1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlignment()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 Align SelectionDAG::getEVTAlign(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlign(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 EVT OpVT = Op.getValueType(); 1171 assert(VT.isInteger() && OpVT.isInteger() && 1172 "Cannot getZeroExtendInReg FP types"); 1173 assert(VT.isVector() == OpVT.isVector() && 1174 "getZeroExtendInReg type should be vector iff the operand " 1175 "type is vector!"); 1176 assert((!VT.isVector() || 1177 VT.getVectorNumElements() == OpVT.getVectorNumElements()) && 1178 "Vector element counts must match in getZeroExtendInReg"); 1179 assert(VT.bitsLE(OpVT) && "Not extending!"); 1180 if (OpVT == VT) 1181 return Op; 1182 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1183 VT.getScalarSizeInBits()); 1184 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZExtOrTrunc(Op, DL, VT); 1191 } 1192 1193 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1194 // Only unsigned pointer semantics are supported right now. In the future this 1195 // might delegate to TLI to check pointer signedness. 1196 return getZeroExtendInReg(Op, DL, VT); 1197 } 1198 1199 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1200 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1201 EVT EltVT = VT.getScalarType(); 1202 SDValue NegOne = 1203 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1204 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1205 } 1206 1207 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1208 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1209 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1210 } 1211 1212 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1213 EVT OpVT) { 1214 if (!V) 1215 return getConstant(0, DL, VT); 1216 1217 switch (TLI->getBooleanContents(OpVT)) { 1218 case TargetLowering::ZeroOrOneBooleanContent: 1219 case TargetLowering::UndefinedBooleanContent: 1220 return getConstant(1, DL, VT); 1221 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1222 return getAllOnesConstant(DL, VT); 1223 } 1224 llvm_unreachable("Unexpected boolean content enum!"); 1225 } 1226 1227 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1228 bool isT, bool isO) { 1229 EVT EltVT = VT.getScalarType(); 1230 assert((EltVT.getSizeInBits() >= 64 || 1231 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1232 "getConstant with a uint64_t value that doesn't fit in the type!"); 1233 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1234 } 1235 1236 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1237 bool isT, bool isO) { 1238 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1239 } 1240 1241 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1242 EVT VT, bool isT, bool isO) { 1243 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1244 1245 EVT EltVT = VT.getScalarType(); 1246 const ConstantInt *Elt = &Val; 1247 1248 // In some cases the vector type is legal but the element type is illegal and 1249 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1250 // inserted value (the type does not need to match the vector element type). 1251 // Any extra bits introduced will be truncated away. 1252 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1253 TargetLowering::TypePromoteInteger) { 1254 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1255 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1256 Elt = ConstantInt::get(*getContext(), NewVal); 1257 } 1258 // In other cases the element type is illegal and needs to be expanded, for 1259 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1260 // the value into n parts and use a vector type with n-times the elements. 1261 // Then bitcast to the type requested. 1262 // Legalizing constants too early makes the DAGCombiner's job harder so we 1263 // only legalize if the DAG tells us we must produce legal types. 1264 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1265 TLI->getTypeAction(*getContext(), EltVT) == 1266 TargetLowering::TypeExpandInteger) { 1267 const APInt &NewVal = Elt->getValue(); 1268 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1269 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1270 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1271 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1272 1273 // Check the temporary vector is the correct size. If this fails then 1274 // getTypeToTransformTo() probably returned a type whose size (in bits) 1275 // isn't a power-of-2 factor of the requested type size. 1276 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1277 1278 SmallVector<SDValue, 2> EltParts; 1279 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1280 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1281 .zextOrTrunc(ViaEltSizeInBits), DL, 1282 ViaEltVT, isT, isO)); 1283 } 1284 1285 // EltParts is currently in little endian order. If we actually want 1286 // big-endian order then reverse it now. 1287 if (getDataLayout().isBigEndian()) 1288 std::reverse(EltParts.begin(), EltParts.end()); 1289 1290 // The elements must be reversed when the element order is different 1291 // to the endianness of the elements (because the BITCAST is itself a 1292 // vector shuffle in this situation). However, we do not need any code to 1293 // perform this reversal because getConstant() is producing a vector 1294 // splat. 1295 // This situation occurs in MIPS MSA. 1296 1297 SmallVector<SDValue, 8> Ops; 1298 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1299 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1300 1301 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1302 return V; 1303 } 1304 1305 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1306 "APInt size does not match type size!"); 1307 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1308 FoldingSetNodeID ID; 1309 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1310 ID.AddPointer(Elt); 1311 ID.AddBoolean(isO); 1312 void *IP = nullptr; 1313 SDNode *N = nullptr; 1314 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1315 if (!VT.isVector()) 1316 return SDValue(N, 0); 1317 1318 if (!N) { 1319 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1320 CSEMap.InsertNode(N, IP); 1321 InsertNode(N); 1322 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1323 } 1324 1325 SDValue Result(N, 0); 1326 if (VT.isScalableVector()) 1327 Result = getSplatVector(VT, DL, Result); 1328 else if (VT.isVector()) 1329 Result = getSplatBuildVector(VT, DL, Result); 1330 1331 return Result; 1332 } 1333 1334 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1335 bool isTarget) { 1336 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1337 } 1338 1339 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1340 const SDLoc &DL, bool LegalTypes) { 1341 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1342 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1343 return getConstant(Val, DL, ShiftVT); 1344 } 1345 1346 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1347 bool isTarget) { 1348 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1349 } 1350 1351 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1352 bool isTarget) { 1353 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1354 } 1355 1356 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1357 EVT VT, bool isTarget) { 1358 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1359 1360 EVT EltVT = VT.getScalarType(); 1361 1362 // Do the map lookup using the actual bit pattern for the floating point 1363 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1364 // we don't have issues with SNANs. 1365 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1368 ID.AddPointer(&V); 1369 void *IP = nullptr; 1370 SDNode *N = nullptr; 1371 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1372 if (!VT.isVector()) 1373 return SDValue(N, 0); 1374 1375 if (!N) { 1376 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 } 1380 1381 SDValue Result(N, 0); 1382 if (VT.isVector()) 1383 Result = getSplatBuildVector(VT, DL, Result); 1384 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1385 return Result; 1386 } 1387 1388 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1389 bool isTarget) { 1390 EVT EltVT = VT.getScalarType(); 1391 if (EltVT == MVT::f32) 1392 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1393 else if (EltVT == MVT::f64) 1394 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1395 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1396 EltVT == MVT::f16) { 1397 bool Ignored; 1398 APFloat APF = APFloat(Val); 1399 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1400 &Ignored); 1401 return getConstantFP(APF, DL, VT, isTarget); 1402 } else 1403 llvm_unreachable("Unsupported type in getConstantFP"); 1404 } 1405 1406 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1407 EVT VT, int64_t Offset, bool isTargetGA, 1408 unsigned TargetFlags) { 1409 assert((TargetFlags == 0 || isTargetGA) && 1410 "Cannot set target flags on target-independent globals"); 1411 1412 // Truncate (with sign-extension) the offset value to the pointer size. 1413 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1414 if (BitWidth < 64) 1415 Offset = SignExtend64(Offset, BitWidth); 1416 1417 unsigned Opc; 1418 if (GV->isThreadLocal()) 1419 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1420 else 1421 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1422 1423 FoldingSetNodeID ID; 1424 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1425 ID.AddPointer(GV); 1426 ID.AddInteger(Offset); 1427 ID.AddInteger(TargetFlags); 1428 void *IP = nullptr; 1429 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1430 return SDValue(E, 0); 1431 1432 auto *N = newSDNode<GlobalAddressSDNode>( 1433 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1434 CSEMap.InsertNode(N, IP); 1435 InsertNode(N); 1436 return SDValue(N, 0); 1437 } 1438 1439 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1440 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1441 FoldingSetNodeID ID; 1442 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1443 ID.AddInteger(FI); 1444 void *IP = nullptr; 1445 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1446 return SDValue(E, 0); 1447 1448 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1449 CSEMap.InsertNode(N, IP); 1450 InsertNode(N); 1451 return SDValue(N, 0); 1452 } 1453 1454 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1455 unsigned TargetFlags) { 1456 assert((TargetFlags == 0 || isTarget) && 1457 "Cannot set target flags on target-independent jump tables"); 1458 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1459 FoldingSetNodeID ID; 1460 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1461 ID.AddInteger(JTI); 1462 ID.AddInteger(TargetFlags); 1463 void *IP = nullptr; 1464 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1465 return SDValue(E, 0); 1466 1467 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1468 CSEMap.InsertNode(N, IP); 1469 InsertNode(N); 1470 return SDValue(N, 0); 1471 } 1472 1473 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1474 unsigned Alignment, int Offset, 1475 bool isTarget, 1476 unsigned TargetFlags) { 1477 assert((TargetFlags == 0 || isTarget) && 1478 "Cannot set target flags on target-independent globals"); 1479 if (Alignment == 0) 1480 Alignment = shouldOptForSize() 1481 ? getDataLayout().getABITypeAlignment(C->getType()) 1482 : getDataLayout().getPrefTypeAlignment(C->getType()); 1483 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1484 FoldingSetNodeID ID; 1485 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1486 ID.AddInteger(Alignment); 1487 ID.AddInteger(Offset); 1488 ID.AddPointer(C); 1489 ID.AddInteger(TargetFlags); 1490 void *IP = nullptr; 1491 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1492 return SDValue(E, 0); 1493 1494 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1495 TargetFlags); 1496 CSEMap.InsertNode(N, IP); 1497 InsertNode(N); 1498 return SDValue(N, 0); 1499 } 1500 1501 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1502 unsigned Alignment, int Offset, 1503 bool isTarget, 1504 unsigned TargetFlags) { 1505 assert((TargetFlags == 0 || isTarget) && 1506 "Cannot set target flags on target-independent globals"); 1507 if (Alignment == 0) 1508 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1509 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1512 ID.AddInteger(Alignment); 1513 ID.AddInteger(Offset); 1514 C->addSelectionDAGCSEId(ID); 1515 ID.AddInteger(TargetFlags); 1516 void *IP = nullptr; 1517 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1518 return SDValue(E, 0); 1519 1520 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1521 TargetFlags); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 return SDValue(N, 0); 1525 } 1526 1527 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1528 unsigned TargetFlags) { 1529 FoldingSetNodeID ID; 1530 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1531 ID.AddInteger(Index); 1532 ID.AddInteger(Offset); 1533 ID.AddInteger(TargetFlags); 1534 void *IP = nullptr; 1535 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1536 return SDValue(E, 0); 1537 1538 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 return SDValue(N, 0); 1542 } 1543 1544 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1547 ID.AddPointer(MBB); 1548 void *IP = nullptr; 1549 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1550 return SDValue(E, 0); 1551 1552 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1553 CSEMap.InsertNode(N, IP); 1554 InsertNode(N); 1555 return SDValue(N, 0); 1556 } 1557 1558 SDValue SelectionDAG::getValueType(EVT VT) { 1559 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1560 ValueTypeNodes.size()) 1561 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1562 1563 SDNode *&N = VT.isExtended() ? 1564 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1565 1566 if (N) return SDValue(N, 0); 1567 N = newSDNode<VTSDNode>(VT); 1568 InsertNode(N); 1569 return SDValue(N, 0); 1570 } 1571 1572 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1573 SDNode *&N = ExternalSymbols[Sym]; 1574 if (N) return SDValue(N, 0); 1575 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1581 SDNode *&N = MCSymbols[Sym]; 1582 if (N) 1583 return SDValue(N, 0); 1584 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1585 InsertNode(N); 1586 return SDValue(N, 0); 1587 } 1588 1589 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1590 unsigned TargetFlags) { 1591 SDNode *&N = 1592 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1593 if (N) return SDValue(N, 0); 1594 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1595 InsertNode(N); 1596 return SDValue(N, 0); 1597 } 1598 1599 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1600 if ((unsigned)Cond >= CondCodeNodes.size()) 1601 CondCodeNodes.resize(Cond+1); 1602 1603 if (!CondCodeNodes[Cond]) { 1604 auto *N = newSDNode<CondCodeSDNode>(Cond); 1605 CondCodeNodes[Cond] = N; 1606 InsertNode(N); 1607 } 1608 1609 return SDValue(CondCodeNodes[Cond], 0); 1610 } 1611 1612 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1613 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1614 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1615 std::swap(N1, N2); 1616 ShuffleVectorSDNode::commuteMask(M); 1617 } 1618 1619 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1620 SDValue N2, ArrayRef<int> Mask) { 1621 assert(VT.getVectorNumElements() == Mask.size() && 1622 "Must have the same number of vector elements as mask elements!"); 1623 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1624 "Invalid VECTOR_SHUFFLE"); 1625 1626 // Canonicalize shuffle undef, undef -> undef 1627 if (N1.isUndef() && N2.isUndef()) 1628 return getUNDEF(VT); 1629 1630 // Validate that all indices in Mask are within the range of the elements 1631 // input to the shuffle. 1632 int NElts = Mask.size(); 1633 assert(llvm::all_of(Mask, 1634 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1635 "Index out of range"); 1636 1637 // Copy the mask so we can do any needed cleanup. 1638 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1639 1640 // Canonicalize shuffle v, v -> v, undef 1641 if (N1 == N2) { 1642 N2 = getUNDEF(VT); 1643 for (int i = 0; i != NElts; ++i) 1644 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1645 } 1646 1647 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1648 if (N1.isUndef()) 1649 commuteShuffle(N1, N2, MaskVec); 1650 1651 if (TLI->hasVectorBlend()) { 1652 // If shuffling a splat, try to blend the splat instead. We do this here so 1653 // that even when this arises during lowering we don't have to re-handle it. 1654 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1655 BitVector UndefElements; 1656 SDValue Splat = BV->getSplatValue(&UndefElements); 1657 if (!Splat) 1658 return; 1659 1660 for (int i = 0; i < NElts; ++i) { 1661 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1662 continue; 1663 1664 // If this input comes from undef, mark it as such. 1665 if (UndefElements[MaskVec[i] - Offset]) { 1666 MaskVec[i] = -1; 1667 continue; 1668 } 1669 1670 // If we can blend a non-undef lane, use that instead. 1671 if (!UndefElements[i]) 1672 MaskVec[i] = i + Offset; 1673 } 1674 }; 1675 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1676 BlendSplat(N1BV, 0); 1677 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1678 BlendSplat(N2BV, NElts); 1679 } 1680 1681 // Canonicalize all index into lhs, -> shuffle lhs, undef 1682 // Canonicalize all index into rhs, -> shuffle rhs, undef 1683 bool AllLHS = true, AllRHS = true; 1684 bool N2Undef = N2.isUndef(); 1685 for (int i = 0; i != NElts; ++i) { 1686 if (MaskVec[i] >= NElts) { 1687 if (N2Undef) 1688 MaskVec[i] = -1; 1689 else 1690 AllLHS = false; 1691 } else if (MaskVec[i] >= 0) { 1692 AllRHS = false; 1693 } 1694 } 1695 if (AllLHS && AllRHS) 1696 return getUNDEF(VT); 1697 if (AllLHS && !N2Undef) 1698 N2 = getUNDEF(VT); 1699 if (AllRHS) { 1700 N1 = getUNDEF(VT); 1701 commuteShuffle(N1, N2, MaskVec); 1702 } 1703 // Reset our undef status after accounting for the mask. 1704 N2Undef = N2.isUndef(); 1705 // Re-check whether both sides ended up undef. 1706 if (N1.isUndef() && N2Undef) 1707 return getUNDEF(VT); 1708 1709 // If Identity shuffle return that node. 1710 bool Identity = true, AllSame = true; 1711 for (int i = 0; i != NElts; ++i) { 1712 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1713 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1714 } 1715 if (Identity && NElts) 1716 return N1; 1717 1718 // Shuffling a constant splat doesn't change the result. 1719 if (N2Undef) { 1720 SDValue V = N1; 1721 1722 // Look through any bitcasts. We check that these don't change the number 1723 // (and size) of elements and just changes their types. 1724 while (V.getOpcode() == ISD::BITCAST) 1725 V = V->getOperand(0); 1726 1727 // A splat should always show up as a build vector node. 1728 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1729 BitVector UndefElements; 1730 SDValue Splat = BV->getSplatValue(&UndefElements); 1731 // If this is a splat of an undef, shuffling it is also undef. 1732 if (Splat && Splat.isUndef()) 1733 return getUNDEF(VT); 1734 1735 bool SameNumElts = 1736 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1737 1738 // We only have a splat which can skip shuffles if there is a splatted 1739 // value and no undef lanes rearranged by the shuffle. 1740 if (Splat && UndefElements.none()) { 1741 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1742 // number of elements match or the value splatted is a zero constant. 1743 if (SameNumElts) 1744 return N1; 1745 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1746 if (C->isNullValue()) 1747 return N1; 1748 } 1749 1750 // If the shuffle itself creates a splat, build the vector directly. 1751 if (AllSame && SameNumElts) { 1752 EVT BuildVT = BV->getValueType(0); 1753 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1754 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1755 1756 // We may have jumped through bitcasts, so the type of the 1757 // BUILD_VECTOR may not match the type of the shuffle. 1758 if (BuildVT != VT) 1759 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1760 return NewBV; 1761 } 1762 } 1763 } 1764 1765 FoldingSetNodeID ID; 1766 SDValue Ops[2] = { N1, N2 }; 1767 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1768 for (int i = 0; i != NElts; ++i) 1769 ID.AddInteger(MaskVec[i]); 1770 1771 void* IP = nullptr; 1772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1773 return SDValue(E, 0); 1774 1775 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1776 // SDNode doesn't have access to it. This memory will be "leaked" when 1777 // the node is deallocated, but recovered when the NodeAllocator is released. 1778 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1779 llvm::copy(MaskVec, MaskAlloc); 1780 1781 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1782 dl.getDebugLoc(), MaskAlloc); 1783 createOperands(N, Ops); 1784 1785 CSEMap.InsertNode(N, IP); 1786 InsertNode(N); 1787 SDValue V = SDValue(N, 0); 1788 NewSDValueDbgMsg(V, "Creating new node: ", this); 1789 return V; 1790 } 1791 1792 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1793 EVT VT = SV.getValueType(0); 1794 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1795 ShuffleVectorSDNode::commuteMask(MaskVec); 1796 1797 SDValue Op0 = SV.getOperand(0); 1798 SDValue Op1 = SV.getOperand(1); 1799 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1800 } 1801 1802 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1803 FoldingSetNodeID ID; 1804 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1805 ID.AddInteger(RegNo); 1806 void *IP = nullptr; 1807 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1808 return SDValue(E, 0); 1809 1810 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1811 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1818 FoldingSetNodeID ID; 1819 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1820 ID.AddPointer(RegMask); 1821 void *IP = nullptr; 1822 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1823 return SDValue(E, 0); 1824 1825 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 return SDValue(N, 0); 1829 } 1830 1831 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1832 MCSymbol *Label) { 1833 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1834 } 1835 1836 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1837 SDValue Root, MCSymbol *Label) { 1838 FoldingSetNodeID ID; 1839 SDValue Ops[] = { Root }; 1840 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1841 ID.AddPointer(Label); 1842 void *IP = nullptr; 1843 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1844 return SDValue(E, 0); 1845 1846 auto *N = 1847 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1848 createOperands(N, Ops); 1849 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1856 int64_t Offset, bool isTarget, 1857 unsigned TargetFlags) { 1858 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1859 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1862 ID.AddPointer(BA); 1863 ID.AddInteger(Offset); 1864 ID.AddInteger(TargetFlags); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getSrcValue(const Value *V) { 1876 assert((!V || V->getType()->isPointerTy()) && 1877 "SrcValue is not a pointer?"); 1878 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1999 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2000 unsigned ByteSize = VT.getStoreSize(); 2001 Type *Ty = VT.getTypeForEVT(*getContext()); 2002 unsigned StackAlign = 2003 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 2004 2005 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 2006 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2007 } 2008 2009 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2010 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2011 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2012 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2013 const DataLayout &DL = getDataLayout(); 2014 unsigned Align = 2015 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2016 2017 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2018 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2019 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2020 } 2021 2022 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2023 ISD::CondCode Cond, const SDLoc &dl) { 2024 EVT OpVT = N1.getValueType(); 2025 2026 // These setcc operations always fold. 2027 switch (Cond) { 2028 default: break; 2029 case ISD::SETFALSE: 2030 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2031 case ISD::SETTRUE: 2032 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2033 2034 case ISD::SETOEQ: 2035 case ISD::SETOGT: 2036 case ISD::SETOGE: 2037 case ISD::SETOLT: 2038 case ISD::SETOLE: 2039 case ISD::SETONE: 2040 case ISD::SETO: 2041 case ISD::SETUO: 2042 case ISD::SETUEQ: 2043 case ISD::SETUNE: 2044 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2045 break; 2046 } 2047 2048 if (OpVT.isInteger()) { 2049 // For EQ and NE, we can always pick a value for the undef to make the 2050 // predicate pass or fail, so we can return undef. 2051 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2052 // icmp eq/ne X, undef -> undef. 2053 if ((N1.isUndef() || N2.isUndef()) && 2054 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2055 return getUNDEF(VT); 2056 2057 // If both operands are undef, we can return undef for int comparison. 2058 // icmp undef, undef -> undef. 2059 if (N1.isUndef() && N2.isUndef()) 2060 return getUNDEF(VT); 2061 2062 // icmp X, X -> true/false 2063 // icmp X, undef -> true/false because undef could be X. 2064 if (N1 == N2) 2065 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2066 } 2067 2068 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2069 const APInt &C2 = N2C->getAPIntValue(); 2070 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2071 const APInt &C1 = N1C->getAPIntValue(); 2072 2073 switch (Cond) { 2074 default: llvm_unreachable("Unknown integer setcc!"); 2075 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2076 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2077 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2078 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2079 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2080 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2081 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2082 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2083 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2084 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2085 } 2086 } 2087 } 2088 2089 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2090 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2091 2092 if (N1CFP && N2CFP) { 2093 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2094 switch (Cond) { 2095 default: break; 2096 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2097 return getUNDEF(VT); 2098 LLVM_FALLTHROUGH; 2099 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2100 OpVT); 2101 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2102 return getUNDEF(VT); 2103 LLVM_FALLTHROUGH; 2104 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2105 R==APFloat::cmpLessThan, dl, VT, 2106 OpVT); 2107 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2108 return getUNDEF(VT); 2109 LLVM_FALLTHROUGH; 2110 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2111 OpVT); 2112 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2113 return getUNDEF(VT); 2114 LLVM_FALLTHROUGH; 2115 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2116 VT, OpVT); 2117 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2118 return getUNDEF(VT); 2119 LLVM_FALLTHROUGH; 2120 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2121 R==APFloat::cmpEqual, dl, VT, 2122 OpVT); 2123 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2124 return getUNDEF(VT); 2125 LLVM_FALLTHROUGH; 2126 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2127 R==APFloat::cmpEqual, dl, VT, OpVT); 2128 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2129 OpVT); 2130 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2131 OpVT); 2132 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2133 R==APFloat::cmpEqual, dl, VT, 2134 OpVT); 2135 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2136 OpVT); 2137 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2138 R==APFloat::cmpLessThan, dl, VT, 2139 OpVT); 2140 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2141 R==APFloat::cmpUnordered, dl, VT, 2142 OpVT); 2143 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2144 VT, OpVT); 2145 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2146 OpVT); 2147 } 2148 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2149 // Ensure that the constant occurs on the RHS. 2150 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2151 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2152 return SDValue(); 2153 return getSetCC(dl, VT, N2, N1, SwappedCond); 2154 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2155 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2156 // If an operand is known to be a nan (or undef that could be a nan), we can 2157 // fold it. 2158 // Choosing NaN for the undef will always make unordered comparison succeed 2159 // and ordered comparison fails. 2160 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2161 switch (ISD::getUnorderedFlavor(Cond)) { 2162 default: 2163 llvm_unreachable("Unknown flavor!"); 2164 case 0: // Known false. 2165 return getBoolConstant(false, dl, VT, OpVT); 2166 case 1: // Known true. 2167 return getBoolConstant(true, dl, VT, OpVT); 2168 case 2: // Undefined. 2169 return getUNDEF(VT); 2170 } 2171 } 2172 2173 // Could not fold it. 2174 return SDValue(); 2175 } 2176 2177 /// See if the specified operand can be simplified with the knowledge that only 2178 /// the bits specified by DemandedBits are used. 2179 /// TODO: really we should be making this into the DAG equivalent of 2180 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2181 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2182 EVT VT = V.getValueType(); 2183 APInt DemandedElts = VT.isVector() 2184 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2185 : APInt(1, 1); 2186 return GetDemandedBits(V, DemandedBits, DemandedElts); 2187 } 2188 2189 /// See if the specified operand can be simplified with the knowledge that only 2190 /// the bits specified by DemandedBits are used in the elements specified by 2191 /// DemandedElts. 2192 /// TODO: really we should be making this into the DAG equivalent of 2193 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2194 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2195 const APInt &DemandedElts) { 2196 switch (V.getOpcode()) { 2197 default: 2198 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2199 *this, 0); 2200 break; 2201 case ISD::Constant: { 2202 auto *CV = cast<ConstantSDNode>(V.getNode()); 2203 assert(CV && "Const value should be ConstSDNode."); 2204 const APInt &CVal = CV->getAPIntValue(); 2205 APInt NewVal = CVal & DemandedBits; 2206 if (NewVal != CVal) 2207 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2208 break; 2209 } 2210 case ISD::SRL: 2211 // Only look at single-use SRLs. 2212 if (!V.getNode()->hasOneUse()) 2213 break; 2214 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2215 // See if we can recursively simplify the LHS. 2216 unsigned Amt = RHSC->getZExtValue(); 2217 2218 // Watch out for shift count overflow though. 2219 if (Amt >= DemandedBits.getBitWidth()) 2220 break; 2221 APInt SrcDemandedBits = DemandedBits << Amt; 2222 if (SDValue SimplifyLHS = 2223 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2224 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2225 V.getOperand(1)); 2226 } 2227 break; 2228 case ISD::AND: { 2229 // X & -1 -> X (ignoring bits which aren't demanded). 2230 // Also handle the case where masked out bits in X are known to be zero. 2231 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2232 const APInt &AndVal = RHSC->getAPIntValue(); 2233 if (DemandedBits.isSubsetOf(AndVal) || 2234 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2235 AndVal)) 2236 return V.getOperand(0); 2237 } 2238 break; 2239 } 2240 } 2241 return SDValue(); 2242 } 2243 2244 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2245 /// use this predicate to simplify operations downstream. 2246 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2247 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2248 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2249 } 2250 2251 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2252 /// this predicate to simplify operations downstream. Mask is known to be zero 2253 /// for bits that V cannot have. 2254 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2255 unsigned Depth) const { 2256 EVT VT = V.getValueType(); 2257 APInt DemandedElts = VT.isVector() 2258 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2259 : APInt(1, 1); 2260 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2261 } 2262 2263 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2264 /// DemandedElts. We use this predicate to simplify operations downstream. 2265 /// Mask is known to be zero for bits that V cannot have. 2266 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2267 const APInt &DemandedElts, 2268 unsigned Depth) const { 2269 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2270 } 2271 2272 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2273 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2274 unsigned Depth) const { 2275 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2276 } 2277 2278 /// isSplatValue - Return true if the vector V has the same value 2279 /// across all DemandedElts. For scalable vectors it does not make 2280 /// sense to specify which elements are demanded or undefined, therefore 2281 /// they are simply ignored. 2282 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2283 APInt &UndefElts) { 2284 EVT VT = V.getValueType(); 2285 assert(VT.isVector() && "Vector type expected"); 2286 2287 if (!VT.isScalableVector() && !DemandedElts) 2288 return false; // No demanded elts, better to assume we don't know anything. 2289 2290 // Deal with some common cases here that work for both fixed and scalable 2291 // vector types. 2292 switch (V.getOpcode()) { 2293 case ISD::SPLAT_VECTOR: 2294 return true; 2295 case ISD::ADD: 2296 case ISD::SUB: 2297 case ISD::AND: { 2298 APInt UndefLHS, UndefRHS; 2299 SDValue LHS = V.getOperand(0); 2300 SDValue RHS = V.getOperand(1); 2301 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2302 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2303 UndefElts = UndefLHS | UndefRHS; 2304 return true; 2305 } 2306 break; 2307 } 2308 } 2309 2310 // We don't support other cases than those above for scalable vectors at 2311 // the moment. 2312 if (VT.isScalableVector()) 2313 return false; 2314 2315 unsigned NumElts = VT.getVectorNumElements(); 2316 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2317 UndefElts = APInt::getNullValue(NumElts); 2318 2319 switch (V.getOpcode()) { 2320 case ISD::BUILD_VECTOR: { 2321 SDValue Scl; 2322 for (unsigned i = 0; i != NumElts; ++i) { 2323 SDValue Op = V.getOperand(i); 2324 if (Op.isUndef()) { 2325 UndefElts.setBit(i); 2326 continue; 2327 } 2328 if (!DemandedElts[i]) 2329 continue; 2330 if (Scl && Scl != Op) 2331 return false; 2332 Scl = Op; 2333 } 2334 return true; 2335 } 2336 case ISD::VECTOR_SHUFFLE: { 2337 // Check if this is a shuffle node doing a splat. 2338 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2339 int SplatIndex = -1; 2340 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2341 for (int i = 0; i != (int)NumElts; ++i) { 2342 int M = Mask[i]; 2343 if (M < 0) { 2344 UndefElts.setBit(i); 2345 continue; 2346 } 2347 if (!DemandedElts[i]) 2348 continue; 2349 if (0 <= SplatIndex && SplatIndex != M) 2350 return false; 2351 SplatIndex = M; 2352 } 2353 return true; 2354 } 2355 case ISD::EXTRACT_SUBVECTOR: { 2356 SDValue Src = V.getOperand(0); 2357 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2358 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2359 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2360 // Offset the demanded elts by the subvector index. 2361 uint64_t Idx = SubIdx->getZExtValue(); 2362 APInt UndefSrcElts; 2363 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2364 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2365 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2366 return true; 2367 } 2368 } 2369 break; 2370 } 2371 } 2372 2373 return false; 2374 } 2375 2376 /// Helper wrapper to main isSplatValue function. 2377 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2378 EVT VT = V.getValueType(); 2379 assert(VT.isVector() && "Vector type expected"); 2380 2381 APInt UndefElts; 2382 APInt DemandedElts; 2383 2384 // For now we don't support this with scalable vectors. 2385 if (!VT.isScalableVector()) 2386 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2387 return isSplatValue(V, DemandedElts, UndefElts) && 2388 (AllowUndefs || !UndefElts); 2389 } 2390 2391 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2392 V = peekThroughExtractSubvectors(V); 2393 2394 EVT VT = V.getValueType(); 2395 unsigned Opcode = V.getOpcode(); 2396 switch (Opcode) { 2397 default: { 2398 APInt UndefElts; 2399 APInt DemandedElts; 2400 2401 if (!VT.isScalableVector()) 2402 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2403 2404 if (isSplatValue(V, DemandedElts, UndefElts)) { 2405 if (VT.isScalableVector()) { 2406 // DemandedElts and UndefElts are ignored for scalable vectors, since 2407 // the only supported cases are SPLAT_VECTOR nodes. 2408 SplatIdx = 0; 2409 } else { 2410 // Handle case where all demanded elements are UNDEF. 2411 if (DemandedElts.isSubsetOf(UndefElts)) { 2412 SplatIdx = 0; 2413 return getUNDEF(VT); 2414 } 2415 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2416 } 2417 return V; 2418 } 2419 break; 2420 } 2421 case ISD::SPLAT_VECTOR: 2422 SplatIdx = 0; 2423 return V; 2424 case ISD::VECTOR_SHUFFLE: { 2425 if (VT.isScalableVector()) 2426 return SDValue(); 2427 2428 // Check if this is a shuffle node doing a splat. 2429 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2430 // getTargetVShiftNode currently struggles without the splat source. 2431 auto *SVN = cast<ShuffleVectorSDNode>(V); 2432 if (!SVN->isSplat()) 2433 break; 2434 int Idx = SVN->getSplatIndex(); 2435 int NumElts = V.getValueType().getVectorNumElements(); 2436 SplatIdx = Idx % NumElts; 2437 return V.getOperand(Idx / NumElts); 2438 } 2439 } 2440 2441 return SDValue(); 2442 } 2443 2444 SDValue SelectionDAG::getSplatValue(SDValue V) { 2445 int SplatIdx; 2446 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2447 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2448 SrcVector.getValueType().getScalarType(), SrcVector, 2449 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2450 return SDValue(); 2451 } 2452 2453 const APInt * 2454 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2455 const APInt &DemandedElts) const { 2456 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2457 V.getOpcode() == ISD::SRA) && 2458 "Unknown shift node"); 2459 unsigned BitWidth = V.getScalarValueSizeInBits(); 2460 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2461 // Shifting more than the bitwidth is not valid. 2462 const APInt &ShAmt = SA->getAPIntValue(); 2463 if (ShAmt.ult(BitWidth)) 2464 return &ShAmt; 2465 } 2466 return nullptr; 2467 } 2468 2469 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2470 SDValue V, const APInt &DemandedElts) const { 2471 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2472 V.getOpcode() == ISD::SRA) && 2473 "Unknown shift node"); 2474 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2475 return ValidAmt; 2476 unsigned BitWidth = V.getScalarValueSizeInBits(); 2477 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2478 if (!BV) 2479 return nullptr; 2480 const APInt *MinShAmt = nullptr; 2481 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2482 if (!DemandedElts[i]) 2483 continue; 2484 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2485 if (!SA) 2486 return nullptr; 2487 // Shifting more than the bitwidth is not valid. 2488 const APInt &ShAmt = SA->getAPIntValue(); 2489 if (ShAmt.uge(BitWidth)) 2490 return nullptr; 2491 if (MinShAmt && MinShAmt->ule(ShAmt)) 2492 continue; 2493 MinShAmt = &ShAmt; 2494 } 2495 return MinShAmt; 2496 } 2497 2498 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2499 SDValue V, const APInt &DemandedElts) const { 2500 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2501 V.getOpcode() == ISD::SRA) && 2502 "Unknown shift node"); 2503 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2504 return ValidAmt; 2505 unsigned BitWidth = V.getScalarValueSizeInBits(); 2506 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2507 if (!BV) 2508 return nullptr; 2509 const APInt *MaxShAmt = nullptr; 2510 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2511 if (!DemandedElts[i]) 2512 continue; 2513 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2514 if (!SA) 2515 return nullptr; 2516 // Shifting more than the bitwidth is not valid. 2517 const APInt &ShAmt = SA->getAPIntValue(); 2518 if (ShAmt.uge(BitWidth)) 2519 return nullptr; 2520 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2521 continue; 2522 MaxShAmt = &ShAmt; 2523 } 2524 return MaxShAmt; 2525 } 2526 2527 /// Determine which bits of Op are known to be either zero or one and return 2528 /// them in Known. For vectors, the known bits are those that are shared by 2529 /// every vector element. 2530 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2531 EVT VT = Op.getValueType(); 2532 APInt DemandedElts = VT.isVector() 2533 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2534 : APInt(1, 1); 2535 return computeKnownBits(Op, DemandedElts, Depth); 2536 } 2537 2538 /// Determine which bits of Op are known to be either zero or one and return 2539 /// them in Known. The DemandedElts argument allows us to only collect the known 2540 /// bits that are shared by the requested vector elements. 2541 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2542 unsigned Depth) const { 2543 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2544 2545 KnownBits Known(BitWidth); // Don't know anything. 2546 2547 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2548 // We know all of the bits for a constant! 2549 Known.One = C->getAPIntValue(); 2550 Known.Zero = ~Known.One; 2551 return Known; 2552 } 2553 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2554 // We know all of the bits for a constant fp! 2555 Known.One = C->getValueAPF().bitcastToAPInt(); 2556 Known.Zero = ~Known.One; 2557 return Known; 2558 } 2559 2560 if (Depth >= MaxRecursionDepth) 2561 return Known; // Limit search depth. 2562 2563 KnownBits Known2; 2564 unsigned NumElts = DemandedElts.getBitWidth(); 2565 assert((!Op.getValueType().isVector() || 2566 NumElts == Op.getValueType().getVectorNumElements()) && 2567 "Unexpected vector size"); 2568 2569 if (!DemandedElts) 2570 return Known; // No demanded elts, better to assume we don't know anything. 2571 2572 unsigned Opcode = Op.getOpcode(); 2573 switch (Opcode) { 2574 case ISD::BUILD_VECTOR: 2575 // Collect the known bits that are shared by every demanded vector element. 2576 Known.Zero.setAllBits(); Known.One.setAllBits(); 2577 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2578 if (!DemandedElts[i]) 2579 continue; 2580 2581 SDValue SrcOp = Op.getOperand(i); 2582 Known2 = computeKnownBits(SrcOp, Depth + 1); 2583 2584 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2585 if (SrcOp.getValueSizeInBits() != BitWidth) { 2586 assert(SrcOp.getValueSizeInBits() > BitWidth && 2587 "Expected BUILD_VECTOR implicit truncation"); 2588 Known2 = Known2.trunc(BitWidth); 2589 } 2590 2591 // Known bits are the values that are shared by every demanded element. 2592 Known.One &= Known2.One; 2593 Known.Zero &= Known2.Zero; 2594 2595 // If we don't know any bits, early out. 2596 if (Known.isUnknown()) 2597 break; 2598 } 2599 break; 2600 case ISD::VECTOR_SHUFFLE: { 2601 // Collect the known bits that are shared by every vector element referenced 2602 // by the shuffle. 2603 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2604 Known.Zero.setAllBits(); Known.One.setAllBits(); 2605 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2606 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2607 for (unsigned i = 0; i != NumElts; ++i) { 2608 if (!DemandedElts[i]) 2609 continue; 2610 2611 int M = SVN->getMaskElt(i); 2612 if (M < 0) { 2613 // For UNDEF elements, we don't know anything about the common state of 2614 // the shuffle result. 2615 Known.resetAll(); 2616 DemandedLHS.clearAllBits(); 2617 DemandedRHS.clearAllBits(); 2618 break; 2619 } 2620 2621 if ((unsigned)M < NumElts) 2622 DemandedLHS.setBit((unsigned)M % NumElts); 2623 else 2624 DemandedRHS.setBit((unsigned)M % NumElts); 2625 } 2626 // Known bits are the values that are shared by every demanded element. 2627 if (!!DemandedLHS) { 2628 SDValue LHS = Op.getOperand(0); 2629 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2630 Known.One &= Known2.One; 2631 Known.Zero &= Known2.Zero; 2632 } 2633 // If we don't know any bits, early out. 2634 if (Known.isUnknown()) 2635 break; 2636 if (!!DemandedRHS) { 2637 SDValue RHS = Op.getOperand(1); 2638 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2639 Known.One &= Known2.One; 2640 Known.Zero &= Known2.Zero; 2641 } 2642 break; 2643 } 2644 case ISD::CONCAT_VECTORS: { 2645 // Split DemandedElts and test each of the demanded subvectors. 2646 Known.Zero.setAllBits(); Known.One.setAllBits(); 2647 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2648 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2649 unsigned NumSubVectors = Op.getNumOperands(); 2650 for (unsigned i = 0; i != NumSubVectors; ++i) { 2651 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2652 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2653 if (!!DemandedSub) { 2654 SDValue Sub = Op.getOperand(i); 2655 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2656 Known.One &= Known2.One; 2657 Known.Zero &= Known2.Zero; 2658 } 2659 // If we don't know any bits, early out. 2660 if (Known.isUnknown()) 2661 break; 2662 } 2663 break; 2664 } 2665 case ISD::INSERT_SUBVECTOR: { 2666 // If we know the element index, demand any elements from the subvector and 2667 // the remainder from the src its inserted into, otherwise assume we need 2668 // the original demanded base elements and ALL the inserted subvector 2669 // elements. 2670 SDValue Src = Op.getOperand(0); 2671 SDValue Sub = Op.getOperand(1); 2672 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2673 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2674 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 2675 APInt DemandedSrcElts = DemandedElts; 2676 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2677 uint64_t Idx = SubIdx->getZExtValue(); 2678 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2679 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2680 } 2681 Known.One.setAllBits(); 2682 Known.Zero.setAllBits(); 2683 if (!!DemandedSubElts) { 2684 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2685 if (Known.isUnknown()) 2686 break; // early-out. 2687 } 2688 if (!!DemandedSrcElts) { 2689 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2690 Known.One &= Known2.One; 2691 Known.Zero &= Known2.Zero; 2692 } 2693 break; 2694 } 2695 case ISD::EXTRACT_SUBVECTOR: { 2696 // If we know the element index, just demand that subvector elements, 2697 // otherwise demand them all. 2698 SDValue Src = Op.getOperand(0); 2699 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2700 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2701 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2702 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2703 // Offset the demanded elts by the subvector index. 2704 uint64_t Idx = SubIdx->getZExtValue(); 2705 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2706 } 2707 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2708 break; 2709 } 2710 case ISD::SCALAR_TO_VECTOR: { 2711 // We know about scalar_to_vector as much as we know about it source, 2712 // which becomes the first element of otherwise unknown vector. 2713 if (DemandedElts != 1) 2714 break; 2715 2716 SDValue N0 = Op.getOperand(0); 2717 Known = computeKnownBits(N0, Depth + 1); 2718 if (N0.getValueSizeInBits() != BitWidth) 2719 Known = Known.trunc(BitWidth); 2720 2721 break; 2722 } 2723 case ISD::BITCAST: { 2724 SDValue N0 = Op.getOperand(0); 2725 EVT SubVT = N0.getValueType(); 2726 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2727 2728 // Ignore bitcasts from unsupported types. 2729 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2730 break; 2731 2732 // Fast handling of 'identity' bitcasts. 2733 if (BitWidth == SubBitWidth) { 2734 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2735 break; 2736 } 2737 2738 bool IsLE = getDataLayout().isLittleEndian(); 2739 2740 // Bitcast 'small element' vector to 'large element' scalar/vector. 2741 if ((BitWidth % SubBitWidth) == 0) { 2742 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2743 2744 // Collect known bits for the (larger) output by collecting the known 2745 // bits from each set of sub elements and shift these into place. 2746 // We need to separately call computeKnownBits for each set of 2747 // sub elements as the knownbits for each is likely to be different. 2748 unsigned SubScale = BitWidth / SubBitWidth; 2749 APInt SubDemandedElts(NumElts * SubScale, 0); 2750 for (unsigned i = 0; i != NumElts; ++i) 2751 if (DemandedElts[i]) 2752 SubDemandedElts.setBit(i * SubScale); 2753 2754 for (unsigned i = 0; i != SubScale; ++i) { 2755 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2756 Depth + 1); 2757 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2758 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2759 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2760 } 2761 } 2762 2763 // Bitcast 'large element' scalar/vector to 'small element' vector. 2764 if ((SubBitWidth % BitWidth) == 0) { 2765 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2766 2767 // Collect known bits for the (smaller) output by collecting the known 2768 // bits from the overlapping larger input elements and extracting the 2769 // sub sections we actually care about. 2770 unsigned SubScale = SubBitWidth / BitWidth; 2771 APInt SubDemandedElts(NumElts / SubScale, 0); 2772 for (unsigned i = 0; i != NumElts; ++i) 2773 if (DemandedElts[i]) 2774 SubDemandedElts.setBit(i / SubScale); 2775 2776 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2777 2778 Known.Zero.setAllBits(); Known.One.setAllBits(); 2779 for (unsigned i = 0; i != NumElts; ++i) 2780 if (DemandedElts[i]) { 2781 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2782 unsigned Offset = (Shifts % SubScale) * BitWidth; 2783 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2784 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2785 // If we don't know any bits, early out. 2786 if (Known.isUnknown()) 2787 break; 2788 } 2789 } 2790 break; 2791 } 2792 case ISD::AND: 2793 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2794 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2795 2796 Known &= Known2; 2797 break; 2798 case ISD::OR: 2799 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2800 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2801 2802 Known |= Known2; 2803 break; 2804 case ISD::XOR: 2805 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2806 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2807 2808 Known ^= Known2; 2809 break; 2810 case ISD::MUL: { 2811 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2812 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2813 2814 // If low bits are zero in either operand, output low known-0 bits. 2815 // Also compute a conservative estimate for high known-0 bits. 2816 // More trickiness is possible, but this is sufficient for the 2817 // interesting case of alignment computation. 2818 unsigned TrailZ = Known.countMinTrailingZeros() + 2819 Known2.countMinTrailingZeros(); 2820 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2821 Known2.countMinLeadingZeros(), 2822 BitWidth) - BitWidth; 2823 2824 Known.resetAll(); 2825 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2826 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2827 break; 2828 } 2829 case ISD::UDIV: { 2830 // For the purposes of computing leading zeros we can conservatively 2831 // treat a udiv as a logical right shift by the power of 2 known to 2832 // be less than the denominator. 2833 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2834 unsigned LeadZ = Known2.countMinLeadingZeros(); 2835 2836 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2837 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2838 if (RHSMaxLeadingZeros != BitWidth) 2839 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2840 2841 Known.Zero.setHighBits(LeadZ); 2842 break; 2843 } 2844 case ISD::SELECT: 2845 case ISD::VSELECT: 2846 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2847 // If we don't know any bits, early out. 2848 if (Known.isUnknown()) 2849 break; 2850 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2851 2852 // Only known if known in both the LHS and RHS. 2853 Known.One &= Known2.One; 2854 Known.Zero &= Known2.Zero; 2855 break; 2856 case ISD::SELECT_CC: 2857 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2858 // If we don't know any bits, early out. 2859 if (Known.isUnknown()) 2860 break; 2861 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2862 2863 // Only known if known in both the LHS and RHS. 2864 Known.One &= Known2.One; 2865 Known.Zero &= Known2.Zero; 2866 break; 2867 case ISD::SMULO: 2868 case ISD::UMULO: 2869 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2870 if (Op.getResNo() != 1) 2871 break; 2872 // The boolean result conforms to getBooleanContents. 2873 // If we know the result of a setcc has the top bits zero, use this info. 2874 // We know that we have an integer-based boolean since these operations 2875 // are only available for integer. 2876 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2877 TargetLowering::ZeroOrOneBooleanContent && 2878 BitWidth > 1) 2879 Known.Zero.setBitsFrom(1); 2880 break; 2881 case ISD::SETCC: 2882 case ISD::STRICT_FSETCC: 2883 case ISD::STRICT_FSETCCS: { 2884 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2885 // If we know the result of a setcc has the top bits zero, use this info. 2886 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2887 TargetLowering::ZeroOrOneBooleanContent && 2888 BitWidth > 1) 2889 Known.Zero.setBitsFrom(1); 2890 break; 2891 } 2892 case ISD::SHL: 2893 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2894 2895 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2896 unsigned Shift = ShAmt->getZExtValue(); 2897 Known.Zero <<= Shift; 2898 Known.One <<= Shift; 2899 // Low bits are known zero. 2900 Known.Zero.setLowBits(Shift); 2901 break; 2902 } 2903 2904 // No matter the shift amount, the trailing zeros will stay zero. 2905 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2906 Known.One.clearAllBits(); 2907 2908 // Minimum shift low bits are known zero. 2909 if (const APInt *ShMinAmt = 2910 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2911 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2912 break; 2913 case ISD::SRL: 2914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2915 2916 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2917 unsigned Shift = ShAmt->getZExtValue(); 2918 Known.Zero.lshrInPlace(Shift); 2919 Known.One.lshrInPlace(Shift); 2920 // High bits are known zero. 2921 Known.Zero.setHighBits(Shift); 2922 break; 2923 } 2924 2925 // No matter the shift amount, the leading zeros will stay zero. 2926 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2927 Known.One.clearAllBits(); 2928 2929 // Minimum shift high bits are known zero. 2930 if (const APInt *ShMinAmt = 2931 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2932 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2933 break; 2934 case ISD::SRA: 2935 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2936 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2937 unsigned Shift = ShAmt->getZExtValue(); 2938 // Sign extend known zero/one bit (else is unknown). 2939 Known.Zero.ashrInPlace(Shift); 2940 Known.One.ashrInPlace(Shift); 2941 } 2942 break; 2943 case ISD::FSHL: 2944 case ISD::FSHR: 2945 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2946 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2947 2948 // For fshl, 0-shift returns the 1st arg. 2949 // For fshr, 0-shift returns the 2nd arg. 2950 if (Amt == 0) { 2951 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2952 DemandedElts, Depth + 1); 2953 break; 2954 } 2955 2956 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2957 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2958 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2959 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2960 if (Opcode == ISD::FSHL) { 2961 Known.One <<= Amt; 2962 Known.Zero <<= Amt; 2963 Known2.One.lshrInPlace(BitWidth - Amt); 2964 Known2.Zero.lshrInPlace(BitWidth - Amt); 2965 } else { 2966 Known.One <<= BitWidth - Amt; 2967 Known.Zero <<= BitWidth - Amt; 2968 Known2.One.lshrInPlace(Amt); 2969 Known2.Zero.lshrInPlace(Amt); 2970 } 2971 Known.One |= Known2.One; 2972 Known.Zero |= Known2.Zero; 2973 } 2974 break; 2975 case ISD::SIGN_EXTEND_INREG: { 2976 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2977 unsigned EBits = EVT.getScalarSizeInBits(); 2978 2979 // Sign extension. Compute the demanded bits in the result that are not 2980 // present in the input. 2981 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2982 2983 APInt InSignMask = APInt::getSignMask(EBits); 2984 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2985 2986 // If the sign extended bits are demanded, we know that the sign 2987 // bit is demanded. 2988 InSignMask = InSignMask.zext(BitWidth); 2989 if (NewBits.getBoolValue()) 2990 InputDemandedBits |= InSignMask; 2991 2992 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2993 Known.One &= InputDemandedBits; 2994 Known.Zero &= InputDemandedBits; 2995 2996 // If the sign bit of the input is known set or clear, then we know the 2997 // top bits of the result. 2998 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2999 Known.Zero |= NewBits; 3000 Known.One &= ~NewBits; 3001 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3002 Known.One |= NewBits; 3003 Known.Zero &= ~NewBits; 3004 } else { // Input sign bit unknown 3005 Known.Zero &= ~NewBits; 3006 Known.One &= ~NewBits; 3007 } 3008 break; 3009 } 3010 case ISD::CTTZ: 3011 case ISD::CTTZ_ZERO_UNDEF: { 3012 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 // If we have a known 1, its position is our upper bound. 3014 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3015 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3016 Known.Zero.setBitsFrom(LowBits); 3017 break; 3018 } 3019 case ISD::CTLZ: 3020 case ISD::CTLZ_ZERO_UNDEF: { 3021 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3022 // If we have a known 1, its position is our upper bound. 3023 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3024 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3025 Known.Zero.setBitsFrom(LowBits); 3026 break; 3027 } 3028 case ISD::CTPOP: { 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 // If we know some of the bits are zero, they can't be one. 3031 unsigned PossibleOnes = Known2.countMaxPopulation(); 3032 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3033 break; 3034 } 3035 case ISD::LOAD: { 3036 LoadSDNode *LD = cast<LoadSDNode>(Op); 3037 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3038 if (ISD::isNON_EXTLoad(LD) && Cst) { 3039 // Determine any common known bits from the loaded constant pool value. 3040 Type *CstTy = Cst->getType(); 3041 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3042 // If its a vector splat, then we can (quickly) reuse the scalar path. 3043 // NOTE: We assume all elements match and none are UNDEF. 3044 if (CstTy->isVectorTy()) { 3045 if (const Constant *Splat = Cst->getSplatValue()) { 3046 Cst = Splat; 3047 CstTy = Cst->getType(); 3048 } 3049 } 3050 // TODO - do we need to handle different bitwidths? 3051 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3052 // Iterate across all vector elements finding common known bits. 3053 Known.One.setAllBits(); 3054 Known.Zero.setAllBits(); 3055 for (unsigned i = 0; i != NumElts; ++i) { 3056 if (!DemandedElts[i]) 3057 continue; 3058 if (Constant *Elt = Cst->getAggregateElement(i)) { 3059 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3060 const APInt &Value = CInt->getValue(); 3061 Known.One &= Value; 3062 Known.Zero &= ~Value; 3063 continue; 3064 } 3065 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3066 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3067 Known.One &= Value; 3068 Known.Zero &= ~Value; 3069 continue; 3070 } 3071 } 3072 Known.One.clearAllBits(); 3073 Known.Zero.clearAllBits(); 3074 break; 3075 } 3076 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3077 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3078 const APInt &Value = CInt->getValue(); 3079 Known.One = Value; 3080 Known.Zero = ~Value; 3081 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3082 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3083 Known.One = Value; 3084 Known.Zero = ~Value; 3085 } 3086 } 3087 } 3088 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3089 // If this is a ZEXTLoad and we are looking at the loaded value. 3090 EVT VT = LD->getMemoryVT(); 3091 unsigned MemBits = VT.getScalarSizeInBits(); 3092 Known.Zero.setBitsFrom(MemBits); 3093 } else if (const MDNode *Ranges = LD->getRanges()) { 3094 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3095 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3096 } 3097 break; 3098 } 3099 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3100 EVT InVT = Op.getOperand(0).getValueType(); 3101 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3102 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3103 Known = Known.zext(BitWidth); 3104 break; 3105 } 3106 case ISD::ZERO_EXTEND: { 3107 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3108 Known = Known.zext(BitWidth); 3109 break; 3110 } 3111 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3112 EVT InVT = Op.getOperand(0).getValueType(); 3113 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3114 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3115 // If the sign bit is known to be zero or one, then sext will extend 3116 // it to the top bits, else it will just zext. 3117 Known = Known.sext(BitWidth); 3118 break; 3119 } 3120 case ISD::SIGN_EXTEND: { 3121 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3122 // If the sign bit is known to be zero or one, then sext will extend 3123 // it to the top bits, else it will just zext. 3124 Known = Known.sext(BitWidth); 3125 break; 3126 } 3127 case ISD::ANY_EXTEND_VECTOR_INREG: { 3128 EVT InVT = Op.getOperand(0).getValueType(); 3129 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3130 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3131 Known = Known.anyext(BitWidth); 3132 break; 3133 } 3134 case ISD::ANY_EXTEND: { 3135 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3136 Known = Known.anyext(BitWidth); 3137 break; 3138 } 3139 case ISD::TRUNCATE: { 3140 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 Known = Known.trunc(BitWidth); 3142 break; 3143 } 3144 case ISD::AssertZext: { 3145 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3146 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3147 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3148 Known.Zero |= (~InMask); 3149 Known.One &= (~Known.Zero); 3150 break; 3151 } 3152 case ISD::FGETSIGN: 3153 // All bits are zero except the low bit. 3154 Known.Zero.setBitsFrom(1); 3155 break; 3156 case ISD::USUBO: 3157 case ISD::SSUBO: 3158 if (Op.getResNo() == 1) { 3159 // If we know the result of a setcc has the top bits zero, use this info. 3160 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3161 TargetLowering::ZeroOrOneBooleanContent && 3162 BitWidth > 1) 3163 Known.Zero.setBitsFrom(1); 3164 break; 3165 } 3166 LLVM_FALLTHROUGH; 3167 case ISD::SUB: 3168 case ISD::SUBC: { 3169 assert(Op.getResNo() == 0 && 3170 "We only compute knownbits for the difference here."); 3171 3172 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3173 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3174 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3175 Known, Known2); 3176 break; 3177 } 3178 case ISD::UADDO: 3179 case ISD::SADDO: 3180 case ISD::ADDCARRY: 3181 if (Op.getResNo() == 1) { 3182 // If we know the result of a setcc has the top bits zero, use this info. 3183 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3184 TargetLowering::ZeroOrOneBooleanContent && 3185 BitWidth > 1) 3186 Known.Zero.setBitsFrom(1); 3187 break; 3188 } 3189 LLVM_FALLTHROUGH; 3190 case ISD::ADD: 3191 case ISD::ADDC: 3192 case ISD::ADDE: { 3193 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3194 3195 // With ADDE and ADDCARRY, a carry bit may be added in. 3196 KnownBits Carry(1); 3197 if (Opcode == ISD::ADDE) 3198 // Can't track carry from glue, set carry to unknown. 3199 Carry.resetAll(); 3200 else if (Opcode == ISD::ADDCARRY) 3201 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3202 // the trouble (how often will we find a known carry bit). And I haven't 3203 // tested this very much yet, but something like this might work: 3204 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3205 // Carry = Carry.zextOrTrunc(1, false); 3206 Carry.resetAll(); 3207 else 3208 Carry.setAllZero(); 3209 3210 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3211 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3212 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3213 break; 3214 } 3215 case ISD::SREM: 3216 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3217 const APInt &RA = Rem->getAPIntValue().abs(); 3218 if (RA.isPowerOf2()) { 3219 APInt LowBits = RA - 1; 3220 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3221 3222 // The low bits of the first operand are unchanged by the srem. 3223 Known.Zero = Known2.Zero & LowBits; 3224 Known.One = Known2.One & LowBits; 3225 3226 // If the first operand is non-negative or has all low bits zero, then 3227 // the upper bits are all zero. 3228 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3229 Known.Zero |= ~LowBits; 3230 3231 // If the first operand is negative and not all low bits are zero, then 3232 // the upper bits are all one. 3233 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3234 Known.One |= ~LowBits; 3235 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3236 } 3237 } 3238 break; 3239 case ISD::UREM: { 3240 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3241 const APInt &RA = Rem->getAPIntValue(); 3242 if (RA.isPowerOf2()) { 3243 APInt LowBits = (RA - 1); 3244 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3245 3246 // The upper bits are all zero, the lower ones are unchanged. 3247 Known.Zero = Known2.Zero | ~LowBits; 3248 Known.One = Known2.One & LowBits; 3249 break; 3250 } 3251 } 3252 3253 // Since the result is less than or equal to either operand, any leading 3254 // zero bits in either operand must also exist in the result. 3255 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3257 3258 uint32_t Leaders = 3259 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3260 Known.resetAll(); 3261 Known.Zero.setHighBits(Leaders); 3262 break; 3263 } 3264 case ISD::EXTRACT_ELEMENT: { 3265 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3266 const unsigned Index = Op.getConstantOperandVal(1); 3267 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3268 3269 // Remove low part of known bits mask 3270 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3271 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3272 3273 // Remove high part of known bit mask 3274 Known = Known.trunc(EltBitWidth); 3275 break; 3276 } 3277 case ISD::EXTRACT_VECTOR_ELT: { 3278 SDValue InVec = Op.getOperand(0); 3279 SDValue EltNo = Op.getOperand(1); 3280 EVT VecVT = InVec.getValueType(); 3281 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3282 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3283 3284 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3285 // anything about the extended bits. 3286 if (BitWidth > EltBitWidth) 3287 Known = Known.trunc(EltBitWidth); 3288 3289 // If we know the element index, just demand that vector element, else for 3290 // an unknown element index, ignore DemandedElts and demand them all. 3291 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3292 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3293 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3294 DemandedSrcElts = 3295 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3296 3297 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3298 if (BitWidth > EltBitWidth) 3299 Known = Known.anyext(BitWidth); 3300 break; 3301 } 3302 case ISD::INSERT_VECTOR_ELT: { 3303 // If we know the element index, split the demand between the 3304 // source vector and the inserted element, otherwise assume we need 3305 // the original demanded vector elements and the value. 3306 SDValue InVec = Op.getOperand(0); 3307 SDValue InVal = Op.getOperand(1); 3308 SDValue EltNo = Op.getOperand(2); 3309 bool DemandedVal = true; 3310 APInt DemandedVecElts = DemandedElts; 3311 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3312 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3313 unsigned EltIdx = CEltNo->getZExtValue(); 3314 DemandedVal = !!DemandedElts[EltIdx]; 3315 DemandedVecElts.clearBit(EltIdx); 3316 } 3317 Known.One.setAllBits(); 3318 Known.Zero.setAllBits(); 3319 if (DemandedVal) { 3320 Known2 = computeKnownBits(InVal, Depth + 1); 3321 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3322 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3323 } 3324 if (!!DemandedVecElts) { 3325 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3326 Known.One &= Known2.One; 3327 Known.Zero &= Known2.Zero; 3328 } 3329 break; 3330 } 3331 case ISD::BITREVERSE: { 3332 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 Known.Zero = Known2.Zero.reverseBits(); 3334 Known.One = Known2.One.reverseBits(); 3335 break; 3336 } 3337 case ISD::BSWAP: { 3338 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3339 Known.Zero = Known2.Zero.byteSwap(); 3340 Known.One = Known2.One.byteSwap(); 3341 break; 3342 } 3343 case ISD::ABS: { 3344 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3345 3346 // If the source's MSB is zero then we know the rest of the bits already. 3347 if (Known2.isNonNegative()) { 3348 Known.Zero = Known2.Zero; 3349 Known.One = Known2.One; 3350 break; 3351 } 3352 3353 // We only know that the absolute values's MSB will be zero iff there is 3354 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3355 Known2.One.clearSignBit(); 3356 if (Known2.One.getBoolValue()) { 3357 Known.Zero = APInt::getSignMask(BitWidth); 3358 break; 3359 } 3360 break; 3361 } 3362 case ISD::UMIN: { 3363 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3364 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3365 3366 // UMIN - we know that the result will have the maximum of the 3367 // known zero leading bits of the inputs. 3368 unsigned LeadZero = Known.countMinLeadingZeros(); 3369 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3370 3371 Known.Zero &= Known2.Zero; 3372 Known.One &= Known2.One; 3373 Known.Zero.setHighBits(LeadZero); 3374 break; 3375 } 3376 case ISD::UMAX: { 3377 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3378 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3379 3380 // UMAX - we know that the result will have the maximum of the 3381 // known one leading bits of the inputs. 3382 unsigned LeadOne = Known.countMinLeadingOnes(); 3383 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3384 3385 Known.Zero &= Known2.Zero; 3386 Known.One &= Known2.One; 3387 Known.One.setHighBits(LeadOne); 3388 break; 3389 } 3390 case ISD::SMIN: 3391 case ISD::SMAX: { 3392 // If we have a clamp pattern, we know that the number of sign bits will be 3393 // the minimum of the clamp min/max range. 3394 bool IsMax = (Opcode == ISD::SMAX); 3395 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3396 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3397 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3398 CstHigh = 3399 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3400 if (CstLow && CstHigh) { 3401 if (!IsMax) 3402 std::swap(CstLow, CstHigh); 3403 3404 const APInt &ValueLow = CstLow->getAPIntValue(); 3405 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3406 if (ValueLow.sle(ValueHigh)) { 3407 unsigned LowSignBits = ValueLow.getNumSignBits(); 3408 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3409 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3410 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3411 Known.One.setHighBits(MinSignBits); 3412 break; 3413 } 3414 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3415 Known.Zero.setHighBits(MinSignBits); 3416 break; 3417 } 3418 } 3419 } 3420 3421 // Fallback - just get the shared known bits of the operands. 3422 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3423 if (Known.isUnknown()) break; // Early-out 3424 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3425 Known.Zero &= Known2.Zero; 3426 Known.One &= Known2.One; 3427 break; 3428 } 3429 case ISD::FrameIndex: 3430 case ISD::TargetFrameIndex: 3431 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3432 break; 3433 3434 default: 3435 if (Opcode < ISD::BUILTIN_OP_END) 3436 break; 3437 LLVM_FALLTHROUGH; 3438 case ISD::INTRINSIC_WO_CHAIN: 3439 case ISD::INTRINSIC_W_CHAIN: 3440 case ISD::INTRINSIC_VOID: 3441 // Allow the target to implement this method for its nodes. 3442 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3443 break; 3444 } 3445 3446 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3447 return Known; 3448 } 3449 3450 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3451 SDValue N1) const { 3452 // X + 0 never overflow 3453 if (isNullConstant(N1)) 3454 return OFK_Never; 3455 3456 KnownBits N1Known = computeKnownBits(N1); 3457 if (N1Known.Zero.getBoolValue()) { 3458 KnownBits N0Known = computeKnownBits(N0); 3459 3460 bool overflow; 3461 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3462 if (!overflow) 3463 return OFK_Never; 3464 } 3465 3466 // mulhi + 1 never overflow 3467 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3468 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3469 return OFK_Never; 3470 3471 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3472 KnownBits N0Known = computeKnownBits(N0); 3473 3474 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3475 return OFK_Never; 3476 } 3477 3478 return OFK_Sometime; 3479 } 3480 3481 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3482 EVT OpVT = Val.getValueType(); 3483 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3484 3485 // Is the constant a known power of 2? 3486 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3487 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3488 3489 // A left-shift of a constant one will have exactly one bit set because 3490 // shifting the bit off the end is undefined. 3491 if (Val.getOpcode() == ISD::SHL) { 3492 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3493 if (C && C->getAPIntValue() == 1) 3494 return true; 3495 } 3496 3497 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3498 // one bit set. 3499 if (Val.getOpcode() == ISD::SRL) { 3500 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3501 if (C && C->getAPIntValue().isSignMask()) 3502 return true; 3503 } 3504 3505 // Are all operands of a build vector constant powers of two? 3506 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3507 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3508 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3509 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3510 return false; 3511 })) 3512 return true; 3513 3514 // More could be done here, though the above checks are enough 3515 // to handle some common cases. 3516 3517 // Fall back to computeKnownBits to catch other known cases. 3518 KnownBits Known = computeKnownBits(Val); 3519 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3520 } 3521 3522 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3523 EVT VT = Op.getValueType(); 3524 APInt DemandedElts = VT.isVector() 3525 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3526 : APInt(1, 1); 3527 return ComputeNumSignBits(Op, DemandedElts, Depth); 3528 } 3529 3530 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3531 unsigned Depth) const { 3532 EVT VT = Op.getValueType(); 3533 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3534 unsigned VTBits = VT.getScalarSizeInBits(); 3535 unsigned NumElts = DemandedElts.getBitWidth(); 3536 unsigned Tmp, Tmp2; 3537 unsigned FirstAnswer = 1; 3538 3539 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3540 const APInt &Val = C->getAPIntValue(); 3541 return Val.getNumSignBits(); 3542 } 3543 3544 if (Depth >= MaxRecursionDepth) 3545 return 1; // Limit search depth. 3546 3547 if (!DemandedElts) 3548 return 1; // No demanded elts, better to assume we don't know anything. 3549 3550 unsigned Opcode = Op.getOpcode(); 3551 switch (Opcode) { 3552 default: break; 3553 case ISD::AssertSext: 3554 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3555 return VTBits-Tmp+1; 3556 case ISD::AssertZext: 3557 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3558 return VTBits-Tmp; 3559 3560 case ISD::BUILD_VECTOR: 3561 Tmp = VTBits; 3562 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3563 if (!DemandedElts[i]) 3564 continue; 3565 3566 SDValue SrcOp = Op.getOperand(i); 3567 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3568 3569 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3570 if (SrcOp.getValueSizeInBits() != VTBits) { 3571 assert(SrcOp.getValueSizeInBits() > VTBits && 3572 "Expected BUILD_VECTOR implicit truncation"); 3573 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3574 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3575 } 3576 Tmp = std::min(Tmp, Tmp2); 3577 } 3578 return Tmp; 3579 3580 case ISD::VECTOR_SHUFFLE: { 3581 // Collect the minimum number of sign bits that are shared by every vector 3582 // element referenced by the shuffle. 3583 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3584 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3585 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3586 for (unsigned i = 0; i != NumElts; ++i) { 3587 int M = SVN->getMaskElt(i); 3588 if (!DemandedElts[i]) 3589 continue; 3590 // For UNDEF elements, we don't know anything about the common state of 3591 // the shuffle result. 3592 if (M < 0) 3593 return 1; 3594 if ((unsigned)M < NumElts) 3595 DemandedLHS.setBit((unsigned)M % NumElts); 3596 else 3597 DemandedRHS.setBit((unsigned)M % NumElts); 3598 } 3599 Tmp = std::numeric_limits<unsigned>::max(); 3600 if (!!DemandedLHS) 3601 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3602 if (!!DemandedRHS) { 3603 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3604 Tmp = std::min(Tmp, Tmp2); 3605 } 3606 // If we don't know anything, early out and try computeKnownBits fall-back. 3607 if (Tmp == 1) 3608 break; 3609 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3610 return Tmp; 3611 } 3612 3613 case ISD::BITCAST: { 3614 SDValue N0 = Op.getOperand(0); 3615 EVT SrcVT = N0.getValueType(); 3616 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3617 3618 // Ignore bitcasts from unsupported types.. 3619 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3620 break; 3621 3622 // Fast handling of 'identity' bitcasts. 3623 if (VTBits == SrcBits) 3624 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3625 3626 bool IsLE = getDataLayout().isLittleEndian(); 3627 3628 // Bitcast 'large element' scalar/vector to 'small element' vector. 3629 if ((SrcBits % VTBits) == 0) { 3630 assert(VT.isVector() && "Expected bitcast to vector"); 3631 3632 unsigned Scale = SrcBits / VTBits; 3633 APInt SrcDemandedElts(NumElts / Scale, 0); 3634 for (unsigned i = 0; i != NumElts; ++i) 3635 if (DemandedElts[i]) 3636 SrcDemandedElts.setBit(i / Scale); 3637 3638 // Fast case - sign splat can be simply split across the small elements. 3639 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3640 if (Tmp == SrcBits) 3641 return VTBits; 3642 3643 // Slow case - determine how far the sign extends into each sub-element. 3644 Tmp2 = VTBits; 3645 for (unsigned i = 0; i != NumElts; ++i) 3646 if (DemandedElts[i]) { 3647 unsigned SubOffset = i % Scale; 3648 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3649 SubOffset = SubOffset * VTBits; 3650 if (Tmp <= SubOffset) 3651 return 1; 3652 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3653 } 3654 return Tmp2; 3655 } 3656 break; 3657 } 3658 3659 case ISD::SIGN_EXTEND: 3660 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3661 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3662 case ISD::SIGN_EXTEND_INREG: 3663 // Max of the input and what this extends. 3664 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3665 Tmp = VTBits-Tmp+1; 3666 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3667 return std::max(Tmp, Tmp2); 3668 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3669 SDValue Src = Op.getOperand(0); 3670 EVT SrcVT = Src.getValueType(); 3671 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3672 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3673 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3674 } 3675 case ISD::SRA: 3676 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3677 // SRA X, C -> adds C sign bits. 3678 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3679 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3680 else if (const APInt *ShAmt = 3681 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3682 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3683 return Tmp; 3684 case ISD::SHL: 3685 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3686 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3687 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3688 if (ShAmt->ult(Tmp)) 3689 return Tmp - ShAmt->getZExtValue(); 3690 } else if (const APInt *ShAmt = 3691 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3692 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3693 if (ShAmt->ult(Tmp)) 3694 return Tmp - ShAmt->getZExtValue(); 3695 } 3696 break; 3697 case ISD::AND: 3698 case ISD::OR: 3699 case ISD::XOR: // NOT is handled here. 3700 // Logical binary ops preserve the number of sign bits at the worst. 3701 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3702 if (Tmp != 1) { 3703 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3704 FirstAnswer = std::min(Tmp, Tmp2); 3705 // We computed what we know about the sign bits as our first 3706 // answer. Now proceed to the generic code that uses 3707 // computeKnownBits, and pick whichever answer is better. 3708 } 3709 break; 3710 3711 case ISD::SELECT: 3712 case ISD::VSELECT: 3713 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3714 if (Tmp == 1) return 1; // Early out. 3715 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3716 return std::min(Tmp, Tmp2); 3717 case ISD::SELECT_CC: 3718 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3719 if (Tmp == 1) return 1; // Early out. 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3721 return std::min(Tmp, Tmp2); 3722 3723 case ISD::SMIN: 3724 case ISD::SMAX: { 3725 // If we have a clamp pattern, we know that the number of sign bits will be 3726 // the minimum of the clamp min/max range. 3727 bool IsMax = (Opcode == ISD::SMAX); 3728 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3729 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3730 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3731 CstHigh = 3732 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3733 if (CstLow && CstHigh) { 3734 if (!IsMax) 3735 std::swap(CstLow, CstHigh); 3736 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3737 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3738 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3739 return std::min(Tmp, Tmp2); 3740 } 3741 } 3742 3743 // Fallback - just get the minimum number of sign bits of the operands. 3744 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3745 if (Tmp == 1) 3746 return 1; // Early out. 3747 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3748 return std::min(Tmp, Tmp2); 3749 } 3750 case ISD::UMIN: 3751 case ISD::UMAX: 3752 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3753 if (Tmp == 1) 3754 return 1; // Early out. 3755 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3756 return std::min(Tmp, Tmp2); 3757 case ISD::SADDO: 3758 case ISD::UADDO: 3759 case ISD::SSUBO: 3760 case ISD::USUBO: 3761 case ISD::SMULO: 3762 case ISD::UMULO: 3763 if (Op.getResNo() != 1) 3764 break; 3765 // The boolean result conforms to getBooleanContents. Fall through. 3766 // If setcc returns 0/-1, all bits are sign bits. 3767 // We know that we have an integer-based boolean since these operations 3768 // are only available for integer. 3769 if (TLI->getBooleanContents(VT.isVector(), false) == 3770 TargetLowering::ZeroOrNegativeOneBooleanContent) 3771 return VTBits; 3772 break; 3773 case ISD::SETCC: 3774 case ISD::STRICT_FSETCC: 3775 case ISD::STRICT_FSETCCS: { 3776 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3777 // If setcc returns 0/-1, all bits are sign bits. 3778 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3779 TargetLowering::ZeroOrNegativeOneBooleanContent) 3780 return VTBits; 3781 break; 3782 } 3783 case ISD::ROTL: 3784 case ISD::ROTR: 3785 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3786 3787 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3788 if (Tmp == VTBits) 3789 return VTBits; 3790 3791 if (ConstantSDNode *C = 3792 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3793 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3794 3795 // Handle rotate right by N like a rotate left by 32-N. 3796 if (Opcode == ISD::ROTR) 3797 RotAmt = (VTBits - RotAmt) % VTBits; 3798 3799 // If we aren't rotating out all of the known-in sign bits, return the 3800 // number that are left. This handles rotl(sext(x), 1) for example. 3801 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3802 } 3803 break; 3804 case ISD::ADD: 3805 case ISD::ADDC: 3806 // Add can have at most one carry bit. Thus we know that the output 3807 // is, at worst, one more bit than the inputs. 3808 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3809 if (Tmp == 1) return 1; // Early out. 3810 3811 // Special case decrementing a value (ADD X, -1): 3812 if (ConstantSDNode *CRHS = 3813 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3814 if (CRHS->isAllOnesValue()) { 3815 KnownBits Known = 3816 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3817 3818 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3819 // sign bits set. 3820 if ((Known.Zero | 1).isAllOnesValue()) 3821 return VTBits; 3822 3823 // If we are subtracting one from a positive number, there is no carry 3824 // out of the result. 3825 if (Known.isNonNegative()) 3826 return Tmp; 3827 } 3828 3829 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3830 if (Tmp2 == 1) return 1; // Early out. 3831 return std::min(Tmp, Tmp2) - 1; 3832 case ISD::SUB: 3833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3834 if (Tmp2 == 1) return 1; // Early out. 3835 3836 // Handle NEG. 3837 if (ConstantSDNode *CLHS = 3838 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3839 if (CLHS->isNullValue()) { 3840 KnownBits Known = 3841 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3842 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3843 // sign bits set. 3844 if ((Known.Zero | 1).isAllOnesValue()) 3845 return VTBits; 3846 3847 // If the input is known to be positive (the sign bit is known clear), 3848 // the output of the NEG has the same number of sign bits as the input. 3849 if (Known.isNonNegative()) 3850 return Tmp2; 3851 3852 // Otherwise, we treat this like a SUB. 3853 } 3854 3855 // Sub can have at most one carry bit. Thus we know that the output 3856 // is, at worst, one more bit than the inputs. 3857 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3858 if (Tmp == 1) return 1; // Early out. 3859 return std::min(Tmp, Tmp2) - 1; 3860 case ISD::MUL: { 3861 // The output of the Mul can be at most twice the valid bits in the inputs. 3862 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3863 if (SignBitsOp0 == 1) 3864 break; 3865 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3866 if (SignBitsOp1 == 1) 3867 break; 3868 unsigned OutValidBits = 3869 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3870 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3871 } 3872 case ISD::TRUNCATE: { 3873 // Check if the sign bits of source go down as far as the truncated value. 3874 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3875 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3876 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3877 return NumSrcSignBits - (NumSrcBits - VTBits); 3878 break; 3879 } 3880 case ISD::EXTRACT_ELEMENT: { 3881 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3882 const int BitWidth = Op.getValueSizeInBits(); 3883 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3884 3885 // Get reverse index (starting from 1), Op1 value indexes elements from 3886 // little end. Sign starts at big end. 3887 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3888 3889 // If the sign portion ends in our element the subtraction gives correct 3890 // result. Otherwise it gives either negative or > bitwidth result 3891 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3892 } 3893 case ISD::INSERT_VECTOR_ELT: { 3894 // If we know the element index, split the demand between the 3895 // source vector and the inserted element, otherwise assume we need 3896 // the original demanded vector elements and the value. 3897 SDValue InVec = Op.getOperand(0); 3898 SDValue InVal = Op.getOperand(1); 3899 SDValue EltNo = Op.getOperand(2); 3900 bool DemandedVal = true; 3901 APInt DemandedVecElts = DemandedElts; 3902 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3903 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3904 unsigned EltIdx = CEltNo->getZExtValue(); 3905 DemandedVal = !!DemandedElts[EltIdx]; 3906 DemandedVecElts.clearBit(EltIdx); 3907 } 3908 Tmp = std::numeric_limits<unsigned>::max(); 3909 if (DemandedVal) { 3910 // TODO - handle implicit truncation of inserted elements. 3911 if (InVal.getScalarValueSizeInBits() != VTBits) 3912 break; 3913 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3914 Tmp = std::min(Tmp, Tmp2); 3915 } 3916 if (!!DemandedVecElts) { 3917 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3918 Tmp = std::min(Tmp, Tmp2); 3919 } 3920 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3921 return Tmp; 3922 } 3923 case ISD::EXTRACT_VECTOR_ELT: { 3924 SDValue InVec = Op.getOperand(0); 3925 SDValue EltNo = Op.getOperand(1); 3926 EVT VecVT = InVec.getValueType(); 3927 const unsigned BitWidth = Op.getValueSizeInBits(); 3928 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3929 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3930 3931 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3932 // anything about sign bits. But if the sizes match we can derive knowledge 3933 // about sign bits from the vector operand. 3934 if (BitWidth != EltBitWidth) 3935 break; 3936 3937 // If we know the element index, just demand that vector element, else for 3938 // an unknown element index, ignore DemandedElts and demand them all. 3939 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3940 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3941 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3942 DemandedSrcElts = 3943 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3944 3945 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3946 } 3947 case ISD::EXTRACT_SUBVECTOR: { 3948 // If we know the element index, just demand that subvector elements, 3949 // otherwise demand them all. 3950 SDValue Src = Op.getOperand(0); 3951 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3952 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3953 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3954 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3955 // Offset the demanded elts by the subvector index. 3956 uint64_t Idx = SubIdx->getZExtValue(); 3957 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3958 } 3959 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3960 } 3961 case ISD::CONCAT_VECTORS: { 3962 // Determine the minimum number of sign bits across all demanded 3963 // elts of the input vectors. Early out if the result is already 1. 3964 Tmp = std::numeric_limits<unsigned>::max(); 3965 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3966 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3967 unsigned NumSubVectors = Op.getNumOperands(); 3968 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3969 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3970 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3971 if (!DemandedSub) 3972 continue; 3973 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3974 Tmp = std::min(Tmp, Tmp2); 3975 } 3976 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3977 return Tmp; 3978 } 3979 case ISD::INSERT_SUBVECTOR: { 3980 // If we know the element index, demand any elements from the subvector and 3981 // the remainder from the src its inserted into, otherwise assume we need 3982 // the original demanded base elements and ALL the inserted subvector 3983 // elements. 3984 SDValue Src = Op.getOperand(0); 3985 SDValue Sub = Op.getOperand(1); 3986 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3987 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3988 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 3989 APInt DemandedSrcElts = DemandedElts; 3990 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3991 uint64_t Idx = SubIdx->getZExtValue(); 3992 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3993 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3994 } 3995 Tmp = std::numeric_limits<unsigned>::max(); 3996 if (!!DemandedSubElts) { 3997 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3998 if (Tmp == 1) 3999 return 1; // early-out 4000 } 4001 if (!!DemandedSrcElts) { 4002 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4003 Tmp = std::min(Tmp, Tmp2); 4004 } 4005 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4006 return Tmp; 4007 } 4008 } 4009 4010 // If we are looking at the loaded value of the SDNode. 4011 if (Op.getResNo() == 0) { 4012 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4013 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4014 unsigned ExtType = LD->getExtensionType(); 4015 switch (ExtType) { 4016 default: break; 4017 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4018 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4019 return VTBits - Tmp + 1; 4020 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4021 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4022 return VTBits - Tmp; 4023 case ISD::NON_EXTLOAD: 4024 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4025 // We only need to handle vectors - computeKnownBits should handle 4026 // scalar cases. 4027 Type *CstTy = Cst->getType(); 4028 if (CstTy->isVectorTy() && 4029 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4030 Tmp = VTBits; 4031 for (unsigned i = 0; i != NumElts; ++i) { 4032 if (!DemandedElts[i]) 4033 continue; 4034 if (Constant *Elt = Cst->getAggregateElement(i)) { 4035 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4036 const APInt &Value = CInt->getValue(); 4037 Tmp = std::min(Tmp, Value.getNumSignBits()); 4038 continue; 4039 } 4040 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4041 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4042 Tmp = std::min(Tmp, Value.getNumSignBits()); 4043 continue; 4044 } 4045 } 4046 // Unknown type. Conservatively assume no bits match sign bit. 4047 return 1; 4048 } 4049 return Tmp; 4050 } 4051 } 4052 break; 4053 } 4054 } 4055 } 4056 4057 // Allow the target to implement this method for its nodes. 4058 if (Opcode >= ISD::BUILTIN_OP_END || 4059 Opcode == ISD::INTRINSIC_WO_CHAIN || 4060 Opcode == ISD::INTRINSIC_W_CHAIN || 4061 Opcode == ISD::INTRINSIC_VOID) { 4062 unsigned NumBits = 4063 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4064 if (NumBits > 1) 4065 FirstAnswer = std::max(FirstAnswer, NumBits); 4066 } 4067 4068 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4069 // use this information. 4070 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4071 4072 APInt Mask; 4073 if (Known.isNonNegative()) { // sign bit is 0 4074 Mask = Known.Zero; 4075 } else if (Known.isNegative()) { // sign bit is 1; 4076 Mask = Known.One; 4077 } else { 4078 // Nothing known. 4079 return FirstAnswer; 4080 } 4081 4082 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4083 // the number of identical bits in the top of the input value. 4084 Mask <<= Mask.getBitWidth()-VTBits; 4085 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4086 } 4087 4088 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4089 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4090 !isa<ConstantSDNode>(Op.getOperand(1))) 4091 return false; 4092 4093 if (Op.getOpcode() == ISD::OR && 4094 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4095 return false; 4096 4097 return true; 4098 } 4099 4100 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4101 // If we're told that NaNs won't happen, assume they won't. 4102 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4103 return true; 4104 4105 if (Depth >= MaxRecursionDepth) 4106 return false; // Limit search depth. 4107 4108 // TODO: Handle vectors. 4109 // If the value is a constant, we can obviously see if it is a NaN or not. 4110 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4111 return !C->getValueAPF().isNaN() || 4112 (SNaN && !C->getValueAPF().isSignaling()); 4113 } 4114 4115 unsigned Opcode = Op.getOpcode(); 4116 switch (Opcode) { 4117 case ISD::FADD: 4118 case ISD::FSUB: 4119 case ISD::FMUL: 4120 case ISD::FDIV: 4121 case ISD::FREM: 4122 case ISD::FSIN: 4123 case ISD::FCOS: { 4124 if (SNaN) 4125 return true; 4126 // TODO: Need isKnownNeverInfinity 4127 return false; 4128 } 4129 case ISD::FCANONICALIZE: 4130 case ISD::FEXP: 4131 case ISD::FEXP2: 4132 case ISD::FTRUNC: 4133 case ISD::FFLOOR: 4134 case ISD::FCEIL: 4135 case ISD::FROUND: 4136 case ISD::FRINT: 4137 case ISD::FNEARBYINT: { 4138 if (SNaN) 4139 return true; 4140 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4141 } 4142 case ISD::FABS: 4143 case ISD::FNEG: 4144 case ISD::FCOPYSIGN: { 4145 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4146 } 4147 case ISD::SELECT: 4148 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4149 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4150 case ISD::FP_EXTEND: 4151 case ISD::FP_ROUND: { 4152 if (SNaN) 4153 return true; 4154 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4155 } 4156 case ISD::SINT_TO_FP: 4157 case ISD::UINT_TO_FP: 4158 return true; 4159 case ISD::FMA: 4160 case ISD::FMAD: { 4161 if (SNaN) 4162 return true; 4163 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4164 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4165 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4166 } 4167 case ISD::FSQRT: // Need is known positive 4168 case ISD::FLOG: 4169 case ISD::FLOG2: 4170 case ISD::FLOG10: 4171 case ISD::FPOWI: 4172 case ISD::FPOW: { 4173 if (SNaN) 4174 return true; 4175 // TODO: Refine on operand 4176 return false; 4177 } 4178 case ISD::FMINNUM: 4179 case ISD::FMAXNUM: { 4180 // Only one needs to be known not-nan, since it will be returned if the 4181 // other ends up being one. 4182 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4183 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4184 } 4185 case ISD::FMINNUM_IEEE: 4186 case ISD::FMAXNUM_IEEE: { 4187 if (SNaN) 4188 return true; 4189 // This can return a NaN if either operand is an sNaN, or if both operands 4190 // are NaN. 4191 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4192 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4193 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4194 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4195 } 4196 case ISD::FMINIMUM: 4197 case ISD::FMAXIMUM: { 4198 // TODO: Does this quiet or return the origina NaN as-is? 4199 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4200 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4201 } 4202 case ISD::EXTRACT_VECTOR_ELT: { 4203 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4204 } 4205 default: 4206 if (Opcode >= ISD::BUILTIN_OP_END || 4207 Opcode == ISD::INTRINSIC_WO_CHAIN || 4208 Opcode == ISD::INTRINSIC_W_CHAIN || 4209 Opcode == ISD::INTRINSIC_VOID) { 4210 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4211 } 4212 4213 return false; 4214 } 4215 } 4216 4217 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4218 assert(Op.getValueType().isFloatingPoint() && 4219 "Floating point type expected"); 4220 4221 // If the value is a constant, we can obviously see if it is a zero or not. 4222 // TODO: Add BuildVector support. 4223 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4224 return !C->isZero(); 4225 return false; 4226 } 4227 4228 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4229 assert(!Op.getValueType().isFloatingPoint() && 4230 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4231 4232 // If the value is a constant, we can obviously see if it is a zero or not. 4233 if (ISD::matchUnaryPredicate( 4234 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4235 return true; 4236 4237 // TODO: Recognize more cases here. 4238 switch (Op.getOpcode()) { 4239 default: break; 4240 case ISD::OR: 4241 if (isKnownNeverZero(Op.getOperand(1)) || 4242 isKnownNeverZero(Op.getOperand(0))) 4243 return true; 4244 break; 4245 } 4246 4247 return false; 4248 } 4249 4250 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4251 // Check the obvious case. 4252 if (A == B) return true; 4253 4254 // For for negative and positive zero. 4255 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4256 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4257 if (CA->isZero() && CB->isZero()) return true; 4258 4259 // Otherwise they may not be equal. 4260 return false; 4261 } 4262 4263 // FIXME: unify with llvm::haveNoCommonBitsSet. 4264 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4265 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4266 assert(A.getValueType() == B.getValueType() && 4267 "Values must have the same type"); 4268 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4269 } 4270 4271 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4272 ArrayRef<SDValue> Ops, 4273 SelectionDAG &DAG) { 4274 int NumOps = Ops.size(); 4275 assert(NumOps != 0 && "Can't build an empty vector!"); 4276 assert(!VT.isScalableVector() && 4277 "BUILD_VECTOR cannot be used with scalable types"); 4278 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4279 "Incorrect element count in BUILD_VECTOR!"); 4280 4281 // BUILD_VECTOR of UNDEFs is UNDEF. 4282 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4283 return DAG.getUNDEF(VT); 4284 4285 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4286 SDValue IdentitySrc; 4287 bool IsIdentity = true; 4288 for (int i = 0; i != NumOps; ++i) { 4289 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4290 Ops[i].getOperand(0).getValueType() != VT || 4291 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4292 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4293 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4294 IsIdentity = false; 4295 break; 4296 } 4297 IdentitySrc = Ops[i].getOperand(0); 4298 } 4299 if (IsIdentity) 4300 return IdentitySrc; 4301 4302 return SDValue(); 4303 } 4304 4305 /// Try to simplify vector concatenation to an input value, undef, or build 4306 /// vector. 4307 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4308 ArrayRef<SDValue> Ops, 4309 SelectionDAG &DAG) { 4310 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4311 assert(llvm::all_of(Ops, 4312 [Ops](SDValue Op) { 4313 return Ops[0].getValueType() == Op.getValueType(); 4314 }) && 4315 "Concatenation of vectors with inconsistent value types!"); 4316 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4317 VT.getVectorNumElements() && 4318 "Incorrect element count in vector concatenation!"); 4319 4320 if (Ops.size() == 1) 4321 return Ops[0]; 4322 4323 // Concat of UNDEFs is UNDEF. 4324 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4325 return DAG.getUNDEF(VT); 4326 4327 // Scan the operands and look for extract operations from a single source 4328 // that correspond to insertion at the same location via this concatenation: 4329 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4330 SDValue IdentitySrc; 4331 bool IsIdentity = true; 4332 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4333 SDValue Op = Ops[i]; 4334 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4335 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4336 Op.getOperand(0).getValueType() != VT || 4337 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4338 !isa<ConstantSDNode>(Op.getOperand(1)) || 4339 Op.getConstantOperandVal(1) != IdentityIndex) { 4340 IsIdentity = false; 4341 break; 4342 } 4343 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4344 "Unexpected identity source vector for concat of extracts"); 4345 IdentitySrc = Op.getOperand(0); 4346 } 4347 if (IsIdentity) { 4348 assert(IdentitySrc && "Failed to set source vector of extracts"); 4349 return IdentitySrc; 4350 } 4351 4352 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4353 // simplified to one big BUILD_VECTOR. 4354 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4355 EVT SVT = VT.getScalarType(); 4356 SmallVector<SDValue, 16> Elts; 4357 for (SDValue Op : Ops) { 4358 EVT OpVT = Op.getValueType(); 4359 if (Op.isUndef()) 4360 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4361 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4362 Elts.append(Op->op_begin(), Op->op_end()); 4363 else 4364 return SDValue(); 4365 } 4366 4367 // BUILD_VECTOR requires all inputs to be of the same type, find the 4368 // maximum type and extend them all. 4369 for (SDValue Op : Elts) 4370 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4371 4372 if (SVT.bitsGT(VT.getScalarType())) 4373 for (SDValue &Op : Elts) 4374 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4375 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4376 : DAG.getSExtOrTrunc(Op, DL, SVT); 4377 4378 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4379 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4380 return V; 4381 } 4382 4383 /// Gets or creates the specified node. 4384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4385 FoldingSetNodeID ID; 4386 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4387 void *IP = nullptr; 4388 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4389 return SDValue(E, 0); 4390 4391 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4392 getVTList(VT)); 4393 CSEMap.InsertNode(N, IP); 4394 4395 InsertNode(N); 4396 SDValue V = SDValue(N, 0); 4397 NewSDValueDbgMsg(V, "Creating new node: ", this); 4398 return V; 4399 } 4400 4401 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4402 SDValue Operand, const SDNodeFlags Flags) { 4403 // Constant fold unary operations with an integer constant operand. Even 4404 // opaque constant will be folded, because the folding of unary operations 4405 // doesn't create new constants with different values. Nevertheless, the 4406 // opaque flag is preserved during folding to prevent future folding with 4407 // other constants. 4408 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4409 const APInt &Val = C->getAPIntValue(); 4410 switch (Opcode) { 4411 default: break; 4412 case ISD::SIGN_EXTEND: 4413 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4414 C->isTargetOpcode(), C->isOpaque()); 4415 case ISD::TRUNCATE: 4416 if (C->isOpaque()) 4417 break; 4418 LLVM_FALLTHROUGH; 4419 case ISD::ANY_EXTEND: 4420 case ISD::ZERO_EXTEND: 4421 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4422 C->isTargetOpcode(), C->isOpaque()); 4423 case ISD::UINT_TO_FP: 4424 case ISD::SINT_TO_FP: { 4425 APFloat apf(EVTToAPFloatSemantics(VT), 4426 APInt::getNullValue(VT.getSizeInBits())); 4427 (void)apf.convertFromAPInt(Val, 4428 Opcode==ISD::SINT_TO_FP, 4429 APFloat::rmNearestTiesToEven); 4430 return getConstantFP(apf, DL, VT); 4431 } 4432 case ISD::BITCAST: 4433 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4434 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4435 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4436 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4437 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4438 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4439 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4440 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4441 break; 4442 case ISD::ABS: 4443 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4444 C->isOpaque()); 4445 case ISD::BITREVERSE: 4446 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4447 C->isOpaque()); 4448 case ISD::BSWAP: 4449 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4450 C->isOpaque()); 4451 case ISD::CTPOP: 4452 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4453 C->isOpaque()); 4454 case ISD::CTLZ: 4455 case ISD::CTLZ_ZERO_UNDEF: 4456 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4457 C->isOpaque()); 4458 case ISD::CTTZ: 4459 case ISD::CTTZ_ZERO_UNDEF: 4460 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4461 C->isOpaque()); 4462 case ISD::FP16_TO_FP: { 4463 bool Ignored; 4464 APFloat FPV(APFloat::IEEEhalf(), 4465 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4466 4467 // This can return overflow, underflow, or inexact; we don't care. 4468 // FIXME need to be more flexible about rounding mode. 4469 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4470 APFloat::rmNearestTiesToEven, &Ignored); 4471 return getConstantFP(FPV, DL, VT); 4472 } 4473 } 4474 } 4475 4476 // Constant fold unary operations with a floating point constant operand. 4477 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4478 APFloat V = C->getValueAPF(); // make copy 4479 switch (Opcode) { 4480 case ISD::FNEG: 4481 V.changeSign(); 4482 return getConstantFP(V, DL, VT); 4483 case ISD::FABS: 4484 V.clearSign(); 4485 return getConstantFP(V, DL, VT); 4486 case ISD::FCEIL: { 4487 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4488 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4489 return getConstantFP(V, DL, VT); 4490 break; 4491 } 4492 case ISD::FTRUNC: { 4493 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4494 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4495 return getConstantFP(V, DL, VT); 4496 break; 4497 } 4498 case ISD::FFLOOR: { 4499 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4500 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4501 return getConstantFP(V, DL, VT); 4502 break; 4503 } 4504 case ISD::FP_EXTEND: { 4505 bool ignored; 4506 // This can return overflow, underflow, or inexact; we don't care. 4507 // FIXME need to be more flexible about rounding mode. 4508 (void)V.convert(EVTToAPFloatSemantics(VT), 4509 APFloat::rmNearestTiesToEven, &ignored); 4510 return getConstantFP(V, DL, VT); 4511 } 4512 case ISD::FP_TO_SINT: 4513 case ISD::FP_TO_UINT: { 4514 bool ignored; 4515 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4516 // FIXME need to be more flexible about rounding mode. 4517 APFloat::opStatus s = 4518 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4519 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4520 break; 4521 return getConstant(IntVal, DL, VT); 4522 } 4523 case ISD::BITCAST: 4524 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4525 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4526 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4527 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4528 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4529 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4530 break; 4531 case ISD::FP_TO_FP16: { 4532 bool Ignored; 4533 // This can return overflow, underflow, or inexact; we don't care. 4534 // FIXME need to be more flexible about rounding mode. 4535 (void)V.convert(APFloat::IEEEhalf(), 4536 APFloat::rmNearestTiesToEven, &Ignored); 4537 return getConstant(V.bitcastToAPInt(), DL, VT); 4538 } 4539 } 4540 } 4541 4542 // Constant fold unary operations with a vector integer or float operand. 4543 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4544 if (BV->isConstant()) { 4545 switch (Opcode) { 4546 default: 4547 // FIXME: Entirely reasonable to perform folding of other unary 4548 // operations here as the need arises. 4549 break; 4550 case ISD::FNEG: 4551 case ISD::FABS: 4552 case ISD::FCEIL: 4553 case ISD::FTRUNC: 4554 case ISD::FFLOOR: 4555 case ISD::FP_EXTEND: 4556 case ISD::FP_TO_SINT: 4557 case ISD::FP_TO_UINT: 4558 case ISD::TRUNCATE: 4559 case ISD::ANY_EXTEND: 4560 case ISD::ZERO_EXTEND: 4561 case ISD::SIGN_EXTEND: 4562 case ISD::UINT_TO_FP: 4563 case ISD::SINT_TO_FP: 4564 case ISD::ABS: 4565 case ISD::BITREVERSE: 4566 case ISD::BSWAP: 4567 case ISD::CTLZ: 4568 case ISD::CTLZ_ZERO_UNDEF: 4569 case ISD::CTTZ: 4570 case ISD::CTTZ_ZERO_UNDEF: 4571 case ISD::CTPOP: { 4572 SDValue Ops = { Operand }; 4573 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4574 return Fold; 4575 } 4576 } 4577 } 4578 } 4579 4580 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4581 switch (Opcode) { 4582 case ISD::FREEZE: 4583 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4584 break; 4585 case ISD::TokenFactor: 4586 case ISD::MERGE_VALUES: 4587 case ISD::CONCAT_VECTORS: 4588 return Operand; // Factor, merge or concat of one node? No need. 4589 case ISD::BUILD_VECTOR: { 4590 // Attempt to simplify BUILD_VECTOR. 4591 SDValue Ops[] = {Operand}; 4592 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4593 return V; 4594 break; 4595 } 4596 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4597 case ISD::FP_EXTEND: 4598 assert(VT.isFloatingPoint() && 4599 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4600 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4601 assert((!VT.isVector() || 4602 VT.getVectorNumElements() == 4603 Operand.getValueType().getVectorNumElements()) && 4604 "Vector element count mismatch!"); 4605 assert(Operand.getValueType().bitsLT(VT) && 4606 "Invalid fpext node, dst < src!"); 4607 if (Operand.isUndef()) 4608 return getUNDEF(VT); 4609 break; 4610 case ISD::FP_TO_SINT: 4611 case ISD::FP_TO_UINT: 4612 if (Operand.isUndef()) 4613 return getUNDEF(VT); 4614 break; 4615 case ISD::SINT_TO_FP: 4616 case ISD::UINT_TO_FP: 4617 // [us]itofp(undef) = 0, because the result value is bounded. 4618 if (Operand.isUndef()) 4619 return getConstantFP(0.0, DL, VT); 4620 break; 4621 case ISD::SIGN_EXTEND: 4622 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4623 "Invalid SIGN_EXTEND!"); 4624 assert(VT.isVector() == Operand.getValueType().isVector() && 4625 "SIGN_EXTEND result type type should be vector iff the operand " 4626 "type is vector!"); 4627 if (Operand.getValueType() == VT) return Operand; // noop extension 4628 assert((!VT.isVector() || 4629 VT.getVectorNumElements() == 4630 Operand.getValueType().getVectorNumElements()) && 4631 "Vector element count mismatch!"); 4632 assert(Operand.getValueType().bitsLT(VT) && 4633 "Invalid sext node, dst < src!"); 4634 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4635 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4636 else if (OpOpcode == ISD::UNDEF) 4637 // sext(undef) = 0, because the top bits will all be the same. 4638 return getConstant(0, DL, VT); 4639 break; 4640 case ISD::ZERO_EXTEND: 4641 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4642 "Invalid ZERO_EXTEND!"); 4643 assert(VT.isVector() == Operand.getValueType().isVector() && 4644 "ZERO_EXTEND result type type should be vector iff the operand " 4645 "type is vector!"); 4646 if (Operand.getValueType() == VT) return Operand; // noop extension 4647 assert((!VT.isVector() || 4648 VT.getVectorNumElements() == 4649 Operand.getValueType().getVectorNumElements()) && 4650 "Vector element count mismatch!"); 4651 assert(Operand.getValueType().bitsLT(VT) && 4652 "Invalid zext node, dst < src!"); 4653 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4654 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4655 else if (OpOpcode == ISD::UNDEF) 4656 // zext(undef) = 0, because the top bits will be zero. 4657 return getConstant(0, DL, VT); 4658 break; 4659 case ISD::ANY_EXTEND: 4660 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4661 "Invalid ANY_EXTEND!"); 4662 assert(VT.isVector() == Operand.getValueType().isVector() && 4663 "ANY_EXTEND result type type should be vector iff the operand " 4664 "type is vector!"); 4665 if (Operand.getValueType() == VT) return Operand; // noop extension 4666 assert((!VT.isVector() || 4667 VT.getVectorNumElements() == 4668 Operand.getValueType().getVectorNumElements()) && 4669 "Vector element count mismatch!"); 4670 assert(Operand.getValueType().bitsLT(VT) && 4671 "Invalid anyext node, dst < src!"); 4672 4673 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4674 OpOpcode == ISD::ANY_EXTEND) 4675 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4676 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4677 else if (OpOpcode == ISD::UNDEF) 4678 return getUNDEF(VT); 4679 4680 // (ext (trunc x)) -> x 4681 if (OpOpcode == ISD::TRUNCATE) { 4682 SDValue OpOp = Operand.getOperand(0); 4683 if (OpOp.getValueType() == VT) { 4684 transferDbgValues(Operand, OpOp); 4685 return OpOp; 4686 } 4687 } 4688 break; 4689 case ISD::TRUNCATE: 4690 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4691 "Invalid TRUNCATE!"); 4692 assert(VT.isVector() == Operand.getValueType().isVector() && 4693 "TRUNCATE result type type should be vector iff the operand " 4694 "type is vector!"); 4695 if (Operand.getValueType() == VT) return Operand; // noop truncate 4696 assert((!VT.isVector() || 4697 VT.getVectorNumElements() == 4698 Operand.getValueType().getVectorNumElements()) && 4699 "Vector element count mismatch!"); 4700 assert(Operand.getValueType().bitsGT(VT) && 4701 "Invalid truncate node, src < dst!"); 4702 if (OpOpcode == ISD::TRUNCATE) 4703 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4704 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4705 OpOpcode == ISD::ANY_EXTEND) { 4706 // If the source is smaller than the dest, we still need an extend. 4707 if (Operand.getOperand(0).getValueType().getScalarType() 4708 .bitsLT(VT.getScalarType())) 4709 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4710 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4711 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4712 return Operand.getOperand(0); 4713 } 4714 if (OpOpcode == ISD::UNDEF) 4715 return getUNDEF(VT); 4716 break; 4717 case ISD::ANY_EXTEND_VECTOR_INREG: 4718 case ISD::ZERO_EXTEND_VECTOR_INREG: 4719 case ISD::SIGN_EXTEND_VECTOR_INREG: 4720 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4721 assert(Operand.getValueType().bitsLE(VT) && 4722 "The input must be the same size or smaller than the result."); 4723 assert(VT.getVectorNumElements() < 4724 Operand.getValueType().getVectorNumElements() && 4725 "The destination vector type must have fewer lanes than the input."); 4726 break; 4727 case ISD::ABS: 4728 assert(VT.isInteger() && VT == Operand.getValueType() && 4729 "Invalid ABS!"); 4730 if (OpOpcode == ISD::UNDEF) 4731 return getUNDEF(VT); 4732 break; 4733 case ISD::BSWAP: 4734 assert(VT.isInteger() && VT == Operand.getValueType() && 4735 "Invalid BSWAP!"); 4736 assert((VT.getScalarSizeInBits() % 16 == 0) && 4737 "BSWAP types must be a multiple of 16 bits!"); 4738 if (OpOpcode == ISD::UNDEF) 4739 return getUNDEF(VT); 4740 break; 4741 case ISD::BITREVERSE: 4742 assert(VT.isInteger() && VT == Operand.getValueType() && 4743 "Invalid BITREVERSE!"); 4744 if (OpOpcode == ISD::UNDEF) 4745 return getUNDEF(VT); 4746 break; 4747 case ISD::BITCAST: 4748 // Basic sanity checking. 4749 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4750 "Cannot BITCAST between types of different sizes!"); 4751 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4752 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4753 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4754 if (OpOpcode == ISD::UNDEF) 4755 return getUNDEF(VT); 4756 break; 4757 case ISD::SCALAR_TO_VECTOR: 4758 assert(VT.isVector() && !Operand.getValueType().isVector() && 4759 (VT.getVectorElementType() == Operand.getValueType() || 4760 (VT.getVectorElementType().isInteger() && 4761 Operand.getValueType().isInteger() && 4762 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4763 "Illegal SCALAR_TO_VECTOR node!"); 4764 if (OpOpcode == ISD::UNDEF) 4765 return getUNDEF(VT); 4766 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4767 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4768 isa<ConstantSDNode>(Operand.getOperand(1)) && 4769 Operand.getConstantOperandVal(1) == 0 && 4770 Operand.getOperand(0).getValueType() == VT) 4771 return Operand.getOperand(0); 4772 break; 4773 case ISD::FNEG: 4774 // Negation of an unknown bag of bits is still completely undefined. 4775 if (OpOpcode == ISD::UNDEF) 4776 return getUNDEF(VT); 4777 4778 if (OpOpcode == ISD::FNEG) // --X -> X 4779 return Operand.getOperand(0); 4780 break; 4781 case ISD::FABS: 4782 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4783 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4784 break; 4785 } 4786 4787 SDNode *N; 4788 SDVTList VTs = getVTList(VT); 4789 SDValue Ops[] = {Operand}; 4790 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4791 FoldingSetNodeID ID; 4792 AddNodeIDNode(ID, Opcode, VTs, Ops); 4793 void *IP = nullptr; 4794 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4795 E->intersectFlagsWith(Flags); 4796 return SDValue(E, 0); 4797 } 4798 4799 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4800 N->setFlags(Flags); 4801 createOperands(N, Ops); 4802 CSEMap.InsertNode(N, IP); 4803 } else { 4804 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4805 createOperands(N, Ops); 4806 } 4807 4808 InsertNode(N); 4809 SDValue V = SDValue(N, 0); 4810 NewSDValueDbgMsg(V, "Creating new node: ", this); 4811 return V; 4812 } 4813 4814 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4815 const APInt &C2) { 4816 switch (Opcode) { 4817 case ISD::ADD: return C1 + C2; 4818 case ISD::SUB: return C1 - C2; 4819 case ISD::MUL: return C1 * C2; 4820 case ISD::AND: return C1 & C2; 4821 case ISD::OR: return C1 | C2; 4822 case ISD::XOR: return C1 ^ C2; 4823 case ISD::SHL: return C1 << C2; 4824 case ISD::SRL: return C1.lshr(C2); 4825 case ISD::SRA: return C1.ashr(C2); 4826 case ISD::ROTL: return C1.rotl(C2); 4827 case ISD::ROTR: return C1.rotr(C2); 4828 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4829 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4830 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4831 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4832 case ISD::SADDSAT: return C1.sadd_sat(C2); 4833 case ISD::UADDSAT: return C1.uadd_sat(C2); 4834 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4835 case ISD::USUBSAT: return C1.usub_sat(C2); 4836 case ISD::UDIV: 4837 if (!C2.getBoolValue()) 4838 break; 4839 return C1.udiv(C2); 4840 case ISD::UREM: 4841 if (!C2.getBoolValue()) 4842 break; 4843 return C1.urem(C2); 4844 case ISD::SDIV: 4845 if (!C2.getBoolValue()) 4846 break; 4847 return C1.sdiv(C2); 4848 case ISD::SREM: 4849 if (!C2.getBoolValue()) 4850 break; 4851 return C1.srem(C2); 4852 } 4853 return llvm::None; 4854 } 4855 4856 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4857 const GlobalAddressSDNode *GA, 4858 const SDNode *N2) { 4859 if (GA->getOpcode() != ISD::GlobalAddress) 4860 return SDValue(); 4861 if (!TLI->isOffsetFoldingLegal(GA)) 4862 return SDValue(); 4863 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4864 if (!C2) 4865 return SDValue(); 4866 int64_t Offset = C2->getSExtValue(); 4867 switch (Opcode) { 4868 case ISD::ADD: break; 4869 case ISD::SUB: Offset = -uint64_t(Offset); break; 4870 default: return SDValue(); 4871 } 4872 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4873 GA->getOffset() + uint64_t(Offset)); 4874 } 4875 4876 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4877 switch (Opcode) { 4878 case ISD::SDIV: 4879 case ISD::UDIV: 4880 case ISD::SREM: 4881 case ISD::UREM: { 4882 // If a divisor is zero/undef or any element of a divisor vector is 4883 // zero/undef, the whole op is undef. 4884 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4885 SDValue Divisor = Ops[1]; 4886 if (Divisor.isUndef() || isNullConstant(Divisor)) 4887 return true; 4888 4889 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4890 llvm::any_of(Divisor->op_values(), 4891 [](SDValue V) { return V.isUndef() || 4892 isNullConstant(V); }); 4893 // TODO: Handle signed overflow. 4894 } 4895 // TODO: Handle oversized shifts. 4896 default: 4897 return false; 4898 } 4899 } 4900 4901 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4902 EVT VT, ArrayRef<SDValue> Ops) { 4903 // If the opcode is a target-specific ISD node, there's nothing we can 4904 // do here and the operand rules may not line up with the below, so 4905 // bail early. 4906 if (Opcode >= ISD::BUILTIN_OP_END) 4907 return SDValue(); 4908 4909 // For now, the array Ops should only contain two values. 4910 // This enforcement will be removed once this function is merged with 4911 // FoldConstantVectorArithmetic 4912 if (Ops.size() != 2) 4913 return SDValue(); 4914 4915 if (isUndef(Opcode, Ops)) 4916 return getUNDEF(VT); 4917 4918 SDNode *N1 = Ops[0].getNode(); 4919 SDNode *N2 = Ops[1].getNode(); 4920 4921 // Handle the case of two scalars. 4922 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4923 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4924 if (C1->isOpaque() || C2->isOpaque()) 4925 return SDValue(); 4926 4927 Optional<APInt> FoldAttempt = 4928 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4929 if (!FoldAttempt) 4930 return SDValue(); 4931 4932 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4933 assert((!Folded || !VT.isVector()) && 4934 "Can't fold vectors ops with scalar operands"); 4935 return Folded; 4936 } 4937 } 4938 4939 // fold (add Sym, c) -> Sym+c 4940 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4941 return FoldSymbolOffset(Opcode, VT, GA, N2); 4942 if (TLI->isCommutativeBinOp(Opcode)) 4943 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4944 return FoldSymbolOffset(Opcode, VT, GA, N1); 4945 4946 // For vectors, extract each constant element and fold them individually. 4947 // Either input may be an undef value. 4948 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4949 if (!BV1 && !N1->isUndef()) 4950 return SDValue(); 4951 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4952 if (!BV2 && !N2->isUndef()) 4953 return SDValue(); 4954 // If both operands are undef, that's handled the same way as scalars. 4955 if (!BV1 && !BV2) 4956 return SDValue(); 4957 4958 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4959 "Vector binop with different number of elements in operands?"); 4960 4961 EVT SVT = VT.getScalarType(); 4962 EVT LegalSVT = SVT; 4963 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4964 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4965 if (LegalSVT.bitsLT(SVT)) 4966 return SDValue(); 4967 } 4968 SmallVector<SDValue, 4> Outputs; 4969 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4970 for (unsigned I = 0; I != NumOps; ++I) { 4971 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4972 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4973 if (SVT.isInteger()) { 4974 if (V1->getValueType(0).bitsGT(SVT)) 4975 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4976 if (V2->getValueType(0).bitsGT(SVT)) 4977 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4978 } 4979 4980 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4981 return SDValue(); 4982 4983 // Fold one vector element. 4984 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4985 if (LegalSVT != SVT) 4986 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4987 4988 // Scalar folding only succeeded if the result is a constant or UNDEF. 4989 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4990 ScalarResult.getOpcode() != ISD::ConstantFP) 4991 return SDValue(); 4992 Outputs.push_back(ScalarResult); 4993 } 4994 4995 assert(VT.getVectorNumElements() == Outputs.size() && 4996 "Vector size mismatch!"); 4997 4998 // We may have a vector type but a scalar result. Create a splat. 4999 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5000 5001 // Build a big vector out of the scalar elements we generated. 5002 return getBuildVector(VT, SDLoc(), Outputs); 5003 } 5004 5005 // TODO: Merge with FoldConstantArithmetic 5006 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5007 const SDLoc &DL, EVT VT, 5008 ArrayRef<SDValue> Ops, 5009 const SDNodeFlags Flags) { 5010 // If the opcode is a target-specific ISD node, there's nothing we can 5011 // do here and the operand rules may not line up with the below, so 5012 // bail early. 5013 if (Opcode >= ISD::BUILTIN_OP_END) 5014 return SDValue(); 5015 5016 if (isUndef(Opcode, Ops)) 5017 return getUNDEF(VT); 5018 5019 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5020 if (!VT.isVector()) 5021 return SDValue(); 5022 5023 unsigned NumElts = VT.getVectorNumElements(); 5024 5025 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5026 return !Op.getValueType().isVector() || 5027 Op.getValueType().getVectorNumElements() == NumElts; 5028 }; 5029 5030 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5031 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5032 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5033 (BV && BV->isConstant()); 5034 }; 5035 5036 // All operands must be vector types with the same number of elements as 5037 // the result type and must be either UNDEF or a build vector of constant 5038 // or UNDEF scalars. 5039 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5040 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5041 return SDValue(); 5042 5043 // If we are comparing vectors, then the result needs to be a i1 boolean 5044 // that is then sign-extended back to the legal result type. 5045 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5046 5047 // Find legal integer scalar type for constant promotion and 5048 // ensure that its scalar size is at least as large as source. 5049 EVT LegalSVT = VT.getScalarType(); 5050 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5051 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5052 if (LegalSVT.bitsLT(VT.getScalarType())) 5053 return SDValue(); 5054 } 5055 5056 // Constant fold each scalar lane separately. 5057 SmallVector<SDValue, 4> ScalarResults; 5058 for (unsigned i = 0; i != NumElts; i++) { 5059 SmallVector<SDValue, 4> ScalarOps; 5060 for (SDValue Op : Ops) { 5061 EVT InSVT = Op.getValueType().getScalarType(); 5062 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5063 if (!InBV) { 5064 // We've checked that this is UNDEF or a constant of some kind. 5065 if (Op.isUndef()) 5066 ScalarOps.push_back(getUNDEF(InSVT)); 5067 else 5068 ScalarOps.push_back(Op); 5069 continue; 5070 } 5071 5072 SDValue ScalarOp = InBV->getOperand(i); 5073 EVT ScalarVT = ScalarOp.getValueType(); 5074 5075 // Build vector (integer) scalar operands may need implicit 5076 // truncation - do this before constant folding. 5077 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5078 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5079 5080 ScalarOps.push_back(ScalarOp); 5081 } 5082 5083 // Constant fold the scalar operands. 5084 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5085 5086 // Legalize the (integer) scalar constant if necessary. 5087 if (LegalSVT != SVT) 5088 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5089 5090 // Scalar folding only succeeded if the result is a constant or UNDEF. 5091 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5092 ScalarResult.getOpcode() != ISD::ConstantFP) 5093 return SDValue(); 5094 ScalarResults.push_back(ScalarResult); 5095 } 5096 5097 SDValue V = getBuildVector(VT, DL, ScalarResults); 5098 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5099 return V; 5100 } 5101 5102 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5103 EVT VT, SDValue N1, SDValue N2) { 5104 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5105 // should. That will require dealing with a potentially non-default 5106 // rounding mode, checking the "opStatus" return value from the APFloat 5107 // math calculations, and possibly other variations. 5108 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5109 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5110 if (N1CFP && N2CFP) { 5111 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5112 switch (Opcode) { 5113 case ISD::FADD: 5114 C1.add(C2, APFloat::rmNearestTiesToEven); 5115 return getConstantFP(C1, DL, VT); 5116 case ISD::FSUB: 5117 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5118 return getConstantFP(C1, DL, VT); 5119 case ISD::FMUL: 5120 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5121 return getConstantFP(C1, DL, VT); 5122 case ISD::FDIV: 5123 C1.divide(C2, APFloat::rmNearestTiesToEven); 5124 return getConstantFP(C1, DL, VT); 5125 case ISD::FREM: 5126 C1.mod(C2); 5127 return getConstantFP(C1, DL, VT); 5128 case ISD::FCOPYSIGN: 5129 C1.copySign(C2); 5130 return getConstantFP(C1, DL, VT); 5131 default: break; 5132 } 5133 } 5134 if (N1CFP && Opcode == ISD::FP_ROUND) { 5135 APFloat C1 = N1CFP->getValueAPF(); // make copy 5136 bool Unused; 5137 // This can return overflow, underflow, or inexact; we don't care. 5138 // FIXME need to be more flexible about rounding mode. 5139 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5140 &Unused); 5141 return getConstantFP(C1, DL, VT); 5142 } 5143 5144 switch (Opcode) { 5145 case ISD::FSUB: 5146 // -0.0 - undef --> undef (consistent with "fneg undef") 5147 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5148 return getUNDEF(VT); 5149 LLVM_FALLTHROUGH; 5150 5151 case ISD::FADD: 5152 case ISD::FMUL: 5153 case ISD::FDIV: 5154 case ISD::FREM: 5155 // If both operands are undef, the result is undef. If 1 operand is undef, 5156 // the result is NaN. This should match the behavior of the IR optimizer. 5157 if (N1.isUndef() && N2.isUndef()) 5158 return getUNDEF(VT); 5159 if (N1.isUndef() || N2.isUndef()) 5160 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5161 } 5162 return SDValue(); 5163 } 5164 5165 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5166 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5167 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5168 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5169 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5170 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5171 5172 // Canonicalize constant to RHS if commutative. 5173 if (TLI->isCommutativeBinOp(Opcode)) { 5174 if (N1C && !N2C) { 5175 std::swap(N1C, N2C); 5176 std::swap(N1, N2); 5177 } else if (N1CFP && !N2CFP) { 5178 std::swap(N1CFP, N2CFP); 5179 std::swap(N1, N2); 5180 } 5181 } 5182 5183 switch (Opcode) { 5184 default: break; 5185 case ISD::TokenFactor: 5186 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5187 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5188 // Fold trivial token factors. 5189 if (N1.getOpcode() == ISD::EntryToken) return N2; 5190 if (N2.getOpcode() == ISD::EntryToken) return N1; 5191 if (N1 == N2) return N1; 5192 break; 5193 case ISD::BUILD_VECTOR: { 5194 // Attempt to simplify BUILD_VECTOR. 5195 SDValue Ops[] = {N1, N2}; 5196 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5197 return V; 5198 break; 5199 } 5200 case ISD::CONCAT_VECTORS: { 5201 SDValue Ops[] = {N1, N2}; 5202 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5203 return V; 5204 break; 5205 } 5206 case ISD::AND: 5207 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5208 assert(N1.getValueType() == N2.getValueType() && 5209 N1.getValueType() == VT && "Binary operator types must match!"); 5210 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5211 // worth handling here. 5212 if (N2C && N2C->isNullValue()) 5213 return N2; 5214 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5215 return N1; 5216 break; 5217 case ISD::OR: 5218 case ISD::XOR: 5219 case ISD::ADD: 5220 case ISD::SUB: 5221 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5222 assert(N1.getValueType() == N2.getValueType() && 5223 N1.getValueType() == VT && "Binary operator types must match!"); 5224 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5225 // it's worth handling here. 5226 if (N2C && N2C->isNullValue()) 5227 return N1; 5228 break; 5229 case ISD::MUL: 5230 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5231 assert(N1.getValueType() == N2.getValueType() && 5232 N1.getValueType() == VT && "Binary operator types must match!"); 5233 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5234 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5235 APInt N2CImm = N2C->getAPIntValue(); 5236 return getVScale(DL, VT, MulImm * N2CImm); 5237 } 5238 break; 5239 case ISD::UDIV: 5240 case ISD::UREM: 5241 case ISD::MULHU: 5242 case ISD::MULHS: 5243 case ISD::SDIV: 5244 case ISD::SREM: 5245 case ISD::SMIN: 5246 case ISD::SMAX: 5247 case ISD::UMIN: 5248 case ISD::UMAX: 5249 case ISD::SADDSAT: 5250 case ISD::SSUBSAT: 5251 case ISD::UADDSAT: 5252 case ISD::USUBSAT: 5253 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5254 assert(N1.getValueType() == N2.getValueType() && 5255 N1.getValueType() == VT && "Binary operator types must match!"); 5256 break; 5257 case ISD::FADD: 5258 case ISD::FSUB: 5259 case ISD::FMUL: 5260 case ISD::FDIV: 5261 case ISD::FREM: 5262 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5263 assert(N1.getValueType() == N2.getValueType() && 5264 N1.getValueType() == VT && "Binary operator types must match!"); 5265 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5266 return V; 5267 break; 5268 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5269 assert(N1.getValueType() == VT && 5270 N1.getValueType().isFloatingPoint() && 5271 N2.getValueType().isFloatingPoint() && 5272 "Invalid FCOPYSIGN!"); 5273 break; 5274 case ISD::SHL: 5275 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5276 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5277 APInt ShiftImm = N2C->getAPIntValue(); 5278 return getVScale(DL, VT, MulImm << ShiftImm); 5279 } 5280 LLVM_FALLTHROUGH; 5281 case ISD::SRA: 5282 case ISD::SRL: 5283 if (SDValue V = simplifyShift(N1, N2)) 5284 return V; 5285 LLVM_FALLTHROUGH; 5286 case ISD::ROTL: 5287 case ISD::ROTR: 5288 assert(VT == N1.getValueType() && 5289 "Shift operators return type must be the same as their first arg"); 5290 assert(VT.isInteger() && N2.getValueType().isInteger() && 5291 "Shifts only work on integers"); 5292 assert((!VT.isVector() || VT == N2.getValueType()) && 5293 "Vector shift amounts must be in the same as their first arg"); 5294 // Verify that the shift amount VT is big enough to hold valid shift 5295 // amounts. This catches things like trying to shift an i1024 value by an 5296 // i8, which is easy to fall into in generic code that uses 5297 // TLI.getShiftAmount(). 5298 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5299 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5300 "Invalid use of small shift amount with oversized value!"); 5301 5302 // Always fold shifts of i1 values so the code generator doesn't need to 5303 // handle them. Since we know the size of the shift has to be less than the 5304 // size of the value, the shift/rotate count is guaranteed to be zero. 5305 if (VT == MVT::i1) 5306 return N1; 5307 if (N2C && N2C->isNullValue()) 5308 return N1; 5309 break; 5310 case ISD::FP_ROUND: 5311 assert(VT.isFloatingPoint() && 5312 N1.getValueType().isFloatingPoint() && 5313 VT.bitsLE(N1.getValueType()) && 5314 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5315 "Invalid FP_ROUND!"); 5316 if (N1.getValueType() == VT) return N1; // noop conversion. 5317 break; 5318 case ISD::AssertSext: 5319 case ISD::AssertZext: { 5320 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5321 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5322 assert(VT.isInteger() && EVT.isInteger() && 5323 "Cannot *_EXTEND_INREG FP types"); 5324 assert(!EVT.isVector() && 5325 "AssertSExt/AssertZExt type should be the vector element type " 5326 "rather than the vector type!"); 5327 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5328 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5329 break; 5330 } 5331 case ISD::SIGN_EXTEND_INREG: { 5332 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5333 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5334 assert(VT.isInteger() && EVT.isInteger() && 5335 "Cannot *_EXTEND_INREG FP types"); 5336 assert(EVT.isVector() == VT.isVector() && 5337 "SIGN_EXTEND_INREG type should be vector iff the operand " 5338 "type is vector!"); 5339 assert((!EVT.isVector() || 5340 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5341 "Vector element counts must match in SIGN_EXTEND_INREG"); 5342 assert(EVT.bitsLE(VT) && "Not extending!"); 5343 if (EVT == VT) return N1; // Not actually extending 5344 5345 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5346 unsigned FromBits = EVT.getScalarSizeInBits(); 5347 Val <<= Val.getBitWidth() - FromBits; 5348 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5349 return getConstant(Val, DL, ConstantVT); 5350 }; 5351 5352 if (N1C) { 5353 const APInt &Val = N1C->getAPIntValue(); 5354 return SignExtendInReg(Val, VT); 5355 } 5356 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5357 SmallVector<SDValue, 8> Ops; 5358 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5359 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5360 SDValue Op = N1.getOperand(i); 5361 if (Op.isUndef()) { 5362 Ops.push_back(getUNDEF(OpVT)); 5363 continue; 5364 } 5365 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5366 APInt Val = C->getAPIntValue(); 5367 Ops.push_back(SignExtendInReg(Val, OpVT)); 5368 } 5369 return getBuildVector(VT, DL, Ops); 5370 } 5371 break; 5372 } 5373 case ISD::EXTRACT_VECTOR_ELT: 5374 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5375 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5376 element type of the vector."); 5377 5378 // Extract from an undefined value or using an undefined index is undefined. 5379 if (N1.isUndef() || N2.isUndef()) 5380 return getUNDEF(VT); 5381 5382 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5383 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5384 return getUNDEF(VT); 5385 5386 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5387 // expanding copies of large vectors from registers. 5388 if (N2C && 5389 N1.getOpcode() == ISD::CONCAT_VECTORS && 5390 N1.getNumOperands() > 0) { 5391 unsigned Factor = 5392 N1.getOperand(0).getValueType().getVectorNumElements(); 5393 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5394 N1.getOperand(N2C->getZExtValue() / Factor), 5395 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5396 } 5397 5398 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5399 // expanding large vector constants. 5400 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5401 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5402 5403 if (VT != Elt.getValueType()) 5404 // If the vector element type is not legal, the BUILD_VECTOR operands 5405 // are promoted and implicitly truncated, and the result implicitly 5406 // extended. Make that explicit here. 5407 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5408 5409 return Elt; 5410 } 5411 5412 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5413 // operations are lowered to scalars. 5414 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5415 // If the indices are the same, return the inserted element else 5416 // if the indices are known different, extract the element from 5417 // the original vector. 5418 SDValue N1Op2 = N1.getOperand(2); 5419 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5420 5421 if (N1Op2C && N2C) { 5422 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5423 if (VT == N1.getOperand(1).getValueType()) 5424 return N1.getOperand(1); 5425 else 5426 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5427 } 5428 5429 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5430 } 5431 } 5432 5433 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5434 // when vector types are scalarized and v1iX is legal. 5435 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5436 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5437 N1.getValueType().getVectorNumElements() == 1) { 5438 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5439 N1.getOperand(1)); 5440 } 5441 break; 5442 case ISD::EXTRACT_ELEMENT: 5443 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5444 assert(!N1.getValueType().isVector() && !VT.isVector() && 5445 (N1.getValueType().isInteger() == VT.isInteger()) && 5446 N1.getValueType() != VT && 5447 "Wrong types for EXTRACT_ELEMENT!"); 5448 5449 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5450 // 64-bit integers into 32-bit parts. Instead of building the extract of 5451 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5452 if (N1.getOpcode() == ISD::BUILD_PAIR) 5453 return N1.getOperand(N2C->getZExtValue()); 5454 5455 // EXTRACT_ELEMENT of a constant int is also very common. 5456 if (N1C) { 5457 unsigned ElementSize = VT.getSizeInBits(); 5458 unsigned Shift = ElementSize * N2C->getZExtValue(); 5459 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5460 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5461 } 5462 break; 5463 case ISD::EXTRACT_SUBVECTOR: 5464 if (VT.isSimple() && N1.getValueType().isSimple()) { 5465 assert(VT.isVector() && N1.getValueType().isVector() && 5466 "Extract subvector VTs must be a vectors!"); 5467 assert(VT.getVectorElementType() == 5468 N1.getValueType().getVectorElementType() && 5469 "Extract subvector VTs must have the same element type!"); 5470 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5471 "Extract subvector must be from larger vector to smaller vector!"); 5472 5473 if (N2C) { 5474 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5475 <= N1.getValueType().getVectorNumElements()) 5476 && "Extract subvector overflow!"); 5477 } 5478 5479 // Trivial extraction. 5480 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5481 return N1; 5482 5483 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5484 if (N1.isUndef()) 5485 return getUNDEF(VT); 5486 5487 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5488 // the concat have the same type as the extract. 5489 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5490 N1.getNumOperands() > 0 && 5491 VT == N1.getOperand(0).getValueType()) { 5492 unsigned Factor = VT.getVectorNumElements(); 5493 return N1.getOperand(N2C->getZExtValue() / Factor); 5494 } 5495 5496 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5497 // during shuffle legalization. 5498 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5499 VT == N1.getOperand(1).getValueType()) 5500 return N1.getOperand(1); 5501 } 5502 break; 5503 } 5504 5505 // Perform trivial constant folding. 5506 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5507 return SV; 5508 5509 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5510 return V; 5511 5512 // Canonicalize an UNDEF to the RHS, even over a constant. 5513 if (N1.isUndef()) { 5514 if (TLI->isCommutativeBinOp(Opcode)) { 5515 std::swap(N1, N2); 5516 } else { 5517 switch (Opcode) { 5518 case ISD::SIGN_EXTEND_INREG: 5519 case ISD::SUB: 5520 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5521 case ISD::UDIV: 5522 case ISD::SDIV: 5523 case ISD::UREM: 5524 case ISD::SREM: 5525 case ISD::SSUBSAT: 5526 case ISD::USUBSAT: 5527 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5528 } 5529 } 5530 } 5531 5532 // Fold a bunch of operators when the RHS is undef. 5533 if (N2.isUndef()) { 5534 switch (Opcode) { 5535 case ISD::XOR: 5536 if (N1.isUndef()) 5537 // Handle undef ^ undef -> 0 special case. This is a common 5538 // idiom (misuse). 5539 return getConstant(0, DL, VT); 5540 LLVM_FALLTHROUGH; 5541 case ISD::ADD: 5542 case ISD::SUB: 5543 case ISD::UDIV: 5544 case ISD::SDIV: 5545 case ISD::UREM: 5546 case ISD::SREM: 5547 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5548 case ISD::MUL: 5549 case ISD::AND: 5550 case ISD::SSUBSAT: 5551 case ISD::USUBSAT: 5552 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5553 case ISD::OR: 5554 case ISD::SADDSAT: 5555 case ISD::UADDSAT: 5556 return getAllOnesConstant(DL, VT); 5557 } 5558 } 5559 5560 // Memoize this node if possible. 5561 SDNode *N; 5562 SDVTList VTs = getVTList(VT); 5563 SDValue Ops[] = {N1, N2}; 5564 if (VT != MVT::Glue) { 5565 FoldingSetNodeID ID; 5566 AddNodeIDNode(ID, Opcode, VTs, Ops); 5567 void *IP = nullptr; 5568 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5569 E->intersectFlagsWith(Flags); 5570 return SDValue(E, 0); 5571 } 5572 5573 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5574 N->setFlags(Flags); 5575 createOperands(N, Ops); 5576 CSEMap.InsertNode(N, IP); 5577 } else { 5578 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5579 createOperands(N, Ops); 5580 } 5581 5582 InsertNode(N); 5583 SDValue V = SDValue(N, 0); 5584 NewSDValueDbgMsg(V, "Creating new node: ", this); 5585 return V; 5586 } 5587 5588 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5589 SDValue N1, SDValue N2, SDValue N3, 5590 const SDNodeFlags Flags) { 5591 // Perform various simplifications. 5592 switch (Opcode) { 5593 case ISD::FMA: { 5594 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5595 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5596 N3.getValueType() == VT && "FMA types must match!"); 5597 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5598 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5599 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5600 if (N1CFP && N2CFP && N3CFP) { 5601 APFloat V1 = N1CFP->getValueAPF(); 5602 const APFloat &V2 = N2CFP->getValueAPF(); 5603 const APFloat &V3 = N3CFP->getValueAPF(); 5604 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5605 return getConstantFP(V1, DL, VT); 5606 } 5607 break; 5608 } 5609 case ISD::BUILD_VECTOR: { 5610 // Attempt to simplify BUILD_VECTOR. 5611 SDValue Ops[] = {N1, N2, N3}; 5612 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5613 return V; 5614 break; 5615 } 5616 case ISD::CONCAT_VECTORS: { 5617 SDValue Ops[] = {N1, N2, N3}; 5618 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5619 return V; 5620 break; 5621 } 5622 case ISD::SETCC: { 5623 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5624 assert(N1.getValueType() == N2.getValueType() && 5625 "SETCC operands must have the same type!"); 5626 assert(VT.isVector() == N1.getValueType().isVector() && 5627 "SETCC type should be vector iff the operand type is vector!"); 5628 assert((!VT.isVector() || 5629 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5630 "SETCC vector element counts must match!"); 5631 // Use FoldSetCC to simplify SETCC's. 5632 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5633 return V; 5634 // Vector constant folding. 5635 SDValue Ops[] = {N1, N2, N3}; 5636 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5637 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5638 return V; 5639 } 5640 break; 5641 } 5642 case ISD::SELECT: 5643 case ISD::VSELECT: 5644 if (SDValue V = simplifySelect(N1, N2, N3)) 5645 return V; 5646 break; 5647 case ISD::VECTOR_SHUFFLE: 5648 llvm_unreachable("should use getVectorShuffle constructor!"); 5649 case ISD::INSERT_VECTOR_ELT: { 5650 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5651 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5652 // for scalable vectors where we will generate appropriate code to 5653 // deal with out-of-bounds cases correctly. 5654 if (N3C && N1.getValueType().isFixedLengthVector() && 5655 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5656 return getUNDEF(VT); 5657 5658 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5659 if (N3.isUndef()) 5660 return getUNDEF(VT); 5661 5662 // If the inserted element is an UNDEF, just use the input vector. 5663 if (N2.isUndef()) 5664 return N1; 5665 5666 break; 5667 } 5668 case ISD::INSERT_SUBVECTOR: { 5669 // Inserting undef into undef is still undef. 5670 if (N1.isUndef() && N2.isUndef()) 5671 return getUNDEF(VT); 5672 SDValue Index = N3; 5673 if (VT.isSimple() && N1.getValueType().isSimple() 5674 && N2.getValueType().isSimple()) { 5675 assert(VT.isVector() && N1.getValueType().isVector() && 5676 N2.getValueType().isVector() && 5677 "Insert subvector VTs must be a vectors"); 5678 assert(VT == N1.getValueType() && 5679 "Dest and insert subvector source types must match!"); 5680 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5681 "Insert subvector must be from smaller vector to larger vector!"); 5682 if (isa<ConstantSDNode>(Index)) { 5683 assert((N2.getValueType().getVectorNumElements() + 5684 cast<ConstantSDNode>(Index)->getZExtValue() 5685 <= VT.getVectorNumElements()) 5686 && "Insert subvector overflow!"); 5687 } 5688 5689 // Trivial insertion. 5690 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5691 return N2; 5692 5693 // If this is an insert of an extracted vector into an undef vector, we 5694 // can just use the input to the extract. 5695 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5696 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5697 return N2.getOperand(0); 5698 } 5699 break; 5700 } 5701 case ISD::BITCAST: 5702 // Fold bit_convert nodes from a type to themselves. 5703 if (N1.getValueType() == VT) 5704 return N1; 5705 break; 5706 } 5707 5708 // Memoize node if it doesn't produce a flag. 5709 SDNode *N; 5710 SDVTList VTs = getVTList(VT); 5711 SDValue Ops[] = {N1, N2, N3}; 5712 if (VT != MVT::Glue) { 5713 FoldingSetNodeID ID; 5714 AddNodeIDNode(ID, Opcode, VTs, Ops); 5715 void *IP = nullptr; 5716 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5717 E->intersectFlagsWith(Flags); 5718 return SDValue(E, 0); 5719 } 5720 5721 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5722 N->setFlags(Flags); 5723 createOperands(N, Ops); 5724 CSEMap.InsertNode(N, IP); 5725 } else { 5726 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5727 createOperands(N, Ops); 5728 } 5729 5730 InsertNode(N); 5731 SDValue V = SDValue(N, 0); 5732 NewSDValueDbgMsg(V, "Creating new node: ", this); 5733 return V; 5734 } 5735 5736 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5737 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5738 SDValue Ops[] = { N1, N2, N3, N4 }; 5739 return getNode(Opcode, DL, VT, Ops); 5740 } 5741 5742 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5743 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5744 SDValue N5) { 5745 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5746 return getNode(Opcode, DL, VT, Ops); 5747 } 5748 5749 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5750 /// the incoming stack arguments to be loaded from the stack. 5751 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5752 SmallVector<SDValue, 8> ArgChains; 5753 5754 // Include the original chain at the beginning of the list. When this is 5755 // used by target LowerCall hooks, this helps legalize find the 5756 // CALLSEQ_BEGIN node. 5757 ArgChains.push_back(Chain); 5758 5759 // Add a chain value for each stack argument. 5760 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5761 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5762 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5763 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5764 if (FI->getIndex() < 0) 5765 ArgChains.push_back(SDValue(L, 1)); 5766 5767 // Build a tokenfactor for all the chains. 5768 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5769 } 5770 5771 /// getMemsetValue - Vectorized representation of the memset value 5772 /// operand. 5773 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5774 const SDLoc &dl) { 5775 assert(!Value.isUndef()); 5776 5777 unsigned NumBits = VT.getScalarSizeInBits(); 5778 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5779 assert(C->getAPIntValue().getBitWidth() == 8); 5780 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5781 if (VT.isInteger()) { 5782 bool IsOpaque = VT.getSizeInBits() > 64 || 5783 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5784 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5785 } 5786 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5787 VT); 5788 } 5789 5790 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5791 EVT IntVT = VT.getScalarType(); 5792 if (!IntVT.isInteger()) 5793 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5794 5795 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5796 if (NumBits > 8) { 5797 // Use a multiplication with 0x010101... to extend the input to the 5798 // required length. 5799 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5800 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5801 DAG.getConstant(Magic, dl, IntVT)); 5802 } 5803 5804 if (VT != Value.getValueType() && !VT.isInteger()) 5805 Value = DAG.getBitcast(VT.getScalarType(), Value); 5806 if (VT != Value.getValueType()) 5807 Value = DAG.getSplatBuildVector(VT, dl, Value); 5808 5809 return Value; 5810 } 5811 5812 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5813 /// used when a memcpy is turned into a memset when the source is a constant 5814 /// string ptr. 5815 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5816 const TargetLowering &TLI, 5817 const ConstantDataArraySlice &Slice) { 5818 // Handle vector with all elements zero. 5819 if (Slice.Array == nullptr) { 5820 if (VT.isInteger()) 5821 return DAG.getConstant(0, dl, VT); 5822 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5823 return DAG.getConstantFP(0.0, dl, VT); 5824 else if (VT.isVector()) { 5825 unsigned NumElts = VT.getVectorNumElements(); 5826 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5827 return DAG.getNode(ISD::BITCAST, dl, VT, 5828 DAG.getConstant(0, dl, 5829 EVT::getVectorVT(*DAG.getContext(), 5830 EltVT, NumElts))); 5831 } else 5832 llvm_unreachable("Expected type!"); 5833 } 5834 5835 assert(!VT.isVector() && "Can't handle vector type here!"); 5836 unsigned NumVTBits = VT.getSizeInBits(); 5837 unsigned NumVTBytes = NumVTBits / 8; 5838 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5839 5840 APInt Val(NumVTBits, 0); 5841 if (DAG.getDataLayout().isLittleEndian()) { 5842 for (unsigned i = 0; i != NumBytes; ++i) 5843 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5844 } else { 5845 for (unsigned i = 0; i != NumBytes; ++i) 5846 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5847 } 5848 5849 // If the "cost" of materializing the integer immediate is less than the cost 5850 // of a load, then it is cost effective to turn the load into the immediate. 5851 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5852 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5853 return DAG.getConstant(Val, dl, VT); 5854 return SDValue(nullptr, 0); 5855 } 5856 5857 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5858 const SDLoc &DL, 5859 const SDNodeFlags Flags) { 5860 EVT VT = Base.getValueType(); 5861 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5862 } 5863 5864 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5865 const SDLoc &DL, 5866 const SDNodeFlags Flags) { 5867 assert(Offset.getValueType().isInteger()); 5868 EVT BasePtrVT = Ptr.getValueType(); 5869 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5870 } 5871 5872 /// Returns true if memcpy source is constant data. 5873 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5874 uint64_t SrcDelta = 0; 5875 GlobalAddressSDNode *G = nullptr; 5876 if (Src.getOpcode() == ISD::GlobalAddress) 5877 G = cast<GlobalAddressSDNode>(Src); 5878 else if (Src.getOpcode() == ISD::ADD && 5879 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5880 Src.getOperand(1).getOpcode() == ISD::Constant) { 5881 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5882 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5883 } 5884 if (!G) 5885 return false; 5886 5887 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5888 SrcDelta + G->getOffset()); 5889 } 5890 5891 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5892 SelectionDAG &DAG) { 5893 // On Darwin, -Os means optimize for size without hurting performance, so 5894 // only really optimize for size when -Oz (MinSize) is used. 5895 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5896 return MF.getFunction().hasMinSize(); 5897 return DAG.shouldOptForSize(); 5898 } 5899 5900 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5901 SmallVector<SDValue, 32> &OutChains, unsigned From, 5902 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5903 SmallVector<SDValue, 16> &OutStoreChains) { 5904 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5905 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5906 SmallVector<SDValue, 16> GluedLoadChains; 5907 for (unsigned i = From; i < To; ++i) { 5908 OutChains.push_back(OutLoadChains[i]); 5909 GluedLoadChains.push_back(OutLoadChains[i]); 5910 } 5911 5912 // Chain for all loads. 5913 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5914 GluedLoadChains); 5915 5916 for (unsigned i = From; i < To; ++i) { 5917 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5918 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5919 ST->getBasePtr(), ST->getMemoryVT(), 5920 ST->getMemOperand()); 5921 OutChains.push_back(NewStore); 5922 } 5923 } 5924 5925 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5926 SDValue Chain, SDValue Dst, SDValue Src, 5927 uint64_t Size, Align Alignment, 5928 bool isVol, bool AlwaysInline, 5929 MachinePointerInfo DstPtrInfo, 5930 MachinePointerInfo SrcPtrInfo) { 5931 // Turn a memcpy of undef to nop. 5932 // FIXME: We need to honor volatile even is Src is undef. 5933 if (Src.isUndef()) 5934 return Chain; 5935 5936 // Expand memcpy to a series of load and store ops if the size operand falls 5937 // below a certain threshold. 5938 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5939 // rather than maybe a humongous number of loads and stores. 5940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5941 const DataLayout &DL = DAG.getDataLayout(); 5942 LLVMContext &C = *DAG.getContext(); 5943 std::vector<EVT> MemOps; 5944 bool DstAlignCanChange = false; 5945 MachineFunction &MF = DAG.getMachineFunction(); 5946 MachineFrameInfo &MFI = MF.getFrameInfo(); 5947 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5948 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5949 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5950 DstAlignCanChange = true; 5951 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5952 if (!SrcAlign || Alignment > *SrcAlign) 5953 SrcAlign = Alignment; 5954 assert(SrcAlign && "SrcAlign must be set"); 5955 ConstantDataArraySlice Slice; 5956 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5957 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5958 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5959 const MemOp Op = isZeroConstant 5960 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5961 /*IsZeroMemset*/ true, isVol) 5962 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5963 *SrcAlign, isVol, CopyFromConstant); 5964 if (!TLI.findOptimalMemOpLowering( 5965 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5966 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5967 return SDValue(); 5968 5969 if (DstAlignCanChange) { 5970 Type *Ty = MemOps[0].getTypeForEVT(C); 5971 Align NewAlign = DL.getABITypeAlign(Ty); 5972 5973 // Don't promote to an alignment that would require dynamic stack 5974 // realignment. 5975 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5976 if (!TRI->needsStackRealignment(MF)) 5977 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5978 NewAlign = NewAlign / 2; 5979 5980 if (NewAlign > Alignment) { 5981 // Give the stack frame object a larger alignment if needed. 5982 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5983 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5984 Alignment = NewAlign; 5985 } 5986 } 5987 5988 MachineMemOperand::Flags MMOFlags = 5989 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5990 SmallVector<SDValue, 16> OutLoadChains; 5991 SmallVector<SDValue, 16> OutStoreChains; 5992 SmallVector<SDValue, 32> OutChains; 5993 unsigned NumMemOps = MemOps.size(); 5994 uint64_t SrcOff = 0, DstOff = 0; 5995 for (unsigned i = 0; i != NumMemOps; ++i) { 5996 EVT VT = MemOps[i]; 5997 unsigned VTSize = VT.getSizeInBits() / 8; 5998 SDValue Value, Store; 5999 6000 if (VTSize > Size) { 6001 // Issuing an unaligned load / store pair that overlaps with the previous 6002 // pair. Adjust the offset accordingly. 6003 assert(i == NumMemOps-1 && i != 0); 6004 SrcOff -= VTSize - Size; 6005 DstOff -= VTSize - Size; 6006 } 6007 6008 if (CopyFromConstant && 6009 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6010 // It's unlikely a store of a vector immediate can be done in a single 6011 // instruction. It would require a load from a constantpool first. 6012 // We only handle zero vectors here. 6013 // FIXME: Handle other cases where store of vector immediate is done in 6014 // a single instruction. 6015 ConstantDataArraySlice SubSlice; 6016 if (SrcOff < Slice.Length) { 6017 SubSlice = Slice; 6018 SubSlice.move(SrcOff); 6019 } else { 6020 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6021 SubSlice.Array = nullptr; 6022 SubSlice.Offset = 0; 6023 SubSlice.Length = VTSize; 6024 } 6025 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6026 if (Value.getNode()) { 6027 Store = DAG.getStore( 6028 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6029 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6030 OutChains.push_back(Store); 6031 } 6032 } 6033 6034 if (!Store.getNode()) { 6035 // The type might not be legal for the target. This should only happen 6036 // if the type is smaller than a legal type, as on PPC, so the right 6037 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6038 // to Load/Store if NVT==VT. 6039 // FIXME does the case above also need this? 6040 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6041 assert(NVT.bitsGE(VT)); 6042 6043 bool isDereferenceable = 6044 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6045 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6046 if (isDereferenceable) 6047 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6048 6049 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6050 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6051 SrcPtrInfo.getWithOffset(SrcOff), VT, 6052 commonAlignment(*SrcAlign, SrcOff).value(), 6053 SrcMMOFlags); 6054 OutLoadChains.push_back(Value.getValue(1)); 6055 6056 Store = DAG.getTruncStore( 6057 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6058 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6059 OutStoreChains.push_back(Store); 6060 } 6061 SrcOff += VTSize; 6062 DstOff += VTSize; 6063 Size -= VTSize; 6064 } 6065 6066 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6067 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6068 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6069 6070 if (NumLdStInMemcpy) { 6071 // It may be that memcpy might be converted to memset if it's memcpy 6072 // of constants. In such a case, we won't have loads and stores, but 6073 // just stores. In the absence of loads, there is nothing to gang up. 6074 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6075 // If target does not care, just leave as it. 6076 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6077 OutChains.push_back(OutLoadChains[i]); 6078 OutChains.push_back(OutStoreChains[i]); 6079 } 6080 } else { 6081 // Ld/St less than/equal limit set by target. 6082 if (NumLdStInMemcpy <= GluedLdStLimit) { 6083 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6084 NumLdStInMemcpy, OutLoadChains, 6085 OutStoreChains); 6086 } else { 6087 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6088 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6089 unsigned GlueIter = 0; 6090 6091 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6092 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6093 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6094 6095 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6096 OutLoadChains, OutStoreChains); 6097 GlueIter += GluedLdStLimit; 6098 } 6099 6100 // Residual ld/st. 6101 if (RemainingLdStInMemcpy) { 6102 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6103 RemainingLdStInMemcpy, OutLoadChains, 6104 OutStoreChains); 6105 } 6106 } 6107 } 6108 } 6109 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6110 } 6111 6112 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6113 SDValue Chain, SDValue Dst, SDValue Src, 6114 uint64_t Size, Align Alignment, 6115 bool isVol, bool AlwaysInline, 6116 MachinePointerInfo DstPtrInfo, 6117 MachinePointerInfo SrcPtrInfo) { 6118 // Turn a memmove of undef to nop. 6119 // FIXME: We need to honor volatile even is Src is undef. 6120 if (Src.isUndef()) 6121 return Chain; 6122 6123 // Expand memmove to a series of load and store ops if the size operand falls 6124 // below a certain threshold. 6125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6126 const DataLayout &DL = DAG.getDataLayout(); 6127 LLVMContext &C = *DAG.getContext(); 6128 std::vector<EVT> MemOps; 6129 bool DstAlignCanChange = false; 6130 MachineFunction &MF = DAG.getMachineFunction(); 6131 MachineFrameInfo &MFI = MF.getFrameInfo(); 6132 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6133 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6134 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6135 DstAlignCanChange = true; 6136 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6137 if (!SrcAlign || Alignment > *SrcAlign) 6138 SrcAlign = Alignment; 6139 assert(SrcAlign && "SrcAlign must be set"); 6140 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6141 if (!TLI.findOptimalMemOpLowering( 6142 MemOps, Limit, 6143 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6144 /*IsVolatile*/ true), 6145 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6146 MF.getFunction().getAttributes())) 6147 return SDValue(); 6148 6149 if (DstAlignCanChange) { 6150 Type *Ty = MemOps[0].getTypeForEVT(C); 6151 Align NewAlign = DL.getABITypeAlign(Ty); 6152 if (NewAlign > Alignment) { 6153 // Give the stack frame object a larger alignment if needed. 6154 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6155 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6156 Alignment = NewAlign; 6157 } 6158 } 6159 6160 MachineMemOperand::Flags MMOFlags = 6161 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6162 uint64_t SrcOff = 0, DstOff = 0; 6163 SmallVector<SDValue, 8> LoadValues; 6164 SmallVector<SDValue, 8> LoadChains; 6165 SmallVector<SDValue, 8> OutChains; 6166 unsigned NumMemOps = MemOps.size(); 6167 for (unsigned i = 0; i < NumMemOps; i++) { 6168 EVT VT = MemOps[i]; 6169 unsigned VTSize = VT.getSizeInBits() / 8; 6170 SDValue Value; 6171 6172 bool isDereferenceable = 6173 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6174 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6175 if (isDereferenceable) 6176 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6177 6178 Value = DAG.getLoad( 6179 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6180 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6181 LoadValues.push_back(Value); 6182 LoadChains.push_back(Value.getValue(1)); 6183 SrcOff += VTSize; 6184 } 6185 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6186 OutChains.clear(); 6187 for (unsigned i = 0; i < NumMemOps; i++) { 6188 EVT VT = MemOps[i]; 6189 unsigned VTSize = VT.getSizeInBits() / 8; 6190 SDValue Store; 6191 6192 Store = DAG.getStore( 6193 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6194 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6195 OutChains.push_back(Store); 6196 DstOff += VTSize; 6197 } 6198 6199 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6200 } 6201 6202 /// Lower the call to 'memset' intrinsic function into a series of store 6203 /// operations. 6204 /// 6205 /// \param DAG Selection DAG where lowered code is placed. 6206 /// \param dl Link to corresponding IR location. 6207 /// \param Chain Control flow dependency. 6208 /// \param Dst Pointer to destination memory location. 6209 /// \param Src Value of byte to write into the memory. 6210 /// \param Size Number of bytes to write. 6211 /// \param Alignment Alignment of the destination in bytes. 6212 /// \param isVol True if destination is volatile. 6213 /// \param DstPtrInfo IR information on the memory pointer. 6214 /// \returns New head in the control flow, if lowering was successful, empty 6215 /// SDValue otherwise. 6216 /// 6217 /// The function tries to replace 'llvm.memset' intrinsic with several store 6218 /// operations and value calculation code. This is usually profitable for small 6219 /// memory size. 6220 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6221 SDValue Chain, SDValue Dst, SDValue Src, 6222 uint64_t Size, Align Alignment, bool isVol, 6223 MachinePointerInfo DstPtrInfo) { 6224 // Turn a memset of undef to nop. 6225 // FIXME: We need to honor volatile even is Src is undef. 6226 if (Src.isUndef()) 6227 return Chain; 6228 6229 // Expand memset to a series of load/store ops if the size operand 6230 // falls below a certain threshold. 6231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6232 std::vector<EVT> MemOps; 6233 bool DstAlignCanChange = false; 6234 MachineFunction &MF = DAG.getMachineFunction(); 6235 MachineFrameInfo &MFI = MF.getFrameInfo(); 6236 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6237 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6238 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6239 DstAlignCanChange = true; 6240 bool IsZeroVal = 6241 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6242 if (!TLI.findOptimalMemOpLowering( 6243 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6244 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6245 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6246 return SDValue(); 6247 6248 if (DstAlignCanChange) { 6249 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6250 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6251 if (NewAlign > Alignment) { 6252 // Give the stack frame object a larger alignment if needed. 6253 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6254 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6255 Alignment = NewAlign; 6256 } 6257 } 6258 6259 SmallVector<SDValue, 8> OutChains; 6260 uint64_t DstOff = 0; 6261 unsigned NumMemOps = MemOps.size(); 6262 6263 // Find the largest store and generate the bit pattern for it. 6264 EVT LargestVT = MemOps[0]; 6265 for (unsigned i = 1; i < NumMemOps; i++) 6266 if (MemOps[i].bitsGT(LargestVT)) 6267 LargestVT = MemOps[i]; 6268 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6269 6270 for (unsigned i = 0; i < NumMemOps; i++) { 6271 EVT VT = MemOps[i]; 6272 unsigned VTSize = VT.getSizeInBits() / 8; 6273 if (VTSize > Size) { 6274 // Issuing an unaligned load / store pair that overlaps with the previous 6275 // pair. Adjust the offset accordingly. 6276 assert(i == NumMemOps-1 && i != 0); 6277 DstOff -= VTSize - Size; 6278 } 6279 6280 // If this store is smaller than the largest store see whether we can get 6281 // the smaller value for free with a truncate. 6282 SDValue Value = MemSetValue; 6283 if (VT.bitsLT(LargestVT)) { 6284 if (!LargestVT.isVector() && !VT.isVector() && 6285 TLI.isTruncateFree(LargestVT, VT)) 6286 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6287 else 6288 Value = getMemsetValue(Src, VT, DAG, dl); 6289 } 6290 assert(Value.getValueType() == VT && "Value with wrong type."); 6291 SDValue Store = DAG.getStore( 6292 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6293 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6294 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6295 OutChains.push_back(Store); 6296 DstOff += VT.getSizeInBits() / 8; 6297 Size -= VTSize; 6298 } 6299 6300 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6301 } 6302 6303 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6304 unsigned AS) { 6305 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6306 // pointer operands can be losslessly bitcasted to pointers of address space 0 6307 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6308 report_fatal_error("cannot lower memory intrinsic in address space " + 6309 Twine(AS)); 6310 } 6311 } 6312 6313 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6314 SDValue Src, SDValue Size, Align Alignment, 6315 bool isVol, bool AlwaysInline, bool isTailCall, 6316 MachinePointerInfo DstPtrInfo, 6317 MachinePointerInfo SrcPtrInfo) { 6318 // Check to see if we should lower the memcpy to loads and stores first. 6319 // For cases within the target-specified limits, this is the best choice. 6320 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6321 if (ConstantSize) { 6322 // Memcpy with size zero? Just return the original chain. 6323 if (ConstantSize->isNullValue()) 6324 return Chain; 6325 6326 SDValue Result = getMemcpyLoadsAndStores( 6327 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6328 isVol, false, DstPtrInfo, SrcPtrInfo); 6329 if (Result.getNode()) 6330 return Result; 6331 } 6332 6333 // Then check to see if we should lower the memcpy with target-specific 6334 // code. If the target chooses to do this, this is the next best. 6335 if (TSI) { 6336 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6337 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6338 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6339 if (Result.getNode()) 6340 return Result; 6341 } 6342 6343 // If we really need inline code and the target declined to provide it, 6344 // use a (potentially long) sequence of loads and stores. 6345 if (AlwaysInline) { 6346 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6347 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6348 ConstantSize->getZExtValue(), Alignment, 6349 isVol, true, DstPtrInfo, SrcPtrInfo); 6350 } 6351 6352 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6353 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6354 6355 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6356 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6357 // respect volatile, so they may do things like read or write memory 6358 // beyond the given memory regions. But fixing this isn't easy, and most 6359 // people don't care. 6360 6361 // Emit a library call. 6362 TargetLowering::ArgListTy Args; 6363 TargetLowering::ArgListEntry Entry; 6364 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6365 Entry.Node = Dst; Args.push_back(Entry); 6366 Entry.Node = Src; Args.push_back(Entry); 6367 6368 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6369 Entry.Node = Size; Args.push_back(Entry); 6370 // FIXME: pass in SDLoc 6371 TargetLowering::CallLoweringInfo CLI(*this); 6372 CLI.setDebugLoc(dl) 6373 .setChain(Chain) 6374 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6375 Dst.getValueType().getTypeForEVT(*getContext()), 6376 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6377 TLI->getPointerTy(getDataLayout())), 6378 std::move(Args)) 6379 .setDiscardResult() 6380 .setTailCall(isTailCall); 6381 6382 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6383 return CallResult.second; 6384 } 6385 6386 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6387 SDValue Dst, unsigned DstAlign, 6388 SDValue Src, unsigned SrcAlign, 6389 SDValue Size, Type *SizeTy, 6390 unsigned ElemSz, bool isTailCall, 6391 MachinePointerInfo DstPtrInfo, 6392 MachinePointerInfo SrcPtrInfo) { 6393 // Emit a library call. 6394 TargetLowering::ArgListTy Args; 6395 TargetLowering::ArgListEntry Entry; 6396 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6397 Entry.Node = Dst; 6398 Args.push_back(Entry); 6399 6400 Entry.Node = Src; 6401 Args.push_back(Entry); 6402 6403 Entry.Ty = SizeTy; 6404 Entry.Node = Size; 6405 Args.push_back(Entry); 6406 6407 RTLIB::Libcall LibraryCall = 6408 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6409 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6410 report_fatal_error("Unsupported element size"); 6411 6412 TargetLowering::CallLoweringInfo CLI(*this); 6413 CLI.setDebugLoc(dl) 6414 .setChain(Chain) 6415 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6416 Type::getVoidTy(*getContext()), 6417 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6418 TLI->getPointerTy(getDataLayout())), 6419 std::move(Args)) 6420 .setDiscardResult() 6421 .setTailCall(isTailCall); 6422 6423 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6424 return CallResult.second; 6425 } 6426 6427 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6428 SDValue Src, SDValue Size, Align Alignment, 6429 bool isVol, bool isTailCall, 6430 MachinePointerInfo DstPtrInfo, 6431 MachinePointerInfo SrcPtrInfo) { 6432 // Check to see if we should lower the memmove to loads and stores first. 6433 // For cases within the target-specified limits, this is the best choice. 6434 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6435 if (ConstantSize) { 6436 // Memmove with size zero? Just return the original chain. 6437 if (ConstantSize->isNullValue()) 6438 return Chain; 6439 6440 SDValue Result = getMemmoveLoadsAndStores( 6441 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6442 isVol, false, DstPtrInfo, SrcPtrInfo); 6443 if (Result.getNode()) 6444 return Result; 6445 } 6446 6447 // Then check to see if we should lower the memmove with target-specific 6448 // code. If the target chooses to do this, this is the next best. 6449 if (TSI) { 6450 SDValue Result = TSI->EmitTargetCodeForMemmove( 6451 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6452 SrcPtrInfo); 6453 if (Result.getNode()) 6454 return Result; 6455 } 6456 6457 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6458 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6459 6460 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6461 // not be safe. See memcpy above for more details. 6462 6463 // Emit a library call. 6464 TargetLowering::ArgListTy Args; 6465 TargetLowering::ArgListEntry Entry; 6466 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6467 Entry.Node = Dst; Args.push_back(Entry); 6468 Entry.Node = Src; Args.push_back(Entry); 6469 6470 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6471 Entry.Node = Size; Args.push_back(Entry); 6472 // FIXME: pass in SDLoc 6473 TargetLowering::CallLoweringInfo CLI(*this); 6474 CLI.setDebugLoc(dl) 6475 .setChain(Chain) 6476 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6477 Dst.getValueType().getTypeForEVT(*getContext()), 6478 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6479 TLI->getPointerTy(getDataLayout())), 6480 std::move(Args)) 6481 .setDiscardResult() 6482 .setTailCall(isTailCall); 6483 6484 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6485 return CallResult.second; 6486 } 6487 6488 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6489 SDValue Dst, unsigned DstAlign, 6490 SDValue Src, unsigned SrcAlign, 6491 SDValue Size, Type *SizeTy, 6492 unsigned ElemSz, bool isTailCall, 6493 MachinePointerInfo DstPtrInfo, 6494 MachinePointerInfo SrcPtrInfo) { 6495 // Emit a library call. 6496 TargetLowering::ArgListTy Args; 6497 TargetLowering::ArgListEntry Entry; 6498 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6499 Entry.Node = Dst; 6500 Args.push_back(Entry); 6501 6502 Entry.Node = Src; 6503 Args.push_back(Entry); 6504 6505 Entry.Ty = SizeTy; 6506 Entry.Node = Size; 6507 Args.push_back(Entry); 6508 6509 RTLIB::Libcall LibraryCall = 6510 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6511 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6512 report_fatal_error("Unsupported element size"); 6513 6514 TargetLowering::CallLoweringInfo CLI(*this); 6515 CLI.setDebugLoc(dl) 6516 .setChain(Chain) 6517 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6518 Type::getVoidTy(*getContext()), 6519 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6520 TLI->getPointerTy(getDataLayout())), 6521 std::move(Args)) 6522 .setDiscardResult() 6523 .setTailCall(isTailCall); 6524 6525 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6526 return CallResult.second; 6527 } 6528 6529 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6530 SDValue Src, SDValue Size, Align Alignment, 6531 bool isVol, bool isTailCall, 6532 MachinePointerInfo DstPtrInfo) { 6533 // Check to see if we should lower the memset to stores first. 6534 // For cases within the target-specified limits, this is the best choice. 6535 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6536 if (ConstantSize) { 6537 // Memset with size zero? Just return the original chain. 6538 if (ConstantSize->isNullValue()) 6539 return Chain; 6540 6541 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6542 ConstantSize->getZExtValue(), Alignment, 6543 isVol, DstPtrInfo); 6544 6545 if (Result.getNode()) 6546 return Result; 6547 } 6548 6549 // Then check to see if we should lower the memset with target-specific 6550 // code. If the target chooses to do this, this is the next best. 6551 if (TSI) { 6552 SDValue Result = TSI->EmitTargetCodeForMemset( 6553 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6554 if (Result.getNode()) 6555 return Result; 6556 } 6557 6558 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6559 6560 // Emit a library call. 6561 TargetLowering::ArgListTy Args; 6562 TargetLowering::ArgListEntry Entry; 6563 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6564 Args.push_back(Entry); 6565 Entry.Node = Src; 6566 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6567 Args.push_back(Entry); 6568 Entry.Node = Size; 6569 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6570 Args.push_back(Entry); 6571 6572 // FIXME: pass in SDLoc 6573 TargetLowering::CallLoweringInfo CLI(*this); 6574 CLI.setDebugLoc(dl) 6575 .setChain(Chain) 6576 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6577 Dst.getValueType().getTypeForEVT(*getContext()), 6578 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6579 TLI->getPointerTy(getDataLayout())), 6580 std::move(Args)) 6581 .setDiscardResult() 6582 .setTailCall(isTailCall); 6583 6584 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6585 return CallResult.second; 6586 } 6587 6588 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6589 SDValue Dst, unsigned DstAlign, 6590 SDValue Value, SDValue Size, Type *SizeTy, 6591 unsigned ElemSz, bool isTailCall, 6592 MachinePointerInfo DstPtrInfo) { 6593 // Emit a library call. 6594 TargetLowering::ArgListTy Args; 6595 TargetLowering::ArgListEntry Entry; 6596 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6597 Entry.Node = Dst; 6598 Args.push_back(Entry); 6599 6600 Entry.Ty = Type::getInt8Ty(*getContext()); 6601 Entry.Node = Value; 6602 Args.push_back(Entry); 6603 6604 Entry.Ty = SizeTy; 6605 Entry.Node = Size; 6606 Args.push_back(Entry); 6607 6608 RTLIB::Libcall LibraryCall = 6609 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6610 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6611 report_fatal_error("Unsupported element size"); 6612 6613 TargetLowering::CallLoweringInfo CLI(*this); 6614 CLI.setDebugLoc(dl) 6615 .setChain(Chain) 6616 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6617 Type::getVoidTy(*getContext()), 6618 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6619 TLI->getPointerTy(getDataLayout())), 6620 std::move(Args)) 6621 .setDiscardResult() 6622 .setTailCall(isTailCall); 6623 6624 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6625 return CallResult.second; 6626 } 6627 6628 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6629 SDVTList VTList, ArrayRef<SDValue> Ops, 6630 MachineMemOperand *MMO) { 6631 FoldingSetNodeID ID; 6632 ID.AddInteger(MemVT.getRawBits()); 6633 AddNodeIDNode(ID, Opcode, VTList, Ops); 6634 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6635 void* IP = nullptr; 6636 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6637 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6638 return SDValue(E, 0); 6639 } 6640 6641 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6642 VTList, MemVT, MMO); 6643 createOperands(N, Ops); 6644 6645 CSEMap.InsertNode(N, IP); 6646 InsertNode(N); 6647 return SDValue(N, 0); 6648 } 6649 6650 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6651 EVT MemVT, SDVTList VTs, SDValue Chain, 6652 SDValue Ptr, SDValue Cmp, SDValue Swp, 6653 MachineMemOperand *MMO) { 6654 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6655 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6656 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6657 6658 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6659 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6660 } 6661 6662 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6663 SDValue Chain, SDValue Ptr, SDValue Val, 6664 MachineMemOperand *MMO) { 6665 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6666 Opcode == ISD::ATOMIC_LOAD_SUB || 6667 Opcode == ISD::ATOMIC_LOAD_AND || 6668 Opcode == ISD::ATOMIC_LOAD_CLR || 6669 Opcode == ISD::ATOMIC_LOAD_OR || 6670 Opcode == ISD::ATOMIC_LOAD_XOR || 6671 Opcode == ISD::ATOMIC_LOAD_NAND || 6672 Opcode == ISD::ATOMIC_LOAD_MIN || 6673 Opcode == ISD::ATOMIC_LOAD_MAX || 6674 Opcode == ISD::ATOMIC_LOAD_UMIN || 6675 Opcode == ISD::ATOMIC_LOAD_UMAX || 6676 Opcode == ISD::ATOMIC_LOAD_FADD || 6677 Opcode == ISD::ATOMIC_LOAD_FSUB || 6678 Opcode == ISD::ATOMIC_SWAP || 6679 Opcode == ISD::ATOMIC_STORE) && 6680 "Invalid Atomic Op"); 6681 6682 EVT VT = Val.getValueType(); 6683 6684 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6685 getVTList(VT, MVT::Other); 6686 SDValue Ops[] = {Chain, Ptr, Val}; 6687 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6688 } 6689 6690 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6691 EVT VT, SDValue Chain, SDValue Ptr, 6692 MachineMemOperand *MMO) { 6693 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6694 6695 SDVTList VTs = getVTList(VT, MVT::Other); 6696 SDValue Ops[] = {Chain, Ptr}; 6697 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6698 } 6699 6700 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6701 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6702 if (Ops.size() == 1) 6703 return Ops[0]; 6704 6705 SmallVector<EVT, 4> VTs; 6706 VTs.reserve(Ops.size()); 6707 for (unsigned i = 0; i < Ops.size(); ++i) 6708 VTs.push_back(Ops[i].getValueType()); 6709 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6710 } 6711 6712 SDValue SelectionDAG::getMemIntrinsicNode( 6713 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6714 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6715 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6716 if (!Size && MemVT.isScalableVector()) 6717 Size = MemoryLocation::UnknownSize; 6718 else if (!Size) 6719 Size = MemVT.getStoreSize(); 6720 6721 MachineFunction &MF = getMachineFunction(); 6722 MachineMemOperand *MMO = 6723 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6724 6725 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6726 } 6727 6728 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6729 SDVTList VTList, 6730 ArrayRef<SDValue> Ops, EVT MemVT, 6731 MachineMemOperand *MMO) { 6732 assert((Opcode == ISD::INTRINSIC_VOID || 6733 Opcode == ISD::INTRINSIC_W_CHAIN || 6734 Opcode == ISD::PREFETCH || 6735 ((int)Opcode <= std::numeric_limits<int>::max() && 6736 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6737 "Opcode is not a memory-accessing opcode!"); 6738 6739 // Memoize the node unless it returns a flag. 6740 MemIntrinsicSDNode *N; 6741 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6742 FoldingSetNodeID ID; 6743 AddNodeIDNode(ID, Opcode, VTList, Ops); 6744 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6745 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6746 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6747 void *IP = nullptr; 6748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6749 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6750 return SDValue(E, 0); 6751 } 6752 6753 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6754 VTList, MemVT, MMO); 6755 createOperands(N, Ops); 6756 6757 CSEMap.InsertNode(N, IP); 6758 } else { 6759 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6760 VTList, MemVT, MMO); 6761 createOperands(N, Ops); 6762 } 6763 InsertNode(N); 6764 SDValue V(N, 0); 6765 NewSDValueDbgMsg(V, "Creating new node: ", this); 6766 return V; 6767 } 6768 6769 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6770 SDValue Chain, int FrameIndex, 6771 int64_t Size, int64_t Offset) { 6772 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6773 const auto VTs = getVTList(MVT::Other); 6774 SDValue Ops[2] = { 6775 Chain, 6776 getFrameIndex(FrameIndex, 6777 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6778 true)}; 6779 6780 FoldingSetNodeID ID; 6781 AddNodeIDNode(ID, Opcode, VTs, Ops); 6782 ID.AddInteger(FrameIndex); 6783 ID.AddInteger(Size); 6784 ID.AddInteger(Offset); 6785 void *IP = nullptr; 6786 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6787 return SDValue(E, 0); 6788 6789 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6790 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6791 createOperands(N, Ops); 6792 CSEMap.InsertNode(N, IP); 6793 InsertNode(N); 6794 SDValue V(N, 0); 6795 NewSDValueDbgMsg(V, "Creating new node: ", this); 6796 return V; 6797 } 6798 6799 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6800 /// MachinePointerInfo record from it. This is particularly useful because the 6801 /// code generator has many cases where it doesn't bother passing in a 6802 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6803 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6804 SelectionDAG &DAG, SDValue Ptr, 6805 int64_t Offset = 0) { 6806 // If this is FI+Offset, we can model it. 6807 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6808 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6809 FI->getIndex(), Offset); 6810 6811 // If this is (FI+Offset1)+Offset2, we can model it. 6812 if (Ptr.getOpcode() != ISD::ADD || 6813 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6814 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6815 return Info; 6816 6817 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6818 return MachinePointerInfo::getFixedStack( 6819 DAG.getMachineFunction(), FI, 6820 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6821 } 6822 6823 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6824 /// MachinePointerInfo record from it. This is particularly useful because the 6825 /// code generator has many cases where it doesn't bother passing in a 6826 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6827 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6828 SelectionDAG &DAG, SDValue Ptr, 6829 SDValue OffsetOp) { 6830 // If the 'Offset' value isn't a constant, we can't handle this. 6831 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6832 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6833 if (OffsetOp.isUndef()) 6834 return InferPointerInfo(Info, DAG, Ptr); 6835 return Info; 6836 } 6837 6838 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6839 EVT VT, const SDLoc &dl, SDValue Chain, 6840 SDValue Ptr, SDValue Offset, 6841 MachinePointerInfo PtrInfo, EVT MemVT, 6842 Align Alignment, 6843 MachineMemOperand::Flags MMOFlags, 6844 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6845 assert(Chain.getValueType() == MVT::Other && 6846 "Invalid chain type"); 6847 6848 MMOFlags |= MachineMemOperand::MOLoad; 6849 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6850 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6851 // clients. 6852 if (PtrInfo.V.isNull()) 6853 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6854 6855 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6856 MachineFunction &MF = getMachineFunction(); 6857 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6858 Alignment, AAInfo, Ranges); 6859 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6860 } 6861 6862 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6863 EVT VT, const SDLoc &dl, SDValue Chain, 6864 SDValue Ptr, SDValue Offset, EVT MemVT, 6865 MachineMemOperand *MMO) { 6866 if (VT == MemVT) { 6867 ExtType = ISD::NON_EXTLOAD; 6868 } else if (ExtType == ISD::NON_EXTLOAD) { 6869 assert(VT == MemVT && "Non-extending load from different memory type!"); 6870 } else { 6871 // Extending load. 6872 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6873 "Should only be an extending load, not truncating!"); 6874 assert(VT.isInteger() == MemVT.isInteger() && 6875 "Cannot convert from FP to Int or Int -> FP!"); 6876 assert(VT.isVector() == MemVT.isVector() && 6877 "Cannot use an ext load to convert to or from a vector!"); 6878 assert((!VT.isVector() || 6879 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6880 "Cannot use an ext load to change the number of vector elements!"); 6881 } 6882 6883 bool Indexed = AM != ISD::UNINDEXED; 6884 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6885 6886 SDVTList VTs = Indexed ? 6887 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6888 SDValue Ops[] = { Chain, Ptr, Offset }; 6889 FoldingSetNodeID ID; 6890 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6891 ID.AddInteger(MemVT.getRawBits()); 6892 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6893 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6894 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6895 void *IP = nullptr; 6896 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6897 cast<LoadSDNode>(E)->refineAlignment(MMO); 6898 return SDValue(E, 0); 6899 } 6900 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6901 ExtType, MemVT, MMO); 6902 createOperands(N, Ops); 6903 6904 CSEMap.InsertNode(N, IP); 6905 InsertNode(N); 6906 SDValue V(N, 0); 6907 NewSDValueDbgMsg(V, "Creating new node: ", this); 6908 return V; 6909 } 6910 6911 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6912 SDValue Ptr, MachinePointerInfo PtrInfo, 6913 MaybeAlign Alignment, 6914 MachineMemOperand::Flags MMOFlags, 6915 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6916 SDValue Undef = getUNDEF(Ptr.getValueType()); 6917 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6918 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6919 } 6920 6921 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6922 SDValue Ptr, MachineMemOperand *MMO) { 6923 SDValue Undef = getUNDEF(Ptr.getValueType()); 6924 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6925 VT, MMO); 6926 } 6927 6928 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6929 EVT VT, SDValue Chain, SDValue Ptr, 6930 MachinePointerInfo PtrInfo, EVT MemVT, 6931 MaybeAlign Alignment, 6932 MachineMemOperand::Flags MMOFlags, 6933 const AAMDNodes &AAInfo) { 6934 SDValue Undef = getUNDEF(Ptr.getValueType()); 6935 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6936 MemVT, Alignment, MMOFlags, AAInfo); 6937 } 6938 6939 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6940 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6941 MachineMemOperand *MMO) { 6942 SDValue Undef = getUNDEF(Ptr.getValueType()); 6943 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6944 MemVT, MMO); 6945 } 6946 6947 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6948 SDValue Base, SDValue Offset, 6949 ISD::MemIndexedMode AM) { 6950 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6951 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6952 // Don't propagate the invariant or dereferenceable flags. 6953 auto MMOFlags = 6954 LD->getMemOperand()->getFlags() & 6955 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6956 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6957 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6958 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6959 LD->getAAInfo()); 6960 } 6961 6962 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6963 SDValue Ptr, MachinePointerInfo PtrInfo, 6964 Align Alignment, 6965 MachineMemOperand::Flags MMOFlags, 6966 const AAMDNodes &AAInfo) { 6967 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6968 6969 MMOFlags |= MachineMemOperand::MOStore; 6970 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6971 6972 if (PtrInfo.V.isNull()) 6973 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6974 6975 MachineFunction &MF = getMachineFunction(); 6976 uint64_t Size = 6977 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6978 MachineMemOperand *MMO = 6979 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6980 return getStore(Chain, dl, Val, Ptr, MMO); 6981 } 6982 6983 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6984 SDValue Ptr, MachineMemOperand *MMO) { 6985 assert(Chain.getValueType() == MVT::Other && 6986 "Invalid chain type"); 6987 EVT VT = Val.getValueType(); 6988 SDVTList VTs = getVTList(MVT::Other); 6989 SDValue Undef = getUNDEF(Ptr.getValueType()); 6990 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6991 FoldingSetNodeID ID; 6992 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6993 ID.AddInteger(VT.getRawBits()); 6994 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6995 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6996 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6997 void *IP = nullptr; 6998 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6999 cast<StoreSDNode>(E)->refineAlignment(MMO); 7000 return SDValue(E, 0); 7001 } 7002 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7003 ISD::UNINDEXED, false, VT, MMO); 7004 createOperands(N, Ops); 7005 7006 CSEMap.InsertNode(N, IP); 7007 InsertNode(N); 7008 SDValue V(N, 0); 7009 NewSDValueDbgMsg(V, "Creating new node: ", this); 7010 return V; 7011 } 7012 7013 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7014 SDValue Ptr, MachinePointerInfo PtrInfo, 7015 EVT SVT, Align Alignment, 7016 MachineMemOperand::Flags MMOFlags, 7017 const AAMDNodes &AAInfo) { 7018 assert(Chain.getValueType() == MVT::Other && 7019 "Invalid chain type"); 7020 7021 MMOFlags |= MachineMemOperand::MOStore; 7022 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7023 7024 if (PtrInfo.V.isNull()) 7025 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7026 7027 MachineFunction &MF = getMachineFunction(); 7028 MachineMemOperand *MMO = MF.getMachineMemOperand( 7029 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7030 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7031 } 7032 7033 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7034 SDValue Ptr, EVT SVT, 7035 MachineMemOperand *MMO) { 7036 EVT VT = Val.getValueType(); 7037 7038 assert(Chain.getValueType() == MVT::Other && 7039 "Invalid chain type"); 7040 if (VT == SVT) 7041 return getStore(Chain, dl, Val, Ptr, MMO); 7042 7043 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7044 "Should only be a truncating store, not extending!"); 7045 assert(VT.isInteger() == SVT.isInteger() && 7046 "Can't do FP-INT conversion!"); 7047 assert(VT.isVector() == SVT.isVector() && 7048 "Cannot use trunc store to convert to or from a vector!"); 7049 assert((!VT.isVector() || 7050 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7051 "Cannot use trunc store to change the number of vector elements!"); 7052 7053 SDVTList VTs = getVTList(MVT::Other); 7054 SDValue Undef = getUNDEF(Ptr.getValueType()); 7055 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7056 FoldingSetNodeID ID; 7057 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7058 ID.AddInteger(SVT.getRawBits()); 7059 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7060 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7061 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7062 void *IP = nullptr; 7063 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7064 cast<StoreSDNode>(E)->refineAlignment(MMO); 7065 return SDValue(E, 0); 7066 } 7067 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7068 ISD::UNINDEXED, true, SVT, MMO); 7069 createOperands(N, Ops); 7070 7071 CSEMap.InsertNode(N, IP); 7072 InsertNode(N); 7073 SDValue V(N, 0); 7074 NewSDValueDbgMsg(V, "Creating new node: ", this); 7075 return V; 7076 } 7077 7078 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7079 SDValue Base, SDValue Offset, 7080 ISD::MemIndexedMode AM) { 7081 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7082 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7083 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7084 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7085 FoldingSetNodeID ID; 7086 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7087 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7088 ID.AddInteger(ST->getRawSubclassData()); 7089 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7090 void *IP = nullptr; 7091 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7092 return SDValue(E, 0); 7093 7094 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7095 ST->isTruncatingStore(), ST->getMemoryVT(), 7096 ST->getMemOperand()); 7097 createOperands(N, Ops); 7098 7099 CSEMap.InsertNode(N, IP); 7100 InsertNode(N); 7101 SDValue V(N, 0); 7102 NewSDValueDbgMsg(V, "Creating new node: ", this); 7103 return V; 7104 } 7105 7106 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7107 SDValue Base, SDValue Offset, SDValue Mask, 7108 SDValue PassThru, EVT MemVT, 7109 MachineMemOperand *MMO, 7110 ISD::MemIndexedMode AM, 7111 ISD::LoadExtType ExtTy, bool isExpanding) { 7112 bool Indexed = AM != ISD::UNINDEXED; 7113 assert((Indexed || Offset.isUndef()) && 7114 "Unindexed masked load with an offset!"); 7115 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7116 : getVTList(VT, MVT::Other); 7117 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7118 FoldingSetNodeID ID; 7119 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7120 ID.AddInteger(MemVT.getRawBits()); 7121 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7122 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7123 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7124 void *IP = nullptr; 7125 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7126 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7127 return SDValue(E, 0); 7128 } 7129 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7130 AM, ExtTy, isExpanding, MemVT, MMO); 7131 createOperands(N, Ops); 7132 7133 CSEMap.InsertNode(N, IP); 7134 InsertNode(N); 7135 SDValue V(N, 0); 7136 NewSDValueDbgMsg(V, "Creating new node: ", this); 7137 return V; 7138 } 7139 7140 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7141 SDValue Base, SDValue Offset, 7142 ISD::MemIndexedMode AM) { 7143 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7144 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7145 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7146 Offset, LD->getMask(), LD->getPassThru(), 7147 LD->getMemoryVT(), LD->getMemOperand(), AM, 7148 LD->getExtensionType(), LD->isExpandingLoad()); 7149 } 7150 7151 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7152 SDValue Val, SDValue Base, SDValue Offset, 7153 SDValue Mask, EVT MemVT, 7154 MachineMemOperand *MMO, 7155 ISD::MemIndexedMode AM, bool IsTruncating, 7156 bool IsCompressing) { 7157 assert(Chain.getValueType() == MVT::Other && 7158 "Invalid chain type"); 7159 bool Indexed = AM != ISD::UNINDEXED; 7160 assert((Indexed || Offset.isUndef()) && 7161 "Unindexed masked store with an offset!"); 7162 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7163 : getVTList(MVT::Other); 7164 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7165 FoldingSetNodeID ID; 7166 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7167 ID.AddInteger(MemVT.getRawBits()); 7168 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7169 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7170 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7171 void *IP = nullptr; 7172 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7173 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7174 return SDValue(E, 0); 7175 } 7176 auto *N = 7177 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7178 IsTruncating, IsCompressing, MemVT, MMO); 7179 createOperands(N, Ops); 7180 7181 CSEMap.InsertNode(N, IP); 7182 InsertNode(N); 7183 SDValue V(N, 0); 7184 NewSDValueDbgMsg(V, "Creating new node: ", this); 7185 return V; 7186 } 7187 7188 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7189 SDValue Base, SDValue Offset, 7190 ISD::MemIndexedMode AM) { 7191 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7192 assert(ST->getOffset().isUndef() && 7193 "Masked store is already a indexed store!"); 7194 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7195 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7196 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7197 } 7198 7199 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7200 ArrayRef<SDValue> Ops, 7201 MachineMemOperand *MMO, 7202 ISD::MemIndexType IndexType) { 7203 assert(Ops.size() == 6 && "Incompatible number of operands"); 7204 7205 FoldingSetNodeID ID; 7206 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7207 ID.AddInteger(VT.getRawBits()); 7208 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7209 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7210 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7211 void *IP = nullptr; 7212 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7213 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7214 return SDValue(E, 0); 7215 } 7216 7217 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7218 VTs, VT, MMO, IndexType); 7219 createOperands(N, Ops); 7220 7221 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7222 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7223 assert(N->getMask().getValueType().getVectorNumElements() == 7224 N->getValueType(0).getVectorNumElements() && 7225 "Vector width mismatch between mask and data"); 7226 assert(N->getIndex().getValueType().getVectorNumElements() >= 7227 N->getValueType(0).getVectorNumElements() && 7228 "Vector width mismatch between index and data"); 7229 assert(isa<ConstantSDNode>(N->getScale()) && 7230 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7231 "Scale should be a constant power of 2"); 7232 7233 CSEMap.InsertNode(N, IP); 7234 InsertNode(N); 7235 SDValue V(N, 0); 7236 NewSDValueDbgMsg(V, "Creating new node: ", this); 7237 return V; 7238 } 7239 7240 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7241 ArrayRef<SDValue> Ops, 7242 MachineMemOperand *MMO, 7243 ISD::MemIndexType IndexType) { 7244 assert(Ops.size() == 6 && "Incompatible number of operands"); 7245 7246 FoldingSetNodeID ID; 7247 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7248 ID.AddInteger(VT.getRawBits()); 7249 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7250 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7251 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7252 void *IP = nullptr; 7253 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7254 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7255 return SDValue(E, 0); 7256 } 7257 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7258 VTs, VT, MMO, IndexType); 7259 createOperands(N, Ops); 7260 7261 assert(N->getMask().getValueType().getVectorNumElements() == 7262 N->getValue().getValueType().getVectorNumElements() && 7263 "Vector width mismatch between mask and data"); 7264 assert(N->getIndex().getValueType().getVectorNumElements() >= 7265 N->getValue().getValueType().getVectorNumElements() && 7266 "Vector width mismatch between index and data"); 7267 assert(isa<ConstantSDNode>(N->getScale()) && 7268 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7269 "Scale should be a constant power of 2"); 7270 7271 CSEMap.InsertNode(N, IP); 7272 InsertNode(N); 7273 SDValue V(N, 0); 7274 NewSDValueDbgMsg(V, "Creating new node: ", this); 7275 return V; 7276 } 7277 7278 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7279 // select undef, T, F --> T (if T is a constant), otherwise F 7280 // select, ?, undef, F --> F 7281 // select, ?, T, undef --> T 7282 if (Cond.isUndef()) 7283 return isConstantValueOfAnyType(T) ? T : F; 7284 if (T.isUndef()) 7285 return F; 7286 if (F.isUndef()) 7287 return T; 7288 7289 // select true, T, F --> T 7290 // select false, T, F --> F 7291 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7292 return CondC->isNullValue() ? F : T; 7293 7294 // TODO: This should simplify VSELECT with constant condition using something 7295 // like this (but check boolean contents to be complete?): 7296 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7297 // return T; 7298 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7299 // return F; 7300 7301 // select ?, T, T --> T 7302 if (T == F) 7303 return T; 7304 7305 return SDValue(); 7306 } 7307 7308 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7309 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7310 if (X.isUndef()) 7311 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7312 // shift X, undef --> undef (because it may shift by the bitwidth) 7313 if (Y.isUndef()) 7314 return getUNDEF(X.getValueType()); 7315 7316 // shift 0, Y --> 0 7317 // shift X, 0 --> X 7318 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7319 return X; 7320 7321 // shift X, C >= bitwidth(X) --> undef 7322 // All vector elements must be too big (or undef) to avoid partial undefs. 7323 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7324 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7325 }; 7326 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7327 return getUNDEF(X.getValueType()); 7328 7329 return SDValue(); 7330 } 7331 7332 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7333 SDNodeFlags Flags) { 7334 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7335 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7336 // operation is poison. That result can be relaxed to undef. 7337 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7338 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7339 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7340 (YC && YC->getValueAPF().isNaN()); 7341 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7342 (YC && YC->getValueAPF().isInfinity()); 7343 7344 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7345 return getUNDEF(X.getValueType()); 7346 7347 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7348 return getUNDEF(X.getValueType()); 7349 7350 if (!YC) 7351 return SDValue(); 7352 7353 // X + -0.0 --> X 7354 if (Opcode == ISD::FADD) 7355 if (YC->getValueAPF().isNegZero()) 7356 return X; 7357 7358 // X - +0.0 --> X 7359 if (Opcode == ISD::FSUB) 7360 if (YC->getValueAPF().isPosZero()) 7361 return X; 7362 7363 // X * 1.0 --> X 7364 // X / 1.0 --> X 7365 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7366 if (YC->getValueAPF().isExactlyValue(1.0)) 7367 return X; 7368 7369 return SDValue(); 7370 } 7371 7372 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7373 SDValue Ptr, SDValue SV, unsigned Align) { 7374 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7375 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7376 } 7377 7378 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7379 ArrayRef<SDUse> Ops) { 7380 switch (Ops.size()) { 7381 case 0: return getNode(Opcode, DL, VT); 7382 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7383 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7384 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7385 default: break; 7386 } 7387 7388 // Copy from an SDUse array into an SDValue array for use with 7389 // the regular getNode logic. 7390 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7391 return getNode(Opcode, DL, VT, NewOps); 7392 } 7393 7394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7395 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7396 unsigned NumOps = Ops.size(); 7397 switch (NumOps) { 7398 case 0: return getNode(Opcode, DL, VT); 7399 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7400 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7401 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7402 default: break; 7403 } 7404 7405 switch (Opcode) { 7406 default: break; 7407 case ISD::BUILD_VECTOR: 7408 // Attempt to simplify BUILD_VECTOR. 7409 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7410 return V; 7411 break; 7412 case ISD::CONCAT_VECTORS: 7413 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7414 return V; 7415 break; 7416 case ISD::SELECT_CC: 7417 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7418 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7419 "LHS and RHS of condition must have same type!"); 7420 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7421 "True and False arms of SelectCC must have same type!"); 7422 assert(Ops[2].getValueType() == VT && 7423 "select_cc node must be of same type as true and false value!"); 7424 break; 7425 case ISD::BR_CC: 7426 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7427 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7428 "LHS/RHS of comparison should match types!"); 7429 break; 7430 } 7431 7432 // Memoize nodes. 7433 SDNode *N; 7434 SDVTList VTs = getVTList(VT); 7435 7436 if (VT != MVT::Glue) { 7437 FoldingSetNodeID ID; 7438 AddNodeIDNode(ID, Opcode, VTs, Ops); 7439 void *IP = nullptr; 7440 7441 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7442 return SDValue(E, 0); 7443 7444 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7445 createOperands(N, Ops); 7446 7447 CSEMap.InsertNode(N, IP); 7448 } else { 7449 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7450 createOperands(N, Ops); 7451 } 7452 7453 InsertNode(N); 7454 SDValue V(N, 0); 7455 NewSDValueDbgMsg(V, "Creating new node: ", this); 7456 return V; 7457 } 7458 7459 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7460 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7461 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7462 } 7463 7464 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7465 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7466 if (VTList.NumVTs == 1) 7467 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7468 7469 switch (Opcode) { 7470 case ISD::STRICT_FP_EXTEND: 7471 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7472 "Invalid STRICT_FP_EXTEND!"); 7473 assert(VTList.VTs[0].isFloatingPoint() && 7474 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7475 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7476 "STRICT_FP_EXTEND result type should be vector iff the operand " 7477 "type is vector!"); 7478 assert((!VTList.VTs[0].isVector() || 7479 VTList.VTs[0].getVectorNumElements() == 7480 Ops[1].getValueType().getVectorNumElements()) && 7481 "Vector element count mismatch!"); 7482 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7483 "Invalid fpext node, dst <= src!"); 7484 break; 7485 case ISD::STRICT_FP_ROUND: 7486 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7487 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7488 "STRICT_FP_ROUND result type should be vector iff the operand " 7489 "type is vector!"); 7490 assert((!VTList.VTs[0].isVector() || 7491 VTList.VTs[0].getVectorNumElements() == 7492 Ops[1].getValueType().getVectorNumElements()) && 7493 "Vector element count mismatch!"); 7494 assert(VTList.VTs[0].isFloatingPoint() && 7495 Ops[1].getValueType().isFloatingPoint() && 7496 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7497 isa<ConstantSDNode>(Ops[2]) && 7498 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7499 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7500 "Invalid STRICT_FP_ROUND!"); 7501 break; 7502 #if 0 7503 // FIXME: figure out how to safely handle things like 7504 // int foo(int x) { return 1 << (x & 255); } 7505 // int bar() { return foo(256); } 7506 case ISD::SRA_PARTS: 7507 case ISD::SRL_PARTS: 7508 case ISD::SHL_PARTS: 7509 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7510 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7511 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7512 else if (N3.getOpcode() == ISD::AND) 7513 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7514 // If the and is only masking out bits that cannot effect the shift, 7515 // eliminate the and. 7516 unsigned NumBits = VT.getScalarSizeInBits()*2; 7517 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7518 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7519 } 7520 break; 7521 #endif 7522 } 7523 7524 // Memoize the node unless it returns a flag. 7525 SDNode *N; 7526 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7527 FoldingSetNodeID ID; 7528 AddNodeIDNode(ID, Opcode, VTList, Ops); 7529 void *IP = nullptr; 7530 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7531 return SDValue(E, 0); 7532 7533 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7534 N->setFlags(Flags); 7535 createOperands(N, Ops); 7536 CSEMap.InsertNode(N, IP); 7537 } else { 7538 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7539 createOperands(N, Ops); 7540 } 7541 InsertNode(N); 7542 SDValue V(N, 0); 7543 NewSDValueDbgMsg(V, "Creating new node: ", this); 7544 return V; 7545 } 7546 7547 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7548 SDVTList VTList) { 7549 return getNode(Opcode, DL, VTList, None); 7550 } 7551 7552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7553 SDValue N1) { 7554 SDValue Ops[] = { N1 }; 7555 return getNode(Opcode, DL, VTList, Ops); 7556 } 7557 7558 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7559 SDValue N1, SDValue N2) { 7560 SDValue Ops[] = { N1, N2 }; 7561 return getNode(Opcode, DL, VTList, Ops); 7562 } 7563 7564 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7565 SDValue N1, SDValue N2, SDValue N3) { 7566 SDValue Ops[] = { N1, N2, N3 }; 7567 return getNode(Opcode, DL, VTList, Ops); 7568 } 7569 7570 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7571 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7572 SDValue Ops[] = { N1, N2, N3, N4 }; 7573 return getNode(Opcode, DL, VTList, Ops); 7574 } 7575 7576 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7577 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7578 SDValue N5) { 7579 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7580 return getNode(Opcode, DL, VTList, Ops); 7581 } 7582 7583 SDVTList SelectionDAG::getVTList(EVT VT) { 7584 return makeVTList(SDNode::getValueTypeList(VT), 1); 7585 } 7586 7587 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7588 FoldingSetNodeID ID; 7589 ID.AddInteger(2U); 7590 ID.AddInteger(VT1.getRawBits()); 7591 ID.AddInteger(VT2.getRawBits()); 7592 7593 void *IP = nullptr; 7594 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7595 if (!Result) { 7596 EVT *Array = Allocator.Allocate<EVT>(2); 7597 Array[0] = VT1; 7598 Array[1] = VT2; 7599 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7600 VTListMap.InsertNode(Result, IP); 7601 } 7602 return Result->getSDVTList(); 7603 } 7604 7605 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7606 FoldingSetNodeID ID; 7607 ID.AddInteger(3U); 7608 ID.AddInteger(VT1.getRawBits()); 7609 ID.AddInteger(VT2.getRawBits()); 7610 ID.AddInteger(VT3.getRawBits()); 7611 7612 void *IP = nullptr; 7613 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7614 if (!Result) { 7615 EVT *Array = Allocator.Allocate<EVT>(3); 7616 Array[0] = VT1; 7617 Array[1] = VT2; 7618 Array[2] = VT3; 7619 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7620 VTListMap.InsertNode(Result, IP); 7621 } 7622 return Result->getSDVTList(); 7623 } 7624 7625 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7626 FoldingSetNodeID ID; 7627 ID.AddInteger(4U); 7628 ID.AddInteger(VT1.getRawBits()); 7629 ID.AddInteger(VT2.getRawBits()); 7630 ID.AddInteger(VT3.getRawBits()); 7631 ID.AddInteger(VT4.getRawBits()); 7632 7633 void *IP = nullptr; 7634 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7635 if (!Result) { 7636 EVT *Array = Allocator.Allocate<EVT>(4); 7637 Array[0] = VT1; 7638 Array[1] = VT2; 7639 Array[2] = VT3; 7640 Array[3] = VT4; 7641 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7642 VTListMap.InsertNode(Result, IP); 7643 } 7644 return Result->getSDVTList(); 7645 } 7646 7647 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7648 unsigned NumVTs = VTs.size(); 7649 FoldingSetNodeID ID; 7650 ID.AddInteger(NumVTs); 7651 for (unsigned index = 0; index < NumVTs; index++) { 7652 ID.AddInteger(VTs[index].getRawBits()); 7653 } 7654 7655 void *IP = nullptr; 7656 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7657 if (!Result) { 7658 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7659 llvm::copy(VTs, Array); 7660 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7661 VTListMap.InsertNode(Result, IP); 7662 } 7663 return Result->getSDVTList(); 7664 } 7665 7666 7667 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7668 /// specified operands. If the resultant node already exists in the DAG, 7669 /// this does not modify the specified node, instead it returns the node that 7670 /// already exists. If the resultant node does not exist in the DAG, the 7671 /// input node is returned. As a degenerate case, if you specify the same 7672 /// input operands as the node already has, the input node is returned. 7673 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7674 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7675 7676 // Check to see if there is no change. 7677 if (Op == N->getOperand(0)) return N; 7678 7679 // See if the modified node already exists. 7680 void *InsertPos = nullptr; 7681 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7682 return Existing; 7683 7684 // Nope it doesn't. Remove the node from its current place in the maps. 7685 if (InsertPos) 7686 if (!RemoveNodeFromCSEMaps(N)) 7687 InsertPos = nullptr; 7688 7689 // Now we update the operands. 7690 N->OperandList[0].set(Op); 7691 7692 updateDivergence(N); 7693 // If this gets put into a CSE map, add it. 7694 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7695 return N; 7696 } 7697 7698 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7699 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7700 7701 // Check to see if there is no change. 7702 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7703 return N; // No operands changed, just return the input node. 7704 7705 // See if the modified node already exists. 7706 void *InsertPos = nullptr; 7707 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7708 return Existing; 7709 7710 // Nope it doesn't. Remove the node from its current place in the maps. 7711 if (InsertPos) 7712 if (!RemoveNodeFromCSEMaps(N)) 7713 InsertPos = nullptr; 7714 7715 // Now we update the operands. 7716 if (N->OperandList[0] != Op1) 7717 N->OperandList[0].set(Op1); 7718 if (N->OperandList[1] != Op2) 7719 N->OperandList[1].set(Op2); 7720 7721 updateDivergence(N); 7722 // If this gets put into a CSE map, add it. 7723 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7724 return N; 7725 } 7726 7727 SDNode *SelectionDAG:: 7728 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7729 SDValue Ops[] = { Op1, Op2, Op3 }; 7730 return UpdateNodeOperands(N, Ops); 7731 } 7732 7733 SDNode *SelectionDAG:: 7734 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7735 SDValue Op3, SDValue Op4) { 7736 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7737 return UpdateNodeOperands(N, Ops); 7738 } 7739 7740 SDNode *SelectionDAG:: 7741 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7742 SDValue Op3, SDValue Op4, SDValue Op5) { 7743 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7744 return UpdateNodeOperands(N, Ops); 7745 } 7746 7747 SDNode *SelectionDAG:: 7748 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7749 unsigned NumOps = Ops.size(); 7750 assert(N->getNumOperands() == NumOps && 7751 "Update with wrong number of operands"); 7752 7753 // If no operands changed just return the input node. 7754 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7755 return N; 7756 7757 // See if the modified node already exists. 7758 void *InsertPos = nullptr; 7759 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7760 return Existing; 7761 7762 // Nope it doesn't. Remove the node from its current place in the maps. 7763 if (InsertPos) 7764 if (!RemoveNodeFromCSEMaps(N)) 7765 InsertPos = nullptr; 7766 7767 // Now we update the operands. 7768 for (unsigned i = 0; i != NumOps; ++i) 7769 if (N->OperandList[i] != Ops[i]) 7770 N->OperandList[i].set(Ops[i]); 7771 7772 updateDivergence(N); 7773 // If this gets put into a CSE map, add it. 7774 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7775 return N; 7776 } 7777 7778 /// DropOperands - Release the operands and set this node to have 7779 /// zero operands. 7780 void SDNode::DropOperands() { 7781 // Unlike the code in MorphNodeTo that does this, we don't need to 7782 // watch for dead nodes here. 7783 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7784 SDUse &Use = *I++; 7785 Use.set(SDValue()); 7786 } 7787 } 7788 7789 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7790 ArrayRef<MachineMemOperand *> NewMemRefs) { 7791 if (NewMemRefs.empty()) { 7792 N->clearMemRefs(); 7793 return; 7794 } 7795 7796 // Check if we can avoid allocating by storing a single reference directly. 7797 if (NewMemRefs.size() == 1) { 7798 N->MemRefs = NewMemRefs[0]; 7799 N->NumMemRefs = 1; 7800 return; 7801 } 7802 7803 MachineMemOperand **MemRefsBuffer = 7804 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7805 llvm::copy(NewMemRefs, MemRefsBuffer); 7806 N->MemRefs = MemRefsBuffer; 7807 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7808 } 7809 7810 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7811 /// machine opcode. 7812 /// 7813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7814 EVT VT) { 7815 SDVTList VTs = getVTList(VT); 7816 return SelectNodeTo(N, MachineOpc, VTs, None); 7817 } 7818 7819 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7820 EVT VT, SDValue Op1) { 7821 SDVTList VTs = getVTList(VT); 7822 SDValue Ops[] = { Op1 }; 7823 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7824 } 7825 7826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7827 EVT VT, SDValue Op1, 7828 SDValue Op2) { 7829 SDVTList VTs = getVTList(VT); 7830 SDValue Ops[] = { Op1, Op2 }; 7831 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7832 } 7833 7834 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7835 EVT VT, SDValue Op1, 7836 SDValue Op2, SDValue Op3) { 7837 SDVTList VTs = getVTList(VT); 7838 SDValue Ops[] = { Op1, Op2, Op3 }; 7839 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7840 } 7841 7842 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7843 EVT VT, ArrayRef<SDValue> Ops) { 7844 SDVTList VTs = getVTList(VT); 7845 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7846 } 7847 7848 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7849 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7850 SDVTList VTs = getVTList(VT1, VT2); 7851 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7852 } 7853 7854 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7855 EVT VT1, EVT VT2) { 7856 SDVTList VTs = getVTList(VT1, VT2); 7857 return SelectNodeTo(N, MachineOpc, VTs, None); 7858 } 7859 7860 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7861 EVT VT1, EVT VT2, EVT VT3, 7862 ArrayRef<SDValue> Ops) { 7863 SDVTList VTs = getVTList(VT1, VT2, VT3); 7864 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7865 } 7866 7867 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7868 EVT VT1, EVT VT2, 7869 SDValue Op1, SDValue Op2) { 7870 SDVTList VTs = getVTList(VT1, VT2); 7871 SDValue Ops[] = { Op1, Op2 }; 7872 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7873 } 7874 7875 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7876 SDVTList VTs,ArrayRef<SDValue> Ops) { 7877 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7878 // Reset the NodeID to -1. 7879 New->setNodeId(-1); 7880 if (New != N) { 7881 ReplaceAllUsesWith(N, New); 7882 RemoveDeadNode(N); 7883 } 7884 return New; 7885 } 7886 7887 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7888 /// the line number information on the merged node since it is not possible to 7889 /// preserve the information that operation is associated with multiple lines. 7890 /// This will make the debugger working better at -O0, were there is a higher 7891 /// probability having other instructions associated with that line. 7892 /// 7893 /// For IROrder, we keep the smaller of the two 7894 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7895 DebugLoc NLoc = N->getDebugLoc(); 7896 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7897 N->setDebugLoc(DebugLoc()); 7898 } 7899 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7900 N->setIROrder(Order); 7901 return N; 7902 } 7903 7904 /// MorphNodeTo - This *mutates* the specified node to have the specified 7905 /// return type, opcode, and operands. 7906 /// 7907 /// Note that MorphNodeTo returns the resultant node. If there is already a 7908 /// node of the specified opcode and operands, it returns that node instead of 7909 /// the current one. Note that the SDLoc need not be the same. 7910 /// 7911 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7912 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7913 /// node, and because it doesn't require CSE recalculation for any of 7914 /// the node's users. 7915 /// 7916 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7917 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7918 /// the legalizer which maintain worklists that would need to be updated when 7919 /// deleting things. 7920 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7921 SDVTList VTs, ArrayRef<SDValue> Ops) { 7922 // If an identical node already exists, use it. 7923 void *IP = nullptr; 7924 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7925 FoldingSetNodeID ID; 7926 AddNodeIDNode(ID, Opc, VTs, Ops); 7927 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7928 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7929 } 7930 7931 if (!RemoveNodeFromCSEMaps(N)) 7932 IP = nullptr; 7933 7934 // Start the morphing. 7935 N->NodeType = Opc; 7936 N->ValueList = VTs.VTs; 7937 N->NumValues = VTs.NumVTs; 7938 7939 // Clear the operands list, updating used nodes to remove this from their 7940 // use list. Keep track of any operands that become dead as a result. 7941 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7942 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7943 SDUse &Use = *I++; 7944 SDNode *Used = Use.getNode(); 7945 Use.set(SDValue()); 7946 if (Used->use_empty()) 7947 DeadNodeSet.insert(Used); 7948 } 7949 7950 // For MachineNode, initialize the memory references information. 7951 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7952 MN->clearMemRefs(); 7953 7954 // Swap for an appropriately sized array from the recycler. 7955 removeOperands(N); 7956 createOperands(N, Ops); 7957 7958 // Delete any nodes that are still dead after adding the uses for the 7959 // new operands. 7960 if (!DeadNodeSet.empty()) { 7961 SmallVector<SDNode *, 16> DeadNodes; 7962 for (SDNode *N : DeadNodeSet) 7963 if (N->use_empty()) 7964 DeadNodes.push_back(N); 7965 RemoveDeadNodes(DeadNodes); 7966 } 7967 7968 if (IP) 7969 CSEMap.InsertNode(N, IP); // Memoize the new node. 7970 return N; 7971 } 7972 7973 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7974 unsigned OrigOpc = Node->getOpcode(); 7975 unsigned NewOpc; 7976 switch (OrigOpc) { 7977 default: 7978 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7979 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7980 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7981 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7982 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7983 #include "llvm/IR/ConstrainedOps.def" 7984 } 7985 7986 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7987 7988 // We're taking this node out of the chain, so we need to re-link things. 7989 SDValue InputChain = Node->getOperand(0); 7990 SDValue OutputChain = SDValue(Node, 1); 7991 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7992 7993 SmallVector<SDValue, 3> Ops; 7994 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7995 Ops.push_back(Node->getOperand(i)); 7996 7997 SDVTList VTs = getVTList(Node->getValueType(0)); 7998 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7999 8000 // MorphNodeTo can operate in two ways: if an existing node with the 8001 // specified operands exists, it can just return it. Otherwise, it 8002 // updates the node in place to have the requested operands. 8003 if (Res == Node) { 8004 // If we updated the node in place, reset the node ID. To the isel, 8005 // this should be just like a newly allocated machine node. 8006 Res->setNodeId(-1); 8007 } else { 8008 ReplaceAllUsesWith(Node, Res); 8009 RemoveDeadNode(Node); 8010 } 8011 8012 return Res; 8013 } 8014 8015 /// getMachineNode - These are used for target selectors to create a new node 8016 /// with specified return type(s), MachineInstr opcode, and operands. 8017 /// 8018 /// Note that getMachineNode returns the resultant node. If there is already a 8019 /// node of the specified opcode and operands, it returns that node instead of 8020 /// the current one. 8021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8022 EVT VT) { 8023 SDVTList VTs = getVTList(VT); 8024 return getMachineNode(Opcode, dl, VTs, None); 8025 } 8026 8027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8028 EVT VT, SDValue Op1) { 8029 SDVTList VTs = getVTList(VT); 8030 SDValue Ops[] = { Op1 }; 8031 return getMachineNode(Opcode, dl, VTs, Ops); 8032 } 8033 8034 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8035 EVT VT, SDValue Op1, SDValue Op2) { 8036 SDVTList VTs = getVTList(VT); 8037 SDValue Ops[] = { Op1, Op2 }; 8038 return getMachineNode(Opcode, dl, VTs, Ops); 8039 } 8040 8041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8042 EVT VT, SDValue Op1, SDValue Op2, 8043 SDValue Op3) { 8044 SDVTList VTs = getVTList(VT); 8045 SDValue Ops[] = { Op1, Op2, Op3 }; 8046 return getMachineNode(Opcode, dl, VTs, Ops); 8047 } 8048 8049 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8050 EVT VT, ArrayRef<SDValue> Ops) { 8051 SDVTList VTs = getVTList(VT); 8052 return getMachineNode(Opcode, dl, VTs, Ops); 8053 } 8054 8055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8056 EVT VT1, EVT VT2, SDValue Op1, 8057 SDValue Op2) { 8058 SDVTList VTs = getVTList(VT1, VT2); 8059 SDValue Ops[] = { Op1, Op2 }; 8060 return getMachineNode(Opcode, dl, VTs, Ops); 8061 } 8062 8063 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8064 EVT VT1, EVT VT2, SDValue Op1, 8065 SDValue Op2, SDValue Op3) { 8066 SDVTList VTs = getVTList(VT1, VT2); 8067 SDValue Ops[] = { Op1, Op2, Op3 }; 8068 return getMachineNode(Opcode, dl, VTs, Ops); 8069 } 8070 8071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8072 EVT VT1, EVT VT2, 8073 ArrayRef<SDValue> Ops) { 8074 SDVTList VTs = getVTList(VT1, VT2); 8075 return getMachineNode(Opcode, dl, VTs, Ops); 8076 } 8077 8078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8079 EVT VT1, EVT VT2, EVT VT3, 8080 SDValue Op1, SDValue Op2) { 8081 SDVTList VTs = getVTList(VT1, VT2, VT3); 8082 SDValue Ops[] = { Op1, Op2 }; 8083 return getMachineNode(Opcode, dl, VTs, Ops); 8084 } 8085 8086 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8087 EVT VT1, EVT VT2, EVT VT3, 8088 SDValue Op1, SDValue Op2, 8089 SDValue Op3) { 8090 SDVTList VTs = getVTList(VT1, VT2, VT3); 8091 SDValue Ops[] = { Op1, Op2, Op3 }; 8092 return getMachineNode(Opcode, dl, VTs, Ops); 8093 } 8094 8095 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8096 EVT VT1, EVT VT2, EVT VT3, 8097 ArrayRef<SDValue> Ops) { 8098 SDVTList VTs = getVTList(VT1, VT2, VT3); 8099 return getMachineNode(Opcode, dl, VTs, Ops); 8100 } 8101 8102 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8103 ArrayRef<EVT> ResultTys, 8104 ArrayRef<SDValue> Ops) { 8105 SDVTList VTs = getVTList(ResultTys); 8106 return getMachineNode(Opcode, dl, VTs, Ops); 8107 } 8108 8109 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8110 SDVTList VTs, 8111 ArrayRef<SDValue> Ops) { 8112 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8113 MachineSDNode *N; 8114 void *IP = nullptr; 8115 8116 if (DoCSE) { 8117 FoldingSetNodeID ID; 8118 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8119 IP = nullptr; 8120 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8121 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8122 } 8123 } 8124 8125 // Allocate a new MachineSDNode. 8126 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8127 createOperands(N, Ops); 8128 8129 if (DoCSE) 8130 CSEMap.InsertNode(N, IP); 8131 8132 InsertNode(N); 8133 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8134 return N; 8135 } 8136 8137 /// getTargetExtractSubreg - A convenience function for creating 8138 /// TargetOpcode::EXTRACT_SUBREG nodes. 8139 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8140 SDValue Operand) { 8141 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8142 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8143 VT, Operand, SRIdxVal); 8144 return SDValue(Subreg, 0); 8145 } 8146 8147 /// getTargetInsertSubreg - A convenience function for creating 8148 /// TargetOpcode::INSERT_SUBREG nodes. 8149 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8150 SDValue Operand, SDValue Subreg) { 8151 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8152 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8153 VT, Operand, Subreg, SRIdxVal); 8154 return SDValue(Result, 0); 8155 } 8156 8157 /// getNodeIfExists - Get the specified node if it's already available, or 8158 /// else return NULL. 8159 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8160 ArrayRef<SDValue> Ops, 8161 const SDNodeFlags Flags) { 8162 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8163 FoldingSetNodeID ID; 8164 AddNodeIDNode(ID, Opcode, VTList, Ops); 8165 void *IP = nullptr; 8166 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8167 E->intersectFlagsWith(Flags); 8168 return E; 8169 } 8170 } 8171 return nullptr; 8172 } 8173 8174 /// getDbgValue - Creates a SDDbgValue node. 8175 /// 8176 /// SDNode 8177 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8178 SDNode *N, unsigned R, bool IsIndirect, 8179 const DebugLoc &DL, unsigned O) { 8180 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8181 "Expected inlined-at fields to agree"); 8182 return new (DbgInfo->getAlloc()) 8183 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8184 } 8185 8186 /// Constant 8187 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8188 DIExpression *Expr, 8189 const Value *C, 8190 const DebugLoc &DL, unsigned O) { 8191 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8192 "Expected inlined-at fields to agree"); 8193 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8194 } 8195 8196 /// FrameIndex 8197 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8198 DIExpression *Expr, unsigned FI, 8199 bool IsIndirect, 8200 const DebugLoc &DL, 8201 unsigned O) { 8202 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8203 "Expected inlined-at fields to agree"); 8204 return new (DbgInfo->getAlloc()) 8205 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8206 } 8207 8208 /// VReg 8209 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8210 DIExpression *Expr, 8211 unsigned VReg, bool IsIndirect, 8212 const DebugLoc &DL, unsigned O) { 8213 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8214 "Expected inlined-at fields to agree"); 8215 return new (DbgInfo->getAlloc()) 8216 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8217 } 8218 8219 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8220 unsigned OffsetInBits, unsigned SizeInBits, 8221 bool InvalidateDbg) { 8222 SDNode *FromNode = From.getNode(); 8223 SDNode *ToNode = To.getNode(); 8224 assert(FromNode && ToNode && "Can't modify dbg values"); 8225 8226 // PR35338 8227 // TODO: assert(From != To && "Redundant dbg value transfer"); 8228 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8229 if (From == To || FromNode == ToNode) 8230 return; 8231 8232 if (!FromNode->getHasDebugValue()) 8233 return; 8234 8235 SmallVector<SDDbgValue *, 2> ClonedDVs; 8236 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8237 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8238 continue; 8239 8240 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8241 8242 // Just transfer the dbg value attached to From. 8243 if (Dbg->getResNo() != From.getResNo()) 8244 continue; 8245 8246 DIVariable *Var = Dbg->getVariable(); 8247 auto *Expr = Dbg->getExpression(); 8248 // If a fragment is requested, update the expression. 8249 if (SizeInBits) { 8250 // When splitting a larger (e.g., sign-extended) value whose 8251 // lower bits are described with an SDDbgValue, do not attempt 8252 // to transfer the SDDbgValue to the upper bits. 8253 if (auto FI = Expr->getFragmentInfo()) 8254 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8255 continue; 8256 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8257 SizeInBits); 8258 if (!Fragment) 8259 continue; 8260 Expr = *Fragment; 8261 } 8262 // Clone the SDDbgValue and move it to To. 8263 SDDbgValue *Clone = getDbgValue( 8264 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8265 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8266 ClonedDVs.push_back(Clone); 8267 8268 if (InvalidateDbg) { 8269 // Invalidate value and indicate the SDDbgValue should not be emitted. 8270 Dbg->setIsInvalidated(); 8271 Dbg->setIsEmitted(); 8272 } 8273 } 8274 8275 for (SDDbgValue *Dbg : ClonedDVs) 8276 AddDbgValue(Dbg, ToNode, false); 8277 } 8278 8279 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8280 if (!N.getHasDebugValue()) 8281 return; 8282 8283 SmallVector<SDDbgValue *, 2> ClonedDVs; 8284 for (auto DV : GetDbgValues(&N)) { 8285 if (DV->isInvalidated()) 8286 continue; 8287 switch (N.getOpcode()) { 8288 default: 8289 break; 8290 case ISD::ADD: 8291 SDValue N0 = N.getOperand(0); 8292 SDValue N1 = N.getOperand(1); 8293 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8294 isConstantIntBuildVectorOrConstantInt(N1)) { 8295 uint64_t Offset = N.getConstantOperandVal(1); 8296 // Rewrite an ADD constant node into a DIExpression. Since we are 8297 // performing arithmetic to compute the variable's *value* in the 8298 // DIExpression, we need to mark the expression with a 8299 // DW_OP_stack_value. 8300 auto *DIExpr = DV->getExpression(); 8301 DIExpr = 8302 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8303 SDDbgValue *Clone = 8304 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8305 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8306 ClonedDVs.push_back(Clone); 8307 DV->setIsInvalidated(); 8308 DV->setIsEmitted(); 8309 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8310 N0.getNode()->dumprFull(this); 8311 dbgs() << " into " << *DIExpr << '\n'); 8312 } 8313 } 8314 } 8315 8316 for (SDDbgValue *Dbg : ClonedDVs) 8317 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8318 } 8319 8320 /// Creates a SDDbgLabel node. 8321 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8322 const DebugLoc &DL, unsigned O) { 8323 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8324 "Expected inlined-at fields to agree"); 8325 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8326 } 8327 8328 namespace { 8329 8330 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8331 /// pointed to by a use iterator is deleted, increment the use iterator 8332 /// so that it doesn't dangle. 8333 /// 8334 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8335 SDNode::use_iterator &UI; 8336 SDNode::use_iterator &UE; 8337 8338 void NodeDeleted(SDNode *N, SDNode *E) override { 8339 // Increment the iterator as needed. 8340 while (UI != UE && N == *UI) 8341 ++UI; 8342 } 8343 8344 public: 8345 RAUWUpdateListener(SelectionDAG &d, 8346 SDNode::use_iterator &ui, 8347 SDNode::use_iterator &ue) 8348 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8349 }; 8350 8351 } // end anonymous namespace 8352 8353 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8354 /// This can cause recursive merging of nodes in the DAG. 8355 /// 8356 /// This version assumes From has a single result value. 8357 /// 8358 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8359 SDNode *From = FromN.getNode(); 8360 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8361 "Cannot replace with this method!"); 8362 assert(From != To.getNode() && "Cannot replace uses of with self"); 8363 8364 // Preserve Debug Values 8365 transferDbgValues(FromN, To); 8366 8367 // Iterate over all the existing uses of From. New uses will be added 8368 // to the beginning of the use list, which we avoid visiting. 8369 // This specifically avoids visiting uses of From that arise while the 8370 // replacement is happening, because any such uses would be the result 8371 // of CSE: If an existing node looks like From after one of its operands 8372 // is replaced by To, we don't want to replace of all its users with To 8373 // too. See PR3018 for more info. 8374 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8375 RAUWUpdateListener Listener(*this, UI, UE); 8376 while (UI != UE) { 8377 SDNode *User = *UI; 8378 8379 // This node is about to morph, remove its old self from the CSE maps. 8380 RemoveNodeFromCSEMaps(User); 8381 8382 // A user can appear in a use list multiple times, and when this 8383 // happens the uses are usually next to each other in the list. 8384 // To help reduce the number of CSE recomputations, process all 8385 // the uses of this user that we can find this way. 8386 do { 8387 SDUse &Use = UI.getUse(); 8388 ++UI; 8389 Use.set(To); 8390 if (To->isDivergent() != From->isDivergent()) 8391 updateDivergence(User); 8392 } while (UI != UE && *UI == User); 8393 // Now that we have modified User, add it back to the CSE maps. If it 8394 // already exists there, recursively merge the results together. 8395 AddModifiedNodeToCSEMaps(User); 8396 } 8397 8398 // If we just RAUW'd the root, take note. 8399 if (FromN == getRoot()) 8400 setRoot(To); 8401 } 8402 8403 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8404 /// This can cause recursive merging of nodes in the DAG. 8405 /// 8406 /// This version assumes that for each value of From, there is a 8407 /// corresponding value in To in the same position with the same type. 8408 /// 8409 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8410 #ifndef NDEBUG 8411 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8412 assert((!From->hasAnyUseOfValue(i) || 8413 From->getValueType(i) == To->getValueType(i)) && 8414 "Cannot use this version of ReplaceAllUsesWith!"); 8415 #endif 8416 8417 // Handle the trivial case. 8418 if (From == To) 8419 return; 8420 8421 // Preserve Debug Info. Only do this if there's a use. 8422 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8423 if (From->hasAnyUseOfValue(i)) { 8424 assert((i < To->getNumValues()) && "Invalid To location"); 8425 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8426 } 8427 8428 // Iterate over just the existing users of From. See the comments in 8429 // the ReplaceAllUsesWith above. 8430 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8431 RAUWUpdateListener Listener(*this, UI, UE); 8432 while (UI != UE) { 8433 SDNode *User = *UI; 8434 8435 // This node is about to morph, remove its old self from the CSE maps. 8436 RemoveNodeFromCSEMaps(User); 8437 8438 // A user can appear in a use list multiple times, and when this 8439 // happens the uses are usually next to each other in the list. 8440 // To help reduce the number of CSE recomputations, process all 8441 // the uses of this user that we can find this way. 8442 do { 8443 SDUse &Use = UI.getUse(); 8444 ++UI; 8445 Use.setNode(To); 8446 if (To->isDivergent() != From->isDivergent()) 8447 updateDivergence(User); 8448 } while (UI != UE && *UI == User); 8449 8450 // Now that we have modified User, add it back to the CSE maps. If it 8451 // already exists there, recursively merge the results together. 8452 AddModifiedNodeToCSEMaps(User); 8453 } 8454 8455 // If we just RAUW'd the root, take note. 8456 if (From == getRoot().getNode()) 8457 setRoot(SDValue(To, getRoot().getResNo())); 8458 } 8459 8460 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8461 /// This can cause recursive merging of nodes in the DAG. 8462 /// 8463 /// This version can replace From with any result values. To must match the 8464 /// number and types of values returned by From. 8465 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8466 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8467 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8468 8469 // Preserve Debug Info. 8470 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8471 transferDbgValues(SDValue(From, i), To[i]); 8472 8473 // Iterate over just the existing users of From. See the comments in 8474 // the ReplaceAllUsesWith above. 8475 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8476 RAUWUpdateListener Listener(*this, UI, UE); 8477 while (UI != UE) { 8478 SDNode *User = *UI; 8479 8480 // This node is about to morph, remove its old self from the CSE maps. 8481 RemoveNodeFromCSEMaps(User); 8482 8483 // A user can appear in a use list multiple times, and when this happens the 8484 // uses are usually next to each other in the list. To help reduce the 8485 // number of CSE and divergence recomputations, process all the uses of this 8486 // user that we can find this way. 8487 bool To_IsDivergent = false; 8488 do { 8489 SDUse &Use = UI.getUse(); 8490 const SDValue &ToOp = To[Use.getResNo()]; 8491 ++UI; 8492 Use.set(ToOp); 8493 To_IsDivergent |= ToOp->isDivergent(); 8494 } while (UI != UE && *UI == User); 8495 8496 if (To_IsDivergent != From->isDivergent()) 8497 updateDivergence(User); 8498 8499 // Now that we have modified User, add it back to the CSE maps. If it 8500 // already exists there, recursively merge the results together. 8501 AddModifiedNodeToCSEMaps(User); 8502 } 8503 8504 // If we just RAUW'd the root, take note. 8505 if (From == getRoot().getNode()) 8506 setRoot(SDValue(To[getRoot().getResNo()])); 8507 } 8508 8509 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8510 /// uses of other values produced by From.getNode() alone. The Deleted 8511 /// vector is handled the same way as for ReplaceAllUsesWith. 8512 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8513 // Handle the really simple, really trivial case efficiently. 8514 if (From == To) return; 8515 8516 // Handle the simple, trivial, case efficiently. 8517 if (From.getNode()->getNumValues() == 1) { 8518 ReplaceAllUsesWith(From, To); 8519 return; 8520 } 8521 8522 // Preserve Debug Info. 8523 transferDbgValues(From, To); 8524 8525 // Iterate over just the existing users of From. See the comments in 8526 // the ReplaceAllUsesWith above. 8527 SDNode::use_iterator UI = From.getNode()->use_begin(), 8528 UE = From.getNode()->use_end(); 8529 RAUWUpdateListener Listener(*this, UI, UE); 8530 while (UI != UE) { 8531 SDNode *User = *UI; 8532 bool UserRemovedFromCSEMaps = false; 8533 8534 // A user can appear in a use list multiple times, and when this 8535 // happens the uses are usually next to each other in the list. 8536 // To help reduce the number of CSE recomputations, process all 8537 // the uses of this user that we can find this way. 8538 do { 8539 SDUse &Use = UI.getUse(); 8540 8541 // Skip uses of different values from the same node. 8542 if (Use.getResNo() != From.getResNo()) { 8543 ++UI; 8544 continue; 8545 } 8546 8547 // If this node hasn't been modified yet, it's still in the CSE maps, 8548 // so remove its old self from the CSE maps. 8549 if (!UserRemovedFromCSEMaps) { 8550 RemoveNodeFromCSEMaps(User); 8551 UserRemovedFromCSEMaps = true; 8552 } 8553 8554 ++UI; 8555 Use.set(To); 8556 if (To->isDivergent() != From->isDivergent()) 8557 updateDivergence(User); 8558 } while (UI != UE && *UI == User); 8559 // We are iterating over all uses of the From node, so if a use 8560 // doesn't use the specific value, no changes are made. 8561 if (!UserRemovedFromCSEMaps) 8562 continue; 8563 8564 // Now that we have modified User, add it back to the CSE maps. If it 8565 // already exists there, recursively merge the results together. 8566 AddModifiedNodeToCSEMaps(User); 8567 } 8568 8569 // If we just RAUW'd the root, take note. 8570 if (From == getRoot()) 8571 setRoot(To); 8572 } 8573 8574 namespace { 8575 8576 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8577 /// to record information about a use. 8578 struct UseMemo { 8579 SDNode *User; 8580 unsigned Index; 8581 SDUse *Use; 8582 }; 8583 8584 /// operator< - Sort Memos by User. 8585 bool operator<(const UseMemo &L, const UseMemo &R) { 8586 return (intptr_t)L.User < (intptr_t)R.User; 8587 } 8588 8589 } // end anonymous namespace 8590 8591 void SelectionDAG::updateDivergence(SDNode * N) 8592 { 8593 if (TLI->isSDNodeAlwaysUniform(N)) 8594 return; 8595 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8596 for (auto &Op : N->ops()) { 8597 if (Op.Val.getValueType() != MVT::Other) 8598 IsDivergent |= Op.getNode()->isDivergent(); 8599 } 8600 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8601 N->SDNodeBits.IsDivergent = IsDivergent; 8602 for (auto U : N->uses()) { 8603 updateDivergence(U); 8604 } 8605 } 8606 } 8607 8608 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8609 DenseMap<SDNode *, unsigned> Degree; 8610 Order.reserve(AllNodes.size()); 8611 for (auto &N : allnodes()) { 8612 unsigned NOps = N.getNumOperands(); 8613 Degree[&N] = NOps; 8614 if (0 == NOps) 8615 Order.push_back(&N); 8616 } 8617 for (size_t I = 0; I != Order.size(); ++I) { 8618 SDNode *N = Order[I]; 8619 for (auto U : N->uses()) { 8620 unsigned &UnsortedOps = Degree[U]; 8621 if (0 == --UnsortedOps) 8622 Order.push_back(U); 8623 } 8624 } 8625 } 8626 8627 #ifndef NDEBUG 8628 void SelectionDAG::VerifyDAGDiverence() { 8629 std::vector<SDNode *> TopoOrder; 8630 CreateTopologicalOrder(TopoOrder); 8631 const TargetLowering &TLI = getTargetLoweringInfo(); 8632 DenseMap<const SDNode *, bool> DivergenceMap; 8633 for (auto &N : allnodes()) { 8634 DivergenceMap[&N] = false; 8635 } 8636 for (auto N : TopoOrder) { 8637 bool IsDivergent = DivergenceMap[N]; 8638 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8639 for (auto &Op : N->ops()) { 8640 if (Op.Val.getValueType() != MVT::Other) 8641 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8642 } 8643 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8644 DivergenceMap[N] = true; 8645 } 8646 } 8647 for (auto &N : allnodes()) { 8648 (void)N; 8649 assert(DivergenceMap[&N] == N.isDivergent() && 8650 "Divergence bit inconsistency detected\n"); 8651 } 8652 } 8653 #endif 8654 8655 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8656 /// uses of other values produced by From.getNode() alone. The same value 8657 /// may appear in both the From and To list. The Deleted vector is 8658 /// handled the same way as for ReplaceAllUsesWith. 8659 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8660 const SDValue *To, 8661 unsigned Num){ 8662 // Handle the simple, trivial case efficiently. 8663 if (Num == 1) 8664 return ReplaceAllUsesOfValueWith(*From, *To); 8665 8666 transferDbgValues(*From, *To); 8667 8668 // Read up all the uses and make records of them. This helps 8669 // processing new uses that are introduced during the 8670 // replacement process. 8671 SmallVector<UseMemo, 4> Uses; 8672 for (unsigned i = 0; i != Num; ++i) { 8673 unsigned FromResNo = From[i].getResNo(); 8674 SDNode *FromNode = From[i].getNode(); 8675 for (SDNode::use_iterator UI = FromNode->use_begin(), 8676 E = FromNode->use_end(); UI != E; ++UI) { 8677 SDUse &Use = UI.getUse(); 8678 if (Use.getResNo() == FromResNo) { 8679 UseMemo Memo = { *UI, i, &Use }; 8680 Uses.push_back(Memo); 8681 } 8682 } 8683 } 8684 8685 // Sort the uses, so that all the uses from a given User are together. 8686 llvm::sort(Uses); 8687 8688 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8689 UseIndex != UseIndexEnd; ) { 8690 // We know that this user uses some value of From. If it is the right 8691 // value, update it. 8692 SDNode *User = Uses[UseIndex].User; 8693 8694 // This node is about to morph, remove its old self from the CSE maps. 8695 RemoveNodeFromCSEMaps(User); 8696 8697 // The Uses array is sorted, so all the uses for a given User 8698 // are next to each other in the list. 8699 // To help reduce the number of CSE recomputations, process all 8700 // the uses of this user that we can find this way. 8701 do { 8702 unsigned i = Uses[UseIndex].Index; 8703 SDUse &Use = *Uses[UseIndex].Use; 8704 ++UseIndex; 8705 8706 Use.set(To[i]); 8707 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8708 8709 // Now that we have modified User, add it back to the CSE maps. If it 8710 // already exists there, recursively merge the results together. 8711 AddModifiedNodeToCSEMaps(User); 8712 } 8713 } 8714 8715 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8716 /// based on their topological order. It returns the maximum id and a vector 8717 /// of the SDNodes* in assigned order by reference. 8718 unsigned SelectionDAG::AssignTopologicalOrder() { 8719 unsigned DAGSize = 0; 8720 8721 // SortedPos tracks the progress of the algorithm. Nodes before it are 8722 // sorted, nodes after it are unsorted. When the algorithm completes 8723 // it is at the end of the list. 8724 allnodes_iterator SortedPos = allnodes_begin(); 8725 8726 // Visit all the nodes. Move nodes with no operands to the front of 8727 // the list immediately. Annotate nodes that do have operands with their 8728 // operand count. Before we do this, the Node Id fields of the nodes 8729 // may contain arbitrary values. After, the Node Id fields for nodes 8730 // before SortedPos will contain the topological sort index, and the 8731 // Node Id fields for nodes At SortedPos and after will contain the 8732 // count of outstanding operands. 8733 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8734 SDNode *N = &*I++; 8735 checkForCycles(N, this); 8736 unsigned Degree = N->getNumOperands(); 8737 if (Degree == 0) { 8738 // A node with no uses, add it to the result array immediately. 8739 N->setNodeId(DAGSize++); 8740 allnodes_iterator Q(N); 8741 if (Q != SortedPos) 8742 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8743 assert(SortedPos != AllNodes.end() && "Overran node list"); 8744 ++SortedPos; 8745 } else { 8746 // Temporarily use the Node Id as scratch space for the degree count. 8747 N->setNodeId(Degree); 8748 } 8749 } 8750 8751 // Visit all the nodes. As we iterate, move nodes into sorted order, 8752 // such that by the time the end is reached all nodes will be sorted. 8753 for (SDNode &Node : allnodes()) { 8754 SDNode *N = &Node; 8755 checkForCycles(N, this); 8756 // N is in sorted position, so all its uses have one less operand 8757 // that needs to be sorted. 8758 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8759 UI != UE; ++UI) { 8760 SDNode *P = *UI; 8761 unsigned Degree = P->getNodeId(); 8762 assert(Degree != 0 && "Invalid node degree"); 8763 --Degree; 8764 if (Degree == 0) { 8765 // All of P's operands are sorted, so P may sorted now. 8766 P->setNodeId(DAGSize++); 8767 if (P->getIterator() != SortedPos) 8768 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8769 assert(SortedPos != AllNodes.end() && "Overran node list"); 8770 ++SortedPos; 8771 } else { 8772 // Update P's outstanding operand count. 8773 P->setNodeId(Degree); 8774 } 8775 } 8776 if (Node.getIterator() == SortedPos) { 8777 #ifndef NDEBUG 8778 allnodes_iterator I(N); 8779 SDNode *S = &*++I; 8780 dbgs() << "Overran sorted position:\n"; 8781 S->dumprFull(this); dbgs() << "\n"; 8782 dbgs() << "Checking if this is due to cycles\n"; 8783 checkForCycles(this, true); 8784 #endif 8785 llvm_unreachable(nullptr); 8786 } 8787 } 8788 8789 assert(SortedPos == AllNodes.end() && 8790 "Topological sort incomplete!"); 8791 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8792 "First node in topological sort is not the entry token!"); 8793 assert(AllNodes.front().getNodeId() == 0 && 8794 "First node in topological sort has non-zero id!"); 8795 assert(AllNodes.front().getNumOperands() == 0 && 8796 "First node in topological sort has operands!"); 8797 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8798 "Last node in topologic sort has unexpected id!"); 8799 assert(AllNodes.back().use_empty() && 8800 "Last node in topologic sort has users!"); 8801 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8802 return DAGSize; 8803 } 8804 8805 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8806 /// value is produced by SD. 8807 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8808 if (SD) { 8809 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8810 SD->setHasDebugValue(true); 8811 } 8812 DbgInfo->add(DB, SD, isParameter); 8813 } 8814 8815 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8816 DbgInfo->add(DB); 8817 } 8818 8819 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8820 SDValue NewMemOp) { 8821 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8822 // The new memory operation must have the same position as the old load in 8823 // terms of memory dependency. Create a TokenFactor for the old load and new 8824 // memory operation and update uses of the old load's output chain to use that 8825 // TokenFactor. 8826 SDValue OldChain = SDValue(OldLoad, 1); 8827 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8828 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8829 return NewChain; 8830 8831 SDValue TokenFactor = 8832 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8833 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8834 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8835 return TokenFactor; 8836 } 8837 8838 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8839 Function **OutFunction) { 8840 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8841 8842 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8843 auto *Module = MF->getFunction().getParent(); 8844 auto *Function = Module->getFunction(Symbol); 8845 8846 if (OutFunction != nullptr) 8847 *OutFunction = Function; 8848 8849 if (Function != nullptr) { 8850 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8851 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8852 } 8853 8854 std::string ErrorStr; 8855 raw_string_ostream ErrorFormatter(ErrorStr); 8856 8857 ErrorFormatter << "Undefined external symbol "; 8858 ErrorFormatter << '"' << Symbol << '"'; 8859 ErrorFormatter.flush(); 8860 8861 report_fatal_error(ErrorStr); 8862 } 8863 8864 //===----------------------------------------------------------------------===// 8865 // SDNode Class 8866 //===----------------------------------------------------------------------===// 8867 8868 bool llvm::isNullConstant(SDValue V) { 8869 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8870 return Const != nullptr && Const->isNullValue(); 8871 } 8872 8873 bool llvm::isNullFPConstant(SDValue V) { 8874 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8875 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8876 } 8877 8878 bool llvm::isAllOnesConstant(SDValue V) { 8879 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8880 return Const != nullptr && Const->isAllOnesValue(); 8881 } 8882 8883 bool llvm::isOneConstant(SDValue V) { 8884 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8885 return Const != nullptr && Const->isOne(); 8886 } 8887 8888 SDValue llvm::peekThroughBitcasts(SDValue V) { 8889 while (V.getOpcode() == ISD::BITCAST) 8890 V = V.getOperand(0); 8891 return V; 8892 } 8893 8894 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8895 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8896 V = V.getOperand(0); 8897 return V; 8898 } 8899 8900 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8901 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8902 V = V.getOperand(0); 8903 return V; 8904 } 8905 8906 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8907 if (V.getOpcode() != ISD::XOR) 8908 return false; 8909 V = peekThroughBitcasts(V.getOperand(1)); 8910 unsigned NumBits = V.getScalarValueSizeInBits(); 8911 ConstantSDNode *C = 8912 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8913 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8914 } 8915 8916 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8917 bool AllowTruncation) { 8918 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8919 return CN; 8920 8921 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8922 BitVector UndefElements; 8923 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8924 8925 // BuildVectors can truncate their operands. Ignore that case here unless 8926 // AllowTruncation is set. 8927 if (CN && (UndefElements.none() || AllowUndefs)) { 8928 EVT CVT = CN->getValueType(0); 8929 EVT NSVT = N.getValueType().getScalarType(); 8930 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8931 if (AllowTruncation || (CVT == NSVT)) 8932 return CN; 8933 } 8934 } 8935 8936 return nullptr; 8937 } 8938 8939 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8940 bool AllowUndefs, 8941 bool AllowTruncation) { 8942 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8943 return CN; 8944 8945 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8946 BitVector UndefElements; 8947 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8948 8949 // BuildVectors can truncate their operands. Ignore that case here unless 8950 // AllowTruncation is set. 8951 if (CN && (UndefElements.none() || AllowUndefs)) { 8952 EVT CVT = CN->getValueType(0); 8953 EVT NSVT = N.getValueType().getScalarType(); 8954 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8955 if (AllowTruncation || (CVT == NSVT)) 8956 return CN; 8957 } 8958 } 8959 8960 return nullptr; 8961 } 8962 8963 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8964 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8965 return CN; 8966 8967 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8968 BitVector UndefElements; 8969 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8970 if (CN && (UndefElements.none() || AllowUndefs)) 8971 return CN; 8972 } 8973 8974 return nullptr; 8975 } 8976 8977 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8978 const APInt &DemandedElts, 8979 bool AllowUndefs) { 8980 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8981 return CN; 8982 8983 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8984 BitVector UndefElements; 8985 ConstantFPSDNode *CN = 8986 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8987 if (CN && (UndefElements.none() || AllowUndefs)) 8988 return CN; 8989 } 8990 8991 return nullptr; 8992 } 8993 8994 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8995 // TODO: may want to use peekThroughBitcast() here. 8996 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8997 return C && C->isNullValue(); 8998 } 8999 9000 bool llvm::isOneOrOneSplat(SDValue N) { 9001 // TODO: may want to use peekThroughBitcast() here. 9002 unsigned BitWidth = N.getScalarValueSizeInBits(); 9003 ConstantSDNode *C = isConstOrConstSplat(N); 9004 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9005 } 9006 9007 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9008 N = peekThroughBitcasts(N); 9009 unsigned BitWidth = N.getScalarValueSizeInBits(); 9010 ConstantSDNode *C = isConstOrConstSplat(N); 9011 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9012 } 9013 9014 HandleSDNode::~HandleSDNode() { 9015 DropOperands(); 9016 } 9017 9018 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9019 const DebugLoc &DL, 9020 const GlobalValue *GA, EVT VT, 9021 int64_t o, unsigned TF) 9022 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9023 TheGlobal = GA; 9024 } 9025 9026 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9027 EVT VT, unsigned SrcAS, 9028 unsigned DestAS) 9029 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9030 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9031 9032 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9033 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9034 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9035 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9036 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9037 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9038 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9039 9040 // We check here that the size of the memory operand fits within the size of 9041 // the MMO. This is because the MMO might indicate only a possible address 9042 // range instead of specifying the affected memory addresses precisely. 9043 // TODO: Make MachineMemOperands aware of scalable vectors. 9044 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9045 "Size mismatch!"); 9046 } 9047 9048 /// Profile - Gather unique data for the node. 9049 /// 9050 void SDNode::Profile(FoldingSetNodeID &ID) const { 9051 AddNodeIDNode(ID, this); 9052 } 9053 9054 namespace { 9055 9056 struct EVTArray { 9057 std::vector<EVT> VTs; 9058 9059 EVTArray() { 9060 VTs.reserve(MVT::LAST_VALUETYPE); 9061 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9062 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9063 } 9064 }; 9065 9066 } // end anonymous namespace 9067 9068 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9069 static ManagedStatic<EVTArray> SimpleVTArray; 9070 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9071 9072 /// getValueTypeList - Return a pointer to the specified value type. 9073 /// 9074 const EVT *SDNode::getValueTypeList(EVT VT) { 9075 if (VT.isExtended()) { 9076 sys::SmartScopedLock<true> Lock(*VTMutex); 9077 return &(*EVTs->insert(VT).first); 9078 } else { 9079 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9080 "Value type out of range!"); 9081 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9082 } 9083 } 9084 9085 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9086 /// indicated value. This method ignores uses of other values defined by this 9087 /// operation. 9088 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9089 assert(Value < getNumValues() && "Bad value!"); 9090 9091 // TODO: Only iterate over uses of a given value of the node 9092 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9093 if (UI.getUse().getResNo() == Value) { 9094 if (NUses == 0) 9095 return false; 9096 --NUses; 9097 } 9098 } 9099 9100 // Found exactly the right number of uses? 9101 return NUses == 0; 9102 } 9103 9104 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9105 /// value. This method ignores uses of other values defined by this operation. 9106 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9107 assert(Value < getNumValues() && "Bad value!"); 9108 9109 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9110 if (UI.getUse().getResNo() == Value) 9111 return true; 9112 9113 return false; 9114 } 9115 9116 /// isOnlyUserOf - Return true if this node is the only use of N. 9117 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9118 bool Seen = false; 9119 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9120 SDNode *User = *I; 9121 if (User == this) 9122 Seen = true; 9123 else 9124 return false; 9125 } 9126 9127 return Seen; 9128 } 9129 9130 /// Return true if the only users of N are contained in Nodes. 9131 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9132 bool Seen = false; 9133 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9134 SDNode *User = *I; 9135 if (llvm::any_of(Nodes, 9136 [&User](const SDNode *Node) { return User == Node; })) 9137 Seen = true; 9138 else 9139 return false; 9140 } 9141 9142 return Seen; 9143 } 9144 9145 /// isOperand - Return true if this node is an operand of N. 9146 bool SDValue::isOperandOf(const SDNode *N) const { 9147 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9148 } 9149 9150 bool SDNode::isOperandOf(const SDNode *N) const { 9151 return any_of(N->op_values(), 9152 [this](SDValue Op) { return this == Op.getNode(); }); 9153 } 9154 9155 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9156 /// be a chain) reaches the specified operand without crossing any 9157 /// side-effecting instructions on any chain path. In practice, this looks 9158 /// through token factors and non-volatile loads. In order to remain efficient, 9159 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9160 /// 9161 /// Note that we only need to examine chains when we're searching for 9162 /// side-effects; SelectionDAG requires that all side-effects are represented 9163 /// by chains, even if another operand would force a specific ordering. This 9164 /// constraint is necessary to allow transformations like splitting loads. 9165 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9166 unsigned Depth) const { 9167 if (*this == Dest) return true; 9168 9169 // Don't search too deeply, we just want to be able to see through 9170 // TokenFactor's etc. 9171 if (Depth == 0) return false; 9172 9173 // If this is a token factor, all inputs to the TF happen in parallel. 9174 if (getOpcode() == ISD::TokenFactor) { 9175 // First, try a shallow search. 9176 if (is_contained((*this)->ops(), Dest)) { 9177 // We found the chain we want as an operand of this TokenFactor. 9178 // Essentially, we reach the chain without side-effects if we could 9179 // serialize the TokenFactor into a simple chain of operations with 9180 // Dest as the last operation. This is automatically true if the 9181 // chain has one use: there are no other ordering constraints. 9182 // If the chain has more than one use, we give up: some other 9183 // use of Dest might force a side-effect between Dest and the current 9184 // node. 9185 if (Dest.hasOneUse()) 9186 return true; 9187 } 9188 // Next, try a deep search: check whether every operand of the TokenFactor 9189 // reaches Dest. 9190 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9191 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9192 }); 9193 } 9194 9195 // Loads don't have side effects, look through them. 9196 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9197 if (Ld->isUnordered()) 9198 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9199 } 9200 return false; 9201 } 9202 9203 bool SDNode::hasPredecessor(const SDNode *N) const { 9204 SmallPtrSet<const SDNode *, 32> Visited; 9205 SmallVector<const SDNode *, 16> Worklist; 9206 Worklist.push_back(this); 9207 return hasPredecessorHelper(N, Visited, Worklist); 9208 } 9209 9210 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9211 this->Flags.intersectWith(Flags); 9212 } 9213 9214 SDValue 9215 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9216 ArrayRef<ISD::NodeType> CandidateBinOps, 9217 bool AllowPartials) { 9218 // The pattern must end in an extract from index 0. 9219 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9220 !isNullConstant(Extract->getOperand(1))) 9221 return SDValue(); 9222 9223 // Match against one of the candidate binary ops. 9224 SDValue Op = Extract->getOperand(0); 9225 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9226 return Op.getOpcode() == unsigned(BinOp); 9227 })) 9228 return SDValue(); 9229 9230 // Floating-point reductions may require relaxed constraints on the final step 9231 // of the reduction because they may reorder intermediate operations. 9232 unsigned CandidateBinOp = Op.getOpcode(); 9233 if (Op.getValueType().isFloatingPoint()) { 9234 SDNodeFlags Flags = Op->getFlags(); 9235 switch (CandidateBinOp) { 9236 case ISD::FADD: 9237 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9238 return SDValue(); 9239 break; 9240 default: 9241 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9242 } 9243 } 9244 9245 // Matching failed - attempt to see if we did enough stages that a partial 9246 // reduction from a subvector is possible. 9247 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9248 if (!AllowPartials || !Op) 9249 return SDValue(); 9250 EVT OpVT = Op.getValueType(); 9251 EVT OpSVT = OpVT.getScalarType(); 9252 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9253 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9254 return SDValue(); 9255 BinOp = (ISD::NodeType)CandidateBinOp; 9256 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9257 getVectorIdxConstant(0, SDLoc(Op))); 9258 }; 9259 9260 // At each stage, we're looking for something that looks like: 9261 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9262 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9263 // i32 undef, i32 undef, i32 undef, i32 undef> 9264 // %a = binop <8 x i32> %op, %s 9265 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9266 // we expect something like: 9267 // <4,5,6,7,u,u,u,u> 9268 // <2,3,u,u,u,u,u,u> 9269 // <1,u,u,u,u,u,u,u> 9270 // While a partial reduction match would be: 9271 // <2,3,u,u,u,u,u,u> 9272 // <1,u,u,u,u,u,u,u> 9273 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9274 SDValue PrevOp; 9275 for (unsigned i = 0; i < Stages; ++i) { 9276 unsigned MaskEnd = (1 << i); 9277 9278 if (Op.getOpcode() != CandidateBinOp) 9279 return PartialReduction(PrevOp, MaskEnd); 9280 9281 SDValue Op0 = Op.getOperand(0); 9282 SDValue Op1 = Op.getOperand(1); 9283 9284 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9285 if (Shuffle) { 9286 Op = Op1; 9287 } else { 9288 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9289 Op = Op0; 9290 } 9291 9292 // The first operand of the shuffle should be the same as the other operand 9293 // of the binop. 9294 if (!Shuffle || Shuffle->getOperand(0) != Op) 9295 return PartialReduction(PrevOp, MaskEnd); 9296 9297 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9298 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9299 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9300 return PartialReduction(PrevOp, MaskEnd); 9301 9302 PrevOp = Op; 9303 } 9304 9305 BinOp = (ISD::NodeType)CandidateBinOp; 9306 return Op; 9307 } 9308 9309 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9310 assert(N->getNumValues() == 1 && 9311 "Can't unroll a vector with multiple results!"); 9312 9313 EVT VT = N->getValueType(0); 9314 unsigned NE = VT.getVectorNumElements(); 9315 EVT EltVT = VT.getVectorElementType(); 9316 SDLoc dl(N); 9317 9318 SmallVector<SDValue, 8> Scalars; 9319 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9320 9321 // If ResNE is 0, fully unroll the vector op. 9322 if (ResNE == 0) 9323 ResNE = NE; 9324 else if (NE > ResNE) 9325 NE = ResNE; 9326 9327 unsigned i; 9328 for (i= 0; i != NE; ++i) { 9329 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9330 SDValue Operand = N->getOperand(j); 9331 EVT OperandVT = Operand.getValueType(); 9332 if (OperandVT.isVector()) { 9333 // A vector operand; extract a single element. 9334 EVT OperandEltVT = OperandVT.getVectorElementType(); 9335 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9336 Operand, getVectorIdxConstant(i, dl)); 9337 } else { 9338 // A scalar operand; just use it as is. 9339 Operands[j] = Operand; 9340 } 9341 } 9342 9343 switch (N->getOpcode()) { 9344 default: { 9345 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9346 N->getFlags())); 9347 break; 9348 } 9349 case ISD::VSELECT: 9350 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9351 break; 9352 case ISD::SHL: 9353 case ISD::SRA: 9354 case ISD::SRL: 9355 case ISD::ROTL: 9356 case ISD::ROTR: 9357 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9358 getShiftAmountOperand(Operands[0].getValueType(), 9359 Operands[1]))); 9360 break; 9361 case ISD::SIGN_EXTEND_INREG: { 9362 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9363 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9364 Operands[0], 9365 getValueType(ExtVT))); 9366 } 9367 } 9368 } 9369 9370 for (; i < ResNE; ++i) 9371 Scalars.push_back(getUNDEF(EltVT)); 9372 9373 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9374 return getBuildVector(VecVT, dl, Scalars); 9375 } 9376 9377 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9378 SDNode *N, unsigned ResNE) { 9379 unsigned Opcode = N->getOpcode(); 9380 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9381 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9382 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9383 "Expected an overflow opcode"); 9384 9385 EVT ResVT = N->getValueType(0); 9386 EVT OvVT = N->getValueType(1); 9387 EVT ResEltVT = ResVT.getVectorElementType(); 9388 EVT OvEltVT = OvVT.getVectorElementType(); 9389 SDLoc dl(N); 9390 9391 // If ResNE is 0, fully unroll the vector op. 9392 unsigned NE = ResVT.getVectorNumElements(); 9393 if (ResNE == 0) 9394 ResNE = NE; 9395 else if (NE > ResNE) 9396 NE = ResNE; 9397 9398 SmallVector<SDValue, 8> LHSScalars; 9399 SmallVector<SDValue, 8> RHSScalars; 9400 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9401 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9402 9403 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9404 SDVTList VTs = getVTList(ResEltVT, SVT); 9405 SmallVector<SDValue, 8> ResScalars; 9406 SmallVector<SDValue, 8> OvScalars; 9407 for (unsigned i = 0; i < NE; ++i) { 9408 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9409 SDValue Ov = 9410 getSelect(dl, OvEltVT, Res.getValue(1), 9411 getBoolConstant(true, dl, OvEltVT, ResVT), 9412 getConstant(0, dl, OvEltVT)); 9413 9414 ResScalars.push_back(Res); 9415 OvScalars.push_back(Ov); 9416 } 9417 9418 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9419 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9420 9421 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9422 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9423 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9424 getBuildVector(NewOvVT, dl, OvScalars)); 9425 } 9426 9427 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9428 LoadSDNode *Base, 9429 unsigned Bytes, 9430 int Dist) const { 9431 if (LD->isVolatile() || Base->isVolatile()) 9432 return false; 9433 // TODO: probably too restrictive for atomics, revisit 9434 if (!LD->isSimple()) 9435 return false; 9436 if (LD->isIndexed() || Base->isIndexed()) 9437 return false; 9438 if (LD->getChain() != Base->getChain()) 9439 return false; 9440 EVT VT = LD->getValueType(0); 9441 if (VT.getSizeInBits() / 8 != Bytes) 9442 return false; 9443 9444 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9445 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9446 9447 int64_t Offset = 0; 9448 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9449 return (Dist * Bytes == Offset); 9450 return false; 9451 } 9452 9453 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9454 /// if it cannot be inferred. 9455 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9456 // If this is a GlobalAddress + cst, return the alignment. 9457 const GlobalValue *GV = nullptr; 9458 int64_t GVOffset = 0; 9459 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9460 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9461 KnownBits Known(PtrWidth); 9462 llvm::computeKnownBits(GV, Known, getDataLayout()); 9463 unsigned AlignBits = Known.countMinTrailingZeros(); 9464 if (AlignBits) 9465 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9466 } 9467 9468 // If this is a direct reference to a stack slot, use information about the 9469 // stack slot's alignment. 9470 int FrameIdx = INT_MIN; 9471 int64_t FrameOffset = 0; 9472 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9473 FrameIdx = FI->getIndex(); 9474 } else if (isBaseWithConstantOffset(Ptr) && 9475 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9476 // Handle FI+Cst 9477 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9478 FrameOffset = Ptr.getConstantOperandVal(1); 9479 } 9480 9481 if (FrameIdx != INT_MIN) { 9482 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9483 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9484 } 9485 9486 return None; 9487 } 9488 9489 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9490 /// which is split (or expanded) into two not necessarily identical pieces. 9491 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9492 // Currently all types are split in half. 9493 EVT LoVT, HiVT; 9494 if (!VT.isVector()) 9495 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9496 else 9497 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9498 9499 return std::make_pair(LoVT, HiVT); 9500 } 9501 9502 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9503 /// type, dependent on an enveloping VT that has been split into two identical 9504 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9505 std::pair<EVT, EVT> 9506 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9507 bool *HiIsEmpty) const { 9508 EVT EltTp = VT.getVectorElementType(); 9509 bool IsScalable = VT.isScalableVector(); 9510 // Examples: 9511 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9512 // custom VL=9 with enveloping VL=8/8 yields 8/1 9513 // custom VL=10 with enveloping VL=8/8 yields 8/2 9514 // etc. 9515 unsigned VTNumElts = VT.getVectorNumElements(); 9516 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9517 EVT LoVT, HiVT; 9518 if (VTNumElts > EnvNumElts) { 9519 LoVT = EnvVT; 9520 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9521 IsScalable); 9522 *HiIsEmpty = false; 9523 } else { 9524 // Flag that hi type has zero storage size, but return split envelop type 9525 // (this would be easier if vector types with zero elements were allowed). 9526 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9527 HiVT = EnvVT; 9528 *HiIsEmpty = true; 9529 } 9530 return std::make_pair(LoVT, HiVT); 9531 } 9532 9533 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9534 /// low/high part. 9535 std::pair<SDValue, SDValue> 9536 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9537 const EVT &HiVT) { 9538 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9539 N.getValueType().getVectorNumElements() && 9540 "More vector elements requested than available!"); 9541 SDValue Lo, Hi; 9542 Lo = 9543 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9544 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9545 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9546 return std::make_pair(Lo, Hi); 9547 } 9548 9549 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9550 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9551 EVT VT = N.getValueType(); 9552 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9553 NextPowerOf2(VT.getVectorNumElements())); 9554 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9555 getVectorIdxConstant(0, DL)); 9556 } 9557 9558 void SelectionDAG::ExtractVectorElements(SDValue Op, 9559 SmallVectorImpl<SDValue> &Args, 9560 unsigned Start, unsigned Count, 9561 EVT EltVT) { 9562 EVT VT = Op.getValueType(); 9563 if (Count == 0) 9564 Count = VT.getVectorNumElements(); 9565 if (EltVT == EVT()) 9566 EltVT = VT.getVectorElementType(); 9567 SDLoc SL(Op); 9568 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9569 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9570 getVectorIdxConstant(i, SL))); 9571 } 9572 } 9573 9574 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9575 unsigned GlobalAddressSDNode::getAddressSpace() const { 9576 return getGlobal()->getType()->getAddressSpace(); 9577 } 9578 9579 Type *ConstantPoolSDNode::getType() const { 9580 if (isMachineConstantPoolEntry()) 9581 return Val.MachineCPVal->getType(); 9582 return Val.ConstVal->getType(); 9583 } 9584 9585 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9586 unsigned &SplatBitSize, 9587 bool &HasAnyUndefs, 9588 unsigned MinSplatBits, 9589 bool IsBigEndian) const { 9590 EVT VT = getValueType(0); 9591 assert(VT.isVector() && "Expected a vector type"); 9592 unsigned VecWidth = VT.getSizeInBits(); 9593 if (MinSplatBits > VecWidth) 9594 return false; 9595 9596 // FIXME: The widths are based on this node's type, but build vectors can 9597 // truncate their operands. 9598 SplatValue = APInt(VecWidth, 0); 9599 SplatUndef = APInt(VecWidth, 0); 9600 9601 // Get the bits. Bits with undefined values (when the corresponding element 9602 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9603 // in SplatValue. If any of the values are not constant, give up and return 9604 // false. 9605 unsigned int NumOps = getNumOperands(); 9606 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9607 unsigned EltWidth = VT.getScalarSizeInBits(); 9608 9609 for (unsigned j = 0; j < NumOps; ++j) { 9610 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9611 SDValue OpVal = getOperand(i); 9612 unsigned BitPos = j * EltWidth; 9613 9614 if (OpVal.isUndef()) 9615 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9616 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9617 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9618 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9619 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9620 else 9621 return false; 9622 } 9623 9624 // The build_vector is all constants or undefs. Find the smallest element 9625 // size that splats the vector. 9626 HasAnyUndefs = (SplatUndef != 0); 9627 9628 // FIXME: This does not work for vectors with elements less than 8 bits. 9629 while (VecWidth > 8) { 9630 unsigned HalfSize = VecWidth / 2; 9631 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9632 APInt LowValue = SplatValue.trunc(HalfSize); 9633 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9634 APInt LowUndef = SplatUndef.trunc(HalfSize); 9635 9636 // If the two halves do not match (ignoring undef bits), stop here. 9637 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9638 MinSplatBits > HalfSize) 9639 break; 9640 9641 SplatValue = HighValue | LowValue; 9642 SplatUndef = HighUndef & LowUndef; 9643 9644 VecWidth = HalfSize; 9645 } 9646 9647 SplatBitSize = VecWidth; 9648 return true; 9649 } 9650 9651 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9652 BitVector *UndefElements) const { 9653 if (UndefElements) { 9654 UndefElements->clear(); 9655 UndefElements->resize(getNumOperands()); 9656 } 9657 assert(getNumOperands() == DemandedElts.getBitWidth() && 9658 "Unexpected vector size"); 9659 if (!DemandedElts) 9660 return SDValue(); 9661 SDValue Splatted; 9662 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9663 if (!DemandedElts[i]) 9664 continue; 9665 SDValue Op = getOperand(i); 9666 if (Op.isUndef()) { 9667 if (UndefElements) 9668 (*UndefElements)[i] = true; 9669 } else if (!Splatted) { 9670 Splatted = Op; 9671 } else if (Splatted != Op) { 9672 return SDValue(); 9673 } 9674 } 9675 9676 if (!Splatted) { 9677 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9678 assert(getOperand(FirstDemandedIdx).isUndef() && 9679 "Can only have a splat without a constant for all undefs."); 9680 return getOperand(FirstDemandedIdx); 9681 } 9682 9683 return Splatted; 9684 } 9685 9686 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9687 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9688 return getSplatValue(DemandedElts, UndefElements); 9689 } 9690 9691 ConstantSDNode * 9692 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9693 BitVector *UndefElements) const { 9694 return dyn_cast_or_null<ConstantSDNode>( 9695 getSplatValue(DemandedElts, UndefElements)); 9696 } 9697 9698 ConstantSDNode * 9699 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9700 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9701 } 9702 9703 ConstantFPSDNode * 9704 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9705 BitVector *UndefElements) const { 9706 return dyn_cast_or_null<ConstantFPSDNode>( 9707 getSplatValue(DemandedElts, UndefElements)); 9708 } 9709 9710 ConstantFPSDNode * 9711 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9712 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9713 } 9714 9715 int32_t 9716 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9717 uint32_t BitWidth) const { 9718 if (ConstantFPSDNode *CN = 9719 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9720 bool IsExact; 9721 APSInt IntVal(BitWidth); 9722 const APFloat &APF = CN->getValueAPF(); 9723 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9724 APFloat::opOK || 9725 !IsExact) 9726 return -1; 9727 9728 return IntVal.exactLogBase2(); 9729 } 9730 return -1; 9731 } 9732 9733 bool BuildVectorSDNode::isConstant() const { 9734 for (const SDValue &Op : op_values()) { 9735 unsigned Opc = Op.getOpcode(); 9736 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9737 return false; 9738 } 9739 return true; 9740 } 9741 9742 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9743 // Find the first non-undef value in the shuffle mask. 9744 unsigned i, e; 9745 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9746 /* search */; 9747 9748 // If all elements are undefined, this shuffle can be considered a splat 9749 // (although it should eventually get simplified away completely). 9750 if (i == e) 9751 return true; 9752 9753 // Make sure all remaining elements are either undef or the same as the first 9754 // non-undef value. 9755 for (int Idx = Mask[i]; i != e; ++i) 9756 if (Mask[i] >= 0 && Mask[i] != Idx) 9757 return false; 9758 return true; 9759 } 9760 9761 // Returns the SDNode if it is a constant integer BuildVector 9762 // or constant integer. 9763 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9764 if (isa<ConstantSDNode>(N)) 9765 return N.getNode(); 9766 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9767 return N.getNode(); 9768 // Treat a GlobalAddress supporting constant offset folding as a 9769 // constant integer. 9770 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9771 if (GA->getOpcode() == ISD::GlobalAddress && 9772 TLI->isOffsetFoldingLegal(GA)) 9773 return GA; 9774 return nullptr; 9775 } 9776 9777 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9778 if (isa<ConstantFPSDNode>(N)) 9779 return N.getNode(); 9780 9781 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9782 return N.getNode(); 9783 9784 return nullptr; 9785 } 9786 9787 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9788 assert(!Node->OperandList && "Node already has operands"); 9789 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9790 "too many operands to fit into SDNode"); 9791 SDUse *Ops = OperandRecycler.allocate( 9792 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9793 9794 bool IsDivergent = false; 9795 for (unsigned I = 0; I != Vals.size(); ++I) { 9796 Ops[I].setUser(Node); 9797 Ops[I].setInitial(Vals[I]); 9798 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9799 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9800 } 9801 Node->NumOperands = Vals.size(); 9802 Node->OperandList = Ops; 9803 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9804 if (!TLI->isSDNodeAlwaysUniform(Node)) 9805 Node->SDNodeBits.IsDivergent = IsDivergent; 9806 checkForCycles(Node); 9807 } 9808 9809 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9810 SmallVectorImpl<SDValue> &Vals) { 9811 size_t Limit = SDNode::getMaxNumOperands(); 9812 while (Vals.size() > Limit) { 9813 unsigned SliceIdx = Vals.size() - Limit; 9814 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9815 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9816 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9817 Vals.emplace_back(NewTF); 9818 } 9819 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9820 } 9821 9822 #ifndef NDEBUG 9823 static void checkForCyclesHelper(const SDNode *N, 9824 SmallPtrSetImpl<const SDNode*> &Visited, 9825 SmallPtrSetImpl<const SDNode*> &Checked, 9826 const llvm::SelectionDAG *DAG) { 9827 // If this node has already been checked, don't check it again. 9828 if (Checked.count(N)) 9829 return; 9830 9831 // If a node has already been visited on this depth-first walk, reject it as 9832 // a cycle. 9833 if (!Visited.insert(N).second) { 9834 errs() << "Detected cycle in SelectionDAG\n"; 9835 dbgs() << "Offending node:\n"; 9836 N->dumprFull(DAG); dbgs() << "\n"; 9837 abort(); 9838 } 9839 9840 for (const SDValue &Op : N->op_values()) 9841 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9842 9843 Checked.insert(N); 9844 Visited.erase(N); 9845 } 9846 #endif 9847 9848 void llvm::checkForCycles(const llvm::SDNode *N, 9849 const llvm::SelectionDAG *DAG, 9850 bool force) { 9851 #ifndef NDEBUG 9852 bool check = force; 9853 #ifdef EXPENSIVE_CHECKS 9854 check = true; 9855 #endif // EXPENSIVE_CHECKS 9856 if (check) { 9857 assert(N && "Checking nonexistent SDNode"); 9858 SmallPtrSet<const SDNode*, 32> visited; 9859 SmallPtrSet<const SDNode*, 32> checked; 9860 checkForCyclesHelper(N, visited, checked, DAG); 9861 } 9862 #endif // !NDEBUG 9863 } 9864 9865 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9866 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9867 } 9868