 SDNode::use_iterator &ue) 9449 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9450 }; 9451 9452 } // end anonymous namespace 9453 9454 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9455 /// This can cause recursive merging of nodes in the DAG. 9456 /// 9457 /// This version assumes From has a single result value. 9458 /// 9459 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9460 SDNode *From = FromN.getNode(); 9461 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9462 "Cannot replace with this method!"); 9463 assert(From != To.getNode() && "Cannot replace uses of with self"); 9464 9465 // Preserve Debug Values 9466 transferDbgValues(FromN, To); 9467 9468 // Iterate over all the existing uses of From. New uses will be added 9469 // to the beginning of the use list, which we avoid visiting. 9470 // This specifically avoids visiting uses of From that arise while the 9471 // replacement is happening, because any such uses would be the result 9472 // of CSE: If an existing node looks like From after one of its operands 9473 // is replaced by To, we don't want to replace of all its users with To 9474 // too. See PR3018 for more info. 9475 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9476 RAUWUpdateListener Listener(*this, UI, UE); 9477 while (UI != UE) { 9478 SDNode *User = *UI; 9479 9480 // This node is about to morph, remove its old self from the CSE maps. 9481 RemoveNodeFromCSEMaps(User); 9482 9483 // A user can appear in a use list multiple times, and when this 9484 // happens the uses are usually next to each other in the list. 9485 // To help reduce the number of CSE recomputations, process all 9486 // the uses of this user that we can find this way. 9487 do { 9488 SDUse &Use = UI.getUse(); 9489 ++UI; 9490 Use.set(To); 9491 if (To->isDivergent() != From->isDivergent()) 9492 updateDivergence(User); 9493 } while (UI != UE && *UI == User); 9494 // Now that we have modified User, add it back to the CSE maps. If it 9495 // already exists there, recursively merge the results together. 9496 AddModifiedNodeToCSEMaps(User); 9497 } 9498 9499 // If we just RAUW'd the root, take note. 9500 if (FromN == getRoot()) 9501 setRoot(To); 9502 } 9503 9504 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9505 /// This can cause recursive merging of nodes in the DAG. 9506 /// 9507 /// This version assumes that for each value of From, there is a 9508 /// corresponding value in To in the same position with the same type. 9509 /// 9510 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9511 #ifndef NDEBUG 9512 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9513 assert((!From->hasAnyUseOfValue(i) || 9514 From->getValueType(i) == To->getValueType(i)) && 9515 "Cannot use this version of ReplaceAllUsesWith!"); 9516 #endif 9517 9518 // Handle the trivial case. 9519 if (From == To) 9520 return; 9521 9522 // Preserve Debug Info. Only do this if there's a use. 9523 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9524 if (From->hasAnyUseOfValue(i)) { 9525 assert((i < To->getNumValues()) && "Invalid To location"); 9526 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9527 } 9528 9529 // Iterate over just the existing users of From. See the comments in 9530 // the ReplaceAllUsesWith above. 9531 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9532 RAUWUpdateListener Listener(*this, UI, UE); 9533 while (UI != UE) { 9534 SDNode *User = *UI; 9535 9536 // This node is about to morph, remove its old self from the CSE maps. 9537 RemoveNodeFromCSEMaps(User); 9538 9539 // A user can appear in a use list multiple times, and when this 9540 // happens the uses are usually next to each other in the list. 9541 // To help reduce the number of CSE recomputations, process all 9542 // the uses of this user that we can find this way. 9543 do { 9544 SDUse &Use = UI.getUse(); 9545 ++UI; 9546 Use.setNode(To); 9547 if (To->isDivergent() != From->isDivergent()) 9548 updateDivergence(User); 9549 } while (UI != UE && *UI == User); 9550 9551 // Now that we have modified User, add it back to the CSE maps. If it 9552 // already exists there, recursively merge the results together. 9553 AddModifiedNodeToCSEMaps(User); 9554 } 9555 9556 // If we just RAUW'd the root, take note. 9557 if (From == getRoot().getNode()) 9558 setRoot(SDValue(To, getRoot().getResNo())); 9559 } 9560 9561 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9562 /// This can cause recursive merging of nodes in the DAG. 9563 /// 9564 /// This version can replace From with any result values. To must match the 9565 /// number and types of values returned by From. 9566 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9567 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9568 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9569 9570 // Preserve Debug Info. 9571 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9572 transferDbgValues(SDValue(From, i), To[i]); 9573 9574 // Iterate over just the existing users of From. See the comments in 9575 // the ReplaceAllUsesWith above. 9576 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9577 RAUWUpdateListener Listener(*this, UI, UE); 9578 while (UI != UE) { 9579 SDNode *User = *UI; 9580 9581 // This node is about to morph, remove its old self from the CSE maps. 9582 RemoveNodeFromCSEMaps(User); 9583 9584 // A user can appear in a use list multiple times, and when this happens the 9585 // uses are usually next to each other in the list. To help reduce the 9586 // number of CSE and divergence recomputations, process all the uses of this 9587 // user that we can find this way. 9588 bool To_IsDivergent = false; 9589 do { 9590 SDUse &Use = UI.getUse(); 9591 const SDValue &ToOp = To[Use.getResNo()]; 9592 ++UI; 9593 Use.set(ToOp); 9594 To_IsDivergent |= ToOp->isDivergent(); 9595 } while (UI != UE && *UI == User); 9596 9597 if (To_IsDivergent != From->isDivergent()) 9598 updateDivergence(User); 9599 9600 // Now that we have modified User, add it back to the CSE maps. If it 9601 // already exists there, recursively merge the results together. 9602 AddModifiedNodeToCSEMaps(User); 9603 } 9604 9605 // If we just RAUW'd the root, take note. 9606 if (From == getRoot().getNode()) 9607 setRoot(SDValue(To[getRoot().getResNo()])); 9608 } 9609 9610 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9611 /// uses of other values produced by From.getNode() alone. The Deleted 9612 /// vector is handled the same way as for ReplaceAllUsesWith. 9613 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9614 // Handle the really simple, really trivial case efficiently. 9615 if (From == To) return; 9616 9617 // Handle the simple, trivial, case efficiently. 9618 if (From.getNode()->getNumValues() == 1) { 9619 ReplaceAllUsesWith(From, To); 9620 return; 9621 } 9622 9623 // Preserve Debug Info. 9624 transferDbgValues(From, To); 9625 9626 // Iterate over just the existing users of From. See the comments in 9627 // the ReplaceAllUsesWith above. 9628 SDNode::use_iterator UI = From.getNode()->use_begin(), 9629 UE = From.getNode()->use_end(); 9630 RAUWUpdateListener Listener(*this, UI, UE); 9631 while (UI != UE) { 9632 SDNode *User = *UI; 9633 bool UserRemovedFromCSEMaps = false; 9634 9635 // A user can appear in a use list multiple times, and when this 9636 // happens the uses are usually next to each other in the list. 9637 // To help reduce the number of CSE recomputations, process all 9638 // the uses of this user that we can find this way. 9639 do { 9640 SDUse &Use = UI.getUse(); 9641 9642 // Skip uses of different values from the same node. 9643 if (Use.getResNo() != From.getResNo()) { 9644 ++UI; 9645 continue; 9646 } 9647 9648 // If this node hasn't been modified yet, it's still in the CSE maps, 9649 // so remove its old self from the CSE maps. 9650 if (!UserRemovedFromCSEMaps) { 9651 RemoveNodeFromCSEMaps(User); 9652 UserRemovedFromCSEMaps = true; 9653 } 9654 9655 ++UI; 9656 Use.set(To); 9657 if (To->isDivergent() != From->isDivergent()) 9658 updateDivergence(User); 9659 } while (UI != UE && *UI == User); 9660 // We are iterating over all uses of the From node, so if a use 9661 // doesn't use the specific value, no changes are made. 9662 if (!UserRemovedFromCSEMaps) 9663 continue; 9664 9665 // Now that we have modified User, add it back to the CSE maps. If it 9666 // already exists there, recursively merge the results together. 9667 AddModifiedNodeToCSEMaps(User); 9668 } 9669 9670 // If we just RAUW'd the root, take note. 9671 if (From == getRoot()) 9672 setRoot(To); 9673 } 9674 9675 namespace { 9676 9677 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9678 /// to record information about a use. 9679 struct UseMemo { 9680 SDNode *User; 9681 unsigned Index; 9682 SDUse *Use; 9683 }; 9684 9685 /// operator< - Sort Memos by User. 9686 bool operator<(const UseMemo &L, const UseMemo &R) { 9687 return (intptr_t)L.User < (intptr_t)R.User; 9688 } 9689 9690 } // end anonymous namespace 9691 9692 bool SelectionDAG::calculateDivergence(SDNode *N) { 9693 if (TLI->isSDNodeAlwaysUniform(N)) { 9694 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9695 "Conflicting divergence information!"); 9696 return false; 9697 } 9698 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9699 return true; 9700 for (auto &Op : N->ops()) { 9701 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9702 return true; 9703 } 9704 return false; 9705 } 9706 9707 void SelectionDAG::updateDivergence(SDNode *N) { 9708 SmallVector<SDNode *, 16> Worklist(1, N); 9709 do { 9710 N = Worklist.pop_back_val(); 9711 bool IsDivergent = calculateDivergence(N); 9712 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9713 N->SDNodeBits.IsDivergent = IsDivergent; 9714 llvm::append_range(Worklist, N->uses()); 9715 } 9716 } while (!Worklist.empty()); 9717 } 9718 9719 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9720 DenseMap<SDNode *, unsigned> Degree; 9721 Order.reserve(AllNodes.size()); 9722 for (auto &N : allnodes()) { 9723 unsigned NOps = N.getNumOperands(); 9724 Degree[&N] = NOps; 9725 if (0 == NOps) 9726 Order.push_back(&N); 9727 } 9728 for (size_t I = 0; I != Order.size(); ++I) { 9729 SDNode *N = Order[I]; 9730 for (auto U : N->uses()) { 9731 unsigned &UnsortedOps = Degree[U]; 9732 if (0 == --UnsortedOps) 9733 Order.push_back(U); 9734 } 9735 } 9736 } 9737 9738 #ifndef NDEBUG 9739 void SelectionDAG::VerifyDAGDivergence() { 9740 std::vector<SDNode *> TopoOrder; 9741 CreateTopologicalOrder(TopoOrder); 9742 for (auto *N : TopoOrder) { 9743 assert(calculateDivergence(N) == N->isDivergent() && 9744 "Divergence bit inconsistency detected"); 9745 } 9746 } 9747 #endif 9748 9749 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9750 /// uses of other values produced by From.getNode() alone. The same value 9751 /// may appear in both the From and To list. The Deleted vector is 9752 /// handled the same way as for ReplaceAllUsesWith. 9753 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9754 const SDValue *To, 9755 unsigned Num){ 9756 // Handle the simple, trivial case efficiently. 9757 if (Num == 1) 9758 return ReplaceAllUsesOfValueWith(*From, *To); 9759 9760 transferDbgValues(*From, *To); 9761 9762 // Read up all the uses and make records of them. This helps 9763 // processing new uses that are introduced during the 9764 // replacement process. 9765 SmallVector<UseMemo, 4> Uses; 9766 for (unsigned i = 0; i != Num; ++i) { 9767 unsigned FromResNo = From[i].getResNo(); 9768 SDNode *FromNode = From[i].getNode(); 9769 for (SDNode::use_iterator UI = FromNode->use_begin(), 9770 E = FromNode->use_end(); UI != E; ++UI) { 9771 SDUse &Use = UI.getUse(); 9772 if (Use.getResNo() == FromResNo) { 9773 UseMemo Memo = { *UI, i, &Use }; 9774 Uses.push_back(Memo); 9775 } 9776 } 9777 } 9778 9779 // Sort the uses, so that all the uses from a given User are together. 9780 llvm::sort(Uses); 9781 9782 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9783 UseIndex != UseIndexEnd; ) { 9784 // We know that this user uses some value of From. If it is the right 9785 // value, update it. 9786 SDNode *User = Uses[UseIndex].User; 9787 9788 // This node is about to morph, remove its old self from the CSE maps. 9789 RemoveNodeFromCSEMaps(User); 9790 9791 // The Uses array is sorted, so all the uses for a given User 9792 // are next to each other in the list. 9793 // To help reduce the number of CSE recomputations, process all 9794 // the uses of this user that we can find this way. 9795 do { 9796 unsigned i = Uses[UseIndex].Index; 9797 SDUse &Use = *Uses[UseIndex].Use; 9798 ++UseIndex; 9799 9800 Use.set(To[i]); 9801 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9802 9803 // Now that we have modified User, add it back to the CSE maps. If it 9804 // already exists there, recursively merge the results together. 9805 AddModifiedNodeToCSEMaps(User); 9806 } 9807 } 9808 9809 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9810 /// based on their topological order. It returns the maximum id and a vector 9811 /// of the SDNodes* in assigned order by reference. 9812 unsigned SelectionDAG::AssignTopologicalOrder() { 9813 unsigned DAGSize = 0; 9814 9815 // SortedPos tracks the progress of the algorithm. Nodes before it are 9816 // sorted, nodes after it are unsorted. When the algorithm completes 9817 // it is at the end of the list. 9818 allnodes_iterator SortedPos = allnodes_begin(); 9819 9820 // Visit all the nodes. Move nodes with no operands to the front of 9821 // the list immediately. Annotate nodes that do have operands with their 9822 // operand count. Before we do this, the Node Id fields of the nodes 9823 // may contain arbitrary values. After, the Node Id fields for nodes 9824 // before SortedPos will contain the topological sort index, and the 9825 // Node Id fields for nodes At SortedPos and after will contain the 9826 // count of outstanding operands. 9827 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9828 checkForCycles(&N, this); 9829 unsigned Degree = N.getNumOperands(); 9830 if (Degree == 0) { 9831 // A node with no uses, add it to the result array immediately. 9832 N.setNodeId(DAGSize++); 9833 allnodes_iterator Q(&N); 9834 if (Q != SortedPos) 9835 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9836 assert(SortedPos != AllNodes.end() && "Overran node list"); 9837 ++SortedPos; 9838 } else { 9839 // Temporarily use the Node Id as scratch space for the degree count. 9840 N.setNodeId(Degree); 9841 } 9842 } 9843 9844 // Visit all the nodes. As we iterate, move nodes into sorted order, 9845 // such that by the time the end is reached all nodes will be sorted. 9846 for (SDNode &Node : allnodes()) { 9847 SDNode *N = &Node; 9848 checkForCycles(N, this); 9849 // N is in sorted position, so all its uses have one less operand 9850 // that needs to be sorted. 9851 for (SDNode *P : N->uses()) { 9852 unsigned Degree = P->getNodeId(); 9853 assert(Degree != 0 && "Invalid node degree"); 9854 --Degree; 9855 if (Degree == 0) { 9856 // All of P's operands are sorted, so P may sorted now. 9857 P->setNodeId(DAGSize++); 9858 if (P->getIterator() != SortedPos) 9859 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9860 assert(SortedPos != AllNodes.end() && "Overran node list"); 9861 ++SortedPos; 9862 } else { 9863 // Update P's outstanding operand count. 9864 P->setNodeId(Degree); 9865 } 9866 } 9867 if (Node.getIterator() == SortedPos) { 9868 #ifndef NDEBUG 9869 allnodes_iterator I(N); 9870 SDNode *S = &*++I; 9871 dbgs() << "Overran sorted position:\n"; 9872 S->dumprFull(this); dbgs() << "\n"; 9873 dbgs() << "Checking if this is due to cycles\n"; 9874 checkForCycles(this, true); 9875 #endif 9876 llvm_unreachable(nullptr); 9877 } 9878 } 9879 9880 assert(SortedPos == AllNodes.end() && 9881 "Topological sort incomplete!"); 9882 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9883 "First node in topological sort is not the entry token!"); 9884 assert(AllNodes.front().getNodeId() == 0 && 9885 "First node in topological sort has non-zero id!"); 9886 assert(AllNodes.front().getNumOperands() == 0 && 9887 "First node in topological sort has operands!"); 9888 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9889 "Last node in topologic sort has unexpected id!"); 9890 assert(AllNodes.back().use_empty() && 9891 "Last node in topologic sort has users!"); 9892 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9893 return DAGSize; 9894 } 9895 9896 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9897 /// value is produced by SD. 9898 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9899 for (SDNode *SD : DB->getSDNodes()) { 9900 if (!SD) 9901 continue; 9902 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9903 SD->setHasDebugValue(true); 9904 } 9905 DbgInfo->add(DB, isParameter); 9906 } 9907 9908 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9909 9910 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9911 SDValue NewMemOpChain) { 9912 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9913 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9914 // The new memory operation must have the same position as the old load in 9915 // terms of memory dependency. Create a TokenFactor for the old load and new 9916 // memory operation and update uses of the old load's output chain to use that 9917 // TokenFactor. 9918 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9919 return NewMemOpChain; 9920 9921 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9922 OldChain, NewMemOpChain); 9923 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9924 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9925 return TokenFactor; 9926 } 9927 9928 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9929 SDValue NewMemOp) { 9930 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9931 SDValue OldChain = SDValue(OldLoad, 1); 9932 SDValue NewMemOpChain = NewMemOp.getValue(1); 9933 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9934 } 9935 9936 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9937 Function **OutFunction) { 9938 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9939 9940 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9941 auto *Module = MF->getFunction().getParent(); 9942 auto *Function = Module->getFunction(Symbol); 9943 9944 if (OutFunction != nullptr) 9945 *OutFunction = Function; 9946 9947 if (Function != nullptr) { 9948 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9949 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9950 } 9951 9952 std::string ErrorStr; 9953 raw_string_ostream ErrorFormatter(ErrorStr); 9954 ErrorFormatter << "Undefined external symbol "; 9955 ErrorFormatter << '"' << Symbol << '"'; 9956 report_fatal_error(Twine(ErrorFormatter.str())); 9957 } 9958 9959 //===----------------------------------------------------------------------===// 9960 // SDNode Class 9961 //===----------------------------------------------------------------------===// 9962 9963 bool llvm::isNullConstant(SDValue V) { 9964 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9965 return Const != nullptr && Const->isZero(); 9966 } 9967 9968 bool llvm::isNullFPConstant(SDValue V) { 9969 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9970 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9971 } 9972 9973 bool llvm::isAllOnesConstant(SDValue V) { 9974 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9975 return Const != nullptr && Const->isAllOnes(); 9976 } 9977 9978 bool llvm::isOneConstant(SDValue V) { 9979 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9980 return Const != nullptr && Const->isOne(); 9981 } 9982 9983 SDValue llvm::peekThroughBitcasts(SDValue V) { 9984 while (V.getOpcode() == ISD::BITCAST) 9985 V = V.getOperand(0); 9986 return V; 9987 } 9988 9989 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9990 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9991 V = V.getOperand(0); 9992 return V; 9993 } 9994 9995 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9996 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9997 V = V.getOperand(0); 9998 return V; 9999 } 10000 10001 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10002 if (V.getOpcode() != ISD::XOR) 10003 return false; 10004 V = peekThroughBitcasts(V.getOperand(1)); 10005 unsigned NumBits = V.getScalarValueSizeInBits(); 10006 ConstantSDNode *C = 10007 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10008 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10009 } 10010 10011 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10012 bool AllowTruncation) { 10013 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10014 return CN; 10015 10016 // SplatVectors can truncate their operands. Ignore that case here unless 10017 // AllowTruncation is set. 10018 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10019 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10020 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10021 EVT CVT = CN->getValueType(0); 10022 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10023 if (AllowTruncation || CVT == VecEltVT) 10024 return CN; 10025 } 10026 } 10027 10028 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10029 BitVector UndefElements; 10030 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10031 10032 // BuildVectors can truncate their operands. Ignore that case here unless 10033 // AllowTruncation is set. 10034 if (CN && (UndefElements.none() || AllowUndefs)) { 10035 EVT CVT = CN->getValueType(0); 10036 EVT NSVT = N.getValueType().getScalarType(); 10037 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10038 if (AllowTruncation || (CVT == NSVT)) 10039 return CN; 10040 } 10041 } 10042 10043 return nullptr; 10044 } 10045 10046 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10047 bool AllowUndefs, 10048 bool AllowTruncation) { 10049 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10050 return CN; 10051 10052 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10053 BitVector UndefElements; 10054 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10055 10056 // BuildVectors can truncate their operands. Ignore that case here unless 10057 // AllowTruncation is set. 10058 if (CN && (UndefElements.none() || AllowUndefs)) { 10059 EVT CVT = CN->getValueType(0); 10060 EVT NSVT = N.getValueType().getScalarType(); 10061 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10062 if (AllowTruncation || (CVT == NSVT)) 10063 return CN; 10064 } 10065 } 10066 10067 return nullptr; 10068 } 10069 10070 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10071 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10072 return CN; 10073 10074 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10075 BitVector UndefElements; 10076 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10077 if (CN && (UndefElements.none() || AllowUndefs)) 10078 return CN; 10079 } 10080 10081 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10082 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10083 return CN; 10084 10085 return nullptr; 10086 } 10087 10088 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10089 const APInt &DemandedElts, 10090 bool AllowUndefs) { 10091 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10092 return CN; 10093 10094 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10095 BitVector UndefElements; 10096 ConstantFPSDNode *CN = 10097 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10098 if (CN && (UndefElements.none() || AllowUndefs)) 10099 return CN; 10100 } 10101 10102 return nullptr; 10103 } 10104 10105 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10106 // TODO: may want to use peekThroughBitcast() here. 10107 ConstantSDNode *C = 10108 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10109 return C && C->isZero(); 10110 } 10111 10112 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10113 // TODO: may want to use peekThroughBitcast() here. 10114 unsigned BitWidth = N.getScalarValueSizeInBits(); 10115 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10116 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10117 } 10118 10119 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10120 N = peekThroughBitcasts(N); 10121 unsigned BitWidth = N.getScalarValueSizeInBits(); 10122 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10123 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10124 } 10125 10126 HandleSDNode::~HandleSDNode() { 10127 DropOperands(); 10128 } 10129 10130 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10131 const DebugLoc &DL, 10132 const GlobalValue *GA, EVT VT, 10133 int64_t o, unsigned TF) 10134 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10135 TheGlobal = GA; 10136 } 10137 10138 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10139 EVT VT, unsigned SrcAS, 10140 unsigned DestAS) 10141 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10142 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10143 10144 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10145 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10146 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10147 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10148 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10149 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10150 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10151 10152 // We check here that the size of the memory operand fits within the size of 10153 // the MMO. This is because the MMO might indicate only a possible address 10154 // range instead of specifying the affected memory addresses precisely. 10155 // TODO: Make MachineMemOperands aware of scalable vectors. 10156 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10157 "Size mismatch!"); 10158 } 10159 10160 /// Profile - Gather unique data for the node. 10161 /// 10162 void SDNode::Profile(FoldingSetNodeID &ID) const { 10163 AddNodeIDNode(ID, this); 10164 } 10165 10166 namespace { 10167 10168 struct EVTArray { 10169 std::vector<EVT> VTs; 10170 10171 EVTArray() { 10172 VTs.reserve(MVT::VALUETYPE_SIZE); 10173 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10174 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10175 } 10176 }; 10177 10178 } // end anonymous namespace 10179 10180 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10181 static ManagedStatic<EVTArray> SimpleVTArray; 10182 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10183 10184 /// getValueTypeList - Return a pointer to the specified value type. 10185 /// 10186 const EVT *SDNode::getValueTypeList(EVT VT) { 10187 if (VT.isExtended()) { 10188 sys::SmartScopedLock<true> Lock(*VTMutex); 10189 return &(*EVTs->insert(VT).first); 10190 } 10191 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10192 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10193 } 10194 10195 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10196 /// indicated value. This method ignores uses of other values defined by this 10197 /// operation. 10198 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10199 assert(Value < getNumValues() && "Bad value!"); 10200 10201 // TODO: Only iterate over uses of a given value of the node 10202 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10203 if (UI.getUse().getResNo() == Value) { 10204 if (NUses == 0) 10205 return false; 10206 --NUses; 10207 } 10208 } 10209 10210 // Found exactly the right number of uses? 10211 return NUses == 0; 10212 } 10213 10214 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10215 /// value. This method ignores uses of other values defined by this operation. 10216 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10217 assert(Value < getNumValues() && "Bad value!"); 10218 10219 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10220 if (UI.getUse().getResNo() == Value) 10221 return true; 10222 10223 return false; 10224 } 10225 10226 /// isOnlyUserOf - Return true if this node is the only use of N. 10227 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10228 bool Seen = false; 10229 for (const SDNode *User : N->uses()) { 10230 if (User == this) 10231 Seen = true; 10232 else 10233 return false; 10234 } 10235 10236 return Seen; 10237 } 10238 10239 /// Return true if the only users of N are contained in Nodes. 10240 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10241 bool Seen = false; 10242 for (const SDNode *User : N->uses()) { 10243 if (llvm::is_contained(Nodes, User)) 10244 Seen = true; 10245 else 10246 return false; 10247 } 10248 10249 return Seen; 10250 } 10251 10252 /// isOperand - Return true if this node is an operand of N. 10253 bool SDValue::isOperandOf(const SDNode *N) const { 10254 return is_contained(N->op_values(), *this); 10255 } 10256 10257 bool SDNode::isOperandOf(const SDNode *N) const { 10258 return any_of(N->op_values(), 10259 [this](SDValue Op) { return this == Op.getNode(); }); 10260 } 10261 10262 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10263 /// be a chain) reaches the specified operand without crossing any 10264 /// side-effecting instructions on any chain path. In practice, this looks 10265 /// through token factors and non-volatile loads. In order to remain efficient, 10266 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10267 /// 10268 /// Note that we only need to examine chains when we're searching for 10269 /// side-effects; SelectionDAG requires that all side-effects are represented 10270 /// by chains, even if another operand would force a specific ordering. This 10271 /// constraint is necessary to allow transformations like splitting loads. 10272 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10273 unsigned Depth) const { 10274 if (*this == Dest) return true; 10275 10276 // Don't search too deeply, we just want to be able to see through 10277 // TokenFactor's etc. 10278 if (Depth == 0) return false; 10279 10280 // If this is a token factor, all inputs to the TF happen in parallel. 10281 if (getOpcode() == ISD::TokenFactor) { 10282 // First, try a shallow search. 10283 if (is_contained((*this)->ops(), Dest)) { 10284 // We found the chain we want as an operand of this TokenFactor. 10285 // Essentially, we reach the chain without side-effects if we could 10286 // serialize the TokenFactor into a simple chain of operations with 10287 // Dest as the last operation. This is automatically true if the 10288 // chain has one use: there are no other ordering constraints. 10289 // If the chain has more than one use, we give up: some other 10290 // use of Dest might force a side-effect between Dest and the current 10291 // node. 10292 if (Dest.hasOneUse()) 10293 return true; 10294 } 10295 // Next, try a deep search: check whether every operand of the TokenFactor 10296 // reaches Dest. 10297 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10298 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10299 }); 10300 } 10301 10302 // Loads don't have side effects, look through them. 10303 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10304 if (Ld->isUnordered()) 10305 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10306 } 10307 return false; 10308 } 10309 10310 bool SDNode::hasPredecessor(const SDNode *N) const { 10311 SmallPtrSet<const SDNode *, 32> Visited; 10312 SmallVector<const SDNode *, 16> Worklist; 10313 Worklist.push_back(this); 10314 return hasPredecessorHelper(N, Visited, Worklist); 10315 } 10316 10317 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10318 this->Flags.intersectWith(Flags); 10319 } 10320 10321 SDValue 10322 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10323 ArrayRef<ISD::NodeType> CandidateBinOps, 10324 bool AllowPartials) { 10325 // The pattern must end in an extract from index 0. 10326 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10327 !isNullConstant(Extract->getOperand(1))) 10328 return SDValue(); 10329 10330 // Match against one of the candidate binary ops. 10331 SDValue Op = Extract->getOperand(0); 10332 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10333 return Op.getOpcode() == unsigned(BinOp); 10334 })) 10335 return SDValue(); 10336 10337 // Floating-point reductions may require relaxed constraints on the final step 10338 // of the reduction because they may reorder intermediate operations. 10339 unsigned CandidateBinOp = Op.getOpcode(); 10340 if (Op.getValueType().isFloatingPoint()) { 10341 SDNodeFlags Flags = Op->getFlags(); 10342 switch (CandidateBinOp) { 10343 case ISD::FADD: 10344 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10345 return SDValue(); 10346 break; 10347 default: 10348 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10349 } 10350 } 10351 10352 // Matching failed - attempt to see if we did enough stages that a partial 10353 // reduction from a subvector is possible. 10354 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10355 if (!AllowPartials || !Op) 10356 return SDValue(); 10357 EVT OpVT = Op.getValueType(); 10358 EVT OpSVT = OpVT.getScalarType(); 10359 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10360 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10361 return SDValue(); 10362 BinOp = (ISD::NodeType)CandidateBinOp; 10363 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10364 getVectorIdxConstant(0, SDLoc(Op))); 10365 }; 10366 10367 // At each stage, we're looking for something that looks like: 10368 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10369 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10370 // i32 undef, i32 undef, i32 undef, i32 undef> 10371 // %a = binop <8 x i32> %op, %s 10372 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10373 // we expect something like: 10374 // <4,5,6,7,u,u,u,u> 10375 // <2,3,u,u,u,u,u,u> 10376 // <1,u,u,u,u,u,u,u> 10377 // While a partial reduction match would be: 10378 // <2,3,u,u,u,u,u,u> 10379 // <1,u,u,u,u,u,u,u> 10380 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10381 SDValue PrevOp; 10382 for (unsigned i = 0; i < Stages; ++i) { 10383 unsigned MaskEnd = (1 << i); 10384 10385 if (Op.getOpcode() != CandidateBinOp) 10386 return PartialReduction(PrevOp, MaskEnd); 10387 10388 SDValue Op0 = Op.getOperand(0); 10389 SDValue Op1 = Op.getOperand(1); 10390 10391 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10392 if (Shuffle) { 10393 Op = Op1; 10394 } else { 10395 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10396 Op = Op0; 10397 } 10398 10399 // The first operand of the shuffle should be the same as the other operand 10400 // of the binop. 10401 if (!Shuffle || Shuffle->getOperand(0) != Op) 10402 return PartialReduction(PrevOp, MaskEnd); 10403 10404 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10405 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10406 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10407 return PartialReduction(PrevOp, MaskEnd); 10408 10409 PrevOp = Op; 10410 } 10411 10412 // Handle subvector reductions, which tend to appear after the shuffle 10413 // reduction stages. 10414 while (Op.getOpcode() == CandidateBinOp) { 10415 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10416 SDValue Op0 = Op.getOperand(0); 10417 SDValue Op1 = Op.getOperand(1); 10418 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10419 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10420 Op0.getOperand(0) != Op1.getOperand(0)) 10421 break; 10422 SDValue Src = Op0.getOperand(0); 10423 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10424 if (NumSrcElts != (2 * NumElts)) 10425 break; 10426 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10427 Op1.getConstantOperandAPInt(1) == NumElts) && 10428 !(Op1.getConstantOperandAPInt(1) == 0 && 10429 Op0.getConstantOperandAPInt(1) == NumElts)) 10430 break; 10431 Op = Src; 10432 } 10433 10434 BinOp = (ISD::NodeType)CandidateBinOp; 10435 return Op; 10436 } 10437 10438 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10439 assert(N->getNumValues() == 1 && 10440 "Can't unroll a vector with multiple results!"); 10441 10442 EVT VT = N->getValueType(0); 10443 unsigned NE = VT.getVectorNumElements(); 10444 EVT EltVT = VT.getVectorElementType(); 10445 SDLoc dl(N); 10446 10447 SmallVector<SDValue, 8> Scalars; 10448 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10449 10450 // If ResNE is 0, fully unroll the vector op. 10451 if (ResNE == 0) 10452 ResNE = NE; 10453 else if (NE > ResNE) 10454 NE = ResNE; 10455 10456 unsigned i; 10457 for (i= 0; i != NE; ++i) { 10458 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10459 SDValue Operand = N->getOperand(j); 10460 EVT OperandVT = Operand.getValueType(); 10461 if (OperandVT.isVector()) { 10462 // A vector operand; extract a single element. 10463 EVT OperandEltVT = OperandVT.getVectorElementType(); 10464 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10465 Operand, getVectorIdxConstant(i, dl)); 10466 } else { 10467 // A scalar operand; just use it as is. 10468 Operands[j] = Operand; 10469 } 10470 } 10471 10472 switch (N->getOpcode()) { 10473 default: { 10474 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10475 N->getFlags())); 10476 break; 10477 } 10478 case ISD::VSELECT: 10479 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10480 break; 10481 case ISD::SHL: 10482 case ISD::SRA: 10483 case ISD::SRL: 10484 case ISD::ROTL: 10485 case ISD::ROTR: 10486 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10487 getShiftAmountOperand(Operands[0].getValueType(), 10488 Operands[1]))); 10489 break; 10490 case ISD::SIGN_EXTEND_INREG: { 10491 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10492 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10493 Operands[0], 10494 getValueType(ExtVT))); 10495 } 10496 } 10497 } 10498 10499 for (; i < ResNE; ++i) 10500 Scalars.push_back(getUNDEF(EltVT)); 10501 10502 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10503 return getBuildVector(VecVT, dl, Scalars); 10504 } 10505 10506 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10507 SDNode *N, unsigned ResNE) { 10508 unsigned Opcode = N->getOpcode(); 10509 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10510 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10511 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10512 "Expected an overflow opcode"); 10513 10514 EVT ResVT = N->getValueType(0); 10515 EVT OvVT = N->getValueType(1); 10516 EVT ResEltVT = ResVT.getVectorElementType(); 10517 EVT OvEltVT = OvVT.getVectorElementType(); 10518 SDLoc dl(N); 10519 10520 // If ResNE is 0, fully unroll the vector op. 10521 unsigned NE = ResVT.getVectorNumElements(); 10522 if (ResNE == 0) 10523 ResNE = NE; 10524 else if (NE > ResNE) 10525 NE = ResNE; 10526 10527 SmallVector<SDValue, 8> LHSScalars; 10528 SmallVector<SDValue, 8> RHSScalars; 10529 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10530 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10531 10532 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10533 SDVTList VTs = getVTList(ResEltVT, SVT); 10534 SmallVector<SDValue, 8> ResScalars; 10535 SmallVector<SDValue, 8> OvScalars; 10536 for (unsigned i = 0; i < NE; ++i) { 10537 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10538 SDValue Ov = 10539 getSelect(dl, OvEltVT, Res.getValue(1), 10540 getBoolConstant(true, dl, OvEltVT, ResVT), 10541 getConstant(0, dl, OvEltVT)); 10542 10543 ResScalars.push_back(Res); 10544 OvScalars.push_back(Ov); 10545 } 10546 10547 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10548 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10549 10550 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10551 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10552 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10553 getBuildVector(NewOvVT, dl, OvScalars)); 10554 } 10555 10556 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10557 LoadSDNode *Base, 10558 unsigned Bytes, 10559 int Dist) const { 10560 if (LD->isVolatile() || Base->isVolatile()) 10561 return false; 10562 // TODO: probably too restrictive for atomics, revisit 10563 if (!LD->isSimple()) 10564 return false; 10565 if (LD->isIndexed() || Base->isIndexed()) 10566 return false; 10567 if (LD->getChain() != Base->getChain()) 10568 return false; 10569 EVT VT = LD->getValueType(0); 10570 if (VT.getSizeInBits() / 8 != Bytes) 10571 return false; 10572 10573 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10574 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10575 10576 int64_t Offset = 0; 10577 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10578 return (Dist * Bytes == Offset); 10579 return false; 10580 } 10581 10582 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10583 /// if it cannot be inferred. 10584 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10585 // If this is a GlobalAddress + cst, return the alignment. 10586 const GlobalValue *GV = nullptr; 10587 int64_t GVOffset = 0; 10588 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10589 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10590 KnownBits Known(PtrWidth); 10591 llvm::computeKnownBits(GV, Known, getDataLayout()); 10592 unsigned AlignBits = Known.countMinTrailingZeros(); 10593 if (AlignBits) 10594 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10595 } 10596 10597 // If this is a direct reference to a stack slot, use information about the 10598 // stack slot's alignment. 10599 int FrameIdx = INT_MIN; 10600 int64_t FrameOffset = 0; 10601 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10602 FrameIdx = FI->getIndex(); 10603 } else if (isBaseWithConstantOffset(Ptr) && 10604 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10605 // Handle FI+Cst 10606 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10607 FrameOffset = Ptr.getConstantOperandVal(1); 10608 } 10609 10610 if (FrameIdx != INT_MIN) { 10611 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10612 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10613 } 10614 10615 return None; 10616 } 10617 10618 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10619 /// which is split (or expanded) into two not necessarily identical pieces. 10620 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10621 // Currently all types are split in half. 10622 EVT LoVT, HiVT; 10623 if (!VT.isVector()) 10624 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10625 else 10626 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10627 10628 return std::make_pair(LoVT, HiVT); 10629 } 10630 10631 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10632 /// type, dependent on an enveloping VT that has been split into two identical 10633 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10634 std::pair<EVT, EVT> 10635 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10636 bool *HiIsEmpty) const { 10637 EVT EltTp = VT.getVectorElementType(); 10638 // Examples: 10639 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10640 // custom VL=9 with enveloping VL=8/8 yields 8/1 10641 // custom VL=10 with enveloping VL=8/8 yields 8/2 10642 // etc. 10643 ElementCount VTNumElts = VT.getVectorElementCount(); 10644 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10645 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10646 "Mixing fixed width and scalable vectors when enveloping a type"); 10647 EVT LoVT, HiVT; 10648 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10649 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10650 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10651 *HiIsEmpty = false; 10652 } else { 10653 // Flag that hi type has zero storage size, but return split envelop type 10654 // (this would be easier if vector types with zero elements were allowed). 10655 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10656 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10657 *HiIsEmpty = true; 10658 } 10659 return std::make_pair(LoVT, HiVT); 10660 } 10661 10662 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10663 /// low/high part. 10664 std::pair<SDValue, SDValue> 10665 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10666 const EVT &HiVT) { 10667 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10668 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10669 "Splitting vector with an invalid mixture of fixed and scalable " 10670 "vector types"); 10671 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10672 N.getValueType().getVectorMinNumElements() && 10673 "More vector elements requested than available!"); 10674 SDValue Lo, Hi; 10675 Lo = 10676 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10677 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10678 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10679 // IDX with the runtime scaling factor of the result vector type. For 10680 // fixed-width result vectors, that runtime scaling factor is 1. 10681 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10682 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10683 return std::make_pair(Lo, Hi); 10684 } 10685 10686 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10687 const SDLoc &DL) { 10688 // Split the vector length parameter. 10689 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10690 EVT VT = N.getValueType(); 10691 assert(VecVT.getVectorElementCount().isKnownEven() && 10692 "Expecting the mask to be an evenly-sized vector"); 10693 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10694 SDValue HalfNumElts = 10695 VecVT.isFixedLengthVector() 10696 ? getConstant(HalfMinNumElts, DL, VT) 10697 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10698 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10699 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10700 return std::make_pair(Lo, Hi); 10701 } 10702 10703 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10704 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10705 EVT VT = N.getValueType(); 10706 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10707 NextPowerOf2(VT.getVectorNumElements())); 10708 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10709 getVectorIdxConstant(0, DL)); 10710 } 10711 10712 void SelectionDAG::ExtractVectorElements(SDValue Op, 10713 SmallVectorImpl<SDValue> &Args, 10714 unsigned Start, unsigned Count, 10715 EVT EltVT) { 10716 EVT VT = Op.getValueType(); 10717 if (Count == 0) 10718 Count = VT.getVectorNumElements(); 10719 if (EltVT == EVT()) 10720 EltVT = VT.getVectorElementType(); 10721 SDLoc SL(Op); 10722 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10723 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10724 getVectorIdxConstant(i, SL))); 10725 } 10726 } 10727 10728 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10729 unsigned GlobalAddressSDNode::getAddressSpace() const { 10730 return getGlobal()->getType()->getAddressSpace(); 10731 } 10732 10733 Type *ConstantPoolSDNode::getType() const { 10734 if (isMachineConstantPoolEntry()) 10735 return Val.MachineCPVal->getType(); 10736 return Val.ConstVal->getType(); 10737 } 10738 10739 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10740 unsigned &SplatBitSize, 10741 bool &HasAnyUndefs, 10742 unsigned MinSplatBits, 10743 bool IsBigEndian) const { 10744 EVT VT = getValueType(0); 10745 assert(VT.isVector() && "Expected a vector type"); 10746 unsigned VecWidth = VT.getSizeInBits(); 10747 if (MinSplatBits > VecWidth) 10748 return false; 10749 10750 // FIXME: The widths are based on this node's type, but build vectors can 10751 // truncate their operands. 10752 SplatValue = APInt(VecWidth, 0); 10753 SplatUndef = APInt(VecWidth, 0); 10754 10755 // Get the bits. Bits with undefined values (when the corresponding element 10756 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10757 // in SplatValue. If any of the values are not constant, give up and return 10758 // false. 10759 unsigned int NumOps = getNumOperands(); 10760 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10761 unsigned EltWidth = VT.getScalarSizeInBits(); 10762 10763 for (unsigned j = 0; j < NumOps; ++j) { 10764 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10765 SDValue OpVal = getOperand(i); 10766 unsigned BitPos = j * EltWidth; 10767 10768 if (OpVal.isUndef()) 10769 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10770 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10771 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10772 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10773 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10774 else 10775 return false; 10776 } 10777 10778 // The build_vector is all constants or undefs. Find the smallest element 10779 // size that splats the vector. 10780 HasAnyUndefs = (SplatUndef != 0); 10781 10782 // FIXME: This does not work for vectors with elements less than 8 bits. 10783 while (VecWidth > 8) { 10784 unsigned HalfSize = VecWidth / 2; 10785 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10786 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10787 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10788 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10789 10790 // If the two halves do not match (ignoring undef bits), stop here. 10791 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10792 MinSplatBits > HalfSize) 10793 break; 10794 10795 SplatValue = HighValue | LowValue; 10796 SplatUndef = HighUndef & LowUndef; 10797 10798 VecWidth = HalfSize; 10799 } 10800 10801 SplatBitSize = VecWidth; 10802 return true; 10803 } 10804 10805 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10806 BitVector *UndefElements) const { 10807 unsigned NumOps = getNumOperands(); 10808 if (UndefElements) { 10809 UndefElements->clear(); 10810 UndefElements->resize(NumOps); 10811 } 10812 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10813 if (!DemandedElts) 10814 return SDValue(); 10815 SDValue Splatted; 10816 for (unsigned i = 0; i != NumOps; ++i) { 10817 if (!DemandedElts[i]) 10818 continue; 10819 SDValue Op = getOperand(i); 10820 if (Op.isUndef()) { 10821 if (UndefElements) 10822 (*UndefElements)[i] = true; 10823 } else if (!Splatted) { 10824 Splatted = Op; 10825 } else if (Splatted != Op) { 10826 return SDValue(); 10827 } 10828 } 10829 10830 if (!Splatted) { 10831 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10832 assert(getOperand(FirstDemandedIdx).isUndef() && 10833 "Can only have a splat without a constant for all undefs."); 10834 return getOperand(FirstDemandedIdx); 10835 } 10836 10837 return Splatted; 10838 } 10839 10840 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10841 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10842 return getSplatValue(DemandedElts, UndefElements); 10843 } 10844 10845 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10846 SmallVectorImpl<SDValue> &Sequence, 10847 BitVector *UndefElements) const { 10848 unsigned NumOps = getNumOperands(); 10849 Sequence.clear(); 10850 if (UndefElements) { 10851 UndefElements->clear(); 10852 UndefElements->resize(NumOps); 10853 } 10854 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10855 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10856 return false; 10857 10858 // Set the undefs even if we don't find a sequence (like getSplatValue). 10859 if (UndefElements) 10860 for (unsigned I = 0; I != NumOps; ++I) 10861 if (DemandedElts[I] && getOperand(I).isUndef()) 10862 (*UndefElements)[I] = true; 10863 10864 // Iteratively widen the sequence length looking for repetitions. 10865 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10866 Sequence.append(SeqLen, SDValue()); 10867 for (unsigned I = 0; I != NumOps; ++I) { 10868 if (!DemandedElts[I]) 10869 continue; 10870 SDValue &SeqOp = Sequence[I % SeqLen]; 10871 SDValue Op = getOperand(I); 10872 if (Op.isUndef()) { 10873 if (!SeqOp) 10874 SeqOp = Op; 10875 continue; 10876 } 10877 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10878 Sequence.clear(); 10879 break; 10880 } 10881 SeqOp = Op; 10882 } 10883 if (!Sequence.empty()) 10884 return true; 10885 } 10886 10887 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10888 return false; 10889 } 10890 10891 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10892 BitVector *UndefElements) const { 10893 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10894 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10895 } 10896 10897 ConstantSDNode * 10898 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10899 BitVector *UndefElements) const { 10900 return dyn_cast_or_null<ConstantSDNode>( 10901 getSplatValue(DemandedElts, UndefElements)); 10902 } 10903 10904 ConstantSDNode * 10905 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10906 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10907 } 10908 10909 ConstantFPSDNode * 10910 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10911 BitVector *UndefElements) const { 10912 return dyn_cast_or_null<ConstantFPSDNode>( 10913 getSplatValue(DemandedElts, UndefElements)); 10914 } 10915 10916 ConstantFPSDNode * 10917 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10918 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10919 } 10920 10921 int32_t 10922 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10923 uint32_t BitWidth) const { 10924 if (ConstantFPSDNode *CN = 10925 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10926 bool IsExact; 10927 APSInt IntVal(BitWidth); 10928 const APFloat &APF = CN->getValueAPF(); 10929 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10930 APFloat::opOK || 10931 !IsExact) 10932 return -1; 10933 10934 return IntVal.exactLogBase2(); 10935 } 10936 return -1; 10937 } 10938 10939 bool BuildVectorSDNode::getConstantRawBits( 10940 bool IsLittleEndian, unsigned DstEltSizeInBits, 10941 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10942 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10943 if (!isConstant()) 10944 return false; 10945 10946 unsigned NumSrcOps = getNumOperands(); 10947 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10948 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10949 "Invalid bitcast scale"); 10950 10951 // Extract raw src bits. 10952 SmallVector<APInt> SrcBitElements(NumSrcOps, 10953 APInt::getNullValue(SrcEltSizeInBits)); 10954 BitVector SrcUndeElements(NumSrcOps, false); 10955 10956 for (unsigned I = 0; I != NumSrcOps; ++I) { 10957 SDValue Op = getOperand(I); 10958 if (Op.isUndef()) { 10959 SrcUndeElements.set(I); 10960 continue; 10961 } 10962 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10963 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10964 assert((CInt || CFP) && "Unknown constant"); 10965 SrcBitElements[I] = 10966 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10967 : CFP->getValueAPF().bitcastToAPInt(); 10968 } 10969 10970 // Recast to dst width. 10971 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10972 SrcBitElements, UndefElements, SrcUndeElements); 10973 return true; 10974 } 10975 10976 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10977 unsigned DstEltSizeInBits, 10978 SmallVectorImpl<APInt> &DstBitElements, 10979 ArrayRef<APInt> SrcBitElements, 10980 BitVector &DstUndefElements, 10981 const BitVector &SrcUndefElements) { 10982 unsigned NumSrcOps = SrcBitElements.size(); 10983 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10984 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10985 "Invalid bitcast scale"); 10986 assert(NumSrcOps == SrcUndefElements.size() && 10987 "Vector size mismatch"); 10988 10989 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10990 DstUndefElements.clear(); 10991 DstUndefElements.resize(NumDstOps, false); 10992 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10993 10994 // Concatenate src elements constant bits together into dst element. 10995 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10996 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10997 for (unsigned I = 0; I != NumDstOps; ++I) { 10998 DstUndefElements.set(I); 10999 APInt &DstBits = DstBitElements[I]; 11000 for (unsigned J = 0; J != Scale; ++J) { 11001 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11002 if (SrcUndefElements[Idx]) 11003 continue; 11004 DstUndefElements.reset(I); 11005 const APInt &SrcBits = SrcBitElements[Idx]; 11006 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11007 "Illegal constant bitwidths"); 11008 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11009 } 11010 } 11011 return; 11012 } 11013 11014 // Split src element constant bits into dst elements. 11015 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11016 for (unsigned I = 0; I != NumSrcOps; ++I) { 11017 if (SrcUndefElements[I]) { 11018 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11019 continue; 11020 } 11021 const APInt &SrcBits = SrcBitElements[I]; 11022 for (unsigned J = 0; J != Scale; ++J) { 11023 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11024 APInt &DstBits = DstBitElements[Idx]; 11025 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11026 } 11027 } 11028 } 11029 11030 bool BuildVectorSDNode::isConstant() const { 11031 for (const SDValue &Op : op_values()) { 11032 unsigned Opc = Op.getOpcode(); 11033 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11034 return false; 11035 } 11036 return true; 11037 } 11038 11039 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11040 // Find the first non-undef value in the shuffle mask. 11041 unsigned i, e; 11042 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11043 /* search */; 11044 11045 // If all elements are undefined, this shuffle can be considered a splat 11046 // (although it should eventually get simplified away completely). 11047 if (i == e) 11048 return true; 11049 11050 // Make sure all remaining elements are either undef or the same as the first 11051 // non-undef value. 11052 for (int Idx = Mask[i]; i != e; ++i) 11053 if (Mask[i] >= 0 && Mask[i] != Idx) 11054 return false; 11055 return true; 11056 } 11057 11058 // Returns the SDNode if it is a constant integer BuildVector 11059 // or constant integer. 11060 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11061 if (isa<ConstantSDNode>(N)) 11062 return N.getNode(); 11063 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11064 return N.getNode(); 11065 // Treat a GlobalAddress supporting constant offset folding as a 11066 // constant integer. 11067 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11068 if (GA->getOpcode() == ISD::GlobalAddress && 11069 TLI->isOffsetFoldingLegal(GA)) 11070 return GA; 11071 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11072 isa<ConstantSDNode>(N.getOperand(0))) 11073 return N.getNode(); 11074 return nullptr; 11075 } 11076 11077 // Returns the SDNode if it is a constant float BuildVector 11078 // or constant float. 11079 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11080 if (isa<ConstantFPSDNode>(N)) 11081 return N.getNode(); 11082 11083 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11084 return N.getNode(); 11085 11086 return nullptr; 11087 } 11088 11089 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11090 assert(!Node->OperandList && "Node already has operands"); 11091 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11092 "too many operands to fit into SDNode"); 11093 SDUse *Ops = OperandRecycler.allocate( 11094 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11095 11096 bool IsDivergent = false; 11097 for (unsigned I = 0; I != Vals.size(); ++I) { 11098 Ops[I].setUser(Node); 11099 Ops[I].setInitial(Vals[I]); 11100 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11101 IsDivergent |= Ops[I].getNode()->isDivergent(); 11102 } 11103 Node->NumOperands = Vals.size(); 11104 Node->OperandList = Ops; 11105 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11106 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11107 Node->SDNodeBits.IsDivergent = IsDivergent; 11108 } 11109 checkForCycles(Node); 11110 } 11111 11112 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11113 SmallVectorImpl<SDValue> &Vals) { 11114 size_t Limit = SDNode::getMaxNumOperands(); 11115 while (Vals.size() > Limit) { 11116 unsigned SliceIdx = Vals.size() - Limit; 11117 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11118 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11119 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11120 Vals.emplace_back(NewTF); 11121 } 11122 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11123 } 11124 11125 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11126 EVT VT, SDNodeFlags Flags) { 11127 switch (Opcode) { 11128 default: 11129 return SDValue(); 11130 case ISD::ADD: 11131 case ISD::OR: 11132 case ISD::XOR: 11133 case ISD::UMAX: 11134 return getConstant(0, DL, VT); 11135 case ISD::MUL: 11136 return getConstant(1, DL, VT); 11137 case ISD::AND: 11138 case ISD::UMIN: 11139 return getAllOnesConstant(DL, VT); 11140 case ISD::SMAX: 11141 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11142 case ISD::SMIN: 11143 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11144 case ISD::FADD: 11145 return getConstantFP(-0.0, DL, VT); 11146 case ISD::FMUL: 11147 return getConstantFP(1.0, DL, VT); 11148 case ISD::FMINNUM: 11149 case ISD::FMAXNUM: { 11150 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11151 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11152 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11153 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11154 APFloat::getLargest(Semantics); 11155 if (Opcode == ISD::FMAXNUM) 11156 NeutralAF.changeSign(); 11157 11158 return getConstantFP(NeutralAF, DL, VT); 11159 } 11160 } 11161 } 11162 11163 #ifndef NDEBUG 11164 static void checkForCyclesHelper(const SDNode *N, 11165 SmallPtrSetImpl<const SDNode*> &Visited, 11166 SmallPtrSetImpl<const SDNode*> &Checked, 11167 const llvm::SelectionDAG *DAG) { 11168 // If this node has already been checked, don't check it again. 11169 if (Checked.count(N)) 11170 return; 11171 11172 // If a node has already been visited on this depth-first walk, reject it as 11173 // a cycle. 11174 if (!Visited.insert(N).second) { 11175 errs() << "Detected cycle in SelectionDAG\n"; 11176 dbgs() << "Offending node:\n"; 11177 N->dumprFull(DAG); dbgs() << "\n"; 11178 abort(); 11179 } 11180 11181 for (const SDValue &Op : N->op_values()) 11182 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11183 11184 Checked.insert(N); 11185 Visited.erase(N); 11186 } 11187 #endif 11188 11189 void llvm::checkForCycles(const llvm::SDNode *N, 11190 const llvm::SelectionDAG *DAG, 11191 bool force) { 11192 #ifndef NDEBUG 11193 bool check = force; 11194 #ifdef EXPENSIVE_CHECKS 11195 check = true; 11196 #endif // EXPENSIVE_CHECKS 11197 if (check) { 11198 assert(N && "Checking nonexistent SDNode"); 11199 SmallPtrSet<const SDNode*, 32> visited; 11200 SmallPtrSet<const SDNode*, 32> checked; 11201 checkForCyclesHelper(N, visited, checked, DAG); 11202 } 11203 #endif // !NDEBUG 11204 } 11205 11206 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11207 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11208 } 11209