1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2411 /// is less than the element bit-width of the shift node, return it.
2412 static const APInt *getValidShiftAmountConstant(SDValue V,
2413                                                 const APInt &DemandedElts) {
2414   unsigned BitWidth = V.getScalarValueSizeInBits();
2415   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2416     // Shifting more than the bitwidth is not valid.
2417     const APInt &ShAmt = SA->getAPIntValue();
2418     if (ShAmt.ult(BitWidth))
2419       return &ShAmt;
2420   }
2421   return nullptr;
2422 }
2423 
2424 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2425 /// than the element bit-width of the shift node, return the minimum value.
2426 static const APInt *
2427 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2428   unsigned BitWidth = V.getScalarValueSizeInBits();
2429   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2430   if (!BV)
2431     return nullptr;
2432   const APInt *MinShAmt = nullptr;
2433   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2434     if (!DemandedElts[i])
2435       continue;
2436     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2437     if (!SA)
2438       return nullptr;
2439     // Shifting more than the bitwidth is not valid.
2440     const APInt &ShAmt = SA->getAPIntValue();
2441     if (ShAmt.uge(BitWidth))
2442       return nullptr;
2443     if (MinShAmt && MinShAmt->ule(ShAmt))
2444       continue;
2445     MinShAmt = &ShAmt;
2446   }
2447   return MinShAmt;
2448 }
2449 
2450 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2451 /// than the element bit-width of the shift node, return the maximum value.
2452 static const APInt *
2453 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2454   unsigned BitWidth = V.getScalarValueSizeInBits();
2455   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2456   if (!BV)
2457     return nullptr;
2458   const APInt *MaxShAmt = nullptr;
2459   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2460     if (!DemandedElts[i])
2461       continue;
2462     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2463     if (!SA)
2464       return nullptr;
2465     // Shifting more than the bitwidth is not valid.
2466     const APInt &ShAmt = SA->getAPIntValue();
2467     if (ShAmt.uge(BitWidth))
2468       return nullptr;
2469     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2470       continue;
2471     MaxShAmt = &ShAmt;
2472   }
2473   return MaxShAmt;
2474 }
2475 
2476 /// Determine which bits of Op are known to be either zero or one and return
2477 /// them in Known. For vectors, the known bits are those that are shared by
2478 /// every vector element.
2479 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2480   EVT VT = Op.getValueType();
2481   APInt DemandedElts = VT.isVector()
2482                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2483                            : APInt(1, 1);
2484   return computeKnownBits(Op, DemandedElts, Depth);
2485 }
2486 
2487 /// Determine which bits of Op are known to be either zero or one and return
2488 /// them in Known. The DemandedElts argument allows us to only collect the known
2489 /// bits that are shared by the requested vector elements.
2490 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2491                                          unsigned Depth) const {
2492   unsigned BitWidth = Op.getScalarValueSizeInBits();
2493 
2494   KnownBits Known(BitWidth);   // Don't know anything.
2495 
2496   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2497     // We know all of the bits for a constant!
2498     Known.One = C->getAPIntValue();
2499     Known.Zero = ~Known.One;
2500     return Known;
2501   }
2502   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2503     // We know all of the bits for a constant fp!
2504     Known.One = C->getValueAPF().bitcastToAPInt();
2505     Known.Zero = ~Known.One;
2506     return Known;
2507   }
2508 
2509   if (Depth >= MaxRecursionDepth)
2510     return Known;  // Limit search depth.
2511 
2512   KnownBits Known2;
2513   unsigned NumElts = DemandedElts.getBitWidth();
2514   assert((!Op.getValueType().isVector() ||
2515           NumElts == Op.getValueType().getVectorNumElements()) &&
2516          "Unexpected vector size");
2517 
2518   if (!DemandedElts)
2519     return Known;  // No demanded elts, better to assume we don't know anything.
2520 
2521   unsigned Opcode = Op.getOpcode();
2522   switch (Opcode) {
2523   case ISD::BUILD_VECTOR:
2524     // Collect the known bits that are shared by every demanded vector element.
2525     Known.Zero.setAllBits(); Known.One.setAllBits();
2526     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2527       if (!DemandedElts[i])
2528         continue;
2529 
2530       SDValue SrcOp = Op.getOperand(i);
2531       Known2 = computeKnownBits(SrcOp, Depth + 1);
2532 
2533       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2534       if (SrcOp.getValueSizeInBits() != BitWidth) {
2535         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2536                "Expected BUILD_VECTOR implicit truncation");
2537         Known2 = Known2.trunc(BitWidth);
2538       }
2539 
2540       // Known bits are the values that are shared by every demanded element.
2541       Known.One &= Known2.One;
2542       Known.Zero &= Known2.Zero;
2543 
2544       // If we don't know any bits, early out.
2545       if (Known.isUnknown())
2546         break;
2547     }
2548     break;
2549   case ISD::VECTOR_SHUFFLE: {
2550     // Collect the known bits that are shared by every vector element referenced
2551     // by the shuffle.
2552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2553     Known.Zero.setAllBits(); Known.One.setAllBits();
2554     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2555     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2556     for (unsigned i = 0; i != NumElts; ++i) {
2557       if (!DemandedElts[i])
2558         continue;
2559 
2560       int M = SVN->getMaskElt(i);
2561       if (M < 0) {
2562         // For UNDEF elements, we don't know anything about the common state of
2563         // the shuffle result.
2564         Known.resetAll();
2565         DemandedLHS.clearAllBits();
2566         DemandedRHS.clearAllBits();
2567         break;
2568       }
2569 
2570       if ((unsigned)M < NumElts)
2571         DemandedLHS.setBit((unsigned)M % NumElts);
2572       else
2573         DemandedRHS.setBit((unsigned)M % NumElts);
2574     }
2575     // Known bits are the values that are shared by every demanded element.
2576     if (!!DemandedLHS) {
2577       SDValue LHS = Op.getOperand(0);
2578       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2579       Known.One &= Known2.One;
2580       Known.Zero &= Known2.Zero;
2581     }
2582     // If we don't know any bits, early out.
2583     if (Known.isUnknown())
2584       break;
2585     if (!!DemandedRHS) {
2586       SDValue RHS = Op.getOperand(1);
2587       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2588       Known.One &= Known2.One;
2589       Known.Zero &= Known2.Zero;
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     // Split DemandedElts and test each of the demanded subvectors.
2595     Known.Zero.setAllBits(); Known.One.setAllBits();
2596     EVT SubVectorVT = Op.getOperand(0).getValueType();
2597     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2598     unsigned NumSubVectors = Op.getNumOperands();
2599     for (unsigned i = 0; i != NumSubVectors; ++i) {
2600       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2601       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2602       if (!!DemandedSub) {
2603         SDValue Sub = Op.getOperand(i);
2604         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2605         Known.One &= Known2.One;
2606         Known.Zero &= Known2.Zero;
2607       }
2608       // If we don't know any bits, early out.
2609       if (Known.isUnknown())
2610         break;
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_SUBVECTOR: {
2615     // If we know the element index, demand any elements from the subvector and
2616     // the remainder from the src its inserted into, otherwise assume we need
2617     // the original demanded base elements and ALL the inserted subvector
2618     // elements.
2619     SDValue Src = Op.getOperand(0);
2620     SDValue Sub = Op.getOperand(1);
2621     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2622     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2623     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
2624     APInt DemandedSrcElts = DemandedElts;
2625     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2626       uint64_t Idx = SubIdx->getZExtValue();
2627       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2628       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2629     }
2630     Known.One.setAllBits();
2631     Known.Zero.setAllBits();
2632     if (!!DemandedSubElts) {
2633       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2634       if (Known.isUnknown())
2635         break; // early-out.
2636     }
2637     if (!!DemandedSrcElts) {
2638       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2639       Known.One &= Known2.One;
2640       Known.Zero &= Known2.Zero;
2641     }
2642     break;
2643   }
2644   case ISD::EXTRACT_SUBVECTOR: {
2645     // If we know the element index, just demand that subvector elements,
2646     // otherwise demand them all.
2647     SDValue Src = Op.getOperand(0);
2648     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2649     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2650     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2651     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2652       // Offset the demanded elts by the subvector index.
2653       uint64_t Idx = SubIdx->getZExtValue();
2654       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2655     }
2656     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2657     break;
2658   }
2659   case ISD::SCALAR_TO_VECTOR: {
2660     // We know about scalar_to_vector as much as we know about it source,
2661     // which becomes the first element of otherwise unknown vector.
2662     if (DemandedElts != 1)
2663       break;
2664 
2665     SDValue N0 = Op.getOperand(0);
2666     Known = computeKnownBits(N0, Depth + 1);
2667     if (N0.getValueSizeInBits() != BitWidth)
2668       Known = Known.trunc(BitWidth);
2669 
2670     break;
2671   }
2672   case ISD::BITCAST: {
2673     SDValue N0 = Op.getOperand(0);
2674     EVT SubVT = N0.getValueType();
2675     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2676 
2677     // Ignore bitcasts from unsupported types.
2678     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2679       break;
2680 
2681     // Fast handling of 'identity' bitcasts.
2682     if (BitWidth == SubBitWidth) {
2683       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2684       break;
2685     }
2686 
2687     bool IsLE = getDataLayout().isLittleEndian();
2688 
2689     // Bitcast 'small element' vector to 'large element' scalar/vector.
2690     if ((BitWidth % SubBitWidth) == 0) {
2691       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2692 
2693       // Collect known bits for the (larger) output by collecting the known
2694       // bits from each set of sub elements and shift these into place.
2695       // We need to separately call computeKnownBits for each set of
2696       // sub elements as the knownbits for each is likely to be different.
2697       unsigned SubScale = BitWidth / SubBitWidth;
2698       APInt SubDemandedElts(NumElts * SubScale, 0);
2699       for (unsigned i = 0; i != NumElts; ++i)
2700         if (DemandedElts[i])
2701           SubDemandedElts.setBit(i * SubScale);
2702 
2703       for (unsigned i = 0; i != SubScale; ++i) {
2704         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2705                          Depth + 1);
2706         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2707         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2708         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2709       }
2710     }
2711 
2712     // Bitcast 'large element' scalar/vector to 'small element' vector.
2713     if ((SubBitWidth % BitWidth) == 0) {
2714       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2715 
2716       // Collect known bits for the (smaller) output by collecting the known
2717       // bits from the overlapping larger input elements and extracting the
2718       // sub sections we actually care about.
2719       unsigned SubScale = SubBitWidth / BitWidth;
2720       APInt SubDemandedElts(NumElts / SubScale, 0);
2721       for (unsigned i = 0; i != NumElts; ++i)
2722         if (DemandedElts[i])
2723           SubDemandedElts.setBit(i / SubScale);
2724 
2725       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2726 
2727       Known.Zero.setAllBits(); Known.One.setAllBits();
2728       for (unsigned i = 0; i != NumElts; ++i)
2729         if (DemandedElts[i]) {
2730           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2731           unsigned Offset = (Shifts % SubScale) * BitWidth;
2732           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2733           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2734           // If we don't know any bits, early out.
2735           if (Known.isUnknown())
2736             break;
2737         }
2738     }
2739     break;
2740   }
2741   case ISD::AND:
2742     // If either the LHS or the RHS are Zero, the result is zero.
2743     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2744     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2745 
2746     // Output known-1 bits are only known if set in both the LHS & RHS.
2747     Known.One &= Known2.One;
2748     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2749     Known.Zero |= Known2.Zero;
2750     break;
2751   case ISD::OR:
2752     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2753     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2754 
2755     // Output known-0 bits are only known if clear in both the LHS & RHS.
2756     Known.Zero &= Known2.Zero;
2757     // Output known-1 are known to be set if set in either the LHS | RHS.
2758     Known.One |= Known2.One;
2759     break;
2760   case ISD::XOR: {
2761     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2762     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2763 
2764     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2765     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2766     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2767     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2768     Known.Zero = KnownZeroOut;
2769     break;
2770   }
2771   case ISD::MUL: {
2772     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2773     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2774 
2775     // If low bits are zero in either operand, output low known-0 bits.
2776     // Also compute a conservative estimate for high known-0 bits.
2777     // More trickiness is possible, but this is sufficient for the
2778     // interesting case of alignment computation.
2779     unsigned TrailZ = Known.countMinTrailingZeros() +
2780                       Known2.countMinTrailingZeros();
2781     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2782                                Known2.countMinLeadingZeros(),
2783                                BitWidth) - BitWidth;
2784 
2785     Known.resetAll();
2786     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2787     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2788     break;
2789   }
2790   case ISD::UDIV: {
2791     // For the purposes of computing leading zeros we can conservatively
2792     // treat a udiv as a logical right shift by the power of 2 known to
2793     // be less than the denominator.
2794     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2795     unsigned LeadZ = Known2.countMinLeadingZeros();
2796 
2797     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2798     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2799     if (RHSMaxLeadingZeros != BitWidth)
2800       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2801 
2802     Known.Zero.setHighBits(LeadZ);
2803     break;
2804   }
2805   case ISD::SELECT:
2806   case ISD::VSELECT:
2807     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2808     // If we don't know any bits, early out.
2809     if (Known.isUnknown())
2810       break;
2811     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2812 
2813     // Only known if known in both the LHS and RHS.
2814     Known.One &= Known2.One;
2815     Known.Zero &= Known2.Zero;
2816     break;
2817   case ISD::SELECT_CC:
2818     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2819     // If we don't know any bits, early out.
2820     if (Known.isUnknown())
2821       break;
2822     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2823 
2824     // Only known if known in both the LHS and RHS.
2825     Known.One &= Known2.One;
2826     Known.Zero &= Known2.Zero;
2827     break;
2828   case ISD::SMULO:
2829   case ISD::UMULO:
2830   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2831     if (Op.getResNo() != 1)
2832       break;
2833     // The boolean result conforms to getBooleanContents.
2834     // If we know the result of a setcc has the top bits zero, use this info.
2835     // We know that we have an integer-based boolean since these operations
2836     // are only available for integer.
2837     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2838             TargetLowering::ZeroOrOneBooleanContent &&
2839         BitWidth > 1)
2840       Known.Zero.setBitsFrom(1);
2841     break;
2842   case ISD::SETCC:
2843   case ISD::STRICT_FSETCC:
2844   case ISD::STRICT_FSETCCS: {
2845     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2846     // If we know the result of a setcc has the top bits zero, use this info.
2847     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2848             TargetLowering::ZeroOrOneBooleanContent &&
2849         BitWidth > 1)
2850       Known.Zero.setBitsFrom(1);
2851     break;
2852   }
2853   case ISD::SHL:
2854     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2855 
2856     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2857       unsigned Shift = ShAmt->getZExtValue();
2858       Known.Zero <<= Shift;
2859       Known.One <<= Shift;
2860       // Low bits are known zero.
2861       Known.Zero.setLowBits(Shift);
2862       break;
2863     }
2864 
2865     // No matter the shift amount, the trailing zeros will stay zero.
2866     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2867     Known.One.clearAllBits();
2868 
2869     // Minimum shift low bits are known zero.
2870     if (const APInt *ShMinAmt =
2871             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2872       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2873     break;
2874   case ISD::SRL:
2875     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2876 
2877     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2878       unsigned Shift = ShAmt->getZExtValue();
2879       Known.Zero.lshrInPlace(Shift);
2880       Known.One.lshrInPlace(Shift);
2881       // High bits are known zero.
2882       Known.Zero.setHighBits(Shift);
2883       break;
2884     }
2885 
2886     // No matter the shift amount, the leading zeros will stay zero.
2887     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2888     Known.One.clearAllBits();
2889 
2890     // Minimum shift high bits are known zero.
2891     if (const APInt *ShMinAmt =
2892             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2893       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2894     break;
2895   case ISD::SRA:
2896     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2897       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2898       unsigned Shift = ShAmt->getZExtValue();
2899       // Sign extend known zero/one bit (else is unknown).
2900       Known.Zero.ashrInPlace(Shift);
2901       Known.One.ashrInPlace(Shift);
2902     }
2903     break;
2904   case ISD::FSHL:
2905   case ISD::FSHR:
2906     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2907       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2908 
2909       // For fshl, 0-shift returns the 1st arg.
2910       // For fshr, 0-shift returns the 2nd arg.
2911       if (Amt == 0) {
2912         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2913                                  DemandedElts, Depth + 1);
2914         break;
2915       }
2916 
2917       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2918       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2919       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2920       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2921       if (Opcode == ISD::FSHL) {
2922         Known.One <<= Amt;
2923         Known.Zero <<= Amt;
2924         Known2.One.lshrInPlace(BitWidth - Amt);
2925         Known2.Zero.lshrInPlace(BitWidth - Amt);
2926       } else {
2927         Known.One <<= BitWidth - Amt;
2928         Known.Zero <<= BitWidth - Amt;
2929         Known2.One.lshrInPlace(Amt);
2930         Known2.Zero.lshrInPlace(Amt);
2931       }
2932       Known.One |= Known2.One;
2933       Known.Zero |= Known2.Zero;
2934     }
2935     break;
2936   case ISD::SIGN_EXTEND_INREG: {
2937     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2938     unsigned EBits = EVT.getScalarSizeInBits();
2939 
2940     // Sign extension.  Compute the demanded bits in the result that are not
2941     // present in the input.
2942     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2943 
2944     APInt InSignMask = APInt::getSignMask(EBits);
2945     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2946 
2947     // If the sign extended bits are demanded, we know that the sign
2948     // bit is demanded.
2949     InSignMask = InSignMask.zext(BitWidth);
2950     if (NewBits.getBoolValue())
2951       InputDemandedBits |= InSignMask;
2952 
2953     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2954     Known.One &= InputDemandedBits;
2955     Known.Zero &= InputDemandedBits;
2956 
2957     // If the sign bit of the input is known set or clear, then we know the
2958     // top bits of the result.
2959     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2960       Known.Zero |= NewBits;
2961       Known.One  &= ~NewBits;
2962     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2963       Known.One  |= NewBits;
2964       Known.Zero &= ~NewBits;
2965     } else {                              // Input sign bit unknown
2966       Known.Zero &= ~NewBits;
2967       Known.One  &= ~NewBits;
2968     }
2969     break;
2970   }
2971   case ISD::CTTZ:
2972   case ISD::CTTZ_ZERO_UNDEF: {
2973     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2974     // If we have a known 1, its position is our upper bound.
2975     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2976     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2977     Known.Zero.setBitsFrom(LowBits);
2978     break;
2979   }
2980   case ISD::CTLZ:
2981   case ISD::CTLZ_ZERO_UNDEF: {
2982     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     // If we have a known 1, its position is our upper bound.
2984     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2985     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2986     Known.Zero.setBitsFrom(LowBits);
2987     break;
2988   }
2989   case ISD::CTPOP: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we know some of the bits are zero, they can't be one.
2992     unsigned PossibleOnes = Known2.countMaxPopulation();
2993     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2994     break;
2995   }
2996   case ISD::LOAD: {
2997     LoadSDNode *LD = cast<LoadSDNode>(Op);
2998     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2999     if (ISD::isNON_EXTLoad(LD) && Cst) {
3000       // Determine any common known bits from the loaded constant pool value.
3001       Type *CstTy = Cst->getType();
3002       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3003         // If its a vector splat, then we can (quickly) reuse the scalar path.
3004         // NOTE: We assume all elements match and none are UNDEF.
3005         if (CstTy->isVectorTy()) {
3006           if (const Constant *Splat = Cst->getSplatValue()) {
3007             Cst = Splat;
3008             CstTy = Cst->getType();
3009           }
3010         }
3011         // TODO - do we need to handle different bitwidths?
3012         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3013           // Iterate across all vector elements finding common known bits.
3014           Known.One.setAllBits();
3015           Known.Zero.setAllBits();
3016           for (unsigned i = 0; i != NumElts; ++i) {
3017             if (!DemandedElts[i])
3018               continue;
3019             if (Constant *Elt = Cst->getAggregateElement(i)) {
3020               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3021                 const APInt &Value = CInt->getValue();
3022                 Known.One &= Value;
3023                 Known.Zero &= ~Value;
3024                 continue;
3025               }
3026               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3027                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3028                 Known.One &= Value;
3029                 Known.Zero &= ~Value;
3030                 continue;
3031               }
3032             }
3033             Known.One.clearAllBits();
3034             Known.Zero.clearAllBits();
3035             break;
3036           }
3037         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3038           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3039             const APInt &Value = CInt->getValue();
3040             Known.One = Value;
3041             Known.Zero = ~Value;
3042           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3043             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3044             Known.One = Value;
3045             Known.Zero = ~Value;
3046           }
3047         }
3048       }
3049     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3050       // If this is a ZEXTLoad and we are looking at the loaded value.
3051       EVT VT = LD->getMemoryVT();
3052       unsigned MemBits = VT.getScalarSizeInBits();
3053       Known.Zero.setBitsFrom(MemBits);
3054     } else if (const MDNode *Ranges = LD->getRanges()) {
3055       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3056         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3057     }
3058     break;
3059   }
3060   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3061     EVT InVT = Op.getOperand(0).getValueType();
3062     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3063     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3064     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3065     break;
3066   }
3067   case ISD::ZERO_EXTEND: {
3068     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3069     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3070     break;
3071   }
3072   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3073     EVT InVT = Op.getOperand(0).getValueType();
3074     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3075     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3076     // If the sign bit is known to be zero or one, then sext will extend
3077     // it to the top bits, else it will just zext.
3078     Known = Known.sext(BitWidth);
3079     break;
3080   }
3081   case ISD::SIGN_EXTEND: {
3082     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     // If the sign bit is known to be zero or one, then sext will extend
3084     // it to the top bits, else it will just zext.
3085     Known = Known.sext(BitWidth);
3086     break;
3087   }
3088   case ISD::ANY_EXTEND_VECTOR_INREG: {
3089     EVT InVT = Op.getOperand(0).getValueType();
3090     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3091     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3092     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3093     break;
3094   }
3095   case ISD::ANY_EXTEND: {
3096     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3098     break;
3099   }
3100   case ISD::TRUNCATE: {
3101     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3102     Known = Known.trunc(BitWidth);
3103     break;
3104   }
3105   case ISD::AssertZext: {
3106     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3107     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3108     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3109     Known.Zero |= (~InMask);
3110     Known.One  &= (~Known.Zero);
3111     break;
3112   }
3113   case ISD::FGETSIGN:
3114     // All bits are zero except the low bit.
3115     Known.Zero.setBitsFrom(1);
3116     break;
3117   case ISD::USUBO:
3118   case ISD::SSUBO:
3119     if (Op.getResNo() == 1) {
3120       // If we know the result of a setcc has the top bits zero, use this info.
3121       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3122               TargetLowering::ZeroOrOneBooleanContent &&
3123           BitWidth > 1)
3124         Known.Zero.setBitsFrom(1);
3125       break;
3126     }
3127     LLVM_FALLTHROUGH;
3128   case ISD::SUB:
3129   case ISD::SUBC: {
3130     assert(Op.getResNo() == 0 &&
3131            "We only compute knownbits for the difference here.");
3132 
3133     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3135     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3136                                         Known, Known2);
3137     break;
3138   }
3139   case ISD::UADDO:
3140   case ISD::SADDO:
3141   case ISD::ADDCARRY:
3142     if (Op.getResNo() == 1) {
3143       // If we know the result of a setcc has the top bits zero, use this info.
3144       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3145               TargetLowering::ZeroOrOneBooleanContent &&
3146           BitWidth > 1)
3147         Known.Zero.setBitsFrom(1);
3148       break;
3149     }
3150     LLVM_FALLTHROUGH;
3151   case ISD::ADD:
3152   case ISD::ADDC:
3153   case ISD::ADDE: {
3154     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3155 
3156     // With ADDE and ADDCARRY, a carry bit may be added in.
3157     KnownBits Carry(1);
3158     if (Opcode == ISD::ADDE)
3159       // Can't track carry from glue, set carry to unknown.
3160       Carry.resetAll();
3161     else if (Opcode == ISD::ADDCARRY)
3162       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3163       // the trouble (how often will we find a known carry bit). And I haven't
3164       // tested this very much yet, but something like this might work:
3165       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3166       //   Carry = Carry.zextOrTrunc(1, false);
3167       Carry.resetAll();
3168     else
3169       Carry.setAllZero();
3170 
3171     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3173     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3174     break;
3175   }
3176   case ISD::SREM:
3177     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3178       const APInt &RA = Rem->getAPIntValue().abs();
3179       if (RA.isPowerOf2()) {
3180         APInt LowBits = RA - 1;
3181         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3182 
3183         // The low bits of the first operand are unchanged by the srem.
3184         Known.Zero = Known2.Zero & LowBits;
3185         Known.One = Known2.One & LowBits;
3186 
3187         // If the first operand is non-negative or has all low bits zero, then
3188         // the upper bits are all zero.
3189         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3190           Known.Zero |= ~LowBits;
3191 
3192         // If the first operand is negative and not all low bits are zero, then
3193         // the upper bits are all one.
3194         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3195           Known.One |= ~LowBits;
3196         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3197       }
3198     }
3199     break;
3200   case ISD::UREM: {
3201     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3202       const APInt &RA = Rem->getAPIntValue();
3203       if (RA.isPowerOf2()) {
3204         APInt LowBits = (RA - 1);
3205         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3206 
3207         // The upper bits are all zero, the lower ones are unchanged.
3208         Known.Zero = Known2.Zero | ~LowBits;
3209         Known.One = Known2.One & LowBits;
3210         break;
3211       }
3212     }
3213 
3214     // Since the result is less than or equal to either operand, any leading
3215     // zero bits in either operand must also exist in the result.
3216     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3217     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3218 
3219     uint32_t Leaders =
3220         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3221     Known.resetAll();
3222     Known.Zero.setHighBits(Leaders);
3223     break;
3224   }
3225   case ISD::EXTRACT_ELEMENT: {
3226     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3227     const unsigned Index = Op.getConstantOperandVal(1);
3228     const unsigned EltBitWidth = Op.getValueSizeInBits();
3229 
3230     // Remove low part of known bits mask
3231     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3232     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3233 
3234     // Remove high part of known bit mask
3235     Known = Known.trunc(EltBitWidth);
3236     break;
3237   }
3238   case ISD::EXTRACT_VECTOR_ELT: {
3239     SDValue InVec = Op.getOperand(0);
3240     SDValue EltNo = Op.getOperand(1);
3241     EVT VecVT = InVec.getValueType();
3242     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3243     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3244 
3245     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3246     // anything about the extended bits.
3247     if (BitWidth > EltBitWidth)
3248       Known = Known.trunc(EltBitWidth);
3249 
3250     // If we know the element index, just demand that vector element, else for
3251     // an unknown element index, ignore DemandedElts and demand them all.
3252     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3253     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3254     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3255       DemandedSrcElts =
3256           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3257 
3258     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3259     if (BitWidth > EltBitWidth)
3260       Known = Known.zext(BitWidth, false /* => any extend */);
3261     break;
3262   }
3263   case ISD::INSERT_VECTOR_ELT: {
3264     // If we know the element index, split the demand between the
3265     // source vector and the inserted element, otherwise assume we need
3266     // the original demanded vector elements and the value.
3267     SDValue InVec = Op.getOperand(0);
3268     SDValue InVal = Op.getOperand(1);
3269     SDValue EltNo = Op.getOperand(2);
3270     bool DemandedVal = true;
3271     APInt DemandedVecElts = DemandedElts;
3272     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3273     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3274       unsigned EltIdx = CEltNo->getZExtValue();
3275       DemandedVal = !!DemandedElts[EltIdx];
3276       DemandedVecElts.clearBit(EltIdx);
3277     }
3278     Known.One.setAllBits();
3279     Known.Zero.setAllBits();
3280     if (DemandedVal) {
3281       Known2 = computeKnownBits(InVal, Depth + 1);
3282       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3283       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3284     }
3285     if (!!DemandedVecElts) {
3286       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3287       Known.One &= Known2.One;
3288       Known.Zero &= Known2.Zero;
3289     }
3290     break;
3291   }
3292   case ISD::BITREVERSE: {
3293     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3294     Known.Zero = Known2.Zero.reverseBits();
3295     Known.One = Known2.One.reverseBits();
3296     break;
3297   }
3298   case ISD::BSWAP: {
3299     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3300     Known.Zero = Known2.Zero.byteSwap();
3301     Known.One = Known2.One.byteSwap();
3302     break;
3303   }
3304   case ISD::ABS: {
3305     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3306 
3307     // If the source's MSB is zero then we know the rest of the bits already.
3308     if (Known2.isNonNegative()) {
3309       Known.Zero = Known2.Zero;
3310       Known.One = Known2.One;
3311       break;
3312     }
3313 
3314     // We only know that the absolute values's MSB will be zero iff there is
3315     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3316     Known2.One.clearSignBit();
3317     if (Known2.One.getBoolValue()) {
3318       Known.Zero = APInt::getSignMask(BitWidth);
3319       break;
3320     }
3321     break;
3322   }
3323   case ISD::UMIN: {
3324     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3325     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3326 
3327     // UMIN - we know that the result will have the maximum of the
3328     // known zero leading bits of the inputs.
3329     unsigned LeadZero = Known.countMinLeadingZeros();
3330     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3331 
3332     Known.Zero &= Known2.Zero;
3333     Known.One &= Known2.One;
3334     Known.Zero.setHighBits(LeadZero);
3335     break;
3336   }
3337   case ISD::UMAX: {
3338     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3339     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3340 
3341     // UMAX - we know that the result will have the maximum of the
3342     // known one leading bits of the inputs.
3343     unsigned LeadOne = Known.countMinLeadingOnes();
3344     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3345 
3346     Known.Zero &= Known2.Zero;
3347     Known.One &= Known2.One;
3348     Known.One.setHighBits(LeadOne);
3349     break;
3350   }
3351   case ISD::SMIN:
3352   case ISD::SMAX: {
3353     // If we have a clamp pattern, we know that the number of sign bits will be
3354     // the minimum of the clamp min/max range.
3355     bool IsMax = (Opcode == ISD::SMAX);
3356     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3357     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3358       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3359         CstHigh =
3360             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3361     if (CstLow && CstHigh) {
3362       if (!IsMax)
3363         std::swap(CstLow, CstHigh);
3364 
3365       const APInt &ValueLow = CstLow->getAPIntValue();
3366       const APInt &ValueHigh = CstHigh->getAPIntValue();
3367       if (ValueLow.sle(ValueHigh)) {
3368         unsigned LowSignBits = ValueLow.getNumSignBits();
3369         unsigned HighSignBits = ValueHigh.getNumSignBits();
3370         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3371         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3372           Known.One.setHighBits(MinSignBits);
3373           break;
3374         }
3375         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3376           Known.Zero.setHighBits(MinSignBits);
3377           break;
3378         }
3379       }
3380     }
3381 
3382     // Fallback - just get the shared known bits of the operands.
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     if (Known.isUnknown()) break; // Early-out
3385     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3386     Known.Zero &= Known2.Zero;
3387     Known.One &= Known2.One;
3388     break;
3389   }
3390   case ISD::FrameIndex:
3391   case ISD::TargetFrameIndex:
3392     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3393     break;
3394 
3395   default:
3396     if (Opcode < ISD::BUILTIN_OP_END)
3397       break;
3398     LLVM_FALLTHROUGH;
3399   case ISD::INTRINSIC_WO_CHAIN:
3400   case ISD::INTRINSIC_W_CHAIN:
3401   case ISD::INTRINSIC_VOID:
3402     // Allow the target to implement this method for its nodes.
3403     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3404     break;
3405   }
3406 
3407   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3408   return Known;
3409 }
3410 
3411 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3412                                                              SDValue N1) const {
3413   // X + 0 never overflow
3414   if (isNullConstant(N1))
3415     return OFK_Never;
3416 
3417   KnownBits N1Known = computeKnownBits(N1);
3418   if (N1Known.Zero.getBoolValue()) {
3419     KnownBits N0Known = computeKnownBits(N0);
3420 
3421     bool overflow;
3422     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3423     if (!overflow)
3424       return OFK_Never;
3425   }
3426 
3427   // mulhi + 1 never overflow
3428   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3429       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3430     return OFK_Never;
3431 
3432   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3433     KnownBits N0Known = computeKnownBits(N0);
3434 
3435     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3436       return OFK_Never;
3437   }
3438 
3439   return OFK_Sometime;
3440 }
3441 
3442 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3443   EVT OpVT = Val.getValueType();
3444   unsigned BitWidth = OpVT.getScalarSizeInBits();
3445 
3446   // Is the constant a known power of 2?
3447   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3448     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3449 
3450   // A left-shift of a constant one will have exactly one bit set because
3451   // shifting the bit off the end is undefined.
3452   if (Val.getOpcode() == ISD::SHL) {
3453     auto *C = isConstOrConstSplat(Val.getOperand(0));
3454     if (C && C->getAPIntValue() == 1)
3455       return true;
3456   }
3457 
3458   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3459   // one bit set.
3460   if (Val.getOpcode() == ISD::SRL) {
3461     auto *C = isConstOrConstSplat(Val.getOperand(0));
3462     if (C && C->getAPIntValue().isSignMask())
3463       return true;
3464   }
3465 
3466   // Are all operands of a build vector constant powers of two?
3467   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3468     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3469           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3470             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3471           return false;
3472         }))
3473       return true;
3474 
3475   // More could be done here, though the above checks are enough
3476   // to handle some common cases.
3477 
3478   // Fall back to computeKnownBits to catch other known cases.
3479   KnownBits Known = computeKnownBits(Val);
3480   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3481 }
3482 
3483 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3484   EVT VT = Op.getValueType();
3485   APInt DemandedElts = VT.isVector()
3486                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3487                            : APInt(1, 1);
3488   return ComputeNumSignBits(Op, DemandedElts, Depth);
3489 }
3490 
3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3492                                           unsigned Depth) const {
3493   EVT VT = Op.getValueType();
3494   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3495   unsigned VTBits = VT.getScalarSizeInBits();
3496   unsigned NumElts = DemandedElts.getBitWidth();
3497   unsigned Tmp, Tmp2;
3498   unsigned FirstAnswer = 1;
3499 
3500   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3501     const APInt &Val = C->getAPIntValue();
3502     return Val.getNumSignBits();
3503   }
3504 
3505   if (Depth >= MaxRecursionDepth)
3506     return 1;  // Limit search depth.
3507 
3508   if (!DemandedElts)
3509     return 1;  // No demanded elts, better to assume we don't know anything.
3510 
3511   unsigned Opcode = Op.getOpcode();
3512   switch (Opcode) {
3513   default: break;
3514   case ISD::AssertSext:
3515     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3516     return VTBits-Tmp+1;
3517   case ISD::AssertZext:
3518     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3519     return VTBits-Tmp;
3520 
3521   case ISD::BUILD_VECTOR:
3522     Tmp = VTBits;
3523     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3524       if (!DemandedElts[i])
3525         continue;
3526 
3527       SDValue SrcOp = Op.getOperand(i);
3528       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3529 
3530       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3531       if (SrcOp.getValueSizeInBits() != VTBits) {
3532         assert(SrcOp.getValueSizeInBits() > VTBits &&
3533                "Expected BUILD_VECTOR implicit truncation");
3534         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3535         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3536       }
3537       Tmp = std::min(Tmp, Tmp2);
3538     }
3539     return Tmp;
3540 
3541   case ISD::VECTOR_SHUFFLE: {
3542     // Collect the minimum number of sign bits that are shared by every vector
3543     // element referenced by the shuffle.
3544     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3545     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3546     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3547     for (unsigned i = 0; i != NumElts; ++i) {
3548       int M = SVN->getMaskElt(i);
3549       if (!DemandedElts[i])
3550         continue;
3551       // For UNDEF elements, we don't know anything about the common state of
3552       // the shuffle result.
3553       if (M < 0)
3554         return 1;
3555       if ((unsigned)M < NumElts)
3556         DemandedLHS.setBit((unsigned)M % NumElts);
3557       else
3558         DemandedRHS.setBit((unsigned)M % NumElts);
3559     }
3560     Tmp = std::numeric_limits<unsigned>::max();
3561     if (!!DemandedLHS)
3562       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3563     if (!!DemandedRHS) {
3564       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3565       Tmp = std::min(Tmp, Tmp2);
3566     }
3567     // If we don't know anything, early out and try computeKnownBits fall-back.
3568     if (Tmp == 1)
3569       break;
3570     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3571     return Tmp;
3572   }
3573 
3574   case ISD::BITCAST: {
3575     SDValue N0 = Op.getOperand(0);
3576     EVT SrcVT = N0.getValueType();
3577     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3578 
3579     // Ignore bitcasts from unsupported types..
3580     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3581       break;
3582 
3583     // Fast handling of 'identity' bitcasts.
3584     if (VTBits == SrcBits)
3585       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3586 
3587     bool IsLE = getDataLayout().isLittleEndian();
3588 
3589     // Bitcast 'large element' scalar/vector to 'small element' vector.
3590     if ((SrcBits % VTBits) == 0) {
3591       assert(VT.isVector() && "Expected bitcast to vector");
3592 
3593       unsigned Scale = SrcBits / VTBits;
3594       APInt SrcDemandedElts(NumElts / Scale, 0);
3595       for (unsigned i = 0; i != NumElts; ++i)
3596         if (DemandedElts[i])
3597           SrcDemandedElts.setBit(i / Scale);
3598 
3599       // Fast case - sign splat can be simply split across the small elements.
3600       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3601       if (Tmp == SrcBits)
3602         return VTBits;
3603 
3604       // Slow case - determine how far the sign extends into each sub-element.
3605       Tmp2 = VTBits;
3606       for (unsigned i = 0; i != NumElts; ++i)
3607         if (DemandedElts[i]) {
3608           unsigned SubOffset = i % Scale;
3609           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3610           SubOffset = SubOffset * VTBits;
3611           if (Tmp <= SubOffset)
3612             return 1;
3613           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3614         }
3615       return Tmp2;
3616     }
3617     break;
3618   }
3619 
3620   case ISD::SIGN_EXTEND:
3621     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3622     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3623   case ISD::SIGN_EXTEND_INREG:
3624     // Max of the input and what this extends.
3625     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3626     Tmp = VTBits-Tmp+1;
3627     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3628     return std::max(Tmp, Tmp2);
3629   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3630     SDValue Src = Op.getOperand(0);
3631     EVT SrcVT = Src.getValueType();
3632     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3633     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3634     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3635   }
3636   case ISD::SRA:
3637     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3638     // SRA X, C -> adds C sign bits.
3639     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3640       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3641     else if (const APInt *ShAmt =
3642                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3643       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3644     return Tmp;
3645   case ISD::SHL:
3646     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3647       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3648       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649       if (ShAmt->ult(Tmp))
3650         return Tmp - ShAmt->getZExtValue();
3651     } else if (const APInt *ShAmt =
3652                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3653       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3654       if (ShAmt->ult(Tmp))
3655         return Tmp - ShAmt->getZExtValue();
3656     }
3657     break;
3658   case ISD::AND:
3659   case ISD::OR:
3660   case ISD::XOR:    // NOT is handled here.
3661     // Logical binary ops preserve the number of sign bits at the worst.
3662     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3663     if (Tmp != 1) {
3664       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3665       FirstAnswer = std::min(Tmp, Tmp2);
3666       // We computed what we know about the sign bits as our first
3667       // answer. Now proceed to the generic code that uses
3668       // computeKnownBits, and pick whichever answer is better.
3669     }
3670     break;
3671 
3672   case ISD::SELECT:
3673   case ISD::VSELECT:
3674     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3675     if (Tmp == 1) return 1;  // Early out.
3676     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3677     return std::min(Tmp, Tmp2);
3678   case ISD::SELECT_CC:
3679     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3680     if (Tmp == 1) return 1;  // Early out.
3681     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3682     return std::min(Tmp, Tmp2);
3683 
3684   case ISD::SMIN:
3685   case ISD::SMAX: {
3686     // If we have a clamp pattern, we know that the number of sign bits will be
3687     // the minimum of the clamp min/max range.
3688     bool IsMax = (Opcode == ISD::SMAX);
3689     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3690     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3691       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3692         CstHigh =
3693             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3694     if (CstLow && CstHigh) {
3695       if (!IsMax)
3696         std::swap(CstLow, CstHigh);
3697       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3698         Tmp = CstLow->getAPIntValue().getNumSignBits();
3699         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3700         return std::min(Tmp, Tmp2);
3701       }
3702     }
3703 
3704     // Fallback - just get the minimum number of sign bits of the operands.
3705     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3706     if (Tmp == 1)
3707       return 1;  // Early out.
3708     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3709     return std::min(Tmp, Tmp2);
3710   }
3711   case ISD::UMIN:
3712   case ISD::UMAX:
3713     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3714     if (Tmp == 1)
3715       return 1;  // Early out.
3716     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3717     return std::min(Tmp, Tmp2);
3718   case ISD::SADDO:
3719   case ISD::UADDO:
3720   case ISD::SSUBO:
3721   case ISD::USUBO:
3722   case ISD::SMULO:
3723   case ISD::UMULO:
3724     if (Op.getResNo() != 1)
3725       break;
3726     // The boolean result conforms to getBooleanContents.  Fall through.
3727     // If setcc returns 0/-1, all bits are sign bits.
3728     // We know that we have an integer-based boolean since these operations
3729     // are only available for integer.
3730     if (TLI->getBooleanContents(VT.isVector(), false) ==
3731         TargetLowering::ZeroOrNegativeOneBooleanContent)
3732       return VTBits;
3733     break;
3734   case ISD::SETCC:
3735   case ISD::STRICT_FSETCC:
3736   case ISD::STRICT_FSETCCS: {
3737     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3738     // If setcc returns 0/-1, all bits are sign bits.
3739     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3740         TargetLowering::ZeroOrNegativeOneBooleanContent)
3741       return VTBits;
3742     break;
3743   }
3744   case ISD::ROTL:
3745   case ISD::ROTR:
3746     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3747 
3748     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3749     if (Tmp == VTBits)
3750       return VTBits;
3751 
3752     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3753       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3754 
3755       // Handle rotate right by N like a rotate left by 32-N.
3756       if (Opcode == ISD::ROTR)
3757         RotAmt = (VTBits - RotAmt) % VTBits;
3758 
3759       // If we aren't rotating out all of the known-in sign bits, return the
3760       // number that are left.  This handles rotl(sext(x), 1) for example.
3761       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3762     }
3763     break;
3764   case ISD::ADD:
3765   case ISD::ADDC:
3766     // Add can have at most one carry bit.  Thus we know that the output
3767     // is, at worst, one more bit than the inputs.
3768     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3769     if (Tmp == 1) return 1; // Early out.
3770 
3771     // Special case decrementing a value (ADD X, -1):
3772     if (ConstantSDNode *CRHS =
3773             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3774       if (CRHS->isAllOnesValue()) {
3775         KnownBits Known =
3776             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3777 
3778         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3779         // sign bits set.
3780         if ((Known.Zero | 1).isAllOnesValue())
3781           return VTBits;
3782 
3783         // If we are subtracting one from a positive number, there is no carry
3784         // out of the result.
3785         if (Known.isNonNegative())
3786           return Tmp;
3787       }
3788 
3789     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3790     if (Tmp2 == 1) return 1; // Early out.
3791     return std::min(Tmp, Tmp2) - 1;
3792   case ISD::SUB:
3793     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3794     if (Tmp2 == 1) return 1; // Early out.
3795 
3796     // Handle NEG.
3797     if (ConstantSDNode *CLHS =
3798             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3799       if (CLHS->isNullValue()) {
3800         KnownBits Known =
3801             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3802         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3803         // sign bits set.
3804         if ((Known.Zero | 1).isAllOnesValue())
3805           return VTBits;
3806 
3807         // If the input is known to be positive (the sign bit is known clear),
3808         // the output of the NEG has the same number of sign bits as the input.
3809         if (Known.isNonNegative())
3810           return Tmp2;
3811 
3812         // Otherwise, we treat this like a SUB.
3813       }
3814 
3815     // Sub can have at most one carry bit.  Thus we know that the output
3816     // is, at worst, one more bit than the inputs.
3817     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3818     if (Tmp == 1) return 1; // Early out.
3819     return std::min(Tmp, Tmp2) - 1;
3820   case ISD::MUL: {
3821     // The output of the Mul can be at most twice the valid bits in the inputs.
3822     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3823     if (SignBitsOp0 == 1)
3824       break;
3825     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3826     if (SignBitsOp1 == 1)
3827       break;
3828     unsigned OutValidBits =
3829         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3830     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3831   }
3832   case ISD::TRUNCATE: {
3833     // Check if the sign bits of source go down as far as the truncated value.
3834     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3835     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3836     if (NumSrcSignBits > (NumSrcBits - VTBits))
3837       return NumSrcSignBits - (NumSrcBits - VTBits);
3838     break;
3839   }
3840   case ISD::EXTRACT_ELEMENT: {
3841     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3842     const int BitWidth = Op.getValueSizeInBits();
3843     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3844 
3845     // Get reverse index (starting from 1), Op1 value indexes elements from
3846     // little end. Sign starts at big end.
3847     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3848 
3849     // If the sign portion ends in our element the subtraction gives correct
3850     // result. Otherwise it gives either negative or > bitwidth result
3851     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3852   }
3853   case ISD::INSERT_VECTOR_ELT: {
3854     // If we know the element index, split the demand between the
3855     // source vector and the inserted element, otherwise assume we need
3856     // the original demanded vector elements and the value.
3857     SDValue InVec = Op.getOperand(0);
3858     SDValue InVal = Op.getOperand(1);
3859     SDValue EltNo = Op.getOperand(2);
3860     bool DemandedVal = true;
3861     APInt DemandedVecElts = DemandedElts;
3862     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3863     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3864       unsigned EltIdx = CEltNo->getZExtValue();
3865       DemandedVal = !!DemandedElts[EltIdx];
3866       DemandedVecElts.clearBit(EltIdx);
3867     }
3868     Tmp = std::numeric_limits<unsigned>::max();
3869     if (DemandedVal) {
3870       // TODO - handle implicit truncation of inserted elements.
3871       if (InVal.getScalarValueSizeInBits() != VTBits)
3872         break;
3873       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3874       Tmp = std::min(Tmp, Tmp2);
3875     }
3876     if (!!DemandedVecElts) {
3877       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3878       Tmp = std::min(Tmp, Tmp2);
3879     }
3880     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3881     return Tmp;
3882   }
3883   case ISD::EXTRACT_VECTOR_ELT: {
3884     SDValue InVec = Op.getOperand(0);
3885     SDValue EltNo = Op.getOperand(1);
3886     EVT VecVT = InVec.getValueType();
3887     const unsigned BitWidth = Op.getValueSizeInBits();
3888     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3889     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3890 
3891     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3892     // anything about sign bits. But if the sizes match we can derive knowledge
3893     // about sign bits from the vector operand.
3894     if (BitWidth != EltBitWidth)
3895       break;
3896 
3897     // If we know the element index, just demand that vector element, else for
3898     // an unknown element index, ignore DemandedElts and demand them all.
3899     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3900     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3901     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3902       DemandedSrcElts =
3903           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3904 
3905     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3906   }
3907   case ISD::EXTRACT_SUBVECTOR: {
3908     // If we know the element index, just demand that subvector elements,
3909     // otherwise demand them all.
3910     SDValue Src = Op.getOperand(0);
3911     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3912     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3913     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3914     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3915       // Offset the demanded elts by the subvector index.
3916       uint64_t Idx = SubIdx->getZExtValue();
3917       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3918     }
3919     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3920   }
3921   case ISD::CONCAT_VECTORS: {
3922     // Determine the minimum number of sign bits across all demanded
3923     // elts of the input vectors. Early out if the result is already 1.
3924     Tmp = std::numeric_limits<unsigned>::max();
3925     EVT SubVectorVT = Op.getOperand(0).getValueType();
3926     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3927     unsigned NumSubVectors = Op.getNumOperands();
3928     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3929       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3930       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3931       if (!DemandedSub)
3932         continue;
3933       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3934       Tmp = std::min(Tmp, Tmp2);
3935     }
3936     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3937     return Tmp;
3938   }
3939   case ISD::INSERT_SUBVECTOR: {
3940     // If we know the element index, demand any elements from the subvector and
3941     // the remainder from the src its inserted into, otherwise assume we need
3942     // the original demanded base elements and ALL the inserted subvector
3943     // elements.
3944     SDValue Src = Op.getOperand(0);
3945     SDValue Sub = Op.getOperand(1);
3946     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3947     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3948     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
3949     APInt DemandedSrcElts = DemandedElts;
3950     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3951       uint64_t Idx = SubIdx->getZExtValue();
3952       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3953       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3954     }
3955     Tmp = std::numeric_limits<unsigned>::max();
3956     if (!!DemandedSubElts) {
3957       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3958       if (Tmp == 1)
3959         return 1; // early-out
3960     }
3961     if (!!DemandedSrcElts) {
3962       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3963       Tmp = std::min(Tmp, Tmp2);
3964     }
3965     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3966     return Tmp;
3967   }
3968   }
3969 
3970   // If we are looking at the loaded value of the SDNode.
3971   if (Op.getResNo() == 0) {
3972     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3973     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3974       unsigned ExtType = LD->getExtensionType();
3975       switch (ExtType) {
3976       default: break;
3977       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3978         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3979         return VTBits - Tmp + 1;
3980       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3981         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3982         return VTBits - Tmp;
3983       case ISD::NON_EXTLOAD:
3984         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3985           // We only need to handle vectors - computeKnownBits should handle
3986           // scalar cases.
3987           Type *CstTy = Cst->getType();
3988           if (CstTy->isVectorTy() &&
3989               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3990             Tmp = VTBits;
3991             for (unsigned i = 0; i != NumElts; ++i) {
3992               if (!DemandedElts[i])
3993                 continue;
3994               if (Constant *Elt = Cst->getAggregateElement(i)) {
3995                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3996                   const APInt &Value = CInt->getValue();
3997                   Tmp = std::min(Tmp, Value.getNumSignBits());
3998                   continue;
3999                 }
4000                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4001                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4002                   Tmp = std::min(Tmp, Value.getNumSignBits());
4003                   continue;
4004                 }
4005               }
4006               // Unknown type. Conservatively assume no bits match sign bit.
4007               return 1;
4008             }
4009             return Tmp;
4010           }
4011         }
4012         break;
4013       }
4014     }
4015   }
4016 
4017   // Allow the target to implement this method for its nodes.
4018   if (Opcode >= ISD::BUILTIN_OP_END ||
4019       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4020       Opcode == ISD::INTRINSIC_W_CHAIN ||
4021       Opcode == ISD::INTRINSIC_VOID) {
4022     unsigned NumBits =
4023         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4024     if (NumBits > 1)
4025       FirstAnswer = std::max(FirstAnswer, NumBits);
4026   }
4027 
4028   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4029   // use this information.
4030   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4031 
4032   APInt Mask;
4033   if (Known.isNonNegative()) {        // sign bit is 0
4034     Mask = Known.Zero;
4035   } else if (Known.isNegative()) {  // sign bit is 1;
4036     Mask = Known.One;
4037   } else {
4038     // Nothing known.
4039     return FirstAnswer;
4040   }
4041 
4042   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4043   // the number of identical bits in the top of the input value.
4044   Mask = ~Mask;
4045   Mask <<= Mask.getBitWidth()-VTBits;
4046   // Return # leading zeros.  We use 'min' here in case Val was zero before
4047   // shifting.  We don't want to return '64' as for an i32 "0".
4048   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4049 }
4050 
4051 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4052   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4053       !isa<ConstantSDNode>(Op.getOperand(1)))
4054     return false;
4055 
4056   if (Op.getOpcode() == ISD::OR &&
4057       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4058     return false;
4059 
4060   return true;
4061 }
4062 
4063 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4064   // If we're told that NaNs won't happen, assume they won't.
4065   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4066     return true;
4067 
4068   if (Depth >= MaxRecursionDepth)
4069     return false; // Limit search depth.
4070 
4071   // TODO: Handle vectors.
4072   // If the value is a constant, we can obviously see if it is a NaN or not.
4073   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4074     return !C->getValueAPF().isNaN() ||
4075            (SNaN && !C->getValueAPF().isSignaling());
4076   }
4077 
4078   unsigned Opcode = Op.getOpcode();
4079   switch (Opcode) {
4080   case ISD::FADD:
4081   case ISD::FSUB:
4082   case ISD::FMUL:
4083   case ISD::FDIV:
4084   case ISD::FREM:
4085   case ISD::FSIN:
4086   case ISD::FCOS: {
4087     if (SNaN)
4088       return true;
4089     // TODO: Need isKnownNeverInfinity
4090     return false;
4091   }
4092   case ISD::FCANONICALIZE:
4093   case ISD::FEXP:
4094   case ISD::FEXP2:
4095   case ISD::FTRUNC:
4096   case ISD::FFLOOR:
4097   case ISD::FCEIL:
4098   case ISD::FROUND:
4099   case ISD::FRINT:
4100   case ISD::FNEARBYINT: {
4101     if (SNaN)
4102       return true;
4103     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4104   }
4105   case ISD::FABS:
4106   case ISD::FNEG:
4107   case ISD::FCOPYSIGN: {
4108     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4109   }
4110   case ISD::SELECT:
4111     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4112            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4113   case ISD::FP_EXTEND:
4114   case ISD::FP_ROUND: {
4115     if (SNaN)
4116       return true;
4117     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4118   }
4119   case ISD::SINT_TO_FP:
4120   case ISD::UINT_TO_FP:
4121     return true;
4122   case ISD::FMA:
4123   case ISD::FMAD: {
4124     if (SNaN)
4125       return true;
4126     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4127            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4128            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4129   }
4130   case ISD::FSQRT: // Need is known positive
4131   case ISD::FLOG:
4132   case ISD::FLOG2:
4133   case ISD::FLOG10:
4134   case ISD::FPOWI:
4135   case ISD::FPOW: {
4136     if (SNaN)
4137       return true;
4138     // TODO: Refine on operand
4139     return false;
4140   }
4141   case ISD::FMINNUM:
4142   case ISD::FMAXNUM: {
4143     // Only one needs to be known not-nan, since it will be returned if the
4144     // other ends up being one.
4145     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4146            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4147   }
4148   case ISD::FMINNUM_IEEE:
4149   case ISD::FMAXNUM_IEEE: {
4150     if (SNaN)
4151       return true;
4152     // This can return a NaN if either operand is an sNaN, or if both operands
4153     // are NaN.
4154     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4155             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4156            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4157             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4158   }
4159   case ISD::FMINIMUM:
4160   case ISD::FMAXIMUM: {
4161     // TODO: Does this quiet or return the origina NaN as-is?
4162     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4163            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4164   }
4165   case ISD::EXTRACT_VECTOR_ELT: {
4166     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4167   }
4168   default:
4169     if (Opcode >= ISD::BUILTIN_OP_END ||
4170         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4171         Opcode == ISD::INTRINSIC_W_CHAIN ||
4172         Opcode == ISD::INTRINSIC_VOID) {
4173       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4174     }
4175 
4176     return false;
4177   }
4178 }
4179 
4180 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4181   assert(Op.getValueType().isFloatingPoint() &&
4182          "Floating point type expected");
4183 
4184   // If the value is a constant, we can obviously see if it is a zero or not.
4185   // TODO: Add BuildVector support.
4186   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4187     return !C->isZero();
4188   return false;
4189 }
4190 
4191 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4192   assert(!Op.getValueType().isFloatingPoint() &&
4193          "Floating point types unsupported - use isKnownNeverZeroFloat");
4194 
4195   // If the value is a constant, we can obviously see if it is a zero or not.
4196   if (ISD::matchUnaryPredicate(
4197           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4198     return true;
4199 
4200   // TODO: Recognize more cases here.
4201   switch (Op.getOpcode()) {
4202   default: break;
4203   case ISD::OR:
4204     if (isKnownNeverZero(Op.getOperand(1)) ||
4205         isKnownNeverZero(Op.getOperand(0)))
4206       return true;
4207     break;
4208   }
4209 
4210   return false;
4211 }
4212 
4213 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4214   // Check the obvious case.
4215   if (A == B) return true;
4216 
4217   // For for negative and positive zero.
4218   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4219     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4220       if (CA->isZero() && CB->isZero()) return true;
4221 
4222   // Otherwise they may not be equal.
4223   return false;
4224 }
4225 
4226 // FIXME: unify with llvm::haveNoCommonBitsSet.
4227 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4228 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4229   assert(A.getValueType() == B.getValueType() &&
4230          "Values must have the same type");
4231   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4232 }
4233 
4234 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4235                                 ArrayRef<SDValue> Ops,
4236                                 SelectionDAG &DAG) {
4237   int NumOps = Ops.size();
4238   assert(NumOps != 0 && "Can't build an empty vector!");
4239   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4240          "Incorrect element count in BUILD_VECTOR!");
4241 
4242   // BUILD_VECTOR of UNDEFs is UNDEF.
4243   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4244     return DAG.getUNDEF(VT);
4245 
4246   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4247   SDValue IdentitySrc;
4248   bool IsIdentity = true;
4249   for (int i = 0; i != NumOps; ++i) {
4250     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4251         Ops[i].getOperand(0).getValueType() != VT ||
4252         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4253         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4254         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4255       IsIdentity = false;
4256       break;
4257     }
4258     IdentitySrc = Ops[i].getOperand(0);
4259   }
4260   if (IsIdentity)
4261     return IdentitySrc;
4262 
4263   return SDValue();
4264 }
4265 
4266 /// Try to simplify vector concatenation to an input value, undef, or build
4267 /// vector.
4268 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4269                                   ArrayRef<SDValue> Ops,
4270                                   SelectionDAG &DAG) {
4271   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4272   assert(llvm::all_of(Ops,
4273                       [Ops](SDValue Op) {
4274                         return Ops[0].getValueType() == Op.getValueType();
4275                       }) &&
4276          "Concatenation of vectors with inconsistent value types!");
4277   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4278              VT.getVectorNumElements() &&
4279          "Incorrect element count in vector concatenation!");
4280 
4281   if (Ops.size() == 1)
4282     return Ops[0];
4283 
4284   // Concat of UNDEFs is UNDEF.
4285   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4286     return DAG.getUNDEF(VT);
4287 
4288   // Scan the operands and look for extract operations from a single source
4289   // that correspond to insertion at the same location via this concatenation:
4290   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4291   SDValue IdentitySrc;
4292   bool IsIdentity = true;
4293   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4294     SDValue Op = Ops[i];
4295     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4296     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4297         Op.getOperand(0).getValueType() != VT ||
4298         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4299         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4300         Op.getConstantOperandVal(1) != IdentityIndex) {
4301       IsIdentity = false;
4302       break;
4303     }
4304     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4305            "Unexpected identity source vector for concat of extracts");
4306     IdentitySrc = Op.getOperand(0);
4307   }
4308   if (IsIdentity) {
4309     assert(IdentitySrc && "Failed to set source vector of extracts");
4310     return IdentitySrc;
4311   }
4312 
4313   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4314   // simplified to one big BUILD_VECTOR.
4315   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4316   EVT SVT = VT.getScalarType();
4317   SmallVector<SDValue, 16> Elts;
4318   for (SDValue Op : Ops) {
4319     EVT OpVT = Op.getValueType();
4320     if (Op.isUndef())
4321       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4322     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4323       Elts.append(Op->op_begin(), Op->op_end());
4324     else
4325       return SDValue();
4326   }
4327 
4328   // BUILD_VECTOR requires all inputs to be of the same type, find the
4329   // maximum type and extend them all.
4330   for (SDValue Op : Elts)
4331     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4332 
4333   if (SVT.bitsGT(VT.getScalarType()))
4334     for (SDValue &Op : Elts)
4335       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4336                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4337                : DAG.getSExtOrTrunc(Op, DL, SVT);
4338 
4339   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4340   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4341   return V;
4342 }
4343 
4344 /// Gets or creates the specified node.
4345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4346   FoldingSetNodeID ID;
4347   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4348   void *IP = nullptr;
4349   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4350     return SDValue(E, 0);
4351 
4352   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4353                               getVTList(VT));
4354   CSEMap.InsertNode(N, IP);
4355 
4356   InsertNode(N);
4357   SDValue V = SDValue(N, 0);
4358   NewSDValueDbgMsg(V, "Creating new node: ", this);
4359   return V;
4360 }
4361 
4362 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4363                               SDValue Operand, const SDNodeFlags Flags) {
4364   // Constant fold unary operations with an integer constant operand. Even
4365   // opaque constant will be folded, because the folding of unary operations
4366   // doesn't create new constants with different values. Nevertheless, the
4367   // opaque flag is preserved during folding to prevent future folding with
4368   // other constants.
4369   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4370     const APInt &Val = C->getAPIntValue();
4371     switch (Opcode) {
4372     default: break;
4373     case ISD::SIGN_EXTEND:
4374       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4375                          C->isTargetOpcode(), C->isOpaque());
4376     case ISD::TRUNCATE:
4377       if (C->isOpaque())
4378         break;
4379       LLVM_FALLTHROUGH;
4380     case ISD::ANY_EXTEND:
4381     case ISD::ZERO_EXTEND:
4382       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4383                          C->isTargetOpcode(), C->isOpaque());
4384     case ISD::UINT_TO_FP:
4385     case ISD::SINT_TO_FP: {
4386       APFloat apf(EVTToAPFloatSemantics(VT),
4387                   APInt::getNullValue(VT.getSizeInBits()));
4388       (void)apf.convertFromAPInt(Val,
4389                                  Opcode==ISD::SINT_TO_FP,
4390                                  APFloat::rmNearestTiesToEven);
4391       return getConstantFP(apf, DL, VT);
4392     }
4393     case ISD::BITCAST:
4394       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4395         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4396       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4397         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4398       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4399         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4400       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4401         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4402       break;
4403     case ISD::ABS:
4404       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4405                          C->isOpaque());
4406     case ISD::BITREVERSE:
4407       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4408                          C->isOpaque());
4409     case ISD::BSWAP:
4410       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4411                          C->isOpaque());
4412     case ISD::CTPOP:
4413       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4414                          C->isOpaque());
4415     case ISD::CTLZ:
4416     case ISD::CTLZ_ZERO_UNDEF:
4417       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4418                          C->isOpaque());
4419     case ISD::CTTZ:
4420     case ISD::CTTZ_ZERO_UNDEF:
4421       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4422                          C->isOpaque());
4423     case ISD::FP16_TO_FP: {
4424       bool Ignored;
4425       APFloat FPV(APFloat::IEEEhalf(),
4426                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4427 
4428       // This can return overflow, underflow, or inexact; we don't care.
4429       // FIXME need to be more flexible about rounding mode.
4430       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4431                         APFloat::rmNearestTiesToEven, &Ignored);
4432       return getConstantFP(FPV, DL, VT);
4433     }
4434     }
4435   }
4436 
4437   // Constant fold unary operations with a floating point constant operand.
4438   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4439     APFloat V = C->getValueAPF();    // make copy
4440     switch (Opcode) {
4441     case ISD::FNEG:
4442       V.changeSign();
4443       return getConstantFP(V, DL, VT);
4444     case ISD::FABS:
4445       V.clearSign();
4446       return getConstantFP(V, DL, VT);
4447     case ISD::FCEIL: {
4448       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4449       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4450         return getConstantFP(V, DL, VT);
4451       break;
4452     }
4453     case ISD::FTRUNC: {
4454       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4455       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4456         return getConstantFP(V, DL, VT);
4457       break;
4458     }
4459     case ISD::FFLOOR: {
4460       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4461       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4462         return getConstantFP(V, DL, VT);
4463       break;
4464     }
4465     case ISD::FP_EXTEND: {
4466       bool ignored;
4467       // This can return overflow, underflow, or inexact; we don't care.
4468       // FIXME need to be more flexible about rounding mode.
4469       (void)V.convert(EVTToAPFloatSemantics(VT),
4470                       APFloat::rmNearestTiesToEven, &ignored);
4471       return getConstantFP(V, DL, VT);
4472     }
4473     case ISD::FP_TO_SINT:
4474     case ISD::FP_TO_UINT: {
4475       bool ignored;
4476       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4477       // FIXME need to be more flexible about rounding mode.
4478       APFloat::opStatus s =
4479           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4480       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4481         break;
4482       return getConstant(IntVal, DL, VT);
4483     }
4484     case ISD::BITCAST:
4485       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4486         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4487       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4488         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4489       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4490         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4491       break;
4492     case ISD::FP_TO_FP16: {
4493       bool Ignored;
4494       // This can return overflow, underflow, or inexact; we don't care.
4495       // FIXME need to be more flexible about rounding mode.
4496       (void)V.convert(APFloat::IEEEhalf(),
4497                       APFloat::rmNearestTiesToEven, &Ignored);
4498       return getConstant(V.bitcastToAPInt(), DL, VT);
4499     }
4500     }
4501   }
4502 
4503   // Constant fold unary operations with a vector integer or float operand.
4504   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4505     if (BV->isConstant()) {
4506       switch (Opcode) {
4507       default:
4508         // FIXME: Entirely reasonable to perform folding of other unary
4509         // operations here as the need arises.
4510         break;
4511       case ISD::FNEG:
4512       case ISD::FABS:
4513       case ISD::FCEIL:
4514       case ISD::FTRUNC:
4515       case ISD::FFLOOR:
4516       case ISD::FP_EXTEND:
4517       case ISD::FP_TO_SINT:
4518       case ISD::FP_TO_UINT:
4519       case ISD::TRUNCATE:
4520       case ISD::ANY_EXTEND:
4521       case ISD::ZERO_EXTEND:
4522       case ISD::SIGN_EXTEND:
4523       case ISD::UINT_TO_FP:
4524       case ISD::SINT_TO_FP:
4525       case ISD::ABS:
4526       case ISD::BITREVERSE:
4527       case ISD::BSWAP:
4528       case ISD::CTLZ:
4529       case ISD::CTLZ_ZERO_UNDEF:
4530       case ISD::CTTZ:
4531       case ISD::CTTZ_ZERO_UNDEF:
4532       case ISD::CTPOP: {
4533         SDValue Ops = { Operand };
4534         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4535           return Fold;
4536       }
4537       }
4538     }
4539   }
4540 
4541   unsigned OpOpcode = Operand.getNode()->getOpcode();
4542   switch (Opcode) {
4543   case ISD::TokenFactor:
4544   case ISD::MERGE_VALUES:
4545   case ISD::CONCAT_VECTORS:
4546     return Operand;         // Factor, merge or concat of one node?  No need.
4547   case ISD::BUILD_VECTOR: {
4548     // Attempt to simplify BUILD_VECTOR.
4549     SDValue Ops[] = {Operand};
4550     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4551       return V;
4552     break;
4553   }
4554   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4555   case ISD::FP_EXTEND:
4556     assert(VT.isFloatingPoint() &&
4557            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4558     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4559     assert((!VT.isVector() ||
4560             VT.getVectorNumElements() ==
4561             Operand.getValueType().getVectorNumElements()) &&
4562            "Vector element count mismatch!");
4563     assert(Operand.getValueType().bitsLT(VT) &&
4564            "Invalid fpext node, dst < src!");
4565     if (Operand.isUndef())
4566       return getUNDEF(VT);
4567     break;
4568   case ISD::FP_TO_SINT:
4569   case ISD::FP_TO_UINT:
4570     if (Operand.isUndef())
4571       return getUNDEF(VT);
4572     break;
4573   case ISD::SINT_TO_FP:
4574   case ISD::UINT_TO_FP:
4575     // [us]itofp(undef) = 0, because the result value is bounded.
4576     if (Operand.isUndef())
4577       return getConstantFP(0.0, DL, VT);
4578     break;
4579   case ISD::SIGN_EXTEND:
4580     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4581            "Invalid SIGN_EXTEND!");
4582     assert(VT.isVector() == Operand.getValueType().isVector() &&
4583            "SIGN_EXTEND result type type should be vector iff the operand "
4584            "type is vector!");
4585     if (Operand.getValueType() == VT) return Operand;   // noop extension
4586     assert((!VT.isVector() ||
4587             VT.getVectorNumElements() ==
4588             Operand.getValueType().getVectorNumElements()) &&
4589            "Vector element count mismatch!");
4590     assert(Operand.getValueType().bitsLT(VT) &&
4591            "Invalid sext node, dst < src!");
4592     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4593       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4594     else if (OpOpcode == ISD::UNDEF)
4595       // sext(undef) = 0, because the top bits will all be the same.
4596       return getConstant(0, DL, VT);
4597     break;
4598   case ISD::ZERO_EXTEND:
4599     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4600            "Invalid ZERO_EXTEND!");
4601     assert(VT.isVector() == Operand.getValueType().isVector() &&
4602            "ZERO_EXTEND result type type should be vector iff the operand "
4603            "type is vector!");
4604     if (Operand.getValueType() == VT) return Operand;   // noop extension
4605     assert((!VT.isVector() ||
4606             VT.getVectorNumElements() ==
4607             Operand.getValueType().getVectorNumElements()) &&
4608            "Vector element count mismatch!");
4609     assert(Operand.getValueType().bitsLT(VT) &&
4610            "Invalid zext node, dst < src!");
4611     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4612       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4613     else if (OpOpcode == ISD::UNDEF)
4614       // zext(undef) = 0, because the top bits will be zero.
4615       return getConstant(0, DL, VT);
4616     break;
4617   case ISD::ANY_EXTEND:
4618     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4619            "Invalid ANY_EXTEND!");
4620     assert(VT.isVector() == Operand.getValueType().isVector() &&
4621            "ANY_EXTEND result type type should be vector iff the operand "
4622            "type is vector!");
4623     if (Operand.getValueType() == VT) return Operand;   // noop extension
4624     assert((!VT.isVector() ||
4625             VT.getVectorNumElements() ==
4626             Operand.getValueType().getVectorNumElements()) &&
4627            "Vector element count mismatch!");
4628     assert(Operand.getValueType().bitsLT(VT) &&
4629            "Invalid anyext node, dst < src!");
4630 
4631     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4632         OpOpcode == ISD::ANY_EXTEND)
4633       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4634       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4635     else if (OpOpcode == ISD::UNDEF)
4636       return getUNDEF(VT);
4637 
4638     // (ext (trunc x)) -> x
4639     if (OpOpcode == ISD::TRUNCATE) {
4640       SDValue OpOp = Operand.getOperand(0);
4641       if (OpOp.getValueType() == VT) {
4642         transferDbgValues(Operand, OpOp);
4643         return OpOp;
4644       }
4645     }
4646     break;
4647   case ISD::TRUNCATE:
4648     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4649            "Invalid TRUNCATE!");
4650     assert(VT.isVector() == Operand.getValueType().isVector() &&
4651            "TRUNCATE result type type should be vector iff the operand "
4652            "type is vector!");
4653     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4654     assert((!VT.isVector() ||
4655             VT.getVectorNumElements() ==
4656             Operand.getValueType().getVectorNumElements()) &&
4657            "Vector element count mismatch!");
4658     assert(Operand.getValueType().bitsGT(VT) &&
4659            "Invalid truncate node, src < dst!");
4660     if (OpOpcode == ISD::TRUNCATE)
4661       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4662     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4663         OpOpcode == ISD::ANY_EXTEND) {
4664       // If the source is smaller than the dest, we still need an extend.
4665       if (Operand.getOperand(0).getValueType().getScalarType()
4666             .bitsLT(VT.getScalarType()))
4667         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4668       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4669         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4670       return Operand.getOperand(0);
4671     }
4672     if (OpOpcode == ISD::UNDEF)
4673       return getUNDEF(VT);
4674     break;
4675   case ISD::ANY_EXTEND_VECTOR_INREG:
4676   case ISD::ZERO_EXTEND_VECTOR_INREG:
4677   case ISD::SIGN_EXTEND_VECTOR_INREG:
4678     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4679     assert(Operand.getValueType().bitsLE(VT) &&
4680            "The input must be the same size or smaller than the result.");
4681     assert(VT.getVectorNumElements() <
4682              Operand.getValueType().getVectorNumElements() &&
4683            "The destination vector type must have fewer lanes than the input.");
4684     break;
4685   case ISD::ABS:
4686     assert(VT.isInteger() && VT == Operand.getValueType() &&
4687            "Invalid ABS!");
4688     if (OpOpcode == ISD::UNDEF)
4689       return getUNDEF(VT);
4690     break;
4691   case ISD::BSWAP:
4692     assert(VT.isInteger() && VT == Operand.getValueType() &&
4693            "Invalid BSWAP!");
4694     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4695            "BSWAP types must be a multiple of 16 bits!");
4696     if (OpOpcode == ISD::UNDEF)
4697       return getUNDEF(VT);
4698     break;
4699   case ISD::BITREVERSE:
4700     assert(VT.isInteger() && VT == Operand.getValueType() &&
4701            "Invalid BITREVERSE!");
4702     if (OpOpcode == ISD::UNDEF)
4703       return getUNDEF(VT);
4704     break;
4705   case ISD::BITCAST:
4706     // Basic sanity checking.
4707     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4708            "Cannot BITCAST between types of different sizes!");
4709     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4710     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4711       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4712     if (OpOpcode == ISD::UNDEF)
4713       return getUNDEF(VT);
4714     break;
4715   case ISD::SCALAR_TO_VECTOR:
4716     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4717            (VT.getVectorElementType() == Operand.getValueType() ||
4718             (VT.getVectorElementType().isInteger() &&
4719              Operand.getValueType().isInteger() &&
4720              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4721            "Illegal SCALAR_TO_VECTOR node!");
4722     if (OpOpcode == ISD::UNDEF)
4723       return getUNDEF(VT);
4724     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4725     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4726         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4727         Operand.getConstantOperandVal(1) == 0 &&
4728         Operand.getOperand(0).getValueType() == VT)
4729       return Operand.getOperand(0);
4730     break;
4731   case ISD::FNEG:
4732     // Negation of an unknown bag of bits is still completely undefined.
4733     if (OpOpcode == ISD::UNDEF)
4734       return getUNDEF(VT);
4735 
4736     if (OpOpcode == ISD::FNEG)  // --X -> X
4737       return Operand.getOperand(0);
4738     break;
4739   case ISD::FABS:
4740     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4741       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4742     break;
4743   }
4744 
4745   SDNode *N;
4746   SDVTList VTs = getVTList(VT);
4747   SDValue Ops[] = {Operand};
4748   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4749     FoldingSetNodeID ID;
4750     AddNodeIDNode(ID, Opcode, VTs, Ops);
4751     void *IP = nullptr;
4752     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4753       E->intersectFlagsWith(Flags);
4754       return SDValue(E, 0);
4755     }
4756 
4757     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4758     N->setFlags(Flags);
4759     createOperands(N, Ops);
4760     CSEMap.InsertNode(N, IP);
4761   } else {
4762     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4763     createOperands(N, Ops);
4764   }
4765 
4766   InsertNode(N);
4767   SDValue V = SDValue(N, 0);
4768   NewSDValueDbgMsg(V, "Creating new node: ", this);
4769   return V;
4770 }
4771 
4772 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4773                                        const APInt &C2) {
4774   switch (Opcode) {
4775   case ISD::ADD:  return C1 + C2;
4776   case ISD::SUB:  return C1 - C2;
4777   case ISD::MUL:  return C1 * C2;
4778   case ISD::AND:  return C1 & C2;
4779   case ISD::OR:   return C1 | C2;
4780   case ISD::XOR:  return C1 ^ C2;
4781   case ISD::SHL:  return C1 << C2;
4782   case ISD::SRL:  return C1.lshr(C2);
4783   case ISD::SRA:  return C1.ashr(C2);
4784   case ISD::ROTL: return C1.rotl(C2);
4785   case ISD::ROTR: return C1.rotr(C2);
4786   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4787   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4788   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4789   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4790   case ISD::SADDSAT: return C1.sadd_sat(C2);
4791   case ISD::UADDSAT: return C1.uadd_sat(C2);
4792   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4793   case ISD::USUBSAT: return C1.usub_sat(C2);
4794   case ISD::UDIV:
4795     if (!C2.getBoolValue())
4796       break;
4797     return C1.udiv(C2);
4798   case ISD::UREM:
4799     if (!C2.getBoolValue())
4800       break;
4801     return C1.urem(C2);
4802   case ISD::SDIV:
4803     if (!C2.getBoolValue())
4804       break;
4805     return C1.sdiv(C2);
4806   case ISD::SREM:
4807     if (!C2.getBoolValue())
4808       break;
4809     return C1.srem(C2);
4810   }
4811   return llvm::None;
4812 }
4813 
4814 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4815                                              EVT VT, const ConstantSDNode *C1,
4816                                              const ConstantSDNode *C2) {
4817   if (C1->isOpaque() || C2->isOpaque())
4818     return SDValue();
4819   if (Optional<APInt> Folded =
4820           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4821     return getConstant(Folded.getValue(), DL, VT);
4822   return SDValue();
4823 }
4824 
4825 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4826                                        const GlobalAddressSDNode *GA,
4827                                        const SDNode *N2) {
4828   if (GA->getOpcode() != ISD::GlobalAddress)
4829     return SDValue();
4830   if (!TLI->isOffsetFoldingLegal(GA))
4831     return SDValue();
4832   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4833   if (!C2)
4834     return SDValue();
4835   int64_t Offset = C2->getSExtValue();
4836   switch (Opcode) {
4837   case ISD::ADD: break;
4838   case ISD::SUB: Offset = -uint64_t(Offset); break;
4839   default: return SDValue();
4840   }
4841   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4842                           GA->getOffset() + uint64_t(Offset));
4843 }
4844 
4845 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4846   switch (Opcode) {
4847   case ISD::SDIV:
4848   case ISD::UDIV:
4849   case ISD::SREM:
4850   case ISD::UREM: {
4851     // If a divisor is zero/undef or any element of a divisor vector is
4852     // zero/undef, the whole op is undef.
4853     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4854     SDValue Divisor = Ops[1];
4855     if (Divisor.isUndef() || isNullConstant(Divisor))
4856       return true;
4857 
4858     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4859            llvm::any_of(Divisor->op_values(),
4860                         [](SDValue V) { return V.isUndef() ||
4861                                         isNullConstant(V); });
4862     // TODO: Handle signed overflow.
4863   }
4864   // TODO: Handle oversized shifts.
4865   default:
4866     return false;
4867   }
4868 }
4869 
4870 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4871                                              EVT VT, ArrayRef<SDValue> Ops) {
4872   // If the opcode is a target-specific ISD node, there's nothing we can
4873   // do here and the operand rules may not line up with the below, so
4874   // bail early.
4875   if (Opcode >= ISD::BUILTIN_OP_END)
4876     return SDValue();
4877 
4878   // For now, the array Ops should only contain two values.
4879   // This enforcement will be removed once this function is merged with
4880   // FoldConstantVectorArithmetic
4881   if (Ops.size() != 2)
4882     return SDValue();
4883 
4884   if (isUndef(Opcode, Ops))
4885     return getUNDEF(VT);
4886 
4887   SDNode *N1 = Ops[0].getNode();
4888   SDNode *N2 = Ops[1].getNode();
4889 
4890   // Handle the case of two scalars.
4891   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4892     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4893       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4894       assert((!Folded || !VT.isVector()) &&
4895              "Can't fold vectors ops with scalar operands");
4896       return Folded;
4897     }
4898   }
4899 
4900   // fold (add Sym, c) -> Sym+c
4901   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4902     return FoldSymbolOffset(Opcode, VT, GA, N2);
4903   if (TLI->isCommutativeBinOp(Opcode))
4904     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4905       return FoldSymbolOffset(Opcode, VT, GA, N1);
4906 
4907   // For vectors, extract each constant element and fold them individually.
4908   // Either input may be an undef value.
4909   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4910   if (!BV1 && !N1->isUndef())
4911     return SDValue();
4912   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4913   if (!BV2 && !N2->isUndef())
4914     return SDValue();
4915   // If both operands are undef, that's handled the same way as scalars.
4916   if (!BV1 && !BV2)
4917     return SDValue();
4918 
4919   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4920          "Vector binop with different number of elements in operands?");
4921 
4922   EVT SVT = VT.getScalarType();
4923   EVT LegalSVT = SVT;
4924   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4925     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4926     if (LegalSVT.bitsLT(SVT))
4927       return SDValue();
4928   }
4929   SmallVector<SDValue, 4> Outputs;
4930   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4931   for (unsigned I = 0; I != NumOps; ++I) {
4932     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4933     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4934     if (SVT.isInteger()) {
4935       if (V1->getValueType(0).bitsGT(SVT))
4936         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4937       if (V2->getValueType(0).bitsGT(SVT))
4938         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4939     }
4940 
4941     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4942       return SDValue();
4943 
4944     // Fold one vector element.
4945     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4946     if (LegalSVT != SVT)
4947       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4948 
4949     // Scalar folding only succeeded if the result is a constant or UNDEF.
4950     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4951         ScalarResult.getOpcode() != ISD::ConstantFP)
4952       return SDValue();
4953     Outputs.push_back(ScalarResult);
4954   }
4955 
4956   assert(VT.getVectorNumElements() == Outputs.size() &&
4957          "Vector size mismatch!");
4958 
4959   // We may have a vector type but a scalar result. Create a splat.
4960   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4961 
4962   // Build a big vector out of the scalar elements we generated.
4963   return getBuildVector(VT, SDLoc(), Outputs);
4964 }
4965 
4966 // TODO: Merge with FoldConstantArithmetic
4967 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4968                                                    const SDLoc &DL, EVT VT,
4969                                                    ArrayRef<SDValue> Ops,
4970                                                    const SDNodeFlags Flags) {
4971   // If the opcode is a target-specific ISD node, there's nothing we can
4972   // do here and the operand rules may not line up with the below, so
4973   // bail early.
4974   if (Opcode >= ISD::BUILTIN_OP_END)
4975     return SDValue();
4976 
4977   if (isUndef(Opcode, Ops))
4978     return getUNDEF(VT);
4979 
4980   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4981   if (!VT.isVector())
4982     return SDValue();
4983 
4984   unsigned NumElts = VT.getVectorNumElements();
4985 
4986   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4987     return !Op.getValueType().isVector() ||
4988            Op.getValueType().getVectorNumElements() == NumElts;
4989   };
4990 
4991   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4992     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4993     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4994            (BV && BV->isConstant());
4995   };
4996 
4997   // All operands must be vector types with the same number of elements as
4998   // the result type and must be either UNDEF or a build vector of constant
4999   // or UNDEF scalars.
5000   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5001       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5002     return SDValue();
5003 
5004   // If we are comparing vectors, then the result needs to be a i1 boolean
5005   // that is then sign-extended back to the legal result type.
5006   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5007 
5008   // Find legal integer scalar type for constant promotion and
5009   // ensure that its scalar size is at least as large as source.
5010   EVT LegalSVT = VT.getScalarType();
5011   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5012     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5013     if (LegalSVT.bitsLT(VT.getScalarType()))
5014       return SDValue();
5015   }
5016 
5017   // Constant fold each scalar lane separately.
5018   SmallVector<SDValue, 4> ScalarResults;
5019   for (unsigned i = 0; i != NumElts; i++) {
5020     SmallVector<SDValue, 4> ScalarOps;
5021     for (SDValue Op : Ops) {
5022       EVT InSVT = Op.getValueType().getScalarType();
5023       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5024       if (!InBV) {
5025         // We've checked that this is UNDEF or a constant of some kind.
5026         if (Op.isUndef())
5027           ScalarOps.push_back(getUNDEF(InSVT));
5028         else
5029           ScalarOps.push_back(Op);
5030         continue;
5031       }
5032 
5033       SDValue ScalarOp = InBV->getOperand(i);
5034       EVT ScalarVT = ScalarOp.getValueType();
5035 
5036       // Build vector (integer) scalar operands may need implicit
5037       // truncation - do this before constant folding.
5038       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5039         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5040 
5041       ScalarOps.push_back(ScalarOp);
5042     }
5043 
5044     // Constant fold the scalar operands.
5045     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5046 
5047     // Legalize the (integer) scalar constant if necessary.
5048     if (LegalSVT != SVT)
5049       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5050 
5051     // Scalar folding only succeeded if the result is a constant or UNDEF.
5052     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5053         ScalarResult.getOpcode() != ISD::ConstantFP)
5054       return SDValue();
5055     ScalarResults.push_back(ScalarResult);
5056   }
5057 
5058   SDValue V = getBuildVector(VT, DL, ScalarResults);
5059   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5060   return V;
5061 }
5062 
5063 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5064                                          EVT VT, SDValue N1, SDValue N2) {
5065   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5066   //       should. That will require dealing with a potentially non-default
5067   //       rounding mode, checking the "opStatus" return value from the APFloat
5068   //       math calculations, and possibly other variations.
5069   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5070   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5071   if (N1CFP && N2CFP) {
5072     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5073     switch (Opcode) {
5074     case ISD::FADD:
5075       C1.add(C2, APFloat::rmNearestTiesToEven);
5076       return getConstantFP(C1, DL, VT);
5077     case ISD::FSUB:
5078       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5079       return getConstantFP(C1, DL, VT);
5080     case ISD::FMUL:
5081       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5082       return getConstantFP(C1, DL, VT);
5083     case ISD::FDIV:
5084       C1.divide(C2, APFloat::rmNearestTiesToEven);
5085       return getConstantFP(C1, DL, VT);
5086     case ISD::FREM:
5087       C1.mod(C2);
5088       return getConstantFP(C1, DL, VT);
5089     case ISD::FCOPYSIGN:
5090       C1.copySign(C2);
5091       return getConstantFP(C1, DL, VT);
5092     default: break;
5093     }
5094   }
5095   if (N1CFP && Opcode == ISD::FP_ROUND) {
5096     APFloat C1 = N1CFP->getValueAPF();    // make copy
5097     bool Unused;
5098     // This can return overflow, underflow, or inexact; we don't care.
5099     // FIXME need to be more flexible about rounding mode.
5100     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5101                       &Unused);
5102     return getConstantFP(C1, DL, VT);
5103   }
5104 
5105   switch (Opcode) {
5106   case ISD::FADD:
5107   case ISD::FSUB:
5108   case ISD::FMUL:
5109   case ISD::FDIV:
5110   case ISD::FREM:
5111     // If both operands are undef, the result is undef. If 1 operand is undef,
5112     // the result is NaN. This should match the behavior of the IR optimizer.
5113     if (N1.isUndef() && N2.isUndef())
5114       return getUNDEF(VT);
5115     if (N1.isUndef() || N2.isUndef())
5116       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5117   }
5118   return SDValue();
5119 }
5120 
5121 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5122                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5123   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5124   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5125   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5126   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5127 
5128   // Canonicalize constant to RHS if commutative.
5129   if (TLI->isCommutativeBinOp(Opcode)) {
5130     if (N1C && !N2C) {
5131       std::swap(N1C, N2C);
5132       std::swap(N1, N2);
5133     } else if (N1CFP && !N2CFP) {
5134       std::swap(N1CFP, N2CFP);
5135       std::swap(N1, N2);
5136     }
5137   }
5138 
5139   switch (Opcode) {
5140   default: break;
5141   case ISD::TokenFactor:
5142     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5143            N2.getValueType() == MVT::Other && "Invalid token factor!");
5144     // Fold trivial token factors.
5145     if (N1.getOpcode() == ISD::EntryToken) return N2;
5146     if (N2.getOpcode() == ISD::EntryToken) return N1;
5147     if (N1 == N2) return N1;
5148     break;
5149   case ISD::BUILD_VECTOR: {
5150     // Attempt to simplify BUILD_VECTOR.
5151     SDValue Ops[] = {N1, N2};
5152     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5153       return V;
5154     break;
5155   }
5156   case ISD::CONCAT_VECTORS: {
5157     SDValue Ops[] = {N1, N2};
5158     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5159       return V;
5160     break;
5161   }
5162   case ISD::AND:
5163     assert(VT.isInteger() && "This operator does not apply to FP types!");
5164     assert(N1.getValueType() == N2.getValueType() &&
5165            N1.getValueType() == VT && "Binary operator types must match!");
5166     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5167     // worth handling here.
5168     if (N2C && N2C->isNullValue())
5169       return N2;
5170     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5171       return N1;
5172     break;
5173   case ISD::OR:
5174   case ISD::XOR:
5175   case ISD::ADD:
5176   case ISD::SUB:
5177     assert(VT.isInteger() && "This operator does not apply to FP types!");
5178     assert(N1.getValueType() == N2.getValueType() &&
5179            N1.getValueType() == VT && "Binary operator types must match!");
5180     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5181     // it's worth handling here.
5182     if (N2C && N2C->isNullValue())
5183       return N1;
5184     break;
5185   case ISD::MUL:
5186     assert(VT.isInteger() && "This operator does not apply to FP types!");
5187     assert(N1.getValueType() == N2.getValueType() &&
5188            N1.getValueType() == VT && "Binary operator types must match!");
5189     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5190       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5191       APInt N2CImm = N2C->getAPIntValue();
5192       return getVScale(DL, VT, MulImm * N2CImm);
5193     }
5194     break;
5195   case ISD::UDIV:
5196   case ISD::UREM:
5197   case ISD::MULHU:
5198   case ISD::MULHS:
5199   case ISD::SDIV:
5200   case ISD::SREM:
5201   case ISD::SMIN:
5202   case ISD::SMAX:
5203   case ISD::UMIN:
5204   case ISD::UMAX:
5205   case ISD::SADDSAT:
5206   case ISD::SSUBSAT:
5207   case ISD::UADDSAT:
5208   case ISD::USUBSAT:
5209     assert(VT.isInteger() && "This operator does not apply to FP types!");
5210     assert(N1.getValueType() == N2.getValueType() &&
5211            N1.getValueType() == VT && "Binary operator types must match!");
5212     break;
5213   case ISD::FADD:
5214   case ISD::FSUB:
5215   case ISD::FMUL:
5216   case ISD::FDIV:
5217   case ISD::FREM:
5218     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5219     assert(N1.getValueType() == N2.getValueType() &&
5220            N1.getValueType() == VT && "Binary operator types must match!");
5221     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5222       return V;
5223     break;
5224   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5225     assert(N1.getValueType() == VT &&
5226            N1.getValueType().isFloatingPoint() &&
5227            N2.getValueType().isFloatingPoint() &&
5228            "Invalid FCOPYSIGN!");
5229     break;
5230   case ISD::SHL:
5231     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5232       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5233       APInt ShiftImm = N2C->getAPIntValue();
5234       return getVScale(DL, VT, MulImm << ShiftImm);
5235     }
5236     LLVM_FALLTHROUGH;
5237   case ISD::SRA:
5238   case ISD::SRL:
5239     if (SDValue V = simplifyShift(N1, N2))
5240       return V;
5241     LLVM_FALLTHROUGH;
5242   case ISD::ROTL:
5243   case ISD::ROTR:
5244     assert(VT == N1.getValueType() &&
5245            "Shift operators return type must be the same as their first arg");
5246     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5247            "Shifts only work on integers");
5248     assert((!VT.isVector() || VT == N2.getValueType()) &&
5249            "Vector shift amounts must be in the same as their first arg");
5250     // Verify that the shift amount VT is big enough to hold valid shift
5251     // amounts.  This catches things like trying to shift an i1024 value by an
5252     // i8, which is easy to fall into in generic code that uses
5253     // TLI.getShiftAmount().
5254     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5255            "Invalid use of small shift amount with oversized value!");
5256 
5257     // Always fold shifts of i1 values so the code generator doesn't need to
5258     // handle them.  Since we know the size of the shift has to be less than the
5259     // size of the value, the shift/rotate count is guaranteed to be zero.
5260     if (VT == MVT::i1)
5261       return N1;
5262     if (N2C && N2C->isNullValue())
5263       return N1;
5264     break;
5265   case ISD::FP_ROUND:
5266     assert(VT.isFloatingPoint() &&
5267            N1.getValueType().isFloatingPoint() &&
5268            VT.bitsLE(N1.getValueType()) &&
5269            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5270            "Invalid FP_ROUND!");
5271     if (N1.getValueType() == VT) return N1;  // noop conversion.
5272     break;
5273   case ISD::AssertSext:
5274   case ISD::AssertZext: {
5275     EVT EVT = cast<VTSDNode>(N2)->getVT();
5276     assert(VT == N1.getValueType() && "Not an inreg extend!");
5277     assert(VT.isInteger() && EVT.isInteger() &&
5278            "Cannot *_EXTEND_INREG FP types");
5279     assert(!EVT.isVector() &&
5280            "AssertSExt/AssertZExt type should be the vector element type "
5281            "rather than the vector type!");
5282     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5283     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5284     break;
5285   }
5286   case ISD::SIGN_EXTEND_INREG: {
5287     EVT EVT = cast<VTSDNode>(N2)->getVT();
5288     assert(VT == N1.getValueType() && "Not an inreg extend!");
5289     assert(VT.isInteger() && EVT.isInteger() &&
5290            "Cannot *_EXTEND_INREG FP types");
5291     assert(EVT.isVector() == VT.isVector() &&
5292            "SIGN_EXTEND_INREG type should be vector iff the operand "
5293            "type is vector!");
5294     assert((!EVT.isVector() ||
5295             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5296            "Vector element counts must match in SIGN_EXTEND_INREG");
5297     assert(EVT.bitsLE(VT) && "Not extending!");
5298     if (EVT == VT) return N1;  // Not actually extending
5299 
5300     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5301       unsigned FromBits = EVT.getScalarSizeInBits();
5302       Val <<= Val.getBitWidth() - FromBits;
5303       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5304       return getConstant(Val, DL, ConstantVT);
5305     };
5306 
5307     if (N1C) {
5308       const APInt &Val = N1C->getAPIntValue();
5309       return SignExtendInReg(Val, VT);
5310     }
5311     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5312       SmallVector<SDValue, 8> Ops;
5313       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5314       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5315         SDValue Op = N1.getOperand(i);
5316         if (Op.isUndef()) {
5317           Ops.push_back(getUNDEF(OpVT));
5318           continue;
5319         }
5320         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5321         APInt Val = C->getAPIntValue();
5322         Ops.push_back(SignExtendInReg(Val, OpVT));
5323       }
5324       return getBuildVector(VT, DL, Ops);
5325     }
5326     break;
5327   }
5328   case ISD::EXTRACT_VECTOR_ELT:
5329     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5330            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5331              element type of the vector.");
5332 
5333     // Extract from an undefined value or using an undefined index is undefined.
5334     if (N1.isUndef() || N2.isUndef())
5335       return getUNDEF(VT);
5336 
5337     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5338     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5339       return getUNDEF(VT);
5340 
5341     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5342     // expanding copies of large vectors from registers.
5343     if (N2C &&
5344         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5345         N1.getNumOperands() > 0) {
5346       unsigned Factor =
5347         N1.getOperand(0).getValueType().getVectorNumElements();
5348       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5349                      N1.getOperand(N2C->getZExtValue() / Factor),
5350                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5351     }
5352 
5353     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5354     // expanding large vector constants.
5355     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5356       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5357 
5358       if (VT != Elt.getValueType())
5359         // If the vector element type is not legal, the BUILD_VECTOR operands
5360         // are promoted and implicitly truncated, and the result implicitly
5361         // extended. Make that explicit here.
5362         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5363 
5364       return Elt;
5365     }
5366 
5367     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5368     // operations are lowered to scalars.
5369     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5370       // If the indices are the same, return the inserted element else
5371       // if the indices are known different, extract the element from
5372       // the original vector.
5373       SDValue N1Op2 = N1.getOperand(2);
5374       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5375 
5376       if (N1Op2C && N2C) {
5377         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5378           if (VT == N1.getOperand(1).getValueType())
5379             return N1.getOperand(1);
5380           else
5381             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5382         }
5383 
5384         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5385       }
5386     }
5387 
5388     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5389     // when vector types are scalarized and v1iX is legal.
5390     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5391     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5392         N1.getValueType().getVectorNumElements() == 1) {
5393       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5394                      N1.getOperand(1));
5395     }
5396     break;
5397   case ISD::EXTRACT_ELEMENT:
5398     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5399     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5400            (N1.getValueType().isInteger() == VT.isInteger()) &&
5401            N1.getValueType() != VT &&
5402            "Wrong types for EXTRACT_ELEMENT!");
5403 
5404     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5405     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5406     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5407     if (N1.getOpcode() == ISD::BUILD_PAIR)
5408       return N1.getOperand(N2C->getZExtValue());
5409 
5410     // EXTRACT_ELEMENT of a constant int is also very common.
5411     if (N1C) {
5412       unsigned ElementSize = VT.getSizeInBits();
5413       unsigned Shift = ElementSize * N2C->getZExtValue();
5414       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5415       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5416     }
5417     break;
5418   case ISD::EXTRACT_SUBVECTOR:
5419     if (VT.isSimple() && N1.getValueType().isSimple()) {
5420       assert(VT.isVector() && N1.getValueType().isVector() &&
5421              "Extract subvector VTs must be a vectors!");
5422       assert(VT.getVectorElementType() ==
5423              N1.getValueType().getVectorElementType() &&
5424              "Extract subvector VTs must have the same element type!");
5425       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5426              "Extract subvector must be from larger vector to smaller vector!");
5427 
5428       if (N2C) {
5429         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5430                 <= N1.getValueType().getVectorNumElements())
5431                && "Extract subvector overflow!");
5432       }
5433 
5434       // Trivial extraction.
5435       if (VT.getSimpleVT() == N1.getSimpleValueType())
5436         return N1;
5437 
5438       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5439       if (N1.isUndef())
5440         return getUNDEF(VT);
5441 
5442       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5443       // the concat have the same type as the extract.
5444       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5445           N1.getNumOperands() > 0 &&
5446           VT == N1.getOperand(0).getValueType()) {
5447         unsigned Factor = VT.getVectorNumElements();
5448         return N1.getOperand(N2C->getZExtValue() / Factor);
5449       }
5450 
5451       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5452       // during shuffle legalization.
5453       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5454           VT == N1.getOperand(1).getValueType())
5455         return N1.getOperand(1);
5456     }
5457     break;
5458   }
5459 
5460   // Perform trivial constant folding.
5461   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5462     return SV;
5463 
5464   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5465     return V;
5466 
5467   // Canonicalize an UNDEF to the RHS, even over a constant.
5468   if (N1.isUndef()) {
5469     if (TLI->isCommutativeBinOp(Opcode)) {
5470       std::swap(N1, N2);
5471     } else {
5472       switch (Opcode) {
5473       case ISD::SIGN_EXTEND_INREG:
5474       case ISD::SUB:
5475         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5476       case ISD::UDIV:
5477       case ISD::SDIV:
5478       case ISD::UREM:
5479       case ISD::SREM:
5480       case ISD::SSUBSAT:
5481       case ISD::USUBSAT:
5482         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5483       }
5484     }
5485   }
5486 
5487   // Fold a bunch of operators when the RHS is undef.
5488   if (N2.isUndef()) {
5489     switch (Opcode) {
5490     case ISD::XOR:
5491       if (N1.isUndef())
5492         // Handle undef ^ undef -> 0 special case. This is a common
5493         // idiom (misuse).
5494         return getConstant(0, DL, VT);
5495       LLVM_FALLTHROUGH;
5496     case ISD::ADD:
5497     case ISD::SUB:
5498     case ISD::UDIV:
5499     case ISD::SDIV:
5500     case ISD::UREM:
5501     case ISD::SREM:
5502       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5503     case ISD::MUL:
5504     case ISD::AND:
5505     case ISD::SSUBSAT:
5506     case ISD::USUBSAT:
5507       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5508     case ISD::OR:
5509     case ISD::SADDSAT:
5510     case ISD::UADDSAT:
5511       return getAllOnesConstant(DL, VT);
5512     }
5513   }
5514 
5515   // Memoize this node if possible.
5516   SDNode *N;
5517   SDVTList VTs = getVTList(VT);
5518   SDValue Ops[] = {N1, N2};
5519   if (VT != MVT::Glue) {
5520     FoldingSetNodeID ID;
5521     AddNodeIDNode(ID, Opcode, VTs, Ops);
5522     void *IP = nullptr;
5523     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5524       E->intersectFlagsWith(Flags);
5525       return SDValue(E, 0);
5526     }
5527 
5528     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5529     N->setFlags(Flags);
5530     createOperands(N, Ops);
5531     CSEMap.InsertNode(N, IP);
5532   } else {
5533     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5534     createOperands(N, Ops);
5535   }
5536 
5537   InsertNode(N);
5538   SDValue V = SDValue(N, 0);
5539   NewSDValueDbgMsg(V, "Creating new node: ", this);
5540   return V;
5541 }
5542 
5543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5544                               SDValue N1, SDValue N2, SDValue N3,
5545                               const SDNodeFlags Flags) {
5546   // Perform various simplifications.
5547   switch (Opcode) {
5548   case ISD::FMA: {
5549     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5550     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5551            N3.getValueType() == VT && "FMA types must match!");
5552     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5553     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5554     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5555     if (N1CFP && N2CFP && N3CFP) {
5556       APFloat  V1 = N1CFP->getValueAPF();
5557       const APFloat &V2 = N2CFP->getValueAPF();
5558       const APFloat &V3 = N3CFP->getValueAPF();
5559       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5560       return getConstantFP(V1, DL, VT);
5561     }
5562     break;
5563   }
5564   case ISD::BUILD_VECTOR: {
5565     // Attempt to simplify BUILD_VECTOR.
5566     SDValue Ops[] = {N1, N2, N3};
5567     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5568       return V;
5569     break;
5570   }
5571   case ISD::CONCAT_VECTORS: {
5572     SDValue Ops[] = {N1, N2, N3};
5573     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5574       return V;
5575     break;
5576   }
5577   case ISD::SETCC: {
5578     assert(VT.isInteger() && "SETCC result type must be an integer!");
5579     assert(N1.getValueType() == N2.getValueType() &&
5580            "SETCC operands must have the same type!");
5581     assert(VT.isVector() == N1.getValueType().isVector() &&
5582            "SETCC type should be vector iff the operand type is vector!");
5583     assert((!VT.isVector() ||
5584             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5585            "SETCC vector element counts must match!");
5586     // Use FoldSetCC to simplify SETCC's.
5587     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5588       return V;
5589     // Vector constant folding.
5590     SDValue Ops[] = {N1, N2, N3};
5591     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5592       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5593       return V;
5594     }
5595     break;
5596   }
5597   case ISD::SELECT:
5598   case ISD::VSELECT:
5599     if (SDValue V = simplifySelect(N1, N2, N3))
5600       return V;
5601     break;
5602   case ISD::VECTOR_SHUFFLE:
5603     llvm_unreachable("should use getVectorShuffle constructor!");
5604   case ISD::INSERT_VECTOR_ELT: {
5605     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5606     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5607     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5608       return getUNDEF(VT);
5609 
5610     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5611     if (N3.isUndef())
5612       return getUNDEF(VT);
5613 
5614     // If the inserted element is an UNDEF, just use the input vector.
5615     if (N2.isUndef())
5616       return N1;
5617 
5618     break;
5619   }
5620   case ISD::INSERT_SUBVECTOR: {
5621     // Inserting undef into undef is still undef.
5622     if (N1.isUndef() && N2.isUndef())
5623       return getUNDEF(VT);
5624     SDValue Index = N3;
5625     if (VT.isSimple() && N1.getValueType().isSimple()
5626         && N2.getValueType().isSimple()) {
5627       assert(VT.isVector() && N1.getValueType().isVector() &&
5628              N2.getValueType().isVector() &&
5629              "Insert subvector VTs must be a vectors");
5630       assert(VT == N1.getValueType() &&
5631              "Dest and insert subvector source types must match!");
5632       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5633              "Insert subvector must be from smaller vector to larger vector!");
5634       if (isa<ConstantSDNode>(Index)) {
5635         assert((N2.getValueType().getVectorNumElements() +
5636                 cast<ConstantSDNode>(Index)->getZExtValue()
5637                 <= VT.getVectorNumElements())
5638                && "Insert subvector overflow!");
5639       }
5640 
5641       // Trivial insertion.
5642       if (VT.getSimpleVT() == N2.getSimpleValueType())
5643         return N2;
5644 
5645       // If this is an insert of an extracted vector into an undef vector, we
5646       // can just use the input to the extract.
5647       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5648           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5649         return N2.getOperand(0);
5650     }
5651     break;
5652   }
5653   case ISD::BITCAST:
5654     // Fold bit_convert nodes from a type to themselves.
5655     if (N1.getValueType() == VT)
5656       return N1;
5657     break;
5658   }
5659 
5660   // Memoize node if it doesn't produce a flag.
5661   SDNode *N;
5662   SDVTList VTs = getVTList(VT);
5663   SDValue Ops[] = {N1, N2, N3};
5664   if (VT != MVT::Glue) {
5665     FoldingSetNodeID ID;
5666     AddNodeIDNode(ID, Opcode, VTs, Ops);
5667     void *IP = nullptr;
5668     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5669       E->intersectFlagsWith(Flags);
5670       return SDValue(E, 0);
5671     }
5672 
5673     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5674     N->setFlags(Flags);
5675     createOperands(N, Ops);
5676     CSEMap.InsertNode(N, IP);
5677   } else {
5678     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5679     createOperands(N, Ops);
5680   }
5681 
5682   InsertNode(N);
5683   SDValue V = SDValue(N, 0);
5684   NewSDValueDbgMsg(V, "Creating new node: ", this);
5685   return V;
5686 }
5687 
5688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5689                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5690   SDValue Ops[] = { N1, N2, N3, N4 };
5691   return getNode(Opcode, DL, VT, Ops);
5692 }
5693 
5694 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5695                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5696                               SDValue N5) {
5697   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5698   return getNode(Opcode, DL, VT, Ops);
5699 }
5700 
5701 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5702 /// the incoming stack arguments to be loaded from the stack.
5703 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5704   SmallVector<SDValue, 8> ArgChains;
5705 
5706   // Include the original chain at the beginning of the list. When this is
5707   // used by target LowerCall hooks, this helps legalize find the
5708   // CALLSEQ_BEGIN node.
5709   ArgChains.push_back(Chain);
5710 
5711   // Add a chain value for each stack argument.
5712   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5713        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5714     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5715       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5716         if (FI->getIndex() < 0)
5717           ArgChains.push_back(SDValue(L, 1));
5718 
5719   // Build a tokenfactor for all the chains.
5720   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5721 }
5722 
5723 /// getMemsetValue - Vectorized representation of the memset value
5724 /// operand.
5725 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5726                               const SDLoc &dl) {
5727   assert(!Value.isUndef());
5728 
5729   unsigned NumBits = VT.getScalarSizeInBits();
5730   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5731     assert(C->getAPIntValue().getBitWidth() == 8);
5732     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5733     if (VT.isInteger()) {
5734       bool IsOpaque = VT.getSizeInBits() > 64 ||
5735           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5736       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5737     }
5738     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5739                              VT);
5740   }
5741 
5742   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5743   EVT IntVT = VT.getScalarType();
5744   if (!IntVT.isInteger())
5745     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5746 
5747   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5748   if (NumBits > 8) {
5749     // Use a multiplication with 0x010101... to extend the input to the
5750     // required length.
5751     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5752     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5753                         DAG.getConstant(Magic, dl, IntVT));
5754   }
5755 
5756   if (VT != Value.getValueType() && !VT.isInteger())
5757     Value = DAG.getBitcast(VT.getScalarType(), Value);
5758   if (VT != Value.getValueType())
5759     Value = DAG.getSplatBuildVector(VT, dl, Value);
5760 
5761   return Value;
5762 }
5763 
5764 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5765 /// used when a memcpy is turned into a memset when the source is a constant
5766 /// string ptr.
5767 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5768                                   const TargetLowering &TLI,
5769                                   const ConstantDataArraySlice &Slice) {
5770   // Handle vector with all elements zero.
5771   if (Slice.Array == nullptr) {
5772     if (VT.isInteger())
5773       return DAG.getConstant(0, dl, VT);
5774     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5775       return DAG.getConstantFP(0.0, dl, VT);
5776     else if (VT.isVector()) {
5777       unsigned NumElts = VT.getVectorNumElements();
5778       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5779       return DAG.getNode(ISD::BITCAST, dl, VT,
5780                          DAG.getConstant(0, dl,
5781                                          EVT::getVectorVT(*DAG.getContext(),
5782                                                           EltVT, NumElts)));
5783     } else
5784       llvm_unreachable("Expected type!");
5785   }
5786 
5787   assert(!VT.isVector() && "Can't handle vector type here!");
5788   unsigned NumVTBits = VT.getSizeInBits();
5789   unsigned NumVTBytes = NumVTBits / 8;
5790   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5791 
5792   APInt Val(NumVTBits, 0);
5793   if (DAG.getDataLayout().isLittleEndian()) {
5794     for (unsigned i = 0; i != NumBytes; ++i)
5795       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5796   } else {
5797     for (unsigned i = 0; i != NumBytes; ++i)
5798       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5799   }
5800 
5801   // If the "cost" of materializing the integer immediate is less than the cost
5802   // of a load, then it is cost effective to turn the load into the immediate.
5803   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5804   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5805     return DAG.getConstant(Val, dl, VT);
5806   return SDValue(nullptr, 0);
5807 }
5808 
5809 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5810                                            const SDLoc &DL,
5811                                            const SDNodeFlags Flags) {
5812   EVT VT = Base.getValueType();
5813   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5814 }
5815 
5816 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5817                                            const SDLoc &DL,
5818                                            const SDNodeFlags Flags) {
5819   assert(Offset.getValueType().isInteger());
5820   EVT BasePtrVT = Ptr.getValueType();
5821   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5822 }
5823 
5824 /// Returns true if memcpy source is constant data.
5825 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5826   uint64_t SrcDelta = 0;
5827   GlobalAddressSDNode *G = nullptr;
5828   if (Src.getOpcode() == ISD::GlobalAddress)
5829     G = cast<GlobalAddressSDNode>(Src);
5830   else if (Src.getOpcode() == ISD::ADD &&
5831            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5832            Src.getOperand(1).getOpcode() == ISD::Constant) {
5833     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5834     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5835   }
5836   if (!G)
5837     return false;
5838 
5839   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5840                                   SrcDelta + G->getOffset());
5841 }
5842 
5843 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5844                                       SelectionDAG &DAG) {
5845   // On Darwin, -Os means optimize for size without hurting performance, so
5846   // only really optimize for size when -Oz (MinSize) is used.
5847   if (MF.getTarget().getTargetTriple().isOSDarwin())
5848     return MF.getFunction().hasMinSize();
5849   return DAG.shouldOptForSize();
5850 }
5851 
5852 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5853                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5854                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5855                           SmallVector<SDValue, 16> &OutStoreChains) {
5856   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5857   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5858   SmallVector<SDValue, 16> GluedLoadChains;
5859   for (unsigned i = From; i < To; ++i) {
5860     OutChains.push_back(OutLoadChains[i]);
5861     GluedLoadChains.push_back(OutLoadChains[i]);
5862   }
5863 
5864   // Chain for all loads.
5865   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5866                                   GluedLoadChains);
5867 
5868   for (unsigned i = From; i < To; ++i) {
5869     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5870     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5871                                   ST->getBasePtr(), ST->getMemoryVT(),
5872                                   ST->getMemOperand());
5873     OutChains.push_back(NewStore);
5874   }
5875 }
5876 
5877 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5878                                        SDValue Chain, SDValue Dst, SDValue Src,
5879                                        uint64_t Size, unsigned Alignment,
5880                                        bool isVol, bool AlwaysInline,
5881                                        MachinePointerInfo DstPtrInfo,
5882                                        MachinePointerInfo SrcPtrInfo) {
5883   // Turn a memcpy of undef to nop.
5884   // FIXME: We need to honor volatile even is Src is undef.
5885   if (Src.isUndef())
5886     return Chain;
5887 
5888   // Expand memcpy to a series of load and store ops if the size operand falls
5889   // below a certain threshold.
5890   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5891   // rather than maybe a humongous number of loads and stores.
5892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5893   const DataLayout &DL = DAG.getDataLayout();
5894   LLVMContext &C = *DAG.getContext();
5895   std::vector<EVT> MemOps;
5896   bool DstAlignCanChange = false;
5897   MachineFunction &MF = DAG.getMachineFunction();
5898   MachineFrameInfo &MFI = MF.getFrameInfo();
5899   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5900   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5901   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5902     DstAlignCanChange = true;
5903   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5904   if (Alignment > SrcAlign)
5905     SrcAlign = Alignment;
5906   ConstantDataArraySlice Slice;
5907   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5908   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5909   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5910 
5911   if (!TLI.findOptimalMemOpLowering(
5912           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5913           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5914           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5915           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5916           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5917     return SDValue();
5918 
5919   if (DstAlignCanChange) {
5920     Type *Ty = MemOps[0].getTypeForEVT(C);
5921     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5922 
5923     // Don't promote to an alignment that would require dynamic stack
5924     // realignment.
5925     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5926     if (!TRI->needsStackRealignment(MF))
5927       while (NewAlign > Alignment &&
5928              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5929         NewAlign /= 2;
5930 
5931     if (NewAlign > Alignment) {
5932       // Give the stack frame object a larger alignment if needed.
5933       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5934         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5935       Alignment = NewAlign;
5936     }
5937   }
5938 
5939   MachineMemOperand::Flags MMOFlags =
5940       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5941   SmallVector<SDValue, 16> OutLoadChains;
5942   SmallVector<SDValue, 16> OutStoreChains;
5943   SmallVector<SDValue, 32> OutChains;
5944   unsigned NumMemOps = MemOps.size();
5945   uint64_t SrcOff = 0, DstOff = 0;
5946   for (unsigned i = 0; i != NumMemOps; ++i) {
5947     EVT VT = MemOps[i];
5948     unsigned VTSize = VT.getSizeInBits() / 8;
5949     SDValue Value, Store;
5950 
5951     if (VTSize > Size) {
5952       // Issuing an unaligned load / store pair  that overlaps with the previous
5953       // pair. Adjust the offset accordingly.
5954       assert(i == NumMemOps-1 && i != 0);
5955       SrcOff -= VTSize - Size;
5956       DstOff -= VTSize - Size;
5957     }
5958 
5959     if (CopyFromConstant &&
5960         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5961       // It's unlikely a store of a vector immediate can be done in a single
5962       // instruction. It would require a load from a constantpool first.
5963       // We only handle zero vectors here.
5964       // FIXME: Handle other cases where store of vector immediate is done in
5965       // a single instruction.
5966       ConstantDataArraySlice SubSlice;
5967       if (SrcOff < Slice.Length) {
5968         SubSlice = Slice;
5969         SubSlice.move(SrcOff);
5970       } else {
5971         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5972         SubSlice.Array = nullptr;
5973         SubSlice.Offset = 0;
5974         SubSlice.Length = VTSize;
5975       }
5976       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5977       if (Value.getNode()) {
5978         Store = DAG.getStore(
5979             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5980             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5981         OutChains.push_back(Store);
5982       }
5983     }
5984 
5985     if (!Store.getNode()) {
5986       // The type might not be legal for the target.  This should only happen
5987       // if the type is smaller than a legal type, as on PPC, so the right
5988       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5989       // to Load/Store if NVT==VT.
5990       // FIXME does the case above also need this?
5991       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5992       assert(NVT.bitsGE(VT));
5993 
5994       bool isDereferenceable =
5995         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5996       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5997       if (isDereferenceable)
5998         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5999 
6000       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6001                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6002                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6003                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
6004       OutLoadChains.push_back(Value.getValue(1));
6005 
6006       Store = DAG.getTruncStore(
6007           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6008           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6009       OutStoreChains.push_back(Store);
6010     }
6011     SrcOff += VTSize;
6012     DstOff += VTSize;
6013     Size -= VTSize;
6014   }
6015 
6016   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6017                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6018   unsigned NumLdStInMemcpy = OutStoreChains.size();
6019 
6020   if (NumLdStInMemcpy) {
6021     // It may be that memcpy might be converted to memset if it's memcpy
6022     // of constants. In such a case, we won't have loads and stores, but
6023     // just stores. In the absence of loads, there is nothing to gang up.
6024     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6025       // If target does not care, just leave as it.
6026       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6027         OutChains.push_back(OutLoadChains[i]);
6028         OutChains.push_back(OutStoreChains[i]);
6029       }
6030     } else {
6031       // Ld/St less than/equal limit set by target.
6032       if (NumLdStInMemcpy <= GluedLdStLimit) {
6033           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6034                                         NumLdStInMemcpy, OutLoadChains,
6035                                         OutStoreChains);
6036       } else {
6037         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6038         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6039         unsigned GlueIter = 0;
6040 
6041         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6042           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6043           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6044 
6045           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6046                                        OutLoadChains, OutStoreChains);
6047           GlueIter += GluedLdStLimit;
6048         }
6049 
6050         // Residual ld/st.
6051         if (RemainingLdStInMemcpy) {
6052           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6053                                         RemainingLdStInMemcpy, OutLoadChains,
6054                                         OutStoreChains);
6055         }
6056       }
6057     }
6058   }
6059   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6060 }
6061 
6062 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6063                                         SDValue Chain, SDValue Dst, SDValue Src,
6064                                         uint64_t Size, unsigned Align,
6065                                         bool isVol, bool AlwaysInline,
6066                                         MachinePointerInfo DstPtrInfo,
6067                                         MachinePointerInfo SrcPtrInfo) {
6068   // Turn a memmove of undef to nop.
6069   // FIXME: We need to honor volatile even is Src is undef.
6070   if (Src.isUndef())
6071     return Chain;
6072 
6073   // Expand memmove to a series of load and store ops if the size operand falls
6074   // below a certain threshold.
6075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6076   const DataLayout &DL = DAG.getDataLayout();
6077   LLVMContext &C = *DAG.getContext();
6078   std::vector<EVT> MemOps;
6079   bool DstAlignCanChange = false;
6080   MachineFunction &MF = DAG.getMachineFunction();
6081   MachineFrameInfo &MFI = MF.getFrameInfo();
6082   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6083   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6084   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6085     DstAlignCanChange = true;
6086   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6087   if (Align > SrcAlign)
6088     SrcAlign = Align;
6089   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6090   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
6091   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
6092   // correct code.
6093   bool AllowOverlap = false;
6094   if (!TLI.findOptimalMemOpLowering(
6095           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
6096           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
6097           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6098           MF.getFunction().getAttributes()))
6099     return SDValue();
6100 
6101   if (DstAlignCanChange) {
6102     Type *Ty = MemOps[0].getTypeForEVT(C);
6103     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
6104     if (NewAlign > Align) {
6105       // Give the stack frame object a larger alignment if needed.
6106       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6107         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6108       Align = NewAlign;
6109     }
6110   }
6111 
6112   MachineMemOperand::Flags MMOFlags =
6113       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6114   uint64_t SrcOff = 0, DstOff = 0;
6115   SmallVector<SDValue, 8> LoadValues;
6116   SmallVector<SDValue, 8> LoadChains;
6117   SmallVector<SDValue, 8> OutChains;
6118   unsigned NumMemOps = MemOps.size();
6119   for (unsigned i = 0; i < NumMemOps; i++) {
6120     EVT VT = MemOps[i];
6121     unsigned VTSize = VT.getSizeInBits() / 8;
6122     SDValue Value;
6123 
6124     bool isDereferenceable =
6125       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6126     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6127     if (isDereferenceable)
6128       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6129 
6130     Value =
6131         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6132                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6133     LoadValues.push_back(Value);
6134     LoadChains.push_back(Value.getValue(1));
6135     SrcOff += VTSize;
6136   }
6137   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6138   OutChains.clear();
6139   for (unsigned i = 0; i < NumMemOps; i++) {
6140     EVT VT = MemOps[i];
6141     unsigned VTSize = VT.getSizeInBits() / 8;
6142     SDValue Store;
6143 
6144     Store = DAG.getStore(Chain, dl, LoadValues[i],
6145                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6146                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6147     OutChains.push_back(Store);
6148     DstOff += VTSize;
6149   }
6150 
6151   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6152 }
6153 
6154 /// Lower the call to 'memset' intrinsic function into a series of store
6155 /// operations.
6156 ///
6157 /// \param DAG Selection DAG where lowered code is placed.
6158 /// \param dl Link to corresponding IR location.
6159 /// \param Chain Control flow dependency.
6160 /// \param Dst Pointer to destination memory location.
6161 /// \param Src Value of byte to write into the memory.
6162 /// \param Size Number of bytes to write.
6163 /// \param Align Alignment of the destination in bytes.
6164 /// \param isVol True if destination is volatile.
6165 /// \param DstPtrInfo IR information on the memory pointer.
6166 /// \returns New head in the control flow, if lowering was successful, empty
6167 /// SDValue otherwise.
6168 ///
6169 /// The function tries to replace 'llvm.memset' intrinsic with several store
6170 /// operations and value calculation code. This is usually profitable for small
6171 /// memory size.
6172 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6173                                SDValue Chain, SDValue Dst, SDValue Src,
6174                                uint64_t Size, unsigned Align, bool isVol,
6175                                MachinePointerInfo DstPtrInfo) {
6176   // Turn a memset of undef to nop.
6177   // FIXME: We need to honor volatile even is Src is undef.
6178   if (Src.isUndef())
6179     return Chain;
6180 
6181   // Expand memset to a series of load/store ops if the size operand
6182   // falls below a certain threshold.
6183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6184   std::vector<EVT> MemOps;
6185   bool DstAlignCanChange = false;
6186   MachineFunction &MF = DAG.getMachineFunction();
6187   MachineFrameInfo &MFI = MF.getFrameInfo();
6188   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6189   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6190   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6191     DstAlignCanChange = true;
6192   bool IsZeroVal =
6193     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6194   if (!TLI.findOptimalMemOpLowering(
6195           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6196           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6197           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6198           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6199           MF.getFunction().getAttributes()))
6200     return SDValue();
6201 
6202   if (DstAlignCanChange) {
6203     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6204     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6205     if (NewAlign > Align) {
6206       // Give the stack frame object a larger alignment if needed.
6207       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6208         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6209       Align = NewAlign;
6210     }
6211   }
6212 
6213   SmallVector<SDValue, 8> OutChains;
6214   uint64_t DstOff = 0;
6215   unsigned NumMemOps = MemOps.size();
6216 
6217   // Find the largest store and generate the bit pattern for it.
6218   EVT LargestVT = MemOps[0];
6219   for (unsigned i = 1; i < NumMemOps; i++)
6220     if (MemOps[i].bitsGT(LargestVT))
6221       LargestVT = MemOps[i];
6222   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6223 
6224   for (unsigned i = 0; i < NumMemOps; i++) {
6225     EVT VT = MemOps[i];
6226     unsigned VTSize = VT.getSizeInBits() / 8;
6227     if (VTSize > Size) {
6228       // Issuing an unaligned load / store pair  that overlaps with the previous
6229       // pair. Adjust the offset accordingly.
6230       assert(i == NumMemOps-1 && i != 0);
6231       DstOff -= VTSize - Size;
6232     }
6233 
6234     // If this store is smaller than the largest store see whether we can get
6235     // the smaller value for free with a truncate.
6236     SDValue Value = MemSetValue;
6237     if (VT.bitsLT(LargestVT)) {
6238       if (!LargestVT.isVector() && !VT.isVector() &&
6239           TLI.isTruncateFree(LargestVT, VT))
6240         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6241       else
6242         Value = getMemsetValue(Src, VT, DAG, dl);
6243     }
6244     assert(Value.getValueType() == VT && "Value with wrong type.");
6245     SDValue Store = DAG.getStore(
6246         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6247         DstPtrInfo.getWithOffset(DstOff), Align,
6248         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6249     OutChains.push_back(Store);
6250     DstOff += VT.getSizeInBits() / 8;
6251     Size -= VTSize;
6252   }
6253 
6254   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6255 }
6256 
6257 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6258                                             unsigned AS) {
6259   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6260   // pointer operands can be losslessly bitcasted to pointers of address space 0
6261   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6262     report_fatal_error("cannot lower memory intrinsic in address space " +
6263                        Twine(AS));
6264   }
6265 }
6266 
6267 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6268                                 SDValue Src, SDValue Size, unsigned Align,
6269                                 bool isVol, bool AlwaysInline, bool isTailCall,
6270                                 MachinePointerInfo DstPtrInfo,
6271                                 MachinePointerInfo SrcPtrInfo) {
6272   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6273 
6274   // Check to see if we should lower the memcpy to loads and stores first.
6275   // For cases within the target-specified limits, this is the best choice.
6276   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6277   if (ConstantSize) {
6278     // Memcpy with size zero? Just return the original chain.
6279     if (ConstantSize->isNullValue())
6280       return Chain;
6281 
6282     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6283                                              ConstantSize->getZExtValue(),Align,
6284                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6285     if (Result.getNode())
6286       return Result;
6287   }
6288 
6289   // Then check to see if we should lower the memcpy with target-specific
6290   // code. If the target chooses to do this, this is the next best.
6291   if (TSI) {
6292     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6293         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6294         DstPtrInfo, SrcPtrInfo);
6295     if (Result.getNode())
6296       return Result;
6297   }
6298 
6299   // If we really need inline code and the target declined to provide it,
6300   // use a (potentially long) sequence of loads and stores.
6301   if (AlwaysInline) {
6302     assert(ConstantSize && "AlwaysInline requires a constant size!");
6303     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6304                                    ConstantSize->getZExtValue(), Align, isVol,
6305                                    true, DstPtrInfo, SrcPtrInfo);
6306   }
6307 
6308   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6309   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6310 
6311   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6312   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6313   // respect volatile, so they may do things like read or write memory
6314   // beyond the given memory regions. But fixing this isn't easy, and most
6315   // people don't care.
6316 
6317   // Emit a library call.
6318   TargetLowering::ArgListTy Args;
6319   TargetLowering::ArgListEntry Entry;
6320   Entry.Ty = Type::getInt8PtrTy(*getContext());
6321   Entry.Node = Dst; Args.push_back(Entry);
6322   Entry.Node = Src; Args.push_back(Entry);
6323 
6324   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6325   Entry.Node = Size; Args.push_back(Entry);
6326   // FIXME: pass in SDLoc
6327   TargetLowering::CallLoweringInfo CLI(*this);
6328   CLI.setDebugLoc(dl)
6329       .setChain(Chain)
6330       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6331                     Dst.getValueType().getTypeForEVT(*getContext()),
6332                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6333                                       TLI->getPointerTy(getDataLayout())),
6334                     std::move(Args))
6335       .setDiscardResult()
6336       .setTailCall(isTailCall);
6337 
6338   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6339   return CallResult.second;
6340 }
6341 
6342 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6343                                       SDValue Dst, unsigned DstAlign,
6344                                       SDValue Src, unsigned SrcAlign,
6345                                       SDValue Size, Type *SizeTy,
6346                                       unsigned ElemSz, bool isTailCall,
6347                                       MachinePointerInfo DstPtrInfo,
6348                                       MachinePointerInfo SrcPtrInfo) {
6349   // Emit a library call.
6350   TargetLowering::ArgListTy Args;
6351   TargetLowering::ArgListEntry Entry;
6352   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6353   Entry.Node = Dst;
6354   Args.push_back(Entry);
6355 
6356   Entry.Node = Src;
6357   Args.push_back(Entry);
6358 
6359   Entry.Ty = SizeTy;
6360   Entry.Node = Size;
6361   Args.push_back(Entry);
6362 
6363   RTLIB::Libcall LibraryCall =
6364       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6365   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6366     report_fatal_error("Unsupported element size");
6367 
6368   TargetLowering::CallLoweringInfo CLI(*this);
6369   CLI.setDebugLoc(dl)
6370       .setChain(Chain)
6371       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6372                     Type::getVoidTy(*getContext()),
6373                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6374                                       TLI->getPointerTy(getDataLayout())),
6375                     std::move(Args))
6376       .setDiscardResult()
6377       .setTailCall(isTailCall);
6378 
6379   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6380   return CallResult.second;
6381 }
6382 
6383 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6384                                  SDValue Src, SDValue Size, unsigned Align,
6385                                  bool isVol, bool isTailCall,
6386                                  MachinePointerInfo DstPtrInfo,
6387                                  MachinePointerInfo SrcPtrInfo) {
6388   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6389 
6390   // Check to see if we should lower the memmove to loads and stores first.
6391   // For cases within the target-specified limits, this is the best choice.
6392   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6393   if (ConstantSize) {
6394     // Memmove with size zero? Just return the original chain.
6395     if (ConstantSize->isNullValue())
6396       return Chain;
6397 
6398     SDValue Result =
6399       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6400                                ConstantSize->getZExtValue(), Align, isVol,
6401                                false, DstPtrInfo, SrcPtrInfo);
6402     if (Result.getNode())
6403       return Result;
6404   }
6405 
6406   // Then check to see if we should lower the memmove with target-specific
6407   // code. If the target chooses to do this, this is the next best.
6408   if (TSI) {
6409     SDValue Result = TSI->EmitTargetCodeForMemmove(
6410         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6411     if (Result.getNode())
6412       return Result;
6413   }
6414 
6415   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6416   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6417 
6418   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6419   // not be safe.  See memcpy above for more details.
6420 
6421   // Emit a library call.
6422   TargetLowering::ArgListTy Args;
6423   TargetLowering::ArgListEntry Entry;
6424   Entry.Ty = Type::getInt8PtrTy(*getContext());
6425   Entry.Node = Dst; Args.push_back(Entry);
6426   Entry.Node = Src; Args.push_back(Entry);
6427 
6428   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6429   Entry.Node = Size; Args.push_back(Entry);
6430   // FIXME:  pass in SDLoc
6431   TargetLowering::CallLoweringInfo CLI(*this);
6432   CLI.setDebugLoc(dl)
6433       .setChain(Chain)
6434       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6435                     Dst.getValueType().getTypeForEVT(*getContext()),
6436                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6437                                       TLI->getPointerTy(getDataLayout())),
6438                     std::move(Args))
6439       .setDiscardResult()
6440       .setTailCall(isTailCall);
6441 
6442   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6443   return CallResult.second;
6444 }
6445 
6446 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6447                                        SDValue Dst, unsigned DstAlign,
6448                                        SDValue Src, unsigned SrcAlign,
6449                                        SDValue Size, Type *SizeTy,
6450                                        unsigned ElemSz, bool isTailCall,
6451                                        MachinePointerInfo DstPtrInfo,
6452                                        MachinePointerInfo SrcPtrInfo) {
6453   // Emit a library call.
6454   TargetLowering::ArgListTy Args;
6455   TargetLowering::ArgListEntry Entry;
6456   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6457   Entry.Node = Dst;
6458   Args.push_back(Entry);
6459 
6460   Entry.Node = Src;
6461   Args.push_back(Entry);
6462 
6463   Entry.Ty = SizeTy;
6464   Entry.Node = Size;
6465   Args.push_back(Entry);
6466 
6467   RTLIB::Libcall LibraryCall =
6468       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6469   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6470     report_fatal_error("Unsupported element size");
6471 
6472   TargetLowering::CallLoweringInfo CLI(*this);
6473   CLI.setDebugLoc(dl)
6474       .setChain(Chain)
6475       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6476                     Type::getVoidTy(*getContext()),
6477                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6478                                       TLI->getPointerTy(getDataLayout())),
6479                     std::move(Args))
6480       .setDiscardResult()
6481       .setTailCall(isTailCall);
6482 
6483   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6484   return CallResult.second;
6485 }
6486 
6487 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6488                                 SDValue Src, SDValue Size, unsigned Align,
6489                                 bool isVol, bool isTailCall,
6490                                 MachinePointerInfo DstPtrInfo) {
6491   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6492 
6493   // Check to see if we should lower the memset to stores first.
6494   // For cases within the target-specified limits, this is the best choice.
6495   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6496   if (ConstantSize) {
6497     // Memset with size zero? Just return the original chain.
6498     if (ConstantSize->isNullValue())
6499       return Chain;
6500 
6501     SDValue Result =
6502       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6503                       Align, isVol, DstPtrInfo);
6504 
6505     if (Result.getNode())
6506       return Result;
6507   }
6508 
6509   // Then check to see if we should lower the memset with target-specific
6510   // code. If the target chooses to do this, this is the next best.
6511   if (TSI) {
6512     SDValue Result = TSI->EmitTargetCodeForMemset(
6513         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6514     if (Result.getNode())
6515       return Result;
6516   }
6517 
6518   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6519 
6520   // Emit a library call.
6521   TargetLowering::ArgListTy Args;
6522   TargetLowering::ArgListEntry Entry;
6523   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6524   Args.push_back(Entry);
6525   Entry.Node = Src;
6526   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6527   Args.push_back(Entry);
6528   Entry.Node = Size;
6529   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6530   Args.push_back(Entry);
6531 
6532   // FIXME: pass in SDLoc
6533   TargetLowering::CallLoweringInfo CLI(*this);
6534   CLI.setDebugLoc(dl)
6535       .setChain(Chain)
6536       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6537                     Dst.getValueType().getTypeForEVT(*getContext()),
6538                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6539                                       TLI->getPointerTy(getDataLayout())),
6540                     std::move(Args))
6541       .setDiscardResult()
6542       .setTailCall(isTailCall);
6543 
6544   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6545   return CallResult.second;
6546 }
6547 
6548 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6549                                       SDValue Dst, unsigned DstAlign,
6550                                       SDValue Value, SDValue Size, Type *SizeTy,
6551                                       unsigned ElemSz, bool isTailCall,
6552                                       MachinePointerInfo DstPtrInfo) {
6553   // Emit a library call.
6554   TargetLowering::ArgListTy Args;
6555   TargetLowering::ArgListEntry Entry;
6556   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6557   Entry.Node = Dst;
6558   Args.push_back(Entry);
6559 
6560   Entry.Ty = Type::getInt8Ty(*getContext());
6561   Entry.Node = Value;
6562   Args.push_back(Entry);
6563 
6564   Entry.Ty = SizeTy;
6565   Entry.Node = Size;
6566   Args.push_back(Entry);
6567 
6568   RTLIB::Libcall LibraryCall =
6569       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6570   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6571     report_fatal_error("Unsupported element size");
6572 
6573   TargetLowering::CallLoweringInfo CLI(*this);
6574   CLI.setDebugLoc(dl)
6575       .setChain(Chain)
6576       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6577                     Type::getVoidTy(*getContext()),
6578                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6579                                       TLI->getPointerTy(getDataLayout())),
6580                     std::move(Args))
6581       .setDiscardResult()
6582       .setTailCall(isTailCall);
6583 
6584   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6585   return CallResult.second;
6586 }
6587 
6588 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6589                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6590                                 MachineMemOperand *MMO) {
6591   FoldingSetNodeID ID;
6592   ID.AddInteger(MemVT.getRawBits());
6593   AddNodeIDNode(ID, Opcode, VTList, Ops);
6594   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6595   void* IP = nullptr;
6596   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6597     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6598     return SDValue(E, 0);
6599   }
6600 
6601   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6602                                     VTList, MemVT, MMO);
6603   createOperands(N, Ops);
6604 
6605   CSEMap.InsertNode(N, IP);
6606   InsertNode(N);
6607   return SDValue(N, 0);
6608 }
6609 
6610 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6611                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6612                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6613                                        MachineMemOperand *MMO) {
6614   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6615          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6616   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6617 
6618   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6619   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6620 }
6621 
6622 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6623                                 SDValue Chain, SDValue Ptr, SDValue Val,
6624                                 MachineMemOperand *MMO) {
6625   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6626           Opcode == ISD::ATOMIC_LOAD_SUB ||
6627           Opcode == ISD::ATOMIC_LOAD_AND ||
6628           Opcode == ISD::ATOMIC_LOAD_CLR ||
6629           Opcode == ISD::ATOMIC_LOAD_OR ||
6630           Opcode == ISD::ATOMIC_LOAD_XOR ||
6631           Opcode == ISD::ATOMIC_LOAD_NAND ||
6632           Opcode == ISD::ATOMIC_LOAD_MIN ||
6633           Opcode == ISD::ATOMIC_LOAD_MAX ||
6634           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6635           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6636           Opcode == ISD::ATOMIC_LOAD_FADD ||
6637           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6638           Opcode == ISD::ATOMIC_SWAP ||
6639           Opcode == ISD::ATOMIC_STORE) &&
6640          "Invalid Atomic Op");
6641 
6642   EVT VT = Val.getValueType();
6643 
6644   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6645                                                getVTList(VT, MVT::Other);
6646   SDValue Ops[] = {Chain, Ptr, Val};
6647   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6648 }
6649 
6650 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6651                                 EVT VT, SDValue Chain, SDValue Ptr,
6652                                 MachineMemOperand *MMO) {
6653   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6654 
6655   SDVTList VTs = getVTList(VT, MVT::Other);
6656   SDValue Ops[] = {Chain, Ptr};
6657   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6658 }
6659 
6660 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6661 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6662   if (Ops.size() == 1)
6663     return Ops[0];
6664 
6665   SmallVector<EVT, 4> VTs;
6666   VTs.reserve(Ops.size());
6667   for (unsigned i = 0; i < Ops.size(); ++i)
6668     VTs.push_back(Ops[i].getValueType());
6669   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6670 }
6671 
6672 SDValue SelectionDAG::getMemIntrinsicNode(
6673     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6674     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6675     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6676   if (Align == 0)  // Ensure that codegen never sees alignment 0
6677     Align = getEVTAlignment(MemVT);
6678 
6679   if (!Size && MemVT.isScalableVector())
6680     Size = MemoryLocation::UnknownSize;
6681   else if (!Size)
6682     Size = MemVT.getStoreSize();
6683 
6684   MachineFunction &MF = getMachineFunction();
6685   MachineMemOperand *MMO =
6686       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6687 
6688   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6689 }
6690 
6691 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6692                                           SDVTList VTList,
6693                                           ArrayRef<SDValue> Ops, EVT MemVT,
6694                                           MachineMemOperand *MMO) {
6695   assert((Opcode == ISD::INTRINSIC_VOID ||
6696           Opcode == ISD::INTRINSIC_W_CHAIN ||
6697           Opcode == ISD::PREFETCH ||
6698           Opcode == ISD::LIFETIME_START ||
6699           Opcode == ISD::LIFETIME_END ||
6700           ((int)Opcode <= std::numeric_limits<int>::max() &&
6701            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6702          "Opcode is not a memory-accessing opcode!");
6703 
6704   // Memoize the node unless it returns a flag.
6705   MemIntrinsicSDNode *N;
6706   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6707     FoldingSetNodeID ID;
6708     AddNodeIDNode(ID, Opcode, VTList, Ops);
6709     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6710         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6711     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6712     void *IP = nullptr;
6713     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6714       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6715       return SDValue(E, 0);
6716     }
6717 
6718     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6719                                       VTList, MemVT, MMO);
6720     createOperands(N, Ops);
6721 
6722   CSEMap.InsertNode(N, IP);
6723   } else {
6724     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6725                                       VTList, MemVT, MMO);
6726     createOperands(N, Ops);
6727   }
6728   InsertNode(N);
6729   SDValue V(N, 0);
6730   NewSDValueDbgMsg(V, "Creating new node: ", this);
6731   return V;
6732 }
6733 
6734 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6735                                       SDValue Chain, int FrameIndex,
6736                                       int64_t Size, int64_t Offset) {
6737   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6738   const auto VTs = getVTList(MVT::Other);
6739   SDValue Ops[2] = {
6740       Chain,
6741       getFrameIndex(FrameIndex,
6742                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6743                     true)};
6744 
6745   FoldingSetNodeID ID;
6746   AddNodeIDNode(ID, Opcode, VTs, Ops);
6747   ID.AddInteger(FrameIndex);
6748   ID.AddInteger(Size);
6749   ID.AddInteger(Offset);
6750   void *IP = nullptr;
6751   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6752     return SDValue(E, 0);
6753 
6754   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6755       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6756   createOperands(N, Ops);
6757   CSEMap.InsertNode(N, IP);
6758   InsertNode(N);
6759   SDValue V(N, 0);
6760   NewSDValueDbgMsg(V, "Creating new node: ", this);
6761   return V;
6762 }
6763 
6764 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6765 /// MachinePointerInfo record from it.  This is particularly useful because the
6766 /// code generator has many cases where it doesn't bother passing in a
6767 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6768 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6769                                            SelectionDAG &DAG, SDValue Ptr,
6770                                            int64_t Offset = 0) {
6771   // If this is FI+Offset, we can model it.
6772   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6773     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6774                                              FI->getIndex(), Offset);
6775 
6776   // If this is (FI+Offset1)+Offset2, we can model it.
6777   if (Ptr.getOpcode() != ISD::ADD ||
6778       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6779       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6780     return Info;
6781 
6782   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6783   return MachinePointerInfo::getFixedStack(
6784       DAG.getMachineFunction(), FI,
6785       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6786 }
6787 
6788 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6789 /// MachinePointerInfo record from it.  This is particularly useful because the
6790 /// code generator has many cases where it doesn't bother passing in a
6791 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6792 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6793                                            SelectionDAG &DAG, SDValue Ptr,
6794                                            SDValue OffsetOp) {
6795   // If the 'Offset' value isn't a constant, we can't handle this.
6796   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6797     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6798   if (OffsetOp.isUndef())
6799     return InferPointerInfo(Info, DAG, Ptr);
6800   return Info;
6801 }
6802 
6803 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6804                               EVT VT, const SDLoc &dl, SDValue Chain,
6805                               SDValue Ptr, SDValue Offset,
6806                               MachinePointerInfo PtrInfo, EVT MemVT,
6807                               unsigned Alignment,
6808                               MachineMemOperand::Flags MMOFlags,
6809                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6810   assert(Chain.getValueType() == MVT::Other &&
6811         "Invalid chain type");
6812   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6813     Alignment = getEVTAlignment(MemVT);
6814 
6815   MMOFlags |= MachineMemOperand::MOLoad;
6816   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6817   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6818   // clients.
6819   if (PtrInfo.V.isNull())
6820     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6821 
6822   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6823   MachineFunction &MF = getMachineFunction();
6824   MachineMemOperand *MMO = MF.getMachineMemOperand(
6825       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6826   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6827 }
6828 
6829 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6830                               EVT VT, const SDLoc &dl, SDValue Chain,
6831                               SDValue Ptr, SDValue Offset, EVT MemVT,
6832                               MachineMemOperand *MMO) {
6833   if (VT == MemVT) {
6834     ExtType = ISD::NON_EXTLOAD;
6835   } else if (ExtType == ISD::NON_EXTLOAD) {
6836     assert(VT == MemVT && "Non-extending load from different memory type!");
6837   } else {
6838     // Extending load.
6839     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6840            "Should only be an extending load, not truncating!");
6841     assert(VT.isInteger() == MemVT.isInteger() &&
6842            "Cannot convert from FP to Int or Int -> FP!");
6843     assert(VT.isVector() == MemVT.isVector() &&
6844            "Cannot use an ext load to convert to or from a vector!");
6845     assert((!VT.isVector() ||
6846             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6847            "Cannot use an ext load to change the number of vector elements!");
6848   }
6849 
6850   bool Indexed = AM != ISD::UNINDEXED;
6851   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6852 
6853   SDVTList VTs = Indexed ?
6854     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6855   SDValue Ops[] = { Chain, Ptr, Offset };
6856   FoldingSetNodeID ID;
6857   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6858   ID.AddInteger(MemVT.getRawBits());
6859   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6860       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6861   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6862   void *IP = nullptr;
6863   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6864     cast<LoadSDNode>(E)->refineAlignment(MMO);
6865     return SDValue(E, 0);
6866   }
6867   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6868                                   ExtType, MemVT, MMO);
6869   createOperands(N, Ops);
6870 
6871   CSEMap.InsertNode(N, IP);
6872   InsertNode(N);
6873   SDValue V(N, 0);
6874   NewSDValueDbgMsg(V, "Creating new node: ", this);
6875   return V;
6876 }
6877 
6878 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6879                               SDValue Ptr, MachinePointerInfo PtrInfo,
6880                               unsigned Alignment,
6881                               MachineMemOperand::Flags MMOFlags,
6882                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6883   SDValue Undef = getUNDEF(Ptr.getValueType());
6884   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6885                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6886 }
6887 
6888 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6889                               SDValue Ptr, MachineMemOperand *MMO) {
6890   SDValue Undef = getUNDEF(Ptr.getValueType());
6891   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6892                  VT, MMO);
6893 }
6894 
6895 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6896                                  EVT VT, SDValue Chain, SDValue Ptr,
6897                                  MachinePointerInfo PtrInfo, EVT MemVT,
6898                                  unsigned Alignment,
6899                                  MachineMemOperand::Flags MMOFlags,
6900                                  const AAMDNodes &AAInfo) {
6901   SDValue Undef = getUNDEF(Ptr.getValueType());
6902   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6903                  MemVT, Alignment, MMOFlags, AAInfo);
6904 }
6905 
6906 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6907                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6908                                  MachineMemOperand *MMO) {
6909   SDValue Undef = getUNDEF(Ptr.getValueType());
6910   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6911                  MemVT, MMO);
6912 }
6913 
6914 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6915                                      SDValue Base, SDValue Offset,
6916                                      ISD::MemIndexedMode AM) {
6917   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6918   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6919   // Don't propagate the invariant or dereferenceable flags.
6920   auto MMOFlags =
6921       LD->getMemOperand()->getFlags() &
6922       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6923   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6924                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6925                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6926                  LD->getAAInfo());
6927 }
6928 
6929 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6930                                SDValue Ptr, MachinePointerInfo PtrInfo,
6931                                unsigned Alignment,
6932                                MachineMemOperand::Flags MMOFlags,
6933                                const AAMDNodes &AAInfo) {
6934   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6935   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6936     Alignment = getEVTAlignment(Val.getValueType());
6937 
6938   MMOFlags |= MachineMemOperand::MOStore;
6939   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6940 
6941   if (PtrInfo.V.isNull())
6942     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6943 
6944   MachineFunction &MF = getMachineFunction();
6945   uint64_t Size =
6946       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6947   MachineMemOperand *MMO =
6948       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6949   return getStore(Chain, dl, Val, Ptr, MMO);
6950 }
6951 
6952 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6953                                SDValue Ptr, MachineMemOperand *MMO) {
6954   assert(Chain.getValueType() == MVT::Other &&
6955         "Invalid chain type");
6956   EVT VT = Val.getValueType();
6957   SDVTList VTs = getVTList(MVT::Other);
6958   SDValue Undef = getUNDEF(Ptr.getValueType());
6959   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6960   FoldingSetNodeID ID;
6961   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6962   ID.AddInteger(VT.getRawBits());
6963   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6964       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6965   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6966   void *IP = nullptr;
6967   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6968     cast<StoreSDNode>(E)->refineAlignment(MMO);
6969     return SDValue(E, 0);
6970   }
6971   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6972                                    ISD::UNINDEXED, false, VT, MMO);
6973   createOperands(N, Ops);
6974 
6975   CSEMap.InsertNode(N, IP);
6976   InsertNode(N);
6977   SDValue V(N, 0);
6978   NewSDValueDbgMsg(V, "Creating new node: ", this);
6979   return V;
6980 }
6981 
6982 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6983                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6984                                     EVT SVT, unsigned Alignment,
6985                                     MachineMemOperand::Flags MMOFlags,
6986                                     const AAMDNodes &AAInfo) {
6987   assert(Chain.getValueType() == MVT::Other &&
6988         "Invalid chain type");
6989   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6990     Alignment = getEVTAlignment(SVT);
6991 
6992   MMOFlags |= MachineMemOperand::MOStore;
6993   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6994 
6995   if (PtrInfo.V.isNull())
6996     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6997 
6998   MachineFunction &MF = getMachineFunction();
6999   MachineMemOperand *MMO = MF.getMachineMemOperand(
7000       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7001   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7002 }
7003 
7004 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7005                                     SDValue Ptr, EVT SVT,
7006                                     MachineMemOperand *MMO) {
7007   EVT VT = Val.getValueType();
7008 
7009   assert(Chain.getValueType() == MVT::Other &&
7010         "Invalid chain type");
7011   if (VT == SVT)
7012     return getStore(Chain, dl, Val, Ptr, MMO);
7013 
7014   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7015          "Should only be a truncating store, not extending!");
7016   assert(VT.isInteger() == SVT.isInteger() &&
7017          "Can't do FP-INT conversion!");
7018   assert(VT.isVector() == SVT.isVector() &&
7019          "Cannot use trunc store to convert to or from a vector!");
7020   assert((!VT.isVector() ||
7021           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7022          "Cannot use trunc store to change the number of vector elements!");
7023 
7024   SDVTList VTs = getVTList(MVT::Other);
7025   SDValue Undef = getUNDEF(Ptr.getValueType());
7026   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7027   FoldingSetNodeID ID;
7028   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7029   ID.AddInteger(SVT.getRawBits());
7030   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7031       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7032   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7033   void *IP = nullptr;
7034   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7035     cast<StoreSDNode>(E)->refineAlignment(MMO);
7036     return SDValue(E, 0);
7037   }
7038   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7039                                    ISD::UNINDEXED, true, SVT, MMO);
7040   createOperands(N, Ops);
7041 
7042   CSEMap.InsertNode(N, IP);
7043   InsertNode(N);
7044   SDValue V(N, 0);
7045   NewSDValueDbgMsg(V, "Creating new node: ", this);
7046   return V;
7047 }
7048 
7049 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7050                                       SDValue Base, SDValue Offset,
7051                                       ISD::MemIndexedMode AM) {
7052   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7053   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7054   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7055   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7056   FoldingSetNodeID ID;
7057   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7058   ID.AddInteger(ST->getMemoryVT().getRawBits());
7059   ID.AddInteger(ST->getRawSubclassData());
7060   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7061   void *IP = nullptr;
7062   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7063     return SDValue(E, 0);
7064 
7065   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7066                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7067                                    ST->getMemOperand());
7068   createOperands(N, Ops);
7069 
7070   CSEMap.InsertNode(N, IP);
7071   InsertNode(N);
7072   SDValue V(N, 0);
7073   NewSDValueDbgMsg(V, "Creating new node: ", this);
7074   return V;
7075 }
7076 
7077 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7078                                     SDValue Base, SDValue Offset, SDValue Mask,
7079                                     SDValue PassThru, EVT MemVT,
7080                                     MachineMemOperand *MMO,
7081                                     ISD::MemIndexedMode AM,
7082                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7083   bool Indexed = AM != ISD::UNINDEXED;
7084   assert((Indexed || Offset.isUndef()) &&
7085          "Unindexed masked load with an offset!");
7086   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7087                          : getVTList(VT, MVT::Other);
7088   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7089   FoldingSetNodeID ID;
7090   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7091   ID.AddInteger(MemVT.getRawBits());
7092   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7093       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7094   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7095   void *IP = nullptr;
7096   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7097     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7098     return SDValue(E, 0);
7099   }
7100   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7101                                         AM, ExtTy, isExpanding, MemVT, MMO);
7102   createOperands(N, Ops);
7103 
7104   CSEMap.InsertNode(N, IP);
7105   InsertNode(N);
7106   SDValue V(N, 0);
7107   NewSDValueDbgMsg(V, "Creating new node: ", this);
7108   return V;
7109 }
7110 
7111 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7112                                            SDValue Base, SDValue Offset,
7113                                            ISD::MemIndexedMode AM) {
7114   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7115   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7116   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7117                        Offset, LD->getMask(), LD->getPassThru(),
7118                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7119                        LD->getExtensionType(), LD->isExpandingLoad());
7120 }
7121 
7122 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7123                                      SDValue Val, SDValue Base, SDValue Offset,
7124                                      SDValue Mask, EVT MemVT,
7125                                      MachineMemOperand *MMO,
7126                                      ISD::MemIndexedMode AM, bool IsTruncating,
7127                                      bool IsCompressing) {
7128   assert(Chain.getValueType() == MVT::Other &&
7129         "Invalid chain type");
7130   bool Indexed = AM != ISD::UNINDEXED;
7131   assert((Indexed || Offset.isUndef()) &&
7132          "Unindexed masked store with an offset!");
7133   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7134                          : getVTList(MVT::Other);
7135   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7136   FoldingSetNodeID ID;
7137   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7138   ID.AddInteger(MemVT.getRawBits());
7139   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7140       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7141   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7142   void *IP = nullptr;
7143   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7144     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7145     return SDValue(E, 0);
7146   }
7147   auto *N =
7148       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7149                                    IsTruncating, IsCompressing, MemVT, MMO);
7150   createOperands(N, Ops);
7151 
7152   CSEMap.InsertNode(N, IP);
7153   InsertNode(N);
7154   SDValue V(N, 0);
7155   NewSDValueDbgMsg(V, "Creating new node: ", this);
7156   return V;
7157 }
7158 
7159 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7160                                             SDValue Base, SDValue Offset,
7161                                             ISD::MemIndexedMode AM) {
7162   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7163   assert(ST->getOffset().isUndef() &&
7164          "Masked store is already a indexed store!");
7165   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7166                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7167                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7168 }
7169 
7170 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7171                                       ArrayRef<SDValue> Ops,
7172                                       MachineMemOperand *MMO,
7173                                       ISD::MemIndexType IndexType) {
7174   assert(Ops.size() == 6 && "Incompatible number of operands");
7175 
7176   FoldingSetNodeID ID;
7177   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7178   ID.AddInteger(VT.getRawBits());
7179   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7180       dl.getIROrder(), VTs, VT, MMO, IndexType));
7181   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7182   void *IP = nullptr;
7183   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7184     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7185     return SDValue(E, 0);
7186   }
7187 
7188   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7189                                           VTs, VT, MMO, IndexType);
7190   createOperands(N, Ops);
7191 
7192   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7193          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7194   assert(N->getMask().getValueType().getVectorNumElements() ==
7195              N->getValueType(0).getVectorNumElements() &&
7196          "Vector width mismatch between mask and data");
7197   assert(N->getIndex().getValueType().getVectorNumElements() >=
7198              N->getValueType(0).getVectorNumElements() &&
7199          "Vector width mismatch between index and data");
7200   assert(isa<ConstantSDNode>(N->getScale()) &&
7201          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7202          "Scale should be a constant power of 2");
7203 
7204   CSEMap.InsertNode(N, IP);
7205   InsertNode(N);
7206   SDValue V(N, 0);
7207   NewSDValueDbgMsg(V, "Creating new node: ", this);
7208   return V;
7209 }
7210 
7211 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7212                                        ArrayRef<SDValue> Ops,
7213                                        MachineMemOperand *MMO,
7214                                        ISD::MemIndexType IndexType) {
7215   assert(Ops.size() == 6 && "Incompatible number of operands");
7216 
7217   FoldingSetNodeID ID;
7218   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7219   ID.AddInteger(VT.getRawBits());
7220   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7221       dl.getIROrder(), VTs, VT, MMO, IndexType));
7222   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7223   void *IP = nullptr;
7224   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7225     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7226     return SDValue(E, 0);
7227   }
7228   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7229                                            VTs, VT, MMO, IndexType);
7230   createOperands(N, Ops);
7231 
7232   assert(N->getMask().getValueType().getVectorNumElements() ==
7233              N->getValue().getValueType().getVectorNumElements() &&
7234          "Vector width mismatch between mask and data");
7235   assert(N->getIndex().getValueType().getVectorNumElements() >=
7236              N->getValue().getValueType().getVectorNumElements() &&
7237          "Vector width mismatch between index and data");
7238   assert(isa<ConstantSDNode>(N->getScale()) &&
7239          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7240          "Scale should be a constant power of 2");
7241 
7242   CSEMap.InsertNode(N, IP);
7243   InsertNode(N);
7244   SDValue V(N, 0);
7245   NewSDValueDbgMsg(V, "Creating new node: ", this);
7246   return V;
7247 }
7248 
7249 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7250   // select undef, T, F --> T (if T is a constant), otherwise F
7251   // select, ?, undef, F --> F
7252   // select, ?, T, undef --> T
7253   if (Cond.isUndef())
7254     return isConstantValueOfAnyType(T) ? T : F;
7255   if (T.isUndef())
7256     return F;
7257   if (F.isUndef())
7258     return T;
7259 
7260   // select true, T, F --> T
7261   // select false, T, F --> F
7262   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7263     return CondC->isNullValue() ? F : T;
7264 
7265   // TODO: This should simplify VSELECT with constant condition using something
7266   // like this (but check boolean contents to be complete?):
7267   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7268   //    return T;
7269   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7270   //    return F;
7271 
7272   // select ?, T, T --> T
7273   if (T == F)
7274     return T;
7275 
7276   return SDValue();
7277 }
7278 
7279 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7280   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7281   if (X.isUndef())
7282     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7283   // shift X, undef --> undef (because it may shift by the bitwidth)
7284   if (Y.isUndef())
7285     return getUNDEF(X.getValueType());
7286 
7287   // shift 0, Y --> 0
7288   // shift X, 0 --> X
7289   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7290     return X;
7291 
7292   // shift X, C >= bitwidth(X) --> undef
7293   // All vector elements must be too big (or undef) to avoid partial undefs.
7294   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7295     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7296   };
7297   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7298     return getUNDEF(X.getValueType());
7299 
7300   return SDValue();
7301 }
7302 
7303 // TODO: Use fast-math-flags to enable more simplifications.
7304 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7305   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7306   if (!YC)
7307     return SDValue();
7308 
7309   // X + -0.0 --> X
7310   if (Opcode == ISD::FADD)
7311     if (YC->getValueAPF().isNegZero())
7312       return X;
7313 
7314   // X - +0.0 --> X
7315   if (Opcode == ISD::FSUB)
7316     if (YC->getValueAPF().isPosZero())
7317       return X;
7318 
7319   // X * 1.0 --> X
7320   // X / 1.0 --> X
7321   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7322     if (YC->getValueAPF().isExactlyValue(1.0))
7323       return X;
7324 
7325   return SDValue();
7326 }
7327 
7328 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7329                                SDValue Ptr, SDValue SV, unsigned Align) {
7330   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7331   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7332 }
7333 
7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7335                               ArrayRef<SDUse> Ops) {
7336   switch (Ops.size()) {
7337   case 0: return getNode(Opcode, DL, VT);
7338   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7339   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7340   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7341   default: break;
7342   }
7343 
7344   // Copy from an SDUse array into an SDValue array for use with
7345   // the regular getNode logic.
7346   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7347   return getNode(Opcode, DL, VT, NewOps);
7348 }
7349 
7350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7351                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7352   unsigned NumOps = Ops.size();
7353   switch (NumOps) {
7354   case 0: return getNode(Opcode, DL, VT);
7355   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7356   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7357   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7358   default: break;
7359   }
7360 
7361   switch (Opcode) {
7362   default: break;
7363   case ISD::BUILD_VECTOR:
7364     // Attempt to simplify BUILD_VECTOR.
7365     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7366       return V;
7367     break;
7368   case ISD::CONCAT_VECTORS:
7369     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7370       return V;
7371     break;
7372   case ISD::SELECT_CC:
7373     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7374     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7375            "LHS and RHS of condition must have same type!");
7376     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7377            "True and False arms of SelectCC must have same type!");
7378     assert(Ops[2].getValueType() == VT &&
7379            "select_cc node must be of same type as true and false value!");
7380     break;
7381   case ISD::BR_CC:
7382     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7383     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7384            "LHS/RHS of comparison should match types!");
7385     break;
7386   }
7387 
7388   // Memoize nodes.
7389   SDNode *N;
7390   SDVTList VTs = getVTList(VT);
7391 
7392   if (VT != MVT::Glue) {
7393     FoldingSetNodeID ID;
7394     AddNodeIDNode(ID, Opcode, VTs, Ops);
7395     void *IP = nullptr;
7396 
7397     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7398       return SDValue(E, 0);
7399 
7400     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7401     createOperands(N, Ops);
7402 
7403     CSEMap.InsertNode(N, IP);
7404   } else {
7405     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7406     createOperands(N, Ops);
7407   }
7408 
7409   InsertNode(N);
7410   SDValue V(N, 0);
7411   NewSDValueDbgMsg(V, "Creating new node: ", this);
7412   return V;
7413 }
7414 
7415 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7416                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7417   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7418 }
7419 
7420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7421                               ArrayRef<SDValue> Ops) {
7422   if (VTList.NumVTs == 1)
7423     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7424 
7425   switch (Opcode) {
7426   case ISD::STRICT_FP_EXTEND:
7427     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7428            "Invalid STRICT_FP_EXTEND!");
7429     assert(VTList.VTs[0].isFloatingPoint() &&
7430            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7431     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7432            "STRICT_FP_EXTEND result type should be vector iff the operand "
7433            "type is vector!");
7434     assert((!VTList.VTs[0].isVector() ||
7435             VTList.VTs[0].getVectorNumElements() ==
7436             Ops[1].getValueType().getVectorNumElements()) &&
7437            "Vector element count mismatch!");
7438     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7439            "Invalid fpext node, dst <= src!");
7440     break;
7441   case ISD::STRICT_FP_ROUND:
7442     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7443     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7444            "STRICT_FP_ROUND result type should be vector iff the operand "
7445            "type is vector!");
7446     assert((!VTList.VTs[0].isVector() ||
7447             VTList.VTs[0].getVectorNumElements() ==
7448             Ops[1].getValueType().getVectorNumElements()) &&
7449            "Vector element count mismatch!");
7450     assert(VTList.VTs[0].isFloatingPoint() &&
7451            Ops[1].getValueType().isFloatingPoint() &&
7452            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7453            isa<ConstantSDNode>(Ops[2]) &&
7454            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7455             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7456            "Invalid STRICT_FP_ROUND!");
7457     break;
7458 #if 0
7459   // FIXME: figure out how to safely handle things like
7460   // int foo(int x) { return 1 << (x & 255); }
7461   // int bar() { return foo(256); }
7462   case ISD::SRA_PARTS:
7463   case ISD::SRL_PARTS:
7464   case ISD::SHL_PARTS:
7465     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7466         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7467       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7468     else if (N3.getOpcode() == ISD::AND)
7469       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7470         // If the and is only masking out bits that cannot effect the shift,
7471         // eliminate the and.
7472         unsigned NumBits = VT.getScalarSizeInBits()*2;
7473         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7474           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7475       }
7476     break;
7477 #endif
7478   }
7479 
7480   // Memoize the node unless it returns a flag.
7481   SDNode *N;
7482   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7483     FoldingSetNodeID ID;
7484     AddNodeIDNode(ID, Opcode, VTList, Ops);
7485     void *IP = nullptr;
7486     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7487       return SDValue(E, 0);
7488 
7489     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7490     createOperands(N, Ops);
7491     CSEMap.InsertNode(N, IP);
7492   } else {
7493     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7494     createOperands(N, Ops);
7495   }
7496   InsertNode(N);
7497   SDValue V(N, 0);
7498   NewSDValueDbgMsg(V, "Creating new node: ", this);
7499   return V;
7500 }
7501 
7502 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7503                               SDVTList VTList) {
7504   return getNode(Opcode, DL, VTList, None);
7505 }
7506 
7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7508                               SDValue N1) {
7509   SDValue Ops[] = { N1 };
7510   return getNode(Opcode, DL, VTList, Ops);
7511 }
7512 
7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7514                               SDValue N1, SDValue N2) {
7515   SDValue Ops[] = { N1, N2 };
7516   return getNode(Opcode, DL, VTList, Ops);
7517 }
7518 
7519 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7520                               SDValue N1, SDValue N2, SDValue N3) {
7521   SDValue Ops[] = { N1, N2, N3 };
7522   return getNode(Opcode, DL, VTList, Ops);
7523 }
7524 
7525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7526                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7527   SDValue Ops[] = { N1, N2, N3, N4 };
7528   return getNode(Opcode, DL, VTList, Ops);
7529 }
7530 
7531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7532                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7533                               SDValue N5) {
7534   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7535   return getNode(Opcode, DL, VTList, Ops);
7536 }
7537 
7538 SDVTList SelectionDAG::getVTList(EVT VT) {
7539   return makeVTList(SDNode::getValueTypeList(VT), 1);
7540 }
7541 
7542 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7543   FoldingSetNodeID ID;
7544   ID.AddInteger(2U);
7545   ID.AddInteger(VT1.getRawBits());
7546   ID.AddInteger(VT2.getRawBits());
7547 
7548   void *IP = nullptr;
7549   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7550   if (!Result) {
7551     EVT *Array = Allocator.Allocate<EVT>(2);
7552     Array[0] = VT1;
7553     Array[1] = VT2;
7554     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7555     VTListMap.InsertNode(Result, IP);
7556   }
7557   return Result->getSDVTList();
7558 }
7559 
7560 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7561   FoldingSetNodeID ID;
7562   ID.AddInteger(3U);
7563   ID.AddInteger(VT1.getRawBits());
7564   ID.AddInteger(VT2.getRawBits());
7565   ID.AddInteger(VT3.getRawBits());
7566 
7567   void *IP = nullptr;
7568   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7569   if (!Result) {
7570     EVT *Array = Allocator.Allocate<EVT>(3);
7571     Array[0] = VT1;
7572     Array[1] = VT2;
7573     Array[2] = VT3;
7574     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7575     VTListMap.InsertNode(Result, IP);
7576   }
7577   return Result->getSDVTList();
7578 }
7579 
7580 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7581   FoldingSetNodeID ID;
7582   ID.AddInteger(4U);
7583   ID.AddInteger(VT1.getRawBits());
7584   ID.AddInteger(VT2.getRawBits());
7585   ID.AddInteger(VT3.getRawBits());
7586   ID.AddInteger(VT4.getRawBits());
7587 
7588   void *IP = nullptr;
7589   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7590   if (!Result) {
7591     EVT *Array = Allocator.Allocate<EVT>(4);
7592     Array[0] = VT1;
7593     Array[1] = VT2;
7594     Array[2] = VT3;
7595     Array[3] = VT4;
7596     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7597     VTListMap.InsertNode(Result, IP);
7598   }
7599   return Result->getSDVTList();
7600 }
7601 
7602 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7603   unsigned NumVTs = VTs.size();
7604   FoldingSetNodeID ID;
7605   ID.AddInteger(NumVTs);
7606   for (unsigned index = 0; index < NumVTs; index++) {
7607     ID.AddInteger(VTs[index].getRawBits());
7608   }
7609 
7610   void *IP = nullptr;
7611   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7612   if (!Result) {
7613     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7614     llvm::copy(VTs, Array);
7615     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7616     VTListMap.InsertNode(Result, IP);
7617   }
7618   return Result->getSDVTList();
7619 }
7620 
7621 
7622 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7623 /// specified operands.  If the resultant node already exists in the DAG,
7624 /// this does not modify the specified node, instead it returns the node that
7625 /// already exists.  If the resultant node does not exist in the DAG, the
7626 /// input node is returned.  As a degenerate case, if you specify the same
7627 /// input operands as the node already has, the input node is returned.
7628 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7629   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7630 
7631   // Check to see if there is no change.
7632   if (Op == N->getOperand(0)) return N;
7633 
7634   // See if the modified node already exists.
7635   void *InsertPos = nullptr;
7636   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7637     return Existing;
7638 
7639   // Nope it doesn't.  Remove the node from its current place in the maps.
7640   if (InsertPos)
7641     if (!RemoveNodeFromCSEMaps(N))
7642       InsertPos = nullptr;
7643 
7644   // Now we update the operands.
7645   N->OperandList[0].set(Op);
7646 
7647   updateDivergence(N);
7648   // If this gets put into a CSE map, add it.
7649   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7650   return N;
7651 }
7652 
7653 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7654   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7655 
7656   // Check to see if there is no change.
7657   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7658     return N;   // No operands changed, just return the input node.
7659 
7660   // See if the modified node already exists.
7661   void *InsertPos = nullptr;
7662   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7663     return Existing;
7664 
7665   // Nope it doesn't.  Remove the node from its current place in the maps.
7666   if (InsertPos)
7667     if (!RemoveNodeFromCSEMaps(N))
7668       InsertPos = nullptr;
7669 
7670   // Now we update the operands.
7671   if (N->OperandList[0] != Op1)
7672     N->OperandList[0].set(Op1);
7673   if (N->OperandList[1] != Op2)
7674     N->OperandList[1].set(Op2);
7675 
7676   updateDivergence(N);
7677   // If this gets put into a CSE map, add it.
7678   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7679   return N;
7680 }
7681 
7682 SDNode *SelectionDAG::
7683 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7684   SDValue Ops[] = { Op1, Op2, Op3 };
7685   return UpdateNodeOperands(N, Ops);
7686 }
7687 
7688 SDNode *SelectionDAG::
7689 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7690                    SDValue Op3, SDValue Op4) {
7691   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7692   return UpdateNodeOperands(N, Ops);
7693 }
7694 
7695 SDNode *SelectionDAG::
7696 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7697                    SDValue Op3, SDValue Op4, SDValue Op5) {
7698   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7699   return UpdateNodeOperands(N, Ops);
7700 }
7701 
7702 SDNode *SelectionDAG::
7703 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7704   unsigned NumOps = Ops.size();
7705   assert(N->getNumOperands() == NumOps &&
7706          "Update with wrong number of operands");
7707 
7708   // If no operands changed just return the input node.
7709   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7710     return N;
7711 
7712   // See if the modified node already exists.
7713   void *InsertPos = nullptr;
7714   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7715     return Existing;
7716 
7717   // Nope it doesn't.  Remove the node from its current place in the maps.
7718   if (InsertPos)
7719     if (!RemoveNodeFromCSEMaps(N))
7720       InsertPos = nullptr;
7721 
7722   // Now we update the operands.
7723   for (unsigned i = 0; i != NumOps; ++i)
7724     if (N->OperandList[i] != Ops[i])
7725       N->OperandList[i].set(Ops[i]);
7726 
7727   updateDivergence(N);
7728   // If this gets put into a CSE map, add it.
7729   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7730   return N;
7731 }
7732 
7733 /// DropOperands - Release the operands and set this node to have
7734 /// zero operands.
7735 void SDNode::DropOperands() {
7736   // Unlike the code in MorphNodeTo that does this, we don't need to
7737   // watch for dead nodes here.
7738   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7739     SDUse &Use = *I++;
7740     Use.set(SDValue());
7741   }
7742 }
7743 
7744 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7745                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7746   if (NewMemRefs.empty()) {
7747     N->clearMemRefs();
7748     return;
7749   }
7750 
7751   // Check if we can avoid allocating by storing a single reference directly.
7752   if (NewMemRefs.size() == 1) {
7753     N->MemRefs = NewMemRefs[0];
7754     N->NumMemRefs = 1;
7755     return;
7756   }
7757 
7758   MachineMemOperand **MemRefsBuffer =
7759       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7760   llvm::copy(NewMemRefs, MemRefsBuffer);
7761   N->MemRefs = MemRefsBuffer;
7762   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7763 }
7764 
7765 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7766 /// machine opcode.
7767 ///
7768 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7769                                    EVT VT) {
7770   SDVTList VTs = getVTList(VT);
7771   return SelectNodeTo(N, MachineOpc, VTs, None);
7772 }
7773 
7774 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7775                                    EVT VT, SDValue Op1) {
7776   SDVTList VTs = getVTList(VT);
7777   SDValue Ops[] = { Op1 };
7778   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7779 }
7780 
7781 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7782                                    EVT VT, SDValue Op1,
7783                                    SDValue Op2) {
7784   SDVTList VTs = getVTList(VT);
7785   SDValue Ops[] = { Op1, Op2 };
7786   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7787 }
7788 
7789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7790                                    EVT VT, SDValue Op1,
7791                                    SDValue Op2, SDValue Op3) {
7792   SDVTList VTs = getVTList(VT);
7793   SDValue Ops[] = { Op1, Op2, Op3 };
7794   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7795 }
7796 
7797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7798                                    EVT VT, ArrayRef<SDValue> Ops) {
7799   SDVTList VTs = getVTList(VT);
7800   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7801 }
7802 
7803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7804                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7805   SDVTList VTs = getVTList(VT1, VT2);
7806   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7807 }
7808 
7809 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7810                                    EVT VT1, EVT VT2) {
7811   SDVTList VTs = getVTList(VT1, VT2);
7812   return SelectNodeTo(N, MachineOpc, VTs, None);
7813 }
7814 
7815 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7816                                    EVT VT1, EVT VT2, EVT VT3,
7817                                    ArrayRef<SDValue> Ops) {
7818   SDVTList VTs = getVTList(VT1, VT2, VT3);
7819   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7820 }
7821 
7822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7823                                    EVT VT1, EVT VT2,
7824                                    SDValue Op1, SDValue Op2) {
7825   SDVTList VTs = getVTList(VT1, VT2);
7826   SDValue Ops[] = { Op1, Op2 };
7827   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7828 }
7829 
7830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7831                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7832   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7833   // Reset the NodeID to -1.
7834   New->setNodeId(-1);
7835   if (New != N) {
7836     ReplaceAllUsesWith(N, New);
7837     RemoveDeadNode(N);
7838   }
7839   return New;
7840 }
7841 
7842 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7843 /// the line number information on the merged node since it is not possible to
7844 /// preserve the information that operation is associated with multiple lines.
7845 /// This will make the debugger working better at -O0, were there is a higher
7846 /// probability having other instructions associated with that line.
7847 ///
7848 /// For IROrder, we keep the smaller of the two
7849 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7850   DebugLoc NLoc = N->getDebugLoc();
7851   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7852     N->setDebugLoc(DebugLoc());
7853   }
7854   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7855   N->setIROrder(Order);
7856   return N;
7857 }
7858 
7859 /// MorphNodeTo - This *mutates* the specified node to have the specified
7860 /// return type, opcode, and operands.
7861 ///
7862 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7863 /// node of the specified opcode and operands, it returns that node instead of
7864 /// the current one.  Note that the SDLoc need not be the same.
7865 ///
7866 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7867 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7868 /// node, and because it doesn't require CSE recalculation for any of
7869 /// the node's users.
7870 ///
7871 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7872 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7873 /// the legalizer which maintain worklists that would need to be updated when
7874 /// deleting things.
7875 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7876                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7877   // If an identical node already exists, use it.
7878   void *IP = nullptr;
7879   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7880     FoldingSetNodeID ID;
7881     AddNodeIDNode(ID, Opc, VTs, Ops);
7882     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7883       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7884   }
7885 
7886   if (!RemoveNodeFromCSEMaps(N))
7887     IP = nullptr;
7888 
7889   // Start the morphing.
7890   N->NodeType = Opc;
7891   N->ValueList = VTs.VTs;
7892   N->NumValues = VTs.NumVTs;
7893 
7894   // Clear the operands list, updating used nodes to remove this from their
7895   // use list.  Keep track of any operands that become dead as a result.
7896   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7897   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7898     SDUse &Use = *I++;
7899     SDNode *Used = Use.getNode();
7900     Use.set(SDValue());
7901     if (Used->use_empty())
7902       DeadNodeSet.insert(Used);
7903   }
7904 
7905   // For MachineNode, initialize the memory references information.
7906   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7907     MN->clearMemRefs();
7908 
7909   // Swap for an appropriately sized array from the recycler.
7910   removeOperands(N);
7911   createOperands(N, Ops);
7912 
7913   // Delete any nodes that are still dead after adding the uses for the
7914   // new operands.
7915   if (!DeadNodeSet.empty()) {
7916     SmallVector<SDNode *, 16> DeadNodes;
7917     for (SDNode *N : DeadNodeSet)
7918       if (N->use_empty())
7919         DeadNodes.push_back(N);
7920     RemoveDeadNodes(DeadNodes);
7921   }
7922 
7923   if (IP)
7924     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7925   return N;
7926 }
7927 
7928 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7929   unsigned OrigOpc = Node->getOpcode();
7930   unsigned NewOpc;
7931   switch (OrigOpc) {
7932   default:
7933     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7934 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7935   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7936 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7937   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7938 #include "llvm/IR/ConstrainedOps.def"
7939   }
7940 
7941   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7942 
7943   // We're taking this node out of the chain, so we need to re-link things.
7944   SDValue InputChain = Node->getOperand(0);
7945   SDValue OutputChain = SDValue(Node, 1);
7946   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7947 
7948   SmallVector<SDValue, 3> Ops;
7949   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7950     Ops.push_back(Node->getOperand(i));
7951 
7952   SDVTList VTs = getVTList(Node->getValueType(0));
7953   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7954 
7955   // MorphNodeTo can operate in two ways: if an existing node with the
7956   // specified operands exists, it can just return it.  Otherwise, it
7957   // updates the node in place to have the requested operands.
7958   if (Res == Node) {
7959     // If we updated the node in place, reset the node ID.  To the isel,
7960     // this should be just like a newly allocated machine node.
7961     Res->setNodeId(-1);
7962   } else {
7963     ReplaceAllUsesWith(Node, Res);
7964     RemoveDeadNode(Node);
7965   }
7966 
7967   return Res;
7968 }
7969 
7970 /// getMachineNode - These are used for target selectors to create a new node
7971 /// with specified return type(s), MachineInstr opcode, and operands.
7972 ///
7973 /// Note that getMachineNode returns the resultant node.  If there is already a
7974 /// node of the specified opcode and operands, it returns that node instead of
7975 /// the current one.
7976 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7977                                             EVT VT) {
7978   SDVTList VTs = getVTList(VT);
7979   return getMachineNode(Opcode, dl, VTs, None);
7980 }
7981 
7982 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7983                                             EVT VT, SDValue Op1) {
7984   SDVTList VTs = getVTList(VT);
7985   SDValue Ops[] = { Op1 };
7986   return getMachineNode(Opcode, dl, VTs, Ops);
7987 }
7988 
7989 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7990                                             EVT VT, SDValue Op1, SDValue Op2) {
7991   SDVTList VTs = getVTList(VT);
7992   SDValue Ops[] = { Op1, Op2 };
7993   return getMachineNode(Opcode, dl, VTs, Ops);
7994 }
7995 
7996 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7997                                             EVT VT, SDValue Op1, SDValue Op2,
7998                                             SDValue Op3) {
7999   SDVTList VTs = getVTList(VT);
8000   SDValue Ops[] = { Op1, Op2, Op3 };
8001   return getMachineNode(Opcode, dl, VTs, Ops);
8002 }
8003 
8004 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8005                                             EVT VT, ArrayRef<SDValue> Ops) {
8006   SDVTList VTs = getVTList(VT);
8007   return getMachineNode(Opcode, dl, VTs, Ops);
8008 }
8009 
8010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8011                                             EVT VT1, EVT VT2, SDValue Op1,
8012                                             SDValue Op2) {
8013   SDVTList VTs = getVTList(VT1, VT2);
8014   SDValue Ops[] = { Op1, Op2 };
8015   return getMachineNode(Opcode, dl, VTs, Ops);
8016 }
8017 
8018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8019                                             EVT VT1, EVT VT2, SDValue Op1,
8020                                             SDValue Op2, SDValue Op3) {
8021   SDVTList VTs = getVTList(VT1, VT2);
8022   SDValue Ops[] = { Op1, Op2, Op3 };
8023   return getMachineNode(Opcode, dl, VTs, Ops);
8024 }
8025 
8026 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8027                                             EVT VT1, EVT VT2,
8028                                             ArrayRef<SDValue> Ops) {
8029   SDVTList VTs = getVTList(VT1, VT2);
8030   return getMachineNode(Opcode, dl, VTs, Ops);
8031 }
8032 
8033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8034                                             EVT VT1, EVT VT2, EVT VT3,
8035                                             SDValue Op1, SDValue Op2) {
8036   SDVTList VTs = getVTList(VT1, VT2, VT3);
8037   SDValue Ops[] = { Op1, Op2 };
8038   return getMachineNode(Opcode, dl, VTs, Ops);
8039 }
8040 
8041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8042                                             EVT VT1, EVT VT2, EVT VT3,
8043                                             SDValue Op1, SDValue Op2,
8044                                             SDValue Op3) {
8045   SDVTList VTs = getVTList(VT1, VT2, VT3);
8046   SDValue Ops[] = { Op1, Op2, Op3 };
8047   return getMachineNode(Opcode, dl, VTs, Ops);
8048 }
8049 
8050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8051                                             EVT VT1, EVT VT2, EVT VT3,
8052                                             ArrayRef<SDValue> Ops) {
8053   SDVTList VTs = getVTList(VT1, VT2, VT3);
8054   return getMachineNode(Opcode, dl, VTs, Ops);
8055 }
8056 
8057 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8058                                             ArrayRef<EVT> ResultTys,
8059                                             ArrayRef<SDValue> Ops) {
8060   SDVTList VTs = getVTList(ResultTys);
8061   return getMachineNode(Opcode, dl, VTs, Ops);
8062 }
8063 
8064 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8065                                             SDVTList VTs,
8066                                             ArrayRef<SDValue> Ops) {
8067   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8068   MachineSDNode *N;
8069   void *IP = nullptr;
8070 
8071   if (DoCSE) {
8072     FoldingSetNodeID ID;
8073     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8074     IP = nullptr;
8075     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8076       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8077     }
8078   }
8079 
8080   // Allocate a new MachineSDNode.
8081   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8082   createOperands(N, Ops);
8083 
8084   if (DoCSE)
8085     CSEMap.InsertNode(N, IP);
8086 
8087   InsertNode(N);
8088   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8089   return N;
8090 }
8091 
8092 /// getTargetExtractSubreg - A convenience function for creating
8093 /// TargetOpcode::EXTRACT_SUBREG nodes.
8094 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8095                                              SDValue Operand) {
8096   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8097   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8098                                   VT, Operand, SRIdxVal);
8099   return SDValue(Subreg, 0);
8100 }
8101 
8102 /// getTargetInsertSubreg - A convenience function for creating
8103 /// TargetOpcode::INSERT_SUBREG nodes.
8104 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8105                                             SDValue Operand, SDValue Subreg) {
8106   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8107   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8108                                   VT, Operand, Subreg, SRIdxVal);
8109   return SDValue(Result, 0);
8110 }
8111 
8112 /// getNodeIfExists - Get the specified node if it's already available, or
8113 /// else return NULL.
8114 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8115                                       ArrayRef<SDValue> Ops,
8116                                       const SDNodeFlags Flags) {
8117   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8118     FoldingSetNodeID ID;
8119     AddNodeIDNode(ID, Opcode, VTList, Ops);
8120     void *IP = nullptr;
8121     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8122       E->intersectFlagsWith(Flags);
8123       return E;
8124     }
8125   }
8126   return nullptr;
8127 }
8128 
8129 /// getDbgValue - Creates a SDDbgValue node.
8130 ///
8131 /// SDNode
8132 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8133                                       SDNode *N, unsigned R, bool IsIndirect,
8134                                       const DebugLoc &DL, unsigned O) {
8135   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8136          "Expected inlined-at fields to agree");
8137   return new (DbgInfo->getAlloc())
8138       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8139 }
8140 
8141 /// Constant
8142 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8143                                               DIExpression *Expr,
8144                                               const Value *C,
8145                                               const DebugLoc &DL, unsigned O) {
8146   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8147          "Expected inlined-at fields to agree");
8148   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8149 }
8150 
8151 /// FrameIndex
8152 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8153                                                 DIExpression *Expr, unsigned FI,
8154                                                 bool IsIndirect,
8155                                                 const DebugLoc &DL,
8156                                                 unsigned O) {
8157   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8158          "Expected inlined-at fields to agree");
8159   return new (DbgInfo->getAlloc())
8160       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8161 }
8162 
8163 /// VReg
8164 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8165                                           DIExpression *Expr,
8166                                           unsigned VReg, bool IsIndirect,
8167                                           const DebugLoc &DL, unsigned O) {
8168   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8169          "Expected inlined-at fields to agree");
8170   return new (DbgInfo->getAlloc())
8171       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8172 }
8173 
8174 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8175                                      unsigned OffsetInBits, unsigned SizeInBits,
8176                                      bool InvalidateDbg) {
8177   SDNode *FromNode = From.getNode();
8178   SDNode *ToNode = To.getNode();
8179   assert(FromNode && ToNode && "Can't modify dbg values");
8180 
8181   // PR35338
8182   // TODO: assert(From != To && "Redundant dbg value transfer");
8183   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8184   if (From == To || FromNode == ToNode)
8185     return;
8186 
8187   if (!FromNode->getHasDebugValue())
8188     return;
8189 
8190   SmallVector<SDDbgValue *, 2> ClonedDVs;
8191   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8192     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8193       continue;
8194 
8195     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8196 
8197     // Just transfer the dbg value attached to From.
8198     if (Dbg->getResNo() != From.getResNo())
8199       continue;
8200 
8201     DIVariable *Var = Dbg->getVariable();
8202     auto *Expr = Dbg->getExpression();
8203     // If a fragment is requested, update the expression.
8204     if (SizeInBits) {
8205       // When splitting a larger (e.g., sign-extended) value whose
8206       // lower bits are described with an SDDbgValue, do not attempt
8207       // to transfer the SDDbgValue to the upper bits.
8208       if (auto FI = Expr->getFragmentInfo())
8209         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8210           continue;
8211       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8212                                                              SizeInBits);
8213       if (!Fragment)
8214         continue;
8215       Expr = *Fragment;
8216     }
8217     // Clone the SDDbgValue and move it to To.
8218     SDDbgValue *Clone = getDbgValue(
8219         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8220         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8221     ClonedDVs.push_back(Clone);
8222 
8223     if (InvalidateDbg) {
8224       // Invalidate value and indicate the SDDbgValue should not be emitted.
8225       Dbg->setIsInvalidated();
8226       Dbg->setIsEmitted();
8227     }
8228   }
8229 
8230   for (SDDbgValue *Dbg : ClonedDVs)
8231     AddDbgValue(Dbg, ToNode, false);
8232 }
8233 
8234 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8235   if (!N.getHasDebugValue())
8236     return;
8237 
8238   SmallVector<SDDbgValue *, 2> ClonedDVs;
8239   for (auto DV : GetDbgValues(&N)) {
8240     if (DV->isInvalidated())
8241       continue;
8242     switch (N.getOpcode()) {
8243     default:
8244       break;
8245     case ISD::ADD:
8246       SDValue N0 = N.getOperand(0);
8247       SDValue N1 = N.getOperand(1);
8248       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8249           isConstantIntBuildVectorOrConstantInt(N1)) {
8250         uint64_t Offset = N.getConstantOperandVal(1);
8251         // Rewrite an ADD constant node into a DIExpression. Since we are
8252         // performing arithmetic to compute the variable's *value* in the
8253         // DIExpression, we need to mark the expression with a
8254         // DW_OP_stack_value.
8255         auto *DIExpr = DV->getExpression();
8256         DIExpr =
8257             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8258         SDDbgValue *Clone =
8259             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8260                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8261         ClonedDVs.push_back(Clone);
8262         DV->setIsInvalidated();
8263         DV->setIsEmitted();
8264         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8265                    N0.getNode()->dumprFull(this);
8266                    dbgs() << " into " << *DIExpr << '\n');
8267       }
8268     }
8269   }
8270 
8271   for (SDDbgValue *Dbg : ClonedDVs)
8272     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8273 }
8274 
8275 /// Creates a SDDbgLabel node.
8276 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8277                                       const DebugLoc &DL, unsigned O) {
8278   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8279          "Expected inlined-at fields to agree");
8280   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8281 }
8282 
8283 namespace {
8284 
8285 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8286 /// pointed to by a use iterator is deleted, increment the use iterator
8287 /// so that it doesn't dangle.
8288 ///
8289 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8290   SDNode::use_iterator &UI;
8291   SDNode::use_iterator &UE;
8292 
8293   void NodeDeleted(SDNode *N, SDNode *E) override {
8294     // Increment the iterator as needed.
8295     while (UI != UE && N == *UI)
8296       ++UI;
8297   }
8298 
8299 public:
8300   RAUWUpdateListener(SelectionDAG &d,
8301                      SDNode::use_iterator &ui,
8302                      SDNode::use_iterator &ue)
8303     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8304 };
8305 
8306 } // end anonymous namespace
8307 
8308 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8309 /// This can cause recursive merging of nodes in the DAG.
8310 ///
8311 /// This version assumes From has a single result value.
8312 ///
8313 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8314   SDNode *From = FromN.getNode();
8315   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8316          "Cannot replace with this method!");
8317   assert(From != To.getNode() && "Cannot replace uses of with self");
8318 
8319   // Preserve Debug Values
8320   transferDbgValues(FromN, To);
8321 
8322   // Iterate over all the existing uses of From. New uses will be added
8323   // to the beginning of the use list, which we avoid visiting.
8324   // This specifically avoids visiting uses of From that arise while the
8325   // replacement is happening, because any such uses would be the result
8326   // of CSE: If an existing node looks like From after one of its operands
8327   // is replaced by To, we don't want to replace of all its users with To
8328   // too. See PR3018 for more info.
8329   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8330   RAUWUpdateListener Listener(*this, UI, UE);
8331   while (UI != UE) {
8332     SDNode *User = *UI;
8333 
8334     // This node is about to morph, remove its old self from the CSE maps.
8335     RemoveNodeFromCSEMaps(User);
8336 
8337     // A user can appear in a use list multiple times, and when this
8338     // happens the uses are usually next to each other in the list.
8339     // To help reduce the number of CSE recomputations, process all
8340     // the uses of this user that we can find this way.
8341     do {
8342       SDUse &Use = UI.getUse();
8343       ++UI;
8344       Use.set(To);
8345       if (To->isDivergent() != From->isDivergent())
8346         updateDivergence(User);
8347     } while (UI != UE && *UI == User);
8348     // Now that we have modified User, add it back to the CSE maps.  If it
8349     // already exists there, recursively merge the results together.
8350     AddModifiedNodeToCSEMaps(User);
8351   }
8352 
8353   // If we just RAUW'd the root, take note.
8354   if (FromN == getRoot())
8355     setRoot(To);
8356 }
8357 
8358 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8359 /// This can cause recursive merging of nodes in the DAG.
8360 ///
8361 /// This version assumes that for each value of From, there is a
8362 /// corresponding value in To in the same position with the same type.
8363 ///
8364 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8365 #ifndef NDEBUG
8366   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8367     assert((!From->hasAnyUseOfValue(i) ||
8368             From->getValueType(i) == To->getValueType(i)) &&
8369            "Cannot use this version of ReplaceAllUsesWith!");
8370 #endif
8371 
8372   // Handle the trivial case.
8373   if (From == To)
8374     return;
8375 
8376   // Preserve Debug Info. Only do this if there's a use.
8377   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8378     if (From->hasAnyUseOfValue(i)) {
8379       assert((i < To->getNumValues()) && "Invalid To location");
8380       transferDbgValues(SDValue(From, i), SDValue(To, i));
8381     }
8382 
8383   // Iterate over just the existing users of From. See the comments in
8384   // the ReplaceAllUsesWith above.
8385   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8386   RAUWUpdateListener Listener(*this, UI, UE);
8387   while (UI != UE) {
8388     SDNode *User = *UI;
8389 
8390     // This node is about to morph, remove its old self from the CSE maps.
8391     RemoveNodeFromCSEMaps(User);
8392 
8393     // A user can appear in a use list multiple times, and when this
8394     // happens the uses are usually next to each other in the list.
8395     // To help reduce the number of CSE recomputations, process all
8396     // the uses of this user that we can find this way.
8397     do {
8398       SDUse &Use = UI.getUse();
8399       ++UI;
8400       Use.setNode(To);
8401       if (To->isDivergent() != From->isDivergent())
8402         updateDivergence(User);
8403     } while (UI != UE && *UI == User);
8404 
8405     // Now that we have modified User, add it back to the CSE maps.  If it
8406     // already exists there, recursively merge the results together.
8407     AddModifiedNodeToCSEMaps(User);
8408   }
8409 
8410   // If we just RAUW'd the root, take note.
8411   if (From == getRoot().getNode())
8412     setRoot(SDValue(To, getRoot().getResNo()));
8413 }
8414 
8415 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8416 /// This can cause recursive merging of nodes in the DAG.
8417 ///
8418 /// This version can replace From with any result values.  To must match the
8419 /// number and types of values returned by From.
8420 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8421   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8422     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8423 
8424   // Preserve Debug Info.
8425   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8426     transferDbgValues(SDValue(From, i), To[i]);
8427 
8428   // Iterate over just the existing users of From. See the comments in
8429   // the ReplaceAllUsesWith above.
8430   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8431   RAUWUpdateListener Listener(*this, UI, UE);
8432   while (UI != UE) {
8433     SDNode *User = *UI;
8434 
8435     // This node is about to morph, remove its old self from the CSE maps.
8436     RemoveNodeFromCSEMaps(User);
8437 
8438     // A user can appear in a use list multiple times, and when this happens the
8439     // uses are usually next to each other in the list.  To help reduce the
8440     // number of CSE and divergence recomputations, process all the uses of this
8441     // user that we can find this way.
8442     bool To_IsDivergent = false;
8443     do {
8444       SDUse &Use = UI.getUse();
8445       const SDValue &ToOp = To[Use.getResNo()];
8446       ++UI;
8447       Use.set(ToOp);
8448       To_IsDivergent |= ToOp->isDivergent();
8449     } while (UI != UE && *UI == User);
8450 
8451     if (To_IsDivergent != From->isDivergent())
8452       updateDivergence(User);
8453 
8454     // Now that we have modified User, add it back to the CSE maps.  If it
8455     // already exists there, recursively merge the results together.
8456     AddModifiedNodeToCSEMaps(User);
8457   }
8458 
8459   // If we just RAUW'd the root, take note.
8460   if (From == getRoot().getNode())
8461     setRoot(SDValue(To[getRoot().getResNo()]));
8462 }
8463 
8464 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8465 /// uses of other values produced by From.getNode() alone.  The Deleted
8466 /// vector is handled the same way as for ReplaceAllUsesWith.
8467 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8468   // Handle the really simple, really trivial case efficiently.
8469   if (From == To) return;
8470 
8471   // Handle the simple, trivial, case efficiently.
8472   if (From.getNode()->getNumValues() == 1) {
8473     ReplaceAllUsesWith(From, To);
8474     return;
8475   }
8476 
8477   // Preserve Debug Info.
8478   transferDbgValues(From, To);
8479 
8480   // Iterate over just the existing users of From. See the comments in
8481   // the ReplaceAllUsesWith above.
8482   SDNode::use_iterator UI = From.getNode()->use_begin(),
8483                        UE = From.getNode()->use_end();
8484   RAUWUpdateListener Listener(*this, UI, UE);
8485   while (UI != UE) {
8486     SDNode *User = *UI;
8487     bool UserRemovedFromCSEMaps = false;
8488 
8489     // A user can appear in a use list multiple times, and when this
8490     // happens the uses are usually next to each other in the list.
8491     // To help reduce the number of CSE recomputations, process all
8492     // the uses of this user that we can find this way.
8493     do {
8494       SDUse &Use = UI.getUse();
8495 
8496       // Skip uses of different values from the same node.
8497       if (Use.getResNo() != From.getResNo()) {
8498         ++UI;
8499         continue;
8500       }
8501 
8502       // If this node hasn't been modified yet, it's still in the CSE maps,
8503       // so remove its old self from the CSE maps.
8504       if (!UserRemovedFromCSEMaps) {
8505         RemoveNodeFromCSEMaps(User);
8506         UserRemovedFromCSEMaps = true;
8507       }
8508 
8509       ++UI;
8510       Use.set(To);
8511       if (To->isDivergent() != From->isDivergent())
8512         updateDivergence(User);
8513     } while (UI != UE && *UI == User);
8514     // We are iterating over all uses of the From node, so if a use
8515     // doesn't use the specific value, no changes are made.
8516     if (!UserRemovedFromCSEMaps)
8517       continue;
8518 
8519     // Now that we have modified User, add it back to the CSE maps.  If it
8520     // already exists there, recursively merge the results together.
8521     AddModifiedNodeToCSEMaps(User);
8522   }
8523 
8524   // If we just RAUW'd the root, take note.
8525   if (From == getRoot())
8526     setRoot(To);
8527 }
8528 
8529 namespace {
8530 
8531   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8532   /// to record information about a use.
8533   struct UseMemo {
8534     SDNode *User;
8535     unsigned Index;
8536     SDUse *Use;
8537   };
8538 
8539   /// operator< - Sort Memos by User.
8540   bool operator<(const UseMemo &L, const UseMemo &R) {
8541     return (intptr_t)L.User < (intptr_t)R.User;
8542   }
8543 
8544 } // end anonymous namespace
8545 
8546 void SelectionDAG::updateDivergence(SDNode * N)
8547 {
8548   if (TLI->isSDNodeAlwaysUniform(N))
8549     return;
8550   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8551   for (auto &Op : N->ops()) {
8552     if (Op.Val.getValueType() != MVT::Other)
8553       IsDivergent |= Op.getNode()->isDivergent();
8554   }
8555   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8556     N->SDNodeBits.IsDivergent = IsDivergent;
8557     for (auto U : N->uses()) {
8558       updateDivergence(U);
8559     }
8560   }
8561 }
8562 
8563 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8564   DenseMap<SDNode *, unsigned> Degree;
8565   Order.reserve(AllNodes.size());
8566   for (auto &N : allnodes()) {
8567     unsigned NOps = N.getNumOperands();
8568     Degree[&N] = NOps;
8569     if (0 == NOps)
8570       Order.push_back(&N);
8571   }
8572   for (size_t I = 0; I != Order.size(); ++I) {
8573     SDNode *N = Order[I];
8574     for (auto U : N->uses()) {
8575       unsigned &UnsortedOps = Degree[U];
8576       if (0 == --UnsortedOps)
8577         Order.push_back(U);
8578     }
8579   }
8580 }
8581 
8582 #ifndef NDEBUG
8583 void SelectionDAG::VerifyDAGDiverence() {
8584   std::vector<SDNode *> TopoOrder;
8585   CreateTopologicalOrder(TopoOrder);
8586   const TargetLowering &TLI = getTargetLoweringInfo();
8587   DenseMap<const SDNode *, bool> DivergenceMap;
8588   for (auto &N : allnodes()) {
8589     DivergenceMap[&N] = false;
8590   }
8591   for (auto N : TopoOrder) {
8592     bool IsDivergent = DivergenceMap[N];
8593     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8594     for (auto &Op : N->ops()) {
8595       if (Op.Val.getValueType() != MVT::Other)
8596         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8597     }
8598     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8599       DivergenceMap[N] = true;
8600     }
8601   }
8602   for (auto &N : allnodes()) {
8603     (void)N;
8604     assert(DivergenceMap[&N] == N.isDivergent() &&
8605            "Divergence bit inconsistency detected\n");
8606   }
8607 }
8608 #endif
8609 
8610 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8611 /// uses of other values produced by From.getNode() alone.  The same value
8612 /// may appear in both the From and To list.  The Deleted vector is
8613 /// handled the same way as for ReplaceAllUsesWith.
8614 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8615                                               const SDValue *To,
8616                                               unsigned Num){
8617   // Handle the simple, trivial case efficiently.
8618   if (Num == 1)
8619     return ReplaceAllUsesOfValueWith(*From, *To);
8620 
8621   transferDbgValues(*From, *To);
8622 
8623   // Read up all the uses and make records of them. This helps
8624   // processing new uses that are introduced during the
8625   // replacement process.
8626   SmallVector<UseMemo, 4> Uses;
8627   for (unsigned i = 0; i != Num; ++i) {
8628     unsigned FromResNo = From[i].getResNo();
8629     SDNode *FromNode = From[i].getNode();
8630     for (SDNode::use_iterator UI = FromNode->use_begin(),
8631          E = FromNode->use_end(); UI != E; ++UI) {
8632       SDUse &Use = UI.getUse();
8633       if (Use.getResNo() == FromResNo) {
8634         UseMemo Memo = { *UI, i, &Use };
8635         Uses.push_back(Memo);
8636       }
8637     }
8638   }
8639 
8640   // Sort the uses, so that all the uses from a given User are together.
8641   llvm::sort(Uses);
8642 
8643   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8644        UseIndex != UseIndexEnd; ) {
8645     // We know that this user uses some value of From.  If it is the right
8646     // value, update it.
8647     SDNode *User = Uses[UseIndex].User;
8648 
8649     // This node is about to morph, remove its old self from the CSE maps.
8650     RemoveNodeFromCSEMaps(User);
8651 
8652     // The Uses array is sorted, so all the uses for a given User
8653     // are next to each other in the list.
8654     // To help reduce the number of CSE recomputations, process all
8655     // the uses of this user that we can find this way.
8656     do {
8657       unsigned i = Uses[UseIndex].Index;
8658       SDUse &Use = *Uses[UseIndex].Use;
8659       ++UseIndex;
8660 
8661       Use.set(To[i]);
8662     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8663 
8664     // Now that we have modified User, add it back to the CSE maps.  If it
8665     // already exists there, recursively merge the results together.
8666     AddModifiedNodeToCSEMaps(User);
8667   }
8668 }
8669 
8670 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8671 /// based on their topological order. It returns the maximum id and a vector
8672 /// of the SDNodes* in assigned order by reference.
8673 unsigned SelectionDAG::AssignTopologicalOrder() {
8674   unsigned DAGSize = 0;
8675 
8676   // SortedPos tracks the progress of the algorithm. Nodes before it are
8677   // sorted, nodes after it are unsorted. When the algorithm completes
8678   // it is at the end of the list.
8679   allnodes_iterator SortedPos = allnodes_begin();
8680 
8681   // Visit all the nodes. Move nodes with no operands to the front of
8682   // the list immediately. Annotate nodes that do have operands with their
8683   // operand count. Before we do this, the Node Id fields of the nodes
8684   // may contain arbitrary values. After, the Node Id fields for nodes
8685   // before SortedPos will contain the topological sort index, and the
8686   // Node Id fields for nodes At SortedPos and after will contain the
8687   // count of outstanding operands.
8688   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8689     SDNode *N = &*I++;
8690     checkForCycles(N, this);
8691     unsigned Degree = N->getNumOperands();
8692     if (Degree == 0) {
8693       // A node with no uses, add it to the result array immediately.
8694       N->setNodeId(DAGSize++);
8695       allnodes_iterator Q(N);
8696       if (Q != SortedPos)
8697         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8698       assert(SortedPos != AllNodes.end() && "Overran node list");
8699       ++SortedPos;
8700     } else {
8701       // Temporarily use the Node Id as scratch space for the degree count.
8702       N->setNodeId(Degree);
8703     }
8704   }
8705 
8706   // Visit all the nodes. As we iterate, move nodes into sorted order,
8707   // such that by the time the end is reached all nodes will be sorted.
8708   for (SDNode &Node : allnodes()) {
8709     SDNode *N = &Node;
8710     checkForCycles(N, this);
8711     // N is in sorted position, so all its uses have one less operand
8712     // that needs to be sorted.
8713     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8714          UI != UE; ++UI) {
8715       SDNode *P = *UI;
8716       unsigned Degree = P->getNodeId();
8717       assert(Degree != 0 && "Invalid node degree");
8718       --Degree;
8719       if (Degree == 0) {
8720         // All of P's operands are sorted, so P may sorted now.
8721         P->setNodeId(DAGSize++);
8722         if (P->getIterator() != SortedPos)
8723           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8724         assert(SortedPos != AllNodes.end() && "Overran node list");
8725         ++SortedPos;
8726       } else {
8727         // Update P's outstanding operand count.
8728         P->setNodeId(Degree);
8729       }
8730     }
8731     if (Node.getIterator() == SortedPos) {
8732 #ifndef NDEBUG
8733       allnodes_iterator I(N);
8734       SDNode *S = &*++I;
8735       dbgs() << "Overran sorted position:\n";
8736       S->dumprFull(this); dbgs() << "\n";
8737       dbgs() << "Checking if this is due to cycles\n";
8738       checkForCycles(this, true);
8739 #endif
8740       llvm_unreachable(nullptr);
8741     }
8742   }
8743 
8744   assert(SortedPos == AllNodes.end() &&
8745          "Topological sort incomplete!");
8746   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8747          "First node in topological sort is not the entry token!");
8748   assert(AllNodes.front().getNodeId() == 0 &&
8749          "First node in topological sort has non-zero id!");
8750   assert(AllNodes.front().getNumOperands() == 0 &&
8751          "First node in topological sort has operands!");
8752   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8753          "Last node in topologic sort has unexpected id!");
8754   assert(AllNodes.back().use_empty() &&
8755          "Last node in topologic sort has users!");
8756   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8757   return DAGSize;
8758 }
8759 
8760 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8761 /// value is produced by SD.
8762 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8763   if (SD) {
8764     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8765     SD->setHasDebugValue(true);
8766   }
8767   DbgInfo->add(DB, SD, isParameter);
8768 }
8769 
8770 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8771   DbgInfo->add(DB);
8772 }
8773 
8774 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8775                                                    SDValue NewMemOp) {
8776   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8777   // The new memory operation must have the same position as the old load in
8778   // terms of memory dependency. Create a TokenFactor for the old load and new
8779   // memory operation and update uses of the old load's output chain to use that
8780   // TokenFactor.
8781   SDValue OldChain = SDValue(OldLoad, 1);
8782   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8783   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8784     return NewChain;
8785 
8786   SDValue TokenFactor =
8787       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8788   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8789   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8790   return TokenFactor;
8791 }
8792 
8793 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8794                                                      Function **OutFunction) {
8795   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8796 
8797   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8798   auto *Module = MF->getFunction().getParent();
8799   auto *Function = Module->getFunction(Symbol);
8800 
8801   if (OutFunction != nullptr)
8802       *OutFunction = Function;
8803 
8804   if (Function != nullptr) {
8805     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8806     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8807   }
8808 
8809   std::string ErrorStr;
8810   raw_string_ostream ErrorFormatter(ErrorStr);
8811 
8812   ErrorFormatter << "Undefined external symbol ";
8813   ErrorFormatter << '"' << Symbol << '"';
8814   ErrorFormatter.flush();
8815 
8816   report_fatal_error(ErrorStr);
8817 }
8818 
8819 //===----------------------------------------------------------------------===//
8820 //                              SDNode Class
8821 //===----------------------------------------------------------------------===//
8822 
8823 bool llvm::isNullConstant(SDValue V) {
8824   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8825   return Const != nullptr && Const->isNullValue();
8826 }
8827 
8828 bool llvm::isNullFPConstant(SDValue V) {
8829   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8830   return Const != nullptr && Const->isZero() && !Const->isNegative();
8831 }
8832 
8833 bool llvm::isAllOnesConstant(SDValue V) {
8834   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8835   return Const != nullptr && Const->isAllOnesValue();
8836 }
8837 
8838 bool llvm::isOneConstant(SDValue V) {
8839   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8840   return Const != nullptr && Const->isOne();
8841 }
8842 
8843 SDValue llvm::peekThroughBitcasts(SDValue V) {
8844   while (V.getOpcode() == ISD::BITCAST)
8845     V = V.getOperand(0);
8846   return V;
8847 }
8848 
8849 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8850   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8851     V = V.getOperand(0);
8852   return V;
8853 }
8854 
8855 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8856   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8857     V = V.getOperand(0);
8858   return V;
8859 }
8860 
8861 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8862   if (V.getOpcode() != ISD::XOR)
8863     return false;
8864   V = peekThroughBitcasts(V.getOperand(1));
8865   unsigned NumBits = V.getScalarValueSizeInBits();
8866   ConstantSDNode *C =
8867       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8868   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8869 }
8870 
8871 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8872                                           bool AllowTruncation) {
8873   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8874     return CN;
8875 
8876   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8877     BitVector UndefElements;
8878     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8879 
8880     // BuildVectors can truncate their operands. Ignore that case here unless
8881     // AllowTruncation is set.
8882     if (CN && (UndefElements.none() || AllowUndefs)) {
8883       EVT CVT = CN->getValueType(0);
8884       EVT NSVT = N.getValueType().getScalarType();
8885       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8886       if (AllowTruncation || (CVT == NSVT))
8887         return CN;
8888     }
8889   }
8890 
8891   return nullptr;
8892 }
8893 
8894 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8895                                           bool AllowUndefs,
8896                                           bool AllowTruncation) {
8897   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8898     return CN;
8899 
8900   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8901     BitVector UndefElements;
8902     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8903 
8904     // BuildVectors can truncate their operands. Ignore that case here unless
8905     // AllowTruncation is set.
8906     if (CN && (UndefElements.none() || AllowUndefs)) {
8907       EVT CVT = CN->getValueType(0);
8908       EVT NSVT = N.getValueType().getScalarType();
8909       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8910       if (AllowTruncation || (CVT == NSVT))
8911         return CN;
8912     }
8913   }
8914 
8915   return nullptr;
8916 }
8917 
8918 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8919   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8920     return CN;
8921 
8922   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8923     BitVector UndefElements;
8924     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8925     if (CN && (UndefElements.none() || AllowUndefs))
8926       return CN;
8927   }
8928 
8929   return nullptr;
8930 }
8931 
8932 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8933                                               const APInt &DemandedElts,
8934                                               bool AllowUndefs) {
8935   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8936     return CN;
8937 
8938   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8939     BitVector UndefElements;
8940     ConstantFPSDNode *CN =
8941         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8942     if (CN && (UndefElements.none() || AllowUndefs))
8943       return CN;
8944   }
8945 
8946   return nullptr;
8947 }
8948 
8949 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8950   // TODO: may want to use peekThroughBitcast() here.
8951   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8952   return C && C->isNullValue();
8953 }
8954 
8955 bool llvm::isOneOrOneSplat(SDValue N) {
8956   // TODO: may want to use peekThroughBitcast() here.
8957   unsigned BitWidth = N.getScalarValueSizeInBits();
8958   ConstantSDNode *C = isConstOrConstSplat(N);
8959   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8960 }
8961 
8962 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8963   N = peekThroughBitcasts(N);
8964   unsigned BitWidth = N.getScalarValueSizeInBits();
8965   ConstantSDNode *C = isConstOrConstSplat(N);
8966   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8967 }
8968 
8969 HandleSDNode::~HandleSDNode() {
8970   DropOperands();
8971 }
8972 
8973 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8974                                          const DebugLoc &DL,
8975                                          const GlobalValue *GA, EVT VT,
8976                                          int64_t o, unsigned TF)
8977     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8978   TheGlobal = GA;
8979 }
8980 
8981 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8982                                          EVT VT, unsigned SrcAS,
8983                                          unsigned DestAS)
8984     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8985       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8986 
8987 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8988                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8989     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8990   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8991   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8992   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8993   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8994 
8995   // We check here that the size of the memory operand fits within the size of
8996   // the MMO. This is because the MMO might indicate only a possible address
8997   // range instead of specifying the affected memory addresses precisely.
8998   // TODO: Make MachineMemOperands aware of scalable vectors.
8999   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9000          "Size mismatch!");
9001 }
9002 
9003 /// Profile - Gather unique data for the node.
9004 ///
9005 void SDNode::Profile(FoldingSetNodeID &ID) const {
9006   AddNodeIDNode(ID, this);
9007 }
9008 
9009 namespace {
9010 
9011   struct EVTArray {
9012     std::vector<EVT> VTs;
9013 
9014     EVTArray() {
9015       VTs.reserve(MVT::LAST_VALUETYPE);
9016       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9017         VTs.push_back(MVT((MVT::SimpleValueType)i));
9018     }
9019   };
9020 
9021 } // end anonymous namespace
9022 
9023 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9024 static ManagedStatic<EVTArray> SimpleVTArray;
9025 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9026 
9027 /// getValueTypeList - Return a pointer to the specified value type.
9028 ///
9029 const EVT *SDNode::getValueTypeList(EVT VT) {
9030   if (VT.isExtended()) {
9031     sys::SmartScopedLock<true> Lock(*VTMutex);
9032     return &(*EVTs->insert(VT).first);
9033   } else {
9034     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9035            "Value type out of range!");
9036     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9037   }
9038 }
9039 
9040 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9041 /// indicated value.  This method ignores uses of other values defined by this
9042 /// operation.
9043 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9044   assert(Value < getNumValues() && "Bad value!");
9045 
9046   // TODO: Only iterate over uses of a given value of the node
9047   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9048     if (UI.getUse().getResNo() == Value) {
9049       if (NUses == 0)
9050         return false;
9051       --NUses;
9052     }
9053   }
9054 
9055   // Found exactly the right number of uses?
9056   return NUses == 0;
9057 }
9058 
9059 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9060 /// value. This method ignores uses of other values defined by this operation.
9061 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9062   assert(Value < getNumValues() && "Bad value!");
9063 
9064   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9065     if (UI.getUse().getResNo() == Value)
9066       return true;
9067 
9068   return false;
9069 }
9070 
9071 /// isOnlyUserOf - Return true if this node is the only use of N.
9072 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9073   bool Seen = false;
9074   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9075     SDNode *User = *I;
9076     if (User == this)
9077       Seen = true;
9078     else
9079       return false;
9080   }
9081 
9082   return Seen;
9083 }
9084 
9085 /// Return true if the only users of N are contained in Nodes.
9086 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9087   bool Seen = false;
9088   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9089     SDNode *User = *I;
9090     if (llvm::any_of(Nodes,
9091                      [&User](const SDNode *Node) { return User == Node; }))
9092       Seen = true;
9093     else
9094       return false;
9095   }
9096 
9097   return Seen;
9098 }
9099 
9100 /// isOperand - Return true if this node is an operand of N.
9101 bool SDValue::isOperandOf(const SDNode *N) const {
9102   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9103 }
9104 
9105 bool SDNode::isOperandOf(const SDNode *N) const {
9106   return any_of(N->op_values(),
9107                 [this](SDValue Op) { return this == Op.getNode(); });
9108 }
9109 
9110 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9111 /// be a chain) reaches the specified operand without crossing any
9112 /// side-effecting instructions on any chain path.  In practice, this looks
9113 /// through token factors and non-volatile loads.  In order to remain efficient,
9114 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9115 ///
9116 /// Note that we only need to examine chains when we're searching for
9117 /// side-effects; SelectionDAG requires that all side-effects are represented
9118 /// by chains, even if another operand would force a specific ordering. This
9119 /// constraint is necessary to allow transformations like splitting loads.
9120 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9121                                              unsigned Depth) const {
9122   if (*this == Dest) return true;
9123 
9124   // Don't search too deeply, we just want to be able to see through
9125   // TokenFactor's etc.
9126   if (Depth == 0) return false;
9127 
9128   // If this is a token factor, all inputs to the TF happen in parallel.
9129   if (getOpcode() == ISD::TokenFactor) {
9130     // First, try a shallow search.
9131     if (is_contained((*this)->ops(), Dest)) {
9132       // We found the chain we want as an operand of this TokenFactor.
9133       // Essentially, we reach the chain without side-effects if we could
9134       // serialize the TokenFactor into a simple chain of operations with
9135       // Dest as the last operation. This is automatically true if the
9136       // chain has one use: there are no other ordering constraints.
9137       // If the chain has more than one use, we give up: some other
9138       // use of Dest might force a side-effect between Dest and the current
9139       // node.
9140       if (Dest.hasOneUse())
9141         return true;
9142     }
9143     // Next, try a deep search: check whether every operand of the TokenFactor
9144     // reaches Dest.
9145     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9146       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9147     });
9148   }
9149 
9150   // Loads don't have side effects, look through them.
9151   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9152     if (Ld->isUnordered())
9153       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9154   }
9155   return false;
9156 }
9157 
9158 bool SDNode::hasPredecessor(const SDNode *N) const {
9159   SmallPtrSet<const SDNode *, 32> Visited;
9160   SmallVector<const SDNode *, 16> Worklist;
9161   Worklist.push_back(this);
9162   return hasPredecessorHelper(N, Visited, Worklist);
9163 }
9164 
9165 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9166   this->Flags.intersectWith(Flags);
9167 }
9168 
9169 SDValue
9170 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9171                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9172                                   bool AllowPartials) {
9173   // The pattern must end in an extract from index 0.
9174   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9175       !isNullConstant(Extract->getOperand(1)))
9176     return SDValue();
9177 
9178   // Match against one of the candidate binary ops.
9179   SDValue Op = Extract->getOperand(0);
9180   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9181         return Op.getOpcode() == unsigned(BinOp);
9182       }))
9183     return SDValue();
9184 
9185   // Floating-point reductions may require relaxed constraints on the final step
9186   // of the reduction because they may reorder intermediate operations.
9187   unsigned CandidateBinOp = Op.getOpcode();
9188   if (Op.getValueType().isFloatingPoint()) {
9189     SDNodeFlags Flags = Op->getFlags();
9190     switch (CandidateBinOp) {
9191     case ISD::FADD:
9192       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9193         return SDValue();
9194       break;
9195     default:
9196       llvm_unreachable("Unhandled FP opcode for binop reduction");
9197     }
9198   }
9199 
9200   // Matching failed - attempt to see if we did enough stages that a partial
9201   // reduction from a subvector is possible.
9202   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9203     if (!AllowPartials || !Op)
9204       return SDValue();
9205     EVT OpVT = Op.getValueType();
9206     EVT OpSVT = OpVT.getScalarType();
9207     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9208     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9209       return SDValue();
9210     BinOp = (ISD::NodeType)CandidateBinOp;
9211     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9212                    getVectorIdxConstant(0, SDLoc(Op)));
9213   };
9214 
9215   // At each stage, we're looking for something that looks like:
9216   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9217   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9218   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9219   // %a = binop <8 x i32> %op, %s
9220   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9221   // we expect something like:
9222   // <4,5,6,7,u,u,u,u>
9223   // <2,3,u,u,u,u,u,u>
9224   // <1,u,u,u,u,u,u,u>
9225   // While a partial reduction match would be:
9226   // <2,3,u,u,u,u,u,u>
9227   // <1,u,u,u,u,u,u,u>
9228   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9229   SDValue PrevOp;
9230   for (unsigned i = 0; i < Stages; ++i) {
9231     unsigned MaskEnd = (1 << i);
9232 
9233     if (Op.getOpcode() != CandidateBinOp)
9234       return PartialReduction(PrevOp, MaskEnd);
9235 
9236     SDValue Op0 = Op.getOperand(0);
9237     SDValue Op1 = Op.getOperand(1);
9238 
9239     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9240     if (Shuffle) {
9241       Op = Op1;
9242     } else {
9243       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9244       Op = Op0;
9245     }
9246 
9247     // The first operand of the shuffle should be the same as the other operand
9248     // of the binop.
9249     if (!Shuffle || Shuffle->getOperand(0) != Op)
9250       return PartialReduction(PrevOp, MaskEnd);
9251 
9252     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9253     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9254       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9255         return PartialReduction(PrevOp, MaskEnd);
9256 
9257     PrevOp = Op;
9258   }
9259 
9260   BinOp = (ISD::NodeType)CandidateBinOp;
9261   return Op;
9262 }
9263 
9264 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9265   assert(N->getNumValues() == 1 &&
9266          "Can't unroll a vector with multiple results!");
9267 
9268   EVT VT = N->getValueType(0);
9269   unsigned NE = VT.getVectorNumElements();
9270   EVT EltVT = VT.getVectorElementType();
9271   SDLoc dl(N);
9272 
9273   SmallVector<SDValue, 8> Scalars;
9274   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9275 
9276   // If ResNE is 0, fully unroll the vector op.
9277   if (ResNE == 0)
9278     ResNE = NE;
9279   else if (NE > ResNE)
9280     NE = ResNE;
9281 
9282   unsigned i;
9283   for (i= 0; i != NE; ++i) {
9284     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9285       SDValue Operand = N->getOperand(j);
9286       EVT OperandVT = Operand.getValueType();
9287       if (OperandVT.isVector()) {
9288         // A vector operand; extract a single element.
9289         EVT OperandEltVT = OperandVT.getVectorElementType();
9290         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9291                               Operand, getVectorIdxConstant(i, dl));
9292       } else {
9293         // A scalar operand; just use it as is.
9294         Operands[j] = Operand;
9295       }
9296     }
9297 
9298     switch (N->getOpcode()) {
9299     default: {
9300       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9301                                 N->getFlags()));
9302       break;
9303     }
9304     case ISD::VSELECT:
9305       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9306       break;
9307     case ISD::SHL:
9308     case ISD::SRA:
9309     case ISD::SRL:
9310     case ISD::ROTL:
9311     case ISD::ROTR:
9312       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9313                                getShiftAmountOperand(Operands[0].getValueType(),
9314                                                      Operands[1])));
9315       break;
9316     case ISD::SIGN_EXTEND_INREG: {
9317       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9318       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9319                                 Operands[0],
9320                                 getValueType(ExtVT)));
9321     }
9322     }
9323   }
9324 
9325   for (; i < ResNE; ++i)
9326     Scalars.push_back(getUNDEF(EltVT));
9327 
9328   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9329   return getBuildVector(VecVT, dl, Scalars);
9330 }
9331 
9332 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9333     SDNode *N, unsigned ResNE) {
9334   unsigned Opcode = N->getOpcode();
9335   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9336           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9337           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9338          "Expected an overflow opcode");
9339 
9340   EVT ResVT = N->getValueType(0);
9341   EVT OvVT = N->getValueType(1);
9342   EVT ResEltVT = ResVT.getVectorElementType();
9343   EVT OvEltVT = OvVT.getVectorElementType();
9344   SDLoc dl(N);
9345 
9346   // If ResNE is 0, fully unroll the vector op.
9347   unsigned NE = ResVT.getVectorNumElements();
9348   if (ResNE == 0)
9349     ResNE = NE;
9350   else if (NE > ResNE)
9351     NE = ResNE;
9352 
9353   SmallVector<SDValue, 8> LHSScalars;
9354   SmallVector<SDValue, 8> RHSScalars;
9355   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9356   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9357 
9358   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9359   SDVTList VTs = getVTList(ResEltVT, SVT);
9360   SmallVector<SDValue, 8> ResScalars;
9361   SmallVector<SDValue, 8> OvScalars;
9362   for (unsigned i = 0; i < NE; ++i) {
9363     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9364     SDValue Ov =
9365         getSelect(dl, OvEltVT, Res.getValue(1),
9366                   getBoolConstant(true, dl, OvEltVT, ResVT),
9367                   getConstant(0, dl, OvEltVT));
9368 
9369     ResScalars.push_back(Res);
9370     OvScalars.push_back(Ov);
9371   }
9372 
9373   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9374   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9375 
9376   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9377   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9378   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9379                         getBuildVector(NewOvVT, dl, OvScalars));
9380 }
9381 
9382 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9383                                                   LoadSDNode *Base,
9384                                                   unsigned Bytes,
9385                                                   int Dist) const {
9386   if (LD->isVolatile() || Base->isVolatile())
9387     return false;
9388   // TODO: probably too restrictive for atomics, revisit
9389   if (!LD->isSimple())
9390     return false;
9391   if (LD->isIndexed() || Base->isIndexed())
9392     return false;
9393   if (LD->getChain() != Base->getChain())
9394     return false;
9395   EVT VT = LD->getValueType(0);
9396   if (VT.getSizeInBits() / 8 != Bytes)
9397     return false;
9398 
9399   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9400   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9401 
9402   int64_t Offset = 0;
9403   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9404     return (Dist * Bytes == Offset);
9405   return false;
9406 }
9407 
9408 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9409 /// it cannot be inferred.
9410 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9411   // If this is a GlobalAddress + cst, return the alignment.
9412   const GlobalValue *GV = nullptr;
9413   int64_t GVOffset = 0;
9414   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9415     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9416     KnownBits Known(PtrWidth);
9417     llvm::computeKnownBits(GV, Known, getDataLayout());
9418     unsigned AlignBits = Known.countMinTrailingZeros();
9419     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9420     if (Align)
9421       return MinAlign(Align, GVOffset);
9422   }
9423 
9424   // If this is a direct reference to a stack slot, use information about the
9425   // stack slot's alignment.
9426   int FrameIdx = INT_MIN;
9427   int64_t FrameOffset = 0;
9428   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9429     FrameIdx = FI->getIndex();
9430   } else if (isBaseWithConstantOffset(Ptr) &&
9431              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9432     // Handle FI+Cst
9433     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9434     FrameOffset = Ptr.getConstantOperandVal(1);
9435   }
9436 
9437   if (FrameIdx != INT_MIN) {
9438     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9439     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9440                                     FrameOffset);
9441     return FIInfoAlign;
9442   }
9443 
9444   return 0;
9445 }
9446 
9447 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9448 /// which is split (or expanded) into two not necessarily identical pieces.
9449 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9450   // Currently all types are split in half.
9451   EVT LoVT, HiVT;
9452   if (!VT.isVector())
9453     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9454   else
9455     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9456 
9457   return std::make_pair(LoVT, HiVT);
9458 }
9459 
9460 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9461 /// low/high part.
9462 std::pair<SDValue, SDValue>
9463 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9464                           const EVT &HiVT) {
9465   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9466          N.getValueType().getVectorNumElements() &&
9467          "More vector elements requested than available!");
9468   SDValue Lo, Hi;
9469   Lo =
9470       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9471   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9472                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9473   return std::make_pair(Lo, Hi);
9474 }
9475 
9476 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9477 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9478   EVT VT = N.getValueType();
9479   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9480                                 NextPowerOf2(VT.getVectorNumElements()));
9481   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9482                  getVectorIdxConstant(0, DL));
9483 }
9484 
9485 void SelectionDAG::ExtractVectorElements(SDValue Op,
9486                                          SmallVectorImpl<SDValue> &Args,
9487                                          unsigned Start, unsigned Count) {
9488   EVT VT = Op.getValueType();
9489   if (Count == 0)
9490     Count = VT.getVectorNumElements();
9491 
9492   EVT EltVT = VT.getVectorElementType();
9493   SDLoc SL(Op);
9494   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9495     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9496                            getVectorIdxConstant(i, SL)));
9497   }
9498 }
9499 
9500 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9501 unsigned GlobalAddressSDNode::getAddressSpace() const {
9502   return getGlobal()->getType()->getAddressSpace();
9503 }
9504 
9505 Type *ConstantPoolSDNode::getType() const {
9506   if (isMachineConstantPoolEntry())
9507     return Val.MachineCPVal->getType();
9508   return Val.ConstVal->getType();
9509 }
9510 
9511 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9512                                         unsigned &SplatBitSize,
9513                                         bool &HasAnyUndefs,
9514                                         unsigned MinSplatBits,
9515                                         bool IsBigEndian) const {
9516   EVT VT = getValueType(0);
9517   assert(VT.isVector() && "Expected a vector type");
9518   unsigned VecWidth = VT.getSizeInBits();
9519   if (MinSplatBits > VecWidth)
9520     return false;
9521 
9522   // FIXME: The widths are based on this node's type, but build vectors can
9523   // truncate their operands.
9524   SplatValue = APInt(VecWidth, 0);
9525   SplatUndef = APInt(VecWidth, 0);
9526 
9527   // Get the bits. Bits with undefined values (when the corresponding element
9528   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9529   // in SplatValue. If any of the values are not constant, give up and return
9530   // false.
9531   unsigned int NumOps = getNumOperands();
9532   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9533   unsigned EltWidth = VT.getScalarSizeInBits();
9534 
9535   for (unsigned j = 0; j < NumOps; ++j) {
9536     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9537     SDValue OpVal = getOperand(i);
9538     unsigned BitPos = j * EltWidth;
9539 
9540     if (OpVal.isUndef())
9541       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9542     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9543       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9544     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9545       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9546     else
9547       return false;
9548   }
9549 
9550   // The build_vector is all constants or undefs. Find the smallest element
9551   // size that splats the vector.
9552   HasAnyUndefs = (SplatUndef != 0);
9553 
9554   // FIXME: This does not work for vectors with elements less than 8 bits.
9555   while (VecWidth > 8) {
9556     unsigned HalfSize = VecWidth / 2;
9557     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9558     APInt LowValue = SplatValue.trunc(HalfSize);
9559     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9560     APInt LowUndef = SplatUndef.trunc(HalfSize);
9561 
9562     // If the two halves do not match (ignoring undef bits), stop here.
9563     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9564         MinSplatBits > HalfSize)
9565       break;
9566 
9567     SplatValue = HighValue | LowValue;
9568     SplatUndef = HighUndef & LowUndef;
9569 
9570     VecWidth = HalfSize;
9571   }
9572 
9573   SplatBitSize = VecWidth;
9574   return true;
9575 }
9576 
9577 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9578                                          BitVector *UndefElements) const {
9579   if (UndefElements) {
9580     UndefElements->clear();
9581     UndefElements->resize(getNumOperands());
9582   }
9583   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9584          "Unexpected vector size");
9585   if (!DemandedElts)
9586     return SDValue();
9587   SDValue Splatted;
9588   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9589     if (!DemandedElts[i])
9590       continue;
9591     SDValue Op = getOperand(i);
9592     if (Op.isUndef()) {
9593       if (UndefElements)
9594         (*UndefElements)[i] = true;
9595     } else if (!Splatted) {
9596       Splatted = Op;
9597     } else if (Splatted != Op) {
9598       return SDValue();
9599     }
9600   }
9601 
9602   if (!Splatted) {
9603     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9604     assert(getOperand(FirstDemandedIdx).isUndef() &&
9605            "Can only have a splat without a constant for all undefs.");
9606     return getOperand(FirstDemandedIdx);
9607   }
9608 
9609   return Splatted;
9610 }
9611 
9612 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9613   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9614   return getSplatValue(DemandedElts, UndefElements);
9615 }
9616 
9617 ConstantSDNode *
9618 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9619                                         BitVector *UndefElements) const {
9620   return dyn_cast_or_null<ConstantSDNode>(
9621       getSplatValue(DemandedElts, UndefElements));
9622 }
9623 
9624 ConstantSDNode *
9625 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9626   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9627 }
9628 
9629 ConstantFPSDNode *
9630 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9631                                           BitVector *UndefElements) const {
9632   return dyn_cast_or_null<ConstantFPSDNode>(
9633       getSplatValue(DemandedElts, UndefElements));
9634 }
9635 
9636 ConstantFPSDNode *
9637 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9638   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9639 }
9640 
9641 int32_t
9642 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9643                                                    uint32_t BitWidth) const {
9644   if (ConstantFPSDNode *CN =
9645           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9646     bool IsExact;
9647     APSInt IntVal(BitWidth);
9648     const APFloat &APF = CN->getValueAPF();
9649     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9650             APFloat::opOK ||
9651         !IsExact)
9652       return -1;
9653 
9654     return IntVal.exactLogBase2();
9655   }
9656   return -1;
9657 }
9658 
9659 bool BuildVectorSDNode::isConstant() const {
9660   for (const SDValue &Op : op_values()) {
9661     unsigned Opc = Op.getOpcode();
9662     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9663       return false;
9664   }
9665   return true;
9666 }
9667 
9668 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9669   // Find the first non-undef value in the shuffle mask.
9670   unsigned i, e;
9671   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9672     /* search */;
9673 
9674   // If all elements are undefined, this shuffle can be considered a splat
9675   // (although it should eventually get simplified away completely).
9676   if (i == e)
9677     return true;
9678 
9679   // Make sure all remaining elements are either undef or the same as the first
9680   // non-undef value.
9681   for (int Idx = Mask[i]; i != e; ++i)
9682     if (Mask[i] >= 0 && Mask[i] != Idx)
9683       return false;
9684   return true;
9685 }
9686 
9687 // Returns the SDNode if it is a constant integer BuildVector
9688 // or constant integer.
9689 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9690   if (isa<ConstantSDNode>(N))
9691     return N.getNode();
9692   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9693     return N.getNode();
9694   // Treat a GlobalAddress supporting constant offset folding as a
9695   // constant integer.
9696   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9697     if (GA->getOpcode() == ISD::GlobalAddress &&
9698         TLI->isOffsetFoldingLegal(GA))
9699       return GA;
9700   return nullptr;
9701 }
9702 
9703 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9704   if (isa<ConstantFPSDNode>(N))
9705     return N.getNode();
9706 
9707   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9708     return N.getNode();
9709 
9710   return nullptr;
9711 }
9712 
9713 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9714   assert(!Node->OperandList && "Node already has operands");
9715   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9716          "too many operands to fit into SDNode");
9717   SDUse *Ops = OperandRecycler.allocate(
9718       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9719 
9720   bool IsDivergent = false;
9721   for (unsigned I = 0; I != Vals.size(); ++I) {
9722     Ops[I].setUser(Node);
9723     Ops[I].setInitial(Vals[I]);
9724     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9725       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9726   }
9727   Node->NumOperands = Vals.size();
9728   Node->OperandList = Ops;
9729   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9730   if (!TLI->isSDNodeAlwaysUniform(Node))
9731     Node->SDNodeBits.IsDivergent = IsDivergent;
9732   checkForCycles(Node);
9733 }
9734 
9735 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9736                                      SmallVectorImpl<SDValue> &Vals) {
9737   size_t Limit = SDNode::getMaxNumOperands();
9738   while (Vals.size() > Limit) {
9739     unsigned SliceIdx = Vals.size() - Limit;
9740     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9741     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9742     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9743     Vals.emplace_back(NewTF);
9744   }
9745   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9746 }
9747 
9748 #ifndef NDEBUG
9749 static void checkForCyclesHelper(const SDNode *N,
9750                                  SmallPtrSetImpl<const SDNode*> &Visited,
9751                                  SmallPtrSetImpl<const SDNode*> &Checked,
9752                                  const llvm::SelectionDAG *DAG) {
9753   // If this node has already been checked, don't check it again.
9754   if (Checked.count(N))
9755     return;
9756 
9757   // If a node has already been visited on this depth-first walk, reject it as
9758   // a cycle.
9759   if (!Visited.insert(N).second) {
9760     errs() << "Detected cycle in SelectionDAG\n";
9761     dbgs() << "Offending node:\n";
9762     N->dumprFull(DAG); dbgs() << "\n";
9763     abort();
9764   }
9765 
9766   for (const SDValue &Op : N->op_values())
9767     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9768 
9769   Checked.insert(N);
9770   Visited.erase(N);
9771 }
9772 #endif
9773 
9774 void llvm::checkForCycles(const llvm::SDNode *N,
9775                           const llvm::SelectionDAG *DAG,
9776                           bool force) {
9777 #ifndef NDEBUG
9778   bool check = force;
9779 #ifdef EXPENSIVE_CHECKS
9780   check = true;
9781 #endif  // EXPENSIVE_CHECKS
9782   if (check) {
9783     assert(N && "Checking nonexistent SDNode");
9784     SmallPtrSet<const SDNode*, 32> visited;
9785     SmallPtrSet<const SDNode*, 32> checked;
9786     checkForCyclesHelper(N, visited, checked, DAG);
9787   }
9788 #endif  // !NDEBUG
9789 }
9790 
9791 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9792   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9793 }
9794