1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
883   assert(!(V->isVariadic() && isParameter));
884   if (isParameter)
885     ByvalParmDbgValues.push_back(V);
886   else
887     DbgValues.push_back(V);
888   for (const SDNode *Node : V->getSDNodes())
889     if (Node)
890       DbgValMap[Node].push_back(V);
891 }
892 
893 void SDDbgInfo::erase(const SDNode *Node) {
894   DbgValMapType::iterator I = DbgValMap.find(Node);
895   if (I == DbgValMap.end())
896     return;
897   for (auto &Val: I->second)
898     Val->setIsInvalidated();
899   DbgValMap.erase(I);
900 }
901 
902 void SelectionDAG::DeallocateNode(SDNode *N) {
903   // If we have operands, deallocate them.
904   removeOperands(N);
905 
906   NodeAllocator.Deallocate(AllNodes.remove(N));
907 
908   // Set the opcode to DELETED_NODE to help catch bugs when node
909   // memory is reallocated.
910   // FIXME: There are places in SDag that have grown a dependency on the opcode
911   // value in the released node.
912   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
913   N->NodeType = ISD::DELETED_NODE;
914 
915   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
916   // them and forget about that node.
917   DbgInfo->erase(N);
918 }
919 
920 #ifndef NDEBUG
921 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
922 static void VerifySDNode(SDNode *N) {
923   switch (N->getOpcode()) {
924   default:
925     break;
926   case ISD::BUILD_PAIR: {
927     EVT VT = N->getValueType(0);
928     assert(N->getNumValues() == 1 && "Too many results!");
929     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
930            "Wrong return type!");
931     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
932     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
933            "Mismatched operand types!");
934     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
935            "Wrong operand type!");
936     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
937            "Wrong return type size");
938     break;
939   }
940   case ISD::BUILD_VECTOR: {
941     assert(N->getNumValues() == 1 && "Too many results!");
942     assert(N->getValueType(0).isVector() && "Wrong return type!");
943     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
944            "Wrong number of operands!");
945     EVT EltVT = N->getValueType(0).getVectorElementType();
946     for (const SDUse &Op : N->ops()) {
947       assert((Op.getValueType() == EltVT ||
948               (EltVT.isInteger() && Op.getValueType().isInteger() &&
949                EltVT.bitsLE(Op.getValueType()))) &&
950              "Wrong operand type!");
951       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
952              "Operands must all have the same type");
953     }
954     break;
955   }
956   }
957 }
958 #endif // NDEBUG
959 
960 /// Insert a newly allocated node into the DAG.
961 ///
962 /// Handles insertion into the all nodes list and CSE map, as well as
963 /// verification and other common operations when a new node is allocated.
964 void SelectionDAG::InsertNode(SDNode *N) {
965   AllNodes.push_back(N);
966 #ifndef NDEBUG
967   N->PersistentId = NextPersistentId++;
968   VerifySDNode(N);
969 #endif
970   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
971     DUL->NodeInserted(N);
972 }
973 
974 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
975 /// correspond to it.  This is useful when we're about to delete or repurpose
976 /// the node.  We don't want future request for structurally identical nodes
977 /// to return N anymore.
978 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
979   bool Erased = false;
980   switch (N->getOpcode()) {
981   case ISD::HANDLENODE: return false;  // noop.
982   case ISD::CONDCODE:
983     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
984            "Cond code doesn't exist!");
985     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
986     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
987     break;
988   case ISD::ExternalSymbol:
989     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
990     break;
991   case ISD::TargetExternalSymbol: {
992     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
993     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
994         ESN->getSymbol(), ESN->getTargetFlags()));
995     break;
996   }
997   case ISD::MCSymbol: {
998     auto *MCSN = cast<MCSymbolSDNode>(N);
999     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1000     break;
1001   }
1002   case ISD::VALUETYPE: {
1003     EVT VT = cast<VTSDNode>(N)->getVT();
1004     if (VT.isExtended()) {
1005       Erased = ExtendedValueTypeNodes.erase(VT);
1006     } else {
1007       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1008       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1009     }
1010     break;
1011   }
1012   default:
1013     // Remove it from the CSE Map.
1014     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1015     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1016     Erased = CSEMap.RemoveNode(N);
1017     break;
1018   }
1019 #ifndef NDEBUG
1020   // Verify that the node was actually in one of the CSE maps, unless it has a
1021   // flag result (which cannot be CSE'd) or is one of the special cases that are
1022   // not subject to CSE.
1023   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1024       !N->isMachineOpcode() && !doNotCSE(N)) {
1025     N->dump(this);
1026     dbgs() << "\n";
1027     llvm_unreachable("Node is not in map!");
1028   }
1029 #endif
1030   return Erased;
1031 }
1032 
1033 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1034 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1035 /// node already exists, in which case transfer all its users to the existing
1036 /// node. This transfer can potentially trigger recursive merging.
1037 void
1038 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1039   // For node types that aren't CSE'd, just act as if no identical node
1040   // already exists.
1041   if (!doNotCSE(N)) {
1042     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1043     if (Existing != N) {
1044       // If there was already an existing matching node, use ReplaceAllUsesWith
1045       // to replace the dead one with the existing one.  This can cause
1046       // recursive merging of other unrelated nodes down the line.
1047       ReplaceAllUsesWith(N, Existing);
1048 
1049       // N is now dead. Inform the listeners and delete it.
1050       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1051         DUL->NodeDeleted(N, Existing);
1052       DeleteNodeNotInCSEMaps(N);
1053       return;
1054     }
1055   }
1056 
1057   // If the node doesn't already exist, we updated it.  Inform listeners.
1058   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1059     DUL->NodeUpdated(N);
1060 }
1061 
1062 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1063 /// were replaced with those specified.  If this node is never memoized,
1064 /// return null, otherwise return a pointer to the slot it would take.  If a
1065 /// node already exists with these operands, the slot will be non-null.
1066 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1067                                            void *&InsertPos) {
1068   if (doNotCSE(N))
1069     return nullptr;
1070 
1071   SDValue Ops[] = { Op };
1072   FoldingSetNodeID ID;
1073   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1074   AddNodeIDCustom(ID, N);
1075   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1076   if (Node)
1077     Node->intersectFlagsWith(N->getFlags());
1078   return Node;
1079 }
1080 
1081 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1082 /// were replaced with those specified.  If this node is never memoized,
1083 /// return null, otherwise return a pointer to the slot it would take.  If a
1084 /// node already exists with these operands, the slot will be non-null.
1085 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1086                                            SDValue Op1, SDValue Op2,
1087                                            void *&InsertPos) {
1088   if (doNotCSE(N))
1089     return nullptr;
1090 
1091   SDValue Ops[] = { Op1, Op2 };
1092   FoldingSetNodeID ID;
1093   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1094   AddNodeIDCustom(ID, N);
1095   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1096   if (Node)
1097     Node->intersectFlagsWith(N->getFlags());
1098   return Node;
1099 }
1100 
1101 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1102 /// were replaced with those specified.  If this node is never memoized,
1103 /// return null, otherwise return a pointer to the slot it would take.  If a
1104 /// node already exists with these operands, the slot will be non-null.
1105 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1106                                            void *&InsertPos) {
1107   if (doNotCSE(N))
1108     return nullptr;
1109 
1110   FoldingSetNodeID ID;
1111   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1112   AddNodeIDCustom(ID, N);
1113   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1114   if (Node)
1115     Node->intersectFlagsWith(N->getFlags());
1116   return Node;
1117 }
1118 
1119 Align SelectionDAG::getEVTAlign(EVT VT) const {
1120   Type *Ty = VT == MVT::iPTR ?
1121                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1122                    VT.getTypeForEVT(*getContext());
1123 
1124   return getDataLayout().getABITypeAlign(Ty);
1125 }
1126 
1127 // EntryNode could meaningfully have debug info if we can find it...
1128 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1129     : TM(tm), OptLevel(OL),
1130       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1131       Root(getEntryNode()) {
1132   InsertNode(&EntryNode);
1133   DbgInfo = new SDDbgInfo();
1134 }
1135 
1136 void SelectionDAG::init(MachineFunction &NewMF,
1137                         OptimizationRemarkEmitter &NewORE,
1138                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1139                         LegacyDivergenceAnalysis * Divergence,
1140                         ProfileSummaryInfo *PSIin,
1141                         BlockFrequencyInfo *BFIin) {
1142   MF = &NewMF;
1143   SDAGISelPass = PassPtr;
1144   ORE = &NewORE;
1145   TLI = getSubtarget().getTargetLowering();
1146   TSI = getSubtarget().getSelectionDAGInfo();
1147   LibInfo = LibraryInfo;
1148   Context = &MF->getFunction().getContext();
1149   DA = Divergence;
1150   PSI = PSIin;
1151   BFI = BFIin;
1152 }
1153 
1154 SelectionDAG::~SelectionDAG() {
1155   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1156   allnodes_clear();
1157   OperandRecycler.clear(OperandAllocator);
1158   delete DbgInfo;
1159 }
1160 
1161 bool SelectionDAG::shouldOptForSize() const {
1162   return MF->getFunction().hasOptSize() ||
1163       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1164 }
1165 
1166 void SelectionDAG::allnodes_clear() {
1167   assert(&*AllNodes.begin() == &EntryNode);
1168   AllNodes.remove(AllNodes.begin());
1169   while (!AllNodes.empty())
1170     DeallocateNode(&AllNodes.front());
1171 #ifndef NDEBUG
1172   NextPersistentId = 0;
1173 #endif
1174 }
1175 
1176 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1177                                           void *&InsertPos) {
1178   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1179   if (N) {
1180     switch (N->getOpcode()) {
1181     default: break;
1182     case ISD::Constant:
1183     case ISD::ConstantFP:
1184       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1185                        "debug location.  Use another overload.");
1186     }
1187   }
1188   return N;
1189 }
1190 
1191 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1192                                           const SDLoc &DL, void *&InsertPos) {
1193   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1194   if (N) {
1195     switch (N->getOpcode()) {
1196     case ISD::Constant:
1197     case ISD::ConstantFP:
1198       // Erase debug location from the node if the node is used at several
1199       // different places. Do not propagate one location to all uses as it
1200       // will cause a worse single stepping debugging experience.
1201       if (N->getDebugLoc() != DL.getDebugLoc())
1202         N->setDebugLoc(DebugLoc());
1203       break;
1204     default:
1205       // When the node's point of use is located earlier in the instruction
1206       // sequence than its prior point of use, update its debug info to the
1207       // earlier location.
1208       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1209         N->setDebugLoc(DL.getDebugLoc());
1210       break;
1211     }
1212   }
1213   return N;
1214 }
1215 
1216 void SelectionDAG::clear() {
1217   allnodes_clear();
1218   OperandRecycler.clear(OperandAllocator);
1219   OperandAllocator.Reset();
1220   CSEMap.clear();
1221 
1222   ExtendedValueTypeNodes.clear();
1223   ExternalSymbols.clear();
1224   TargetExternalSymbols.clear();
1225   MCSymbols.clear();
1226   SDCallSiteDbgInfo.clear();
1227   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1228             static_cast<CondCodeSDNode*>(nullptr));
1229   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1230             static_cast<SDNode*>(nullptr));
1231 
1232   EntryNode.UseList = nullptr;
1233   InsertNode(&EntryNode);
1234   Root = getEntryNode();
1235   DbgInfo->clear();
1236 }
1237 
1238 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1239   return VT.bitsGT(Op.getValueType())
1240              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1241              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1242 }
1243 
1244 std::pair<SDValue, SDValue>
1245 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1246                                        const SDLoc &DL, EVT VT) {
1247   assert(!VT.bitsEq(Op.getValueType()) &&
1248          "Strict no-op FP extend/round not allowed.");
1249   SDValue Res =
1250       VT.bitsGT(Op.getValueType())
1251           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1252           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1253                     {Chain, Op, getIntPtrConstant(0, DL)});
1254 
1255   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1256 }
1257 
1258 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1259   return VT.bitsGT(Op.getValueType()) ?
1260     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1261     getNode(ISD::TRUNCATE, DL, VT, Op);
1262 }
1263 
1264 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1265   return VT.bitsGT(Op.getValueType()) ?
1266     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1267     getNode(ISD::TRUNCATE, DL, VT, Op);
1268 }
1269 
1270 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1271   return VT.bitsGT(Op.getValueType()) ?
1272     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1273     getNode(ISD::TRUNCATE, DL, VT, Op);
1274 }
1275 
1276 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1277                                         EVT OpVT) {
1278   if (VT.bitsLE(Op.getValueType()))
1279     return getNode(ISD::TRUNCATE, SL, VT, Op);
1280 
1281   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1282   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1283 }
1284 
1285 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1286   EVT OpVT = Op.getValueType();
1287   assert(VT.isInteger() && OpVT.isInteger() &&
1288          "Cannot getZeroExtendInReg FP types");
1289   assert(VT.isVector() == OpVT.isVector() &&
1290          "getZeroExtendInReg type should be vector iff the operand "
1291          "type is vector!");
1292   assert((!VT.isVector() ||
1293           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1294          "Vector element counts must match in getZeroExtendInReg");
1295   assert(VT.bitsLE(OpVT) && "Not extending!");
1296   if (OpVT == VT)
1297     return Op;
1298   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1299                                    VT.getScalarSizeInBits());
1300   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1301 }
1302 
1303 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1304   // Only unsigned pointer semantics are supported right now. In the future this
1305   // might delegate to TLI to check pointer signedness.
1306   return getZExtOrTrunc(Op, DL, VT);
1307 }
1308 
1309 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1310   // Only unsigned pointer semantics are supported right now. In the future this
1311   // might delegate to TLI to check pointer signedness.
1312   return getZeroExtendInReg(Op, DL, VT);
1313 }
1314 
1315 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1316 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1317   EVT EltVT = VT.getScalarType();
1318   SDValue NegOne =
1319     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1320   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1321 }
1322 
1323 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1324   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1325   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1326 }
1327 
1328 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1329                                       EVT OpVT) {
1330   if (!V)
1331     return getConstant(0, DL, VT);
1332 
1333   switch (TLI->getBooleanContents(OpVT)) {
1334   case TargetLowering::ZeroOrOneBooleanContent:
1335   case TargetLowering::UndefinedBooleanContent:
1336     return getConstant(1, DL, VT);
1337   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1338     return getAllOnesConstant(DL, VT);
1339   }
1340   llvm_unreachable("Unexpected boolean content enum!");
1341 }
1342 
1343 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1344                                   bool isT, bool isO) {
1345   EVT EltVT = VT.getScalarType();
1346   assert((EltVT.getSizeInBits() >= 64 ||
1347           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1348          "getConstant with a uint64_t value that doesn't fit in the type!");
1349   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1350 }
1351 
1352 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1353                                   bool isT, bool isO) {
1354   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1355 }
1356 
1357 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1358                                   EVT VT, bool isT, bool isO) {
1359   assert(VT.isInteger() && "Cannot create FP integer constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362   const ConstantInt *Elt = &Val;
1363 
1364   // In some cases the vector type is legal but the element type is illegal and
1365   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1366   // inserted value (the type does not need to match the vector element type).
1367   // Any extra bits introduced will be truncated away.
1368   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1369                            TargetLowering::TypePromoteInteger) {
1370     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1371     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1372     Elt = ConstantInt::get(*getContext(), NewVal);
1373   }
1374   // In other cases the element type is illegal and needs to be expanded, for
1375   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1376   // the value into n parts and use a vector type with n-times the elements.
1377   // Then bitcast to the type requested.
1378   // Legalizing constants too early makes the DAGCombiner's job harder so we
1379   // only legalize if the DAG tells us we must produce legal types.
1380   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1381            TLI->getTypeAction(*getContext(), EltVT) ==
1382                TargetLowering::TypeExpandInteger) {
1383     const APInt &NewVal = Elt->getValue();
1384     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1385     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1386 
1387     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1388     if (VT.isScalableVector()) {
1389       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1390              "Can only handle an even split!");
1391       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1392 
1393       SmallVector<SDValue, 2> ScalarParts;
1394       for (unsigned i = 0; i != Parts; ++i)
1395         ScalarParts.push_back(getConstant(
1396             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1397             ViaEltVT, isT, isO));
1398 
1399       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1400     }
1401 
1402     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1403     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1404 
1405     // Check the temporary vector is the correct size. If this fails then
1406     // getTypeToTransformTo() probably returned a type whose size (in bits)
1407     // isn't a power-of-2 factor of the requested type size.
1408     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1409 
1410     SmallVector<SDValue, 2> EltParts;
1411     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1412       EltParts.push_back(getConstant(
1413           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1414           ViaEltVT, isT, isO));
1415     }
1416 
1417     // EltParts is currently in little endian order. If we actually want
1418     // big-endian order then reverse it now.
1419     if (getDataLayout().isBigEndian())
1420       std::reverse(EltParts.begin(), EltParts.end());
1421 
1422     // The elements must be reversed when the element order is different
1423     // to the endianness of the elements (because the BITCAST is itself a
1424     // vector shuffle in this situation). However, we do not need any code to
1425     // perform this reversal because getConstant() is producing a vector
1426     // splat.
1427     // This situation occurs in MIPS MSA.
1428 
1429     SmallVector<SDValue, 8> Ops;
1430     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1431       llvm::append_range(Ops, EltParts);
1432 
1433     SDValue V =
1434         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1435     return V;
1436   }
1437 
1438   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1439          "APInt size does not match type size!");
1440   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1443   ID.AddPointer(Elt);
1444   ID.AddBoolean(isO);
1445   void *IP = nullptr;
1446   SDNode *N = nullptr;
1447   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1448     if (!VT.isVector())
1449       return SDValue(N, 0);
1450 
1451   if (!N) {
1452     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1453     CSEMap.InsertNode(N, IP);
1454     InsertNode(N);
1455     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1456   }
1457 
1458   SDValue Result(N, 0);
1459   if (VT.isScalableVector())
1460     Result = getSplatVector(VT, DL, Result);
1461   else if (VT.isVector())
1462     Result = getSplatBuildVector(VT, DL, Result);
1463 
1464   return Result;
1465 }
1466 
1467 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1468                                         bool isTarget) {
1469   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1470 }
1471 
1472 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1473                                              const SDLoc &DL, bool LegalTypes) {
1474   assert(VT.isInteger() && "Shift amount is not an integer type!");
1475   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1476   return getConstant(Val, DL, ShiftVT);
1477 }
1478 
1479 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1480                                            bool isTarget) {
1481   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1482 }
1483 
1484 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1485                                     bool isTarget) {
1486   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1487 }
1488 
1489 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1490                                     EVT VT, bool isTarget) {
1491   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1492 
1493   EVT EltVT = VT.getScalarType();
1494 
1495   // Do the map lookup using the actual bit pattern for the floating point
1496   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1497   // we don't have issues with SNANs.
1498   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1499   FoldingSetNodeID ID;
1500   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1501   ID.AddPointer(&V);
1502   void *IP = nullptr;
1503   SDNode *N = nullptr;
1504   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1505     if (!VT.isVector())
1506       return SDValue(N, 0);
1507 
1508   if (!N) {
1509     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1510     CSEMap.InsertNode(N, IP);
1511     InsertNode(N);
1512   }
1513 
1514   SDValue Result(N, 0);
1515   if (VT.isScalableVector())
1516     Result = getSplatVector(VT, DL, Result);
1517   else if (VT.isVector())
1518     Result = getSplatBuildVector(VT, DL, Result);
1519   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1520   return Result;
1521 }
1522 
1523 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1524                                     bool isTarget) {
1525   EVT EltVT = VT.getScalarType();
1526   if (EltVT == MVT::f32)
1527     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1528   else if (EltVT == MVT::f64)
1529     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1530   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1531            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1532     bool Ignored;
1533     APFloat APF = APFloat(Val);
1534     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1535                 &Ignored);
1536     return getConstantFP(APF, DL, VT, isTarget);
1537   } else
1538     llvm_unreachable("Unsupported type in getConstantFP");
1539 }
1540 
1541 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1542                                        EVT VT, int64_t Offset, bool isTargetGA,
1543                                        unsigned TargetFlags) {
1544   assert((TargetFlags == 0 || isTargetGA) &&
1545          "Cannot set target flags on target-independent globals");
1546 
1547   // Truncate (with sign-extension) the offset value to the pointer size.
1548   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1549   if (BitWidth < 64)
1550     Offset = SignExtend64(Offset, BitWidth);
1551 
1552   unsigned Opc;
1553   if (GV->isThreadLocal())
1554     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1555   else
1556     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1557 
1558   FoldingSetNodeID ID;
1559   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1560   ID.AddPointer(GV);
1561   ID.AddInteger(Offset);
1562   ID.AddInteger(TargetFlags);
1563   void *IP = nullptr;
1564   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1565     return SDValue(E, 0);
1566 
1567   auto *N = newSDNode<GlobalAddressSDNode>(
1568       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1569   CSEMap.InsertNode(N, IP);
1570     InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1575   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1576   FoldingSetNodeID ID;
1577   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1578   ID.AddInteger(FI);
1579   void *IP = nullptr;
1580   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1581     return SDValue(E, 0);
1582 
1583   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1584   CSEMap.InsertNode(N, IP);
1585   InsertNode(N);
1586   return SDValue(N, 0);
1587 }
1588 
1589 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1590                                    unsigned TargetFlags) {
1591   assert((TargetFlags == 0 || isTarget) &&
1592          "Cannot set target flags on target-independent jump tables");
1593   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1594   FoldingSetNodeID ID;
1595   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1596   ID.AddInteger(JTI);
1597   ID.AddInteger(TargetFlags);
1598   void *IP = nullptr;
1599   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1600     return SDValue(E, 0);
1601 
1602   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   return SDValue(N, 0);
1606 }
1607 
1608 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1609                                       MaybeAlign Alignment, int Offset,
1610                                       bool isTarget, unsigned TargetFlags) {
1611   assert((TargetFlags == 0 || isTarget) &&
1612          "Cannot set target flags on target-independent globals");
1613   if (!Alignment)
1614     Alignment = shouldOptForSize()
1615                     ? getDataLayout().getABITypeAlign(C->getType())
1616                     : getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   ID.AddPointer(C);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   SDValue V = SDValue(N, 0);
1633   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1634   return V;
1635 }
1636 
1637 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1638                                       MaybeAlign Alignment, int Offset,
1639                                       bool isTarget, unsigned TargetFlags) {
1640   assert((TargetFlags == 0 || isTarget) &&
1641          "Cannot set target flags on target-independent globals");
1642   if (!Alignment)
1643     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1644   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(Alignment->value());
1648   ID.AddInteger(Offset);
1649   C->addSelectionDAGCSEId(ID);
1650   ID.AddInteger(TargetFlags);
1651   void *IP = nullptr;
1652   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1653     return SDValue(E, 0);
1654 
1655   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1656                                           TargetFlags);
1657   CSEMap.InsertNode(N, IP);
1658   InsertNode(N);
1659   return SDValue(N, 0);
1660 }
1661 
1662 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1663                                      unsigned TargetFlags) {
1664   FoldingSetNodeID ID;
1665   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1666   ID.AddInteger(Index);
1667   ID.AddInteger(Offset);
1668   ID.AddInteger(TargetFlags);
1669   void *IP = nullptr;
1670   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1671     return SDValue(E, 0);
1672 
1673   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675   InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1680   FoldingSetNodeID ID;
1681   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1682   ID.AddPointer(MBB);
1683   void *IP = nullptr;
1684   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1685     return SDValue(E, 0);
1686 
1687   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1688   CSEMap.InsertNode(N, IP);
1689   InsertNode(N);
1690   return SDValue(N, 0);
1691 }
1692 
1693 SDValue SelectionDAG::getValueType(EVT VT) {
1694   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1695       ValueTypeNodes.size())
1696     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1697 
1698   SDNode *&N = VT.isExtended() ?
1699     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1700 
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<VTSDNode>(VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1708   SDNode *&N = ExternalSymbols[Sym];
1709   if (N) return SDValue(N, 0);
1710   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1711   InsertNode(N);
1712   return SDValue(N, 0);
1713 }
1714 
1715 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1716   SDNode *&N = MCSymbols[Sym];
1717   if (N)
1718     return SDValue(N, 0);
1719   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1720   InsertNode(N);
1721   return SDValue(N, 0);
1722 }
1723 
1724 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1725                                               unsigned TargetFlags) {
1726   SDNode *&N =
1727       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1728   if (N) return SDValue(N, 0);
1729   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1730   InsertNode(N);
1731   return SDValue(N, 0);
1732 }
1733 
1734 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1735   if ((unsigned)Cond >= CondCodeNodes.size())
1736     CondCodeNodes.resize(Cond+1);
1737 
1738   if (!CondCodeNodes[Cond]) {
1739     auto *N = newSDNode<CondCodeSDNode>(Cond);
1740     CondCodeNodes[Cond] = N;
1741     InsertNode(N);
1742   }
1743 
1744   return SDValue(CondCodeNodes[Cond], 0);
1745 }
1746 
1747 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1748 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1749 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1750   std::swap(N1, N2);
1751   ShuffleVectorSDNode::commuteMask(M);
1752 }
1753 
1754 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1755                                        SDValue N2, ArrayRef<int> Mask) {
1756   assert(VT.getVectorNumElements() == Mask.size() &&
1757            "Must have the same number of vector elements as mask elements!");
1758   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1759          "Invalid VECTOR_SHUFFLE");
1760 
1761   // Canonicalize shuffle undef, undef -> undef
1762   if (N1.isUndef() && N2.isUndef())
1763     return getUNDEF(VT);
1764 
1765   // Validate that all indices in Mask are within the range of the elements
1766   // input to the shuffle.
1767   int NElts = Mask.size();
1768   assert(llvm::all_of(Mask,
1769                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1770          "Index out of range");
1771 
1772   // Copy the mask so we can do any needed cleanup.
1773   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1774 
1775   // Canonicalize shuffle v, v -> v, undef
1776   if (N1 == N2) {
1777     N2 = getUNDEF(VT);
1778     for (int i = 0; i != NElts; ++i)
1779       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1780   }
1781 
1782   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1783   if (N1.isUndef())
1784     commuteShuffle(N1, N2, MaskVec);
1785 
1786   if (TLI->hasVectorBlend()) {
1787     // If shuffling a splat, try to blend the splat instead. We do this here so
1788     // that even when this arises during lowering we don't have to re-handle it.
1789     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1790       BitVector UndefElements;
1791       SDValue Splat = BV->getSplatValue(&UndefElements);
1792       if (!Splat)
1793         return;
1794 
1795       for (int i = 0; i < NElts; ++i) {
1796         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1797           continue;
1798 
1799         // If this input comes from undef, mark it as such.
1800         if (UndefElements[MaskVec[i] - Offset]) {
1801           MaskVec[i] = -1;
1802           continue;
1803         }
1804 
1805         // If we can blend a non-undef lane, use that instead.
1806         if (!UndefElements[i])
1807           MaskVec[i] = i + Offset;
1808       }
1809     };
1810     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1811       BlendSplat(N1BV, 0);
1812     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1813       BlendSplat(N2BV, NElts);
1814   }
1815 
1816   // Canonicalize all index into lhs, -> shuffle lhs, undef
1817   // Canonicalize all index into rhs, -> shuffle rhs, undef
1818   bool AllLHS = true, AllRHS = true;
1819   bool N2Undef = N2.isUndef();
1820   for (int i = 0; i != NElts; ++i) {
1821     if (MaskVec[i] >= NElts) {
1822       if (N2Undef)
1823         MaskVec[i] = -1;
1824       else
1825         AllLHS = false;
1826     } else if (MaskVec[i] >= 0) {
1827       AllRHS = false;
1828     }
1829   }
1830   if (AllLHS && AllRHS)
1831     return getUNDEF(VT);
1832   if (AllLHS && !N2Undef)
1833     N2 = getUNDEF(VT);
1834   if (AllRHS) {
1835     N1 = getUNDEF(VT);
1836     commuteShuffle(N1, N2, MaskVec);
1837   }
1838   // Reset our undef status after accounting for the mask.
1839   N2Undef = N2.isUndef();
1840   // Re-check whether both sides ended up undef.
1841   if (N1.isUndef() && N2Undef)
1842     return getUNDEF(VT);
1843 
1844   // If Identity shuffle return that node.
1845   bool Identity = true, AllSame = true;
1846   for (int i = 0; i != NElts; ++i) {
1847     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1848     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1849   }
1850   if (Identity && NElts)
1851     return N1;
1852 
1853   // Shuffling a constant splat doesn't change the result.
1854   if (N2Undef) {
1855     SDValue V = N1;
1856 
1857     // Look through any bitcasts. We check that these don't change the number
1858     // (and size) of elements and just changes their types.
1859     while (V.getOpcode() == ISD::BITCAST)
1860       V = V->getOperand(0);
1861 
1862     // A splat should always show up as a build vector node.
1863     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1864       BitVector UndefElements;
1865       SDValue Splat = BV->getSplatValue(&UndefElements);
1866       // If this is a splat of an undef, shuffling it is also undef.
1867       if (Splat && Splat.isUndef())
1868         return getUNDEF(VT);
1869 
1870       bool SameNumElts =
1871           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1872 
1873       // We only have a splat which can skip shuffles if there is a splatted
1874       // value and no undef lanes rearranged by the shuffle.
1875       if (Splat && UndefElements.none()) {
1876         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1877         // number of elements match or the value splatted is a zero constant.
1878         if (SameNumElts)
1879           return N1;
1880         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1881           if (C->isNullValue())
1882             return N1;
1883       }
1884 
1885       // If the shuffle itself creates a splat, build the vector directly.
1886       if (AllSame && SameNumElts) {
1887         EVT BuildVT = BV->getValueType(0);
1888         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1889         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1890 
1891         // We may have jumped through bitcasts, so the type of the
1892         // BUILD_VECTOR may not match the type of the shuffle.
1893         if (BuildVT != VT)
1894           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1895         return NewBV;
1896       }
1897     }
1898   }
1899 
1900   FoldingSetNodeID ID;
1901   SDValue Ops[2] = { N1, N2 };
1902   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1903   for (int i = 0; i != NElts; ++i)
1904     ID.AddInteger(MaskVec[i]);
1905 
1906   void* IP = nullptr;
1907   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1908     return SDValue(E, 0);
1909 
1910   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1911   // SDNode doesn't have access to it.  This memory will be "leaked" when
1912   // the node is deallocated, but recovered when the NodeAllocator is released.
1913   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1914   llvm::copy(MaskVec, MaskAlloc);
1915 
1916   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1917                                            dl.getDebugLoc(), MaskAlloc);
1918   createOperands(N, Ops);
1919 
1920   CSEMap.InsertNode(N, IP);
1921   InsertNode(N);
1922   SDValue V = SDValue(N, 0);
1923   NewSDValueDbgMsg(V, "Creating new node: ", this);
1924   return V;
1925 }
1926 
1927 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1928   EVT VT = SV.getValueType(0);
1929   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1930   ShuffleVectorSDNode::commuteMask(MaskVec);
1931 
1932   SDValue Op0 = SV.getOperand(0);
1933   SDValue Op1 = SV.getOperand(1);
1934   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1935 }
1936 
1937 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1938   FoldingSetNodeID ID;
1939   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1940   ID.AddInteger(RegNo);
1941   void *IP = nullptr;
1942   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1943     return SDValue(E, 0);
1944 
1945   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1946   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1947   CSEMap.InsertNode(N, IP);
1948   InsertNode(N);
1949   return SDValue(N, 0);
1950 }
1951 
1952 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1953   FoldingSetNodeID ID;
1954   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1955   ID.AddPointer(RegMask);
1956   void *IP = nullptr;
1957   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1958     return SDValue(E, 0);
1959 
1960   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1961   CSEMap.InsertNode(N, IP);
1962   InsertNode(N);
1963   return SDValue(N, 0);
1964 }
1965 
1966 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1967                                  MCSymbol *Label) {
1968   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1969 }
1970 
1971 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1972                                    SDValue Root, MCSymbol *Label) {
1973   FoldingSetNodeID ID;
1974   SDValue Ops[] = { Root };
1975   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1976   ID.AddPointer(Label);
1977   void *IP = nullptr;
1978   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1979     return SDValue(E, 0);
1980 
1981   auto *N =
1982       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1983   createOperands(N, Ops);
1984 
1985   CSEMap.InsertNode(N, IP);
1986   InsertNode(N);
1987   return SDValue(N, 0);
1988 }
1989 
1990 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1991                                       int64_t Offset, bool isTarget,
1992                                       unsigned TargetFlags) {
1993   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1994 
1995   FoldingSetNodeID ID;
1996   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1997   ID.AddPointer(BA);
1998   ID.AddInteger(Offset);
1999   ID.AddInteger(TargetFlags);
2000   void *IP = nullptr;
2001   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2002     return SDValue(E, 0);
2003 
2004   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2005   CSEMap.InsertNode(N, IP);
2006   InsertNode(N);
2007   return SDValue(N, 0);
2008 }
2009 
2010 SDValue SelectionDAG::getSrcValue(const Value *V) {
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2013   ID.AddPointer(V);
2014 
2015   void *IP = nullptr;
2016   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2017     return SDValue(E, 0);
2018 
2019   auto *N = newSDNode<SrcValueSDNode>(V);
2020   CSEMap.InsertNode(N, IP);
2021   InsertNode(N);
2022   return SDValue(N, 0);
2023 }
2024 
2025 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2028   ID.AddPointer(MD);
2029 
2030   void *IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2032     return SDValue(E, 0);
2033 
2034   auto *N = newSDNode<MDNodeSDNode>(MD);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2041   if (VT == V.getValueType())
2042     return V;
2043 
2044   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2045 }
2046 
2047 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2048                                        unsigned SrcAS, unsigned DestAS) {
2049   SDValue Ops[] = {Ptr};
2050   FoldingSetNodeID ID;
2051   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2052   ID.AddInteger(SrcAS);
2053   ID.AddInteger(DestAS);
2054 
2055   void *IP = nullptr;
2056   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2057     return SDValue(E, 0);
2058 
2059   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2060                                            VT, SrcAS, DestAS);
2061   createOperands(N, Ops);
2062 
2063   CSEMap.InsertNode(N, IP);
2064   InsertNode(N);
2065   return SDValue(N, 0);
2066 }
2067 
2068 SDValue SelectionDAG::getFreeze(SDValue V) {
2069   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2070 }
2071 
2072 /// getShiftAmountOperand - Return the specified value casted to
2073 /// the target's desired shift amount type.
2074 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2075   EVT OpTy = Op.getValueType();
2076   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2077   if (OpTy == ShTy || OpTy.isVector()) return Op;
2078 
2079   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2080 }
2081 
2082 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2083   SDLoc dl(Node);
2084   const TargetLowering &TLI = getTargetLoweringInfo();
2085   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2086   EVT VT = Node->getValueType(0);
2087   SDValue Tmp1 = Node->getOperand(0);
2088   SDValue Tmp2 = Node->getOperand(1);
2089   const MaybeAlign MA(Node->getConstantOperandVal(3));
2090 
2091   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2092                                Tmp2, MachinePointerInfo(V));
2093   SDValue VAList = VAListLoad;
2094 
2095   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2096     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2097                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2098 
2099     VAList =
2100         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2101                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2102   }
2103 
2104   // Increment the pointer, VAList, to the next vaarg
2105   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2106                  getConstant(getDataLayout().getTypeAllocSize(
2107                                                VT.getTypeForEVT(*getContext())),
2108                              dl, VAList.getValueType()));
2109   // Store the incremented VAList to the legalized pointer
2110   Tmp1 =
2111       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2112   // Load the actual argument out of the pointer VAList
2113   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2114 }
2115 
2116 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2117   SDLoc dl(Node);
2118   const TargetLowering &TLI = getTargetLoweringInfo();
2119   // This defaults to loading a pointer from the input and storing it to the
2120   // output, returning the chain.
2121   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2122   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2123   SDValue Tmp1 =
2124       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2125               Node->getOperand(2), MachinePointerInfo(VS));
2126   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2127                   MachinePointerInfo(VD));
2128 }
2129 
2130 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2131   const DataLayout &DL = getDataLayout();
2132   Type *Ty = VT.getTypeForEVT(*getContext());
2133   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2134 
2135   if (TLI->isTypeLegal(VT) || !VT.isVector())
2136     return RedAlign;
2137 
2138   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2139   const Align StackAlign = TFI->getStackAlign();
2140 
2141   // See if we can choose a smaller ABI alignment in cases where it's an
2142   // illegal vector type that will get broken down.
2143   if (RedAlign > StackAlign) {
2144     EVT IntermediateVT;
2145     MVT RegisterVT;
2146     unsigned NumIntermediates;
2147     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2148                                 NumIntermediates, RegisterVT);
2149     Ty = IntermediateVT.getTypeForEVT(*getContext());
2150     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2151     if (RedAlign2 < RedAlign)
2152       RedAlign = RedAlign2;
2153   }
2154 
2155   return RedAlign;
2156 }
2157 
2158 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2159   MachineFrameInfo &MFI = MF->getFrameInfo();
2160   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2161   int StackID = 0;
2162   if (Bytes.isScalable())
2163     StackID = TFI->getStackIDForScalableVectors();
2164   // The stack id gives an indication of whether the object is scalable or
2165   // not, so it's safe to pass in the minimum size here.
2166   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2167                                        false, nullptr, StackID);
2168   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2169 }
2170 
2171 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2172   Type *Ty = VT.getTypeForEVT(*getContext());
2173   Align StackAlign =
2174       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2175   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2176 }
2177 
2178 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2179   TypeSize VT1Size = VT1.getStoreSize();
2180   TypeSize VT2Size = VT2.getStoreSize();
2181   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2182          "Don't know how to choose the maximum size when creating a stack "
2183          "temporary");
2184   TypeSize Bytes =
2185       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2186 
2187   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2188   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2189   const DataLayout &DL = getDataLayout();
2190   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2191   return CreateStackTemporary(Bytes, Align);
2192 }
2193 
2194 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2195                                 ISD::CondCode Cond, const SDLoc &dl) {
2196   EVT OpVT = N1.getValueType();
2197 
2198   // These setcc operations always fold.
2199   switch (Cond) {
2200   default: break;
2201   case ISD::SETFALSE:
2202   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2203   case ISD::SETTRUE:
2204   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2205 
2206   case ISD::SETOEQ:
2207   case ISD::SETOGT:
2208   case ISD::SETOGE:
2209   case ISD::SETOLT:
2210   case ISD::SETOLE:
2211   case ISD::SETONE:
2212   case ISD::SETO:
2213   case ISD::SETUO:
2214   case ISD::SETUEQ:
2215   case ISD::SETUNE:
2216     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2217     break;
2218   }
2219 
2220   if (OpVT.isInteger()) {
2221     // For EQ and NE, we can always pick a value for the undef to make the
2222     // predicate pass or fail, so we can return undef.
2223     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2224     // icmp eq/ne X, undef -> undef.
2225     if ((N1.isUndef() || N2.isUndef()) &&
2226         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2227       return getUNDEF(VT);
2228 
2229     // If both operands are undef, we can return undef for int comparison.
2230     // icmp undef, undef -> undef.
2231     if (N1.isUndef() && N2.isUndef())
2232       return getUNDEF(VT);
2233 
2234     // icmp X, X -> true/false
2235     // icmp X, undef -> true/false because undef could be X.
2236     if (N1 == N2)
2237       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2238   }
2239 
2240   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2241     const APInt &C2 = N2C->getAPIntValue();
2242     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2243       const APInt &C1 = N1C->getAPIntValue();
2244 
2245       switch (Cond) {
2246       default: llvm_unreachable("Unknown integer setcc!");
2247       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2248       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2249       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2250       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2251       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2252       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2253       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2254       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2255       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2256       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2257       }
2258     }
2259   }
2260 
2261   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2262   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2263 
2264   if (N1CFP && N2CFP) {
2265     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2266     switch (Cond) {
2267     default: break;
2268     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2269                         return getUNDEF(VT);
2270                       LLVM_FALLTHROUGH;
2271     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2272                                              OpVT);
2273     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2274                         return getUNDEF(VT);
2275                       LLVM_FALLTHROUGH;
2276     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2277                                              R==APFloat::cmpLessThan, dl, VT,
2278                                              OpVT);
2279     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2280                         return getUNDEF(VT);
2281                       LLVM_FALLTHROUGH;
2282     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2283                                              OpVT);
2284     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2288                                              VT, OpVT);
2289     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2293                                              R==APFloat::cmpEqual, dl, VT,
2294                                              OpVT);
2295     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2299                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2300     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2301                                              OpVT);
2302     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2303                                              OpVT);
2304     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2305                                              R==APFloat::cmpEqual, dl, VT,
2306                                              OpVT);
2307     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2308                                              OpVT);
2309     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2310                                              R==APFloat::cmpLessThan, dl, VT,
2311                                              OpVT);
2312     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2313                                              R==APFloat::cmpUnordered, dl, VT,
2314                                              OpVT);
2315     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2316                                              VT, OpVT);
2317     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2318                                              OpVT);
2319     }
2320   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2321     // Ensure that the constant occurs on the RHS.
2322     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2323     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2324       return SDValue();
2325     return getSetCC(dl, VT, N2, N1, SwappedCond);
2326   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2327              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2328     // If an operand is known to be a nan (or undef that could be a nan), we can
2329     // fold it.
2330     // Choosing NaN for the undef will always make unordered comparison succeed
2331     // and ordered comparison fails.
2332     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2333     switch (ISD::getUnorderedFlavor(Cond)) {
2334     default:
2335       llvm_unreachable("Unknown flavor!");
2336     case 0: // Known false.
2337       return getBoolConstant(false, dl, VT, OpVT);
2338     case 1: // Known true.
2339       return getBoolConstant(true, dl, VT, OpVT);
2340     case 2: // Undefined.
2341       return getUNDEF(VT);
2342     }
2343   }
2344 
2345   // Could not fold it.
2346   return SDValue();
2347 }
2348 
2349 /// See if the specified operand can be simplified with the knowledge that only
2350 /// the bits specified by DemandedBits are used.
2351 /// TODO: really we should be making this into the DAG equivalent of
2352 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2353 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2354   EVT VT = V.getValueType();
2355 
2356   if (VT.isScalableVector())
2357     return SDValue();
2358 
2359   APInt DemandedElts = VT.isVector()
2360                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2361                            : APInt(1, 1);
2362   return GetDemandedBits(V, DemandedBits, DemandedElts);
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used in the elements specified by
2367 /// DemandedElts.
2368 /// TODO: really we should be making this into the DAG equivalent of
2369 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2370 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2371                                       const APInt &DemandedElts) {
2372   switch (V.getOpcode()) {
2373   default:
2374     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2375                                                 *this, 0);
2376   case ISD::Constant: {
2377     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2378     APInt NewVal = CVal & DemandedBits;
2379     if (NewVal != CVal)
2380       return getConstant(NewVal, SDLoc(V), V.getValueType());
2381     break;
2382   }
2383   case ISD::SRL:
2384     // Only look at single-use SRLs.
2385     if (!V.getNode()->hasOneUse())
2386       break;
2387     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2388       // See if we can recursively simplify the LHS.
2389       unsigned Amt = RHSC->getZExtValue();
2390 
2391       // Watch out for shift count overflow though.
2392       if (Amt >= DemandedBits.getBitWidth())
2393         break;
2394       APInt SrcDemandedBits = DemandedBits << Amt;
2395       if (SDValue SimplifyLHS =
2396               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2397         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2398                        V.getOperand(1));
2399     }
2400     break;
2401   }
2402   return SDValue();
2403 }
2404 
2405 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2406 /// use this predicate to simplify operations downstream.
2407 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2408   unsigned BitWidth = Op.getScalarValueSizeInBits();
2409   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2410 }
2411 
2412 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2413 /// this predicate to simplify operations downstream.  Mask is known to be zero
2414 /// for bits that V cannot have.
2415 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2416                                      unsigned Depth) const {
2417   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2418 }
2419 
2420 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2421 /// DemandedElts.  We use this predicate to simplify operations downstream.
2422 /// Mask is known to be zero for bits that V cannot have.
2423 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2424                                      const APInt &DemandedElts,
2425                                      unsigned Depth) const {
2426   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2427 }
2428 
2429 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2430 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2431                                         unsigned Depth) const {
2432   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2433 }
2434 
2435 /// isSplatValue - Return true if the vector V has the same value
2436 /// across all DemandedElts. For scalable vectors it does not make
2437 /// sense to specify which elements are demanded or undefined, therefore
2438 /// they are simply ignored.
2439 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2440                                 APInt &UndefElts, unsigned Depth) {
2441   EVT VT = V.getValueType();
2442   assert(VT.isVector() && "Vector type expected");
2443 
2444   if (!VT.isScalableVector() && !DemandedElts)
2445     return false; // No demanded elts, better to assume we don't know anything.
2446 
2447   if (Depth >= MaxRecursionDepth)
2448     return false; // Limit search depth.
2449 
2450   // Deal with some common cases here that work for both fixed and scalable
2451   // vector types.
2452   switch (V.getOpcode()) {
2453   case ISD::SPLAT_VECTOR:
2454     UndefElts = V.getOperand(0).isUndef()
2455                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2456                     : APInt(DemandedElts.getBitWidth(), 0);
2457     return true;
2458   case ISD::ADD:
2459   case ISD::SUB:
2460   case ISD::AND:
2461   case ISD::XOR:
2462   case ISD::OR: {
2463     APInt UndefLHS, UndefRHS;
2464     SDValue LHS = V.getOperand(0);
2465     SDValue RHS = V.getOperand(1);
2466     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2467         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2468       UndefElts = UndefLHS | UndefRHS;
2469       return true;
2470     }
2471     break;
2472   }
2473   case ISD::TRUNCATE:
2474   case ISD::SIGN_EXTEND:
2475   case ISD::ZERO_EXTEND:
2476     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2477   }
2478 
2479   // We don't support other cases than those above for scalable vectors at
2480   // the moment.
2481   if (VT.isScalableVector())
2482     return false;
2483 
2484   unsigned NumElts = VT.getVectorNumElements();
2485   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2486   UndefElts = APInt::getNullValue(NumElts);
2487 
2488   switch (V.getOpcode()) {
2489   case ISD::BUILD_VECTOR: {
2490     SDValue Scl;
2491     for (unsigned i = 0; i != NumElts; ++i) {
2492       SDValue Op = V.getOperand(i);
2493       if (Op.isUndef()) {
2494         UndefElts.setBit(i);
2495         continue;
2496       }
2497       if (!DemandedElts[i])
2498         continue;
2499       if (Scl && Scl != Op)
2500         return false;
2501       Scl = Op;
2502     }
2503     return true;
2504   }
2505   case ISD::VECTOR_SHUFFLE: {
2506     // Check if this is a shuffle node doing a splat.
2507     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2508     int SplatIndex = -1;
2509     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2510     for (int i = 0; i != (int)NumElts; ++i) {
2511       int M = Mask[i];
2512       if (M < 0) {
2513         UndefElts.setBit(i);
2514         continue;
2515       }
2516       if (!DemandedElts[i])
2517         continue;
2518       if (0 <= SplatIndex && SplatIndex != M)
2519         return false;
2520       SplatIndex = M;
2521     }
2522     return true;
2523   }
2524   case ISD::EXTRACT_SUBVECTOR: {
2525     // Offset the demanded elts by the subvector index.
2526     SDValue Src = V.getOperand(0);
2527     // We don't support scalable vectors at the moment.
2528     if (Src.getValueType().isScalableVector())
2529       return false;
2530     uint64_t Idx = V.getConstantOperandVal(1);
2531     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2532     APInt UndefSrcElts;
2533     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2534     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2535       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2536       return true;
2537     }
2538     break;
2539   }
2540   }
2541 
2542   return false;
2543 }
2544 
2545 /// Helper wrapper to main isSplatValue function.
2546 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2547   EVT VT = V.getValueType();
2548   assert(VT.isVector() && "Vector type expected");
2549 
2550   APInt UndefElts;
2551   APInt DemandedElts;
2552 
2553   // For now we don't support this with scalable vectors.
2554   if (!VT.isScalableVector())
2555     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2556   return isSplatValue(V, DemandedElts, UndefElts) &&
2557          (AllowUndefs || !UndefElts);
2558 }
2559 
2560 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2561   V = peekThroughExtractSubvectors(V);
2562 
2563   EVT VT = V.getValueType();
2564   unsigned Opcode = V.getOpcode();
2565   switch (Opcode) {
2566   default: {
2567     APInt UndefElts;
2568     APInt DemandedElts;
2569 
2570     if (!VT.isScalableVector())
2571       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2572 
2573     if (isSplatValue(V, DemandedElts, UndefElts)) {
2574       if (VT.isScalableVector()) {
2575         // DemandedElts and UndefElts are ignored for scalable vectors, since
2576         // the only supported cases are SPLAT_VECTOR nodes.
2577         SplatIdx = 0;
2578       } else {
2579         // Handle case where all demanded elements are UNDEF.
2580         if (DemandedElts.isSubsetOf(UndefElts)) {
2581           SplatIdx = 0;
2582           return getUNDEF(VT);
2583         }
2584         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2585       }
2586       return V;
2587     }
2588     break;
2589   }
2590   case ISD::SPLAT_VECTOR:
2591     SplatIdx = 0;
2592     return V;
2593   case ISD::VECTOR_SHUFFLE: {
2594     if (VT.isScalableVector())
2595       return SDValue();
2596 
2597     // Check if this is a shuffle node doing a splat.
2598     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2599     // getTargetVShiftNode currently struggles without the splat source.
2600     auto *SVN = cast<ShuffleVectorSDNode>(V);
2601     if (!SVN->isSplat())
2602       break;
2603     int Idx = SVN->getSplatIndex();
2604     int NumElts = V.getValueType().getVectorNumElements();
2605     SplatIdx = Idx % NumElts;
2606     return V.getOperand(Idx / NumElts);
2607   }
2608   }
2609 
2610   return SDValue();
2611 }
2612 
2613 SDValue SelectionDAG::getSplatValue(SDValue V) {
2614   int SplatIdx;
2615   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2616     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2617                    SrcVector.getValueType().getScalarType(), SrcVector,
2618                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2619   return SDValue();
2620 }
2621 
2622 const APInt *
2623 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2624                                           const APInt &DemandedElts) const {
2625   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2626           V.getOpcode() == ISD::SRA) &&
2627          "Unknown shift node");
2628   unsigned BitWidth = V.getScalarValueSizeInBits();
2629   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2630     // Shifting more than the bitwidth is not valid.
2631     const APInt &ShAmt = SA->getAPIntValue();
2632     if (ShAmt.ult(BitWidth))
2633       return &ShAmt;
2634   }
2635   return nullptr;
2636 }
2637 
2638 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2639     SDValue V, const APInt &DemandedElts) const {
2640   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2641           V.getOpcode() == ISD::SRA) &&
2642          "Unknown shift node");
2643   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2644     return ValidAmt;
2645   unsigned BitWidth = V.getScalarValueSizeInBits();
2646   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2647   if (!BV)
2648     return nullptr;
2649   const APInt *MinShAmt = nullptr;
2650   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2651     if (!DemandedElts[i])
2652       continue;
2653     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2654     if (!SA)
2655       return nullptr;
2656     // Shifting more than the bitwidth is not valid.
2657     const APInt &ShAmt = SA->getAPIntValue();
2658     if (ShAmt.uge(BitWidth))
2659       return nullptr;
2660     if (MinShAmt && MinShAmt->ule(ShAmt))
2661       continue;
2662     MinShAmt = &ShAmt;
2663   }
2664   return MinShAmt;
2665 }
2666 
2667 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2668     SDValue V, const APInt &DemandedElts) const {
2669   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2670           V.getOpcode() == ISD::SRA) &&
2671          "Unknown shift node");
2672   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2673     return ValidAmt;
2674   unsigned BitWidth = V.getScalarValueSizeInBits();
2675   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2676   if (!BV)
2677     return nullptr;
2678   const APInt *MaxShAmt = nullptr;
2679   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2680     if (!DemandedElts[i])
2681       continue;
2682     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2683     if (!SA)
2684       return nullptr;
2685     // Shifting more than the bitwidth is not valid.
2686     const APInt &ShAmt = SA->getAPIntValue();
2687     if (ShAmt.uge(BitWidth))
2688       return nullptr;
2689     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2690       continue;
2691     MaxShAmt = &ShAmt;
2692   }
2693   return MaxShAmt;
2694 }
2695 
2696 /// Determine which bits of Op are known to be either zero or one and return
2697 /// them in Known. For vectors, the known bits are those that are shared by
2698 /// every vector element.
2699 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2700   EVT VT = Op.getValueType();
2701 
2702   // TOOD: Until we have a plan for how to represent demanded elements for
2703   // scalable vectors, we can just bail out for now.
2704   if (Op.getValueType().isScalableVector()) {
2705     unsigned BitWidth = Op.getScalarValueSizeInBits();
2706     return KnownBits(BitWidth);
2707   }
2708 
2709   APInt DemandedElts = VT.isVector()
2710                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2711                            : APInt(1, 1);
2712   return computeKnownBits(Op, DemandedElts, Depth);
2713 }
2714 
2715 /// Determine which bits of Op are known to be either zero or one and return
2716 /// them in Known. The DemandedElts argument allows us to only collect the known
2717 /// bits that are shared by the requested vector elements.
2718 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2719                                          unsigned Depth) const {
2720   unsigned BitWidth = Op.getScalarValueSizeInBits();
2721 
2722   KnownBits Known(BitWidth);   // Don't know anything.
2723 
2724   // TOOD: Until we have a plan for how to represent demanded elements for
2725   // scalable vectors, we can just bail out for now.
2726   if (Op.getValueType().isScalableVector())
2727     return Known;
2728 
2729   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2730     // We know all of the bits for a constant!
2731     return KnownBits::makeConstant(C->getAPIntValue());
2732   }
2733   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2734     // We know all of the bits for a constant fp!
2735     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2736   }
2737 
2738   if (Depth >= MaxRecursionDepth)
2739     return Known;  // Limit search depth.
2740 
2741   KnownBits Known2;
2742   unsigned NumElts = DemandedElts.getBitWidth();
2743   assert((!Op.getValueType().isVector() ||
2744           NumElts == Op.getValueType().getVectorNumElements()) &&
2745          "Unexpected vector size");
2746 
2747   if (!DemandedElts)
2748     return Known;  // No demanded elts, better to assume we don't know anything.
2749 
2750   unsigned Opcode = Op.getOpcode();
2751   switch (Opcode) {
2752   case ISD::BUILD_VECTOR:
2753     // Collect the known bits that are shared by every demanded vector element.
2754     Known.Zero.setAllBits(); Known.One.setAllBits();
2755     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2756       if (!DemandedElts[i])
2757         continue;
2758 
2759       SDValue SrcOp = Op.getOperand(i);
2760       Known2 = computeKnownBits(SrcOp, Depth + 1);
2761 
2762       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2763       if (SrcOp.getValueSizeInBits() != BitWidth) {
2764         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2765                "Expected BUILD_VECTOR implicit truncation");
2766         Known2 = Known2.trunc(BitWidth);
2767       }
2768 
2769       // Known bits are the values that are shared by every demanded element.
2770       Known = KnownBits::commonBits(Known, Known2);
2771 
2772       // If we don't know any bits, early out.
2773       if (Known.isUnknown())
2774         break;
2775     }
2776     break;
2777   case ISD::VECTOR_SHUFFLE: {
2778     // Collect the known bits that are shared by every vector element referenced
2779     // by the shuffle.
2780     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2781     Known.Zero.setAllBits(); Known.One.setAllBits();
2782     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2783     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2784     for (unsigned i = 0; i != NumElts; ++i) {
2785       if (!DemandedElts[i])
2786         continue;
2787 
2788       int M = SVN->getMaskElt(i);
2789       if (M < 0) {
2790         // For UNDEF elements, we don't know anything about the common state of
2791         // the shuffle result.
2792         Known.resetAll();
2793         DemandedLHS.clearAllBits();
2794         DemandedRHS.clearAllBits();
2795         break;
2796       }
2797 
2798       if ((unsigned)M < NumElts)
2799         DemandedLHS.setBit((unsigned)M % NumElts);
2800       else
2801         DemandedRHS.setBit((unsigned)M % NumElts);
2802     }
2803     // Known bits are the values that are shared by every demanded element.
2804     if (!!DemandedLHS) {
2805       SDValue LHS = Op.getOperand(0);
2806       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2807       Known = KnownBits::commonBits(Known, Known2);
2808     }
2809     // If we don't know any bits, early out.
2810     if (Known.isUnknown())
2811       break;
2812     if (!!DemandedRHS) {
2813       SDValue RHS = Op.getOperand(1);
2814       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2815       Known = KnownBits::commonBits(Known, Known2);
2816     }
2817     break;
2818   }
2819   case ISD::CONCAT_VECTORS: {
2820     // Split DemandedElts and test each of the demanded subvectors.
2821     Known.Zero.setAllBits(); Known.One.setAllBits();
2822     EVT SubVectorVT = Op.getOperand(0).getValueType();
2823     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2824     unsigned NumSubVectors = Op.getNumOperands();
2825     for (unsigned i = 0; i != NumSubVectors; ++i) {
2826       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2827       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2828       if (!!DemandedSub) {
2829         SDValue Sub = Op.getOperand(i);
2830         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2831         Known = KnownBits::commonBits(Known, Known2);
2832       }
2833       // If we don't know any bits, early out.
2834       if (Known.isUnknown())
2835         break;
2836     }
2837     break;
2838   }
2839   case ISD::INSERT_SUBVECTOR: {
2840     // Demand any elements from the subvector and the remainder from the src its
2841     // inserted into.
2842     SDValue Src = Op.getOperand(0);
2843     SDValue Sub = Op.getOperand(1);
2844     uint64_t Idx = Op.getConstantOperandVal(2);
2845     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2846     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2847     APInt DemandedSrcElts = DemandedElts;
2848     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2849 
2850     Known.One.setAllBits();
2851     Known.Zero.setAllBits();
2852     if (!!DemandedSubElts) {
2853       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2854       if (Known.isUnknown())
2855         break; // early-out.
2856     }
2857     if (!!DemandedSrcElts) {
2858       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2859       Known = KnownBits::commonBits(Known, Known2);
2860     }
2861     break;
2862   }
2863   case ISD::EXTRACT_SUBVECTOR: {
2864     // Offset the demanded elts by the subvector index.
2865     SDValue Src = Op.getOperand(0);
2866     // Bail until we can represent demanded elements for scalable vectors.
2867     if (Src.getValueType().isScalableVector())
2868       break;
2869     uint64_t Idx = Op.getConstantOperandVal(1);
2870     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2871     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2872     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2873     break;
2874   }
2875   case ISD::SCALAR_TO_VECTOR: {
2876     // We know about scalar_to_vector as much as we know about it source,
2877     // which becomes the first element of otherwise unknown vector.
2878     if (DemandedElts != 1)
2879       break;
2880 
2881     SDValue N0 = Op.getOperand(0);
2882     Known = computeKnownBits(N0, Depth + 1);
2883     if (N0.getValueSizeInBits() != BitWidth)
2884       Known = Known.trunc(BitWidth);
2885 
2886     break;
2887   }
2888   case ISD::BITCAST: {
2889     SDValue N0 = Op.getOperand(0);
2890     EVT SubVT = N0.getValueType();
2891     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2892 
2893     // Ignore bitcasts from unsupported types.
2894     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2895       break;
2896 
2897     // Fast handling of 'identity' bitcasts.
2898     if (BitWidth == SubBitWidth) {
2899       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2900       break;
2901     }
2902 
2903     bool IsLE = getDataLayout().isLittleEndian();
2904 
2905     // Bitcast 'small element' vector to 'large element' scalar/vector.
2906     if ((BitWidth % SubBitWidth) == 0) {
2907       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2908 
2909       // Collect known bits for the (larger) output by collecting the known
2910       // bits from each set of sub elements and shift these into place.
2911       // We need to separately call computeKnownBits for each set of
2912       // sub elements as the knownbits for each is likely to be different.
2913       unsigned SubScale = BitWidth / SubBitWidth;
2914       APInt SubDemandedElts(NumElts * SubScale, 0);
2915       for (unsigned i = 0; i != NumElts; ++i)
2916         if (DemandedElts[i])
2917           SubDemandedElts.setBit(i * SubScale);
2918 
2919       for (unsigned i = 0; i != SubScale; ++i) {
2920         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2921                          Depth + 1);
2922         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2923         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2924         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2925       }
2926     }
2927 
2928     // Bitcast 'large element' scalar/vector to 'small element' vector.
2929     if ((SubBitWidth % BitWidth) == 0) {
2930       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2931 
2932       // Collect known bits for the (smaller) output by collecting the known
2933       // bits from the overlapping larger input elements and extracting the
2934       // sub sections we actually care about.
2935       unsigned SubScale = SubBitWidth / BitWidth;
2936       APInt SubDemandedElts(NumElts / SubScale, 0);
2937       for (unsigned i = 0; i != NumElts; ++i)
2938         if (DemandedElts[i])
2939           SubDemandedElts.setBit(i / SubScale);
2940 
2941       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2942 
2943       Known.Zero.setAllBits(); Known.One.setAllBits();
2944       for (unsigned i = 0; i != NumElts; ++i)
2945         if (DemandedElts[i]) {
2946           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2947           unsigned Offset = (Shifts % SubScale) * BitWidth;
2948           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2949           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2950           // If we don't know any bits, early out.
2951           if (Known.isUnknown())
2952             break;
2953         }
2954     }
2955     break;
2956   }
2957   case ISD::AND:
2958     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2959     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2960 
2961     Known &= Known2;
2962     break;
2963   case ISD::OR:
2964     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2965     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2966 
2967     Known |= Known2;
2968     break;
2969   case ISD::XOR:
2970     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2971     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2972 
2973     Known ^= Known2;
2974     break;
2975   case ISD::MUL: {
2976     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2977     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2978     Known = KnownBits::computeForMul(Known, Known2);
2979     break;
2980   }
2981   case ISD::UDIV: {
2982     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2984     Known = KnownBits::udiv(Known, Known2);
2985     break;
2986   }
2987   case ISD::SELECT:
2988   case ISD::VSELECT:
2989     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2990     // If we don't know any bits, early out.
2991     if (Known.isUnknown())
2992       break;
2993     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2994 
2995     // Only known if known in both the LHS and RHS.
2996     Known = KnownBits::commonBits(Known, Known2);
2997     break;
2998   case ISD::SELECT_CC:
2999     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3000     // If we don't know any bits, early out.
3001     if (Known.isUnknown())
3002       break;
3003     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3004 
3005     // Only known if known in both the LHS and RHS.
3006     Known = KnownBits::commonBits(Known, Known2);
3007     break;
3008   case ISD::SMULO:
3009   case ISD::UMULO:
3010   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3011     if (Op.getResNo() != 1)
3012       break;
3013     // The boolean result conforms to getBooleanContents.
3014     // If we know the result of a setcc has the top bits zero, use this info.
3015     // We know that we have an integer-based boolean since these operations
3016     // are only available for integer.
3017     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3018             TargetLowering::ZeroOrOneBooleanContent &&
3019         BitWidth > 1)
3020       Known.Zero.setBitsFrom(1);
3021     break;
3022   case ISD::SETCC:
3023   case ISD::STRICT_FSETCC:
3024   case ISD::STRICT_FSETCCS: {
3025     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3026     // If we know the result of a setcc has the top bits zero, use this info.
3027     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3028             TargetLowering::ZeroOrOneBooleanContent &&
3029         BitWidth > 1)
3030       Known.Zero.setBitsFrom(1);
3031     break;
3032   }
3033   case ISD::SHL:
3034     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3035     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3036     Known = KnownBits::shl(Known, Known2);
3037 
3038     // Minimum shift low bits are known zero.
3039     if (const APInt *ShMinAmt =
3040             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3041       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3042     break;
3043   case ISD::SRL:
3044     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3045     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3046     Known = KnownBits::lshr(Known, Known2);
3047 
3048     // Minimum shift high bits are known zero.
3049     if (const APInt *ShMinAmt =
3050             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3051       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3052     break;
3053   case ISD::SRA:
3054     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3055     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3056     Known = KnownBits::ashr(Known, Known2);
3057     // TODO: Add minimum shift high known sign bits.
3058     break;
3059   case ISD::FSHL:
3060   case ISD::FSHR:
3061     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3062       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3063 
3064       // For fshl, 0-shift returns the 1st arg.
3065       // For fshr, 0-shift returns the 2nd arg.
3066       if (Amt == 0) {
3067         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3068                                  DemandedElts, Depth + 1);
3069         break;
3070       }
3071 
3072       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3073       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3074       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3075       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3076       if (Opcode == ISD::FSHL) {
3077         Known.One <<= Amt;
3078         Known.Zero <<= Amt;
3079         Known2.One.lshrInPlace(BitWidth - Amt);
3080         Known2.Zero.lshrInPlace(BitWidth - Amt);
3081       } else {
3082         Known.One <<= BitWidth - Amt;
3083         Known.Zero <<= BitWidth - Amt;
3084         Known2.One.lshrInPlace(Amt);
3085         Known2.Zero.lshrInPlace(Amt);
3086       }
3087       Known.One |= Known2.One;
3088       Known.Zero |= Known2.Zero;
3089     }
3090     break;
3091   case ISD::SIGN_EXTEND_INREG: {
3092     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3093     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3094     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3095     break;
3096   }
3097   case ISD::CTTZ:
3098   case ISD::CTTZ_ZERO_UNDEF: {
3099     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3100     // If we have a known 1, its position is our upper bound.
3101     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3102     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3103     Known.Zero.setBitsFrom(LowBits);
3104     break;
3105   }
3106   case ISD::CTLZ:
3107   case ISD::CTLZ_ZERO_UNDEF: {
3108     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3109     // If we have a known 1, its position is our upper bound.
3110     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3111     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3112     Known.Zero.setBitsFrom(LowBits);
3113     break;
3114   }
3115   case ISD::CTPOP: {
3116     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3117     // If we know some of the bits are zero, they can't be one.
3118     unsigned PossibleOnes = Known2.countMaxPopulation();
3119     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3120     break;
3121   }
3122   case ISD::PARITY: {
3123     // Parity returns 0 everywhere but the LSB.
3124     Known.Zero.setBitsFrom(1);
3125     break;
3126   }
3127   case ISD::LOAD: {
3128     LoadSDNode *LD = cast<LoadSDNode>(Op);
3129     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3130     if (ISD::isNON_EXTLoad(LD) && Cst) {
3131       // Determine any common known bits from the loaded constant pool value.
3132       Type *CstTy = Cst->getType();
3133       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3134         // If its a vector splat, then we can (quickly) reuse the scalar path.
3135         // NOTE: We assume all elements match and none are UNDEF.
3136         if (CstTy->isVectorTy()) {
3137           if (const Constant *Splat = Cst->getSplatValue()) {
3138             Cst = Splat;
3139             CstTy = Cst->getType();
3140           }
3141         }
3142         // TODO - do we need to handle different bitwidths?
3143         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3144           // Iterate across all vector elements finding common known bits.
3145           Known.One.setAllBits();
3146           Known.Zero.setAllBits();
3147           for (unsigned i = 0; i != NumElts; ++i) {
3148             if (!DemandedElts[i])
3149               continue;
3150             if (Constant *Elt = Cst->getAggregateElement(i)) {
3151               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3152                 const APInt &Value = CInt->getValue();
3153                 Known.One &= Value;
3154                 Known.Zero &= ~Value;
3155                 continue;
3156               }
3157               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3158                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3159                 Known.One &= Value;
3160                 Known.Zero &= ~Value;
3161                 continue;
3162               }
3163             }
3164             Known.One.clearAllBits();
3165             Known.Zero.clearAllBits();
3166             break;
3167           }
3168         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3169           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3170             Known = KnownBits::makeConstant(CInt->getValue());
3171           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3172             Known =
3173                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3174           }
3175         }
3176       }
3177     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3178       // If this is a ZEXTLoad and we are looking at the loaded value.
3179       EVT VT = LD->getMemoryVT();
3180       unsigned MemBits = VT.getScalarSizeInBits();
3181       Known.Zero.setBitsFrom(MemBits);
3182     } else if (const MDNode *Ranges = LD->getRanges()) {
3183       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3184         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3185     }
3186     break;
3187   }
3188   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3189     EVT InVT = Op.getOperand(0).getValueType();
3190     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3191     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3192     Known = Known.zext(BitWidth);
3193     break;
3194   }
3195   case ISD::ZERO_EXTEND: {
3196     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3197     Known = Known.zext(BitWidth);
3198     break;
3199   }
3200   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3201     EVT InVT = Op.getOperand(0).getValueType();
3202     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3203     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3204     // If the sign bit is known to be zero or one, then sext will extend
3205     // it to the top bits, else it will just zext.
3206     Known = Known.sext(BitWidth);
3207     break;
3208   }
3209   case ISD::SIGN_EXTEND: {
3210     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3211     // If the sign bit is known to be zero or one, then sext will extend
3212     // it to the top bits, else it will just zext.
3213     Known = Known.sext(BitWidth);
3214     break;
3215   }
3216   case ISD::ANY_EXTEND_VECTOR_INREG: {
3217     EVT InVT = Op.getOperand(0).getValueType();
3218     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3219     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3220     Known = Known.anyext(BitWidth);
3221     break;
3222   }
3223   case ISD::ANY_EXTEND: {
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known = Known.anyext(BitWidth);
3226     break;
3227   }
3228   case ISD::TRUNCATE: {
3229     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3230     Known = Known.trunc(BitWidth);
3231     break;
3232   }
3233   case ISD::AssertZext: {
3234     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3235     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3236     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3237     Known.Zero |= (~InMask);
3238     Known.One  &= (~Known.Zero);
3239     break;
3240   }
3241   case ISD::AssertAlign: {
3242     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3243     assert(LogOfAlign != 0);
3244     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3245     // well as clearing one bits.
3246     Known.Zero.setLowBits(LogOfAlign);
3247     Known.One.clearLowBits(LogOfAlign);
3248     break;
3249   }
3250   case ISD::FGETSIGN:
3251     // All bits are zero except the low bit.
3252     Known.Zero.setBitsFrom(1);
3253     break;
3254   case ISD::USUBO:
3255   case ISD::SSUBO:
3256     if (Op.getResNo() == 1) {
3257       // If we know the result of a setcc has the top bits zero, use this info.
3258       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3259               TargetLowering::ZeroOrOneBooleanContent &&
3260           BitWidth > 1)
3261         Known.Zero.setBitsFrom(1);
3262       break;
3263     }
3264     LLVM_FALLTHROUGH;
3265   case ISD::SUB:
3266   case ISD::SUBC: {
3267     assert(Op.getResNo() == 0 &&
3268            "We only compute knownbits for the difference here.");
3269 
3270     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3272     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3273                                         Known, Known2);
3274     break;
3275   }
3276   case ISD::UADDO:
3277   case ISD::SADDO:
3278   case ISD::ADDCARRY:
3279     if (Op.getResNo() == 1) {
3280       // If we know the result of a setcc has the top bits zero, use this info.
3281       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3282               TargetLowering::ZeroOrOneBooleanContent &&
3283           BitWidth > 1)
3284         Known.Zero.setBitsFrom(1);
3285       break;
3286     }
3287     LLVM_FALLTHROUGH;
3288   case ISD::ADD:
3289   case ISD::ADDC:
3290   case ISD::ADDE: {
3291     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3292 
3293     // With ADDE and ADDCARRY, a carry bit may be added in.
3294     KnownBits Carry(1);
3295     if (Opcode == ISD::ADDE)
3296       // Can't track carry from glue, set carry to unknown.
3297       Carry.resetAll();
3298     else if (Opcode == ISD::ADDCARRY)
3299       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3300       // the trouble (how often will we find a known carry bit). And I haven't
3301       // tested this very much yet, but something like this might work:
3302       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3303       //   Carry = Carry.zextOrTrunc(1, false);
3304       Carry.resetAll();
3305     else
3306       Carry.setAllZero();
3307 
3308     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3309     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3310     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3311     break;
3312   }
3313   case ISD::SREM: {
3314     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3315     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3316     Known = KnownBits::srem(Known, Known2);
3317     break;
3318   }
3319   case ISD::UREM: {
3320     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3321     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3322     Known = KnownBits::urem(Known, Known2);
3323     break;
3324   }
3325   case ISD::EXTRACT_ELEMENT: {
3326     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3327     const unsigned Index = Op.getConstantOperandVal(1);
3328     const unsigned EltBitWidth = Op.getValueSizeInBits();
3329 
3330     // Remove low part of known bits mask
3331     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3332     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3333 
3334     // Remove high part of known bit mask
3335     Known = Known.trunc(EltBitWidth);
3336     break;
3337   }
3338   case ISD::EXTRACT_VECTOR_ELT: {
3339     SDValue InVec = Op.getOperand(0);
3340     SDValue EltNo = Op.getOperand(1);
3341     EVT VecVT = InVec.getValueType();
3342     // computeKnownBits not yet implemented for scalable vectors.
3343     if (VecVT.isScalableVector())
3344       break;
3345     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3346     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3347 
3348     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3349     // anything about the extended bits.
3350     if (BitWidth > EltBitWidth)
3351       Known = Known.trunc(EltBitWidth);
3352 
3353     // If we know the element index, just demand that vector element, else for
3354     // an unknown element index, ignore DemandedElts and demand them all.
3355     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3356     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3357     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3358       DemandedSrcElts =
3359           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3360 
3361     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3362     if (BitWidth > EltBitWidth)
3363       Known = Known.anyext(BitWidth);
3364     break;
3365   }
3366   case ISD::INSERT_VECTOR_ELT: {
3367     // If we know the element index, split the demand between the
3368     // source vector and the inserted element, otherwise assume we need
3369     // the original demanded vector elements and the value.
3370     SDValue InVec = Op.getOperand(0);
3371     SDValue InVal = Op.getOperand(1);
3372     SDValue EltNo = Op.getOperand(2);
3373     bool DemandedVal = true;
3374     APInt DemandedVecElts = DemandedElts;
3375     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3376     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3377       unsigned EltIdx = CEltNo->getZExtValue();
3378       DemandedVal = !!DemandedElts[EltIdx];
3379       DemandedVecElts.clearBit(EltIdx);
3380     }
3381     Known.One.setAllBits();
3382     Known.Zero.setAllBits();
3383     if (DemandedVal) {
3384       Known2 = computeKnownBits(InVal, Depth + 1);
3385       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3386     }
3387     if (!!DemandedVecElts) {
3388       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3389       Known = KnownBits::commonBits(Known, Known2);
3390     }
3391     break;
3392   }
3393   case ISD::BITREVERSE: {
3394     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3395     Known = Known2.reverseBits();
3396     break;
3397   }
3398   case ISD::BSWAP: {
3399     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3400     Known = Known2.byteSwap();
3401     break;
3402   }
3403   case ISD::ABS: {
3404     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3405     Known = Known2.abs();
3406     break;
3407   }
3408   case ISD::USUBSAT: {
3409     // The result of usubsat will never be larger than the LHS.
3410     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3411     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3412     break;
3413   }
3414   case ISD::UMIN: {
3415     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3416     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3417     Known = KnownBits::umin(Known, Known2);
3418     break;
3419   }
3420   case ISD::UMAX: {
3421     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3422     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3423     Known = KnownBits::umax(Known, Known2);
3424     break;
3425   }
3426   case ISD::SMIN:
3427   case ISD::SMAX: {
3428     // If we have a clamp pattern, we know that the number of sign bits will be
3429     // the minimum of the clamp min/max range.
3430     bool IsMax = (Opcode == ISD::SMAX);
3431     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3432     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3433       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3434         CstHigh =
3435             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3436     if (CstLow && CstHigh) {
3437       if (!IsMax)
3438         std::swap(CstLow, CstHigh);
3439 
3440       const APInt &ValueLow = CstLow->getAPIntValue();
3441       const APInt &ValueHigh = CstHigh->getAPIntValue();
3442       if (ValueLow.sle(ValueHigh)) {
3443         unsigned LowSignBits = ValueLow.getNumSignBits();
3444         unsigned HighSignBits = ValueHigh.getNumSignBits();
3445         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3446         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3447           Known.One.setHighBits(MinSignBits);
3448           break;
3449         }
3450         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3451           Known.Zero.setHighBits(MinSignBits);
3452           break;
3453         }
3454       }
3455     }
3456 
3457     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3459     if (IsMax)
3460       Known = KnownBits::smax(Known, Known2);
3461     else
3462       Known = KnownBits::smin(Known, Known2);
3463     break;
3464   }
3465   case ISD::FrameIndex:
3466   case ISD::TargetFrameIndex:
3467     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3468                                        Known, getMachineFunction());
3469     break;
3470 
3471   default:
3472     if (Opcode < ISD::BUILTIN_OP_END)
3473       break;
3474     LLVM_FALLTHROUGH;
3475   case ISD::INTRINSIC_WO_CHAIN:
3476   case ISD::INTRINSIC_W_CHAIN:
3477   case ISD::INTRINSIC_VOID:
3478     // Allow the target to implement this method for its nodes.
3479     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3480     break;
3481   }
3482 
3483   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3484   return Known;
3485 }
3486 
3487 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3488                                                              SDValue N1) const {
3489   // X + 0 never overflow
3490   if (isNullConstant(N1))
3491     return OFK_Never;
3492 
3493   KnownBits N1Known = computeKnownBits(N1);
3494   if (N1Known.Zero.getBoolValue()) {
3495     KnownBits N0Known = computeKnownBits(N0);
3496 
3497     bool overflow;
3498     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3499     if (!overflow)
3500       return OFK_Never;
3501   }
3502 
3503   // mulhi + 1 never overflow
3504   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3505       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3506     return OFK_Never;
3507 
3508   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3509     KnownBits N0Known = computeKnownBits(N0);
3510 
3511     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3512       return OFK_Never;
3513   }
3514 
3515   return OFK_Sometime;
3516 }
3517 
3518 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3519   EVT OpVT = Val.getValueType();
3520   unsigned BitWidth = OpVT.getScalarSizeInBits();
3521 
3522   // Is the constant a known power of 2?
3523   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3524     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3525 
3526   // A left-shift of a constant one will have exactly one bit set because
3527   // shifting the bit off the end is undefined.
3528   if (Val.getOpcode() == ISD::SHL) {
3529     auto *C = isConstOrConstSplat(Val.getOperand(0));
3530     if (C && C->getAPIntValue() == 1)
3531       return true;
3532   }
3533 
3534   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3535   // one bit set.
3536   if (Val.getOpcode() == ISD::SRL) {
3537     auto *C = isConstOrConstSplat(Val.getOperand(0));
3538     if (C && C->getAPIntValue().isSignMask())
3539       return true;
3540   }
3541 
3542   // Are all operands of a build vector constant powers of two?
3543   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3544     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3545           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3546             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3547           return false;
3548         }))
3549       return true;
3550 
3551   // More could be done here, though the above checks are enough
3552   // to handle some common cases.
3553 
3554   // Fall back to computeKnownBits to catch other known cases.
3555   KnownBits Known = computeKnownBits(Val);
3556   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3557 }
3558 
3559 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3560   EVT VT = Op.getValueType();
3561 
3562   // TODO: Assume we don't know anything for now.
3563   if (VT.isScalableVector())
3564     return 1;
3565 
3566   APInt DemandedElts = VT.isVector()
3567                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3568                            : APInt(1, 1);
3569   return ComputeNumSignBits(Op, DemandedElts, Depth);
3570 }
3571 
3572 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3573                                           unsigned Depth) const {
3574   EVT VT = Op.getValueType();
3575   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3576   unsigned VTBits = VT.getScalarSizeInBits();
3577   unsigned NumElts = DemandedElts.getBitWidth();
3578   unsigned Tmp, Tmp2;
3579   unsigned FirstAnswer = 1;
3580 
3581   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3582     const APInt &Val = C->getAPIntValue();
3583     return Val.getNumSignBits();
3584   }
3585 
3586   if (Depth >= MaxRecursionDepth)
3587     return 1;  // Limit search depth.
3588 
3589   if (!DemandedElts || VT.isScalableVector())
3590     return 1;  // No demanded elts, better to assume we don't know anything.
3591 
3592   unsigned Opcode = Op.getOpcode();
3593   switch (Opcode) {
3594   default: break;
3595   case ISD::AssertSext:
3596     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3597     return VTBits-Tmp+1;
3598   case ISD::AssertZext:
3599     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3600     return VTBits-Tmp;
3601 
3602   case ISD::BUILD_VECTOR:
3603     Tmp = VTBits;
3604     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3605       if (!DemandedElts[i])
3606         continue;
3607 
3608       SDValue SrcOp = Op.getOperand(i);
3609       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3610 
3611       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3612       if (SrcOp.getValueSizeInBits() != VTBits) {
3613         assert(SrcOp.getValueSizeInBits() > VTBits &&
3614                "Expected BUILD_VECTOR implicit truncation");
3615         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3616         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3617       }
3618       Tmp = std::min(Tmp, Tmp2);
3619     }
3620     return Tmp;
3621 
3622   case ISD::VECTOR_SHUFFLE: {
3623     // Collect the minimum number of sign bits that are shared by every vector
3624     // element referenced by the shuffle.
3625     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3626     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3627     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3628     for (unsigned i = 0; i != NumElts; ++i) {
3629       int M = SVN->getMaskElt(i);
3630       if (!DemandedElts[i])
3631         continue;
3632       // For UNDEF elements, we don't know anything about the common state of
3633       // the shuffle result.
3634       if (M < 0)
3635         return 1;
3636       if ((unsigned)M < NumElts)
3637         DemandedLHS.setBit((unsigned)M % NumElts);
3638       else
3639         DemandedRHS.setBit((unsigned)M % NumElts);
3640     }
3641     Tmp = std::numeric_limits<unsigned>::max();
3642     if (!!DemandedLHS)
3643       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3644     if (!!DemandedRHS) {
3645       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3646       Tmp = std::min(Tmp, Tmp2);
3647     }
3648     // If we don't know anything, early out and try computeKnownBits fall-back.
3649     if (Tmp == 1)
3650       break;
3651     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3652     return Tmp;
3653   }
3654 
3655   case ISD::BITCAST: {
3656     SDValue N0 = Op.getOperand(0);
3657     EVT SrcVT = N0.getValueType();
3658     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3659 
3660     // Ignore bitcasts from unsupported types..
3661     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3662       break;
3663 
3664     // Fast handling of 'identity' bitcasts.
3665     if (VTBits == SrcBits)
3666       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3667 
3668     bool IsLE = getDataLayout().isLittleEndian();
3669 
3670     // Bitcast 'large element' scalar/vector to 'small element' vector.
3671     if ((SrcBits % VTBits) == 0) {
3672       assert(VT.isVector() && "Expected bitcast to vector");
3673 
3674       unsigned Scale = SrcBits / VTBits;
3675       APInt SrcDemandedElts(NumElts / Scale, 0);
3676       for (unsigned i = 0; i != NumElts; ++i)
3677         if (DemandedElts[i])
3678           SrcDemandedElts.setBit(i / Scale);
3679 
3680       // Fast case - sign splat can be simply split across the small elements.
3681       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3682       if (Tmp == SrcBits)
3683         return VTBits;
3684 
3685       // Slow case - determine how far the sign extends into each sub-element.
3686       Tmp2 = VTBits;
3687       for (unsigned i = 0; i != NumElts; ++i)
3688         if (DemandedElts[i]) {
3689           unsigned SubOffset = i % Scale;
3690           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3691           SubOffset = SubOffset * VTBits;
3692           if (Tmp <= SubOffset)
3693             return 1;
3694           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3695         }
3696       return Tmp2;
3697     }
3698     break;
3699   }
3700 
3701   case ISD::SIGN_EXTEND:
3702     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3703     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3704   case ISD::SIGN_EXTEND_INREG:
3705     // Max of the input and what this extends.
3706     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3707     Tmp = VTBits-Tmp+1;
3708     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3709     return std::max(Tmp, Tmp2);
3710   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3711     SDValue Src = Op.getOperand(0);
3712     EVT SrcVT = Src.getValueType();
3713     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3714     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3715     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3716   }
3717   case ISD::SRA:
3718     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3719     // SRA X, C -> adds C sign bits.
3720     if (const APInt *ShAmt =
3721             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3722       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3723     return Tmp;
3724   case ISD::SHL:
3725     if (const APInt *ShAmt =
3726             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3727       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3728       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3729       if (ShAmt->ult(Tmp))
3730         return Tmp - ShAmt->getZExtValue();
3731     }
3732     break;
3733   case ISD::AND:
3734   case ISD::OR:
3735   case ISD::XOR:    // NOT is handled here.
3736     // Logical binary ops preserve the number of sign bits at the worst.
3737     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3738     if (Tmp != 1) {
3739       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3740       FirstAnswer = std::min(Tmp, Tmp2);
3741       // We computed what we know about the sign bits as our first
3742       // answer. Now proceed to the generic code that uses
3743       // computeKnownBits, and pick whichever answer is better.
3744     }
3745     break;
3746 
3747   case ISD::SELECT:
3748   case ISD::VSELECT:
3749     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3750     if (Tmp == 1) return 1;  // Early out.
3751     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3752     return std::min(Tmp, Tmp2);
3753   case ISD::SELECT_CC:
3754     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3755     if (Tmp == 1) return 1;  // Early out.
3756     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3757     return std::min(Tmp, Tmp2);
3758 
3759   case ISD::SMIN:
3760   case ISD::SMAX: {
3761     // If we have a clamp pattern, we know that the number of sign bits will be
3762     // the minimum of the clamp min/max range.
3763     bool IsMax = (Opcode == ISD::SMAX);
3764     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3765     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3766       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3767         CstHigh =
3768             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3769     if (CstLow && CstHigh) {
3770       if (!IsMax)
3771         std::swap(CstLow, CstHigh);
3772       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3773         Tmp = CstLow->getAPIntValue().getNumSignBits();
3774         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3775         return std::min(Tmp, Tmp2);
3776       }
3777     }
3778 
3779     // Fallback - just get the minimum number of sign bits of the operands.
3780     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3781     if (Tmp == 1)
3782       return 1;  // Early out.
3783     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3784     return std::min(Tmp, Tmp2);
3785   }
3786   case ISD::UMIN:
3787   case ISD::UMAX:
3788     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3789     if (Tmp == 1)
3790       return 1;  // Early out.
3791     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3792     return std::min(Tmp, Tmp2);
3793   case ISD::SADDO:
3794   case ISD::UADDO:
3795   case ISD::SSUBO:
3796   case ISD::USUBO:
3797   case ISD::SMULO:
3798   case ISD::UMULO:
3799     if (Op.getResNo() != 1)
3800       break;
3801     // The boolean result conforms to getBooleanContents.  Fall through.
3802     // If setcc returns 0/-1, all bits are sign bits.
3803     // We know that we have an integer-based boolean since these operations
3804     // are only available for integer.
3805     if (TLI->getBooleanContents(VT.isVector(), false) ==
3806         TargetLowering::ZeroOrNegativeOneBooleanContent)
3807       return VTBits;
3808     break;
3809   case ISD::SETCC:
3810   case ISD::STRICT_FSETCC:
3811   case ISD::STRICT_FSETCCS: {
3812     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3813     // If setcc returns 0/-1, all bits are sign bits.
3814     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3815         TargetLowering::ZeroOrNegativeOneBooleanContent)
3816       return VTBits;
3817     break;
3818   }
3819   case ISD::ROTL:
3820   case ISD::ROTR:
3821     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3822 
3823     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3824     if (Tmp == VTBits)
3825       return VTBits;
3826 
3827     if (ConstantSDNode *C =
3828             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3829       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3830 
3831       // Handle rotate right by N like a rotate left by 32-N.
3832       if (Opcode == ISD::ROTR)
3833         RotAmt = (VTBits - RotAmt) % VTBits;
3834 
3835       // If we aren't rotating out all of the known-in sign bits, return the
3836       // number that are left.  This handles rotl(sext(x), 1) for example.
3837       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3838     }
3839     break;
3840   case ISD::ADD:
3841   case ISD::ADDC:
3842     // Add can have at most one carry bit.  Thus we know that the output
3843     // is, at worst, one more bit than the inputs.
3844     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3845     if (Tmp == 1) return 1; // Early out.
3846 
3847     // Special case decrementing a value (ADD X, -1):
3848     if (ConstantSDNode *CRHS =
3849             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3850       if (CRHS->isAllOnesValue()) {
3851         KnownBits Known =
3852             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3853 
3854         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3855         // sign bits set.
3856         if ((Known.Zero | 1).isAllOnesValue())
3857           return VTBits;
3858 
3859         // If we are subtracting one from a positive number, there is no carry
3860         // out of the result.
3861         if (Known.isNonNegative())
3862           return Tmp;
3863       }
3864 
3865     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3866     if (Tmp2 == 1) return 1; // Early out.
3867     return std::min(Tmp, Tmp2) - 1;
3868   case ISD::SUB:
3869     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3870     if (Tmp2 == 1) return 1; // Early out.
3871 
3872     // Handle NEG.
3873     if (ConstantSDNode *CLHS =
3874             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3875       if (CLHS->isNullValue()) {
3876         KnownBits Known =
3877             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3878         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3879         // sign bits set.
3880         if ((Known.Zero | 1).isAllOnesValue())
3881           return VTBits;
3882 
3883         // If the input is known to be positive (the sign bit is known clear),
3884         // the output of the NEG has the same number of sign bits as the input.
3885         if (Known.isNonNegative())
3886           return Tmp2;
3887 
3888         // Otherwise, we treat this like a SUB.
3889       }
3890 
3891     // Sub can have at most one carry bit.  Thus we know that the output
3892     // is, at worst, one more bit than the inputs.
3893     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3894     if (Tmp == 1) return 1; // Early out.
3895     return std::min(Tmp, Tmp2) - 1;
3896   case ISD::MUL: {
3897     // The output of the Mul can be at most twice the valid bits in the inputs.
3898     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3899     if (SignBitsOp0 == 1)
3900       break;
3901     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3902     if (SignBitsOp1 == 1)
3903       break;
3904     unsigned OutValidBits =
3905         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3906     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3907   }
3908   case ISD::SREM:
3909     // The sign bit is the LHS's sign bit, except when the result of the
3910     // remainder is zero. The magnitude of the result should be less than or
3911     // equal to the magnitude of the LHS. Therefore, the result should have
3912     // at least as many sign bits as the left hand side.
3913     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3914   case ISD::TRUNCATE: {
3915     // Check if the sign bits of source go down as far as the truncated value.
3916     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3917     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3918     if (NumSrcSignBits > (NumSrcBits - VTBits))
3919       return NumSrcSignBits - (NumSrcBits - VTBits);
3920     break;
3921   }
3922   case ISD::EXTRACT_ELEMENT: {
3923     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3924     const int BitWidth = Op.getValueSizeInBits();
3925     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3926 
3927     // Get reverse index (starting from 1), Op1 value indexes elements from
3928     // little end. Sign starts at big end.
3929     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3930 
3931     // If the sign portion ends in our element the subtraction gives correct
3932     // result. Otherwise it gives either negative or > bitwidth result
3933     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3934   }
3935   case ISD::INSERT_VECTOR_ELT: {
3936     // If we know the element index, split the demand between the
3937     // source vector and the inserted element, otherwise assume we need
3938     // the original demanded vector elements and the value.
3939     SDValue InVec = Op.getOperand(0);
3940     SDValue InVal = Op.getOperand(1);
3941     SDValue EltNo = Op.getOperand(2);
3942     bool DemandedVal = true;
3943     APInt DemandedVecElts = DemandedElts;
3944     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3945     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3946       unsigned EltIdx = CEltNo->getZExtValue();
3947       DemandedVal = !!DemandedElts[EltIdx];
3948       DemandedVecElts.clearBit(EltIdx);
3949     }
3950     Tmp = std::numeric_limits<unsigned>::max();
3951     if (DemandedVal) {
3952       // TODO - handle implicit truncation of inserted elements.
3953       if (InVal.getScalarValueSizeInBits() != VTBits)
3954         break;
3955       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3956       Tmp = std::min(Tmp, Tmp2);
3957     }
3958     if (!!DemandedVecElts) {
3959       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3960       Tmp = std::min(Tmp, Tmp2);
3961     }
3962     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3963     return Tmp;
3964   }
3965   case ISD::EXTRACT_VECTOR_ELT: {
3966     SDValue InVec = Op.getOperand(0);
3967     SDValue EltNo = Op.getOperand(1);
3968     EVT VecVT = InVec.getValueType();
3969     // ComputeNumSignBits not yet implemented for scalable vectors.
3970     if (VecVT.isScalableVector())
3971       break;
3972     const unsigned BitWidth = Op.getValueSizeInBits();
3973     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3974     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3975 
3976     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3977     // anything about sign bits. But if the sizes match we can derive knowledge
3978     // about sign bits from the vector operand.
3979     if (BitWidth != EltBitWidth)
3980       break;
3981 
3982     // If we know the element index, just demand that vector element, else for
3983     // an unknown element index, ignore DemandedElts and demand them all.
3984     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3985     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3986     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3987       DemandedSrcElts =
3988           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3989 
3990     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3991   }
3992   case ISD::EXTRACT_SUBVECTOR: {
3993     // Offset the demanded elts by the subvector index.
3994     SDValue Src = Op.getOperand(0);
3995     // Bail until we can represent demanded elements for scalable vectors.
3996     if (Src.getValueType().isScalableVector())
3997       break;
3998     uint64_t Idx = Op.getConstantOperandVal(1);
3999     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4000     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4001     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4002   }
4003   case ISD::CONCAT_VECTORS: {
4004     // Determine the minimum number of sign bits across all demanded
4005     // elts of the input vectors. Early out if the result is already 1.
4006     Tmp = std::numeric_limits<unsigned>::max();
4007     EVT SubVectorVT = Op.getOperand(0).getValueType();
4008     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4009     unsigned NumSubVectors = Op.getNumOperands();
4010     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4011       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4012       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4013       if (!DemandedSub)
4014         continue;
4015       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4016       Tmp = std::min(Tmp, Tmp2);
4017     }
4018     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4019     return Tmp;
4020   }
4021   case ISD::INSERT_SUBVECTOR: {
4022     // Demand any elements from the subvector and the remainder from the src its
4023     // inserted into.
4024     SDValue Src = Op.getOperand(0);
4025     SDValue Sub = Op.getOperand(1);
4026     uint64_t Idx = Op.getConstantOperandVal(2);
4027     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4028     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4029     APInt DemandedSrcElts = DemandedElts;
4030     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4031 
4032     Tmp = std::numeric_limits<unsigned>::max();
4033     if (!!DemandedSubElts) {
4034       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4035       if (Tmp == 1)
4036         return 1; // early-out
4037     }
4038     if (!!DemandedSrcElts) {
4039       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4040       Tmp = std::min(Tmp, Tmp2);
4041     }
4042     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4043     return Tmp;
4044   }
4045   }
4046 
4047   // If we are looking at the loaded value of the SDNode.
4048   if (Op.getResNo() == 0) {
4049     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4050     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4051       unsigned ExtType = LD->getExtensionType();
4052       switch (ExtType) {
4053       default: break;
4054       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4055         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4056         return VTBits - Tmp + 1;
4057       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4058         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4059         return VTBits - Tmp;
4060       case ISD::NON_EXTLOAD:
4061         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4062           // We only need to handle vectors - computeKnownBits should handle
4063           // scalar cases.
4064           Type *CstTy = Cst->getType();
4065           if (CstTy->isVectorTy() &&
4066               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4067             Tmp = VTBits;
4068             for (unsigned i = 0; i != NumElts; ++i) {
4069               if (!DemandedElts[i])
4070                 continue;
4071               if (Constant *Elt = Cst->getAggregateElement(i)) {
4072                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4073                   const APInt &Value = CInt->getValue();
4074                   Tmp = std::min(Tmp, Value.getNumSignBits());
4075                   continue;
4076                 }
4077                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4078                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4079                   Tmp = std::min(Tmp, Value.getNumSignBits());
4080                   continue;
4081                 }
4082               }
4083               // Unknown type. Conservatively assume no bits match sign bit.
4084               return 1;
4085             }
4086             return Tmp;
4087           }
4088         }
4089         break;
4090       }
4091     }
4092   }
4093 
4094   // Allow the target to implement this method for its nodes.
4095   if (Opcode >= ISD::BUILTIN_OP_END ||
4096       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4097       Opcode == ISD::INTRINSIC_W_CHAIN ||
4098       Opcode == ISD::INTRINSIC_VOID) {
4099     unsigned NumBits =
4100         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4101     if (NumBits > 1)
4102       FirstAnswer = std::max(FirstAnswer, NumBits);
4103   }
4104 
4105   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4106   // use this information.
4107   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4108 
4109   APInt Mask;
4110   if (Known.isNonNegative()) {        // sign bit is 0
4111     Mask = Known.Zero;
4112   } else if (Known.isNegative()) {  // sign bit is 1;
4113     Mask = Known.One;
4114   } else {
4115     // Nothing known.
4116     return FirstAnswer;
4117   }
4118 
4119   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4120   // the number of identical bits in the top of the input value.
4121   Mask <<= Mask.getBitWidth()-VTBits;
4122   return std::max(FirstAnswer, Mask.countLeadingOnes());
4123 }
4124 
4125 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4126   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4127       !isa<ConstantSDNode>(Op.getOperand(1)))
4128     return false;
4129 
4130   if (Op.getOpcode() == ISD::OR &&
4131       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4132     return false;
4133 
4134   return true;
4135 }
4136 
4137 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4138   // If we're told that NaNs won't happen, assume they won't.
4139   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4140     return true;
4141 
4142   if (Depth >= MaxRecursionDepth)
4143     return false; // Limit search depth.
4144 
4145   // TODO: Handle vectors.
4146   // If the value is a constant, we can obviously see if it is a NaN or not.
4147   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4148     return !C->getValueAPF().isNaN() ||
4149            (SNaN && !C->getValueAPF().isSignaling());
4150   }
4151 
4152   unsigned Opcode = Op.getOpcode();
4153   switch (Opcode) {
4154   case ISD::FADD:
4155   case ISD::FSUB:
4156   case ISD::FMUL:
4157   case ISD::FDIV:
4158   case ISD::FREM:
4159   case ISD::FSIN:
4160   case ISD::FCOS: {
4161     if (SNaN)
4162       return true;
4163     // TODO: Need isKnownNeverInfinity
4164     return false;
4165   }
4166   case ISD::FCANONICALIZE:
4167   case ISD::FEXP:
4168   case ISD::FEXP2:
4169   case ISD::FTRUNC:
4170   case ISD::FFLOOR:
4171   case ISD::FCEIL:
4172   case ISD::FROUND:
4173   case ISD::FROUNDEVEN:
4174   case ISD::FRINT:
4175   case ISD::FNEARBYINT: {
4176     if (SNaN)
4177       return true;
4178     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4179   }
4180   case ISD::FABS:
4181   case ISD::FNEG:
4182   case ISD::FCOPYSIGN: {
4183     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4184   }
4185   case ISD::SELECT:
4186     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4187            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4188   case ISD::FP_EXTEND:
4189   case ISD::FP_ROUND: {
4190     if (SNaN)
4191       return true;
4192     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4193   }
4194   case ISD::SINT_TO_FP:
4195   case ISD::UINT_TO_FP:
4196     return true;
4197   case ISD::FMA:
4198   case ISD::FMAD: {
4199     if (SNaN)
4200       return true;
4201     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4202            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4203            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4204   }
4205   case ISD::FSQRT: // Need is known positive
4206   case ISD::FLOG:
4207   case ISD::FLOG2:
4208   case ISD::FLOG10:
4209   case ISD::FPOWI:
4210   case ISD::FPOW: {
4211     if (SNaN)
4212       return true;
4213     // TODO: Refine on operand
4214     return false;
4215   }
4216   case ISD::FMINNUM:
4217   case ISD::FMAXNUM: {
4218     // Only one needs to be known not-nan, since it will be returned if the
4219     // other ends up being one.
4220     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4221            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4222   }
4223   case ISD::FMINNUM_IEEE:
4224   case ISD::FMAXNUM_IEEE: {
4225     if (SNaN)
4226       return true;
4227     // This can return a NaN if either operand is an sNaN, or if both operands
4228     // are NaN.
4229     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4230             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4231            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4232             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4233   }
4234   case ISD::FMINIMUM:
4235   case ISD::FMAXIMUM: {
4236     // TODO: Does this quiet or return the origina NaN as-is?
4237     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4238            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4239   }
4240   case ISD::EXTRACT_VECTOR_ELT: {
4241     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4242   }
4243   default:
4244     if (Opcode >= ISD::BUILTIN_OP_END ||
4245         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4246         Opcode == ISD::INTRINSIC_W_CHAIN ||
4247         Opcode == ISD::INTRINSIC_VOID) {
4248       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4249     }
4250 
4251     return false;
4252   }
4253 }
4254 
4255 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4256   assert(Op.getValueType().isFloatingPoint() &&
4257          "Floating point type expected");
4258 
4259   // If the value is a constant, we can obviously see if it is a zero or not.
4260   // TODO: Add BuildVector support.
4261   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4262     return !C->isZero();
4263   return false;
4264 }
4265 
4266 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4267   assert(!Op.getValueType().isFloatingPoint() &&
4268          "Floating point types unsupported - use isKnownNeverZeroFloat");
4269 
4270   // If the value is a constant, we can obviously see if it is a zero or not.
4271   if (ISD::matchUnaryPredicate(
4272           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4273     return true;
4274 
4275   // TODO: Recognize more cases here.
4276   switch (Op.getOpcode()) {
4277   default: break;
4278   case ISD::OR:
4279     if (isKnownNeverZero(Op.getOperand(1)) ||
4280         isKnownNeverZero(Op.getOperand(0)))
4281       return true;
4282     break;
4283   }
4284 
4285   return false;
4286 }
4287 
4288 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4289   // Check the obvious case.
4290   if (A == B) return true;
4291 
4292   // For for negative and positive zero.
4293   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4294     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4295       if (CA->isZero() && CB->isZero()) return true;
4296 
4297   // Otherwise they may not be equal.
4298   return false;
4299 }
4300 
4301 // FIXME: unify with llvm::haveNoCommonBitsSet.
4302 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4303 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4304   assert(A.getValueType() == B.getValueType() &&
4305          "Values must have the same type");
4306   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4307 }
4308 
4309 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4310                                 ArrayRef<SDValue> Ops,
4311                                 SelectionDAG &DAG) {
4312   int NumOps = Ops.size();
4313   assert(NumOps != 0 && "Can't build an empty vector!");
4314   assert(!VT.isScalableVector() &&
4315          "BUILD_VECTOR cannot be used with scalable types");
4316   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4317          "Incorrect element count in BUILD_VECTOR!");
4318 
4319   // BUILD_VECTOR of UNDEFs is UNDEF.
4320   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4321     return DAG.getUNDEF(VT);
4322 
4323   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4324   SDValue IdentitySrc;
4325   bool IsIdentity = true;
4326   for (int i = 0; i != NumOps; ++i) {
4327     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4328         Ops[i].getOperand(0).getValueType() != VT ||
4329         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4330         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4331         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4332       IsIdentity = false;
4333       break;
4334     }
4335     IdentitySrc = Ops[i].getOperand(0);
4336   }
4337   if (IsIdentity)
4338     return IdentitySrc;
4339 
4340   return SDValue();
4341 }
4342 
4343 /// Try to simplify vector concatenation to an input value, undef, or build
4344 /// vector.
4345 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4346                                   ArrayRef<SDValue> Ops,
4347                                   SelectionDAG &DAG) {
4348   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4349   assert(llvm::all_of(Ops,
4350                       [Ops](SDValue Op) {
4351                         return Ops[0].getValueType() == Op.getValueType();
4352                       }) &&
4353          "Concatenation of vectors with inconsistent value types!");
4354   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4355              VT.getVectorElementCount() &&
4356          "Incorrect element count in vector concatenation!");
4357 
4358   if (Ops.size() == 1)
4359     return Ops[0];
4360 
4361   // Concat of UNDEFs is UNDEF.
4362   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4363     return DAG.getUNDEF(VT);
4364 
4365   // Scan the operands and look for extract operations from a single source
4366   // that correspond to insertion at the same location via this concatenation:
4367   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4368   SDValue IdentitySrc;
4369   bool IsIdentity = true;
4370   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4371     SDValue Op = Ops[i];
4372     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4373     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4374         Op.getOperand(0).getValueType() != VT ||
4375         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4376         Op.getConstantOperandVal(1) != IdentityIndex) {
4377       IsIdentity = false;
4378       break;
4379     }
4380     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4381            "Unexpected identity source vector for concat of extracts");
4382     IdentitySrc = Op.getOperand(0);
4383   }
4384   if (IsIdentity) {
4385     assert(IdentitySrc && "Failed to set source vector of extracts");
4386     return IdentitySrc;
4387   }
4388 
4389   // The code below this point is only designed to work for fixed width
4390   // vectors, so we bail out for now.
4391   if (VT.isScalableVector())
4392     return SDValue();
4393 
4394   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4395   // simplified to one big BUILD_VECTOR.
4396   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4397   EVT SVT = VT.getScalarType();
4398   SmallVector<SDValue, 16> Elts;
4399   for (SDValue Op : Ops) {
4400     EVT OpVT = Op.getValueType();
4401     if (Op.isUndef())
4402       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4403     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4404       Elts.append(Op->op_begin(), Op->op_end());
4405     else
4406       return SDValue();
4407   }
4408 
4409   // BUILD_VECTOR requires all inputs to be of the same type, find the
4410   // maximum type and extend them all.
4411   for (SDValue Op : Elts)
4412     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4413 
4414   if (SVT.bitsGT(VT.getScalarType())) {
4415     for (SDValue &Op : Elts) {
4416       if (Op.isUndef())
4417         Op = DAG.getUNDEF(SVT);
4418       else
4419         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4420                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4421                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4422     }
4423   }
4424 
4425   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4426   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4427   return V;
4428 }
4429 
4430 /// Gets or creates the specified node.
4431 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4432   FoldingSetNodeID ID;
4433   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4434   void *IP = nullptr;
4435   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4436     return SDValue(E, 0);
4437 
4438   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4439                               getVTList(VT));
4440   CSEMap.InsertNode(N, IP);
4441 
4442   InsertNode(N);
4443   SDValue V = SDValue(N, 0);
4444   NewSDValueDbgMsg(V, "Creating new node: ", this);
4445   return V;
4446 }
4447 
4448 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4449                               SDValue Operand) {
4450   SDNodeFlags Flags;
4451   if (Inserter)
4452     Flags = Inserter->getFlags();
4453   return getNode(Opcode, DL, VT, Operand, Flags);
4454 }
4455 
4456 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4457                               SDValue Operand, const SDNodeFlags Flags) {
4458   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4459          "Operand is DELETED_NODE!");
4460   // Constant fold unary operations with an integer constant operand. Even
4461   // opaque constant will be folded, because the folding of unary operations
4462   // doesn't create new constants with different values. Nevertheless, the
4463   // opaque flag is preserved during folding to prevent future folding with
4464   // other constants.
4465   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4466     const APInt &Val = C->getAPIntValue();
4467     switch (Opcode) {
4468     default: break;
4469     case ISD::SIGN_EXTEND:
4470       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4471                          C->isTargetOpcode(), C->isOpaque());
4472     case ISD::TRUNCATE:
4473       if (C->isOpaque())
4474         break;
4475       LLVM_FALLTHROUGH;
4476     case ISD::ANY_EXTEND:
4477     case ISD::ZERO_EXTEND:
4478       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4479                          C->isTargetOpcode(), C->isOpaque());
4480     case ISD::UINT_TO_FP:
4481     case ISD::SINT_TO_FP: {
4482       APFloat apf(EVTToAPFloatSemantics(VT),
4483                   APInt::getNullValue(VT.getSizeInBits()));
4484       (void)apf.convertFromAPInt(Val,
4485                                  Opcode==ISD::SINT_TO_FP,
4486                                  APFloat::rmNearestTiesToEven);
4487       return getConstantFP(apf, DL, VT);
4488     }
4489     case ISD::BITCAST:
4490       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4491         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4492       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4493         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4494       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4495         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4496       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4497         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4498       break;
4499     case ISD::ABS:
4500       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4501                          C->isOpaque());
4502     case ISD::BITREVERSE:
4503       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4504                          C->isOpaque());
4505     case ISD::BSWAP:
4506       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4507                          C->isOpaque());
4508     case ISD::CTPOP:
4509       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4510                          C->isOpaque());
4511     case ISD::CTLZ:
4512     case ISD::CTLZ_ZERO_UNDEF:
4513       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4514                          C->isOpaque());
4515     case ISD::CTTZ:
4516     case ISD::CTTZ_ZERO_UNDEF:
4517       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4518                          C->isOpaque());
4519     case ISD::FP16_TO_FP: {
4520       bool Ignored;
4521       APFloat FPV(APFloat::IEEEhalf(),
4522                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4523 
4524       // This can return overflow, underflow, or inexact; we don't care.
4525       // FIXME need to be more flexible about rounding mode.
4526       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4527                         APFloat::rmNearestTiesToEven, &Ignored);
4528       return getConstantFP(FPV, DL, VT);
4529     }
4530     }
4531   }
4532 
4533   // Constant fold unary operations with a floating point constant operand.
4534   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4535     APFloat V = C->getValueAPF();    // make copy
4536     switch (Opcode) {
4537     case ISD::FNEG:
4538       V.changeSign();
4539       return getConstantFP(V, DL, VT);
4540     case ISD::FABS:
4541       V.clearSign();
4542       return getConstantFP(V, DL, VT);
4543     case ISD::FCEIL: {
4544       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4545       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4546         return getConstantFP(V, DL, VT);
4547       break;
4548     }
4549     case ISD::FTRUNC: {
4550       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4551       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4552         return getConstantFP(V, DL, VT);
4553       break;
4554     }
4555     case ISD::FFLOOR: {
4556       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4557       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4558         return getConstantFP(V, DL, VT);
4559       break;
4560     }
4561     case ISD::FP_EXTEND: {
4562       bool ignored;
4563       // This can return overflow, underflow, or inexact; we don't care.
4564       // FIXME need to be more flexible about rounding mode.
4565       (void)V.convert(EVTToAPFloatSemantics(VT),
4566                       APFloat::rmNearestTiesToEven, &ignored);
4567       return getConstantFP(V, DL, VT);
4568     }
4569     case ISD::FP_TO_SINT:
4570     case ISD::FP_TO_UINT: {
4571       bool ignored;
4572       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4573       // FIXME need to be more flexible about rounding mode.
4574       APFloat::opStatus s =
4575           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4576       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4577         break;
4578       return getConstant(IntVal, DL, VT);
4579     }
4580     case ISD::BITCAST:
4581       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4582         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4583       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4584         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4585       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4586         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4587       break;
4588     case ISD::FP_TO_FP16: {
4589       bool Ignored;
4590       // This can return overflow, underflow, or inexact; we don't care.
4591       // FIXME need to be more flexible about rounding mode.
4592       (void)V.convert(APFloat::IEEEhalf(),
4593                       APFloat::rmNearestTiesToEven, &Ignored);
4594       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4595     }
4596     }
4597   }
4598 
4599   // Constant fold unary operations with a vector integer or float operand.
4600   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4601     if (BV->isConstant()) {
4602       switch (Opcode) {
4603       default:
4604         // FIXME: Entirely reasonable to perform folding of other unary
4605         // operations here as the need arises.
4606         break;
4607       case ISD::FNEG:
4608       case ISD::FABS:
4609       case ISD::FCEIL:
4610       case ISD::FTRUNC:
4611       case ISD::FFLOOR:
4612       case ISD::FP_EXTEND:
4613       case ISD::FP_TO_SINT:
4614       case ISD::FP_TO_UINT:
4615       case ISD::TRUNCATE:
4616       case ISD::ANY_EXTEND:
4617       case ISD::ZERO_EXTEND:
4618       case ISD::SIGN_EXTEND:
4619       case ISD::UINT_TO_FP:
4620       case ISD::SINT_TO_FP:
4621       case ISD::ABS:
4622       case ISD::BITREVERSE:
4623       case ISD::BSWAP:
4624       case ISD::CTLZ:
4625       case ISD::CTLZ_ZERO_UNDEF:
4626       case ISD::CTTZ:
4627       case ISD::CTTZ_ZERO_UNDEF:
4628       case ISD::CTPOP: {
4629         SDValue Ops = { Operand };
4630         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4631           return Fold;
4632       }
4633       }
4634     }
4635   }
4636 
4637   unsigned OpOpcode = Operand.getNode()->getOpcode();
4638   switch (Opcode) {
4639   case ISD::FREEZE:
4640     assert(VT == Operand.getValueType() && "Unexpected VT!");
4641     break;
4642   case ISD::TokenFactor:
4643   case ISD::MERGE_VALUES:
4644   case ISD::CONCAT_VECTORS:
4645     return Operand;         // Factor, merge or concat of one node?  No need.
4646   case ISD::BUILD_VECTOR: {
4647     // Attempt to simplify BUILD_VECTOR.
4648     SDValue Ops[] = {Operand};
4649     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4650       return V;
4651     break;
4652   }
4653   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4654   case ISD::FP_EXTEND:
4655     assert(VT.isFloatingPoint() &&
4656            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4657     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4658     assert((!VT.isVector() ||
4659             VT.getVectorElementCount() ==
4660             Operand.getValueType().getVectorElementCount()) &&
4661            "Vector element count mismatch!");
4662     assert(Operand.getValueType().bitsLT(VT) &&
4663            "Invalid fpext node, dst < src!");
4664     if (Operand.isUndef())
4665       return getUNDEF(VT);
4666     break;
4667   case ISD::FP_TO_SINT:
4668   case ISD::FP_TO_UINT:
4669     if (Operand.isUndef())
4670       return getUNDEF(VT);
4671     break;
4672   case ISD::SINT_TO_FP:
4673   case ISD::UINT_TO_FP:
4674     // [us]itofp(undef) = 0, because the result value is bounded.
4675     if (Operand.isUndef())
4676       return getConstantFP(0.0, DL, VT);
4677     break;
4678   case ISD::SIGN_EXTEND:
4679     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4680            "Invalid SIGN_EXTEND!");
4681     assert(VT.isVector() == Operand.getValueType().isVector() &&
4682            "SIGN_EXTEND result type type should be vector iff the operand "
4683            "type is vector!");
4684     if (Operand.getValueType() == VT) return Operand;   // noop extension
4685     assert((!VT.isVector() ||
4686             VT.getVectorElementCount() ==
4687                 Operand.getValueType().getVectorElementCount()) &&
4688            "Vector element count mismatch!");
4689     assert(Operand.getValueType().bitsLT(VT) &&
4690            "Invalid sext node, dst < src!");
4691     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4692       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4693     else if (OpOpcode == ISD::UNDEF)
4694       // sext(undef) = 0, because the top bits will all be the same.
4695       return getConstant(0, DL, VT);
4696     break;
4697   case ISD::ZERO_EXTEND:
4698     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4699            "Invalid ZERO_EXTEND!");
4700     assert(VT.isVector() == Operand.getValueType().isVector() &&
4701            "ZERO_EXTEND result type type should be vector iff the operand "
4702            "type is vector!");
4703     if (Operand.getValueType() == VT) return Operand;   // noop extension
4704     assert((!VT.isVector() ||
4705             VT.getVectorElementCount() ==
4706                 Operand.getValueType().getVectorElementCount()) &&
4707            "Vector element count mismatch!");
4708     assert(Operand.getValueType().bitsLT(VT) &&
4709            "Invalid zext node, dst < src!");
4710     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4711       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4712     else if (OpOpcode == ISD::UNDEF)
4713       // zext(undef) = 0, because the top bits will be zero.
4714       return getConstant(0, DL, VT);
4715     break;
4716   case ISD::ANY_EXTEND:
4717     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4718            "Invalid ANY_EXTEND!");
4719     assert(VT.isVector() == Operand.getValueType().isVector() &&
4720            "ANY_EXTEND result type type should be vector iff the operand "
4721            "type is vector!");
4722     if (Operand.getValueType() == VT) return Operand;   // noop extension
4723     assert((!VT.isVector() ||
4724             VT.getVectorElementCount() ==
4725                 Operand.getValueType().getVectorElementCount()) &&
4726            "Vector element count mismatch!");
4727     assert(Operand.getValueType().bitsLT(VT) &&
4728            "Invalid anyext node, dst < src!");
4729 
4730     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4731         OpOpcode == ISD::ANY_EXTEND)
4732       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4733       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4734     else if (OpOpcode == ISD::UNDEF)
4735       return getUNDEF(VT);
4736 
4737     // (ext (trunc x)) -> x
4738     if (OpOpcode == ISD::TRUNCATE) {
4739       SDValue OpOp = Operand.getOperand(0);
4740       if (OpOp.getValueType() == VT) {
4741         transferDbgValues(Operand, OpOp);
4742         return OpOp;
4743       }
4744     }
4745     break;
4746   case ISD::TRUNCATE:
4747     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4748            "Invalid TRUNCATE!");
4749     assert(VT.isVector() == Operand.getValueType().isVector() &&
4750            "TRUNCATE result type type should be vector iff the operand "
4751            "type is vector!");
4752     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4753     assert((!VT.isVector() ||
4754             VT.getVectorElementCount() ==
4755                 Operand.getValueType().getVectorElementCount()) &&
4756            "Vector element count mismatch!");
4757     assert(Operand.getValueType().bitsGT(VT) &&
4758            "Invalid truncate node, src < dst!");
4759     if (OpOpcode == ISD::TRUNCATE)
4760       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4761     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4762         OpOpcode == ISD::ANY_EXTEND) {
4763       // If the source is smaller than the dest, we still need an extend.
4764       if (Operand.getOperand(0).getValueType().getScalarType()
4765             .bitsLT(VT.getScalarType()))
4766         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4767       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4768         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4769       return Operand.getOperand(0);
4770     }
4771     if (OpOpcode == ISD::UNDEF)
4772       return getUNDEF(VT);
4773     break;
4774   case ISD::ANY_EXTEND_VECTOR_INREG:
4775   case ISD::ZERO_EXTEND_VECTOR_INREG:
4776   case ISD::SIGN_EXTEND_VECTOR_INREG:
4777     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4778     assert(Operand.getValueType().bitsLE(VT) &&
4779            "The input must be the same size or smaller than the result.");
4780     assert(VT.getVectorNumElements() <
4781              Operand.getValueType().getVectorNumElements() &&
4782            "The destination vector type must have fewer lanes than the input.");
4783     break;
4784   case ISD::ABS:
4785     assert(VT.isInteger() && VT == Operand.getValueType() &&
4786            "Invalid ABS!");
4787     if (OpOpcode == ISD::UNDEF)
4788       return getUNDEF(VT);
4789     break;
4790   case ISD::BSWAP:
4791     assert(VT.isInteger() && VT == Operand.getValueType() &&
4792            "Invalid BSWAP!");
4793     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4794            "BSWAP types must be a multiple of 16 bits!");
4795     if (OpOpcode == ISD::UNDEF)
4796       return getUNDEF(VT);
4797     break;
4798   case ISD::BITREVERSE:
4799     assert(VT.isInteger() && VT == Operand.getValueType() &&
4800            "Invalid BITREVERSE!");
4801     if (OpOpcode == ISD::UNDEF)
4802       return getUNDEF(VT);
4803     break;
4804   case ISD::BITCAST:
4805     // Basic sanity checking.
4806     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4807            "Cannot BITCAST between types of different sizes!");
4808     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4809     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4810       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4811     if (OpOpcode == ISD::UNDEF)
4812       return getUNDEF(VT);
4813     break;
4814   case ISD::SCALAR_TO_VECTOR:
4815     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4816            (VT.getVectorElementType() == Operand.getValueType() ||
4817             (VT.getVectorElementType().isInteger() &&
4818              Operand.getValueType().isInteger() &&
4819              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4820            "Illegal SCALAR_TO_VECTOR node!");
4821     if (OpOpcode == ISD::UNDEF)
4822       return getUNDEF(VT);
4823     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4824     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4825         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4826         Operand.getConstantOperandVal(1) == 0 &&
4827         Operand.getOperand(0).getValueType() == VT)
4828       return Operand.getOperand(0);
4829     break;
4830   case ISD::FNEG:
4831     // Negation of an unknown bag of bits is still completely undefined.
4832     if (OpOpcode == ISD::UNDEF)
4833       return getUNDEF(VT);
4834 
4835     if (OpOpcode == ISD::FNEG)  // --X -> X
4836       return Operand.getOperand(0);
4837     break;
4838   case ISD::FABS:
4839     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4840       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4841     break;
4842   case ISD::VSCALE:
4843     assert(VT == Operand.getValueType() && "Unexpected VT!");
4844     break;
4845   case ISD::CTPOP:
4846     if (Operand.getValueType().getScalarType() == MVT::i1)
4847       return Operand;
4848     break;
4849   case ISD::CTLZ:
4850   case ISD::CTTZ:
4851     if (Operand.getValueType().getScalarType() == MVT::i1)
4852       return getNOT(DL, Operand, Operand.getValueType());
4853     break;
4854   case ISD::VECREDUCE_SMIN:
4855   case ISD::VECREDUCE_UMAX:
4856     if (Operand.getValueType().getScalarType() == MVT::i1)
4857       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4858     break;
4859   case ISD::VECREDUCE_SMAX:
4860   case ISD::VECREDUCE_UMIN:
4861     if (Operand.getValueType().getScalarType() == MVT::i1)
4862       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4863     break;
4864   }
4865 
4866   SDNode *N;
4867   SDVTList VTs = getVTList(VT);
4868   SDValue Ops[] = {Operand};
4869   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4870     FoldingSetNodeID ID;
4871     AddNodeIDNode(ID, Opcode, VTs, Ops);
4872     void *IP = nullptr;
4873     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4874       E->intersectFlagsWith(Flags);
4875       return SDValue(E, 0);
4876     }
4877 
4878     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4879     N->setFlags(Flags);
4880     createOperands(N, Ops);
4881     CSEMap.InsertNode(N, IP);
4882   } else {
4883     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4884     createOperands(N, Ops);
4885   }
4886 
4887   InsertNode(N);
4888   SDValue V = SDValue(N, 0);
4889   NewSDValueDbgMsg(V, "Creating new node: ", this);
4890   return V;
4891 }
4892 
4893 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4894                                        const APInt &C2) {
4895   switch (Opcode) {
4896   case ISD::ADD:  return C1 + C2;
4897   case ISD::SUB:  return C1 - C2;
4898   case ISD::MUL:  return C1 * C2;
4899   case ISD::AND:  return C1 & C2;
4900   case ISD::OR:   return C1 | C2;
4901   case ISD::XOR:  return C1 ^ C2;
4902   case ISD::SHL:  return C1 << C2;
4903   case ISD::SRL:  return C1.lshr(C2);
4904   case ISD::SRA:  return C1.ashr(C2);
4905   case ISD::ROTL: return C1.rotl(C2);
4906   case ISD::ROTR: return C1.rotr(C2);
4907   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4908   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4909   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4910   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4911   case ISD::SADDSAT: return C1.sadd_sat(C2);
4912   case ISD::UADDSAT: return C1.uadd_sat(C2);
4913   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4914   case ISD::USUBSAT: return C1.usub_sat(C2);
4915   case ISD::UDIV:
4916     if (!C2.getBoolValue())
4917       break;
4918     return C1.udiv(C2);
4919   case ISD::UREM:
4920     if (!C2.getBoolValue())
4921       break;
4922     return C1.urem(C2);
4923   case ISD::SDIV:
4924     if (!C2.getBoolValue())
4925       break;
4926     return C1.sdiv(C2);
4927   case ISD::SREM:
4928     if (!C2.getBoolValue())
4929       break;
4930     return C1.srem(C2);
4931   }
4932   return llvm::None;
4933 }
4934 
4935 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4936                                        const GlobalAddressSDNode *GA,
4937                                        const SDNode *N2) {
4938   if (GA->getOpcode() != ISD::GlobalAddress)
4939     return SDValue();
4940   if (!TLI->isOffsetFoldingLegal(GA))
4941     return SDValue();
4942   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4943   if (!C2)
4944     return SDValue();
4945   int64_t Offset = C2->getSExtValue();
4946   switch (Opcode) {
4947   case ISD::ADD: break;
4948   case ISD::SUB: Offset = -uint64_t(Offset); break;
4949   default: return SDValue();
4950   }
4951   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4952                           GA->getOffset() + uint64_t(Offset));
4953 }
4954 
4955 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4956   switch (Opcode) {
4957   case ISD::SDIV:
4958   case ISD::UDIV:
4959   case ISD::SREM:
4960   case ISD::UREM: {
4961     // If a divisor is zero/undef or any element of a divisor vector is
4962     // zero/undef, the whole op is undef.
4963     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4964     SDValue Divisor = Ops[1];
4965     if (Divisor.isUndef() || isNullConstant(Divisor))
4966       return true;
4967 
4968     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4969            llvm::any_of(Divisor->op_values(),
4970                         [](SDValue V) { return V.isUndef() ||
4971                                         isNullConstant(V); });
4972     // TODO: Handle signed overflow.
4973   }
4974   // TODO: Handle oversized shifts.
4975   default:
4976     return false;
4977   }
4978 }
4979 
4980 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4981                                              EVT VT, ArrayRef<SDValue> Ops) {
4982   // If the opcode is a target-specific ISD node, there's nothing we can
4983   // do here and the operand rules may not line up with the below, so
4984   // bail early.
4985   if (Opcode >= ISD::BUILTIN_OP_END)
4986     return SDValue();
4987 
4988   // For now, the array Ops should only contain two values.
4989   // This enforcement will be removed once this function is merged with
4990   // FoldConstantVectorArithmetic
4991   if (Ops.size() != 2)
4992     return SDValue();
4993 
4994   if (isUndef(Opcode, Ops))
4995     return getUNDEF(VT);
4996 
4997   SDNode *N1 = Ops[0].getNode();
4998   SDNode *N2 = Ops[1].getNode();
4999 
5000   // Handle the case of two scalars.
5001   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5002     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5003       if (C1->isOpaque() || C2->isOpaque())
5004         return SDValue();
5005 
5006       Optional<APInt> FoldAttempt =
5007           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5008       if (!FoldAttempt)
5009         return SDValue();
5010 
5011       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5012       assert((!Folded || !VT.isVector()) &&
5013              "Can't fold vectors ops with scalar operands");
5014       return Folded;
5015     }
5016   }
5017 
5018   // fold (add Sym, c) -> Sym+c
5019   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5020     return FoldSymbolOffset(Opcode, VT, GA, N2);
5021   if (TLI->isCommutativeBinOp(Opcode))
5022     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5023       return FoldSymbolOffset(Opcode, VT, GA, N1);
5024 
5025   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5026   // vector width, however we should be able to do constant folds involving
5027   // splat vector nodes too.
5028   if (VT.isScalableVector())
5029     return SDValue();
5030 
5031   // For fixed width vectors, extract each constant element and fold them
5032   // individually. Either input may be an undef value.
5033   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5034   if (!BV1 && !N1->isUndef())
5035     return SDValue();
5036   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5037   if (!BV2 && !N2->isUndef())
5038     return SDValue();
5039   // If both operands are undef, that's handled the same way as scalars.
5040   if (!BV1 && !BV2)
5041     return SDValue();
5042 
5043   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5044          "Vector binop with different number of elements in operands?");
5045 
5046   EVT SVT = VT.getScalarType();
5047   EVT LegalSVT = SVT;
5048   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5049     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5050     if (LegalSVT.bitsLT(SVT))
5051       return SDValue();
5052   }
5053   SmallVector<SDValue, 4> Outputs;
5054   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5055   for (unsigned I = 0; I != NumOps; ++I) {
5056     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5057     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5058     if (SVT.isInteger()) {
5059       if (V1->getValueType(0).bitsGT(SVT))
5060         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5061       if (V2->getValueType(0).bitsGT(SVT))
5062         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5063     }
5064 
5065     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5066       return SDValue();
5067 
5068     // Fold one vector element.
5069     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5070     if (LegalSVT != SVT)
5071       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5072 
5073     // Scalar folding only succeeded if the result is a constant or UNDEF.
5074     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5075         ScalarResult.getOpcode() != ISD::ConstantFP)
5076       return SDValue();
5077     Outputs.push_back(ScalarResult);
5078   }
5079 
5080   assert(VT.getVectorNumElements() == Outputs.size() &&
5081          "Vector size mismatch!");
5082 
5083   // We may have a vector type but a scalar result. Create a splat.
5084   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5085 
5086   // Build a big vector out of the scalar elements we generated.
5087   return getBuildVector(VT, SDLoc(), Outputs);
5088 }
5089 
5090 // TODO: Merge with FoldConstantArithmetic
5091 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5092                                                    const SDLoc &DL, EVT VT,
5093                                                    ArrayRef<SDValue> Ops,
5094                                                    const SDNodeFlags Flags) {
5095   // If the opcode is a target-specific ISD node, there's nothing we can
5096   // do here and the operand rules may not line up with the below, so
5097   // bail early.
5098   if (Opcode >= ISD::BUILTIN_OP_END)
5099     return SDValue();
5100 
5101   if (isUndef(Opcode, Ops))
5102     return getUNDEF(VT);
5103 
5104   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5105   if (!VT.isVector())
5106     return SDValue();
5107 
5108   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5109   // vector width, however we should be able to do constant folds involving
5110   // splat vector nodes too.
5111   if (VT.isScalableVector())
5112     return SDValue();
5113 
5114   // From this point onwards all vectors are assumed to be fixed width.
5115   unsigned NumElts = VT.getVectorNumElements();
5116 
5117   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5118     return !Op.getValueType().isVector() ||
5119            Op.getValueType().getVectorNumElements() == NumElts;
5120   };
5121 
5122   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5123     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5124     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5125            (BV && BV->isConstant());
5126   };
5127 
5128   // All operands must be vector types with the same number of elements as
5129   // the result type and must be either UNDEF or a build vector of constant
5130   // or UNDEF scalars.
5131   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5132       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5133     return SDValue();
5134 
5135   // If we are comparing vectors, then the result needs to be a i1 boolean
5136   // that is then sign-extended back to the legal result type.
5137   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5138 
5139   // Find legal integer scalar type for constant promotion and
5140   // ensure that its scalar size is at least as large as source.
5141   EVT LegalSVT = VT.getScalarType();
5142   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5143     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5144     if (LegalSVT.bitsLT(VT.getScalarType()))
5145       return SDValue();
5146   }
5147 
5148   // Constant fold each scalar lane separately.
5149   SmallVector<SDValue, 4> ScalarResults;
5150   for (unsigned i = 0; i != NumElts; i++) {
5151     SmallVector<SDValue, 4> ScalarOps;
5152     for (SDValue Op : Ops) {
5153       EVT InSVT = Op.getValueType().getScalarType();
5154       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5155       if (!InBV) {
5156         // We've checked that this is UNDEF or a constant of some kind.
5157         if (Op.isUndef())
5158           ScalarOps.push_back(getUNDEF(InSVT));
5159         else
5160           ScalarOps.push_back(Op);
5161         continue;
5162       }
5163 
5164       SDValue ScalarOp = InBV->getOperand(i);
5165       EVT ScalarVT = ScalarOp.getValueType();
5166 
5167       // Build vector (integer) scalar operands may need implicit
5168       // truncation - do this before constant folding.
5169       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5170         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5171 
5172       ScalarOps.push_back(ScalarOp);
5173     }
5174 
5175     // Constant fold the scalar operands.
5176     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5177 
5178     // Legalize the (integer) scalar constant if necessary.
5179     if (LegalSVT != SVT)
5180       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5181 
5182     // Scalar folding only succeeded if the result is a constant or UNDEF.
5183     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5184         ScalarResult.getOpcode() != ISD::ConstantFP)
5185       return SDValue();
5186     ScalarResults.push_back(ScalarResult);
5187   }
5188 
5189   SDValue V = getBuildVector(VT, DL, ScalarResults);
5190   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5191   return V;
5192 }
5193 
5194 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5195                                          EVT VT, SDValue N1, SDValue N2) {
5196   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5197   //       should. That will require dealing with a potentially non-default
5198   //       rounding mode, checking the "opStatus" return value from the APFloat
5199   //       math calculations, and possibly other variations.
5200   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5201   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5202   if (N1CFP && N2CFP) {
5203     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5204     switch (Opcode) {
5205     case ISD::FADD:
5206       C1.add(C2, APFloat::rmNearestTiesToEven);
5207       return getConstantFP(C1, DL, VT);
5208     case ISD::FSUB:
5209       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5210       return getConstantFP(C1, DL, VT);
5211     case ISD::FMUL:
5212       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5213       return getConstantFP(C1, DL, VT);
5214     case ISD::FDIV:
5215       C1.divide(C2, APFloat::rmNearestTiesToEven);
5216       return getConstantFP(C1, DL, VT);
5217     case ISD::FREM:
5218       C1.mod(C2);
5219       return getConstantFP(C1, DL, VT);
5220     case ISD::FCOPYSIGN:
5221       C1.copySign(C2);
5222       return getConstantFP(C1, DL, VT);
5223     default: break;
5224     }
5225   }
5226   if (N1CFP && Opcode == ISD::FP_ROUND) {
5227     APFloat C1 = N1CFP->getValueAPF();    // make copy
5228     bool Unused;
5229     // This can return overflow, underflow, or inexact; we don't care.
5230     // FIXME need to be more flexible about rounding mode.
5231     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5232                       &Unused);
5233     return getConstantFP(C1, DL, VT);
5234   }
5235 
5236   switch (Opcode) {
5237   case ISD::FSUB:
5238     // -0.0 - undef --> undef (consistent with "fneg undef")
5239     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5240       return getUNDEF(VT);
5241     LLVM_FALLTHROUGH;
5242 
5243   case ISD::FADD:
5244   case ISD::FMUL:
5245   case ISD::FDIV:
5246   case ISD::FREM:
5247     // If both operands are undef, the result is undef. If 1 operand is undef,
5248     // the result is NaN. This should match the behavior of the IR optimizer.
5249     if (N1.isUndef() && N2.isUndef())
5250       return getUNDEF(VT);
5251     if (N1.isUndef() || N2.isUndef())
5252       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5253   }
5254   return SDValue();
5255 }
5256 
5257 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5258   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5259 
5260   // There's no need to assert on a byte-aligned pointer. All pointers are at
5261   // least byte aligned.
5262   if (A == Align(1))
5263     return Val;
5264 
5265   FoldingSetNodeID ID;
5266   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5267   ID.AddInteger(A.value());
5268 
5269   void *IP = nullptr;
5270   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5271     return SDValue(E, 0);
5272 
5273   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5274                                          Val.getValueType(), A);
5275   createOperands(N, {Val});
5276 
5277   CSEMap.InsertNode(N, IP);
5278   InsertNode(N);
5279 
5280   SDValue V(N, 0);
5281   NewSDValueDbgMsg(V, "Creating new node: ", this);
5282   return V;
5283 }
5284 
5285 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5286                               SDValue N1, SDValue N2) {
5287   SDNodeFlags Flags;
5288   if (Inserter)
5289     Flags = Inserter->getFlags();
5290   return getNode(Opcode, DL, VT, N1, N2, Flags);
5291 }
5292 
5293 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5294                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5295   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5296          N2.getOpcode() != ISD::DELETED_NODE &&
5297          "Operand is DELETED_NODE!");
5298   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5299   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5300   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5301   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5302 
5303   // Canonicalize constant to RHS if commutative.
5304   if (TLI->isCommutativeBinOp(Opcode)) {
5305     if (N1C && !N2C) {
5306       std::swap(N1C, N2C);
5307       std::swap(N1, N2);
5308     } else if (N1CFP && !N2CFP) {
5309       std::swap(N1CFP, N2CFP);
5310       std::swap(N1, N2);
5311     }
5312   }
5313 
5314   switch (Opcode) {
5315   default: break;
5316   case ISD::TokenFactor:
5317     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5318            N2.getValueType() == MVT::Other && "Invalid token factor!");
5319     // Fold trivial token factors.
5320     if (N1.getOpcode() == ISD::EntryToken) return N2;
5321     if (N2.getOpcode() == ISD::EntryToken) return N1;
5322     if (N1 == N2) return N1;
5323     break;
5324   case ISD::BUILD_VECTOR: {
5325     // Attempt to simplify BUILD_VECTOR.
5326     SDValue Ops[] = {N1, N2};
5327     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5328       return V;
5329     break;
5330   }
5331   case ISD::CONCAT_VECTORS: {
5332     SDValue Ops[] = {N1, N2};
5333     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5334       return V;
5335     break;
5336   }
5337   case ISD::AND:
5338     assert(VT.isInteger() && "This operator does not apply to FP types!");
5339     assert(N1.getValueType() == N2.getValueType() &&
5340            N1.getValueType() == VT && "Binary operator types must match!");
5341     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5342     // worth handling here.
5343     if (N2C && N2C->isNullValue())
5344       return N2;
5345     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5346       return N1;
5347     break;
5348   case ISD::OR:
5349   case ISD::XOR:
5350   case ISD::ADD:
5351   case ISD::SUB:
5352     assert(VT.isInteger() && "This operator does not apply to FP types!");
5353     assert(N1.getValueType() == N2.getValueType() &&
5354            N1.getValueType() == VT && "Binary operator types must match!");
5355     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5356     // it's worth handling here.
5357     if (N2C && N2C->isNullValue())
5358       return N1;
5359     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5360         VT.getVectorElementType() == MVT::i1)
5361       return getNode(ISD::XOR, DL, VT, N1, N2);
5362     break;
5363   case ISD::MUL:
5364     assert(VT.isInteger() && "This operator does not apply to FP types!");
5365     assert(N1.getValueType() == N2.getValueType() &&
5366            N1.getValueType() == VT && "Binary operator types must match!");
5367     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5368       return getNode(ISD::AND, DL, VT, N1, N2);
5369     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5370       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5371       const APInt &N2CImm = N2C->getAPIntValue();
5372       return getVScale(DL, VT, MulImm * N2CImm);
5373     }
5374     break;
5375   case ISD::UDIV:
5376   case ISD::UREM:
5377   case ISD::MULHU:
5378   case ISD::MULHS:
5379   case ISD::SDIV:
5380   case ISD::SREM:
5381   case ISD::SADDSAT:
5382   case ISD::SSUBSAT:
5383   case ISD::UADDSAT:
5384   case ISD::USUBSAT:
5385     assert(VT.isInteger() && "This operator does not apply to FP types!");
5386     assert(N1.getValueType() == N2.getValueType() &&
5387            N1.getValueType() == VT && "Binary operator types must match!");
5388     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5389       // fold (add_sat x, y) -> (or x, y) for bool types.
5390       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5391         return getNode(ISD::OR, DL, VT, N1, N2);
5392       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5393       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5394         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5395     }
5396     break;
5397   case ISD::SMIN:
5398   case ISD::UMAX:
5399     assert(VT.isInteger() && "This operator does not apply to FP types!");
5400     assert(N1.getValueType() == N2.getValueType() &&
5401            N1.getValueType() == VT && "Binary operator types must match!");
5402     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5403       return getNode(ISD::OR, DL, VT, N1, N2);
5404     break;
5405   case ISD::SMAX:
5406   case ISD::UMIN:
5407     assert(VT.isInteger() && "This operator does not apply to FP types!");
5408     assert(N1.getValueType() == N2.getValueType() &&
5409            N1.getValueType() == VT && "Binary operator types must match!");
5410     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5411       return getNode(ISD::AND, DL, VT, N1, N2);
5412     break;
5413   case ISD::FADD:
5414   case ISD::FSUB:
5415   case ISD::FMUL:
5416   case ISD::FDIV:
5417   case ISD::FREM:
5418     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5419     assert(N1.getValueType() == N2.getValueType() &&
5420            N1.getValueType() == VT && "Binary operator types must match!");
5421     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5422       return V;
5423     break;
5424   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5425     assert(N1.getValueType() == VT &&
5426            N1.getValueType().isFloatingPoint() &&
5427            N2.getValueType().isFloatingPoint() &&
5428            "Invalid FCOPYSIGN!");
5429     break;
5430   case ISD::SHL:
5431     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5432       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5433       const APInt &ShiftImm = N2C->getAPIntValue();
5434       return getVScale(DL, VT, MulImm << ShiftImm);
5435     }
5436     LLVM_FALLTHROUGH;
5437   case ISD::SRA:
5438   case ISD::SRL:
5439     if (SDValue V = simplifyShift(N1, N2))
5440       return V;
5441     LLVM_FALLTHROUGH;
5442   case ISD::ROTL:
5443   case ISD::ROTR:
5444     assert(VT == N1.getValueType() &&
5445            "Shift operators return type must be the same as their first arg");
5446     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5447            "Shifts only work on integers");
5448     assert((!VT.isVector() || VT == N2.getValueType()) &&
5449            "Vector shift amounts must be in the same as their first arg");
5450     // Verify that the shift amount VT is big enough to hold valid shift
5451     // amounts.  This catches things like trying to shift an i1024 value by an
5452     // i8, which is easy to fall into in generic code that uses
5453     // TLI.getShiftAmount().
5454     assert(N2.getValueType().getScalarSizeInBits() >=
5455                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5456            "Invalid use of small shift amount with oversized value!");
5457 
5458     // Always fold shifts of i1 values so the code generator doesn't need to
5459     // handle them.  Since we know the size of the shift has to be less than the
5460     // size of the value, the shift/rotate count is guaranteed to be zero.
5461     if (VT == MVT::i1)
5462       return N1;
5463     if (N2C && N2C->isNullValue())
5464       return N1;
5465     break;
5466   case ISD::FP_ROUND:
5467     assert(VT.isFloatingPoint() &&
5468            N1.getValueType().isFloatingPoint() &&
5469            VT.bitsLE(N1.getValueType()) &&
5470            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5471            "Invalid FP_ROUND!");
5472     if (N1.getValueType() == VT) return N1;  // noop conversion.
5473     break;
5474   case ISD::AssertSext:
5475   case ISD::AssertZext: {
5476     EVT EVT = cast<VTSDNode>(N2)->getVT();
5477     assert(VT == N1.getValueType() && "Not an inreg extend!");
5478     assert(VT.isInteger() && EVT.isInteger() &&
5479            "Cannot *_EXTEND_INREG FP types");
5480     assert(!EVT.isVector() &&
5481            "AssertSExt/AssertZExt type should be the vector element type "
5482            "rather than the vector type!");
5483     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5484     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5485     break;
5486   }
5487   case ISD::SIGN_EXTEND_INREG: {
5488     EVT EVT = cast<VTSDNode>(N2)->getVT();
5489     assert(VT == N1.getValueType() && "Not an inreg extend!");
5490     assert(VT.isInteger() && EVT.isInteger() &&
5491            "Cannot *_EXTEND_INREG FP types");
5492     assert(EVT.isVector() == VT.isVector() &&
5493            "SIGN_EXTEND_INREG type should be vector iff the operand "
5494            "type is vector!");
5495     assert((!EVT.isVector() ||
5496             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5497            "Vector element counts must match in SIGN_EXTEND_INREG");
5498     assert(EVT.bitsLE(VT) && "Not extending!");
5499     if (EVT == VT) return N1;  // Not actually extending
5500 
5501     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5502       unsigned FromBits = EVT.getScalarSizeInBits();
5503       Val <<= Val.getBitWidth() - FromBits;
5504       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5505       return getConstant(Val, DL, ConstantVT);
5506     };
5507 
5508     if (N1C) {
5509       const APInt &Val = N1C->getAPIntValue();
5510       return SignExtendInReg(Val, VT);
5511     }
5512     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5513       SmallVector<SDValue, 8> Ops;
5514       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5515       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5516         SDValue Op = N1.getOperand(i);
5517         if (Op.isUndef()) {
5518           Ops.push_back(getUNDEF(OpVT));
5519           continue;
5520         }
5521         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5522         APInt Val = C->getAPIntValue();
5523         Ops.push_back(SignExtendInReg(Val, OpVT));
5524       }
5525       return getBuildVector(VT, DL, Ops);
5526     }
5527     break;
5528   }
5529   case ISD::EXTRACT_VECTOR_ELT:
5530     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5531            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5532              element type of the vector.");
5533 
5534     // Extract from an undefined value or using an undefined index is undefined.
5535     if (N1.isUndef() || N2.isUndef())
5536       return getUNDEF(VT);
5537 
5538     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5539     // vectors. For scalable vectors we will provide appropriate support for
5540     // dealing with arbitrary indices.
5541     if (N2C && N1.getValueType().isFixedLengthVector() &&
5542         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5543       return getUNDEF(VT);
5544 
5545     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5546     // expanding copies of large vectors from registers. This only works for
5547     // fixed length vectors, since we need to know the exact number of
5548     // elements.
5549     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5550         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5551       unsigned Factor =
5552         N1.getOperand(0).getValueType().getVectorNumElements();
5553       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5554                      N1.getOperand(N2C->getZExtValue() / Factor),
5555                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5556     }
5557 
5558     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5559     // lowering is expanding large vector constants.
5560     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5561                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5562       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5563               N1.getValueType().isFixedLengthVector()) &&
5564              "BUILD_VECTOR used for scalable vectors");
5565       unsigned Index =
5566           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5567       SDValue Elt = N1.getOperand(Index);
5568 
5569       if (VT != Elt.getValueType())
5570         // If the vector element type is not legal, the BUILD_VECTOR operands
5571         // are promoted and implicitly truncated, and the result implicitly
5572         // extended. Make that explicit here.
5573         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5574 
5575       return Elt;
5576     }
5577 
5578     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5579     // operations are lowered to scalars.
5580     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5581       // If the indices are the same, return the inserted element else
5582       // if the indices are known different, extract the element from
5583       // the original vector.
5584       SDValue N1Op2 = N1.getOperand(2);
5585       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5586 
5587       if (N1Op2C && N2C) {
5588         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5589           if (VT == N1.getOperand(1).getValueType())
5590             return N1.getOperand(1);
5591           else
5592             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5593         }
5594 
5595         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5596       }
5597     }
5598 
5599     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5600     // when vector types are scalarized and v1iX is legal.
5601     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5602     // Here we are completely ignoring the extract element index (N2),
5603     // which is fine for fixed width vectors, since any index other than 0
5604     // is undefined anyway. However, this cannot be ignored for scalable
5605     // vectors - in theory we could support this, but we don't want to do this
5606     // without a profitability check.
5607     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5608         N1.getValueType().isFixedLengthVector() &&
5609         N1.getValueType().getVectorNumElements() == 1) {
5610       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5611                      N1.getOperand(1));
5612     }
5613     break;
5614   case ISD::EXTRACT_ELEMENT:
5615     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5616     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5617            (N1.getValueType().isInteger() == VT.isInteger()) &&
5618            N1.getValueType() != VT &&
5619            "Wrong types for EXTRACT_ELEMENT!");
5620 
5621     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5622     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5623     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5624     if (N1.getOpcode() == ISD::BUILD_PAIR)
5625       return N1.getOperand(N2C->getZExtValue());
5626 
5627     // EXTRACT_ELEMENT of a constant int is also very common.
5628     if (N1C) {
5629       unsigned ElementSize = VT.getSizeInBits();
5630       unsigned Shift = ElementSize * N2C->getZExtValue();
5631       const APInt &Val = N1C->getAPIntValue();
5632       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5633     }
5634     break;
5635   case ISD::EXTRACT_SUBVECTOR:
5636     EVT N1VT = N1.getValueType();
5637     assert(VT.isVector() && N1VT.isVector() &&
5638            "Extract subvector VTs must be vectors!");
5639     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5640            "Extract subvector VTs must have the same element type!");
5641     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5642            "Cannot extract a scalable vector from a fixed length vector!");
5643     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5644             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5645            "Extract subvector must be from larger vector to smaller vector!");
5646     assert(N2C && "Extract subvector index must be a constant");
5647     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5648             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5649                 N1VT.getVectorMinNumElements()) &&
5650            "Extract subvector overflow!");
5651     assert(N2C->getAPIntValue().getBitWidth() ==
5652                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5653            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5654 
5655     // Trivial extraction.
5656     if (VT == N1VT)
5657       return N1;
5658 
5659     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5660     if (N1.isUndef())
5661       return getUNDEF(VT);
5662 
5663     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5664     // the concat have the same type as the extract.
5665     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5666         VT == N1.getOperand(0).getValueType()) {
5667       unsigned Factor = VT.getVectorMinNumElements();
5668       return N1.getOperand(N2C->getZExtValue() / Factor);
5669     }
5670 
5671     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5672     // during shuffle legalization.
5673     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5674         VT == N1.getOperand(1).getValueType())
5675       return N1.getOperand(1);
5676     break;
5677   }
5678 
5679   // Perform trivial constant folding.
5680   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5681     return SV;
5682 
5683   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5684     return V;
5685 
5686   // Canonicalize an UNDEF to the RHS, even over a constant.
5687   if (N1.isUndef()) {
5688     if (TLI->isCommutativeBinOp(Opcode)) {
5689       std::swap(N1, N2);
5690     } else {
5691       switch (Opcode) {
5692       case ISD::SIGN_EXTEND_INREG:
5693       case ISD::SUB:
5694         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5695       case ISD::UDIV:
5696       case ISD::SDIV:
5697       case ISD::UREM:
5698       case ISD::SREM:
5699       case ISD::SSUBSAT:
5700       case ISD::USUBSAT:
5701         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5702       }
5703     }
5704   }
5705 
5706   // Fold a bunch of operators when the RHS is undef.
5707   if (N2.isUndef()) {
5708     switch (Opcode) {
5709     case ISD::XOR:
5710       if (N1.isUndef())
5711         // Handle undef ^ undef -> 0 special case. This is a common
5712         // idiom (misuse).
5713         return getConstant(0, DL, VT);
5714       LLVM_FALLTHROUGH;
5715     case ISD::ADD:
5716     case ISD::SUB:
5717     case ISD::UDIV:
5718     case ISD::SDIV:
5719     case ISD::UREM:
5720     case ISD::SREM:
5721       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5722     case ISD::MUL:
5723     case ISD::AND:
5724     case ISD::SSUBSAT:
5725     case ISD::USUBSAT:
5726       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5727     case ISD::OR:
5728     case ISD::SADDSAT:
5729     case ISD::UADDSAT:
5730       return getAllOnesConstant(DL, VT);
5731     }
5732   }
5733 
5734   // Memoize this node if possible.
5735   SDNode *N;
5736   SDVTList VTs = getVTList(VT);
5737   SDValue Ops[] = {N1, N2};
5738   if (VT != MVT::Glue) {
5739     FoldingSetNodeID ID;
5740     AddNodeIDNode(ID, Opcode, VTs, Ops);
5741     void *IP = nullptr;
5742     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5743       E->intersectFlagsWith(Flags);
5744       return SDValue(E, 0);
5745     }
5746 
5747     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5748     N->setFlags(Flags);
5749     createOperands(N, Ops);
5750     CSEMap.InsertNode(N, IP);
5751   } else {
5752     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5753     createOperands(N, Ops);
5754   }
5755 
5756   InsertNode(N);
5757   SDValue V = SDValue(N, 0);
5758   NewSDValueDbgMsg(V, "Creating new node: ", this);
5759   return V;
5760 }
5761 
5762 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5763                               SDValue N1, SDValue N2, SDValue N3) {
5764   SDNodeFlags Flags;
5765   if (Inserter)
5766     Flags = Inserter->getFlags();
5767   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5768 }
5769 
5770 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5771                               SDValue N1, SDValue N2, SDValue N3,
5772                               const SDNodeFlags Flags) {
5773   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5774          N2.getOpcode() != ISD::DELETED_NODE &&
5775          N3.getOpcode() != ISD::DELETED_NODE &&
5776          "Operand is DELETED_NODE!");
5777   // Perform various simplifications.
5778   switch (Opcode) {
5779   case ISD::FMA: {
5780     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5781     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5782            N3.getValueType() == VT && "FMA types must match!");
5783     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5784     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5785     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5786     if (N1CFP && N2CFP && N3CFP) {
5787       APFloat  V1 = N1CFP->getValueAPF();
5788       const APFloat &V2 = N2CFP->getValueAPF();
5789       const APFloat &V3 = N3CFP->getValueAPF();
5790       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5791       return getConstantFP(V1, DL, VT);
5792     }
5793     break;
5794   }
5795   case ISD::BUILD_VECTOR: {
5796     // Attempt to simplify BUILD_VECTOR.
5797     SDValue Ops[] = {N1, N2, N3};
5798     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5799       return V;
5800     break;
5801   }
5802   case ISD::CONCAT_VECTORS: {
5803     SDValue Ops[] = {N1, N2, N3};
5804     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5805       return V;
5806     break;
5807   }
5808   case ISD::SETCC: {
5809     assert(VT.isInteger() && "SETCC result type must be an integer!");
5810     assert(N1.getValueType() == N2.getValueType() &&
5811            "SETCC operands must have the same type!");
5812     assert(VT.isVector() == N1.getValueType().isVector() &&
5813            "SETCC type should be vector iff the operand type is vector!");
5814     assert((!VT.isVector() || VT.getVectorElementCount() ==
5815                                   N1.getValueType().getVectorElementCount()) &&
5816            "SETCC vector element counts must match!");
5817     // Use FoldSetCC to simplify SETCC's.
5818     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5819       return V;
5820     // Vector constant folding.
5821     SDValue Ops[] = {N1, N2, N3};
5822     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5823       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5824       return V;
5825     }
5826     break;
5827   }
5828   case ISD::SELECT:
5829   case ISD::VSELECT:
5830     if (SDValue V = simplifySelect(N1, N2, N3))
5831       return V;
5832     break;
5833   case ISD::VECTOR_SHUFFLE:
5834     llvm_unreachable("should use getVectorShuffle constructor!");
5835   case ISD::INSERT_VECTOR_ELT: {
5836     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5837     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5838     // for scalable vectors where we will generate appropriate code to
5839     // deal with out-of-bounds cases correctly.
5840     if (N3C && N1.getValueType().isFixedLengthVector() &&
5841         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5842       return getUNDEF(VT);
5843 
5844     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5845     if (N3.isUndef())
5846       return getUNDEF(VT);
5847 
5848     // If the inserted element is an UNDEF, just use the input vector.
5849     if (N2.isUndef())
5850       return N1;
5851 
5852     break;
5853   }
5854   case ISD::INSERT_SUBVECTOR: {
5855     // Inserting undef into undef is still undef.
5856     if (N1.isUndef() && N2.isUndef())
5857       return getUNDEF(VT);
5858 
5859     EVT N2VT = N2.getValueType();
5860     assert(VT == N1.getValueType() &&
5861            "Dest and insert subvector source types must match!");
5862     assert(VT.isVector() && N2VT.isVector() &&
5863            "Insert subvector VTs must be vectors!");
5864     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5865            "Cannot insert a scalable vector into a fixed length vector!");
5866     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5867             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5868            "Insert subvector must be from smaller vector to larger vector!");
5869     assert(isa<ConstantSDNode>(N3) &&
5870            "Insert subvector index must be constant");
5871     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5872             (N2VT.getVectorMinNumElements() +
5873              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5874                 VT.getVectorMinNumElements()) &&
5875            "Insert subvector overflow!");
5876     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
5877                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5878            "Constant index for INSERT_SUBVECTOR has an invalid size");
5879 
5880     // Trivial insertion.
5881     if (VT == N2VT)
5882       return N2;
5883 
5884     // If this is an insert of an extracted vector into an undef vector, we
5885     // can just use the input to the extract.
5886     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5887         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5888       return N2.getOperand(0);
5889     break;
5890   }
5891   case ISD::BITCAST:
5892     // Fold bit_convert nodes from a type to themselves.
5893     if (N1.getValueType() == VT)
5894       return N1;
5895     break;
5896   }
5897 
5898   // Memoize node if it doesn't produce a flag.
5899   SDNode *N;
5900   SDVTList VTs = getVTList(VT);
5901   SDValue Ops[] = {N1, N2, N3};
5902   if (VT != MVT::Glue) {
5903     FoldingSetNodeID ID;
5904     AddNodeIDNode(ID, Opcode, VTs, Ops);
5905     void *IP = nullptr;
5906     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5907       E->intersectFlagsWith(Flags);
5908       return SDValue(E, 0);
5909     }
5910 
5911     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5912     N->setFlags(Flags);
5913     createOperands(N, Ops);
5914     CSEMap.InsertNode(N, IP);
5915   } else {
5916     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5917     createOperands(N, Ops);
5918   }
5919 
5920   InsertNode(N);
5921   SDValue V = SDValue(N, 0);
5922   NewSDValueDbgMsg(V, "Creating new node: ", this);
5923   return V;
5924 }
5925 
5926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5927                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5928   SDValue Ops[] = { N1, N2, N3, N4 };
5929   return getNode(Opcode, DL, VT, Ops);
5930 }
5931 
5932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5933                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5934                               SDValue N5) {
5935   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5936   return getNode(Opcode, DL, VT, Ops);
5937 }
5938 
5939 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5940 /// the incoming stack arguments to be loaded from the stack.
5941 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5942   SmallVector<SDValue, 8> ArgChains;
5943 
5944   // Include the original chain at the beginning of the list. When this is
5945   // used by target LowerCall hooks, this helps legalize find the
5946   // CALLSEQ_BEGIN node.
5947   ArgChains.push_back(Chain);
5948 
5949   // Add a chain value for each stack argument.
5950   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5951        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5952     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5953       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5954         if (FI->getIndex() < 0)
5955           ArgChains.push_back(SDValue(L, 1));
5956 
5957   // Build a tokenfactor for all the chains.
5958   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5959 }
5960 
5961 /// getMemsetValue - Vectorized representation of the memset value
5962 /// operand.
5963 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5964                               const SDLoc &dl) {
5965   assert(!Value.isUndef());
5966 
5967   unsigned NumBits = VT.getScalarSizeInBits();
5968   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5969     assert(C->getAPIntValue().getBitWidth() == 8);
5970     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5971     if (VT.isInteger()) {
5972       bool IsOpaque = VT.getSizeInBits() > 64 ||
5973           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5974       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5975     }
5976     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5977                              VT);
5978   }
5979 
5980   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5981   EVT IntVT = VT.getScalarType();
5982   if (!IntVT.isInteger())
5983     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5984 
5985   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5986   if (NumBits > 8) {
5987     // Use a multiplication with 0x010101... to extend the input to the
5988     // required length.
5989     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5990     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5991                         DAG.getConstant(Magic, dl, IntVT));
5992   }
5993 
5994   if (VT != Value.getValueType() && !VT.isInteger())
5995     Value = DAG.getBitcast(VT.getScalarType(), Value);
5996   if (VT != Value.getValueType())
5997     Value = DAG.getSplatBuildVector(VT, dl, Value);
5998 
5999   return Value;
6000 }
6001 
6002 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6003 /// used when a memcpy is turned into a memset when the source is a constant
6004 /// string ptr.
6005 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6006                                   const TargetLowering &TLI,
6007                                   const ConstantDataArraySlice &Slice) {
6008   // Handle vector with all elements zero.
6009   if (Slice.Array == nullptr) {
6010     if (VT.isInteger())
6011       return DAG.getConstant(0, dl, VT);
6012     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6013       return DAG.getConstantFP(0.0, dl, VT);
6014     else if (VT.isVector()) {
6015       unsigned NumElts = VT.getVectorNumElements();
6016       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6017       return DAG.getNode(ISD::BITCAST, dl, VT,
6018                          DAG.getConstant(0, dl,
6019                                          EVT::getVectorVT(*DAG.getContext(),
6020                                                           EltVT, NumElts)));
6021     } else
6022       llvm_unreachable("Expected type!");
6023   }
6024 
6025   assert(!VT.isVector() && "Can't handle vector type here!");
6026   unsigned NumVTBits = VT.getSizeInBits();
6027   unsigned NumVTBytes = NumVTBits / 8;
6028   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6029 
6030   APInt Val(NumVTBits, 0);
6031   if (DAG.getDataLayout().isLittleEndian()) {
6032     for (unsigned i = 0; i != NumBytes; ++i)
6033       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6034   } else {
6035     for (unsigned i = 0; i != NumBytes; ++i)
6036       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6037   }
6038 
6039   // If the "cost" of materializing the integer immediate is less than the cost
6040   // of a load, then it is cost effective to turn the load into the immediate.
6041   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6042   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6043     return DAG.getConstant(Val, dl, VT);
6044   return SDValue(nullptr, 0);
6045 }
6046 
6047 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6048                                            const SDLoc &DL,
6049                                            const SDNodeFlags Flags) {
6050   EVT VT = Base.getValueType();
6051   SDValue Index;
6052 
6053   if (Offset.isScalable())
6054     Index = getVScale(DL, Base.getValueType(),
6055                       APInt(Base.getValueSizeInBits().getFixedSize(),
6056                             Offset.getKnownMinSize()));
6057   else
6058     Index = getConstant(Offset.getFixedSize(), DL, VT);
6059 
6060   return getMemBasePlusOffset(Base, Index, DL, Flags);
6061 }
6062 
6063 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6064                                            const SDLoc &DL,
6065                                            const SDNodeFlags Flags) {
6066   assert(Offset.getValueType().isInteger());
6067   EVT BasePtrVT = Ptr.getValueType();
6068   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6069 }
6070 
6071 /// Returns true if memcpy source is constant data.
6072 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6073   uint64_t SrcDelta = 0;
6074   GlobalAddressSDNode *G = nullptr;
6075   if (Src.getOpcode() == ISD::GlobalAddress)
6076     G = cast<GlobalAddressSDNode>(Src);
6077   else if (Src.getOpcode() == ISD::ADD &&
6078            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6079            Src.getOperand(1).getOpcode() == ISD::Constant) {
6080     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6081     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6082   }
6083   if (!G)
6084     return false;
6085 
6086   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6087                                   SrcDelta + G->getOffset());
6088 }
6089 
6090 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6091                                       SelectionDAG &DAG) {
6092   // On Darwin, -Os means optimize for size without hurting performance, so
6093   // only really optimize for size when -Oz (MinSize) is used.
6094   if (MF.getTarget().getTargetTriple().isOSDarwin())
6095     return MF.getFunction().hasMinSize();
6096   return DAG.shouldOptForSize();
6097 }
6098 
6099 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6100                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6101                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6102                           SmallVector<SDValue, 16> &OutStoreChains) {
6103   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6104   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6105   SmallVector<SDValue, 16> GluedLoadChains;
6106   for (unsigned i = From; i < To; ++i) {
6107     OutChains.push_back(OutLoadChains[i]);
6108     GluedLoadChains.push_back(OutLoadChains[i]);
6109   }
6110 
6111   // Chain for all loads.
6112   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6113                                   GluedLoadChains);
6114 
6115   for (unsigned i = From; i < To; ++i) {
6116     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6117     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6118                                   ST->getBasePtr(), ST->getMemoryVT(),
6119                                   ST->getMemOperand());
6120     OutChains.push_back(NewStore);
6121   }
6122 }
6123 
6124 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6125                                        SDValue Chain, SDValue Dst, SDValue Src,
6126                                        uint64_t Size, Align Alignment,
6127                                        bool isVol, bool AlwaysInline,
6128                                        MachinePointerInfo DstPtrInfo,
6129                                        MachinePointerInfo SrcPtrInfo) {
6130   // Turn a memcpy of undef to nop.
6131   // FIXME: We need to honor volatile even is Src is undef.
6132   if (Src.isUndef())
6133     return Chain;
6134 
6135   // Expand memcpy to a series of load and store ops if the size operand falls
6136   // below a certain threshold.
6137   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6138   // rather than maybe a humongous number of loads and stores.
6139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6140   const DataLayout &DL = DAG.getDataLayout();
6141   LLVMContext &C = *DAG.getContext();
6142   std::vector<EVT> MemOps;
6143   bool DstAlignCanChange = false;
6144   MachineFunction &MF = DAG.getMachineFunction();
6145   MachineFrameInfo &MFI = MF.getFrameInfo();
6146   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6147   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6148   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6149     DstAlignCanChange = true;
6150   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6151   if (!SrcAlign || Alignment > *SrcAlign)
6152     SrcAlign = Alignment;
6153   assert(SrcAlign && "SrcAlign must be set");
6154   ConstantDataArraySlice Slice;
6155   // If marked as volatile, perform a copy even when marked as constant.
6156   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6157   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6158   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6159   const MemOp Op = isZeroConstant
6160                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6161                                     /*IsZeroMemset*/ true, isVol)
6162                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6163                                      *SrcAlign, isVol, CopyFromConstant);
6164   if (!TLI.findOptimalMemOpLowering(
6165           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6166           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6167     return SDValue();
6168 
6169   if (DstAlignCanChange) {
6170     Type *Ty = MemOps[0].getTypeForEVT(C);
6171     Align NewAlign = DL.getABITypeAlign(Ty);
6172 
6173     // Don't promote to an alignment that would require dynamic stack
6174     // realignment.
6175     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6176     if (!TRI->needsStackRealignment(MF))
6177       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6178         NewAlign = NewAlign / 2;
6179 
6180     if (NewAlign > Alignment) {
6181       // Give the stack frame object a larger alignment if needed.
6182       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6183         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6184       Alignment = NewAlign;
6185     }
6186   }
6187 
6188   MachineMemOperand::Flags MMOFlags =
6189       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6190   SmallVector<SDValue, 16> OutLoadChains;
6191   SmallVector<SDValue, 16> OutStoreChains;
6192   SmallVector<SDValue, 32> OutChains;
6193   unsigned NumMemOps = MemOps.size();
6194   uint64_t SrcOff = 0, DstOff = 0;
6195   for (unsigned i = 0; i != NumMemOps; ++i) {
6196     EVT VT = MemOps[i];
6197     unsigned VTSize = VT.getSizeInBits() / 8;
6198     SDValue Value, Store;
6199 
6200     if (VTSize > Size) {
6201       // Issuing an unaligned load / store pair  that overlaps with the previous
6202       // pair. Adjust the offset accordingly.
6203       assert(i == NumMemOps-1 && i != 0);
6204       SrcOff -= VTSize - Size;
6205       DstOff -= VTSize - Size;
6206     }
6207 
6208     if (CopyFromConstant &&
6209         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6210       // It's unlikely a store of a vector immediate can be done in a single
6211       // instruction. It would require a load from a constantpool first.
6212       // We only handle zero vectors here.
6213       // FIXME: Handle other cases where store of vector immediate is done in
6214       // a single instruction.
6215       ConstantDataArraySlice SubSlice;
6216       if (SrcOff < Slice.Length) {
6217         SubSlice = Slice;
6218         SubSlice.move(SrcOff);
6219       } else {
6220         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6221         SubSlice.Array = nullptr;
6222         SubSlice.Offset = 0;
6223         SubSlice.Length = VTSize;
6224       }
6225       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6226       if (Value.getNode()) {
6227         Store = DAG.getStore(
6228             Chain, dl, Value,
6229             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6230             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6231         OutChains.push_back(Store);
6232       }
6233     }
6234 
6235     if (!Store.getNode()) {
6236       // The type might not be legal for the target.  This should only happen
6237       // if the type is smaller than a legal type, as on PPC, so the right
6238       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6239       // to Load/Store if NVT==VT.
6240       // FIXME does the case above also need this?
6241       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6242       assert(NVT.bitsGE(VT));
6243 
6244       bool isDereferenceable =
6245         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6246       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6247       if (isDereferenceable)
6248         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6249 
6250       Value = DAG.getExtLoad(
6251           ISD::EXTLOAD, dl, NVT, Chain,
6252           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6253           SrcPtrInfo.getWithOffset(SrcOff), VT,
6254           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6255       OutLoadChains.push_back(Value.getValue(1));
6256 
6257       Store = DAG.getTruncStore(
6258           Chain, dl, Value,
6259           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6260           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6261       OutStoreChains.push_back(Store);
6262     }
6263     SrcOff += VTSize;
6264     DstOff += VTSize;
6265     Size -= VTSize;
6266   }
6267 
6268   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6269                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6270   unsigned NumLdStInMemcpy = OutStoreChains.size();
6271 
6272   if (NumLdStInMemcpy) {
6273     // It may be that memcpy might be converted to memset if it's memcpy
6274     // of constants. In such a case, we won't have loads and stores, but
6275     // just stores. In the absence of loads, there is nothing to gang up.
6276     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6277       // If target does not care, just leave as it.
6278       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6279         OutChains.push_back(OutLoadChains[i]);
6280         OutChains.push_back(OutStoreChains[i]);
6281       }
6282     } else {
6283       // Ld/St less than/equal limit set by target.
6284       if (NumLdStInMemcpy <= GluedLdStLimit) {
6285           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6286                                         NumLdStInMemcpy, OutLoadChains,
6287                                         OutStoreChains);
6288       } else {
6289         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6290         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6291         unsigned GlueIter = 0;
6292 
6293         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6294           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6295           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6296 
6297           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6298                                        OutLoadChains, OutStoreChains);
6299           GlueIter += GluedLdStLimit;
6300         }
6301 
6302         // Residual ld/st.
6303         if (RemainingLdStInMemcpy) {
6304           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6305                                         RemainingLdStInMemcpy, OutLoadChains,
6306                                         OutStoreChains);
6307         }
6308       }
6309     }
6310   }
6311   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6312 }
6313 
6314 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6315                                         SDValue Chain, SDValue Dst, SDValue Src,
6316                                         uint64_t Size, Align Alignment,
6317                                         bool isVol, bool AlwaysInline,
6318                                         MachinePointerInfo DstPtrInfo,
6319                                         MachinePointerInfo SrcPtrInfo) {
6320   // Turn a memmove of undef to nop.
6321   // FIXME: We need to honor volatile even is Src is undef.
6322   if (Src.isUndef())
6323     return Chain;
6324 
6325   // Expand memmove to a series of load and store ops if the size operand falls
6326   // below a certain threshold.
6327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6328   const DataLayout &DL = DAG.getDataLayout();
6329   LLVMContext &C = *DAG.getContext();
6330   std::vector<EVT> MemOps;
6331   bool DstAlignCanChange = false;
6332   MachineFunction &MF = DAG.getMachineFunction();
6333   MachineFrameInfo &MFI = MF.getFrameInfo();
6334   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6335   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6336   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6337     DstAlignCanChange = true;
6338   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6339   if (!SrcAlign || Alignment > *SrcAlign)
6340     SrcAlign = Alignment;
6341   assert(SrcAlign && "SrcAlign must be set");
6342   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6343   if (!TLI.findOptimalMemOpLowering(
6344           MemOps, Limit,
6345           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6346                       /*IsVolatile*/ true),
6347           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6348           MF.getFunction().getAttributes()))
6349     return SDValue();
6350 
6351   if (DstAlignCanChange) {
6352     Type *Ty = MemOps[0].getTypeForEVT(C);
6353     Align NewAlign = DL.getABITypeAlign(Ty);
6354     if (NewAlign > Alignment) {
6355       // Give the stack frame object a larger alignment if needed.
6356       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6357         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6358       Alignment = NewAlign;
6359     }
6360   }
6361 
6362   MachineMemOperand::Flags MMOFlags =
6363       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6364   uint64_t SrcOff = 0, DstOff = 0;
6365   SmallVector<SDValue, 8> LoadValues;
6366   SmallVector<SDValue, 8> LoadChains;
6367   SmallVector<SDValue, 8> OutChains;
6368   unsigned NumMemOps = MemOps.size();
6369   for (unsigned i = 0; i < NumMemOps; i++) {
6370     EVT VT = MemOps[i];
6371     unsigned VTSize = VT.getSizeInBits() / 8;
6372     SDValue Value;
6373 
6374     bool isDereferenceable =
6375       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6376     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6377     if (isDereferenceable)
6378       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6379 
6380     Value =
6381         DAG.getLoad(VT, dl, Chain,
6382                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6383                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6384     LoadValues.push_back(Value);
6385     LoadChains.push_back(Value.getValue(1));
6386     SrcOff += VTSize;
6387   }
6388   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6389   OutChains.clear();
6390   for (unsigned i = 0; i < NumMemOps; i++) {
6391     EVT VT = MemOps[i];
6392     unsigned VTSize = VT.getSizeInBits() / 8;
6393     SDValue Store;
6394 
6395     Store =
6396         DAG.getStore(Chain, dl, LoadValues[i],
6397                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6398                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6399     OutChains.push_back(Store);
6400     DstOff += VTSize;
6401   }
6402 
6403   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6404 }
6405 
6406 /// Lower the call to 'memset' intrinsic function into a series of store
6407 /// operations.
6408 ///
6409 /// \param DAG Selection DAG where lowered code is placed.
6410 /// \param dl Link to corresponding IR location.
6411 /// \param Chain Control flow dependency.
6412 /// \param Dst Pointer to destination memory location.
6413 /// \param Src Value of byte to write into the memory.
6414 /// \param Size Number of bytes to write.
6415 /// \param Alignment Alignment of the destination in bytes.
6416 /// \param isVol True if destination is volatile.
6417 /// \param DstPtrInfo IR information on the memory pointer.
6418 /// \returns New head in the control flow, if lowering was successful, empty
6419 /// SDValue otherwise.
6420 ///
6421 /// The function tries to replace 'llvm.memset' intrinsic with several store
6422 /// operations and value calculation code. This is usually profitable for small
6423 /// memory size.
6424 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6425                                SDValue Chain, SDValue Dst, SDValue Src,
6426                                uint64_t Size, Align Alignment, bool isVol,
6427                                MachinePointerInfo DstPtrInfo) {
6428   // Turn a memset of undef to nop.
6429   // FIXME: We need to honor volatile even is Src is undef.
6430   if (Src.isUndef())
6431     return Chain;
6432 
6433   // Expand memset to a series of load/store ops if the size operand
6434   // falls below a certain threshold.
6435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6436   std::vector<EVT> MemOps;
6437   bool DstAlignCanChange = false;
6438   MachineFunction &MF = DAG.getMachineFunction();
6439   MachineFrameInfo &MFI = MF.getFrameInfo();
6440   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6441   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6442   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6443     DstAlignCanChange = true;
6444   bool IsZeroVal =
6445     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6446   if (!TLI.findOptimalMemOpLowering(
6447           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6448           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6449           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6450     return SDValue();
6451 
6452   if (DstAlignCanChange) {
6453     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6454     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6455     if (NewAlign > Alignment) {
6456       // Give the stack frame object a larger alignment if needed.
6457       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6458         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6459       Alignment = NewAlign;
6460     }
6461   }
6462 
6463   SmallVector<SDValue, 8> OutChains;
6464   uint64_t DstOff = 0;
6465   unsigned NumMemOps = MemOps.size();
6466 
6467   // Find the largest store and generate the bit pattern for it.
6468   EVT LargestVT = MemOps[0];
6469   for (unsigned i = 1; i < NumMemOps; i++)
6470     if (MemOps[i].bitsGT(LargestVT))
6471       LargestVT = MemOps[i];
6472   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6473 
6474   for (unsigned i = 0; i < NumMemOps; i++) {
6475     EVT VT = MemOps[i];
6476     unsigned VTSize = VT.getSizeInBits() / 8;
6477     if (VTSize > Size) {
6478       // Issuing an unaligned load / store pair  that overlaps with the previous
6479       // pair. Adjust the offset accordingly.
6480       assert(i == NumMemOps-1 && i != 0);
6481       DstOff -= VTSize - Size;
6482     }
6483 
6484     // If this store is smaller than the largest store see whether we can get
6485     // the smaller value for free with a truncate.
6486     SDValue Value = MemSetValue;
6487     if (VT.bitsLT(LargestVT)) {
6488       if (!LargestVT.isVector() && !VT.isVector() &&
6489           TLI.isTruncateFree(LargestVT, VT))
6490         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6491       else
6492         Value = getMemsetValue(Src, VT, DAG, dl);
6493     }
6494     assert(Value.getValueType() == VT && "Value with wrong type.");
6495     SDValue Store = DAG.getStore(
6496         Chain, dl, Value,
6497         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6498         DstPtrInfo.getWithOffset(DstOff), Alignment,
6499         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6500     OutChains.push_back(Store);
6501     DstOff += VT.getSizeInBits() / 8;
6502     Size -= VTSize;
6503   }
6504 
6505   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6506 }
6507 
6508 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6509                                             unsigned AS) {
6510   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6511   // pointer operands can be losslessly bitcasted to pointers of address space 0
6512   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6513     report_fatal_error("cannot lower memory intrinsic in address space " +
6514                        Twine(AS));
6515   }
6516 }
6517 
6518 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6519                                 SDValue Src, SDValue Size, Align Alignment,
6520                                 bool isVol, bool AlwaysInline, bool isTailCall,
6521                                 MachinePointerInfo DstPtrInfo,
6522                                 MachinePointerInfo SrcPtrInfo) {
6523   // Check to see if we should lower the memcpy to loads and stores first.
6524   // For cases within the target-specified limits, this is the best choice.
6525   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6526   if (ConstantSize) {
6527     // Memcpy with size zero? Just return the original chain.
6528     if (ConstantSize->isNullValue())
6529       return Chain;
6530 
6531     SDValue Result = getMemcpyLoadsAndStores(
6532         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6533         isVol, false, DstPtrInfo, SrcPtrInfo);
6534     if (Result.getNode())
6535       return Result;
6536   }
6537 
6538   // Then check to see if we should lower the memcpy with target-specific
6539   // code. If the target chooses to do this, this is the next best.
6540   if (TSI) {
6541     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6542         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6543         DstPtrInfo, SrcPtrInfo);
6544     if (Result.getNode())
6545       return Result;
6546   }
6547 
6548   // If we really need inline code and the target declined to provide it,
6549   // use a (potentially long) sequence of loads and stores.
6550   if (AlwaysInline) {
6551     assert(ConstantSize && "AlwaysInline requires a constant size!");
6552     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6553                                    ConstantSize->getZExtValue(), Alignment,
6554                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6555   }
6556 
6557   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6558   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6559 
6560   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6561   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6562   // respect volatile, so they may do things like read or write memory
6563   // beyond the given memory regions. But fixing this isn't easy, and most
6564   // people don't care.
6565 
6566   // Emit a library call.
6567   TargetLowering::ArgListTy Args;
6568   TargetLowering::ArgListEntry Entry;
6569   Entry.Ty = Type::getInt8PtrTy(*getContext());
6570   Entry.Node = Dst; Args.push_back(Entry);
6571   Entry.Node = Src; Args.push_back(Entry);
6572 
6573   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6574   Entry.Node = Size; Args.push_back(Entry);
6575   // FIXME: pass in SDLoc
6576   TargetLowering::CallLoweringInfo CLI(*this);
6577   CLI.setDebugLoc(dl)
6578       .setChain(Chain)
6579       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6580                     Dst.getValueType().getTypeForEVT(*getContext()),
6581                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6582                                       TLI->getPointerTy(getDataLayout())),
6583                     std::move(Args))
6584       .setDiscardResult()
6585       .setTailCall(isTailCall);
6586 
6587   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6588   return CallResult.second;
6589 }
6590 
6591 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6592                                       SDValue Dst, unsigned DstAlign,
6593                                       SDValue Src, unsigned SrcAlign,
6594                                       SDValue Size, Type *SizeTy,
6595                                       unsigned ElemSz, bool isTailCall,
6596                                       MachinePointerInfo DstPtrInfo,
6597                                       MachinePointerInfo SrcPtrInfo) {
6598   // Emit a library call.
6599   TargetLowering::ArgListTy Args;
6600   TargetLowering::ArgListEntry Entry;
6601   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6602   Entry.Node = Dst;
6603   Args.push_back(Entry);
6604 
6605   Entry.Node = Src;
6606   Args.push_back(Entry);
6607 
6608   Entry.Ty = SizeTy;
6609   Entry.Node = Size;
6610   Args.push_back(Entry);
6611 
6612   RTLIB::Libcall LibraryCall =
6613       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6614   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6615     report_fatal_error("Unsupported element size");
6616 
6617   TargetLowering::CallLoweringInfo CLI(*this);
6618   CLI.setDebugLoc(dl)
6619       .setChain(Chain)
6620       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6621                     Type::getVoidTy(*getContext()),
6622                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6623                                       TLI->getPointerTy(getDataLayout())),
6624                     std::move(Args))
6625       .setDiscardResult()
6626       .setTailCall(isTailCall);
6627 
6628   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6629   return CallResult.second;
6630 }
6631 
6632 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6633                                  SDValue Src, SDValue Size, Align Alignment,
6634                                  bool isVol, bool isTailCall,
6635                                  MachinePointerInfo DstPtrInfo,
6636                                  MachinePointerInfo SrcPtrInfo) {
6637   // Check to see if we should lower the memmove to loads and stores first.
6638   // For cases within the target-specified limits, this is the best choice.
6639   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6640   if (ConstantSize) {
6641     // Memmove with size zero? Just return the original chain.
6642     if (ConstantSize->isNullValue())
6643       return Chain;
6644 
6645     SDValue Result = getMemmoveLoadsAndStores(
6646         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6647         isVol, false, DstPtrInfo, SrcPtrInfo);
6648     if (Result.getNode())
6649       return Result;
6650   }
6651 
6652   // Then check to see if we should lower the memmove with target-specific
6653   // code. If the target chooses to do this, this is the next best.
6654   if (TSI) {
6655     SDValue Result =
6656         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6657                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6658     if (Result.getNode())
6659       return Result;
6660   }
6661 
6662   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6663   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6664 
6665   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6666   // not be safe.  See memcpy above for more details.
6667 
6668   // Emit a library call.
6669   TargetLowering::ArgListTy Args;
6670   TargetLowering::ArgListEntry Entry;
6671   Entry.Ty = Type::getInt8PtrTy(*getContext());
6672   Entry.Node = Dst; Args.push_back(Entry);
6673   Entry.Node = Src; Args.push_back(Entry);
6674 
6675   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6676   Entry.Node = Size; Args.push_back(Entry);
6677   // FIXME:  pass in SDLoc
6678   TargetLowering::CallLoweringInfo CLI(*this);
6679   CLI.setDebugLoc(dl)
6680       .setChain(Chain)
6681       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6682                     Dst.getValueType().getTypeForEVT(*getContext()),
6683                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6684                                       TLI->getPointerTy(getDataLayout())),
6685                     std::move(Args))
6686       .setDiscardResult()
6687       .setTailCall(isTailCall);
6688 
6689   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6690   return CallResult.second;
6691 }
6692 
6693 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6694                                        SDValue Dst, unsigned DstAlign,
6695                                        SDValue Src, unsigned SrcAlign,
6696                                        SDValue Size, Type *SizeTy,
6697                                        unsigned ElemSz, bool isTailCall,
6698                                        MachinePointerInfo DstPtrInfo,
6699                                        MachinePointerInfo SrcPtrInfo) {
6700   // Emit a library call.
6701   TargetLowering::ArgListTy Args;
6702   TargetLowering::ArgListEntry Entry;
6703   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6704   Entry.Node = Dst;
6705   Args.push_back(Entry);
6706 
6707   Entry.Node = Src;
6708   Args.push_back(Entry);
6709 
6710   Entry.Ty = SizeTy;
6711   Entry.Node = Size;
6712   Args.push_back(Entry);
6713 
6714   RTLIB::Libcall LibraryCall =
6715       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6716   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6717     report_fatal_error("Unsupported element size");
6718 
6719   TargetLowering::CallLoweringInfo CLI(*this);
6720   CLI.setDebugLoc(dl)
6721       .setChain(Chain)
6722       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6723                     Type::getVoidTy(*getContext()),
6724                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6725                                       TLI->getPointerTy(getDataLayout())),
6726                     std::move(Args))
6727       .setDiscardResult()
6728       .setTailCall(isTailCall);
6729 
6730   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6731   return CallResult.second;
6732 }
6733 
6734 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6735                                 SDValue Src, SDValue Size, Align Alignment,
6736                                 bool isVol, bool isTailCall,
6737                                 MachinePointerInfo DstPtrInfo) {
6738   // Check to see if we should lower the memset to stores first.
6739   // For cases within the target-specified limits, this is the best choice.
6740   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6741   if (ConstantSize) {
6742     // Memset with size zero? Just return the original chain.
6743     if (ConstantSize->isNullValue())
6744       return Chain;
6745 
6746     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6747                                      ConstantSize->getZExtValue(), Alignment,
6748                                      isVol, DstPtrInfo);
6749 
6750     if (Result.getNode())
6751       return Result;
6752   }
6753 
6754   // Then check to see if we should lower the memset with target-specific
6755   // code. If the target chooses to do this, this is the next best.
6756   if (TSI) {
6757     SDValue Result = TSI->EmitTargetCodeForMemset(
6758         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6759     if (Result.getNode())
6760       return Result;
6761   }
6762 
6763   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6764 
6765   // Emit a library call.
6766   TargetLowering::ArgListTy Args;
6767   TargetLowering::ArgListEntry Entry;
6768   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6769   Args.push_back(Entry);
6770   Entry.Node = Src;
6771   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6772   Args.push_back(Entry);
6773   Entry.Node = Size;
6774   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6775   Args.push_back(Entry);
6776 
6777   // FIXME: pass in SDLoc
6778   TargetLowering::CallLoweringInfo CLI(*this);
6779   CLI.setDebugLoc(dl)
6780       .setChain(Chain)
6781       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6782                     Dst.getValueType().getTypeForEVT(*getContext()),
6783                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6784                                       TLI->getPointerTy(getDataLayout())),
6785                     std::move(Args))
6786       .setDiscardResult()
6787       .setTailCall(isTailCall);
6788 
6789   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6790   return CallResult.second;
6791 }
6792 
6793 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6794                                       SDValue Dst, unsigned DstAlign,
6795                                       SDValue Value, SDValue Size, Type *SizeTy,
6796                                       unsigned ElemSz, bool isTailCall,
6797                                       MachinePointerInfo DstPtrInfo) {
6798   // Emit a library call.
6799   TargetLowering::ArgListTy Args;
6800   TargetLowering::ArgListEntry Entry;
6801   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6802   Entry.Node = Dst;
6803   Args.push_back(Entry);
6804 
6805   Entry.Ty = Type::getInt8Ty(*getContext());
6806   Entry.Node = Value;
6807   Args.push_back(Entry);
6808 
6809   Entry.Ty = SizeTy;
6810   Entry.Node = Size;
6811   Args.push_back(Entry);
6812 
6813   RTLIB::Libcall LibraryCall =
6814       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6815   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6816     report_fatal_error("Unsupported element size");
6817 
6818   TargetLowering::CallLoweringInfo CLI(*this);
6819   CLI.setDebugLoc(dl)
6820       .setChain(Chain)
6821       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6822                     Type::getVoidTy(*getContext()),
6823                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6824                                       TLI->getPointerTy(getDataLayout())),
6825                     std::move(Args))
6826       .setDiscardResult()
6827       .setTailCall(isTailCall);
6828 
6829   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6830   return CallResult.second;
6831 }
6832 
6833 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6834                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6835                                 MachineMemOperand *MMO) {
6836   FoldingSetNodeID ID;
6837   ID.AddInteger(MemVT.getRawBits());
6838   AddNodeIDNode(ID, Opcode, VTList, Ops);
6839   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6840   void* IP = nullptr;
6841   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6842     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6843     return SDValue(E, 0);
6844   }
6845 
6846   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6847                                     VTList, MemVT, MMO);
6848   createOperands(N, Ops);
6849 
6850   CSEMap.InsertNode(N, IP);
6851   InsertNode(N);
6852   return SDValue(N, 0);
6853 }
6854 
6855 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6856                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6857                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6858                                        MachineMemOperand *MMO) {
6859   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6860          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6861   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6862 
6863   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6864   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6865 }
6866 
6867 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6868                                 SDValue Chain, SDValue Ptr, SDValue Val,
6869                                 MachineMemOperand *MMO) {
6870   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6871           Opcode == ISD::ATOMIC_LOAD_SUB ||
6872           Opcode == ISD::ATOMIC_LOAD_AND ||
6873           Opcode == ISD::ATOMIC_LOAD_CLR ||
6874           Opcode == ISD::ATOMIC_LOAD_OR ||
6875           Opcode == ISD::ATOMIC_LOAD_XOR ||
6876           Opcode == ISD::ATOMIC_LOAD_NAND ||
6877           Opcode == ISD::ATOMIC_LOAD_MIN ||
6878           Opcode == ISD::ATOMIC_LOAD_MAX ||
6879           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6880           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6881           Opcode == ISD::ATOMIC_LOAD_FADD ||
6882           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6883           Opcode == ISD::ATOMIC_SWAP ||
6884           Opcode == ISD::ATOMIC_STORE) &&
6885          "Invalid Atomic Op");
6886 
6887   EVT VT = Val.getValueType();
6888 
6889   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6890                                                getVTList(VT, MVT::Other);
6891   SDValue Ops[] = {Chain, Ptr, Val};
6892   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6893 }
6894 
6895 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6896                                 EVT VT, SDValue Chain, SDValue Ptr,
6897                                 MachineMemOperand *MMO) {
6898   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6899 
6900   SDVTList VTs = getVTList(VT, MVT::Other);
6901   SDValue Ops[] = {Chain, Ptr};
6902   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6903 }
6904 
6905 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6906 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6907   if (Ops.size() == 1)
6908     return Ops[0];
6909 
6910   SmallVector<EVT, 4> VTs;
6911   VTs.reserve(Ops.size());
6912   for (const SDValue &Op : Ops)
6913     VTs.push_back(Op.getValueType());
6914   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6915 }
6916 
6917 SDValue SelectionDAG::getMemIntrinsicNode(
6918     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6919     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6920     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6921   if (!Size && MemVT.isScalableVector())
6922     Size = MemoryLocation::UnknownSize;
6923   else if (!Size)
6924     Size = MemVT.getStoreSize();
6925 
6926   MachineFunction &MF = getMachineFunction();
6927   MachineMemOperand *MMO =
6928       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6929 
6930   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6931 }
6932 
6933 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6934                                           SDVTList VTList,
6935                                           ArrayRef<SDValue> Ops, EVT MemVT,
6936                                           MachineMemOperand *MMO) {
6937   assert((Opcode == ISD::INTRINSIC_VOID ||
6938           Opcode == ISD::INTRINSIC_W_CHAIN ||
6939           Opcode == ISD::PREFETCH ||
6940           ((int)Opcode <= std::numeric_limits<int>::max() &&
6941            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6942          "Opcode is not a memory-accessing opcode!");
6943 
6944   // Memoize the node unless it returns a flag.
6945   MemIntrinsicSDNode *N;
6946   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6947     FoldingSetNodeID ID;
6948     AddNodeIDNode(ID, Opcode, VTList, Ops);
6949     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6950         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6951     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6952     void *IP = nullptr;
6953     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6954       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6955       return SDValue(E, 0);
6956     }
6957 
6958     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6959                                       VTList, MemVT, MMO);
6960     createOperands(N, Ops);
6961 
6962   CSEMap.InsertNode(N, IP);
6963   } else {
6964     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6965                                       VTList, MemVT, MMO);
6966     createOperands(N, Ops);
6967   }
6968   InsertNode(N);
6969   SDValue V(N, 0);
6970   NewSDValueDbgMsg(V, "Creating new node: ", this);
6971   return V;
6972 }
6973 
6974 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6975                                       SDValue Chain, int FrameIndex,
6976                                       int64_t Size, int64_t Offset) {
6977   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6978   const auto VTs = getVTList(MVT::Other);
6979   SDValue Ops[2] = {
6980       Chain,
6981       getFrameIndex(FrameIndex,
6982                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6983                     true)};
6984 
6985   FoldingSetNodeID ID;
6986   AddNodeIDNode(ID, Opcode, VTs, Ops);
6987   ID.AddInteger(FrameIndex);
6988   ID.AddInteger(Size);
6989   ID.AddInteger(Offset);
6990   void *IP = nullptr;
6991   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6992     return SDValue(E, 0);
6993 
6994   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6995       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6996   createOperands(N, Ops);
6997   CSEMap.InsertNode(N, IP);
6998   InsertNode(N);
6999   SDValue V(N, 0);
7000   NewSDValueDbgMsg(V, "Creating new node: ", this);
7001   return V;
7002 }
7003 
7004 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7005                                          uint64_t Guid, uint64_t Index,
7006                                          uint32_t Attr) {
7007   const unsigned Opcode = ISD::PSEUDO_PROBE;
7008   const auto VTs = getVTList(MVT::Other);
7009   SDValue Ops[] = {Chain};
7010   FoldingSetNodeID ID;
7011   AddNodeIDNode(ID, Opcode, VTs, Ops);
7012   ID.AddInteger(Guid);
7013   ID.AddInteger(Index);
7014   void *IP = nullptr;
7015   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7016     return SDValue(E, 0);
7017 
7018   auto *N = newSDNode<PseudoProbeSDNode>(
7019       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7020   createOperands(N, Ops);
7021   CSEMap.InsertNode(N, IP);
7022   InsertNode(N);
7023   SDValue V(N, 0);
7024   NewSDValueDbgMsg(V, "Creating new node: ", this);
7025   return V;
7026 }
7027 
7028 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7029 /// MachinePointerInfo record from it.  This is particularly useful because the
7030 /// code generator has many cases where it doesn't bother passing in a
7031 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7032 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7033                                            SelectionDAG &DAG, SDValue Ptr,
7034                                            int64_t Offset = 0) {
7035   // If this is FI+Offset, we can model it.
7036   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7037     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7038                                              FI->getIndex(), Offset);
7039 
7040   // If this is (FI+Offset1)+Offset2, we can model it.
7041   if (Ptr.getOpcode() != ISD::ADD ||
7042       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7043       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7044     return Info;
7045 
7046   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7047   return MachinePointerInfo::getFixedStack(
7048       DAG.getMachineFunction(), FI,
7049       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7050 }
7051 
7052 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7053 /// MachinePointerInfo record from it.  This is particularly useful because the
7054 /// code generator has many cases where it doesn't bother passing in a
7055 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7056 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7057                                            SelectionDAG &DAG, SDValue Ptr,
7058                                            SDValue OffsetOp) {
7059   // If the 'Offset' value isn't a constant, we can't handle this.
7060   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7061     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7062   if (OffsetOp.isUndef())
7063     return InferPointerInfo(Info, DAG, Ptr);
7064   return Info;
7065 }
7066 
7067 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7068                               EVT VT, const SDLoc &dl, SDValue Chain,
7069                               SDValue Ptr, SDValue Offset,
7070                               MachinePointerInfo PtrInfo, EVT MemVT,
7071                               Align Alignment,
7072                               MachineMemOperand::Flags MMOFlags,
7073                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7074   assert(Chain.getValueType() == MVT::Other &&
7075         "Invalid chain type");
7076 
7077   MMOFlags |= MachineMemOperand::MOLoad;
7078   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7079   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7080   // clients.
7081   if (PtrInfo.V.isNull())
7082     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7083 
7084   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7085   MachineFunction &MF = getMachineFunction();
7086   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7087                                                    Alignment, AAInfo, Ranges);
7088   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7089 }
7090 
7091 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7092                               EVT VT, const SDLoc &dl, SDValue Chain,
7093                               SDValue Ptr, SDValue Offset, EVT MemVT,
7094                               MachineMemOperand *MMO) {
7095   if (VT == MemVT) {
7096     ExtType = ISD::NON_EXTLOAD;
7097   } else if (ExtType == ISD::NON_EXTLOAD) {
7098     assert(VT == MemVT && "Non-extending load from different memory type!");
7099   } else {
7100     // Extending load.
7101     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7102            "Should only be an extending load, not truncating!");
7103     assert(VT.isInteger() == MemVT.isInteger() &&
7104            "Cannot convert from FP to Int or Int -> FP!");
7105     assert(VT.isVector() == MemVT.isVector() &&
7106            "Cannot use an ext load to convert to or from a vector!");
7107     assert((!VT.isVector() ||
7108             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7109            "Cannot use an ext load to change the number of vector elements!");
7110   }
7111 
7112   bool Indexed = AM != ISD::UNINDEXED;
7113   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7114 
7115   SDVTList VTs = Indexed ?
7116     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7117   SDValue Ops[] = { Chain, Ptr, Offset };
7118   FoldingSetNodeID ID;
7119   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7120   ID.AddInteger(MemVT.getRawBits());
7121   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7122       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7123   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7124   void *IP = nullptr;
7125   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7126     cast<LoadSDNode>(E)->refineAlignment(MMO);
7127     return SDValue(E, 0);
7128   }
7129   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7130                                   ExtType, MemVT, MMO);
7131   createOperands(N, Ops);
7132 
7133   CSEMap.InsertNode(N, IP);
7134   InsertNode(N);
7135   SDValue V(N, 0);
7136   NewSDValueDbgMsg(V, "Creating new node: ", this);
7137   return V;
7138 }
7139 
7140 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7141                               SDValue Ptr, MachinePointerInfo PtrInfo,
7142                               MaybeAlign Alignment,
7143                               MachineMemOperand::Flags MMOFlags,
7144                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7145   SDValue Undef = getUNDEF(Ptr.getValueType());
7146   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7147                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7148 }
7149 
7150 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7151                               SDValue Ptr, MachineMemOperand *MMO) {
7152   SDValue Undef = getUNDEF(Ptr.getValueType());
7153   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7154                  VT, MMO);
7155 }
7156 
7157 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7158                                  EVT VT, SDValue Chain, SDValue Ptr,
7159                                  MachinePointerInfo PtrInfo, EVT MemVT,
7160                                  MaybeAlign Alignment,
7161                                  MachineMemOperand::Flags MMOFlags,
7162                                  const AAMDNodes &AAInfo) {
7163   SDValue Undef = getUNDEF(Ptr.getValueType());
7164   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7165                  MemVT, Alignment, MMOFlags, AAInfo);
7166 }
7167 
7168 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7169                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7170                                  MachineMemOperand *MMO) {
7171   SDValue Undef = getUNDEF(Ptr.getValueType());
7172   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7173                  MemVT, MMO);
7174 }
7175 
7176 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7177                                      SDValue Base, SDValue Offset,
7178                                      ISD::MemIndexedMode AM) {
7179   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7180   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7181   // Don't propagate the invariant or dereferenceable flags.
7182   auto MMOFlags =
7183       LD->getMemOperand()->getFlags() &
7184       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7185   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7186                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7187                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7188 }
7189 
7190 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7191                                SDValue Ptr, MachinePointerInfo PtrInfo,
7192                                Align Alignment,
7193                                MachineMemOperand::Flags MMOFlags,
7194                                const AAMDNodes &AAInfo) {
7195   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7196 
7197   MMOFlags |= MachineMemOperand::MOStore;
7198   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7199 
7200   if (PtrInfo.V.isNull())
7201     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7202 
7203   MachineFunction &MF = getMachineFunction();
7204   uint64_t Size =
7205       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7206   MachineMemOperand *MMO =
7207       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7208   return getStore(Chain, dl, Val, Ptr, MMO);
7209 }
7210 
7211 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7212                                SDValue Ptr, MachineMemOperand *MMO) {
7213   assert(Chain.getValueType() == MVT::Other &&
7214         "Invalid chain type");
7215   EVT VT = Val.getValueType();
7216   SDVTList VTs = getVTList(MVT::Other);
7217   SDValue Undef = getUNDEF(Ptr.getValueType());
7218   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7219   FoldingSetNodeID ID;
7220   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7221   ID.AddInteger(VT.getRawBits());
7222   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7223       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7224   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7225   void *IP = nullptr;
7226   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7227     cast<StoreSDNode>(E)->refineAlignment(MMO);
7228     return SDValue(E, 0);
7229   }
7230   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7231                                    ISD::UNINDEXED, false, VT, MMO);
7232   createOperands(N, Ops);
7233 
7234   CSEMap.InsertNode(N, IP);
7235   InsertNode(N);
7236   SDValue V(N, 0);
7237   NewSDValueDbgMsg(V, "Creating new node: ", this);
7238   return V;
7239 }
7240 
7241 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7242                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7243                                     EVT SVT, Align Alignment,
7244                                     MachineMemOperand::Flags MMOFlags,
7245                                     const AAMDNodes &AAInfo) {
7246   assert(Chain.getValueType() == MVT::Other &&
7247         "Invalid chain type");
7248 
7249   MMOFlags |= MachineMemOperand::MOStore;
7250   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7251 
7252   if (PtrInfo.V.isNull())
7253     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7254 
7255   MachineFunction &MF = getMachineFunction();
7256   MachineMemOperand *MMO = MF.getMachineMemOperand(
7257       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7258       Alignment, AAInfo);
7259   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7260 }
7261 
7262 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7263                                     SDValue Ptr, EVT SVT,
7264                                     MachineMemOperand *MMO) {
7265   EVT VT = Val.getValueType();
7266 
7267   assert(Chain.getValueType() == MVT::Other &&
7268         "Invalid chain type");
7269   if (VT == SVT)
7270     return getStore(Chain, dl, Val, Ptr, MMO);
7271 
7272   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7273          "Should only be a truncating store, not extending!");
7274   assert(VT.isInteger() == SVT.isInteger() &&
7275          "Can't do FP-INT conversion!");
7276   assert(VT.isVector() == SVT.isVector() &&
7277          "Cannot use trunc store to convert to or from a vector!");
7278   assert((!VT.isVector() ||
7279           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7280          "Cannot use trunc store to change the number of vector elements!");
7281 
7282   SDVTList VTs = getVTList(MVT::Other);
7283   SDValue Undef = getUNDEF(Ptr.getValueType());
7284   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7285   FoldingSetNodeID ID;
7286   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7287   ID.AddInteger(SVT.getRawBits());
7288   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7289       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7290   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7291   void *IP = nullptr;
7292   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7293     cast<StoreSDNode>(E)->refineAlignment(MMO);
7294     return SDValue(E, 0);
7295   }
7296   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7297                                    ISD::UNINDEXED, true, SVT, MMO);
7298   createOperands(N, Ops);
7299 
7300   CSEMap.InsertNode(N, IP);
7301   InsertNode(N);
7302   SDValue V(N, 0);
7303   NewSDValueDbgMsg(V, "Creating new node: ", this);
7304   return V;
7305 }
7306 
7307 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7308                                       SDValue Base, SDValue Offset,
7309                                       ISD::MemIndexedMode AM) {
7310   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7311   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7312   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7313   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7314   FoldingSetNodeID ID;
7315   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7316   ID.AddInteger(ST->getMemoryVT().getRawBits());
7317   ID.AddInteger(ST->getRawSubclassData());
7318   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7319   void *IP = nullptr;
7320   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7321     return SDValue(E, 0);
7322 
7323   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7324                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7325                                    ST->getMemOperand());
7326   createOperands(N, Ops);
7327 
7328   CSEMap.InsertNode(N, IP);
7329   InsertNode(N);
7330   SDValue V(N, 0);
7331   NewSDValueDbgMsg(V, "Creating new node: ", this);
7332   return V;
7333 }
7334 
7335 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7336                                     SDValue Base, SDValue Offset, SDValue Mask,
7337                                     SDValue PassThru, EVT MemVT,
7338                                     MachineMemOperand *MMO,
7339                                     ISD::MemIndexedMode AM,
7340                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7341   bool Indexed = AM != ISD::UNINDEXED;
7342   assert((Indexed || Offset.isUndef()) &&
7343          "Unindexed masked load with an offset!");
7344   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7345                          : getVTList(VT, MVT::Other);
7346   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7347   FoldingSetNodeID ID;
7348   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7349   ID.AddInteger(MemVT.getRawBits());
7350   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7351       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7352   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7353   void *IP = nullptr;
7354   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7355     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7356     return SDValue(E, 0);
7357   }
7358   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7359                                         AM, ExtTy, isExpanding, MemVT, MMO);
7360   createOperands(N, Ops);
7361 
7362   CSEMap.InsertNode(N, IP);
7363   InsertNode(N);
7364   SDValue V(N, 0);
7365   NewSDValueDbgMsg(V, "Creating new node: ", this);
7366   return V;
7367 }
7368 
7369 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7370                                            SDValue Base, SDValue Offset,
7371                                            ISD::MemIndexedMode AM) {
7372   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7373   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7374   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7375                        Offset, LD->getMask(), LD->getPassThru(),
7376                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7377                        LD->getExtensionType(), LD->isExpandingLoad());
7378 }
7379 
7380 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7381                                      SDValue Val, SDValue Base, SDValue Offset,
7382                                      SDValue Mask, EVT MemVT,
7383                                      MachineMemOperand *MMO,
7384                                      ISD::MemIndexedMode AM, bool IsTruncating,
7385                                      bool IsCompressing) {
7386   assert(Chain.getValueType() == MVT::Other &&
7387         "Invalid chain type");
7388   bool Indexed = AM != ISD::UNINDEXED;
7389   assert((Indexed || Offset.isUndef()) &&
7390          "Unindexed masked store with an offset!");
7391   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7392                          : getVTList(MVT::Other);
7393   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7394   FoldingSetNodeID ID;
7395   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7396   ID.AddInteger(MemVT.getRawBits());
7397   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7398       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7399   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7400   void *IP = nullptr;
7401   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7402     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7403     return SDValue(E, 0);
7404   }
7405   auto *N =
7406       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7407                                    IsTruncating, IsCompressing, MemVT, MMO);
7408   createOperands(N, Ops);
7409 
7410   CSEMap.InsertNode(N, IP);
7411   InsertNode(N);
7412   SDValue V(N, 0);
7413   NewSDValueDbgMsg(V, "Creating new node: ", this);
7414   return V;
7415 }
7416 
7417 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7418                                             SDValue Base, SDValue Offset,
7419                                             ISD::MemIndexedMode AM) {
7420   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7421   assert(ST->getOffset().isUndef() &&
7422          "Masked store is already a indexed store!");
7423   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7424                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7425                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7426 }
7427 
7428 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7429                                       ArrayRef<SDValue> Ops,
7430                                       MachineMemOperand *MMO,
7431                                       ISD::MemIndexType IndexType,
7432                                       ISD::LoadExtType ExtTy) {
7433   assert(Ops.size() == 6 && "Incompatible number of operands");
7434 
7435   FoldingSetNodeID ID;
7436   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7437   ID.AddInteger(VT.getRawBits());
7438   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7439       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7440   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7441   void *IP = nullptr;
7442   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7443     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7444     return SDValue(E, 0);
7445   }
7446 
7447   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7448   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7449                                           VTs, VT, MMO, IndexType, ExtTy);
7450   createOperands(N, Ops);
7451 
7452   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7453          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7454   assert(N->getMask().getValueType().getVectorElementCount() ==
7455              N->getValueType(0).getVectorElementCount() &&
7456          "Vector width mismatch between mask and data");
7457   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7458              N->getValueType(0).getVectorElementCount().isScalable() &&
7459          "Scalable flags of index and data do not match");
7460   assert(ElementCount::isKnownGE(
7461              N->getIndex().getValueType().getVectorElementCount(),
7462              N->getValueType(0).getVectorElementCount()) &&
7463          "Vector width mismatch between index and data");
7464   assert(isa<ConstantSDNode>(N->getScale()) &&
7465          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7466          "Scale should be a constant power of 2");
7467 
7468   CSEMap.InsertNode(N, IP);
7469   InsertNode(N);
7470   SDValue V(N, 0);
7471   NewSDValueDbgMsg(V, "Creating new node: ", this);
7472   return V;
7473 }
7474 
7475 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7476                                        ArrayRef<SDValue> Ops,
7477                                        MachineMemOperand *MMO,
7478                                        ISD::MemIndexType IndexType,
7479                                        bool IsTrunc) {
7480   assert(Ops.size() == 6 && "Incompatible number of operands");
7481 
7482   FoldingSetNodeID ID;
7483   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7484   ID.AddInteger(VT.getRawBits());
7485   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7486       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7487   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7488   void *IP = nullptr;
7489   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7490     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7491     return SDValue(E, 0);
7492   }
7493 
7494   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7495   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7496                                            VTs, VT, MMO, IndexType, IsTrunc);
7497   createOperands(N, Ops);
7498 
7499   assert(N->getMask().getValueType().getVectorElementCount() ==
7500              N->getValue().getValueType().getVectorElementCount() &&
7501          "Vector width mismatch between mask and data");
7502   assert(
7503       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7504           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7505       "Scalable flags of index and data do not match");
7506   assert(ElementCount::isKnownGE(
7507              N->getIndex().getValueType().getVectorElementCount(),
7508              N->getValue().getValueType().getVectorElementCount()) &&
7509          "Vector width mismatch between index and data");
7510   assert(isa<ConstantSDNode>(N->getScale()) &&
7511          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7512          "Scale should be a constant power of 2");
7513 
7514   CSEMap.InsertNode(N, IP);
7515   InsertNode(N);
7516   SDValue V(N, 0);
7517   NewSDValueDbgMsg(V, "Creating new node: ", this);
7518   return V;
7519 }
7520 
7521 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7522   // select undef, T, F --> T (if T is a constant), otherwise F
7523   // select, ?, undef, F --> F
7524   // select, ?, T, undef --> T
7525   if (Cond.isUndef())
7526     return isConstantValueOfAnyType(T) ? T : F;
7527   if (T.isUndef())
7528     return F;
7529   if (F.isUndef())
7530     return T;
7531 
7532   // select true, T, F --> T
7533   // select false, T, F --> F
7534   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7535     return CondC->isNullValue() ? F : T;
7536 
7537   // TODO: This should simplify VSELECT with constant condition using something
7538   // like this (but check boolean contents to be complete?):
7539   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7540   //    return T;
7541   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7542   //    return F;
7543 
7544   // select ?, T, T --> T
7545   if (T == F)
7546     return T;
7547 
7548   return SDValue();
7549 }
7550 
7551 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7552   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7553   if (X.isUndef())
7554     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7555   // shift X, undef --> undef (because it may shift by the bitwidth)
7556   if (Y.isUndef())
7557     return getUNDEF(X.getValueType());
7558 
7559   // shift 0, Y --> 0
7560   // shift X, 0 --> X
7561   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7562     return X;
7563 
7564   // shift X, C >= bitwidth(X) --> undef
7565   // All vector elements must be too big (or undef) to avoid partial undefs.
7566   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7567     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7568   };
7569   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7570     return getUNDEF(X.getValueType());
7571 
7572   return SDValue();
7573 }
7574 
7575 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7576                                       SDNodeFlags Flags) {
7577   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7578   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7579   // operation is poison. That result can be relaxed to undef.
7580   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7581   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7582   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7583                 (YC && YC->getValueAPF().isNaN());
7584   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7585                 (YC && YC->getValueAPF().isInfinity());
7586 
7587   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7588     return getUNDEF(X.getValueType());
7589 
7590   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7591     return getUNDEF(X.getValueType());
7592 
7593   if (!YC)
7594     return SDValue();
7595 
7596   // X + -0.0 --> X
7597   if (Opcode == ISD::FADD)
7598     if (YC->getValueAPF().isNegZero())
7599       return X;
7600 
7601   // X - +0.0 --> X
7602   if (Opcode == ISD::FSUB)
7603     if (YC->getValueAPF().isPosZero())
7604       return X;
7605 
7606   // X * 1.0 --> X
7607   // X / 1.0 --> X
7608   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7609     if (YC->getValueAPF().isExactlyValue(1.0))
7610       return X;
7611 
7612   // X * 0.0 --> 0.0
7613   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7614     if (YC->getValueAPF().isZero())
7615       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7616 
7617   return SDValue();
7618 }
7619 
7620 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7621                                SDValue Ptr, SDValue SV, unsigned Align) {
7622   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7623   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7624 }
7625 
7626 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7627                               ArrayRef<SDUse> Ops) {
7628   switch (Ops.size()) {
7629   case 0: return getNode(Opcode, DL, VT);
7630   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7631   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7632   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7633   default: break;
7634   }
7635 
7636   // Copy from an SDUse array into an SDValue array for use with
7637   // the regular getNode logic.
7638   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7639   return getNode(Opcode, DL, VT, NewOps);
7640 }
7641 
7642 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7643                               ArrayRef<SDValue> Ops) {
7644   SDNodeFlags Flags;
7645   if (Inserter)
7646     Flags = Inserter->getFlags();
7647   return getNode(Opcode, DL, VT, Ops, Flags);
7648 }
7649 
7650 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7651                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7652   unsigned NumOps = Ops.size();
7653   switch (NumOps) {
7654   case 0: return getNode(Opcode, DL, VT);
7655   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7656   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7657   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7658   default: break;
7659   }
7660 
7661 #ifndef NDEBUG
7662   for (auto &Op : Ops)
7663     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7664            "Operand is DELETED_NODE!");
7665 #endif
7666 
7667   switch (Opcode) {
7668   default: break;
7669   case ISD::BUILD_VECTOR:
7670     // Attempt to simplify BUILD_VECTOR.
7671     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7672       return V;
7673     break;
7674   case ISD::CONCAT_VECTORS:
7675     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7676       return V;
7677     break;
7678   case ISD::SELECT_CC:
7679     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7680     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7681            "LHS and RHS of condition must have same type!");
7682     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7683            "True and False arms of SelectCC must have same type!");
7684     assert(Ops[2].getValueType() == VT &&
7685            "select_cc node must be of same type as true and false value!");
7686     break;
7687   case ISD::BR_CC:
7688     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7689     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7690            "LHS/RHS of comparison should match types!");
7691     break;
7692   }
7693 
7694   // Memoize nodes.
7695   SDNode *N;
7696   SDVTList VTs = getVTList(VT);
7697 
7698   if (VT != MVT::Glue) {
7699     FoldingSetNodeID ID;
7700     AddNodeIDNode(ID, Opcode, VTs, Ops);
7701     void *IP = nullptr;
7702 
7703     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7704       return SDValue(E, 0);
7705 
7706     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7707     createOperands(N, Ops);
7708 
7709     CSEMap.InsertNode(N, IP);
7710   } else {
7711     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7712     createOperands(N, Ops);
7713   }
7714 
7715   N->setFlags(Flags);
7716   InsertNode(N);
7717   SDValue V(N, 0);
7718   NewSDValueDbgMsg(V, "Creating new node: ", this);
7719   return V;
7720 }
7721 
7722 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7723                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7724   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7725 }
7726 
7727 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7728                               ArrayRef<SDValue> Ops) {
7729   SDNodeFlags Flags;
7730   if (Inserter)
7731     Flags = Inserter->getFlags();
7732   return getNode(Opcode, DL, VTList, Ops, Flags);
7733 }
7734 
7735 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7736                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7737   if (VTList.NumVTs == 1)
7738     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7739 
7740 #ifndef NDEBUG
7741   for (auto &Op : Ops)
7742     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7743            "Operand is DELETED_NODE!");
7744 #endif
7745 
7746   switch (Opcode) {
7747   case ISD::STRICT_FP_EXTEND:
7748     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7749            "Invalid STRICT_FP_EXTEND!");
7750     assert(VTList.VTs[0].isFloatingPoint() &&
7751            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7752     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7753            "STRICT_FP_EXTEND result type should be vector iff the operand "
7754            "type is vector!");
7755     assert((!VTList.VTs[0].isVector() ||
7756             VTList.VTs[0].getVectorNumElements() ==
7757             Ops[1].getValueType().getVectorNumElements()) &&
7758            "Vector element count mismatch!");
7759     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7760            "Invalid fpext node, dst <= src!");
7761     break;
7762   case ISD::STRICT_FP_ROUND:
7763     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7764     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7765            "STRICT_FP_ROUND result type should be vector iff the operand "
7766            "type is vector!");
7767     assert((!VTList.VTs[0].isVector() ||
7768             VTList.VTs[0].getVectorNumElements() ==
7769             Ops[1].getValueType().getVectorNumElements()) &&
7770            "Vector element count mismatch!");
7771     assert(VTList.VTs[0].isFloatingPoint() &&
7772            Ops[1].getValueType().isFloatingPoint() &&
7773            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7774            isa<ConstantSDNode>(Ops[2]) &&
7775            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7776             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7777            "Invalid STRICT_FP_ROUND!");
7778     break;
7779 #if 0
7780   // FIXME: figure out how to safely handle things like
7781   // int foo(int x) { return 1 << (x & 255); }
7782   // int bar() { return foo(256); }
7783   case ISD::SRA_PARTS:
7784   case ISD::SRL_PARTS:
7785   case ISD::SHL_PARTS:
7786     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7787         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7788       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7789     else if (N3.getOpcode() == ISD::AND)
7790       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7791         // If the and is only masking out bits that cannot effect the shift,
7792         // eliminate the and.
7793         unsigned NumBits = VT.getScalarSizeInBits()*2;
7794         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7795           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7796       }
7797     break;
7798 #endif
7799   }
7800 
7801   // Memoize the node unless it returns a flag.
7802   SDNode *N;
7803   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7804     FoldingSetNodeID ID;
7805     AddNodeIDNode(ID, Opcode, VTList, Ops);
7806     void *IP = nullptr;
7807     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7808       return SDValue(E, 0);
7809 
7810     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7811     createOperands(N, Ops);
7812     CSEMap.InsertNode(N, IP);
7813   } else {
7814     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7815     createOperands(N, Ops);
7816   }
7817 
7818   N->setFlags(Flags);
7819   InsertNode(N);
7820   SDValue V(N, 0);
7821   NewSDValueDbgMsg(V, "Creating new node: ", this);
7822   return V;
7823 }
7824 
7825 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7826                               SDVTList VTList) {
7827   return getNode(Opcode, DL, VTList, None);
7828 }
7829 
7830 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7831                               SDValue N1) {
7832   SDValue Ops[] = { N1 };
7833   return getNode(Opcode, DL, VTList, Ops);
7834 }
7835 
7836 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7837                               SDValue N1, SDValue N2) {
7838   SDValue Ops[] = { N1, N2 };
7839   return getNode(Opcode, DL, VTList, Ops);
7840 }
7841 
7842 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7843                               SDValue N1, SDValue N2, SDValue N3) {
7844   SDValue Ops[] = { N1, N2, N3 };
7845   return getNode(Opcode, DL, VTList, Ops);
7846 }
7847 
7848 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7849                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7850   SDValue Ops[] = { N1, N2, N3, N4 };
7851   return getNode(Opcode, DL, VTList, Ops);
7852 }
7853 
7854 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7855                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7856                               SDValue N5) {
7857   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7858   return getNode(Opcode, DL, VTList, Ops);
7859 }
7860 
7861 SDVTList SelectionDAG::getVTList(EVT VT) {
7862   return makeVTList(SDNode::getValueTypeList(VT), 1);
7863 }
7864 
7865 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7866   FoldingSetNodeID ID;
7867   ID.AddInteger(2U);
7868   ID.AddInteger(VT1.getRawBits());
7869   ID.AddInteger(VT2.getRawBits());
7870 
7871   void *IP = nullptr;
7872   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7873   if (!Result) {
7874     EVT *Array = Allocator.Allocate<EVT>(2);
7875     Array[0] = VT1;
7876     Array[1] = VT2;
7877     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7878     VTListMap.InsertNode(Result, IP);
7879   }
7880   return Result->getSDVTList();
7881 }
7882 
7883 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7884   FoldingSetNodeID ID;
7885   ID.AddInteger(3U);
7886   ID.AddInteger(VT1.getRawBits());
7887   ID.AddInteger(VT2.getRawBits());
7888   ID.AddInteger(VT3.getRawBits());
7889 
7890   void *IP = nullptr;
7891   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7892   if (!Result) {
7893     EVT *Array = Allocator.Allocate<EVT>(3);
7894     Array[0] = VT1;
7895     Array[1] = VT2;
7896     Array[2] = VT3;
7897     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7898     VTListMap.InsertNode(Result, IP);
7899   }
7900   return Result->getSDVTList();
7901 }
7902 
7903 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7904   FoldingSetNodeID ID;
7905   ID.AddInteger(4U);
7906   ID.AddInteger(VT1.getRawBits());
7907   ID.AddInteger(VT2.getRawBits());
7908   ID.AddInteger(VT3.getRawBits());
7909   ID.AddInteger(VT4.getRawBits());
7910 
7911   void *IP = nullptr;
7912   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7913   if (!Result) {
7914     EVT *Array = Allocator.Allocate<EVT>(4);
7915     Array[0] = VT1;
7916     Array[1] = VT2;
7917     Array[2] = VT3;
7918     Array[3] = VT4;
7919     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7920     VTListMap.InsertNode(Result, IP);
7921   }
7922   return Result->getSDVTList();
7923 }
7924 
7925 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7926   unsigned NumVTs = VTs.size();
7927   FoldingSetNodeID ID;
7928   ID.AddInteger(NumVTs);
7929   for (unsigned index = 0; index < NumVTs; index++) {
7930     ID.AddInteger(VTs[index].getRawBits());
7931   }
7932 
7933   void *IP = nullptr;
7934   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7935   if (!Result) {
7936     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7937     llvm::copy(VTs, Array);
7938     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7939     VTListMap.InsertNode(Result, IP);
7940   }
7941   return Result->getSDVTList();
7942 }
7943 
7944 
7945 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7946 /// specified operands.  If the resultant node already exists in the DAG,
7947 /// this does not modify the specified node, instead it returns the node that
7948 /// already exists.  If the resultant node does not exist in the DAG, the
7949 /// input node is returned.  As a degenerate case, if you specify the same
7950 /// input operands as the node already has, the input node is returned.
7951 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7952   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7953 
7954   // Check to see if there is no change.
7955   if (Op == N->getOperand(0)) return N;
7956 
7957   // See if the modified node already exists.
7958   void *InsertPos = nullptr;
7959   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7960     return Existing;
7961 
7962   // Nope it doesn't.  Remove the node from its current place in the maps.
7963   if (InsertPos)
7964     if (!RemoveNodeFromCSEMaps(N))
7965       InsertPos = nullptr;
7966 
7967   // Now we update the operands.
7968   N->OperandList[0].set(Op);
7969 
7970   updateDivergence(N);
7971   // If this gets put into a CSE map, add it.
7972   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7973   return N;
7974 }
7975 
7976 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7977   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7978 
7979   // Check to see if there is no change.
7980   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7981     return N;   // No operands changed, just return the input node.
7982 
7983   // See if the modified node already exists.
7984   void *InsertPos = nullptr;
7985   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7986     return Existing;
7987 
7988   // Nope it doesn't.  Remove the node from its current place in the maps.
7989   if (InsertPos)
7990     if (!RemoveNodeFromCSEMaps(N))
7991       InsertPos = nullptr;
7992 
7993   // Now we update the operands.
7994   if (N->OperandList[0] != Op1)
7995     N->OperandList[0].set(Op1);
7996   if (N->OperandList[1] != Op2)
7997     N->OperandList[1].set(Op2);
7998 
7999   updateDivergence(N);
8000   // If this gets put into a CSE map, add it.
8001   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8002   return N;
8003 }
8004 
8005 SDNode *SelectionDAG::
8006 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8007   SDValue Ops[] = { Op1, Op2, Op3 };
8008   return UpdateNodeOperands(N, Ops);
8009 }
8010 
8011 SDNode *SelectionDAG::
8012 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8013                    SDValue Op3, SDValue Op4) {
8014   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8015   return UpdateNodeOperands(N, Ops);
8016 }
8017 
8018 SDNode *SelectionDAG::
8019 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8020                    SDValue Op3, SDValue Op4, SDValue Op5) {
8021   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8022   return UpdateNodeOperands(N, Ops);
8023 }
8024 
8025 SDNode *SelectionDAG::
8026 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8027   unsigned NumOps = Ops.size();
8028   assert(N->getNumOperands() == NumOps &&
8029          "Update with wrong number of operands");
8030 
8031   // If no operands changed just return the input node.
8032   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8033     return N;
8034 
8035   // See if the modified node already exists.
8036   void *InsertPos = nullptr;
8037   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8038     return Existing;
8039 
8040   // Nope it doesn't.  Remove the node from its current place in the maps.
8041   if (InsertPos)
8042     if (!RemoveNodeFromCSEMaps(N))
8043       InsertPos = nullptr;
8044 
8045   // Now we update the operands.
8046   for (unsigned i = 0; i != NumOps; ++i)
8047     if (N->OperandList[i] != Ops[i])
8048       N->OperandList[i].set(Ops[i]);
8049 
8050   updateDivergence(N);
8051   // If this gets put into a CSE map, add it.
8052   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8053   return N;
8054 }
8055 
8056 /// DropOperands - Release the operands and set this node to have
8057 /// zero operands.
8058 void SDNode::DropOperands() {
8059   // Unlike the code in MorphNodeTo that does this, we don't need to
8060   // watch for dead nodes here.
8061   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8062     SDUse &Use = *I++;
8063     Use.set(SDValue());
8064   }
8065 }
8066 
8067 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8068                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8069   if (NewMemRefs.empty()) {
8070     N->clearMemRefs();
8071     return;
8072   }
8073 
8074   // Check if we can avoid allocating by storing a single reference directly.
8075   if (NewMemRefs.size() == 1) {
8076     N->MemRefs = NewMemRefs[0];
8077     N->NumMemRefs = 1;
8078     return;
8079   }
8080 
8081   MachineMemOperand **MemRefsBuffer =
8082       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8083   llvm::copy(NewMemRefs, MemRefsBuffer);
8084   N->MemRefs = MemRefsBuffer;
8085   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8086 }
8087 
8088 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8089 /// machine opcode.
8090 ///
8091 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8092                                    EVT VT) {
8093   SDVTList VTs = getVTList(VT);
8094   return SelectNodeTo(N, MachineOpc, VTs, None);
8095 }
8096 
8097 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8098                                    EVT VT, SDValue Op1) {
8099   SDVTList VTs = getVTList(VT);
8100   SDValue Ops[] = { Op1 };
8101   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8102 }
8103 
8104 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8105                                    EVT VT, SDValue Op1,
8106                                    SDValue Op2) {
8107   SDVTList VTs = getVTList(VT);
8108   SDValue Ops[] = { Op1, Op2 };
8109   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8110 }
8111 
8112 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8113                                    EVT VT, SDValue Op1,
8114                                    SDValue Op2, SDValue Op3) {
8115   SDVTList VTs = getVTList(VT);
8116   SDValue Ops[] = { Op1, Op2, Op3 };
8117   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8118 }
8119 
8120 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8121                                    EVT VT, ArrayRef<SDValue> Ops) {
8122   SDVTList VTs = getVTList(VT);
8123   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8124 }
8125 
8126 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8127                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8128   SDVTList VTs = getVTList(VT1, VT2);
8129   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8130 }
8131 
8132 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8133                                    EVT VT1, EVT VT2) {
8134   SDVTList VTs = getVTList(VT1, VT2);
8135   return SelectNodeTo(N, MachineOpc, VTs, None);
8136 }
8137 
8138 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8139                                    EVT VT1, EVT VT2, EVT VT3,
8140                                    ArrayRef<SDValue> Ops) {
8141   SDVTList VTs = getVTList(VT1, VT2, VT3);
8142   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8143 }
8144 
8145 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8146                                    EVT VT1, EVT VT2,
8147                                    SDValue Op1, SDValue Op2) {
8148   SDVTList VTs = getVTList(VT1, VT2);
8149   SDValue Ops[] = { Op1, Op2 };
8150   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8151 }
8152 
8153 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8154                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8155   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8156   // Reset the NodeID to -1.
8157   New->setNodeId(-1);
8158   if (New != N) {
8159     ReplaceAllUsesWith(N, New);
8160     RemoveDeadNode(N);
8161   }
8162   return New;
8163 }
8164 
8165 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8166 /// the line number information on the merged node since it is not possible to
8167 /// preserve the information that operation is associated with multiple lines.
8168 /// This will make the debugger working better at -O0, were there is a higher
8169 /// probability having other instructions associated with that line.
8170 ///
8171 /// For IROrder, we keep the smaller of the two
8172 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8173   DebugLoc NLoc = N->getDebugLoc();
8174   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8175     N->setDebugLoc(DebugLoc());
8176   }
8177   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8178   N->setIROrder(Order);
8179   return N;
8180 }
8181 
8182 /// MorphNodeTo - This *mutates* the specified node to have the specified
8183 /// return type, opcode, and operands.
8184 ///
8185 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8186 /// node of the specified opcode and operands, it returns that node instead of
8187 /// the current one.  Note that the SDLoc need not be the same.
8188 ///
8189 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8190 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8191 /// node, and because it doesn't require CSE recalculation for any of
8192 /// the node's users.
8193 ///
8194 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8195 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8196 /// the legalizer which maintain worklists that would need to be updated when
8197 /// deleting things.
8198 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8199                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8200   // If an identical node already exists, use it.
8201   void *IP = nullptr;
8202   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8203     FoldingSetNodeID ID;
8204     AddNodeIDNode(ID, Opc, VTs, Ops);
8205     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8206       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8207   }
8208 
8209   if (!RemoveNodeFromCSEMaps(N))
8210     IP = nullptr;
8211 
8212   // Start the morphing.
8213   N->NodeType = Opc;
8214   N->ValueList = VTs.VTs;
8215   N->NumValues = VTs.NumVTs;
8216 
8217   // Clear the operands list, updating used nodes to remove this from their
8218   // use list.  Keep track of any operands that become dead as a result.
8219   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8220   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8221     SDUse &Use = *I++;
8222     SDNode *Used = Use.getNode();
8223     Use.set(SDValue());
8224     if (Used->use_empty())
8225       DeadNodeSet.insert(Used);
8226   }
8227 
8228   // For MachineNode, initialize the memory references information.
8229   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8230     MN->clearMemRefs();
8231 
8232   // Swap for an appropriately sized array from the recycler.
8233   removeOperands(N);
8234   createOperands(N, Ops);
8235 
8236   // Delete any nodes that are still dead after adding the uses for the
8237   // new operands.
8238   if (!DeadNodeSet.empty()) {
8239     SmallVector<SDNode *, 16> DeadNodes;
8240     for (SDNode *N : DeadNodeSet)
8241       if (N->use_empty())
8242         DeadNodes.push_back(N);
8243     RemoveDeadNodes(DeadNodes);
8244   }
8245 
8246   if (IP)
8247     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8248   return N;
8249 }
8250 
8251 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8252   unsigned OrigOpc = Node->getOpcode();
8253   unsigned NewOpc;
8254   switch (OrigOpc) {
8255   default:
8256     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8257 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8258   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8259 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8260   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8261 #include "llvm/IR/ConstrainedOps.def"
8262   }
8263 
8264   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8265 
8266   // We're taking this node out of the chain, so we need to re-link things.
8267   SDValue InputChain = Node->getOperand(0);
8268   SDValue OutputChain = SDValue(Node, 1);
8269   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8270 
8271   SmallVector<SDValue, 3> Ops;
8272   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8273     Ops.push_back(Node->getOperand(i));
8274 
8275   SDVTList VTs = getVTList(Node->getValueType(0));
8276   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8277 
8278   // MorphNodeTo can operate in two ways: if an existing node with the
8279   // specified operands exists, it can just return it.  Otherwise, it
8280   // updates the node in place to have the requested operands.
8281   if (Res == Node) {
8282     // If we updated the node in place, reset the node ID.  To the isel,
8283     // this should be just like a newly allocated machine node.
8284     Res->setNodeId(-1);
8285   } else {
8286     ReplaceAllUsesWith(Node, Res);
8287     RemoveDeadNode(Node);
8288   }
8289 
8290   return Res;
8291 }
8292 
8293 /// getMachineNode - These are used for target selectors to create a new node
8294 /// with specified return type(s), MachineInstr opcode, and operands.
8295 ///
8296 /// Note that getMachineNode returns the resultant node.  If there is already a
8297 /// node of the specified opcode and operands, it returns that node instead of
8298 /// the current one.
8299 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8300                                             EVT VT) {
8301   SDVTList VTs = getVTList(VT);
8302   return getMachineNode(Opcode, dl, VTs, None);
8303 }
8304 
8305 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8306                                             EVT VT, SDValue Op1) {
8307   SDVTList VTs = getVTList(VT);
8308   SDValue Ops[] = { Op1 };
8309   return getMachineNode(Opcode, dl, VTs, Ops);
8310 }
8311 
8312 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8313                                             EVT VT, SDValue Op1, SDValue Op2) {
8314   SDVTList VTs = getVTList(VT);
8315   SDValue Ops[] = { Op1, Op2 };
8316   return getMachineNode(Opcode, dl, VTs, Ops);
8317 }
8318 
8319 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8320                                             EVT VT, SDValue Op1, SDValue Op2,
8321                                             SDValue Op3) {
8322   SDVTList VTs = getVTList(VT);
8323   SDValue Ops[] = { Op1, Op2, Op3 };
8324   return getMachineNode(Opcode, dl, VTs, Ops);
8325 }
8326 
8327 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8328                                             EVT VT, ArrayRef<SDValue> Ops) {
8329   SDVTList VTs = getVTList(VT);
8330   return getMachineNode(Opcode, dl, VTs, Ops);
8331 }
8332 
8333 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8334                                             EVT VT1, EVT VT2, SDValue Op1,
8335                                             SDValue Op2) {
8336   SDVTList VTs = getVTList(VT1, VT2);
8337   SDValue Ops[] = { Op1, Op2 };
8338   return getMachineNode(Opcode, dl, VTs, Ops);
8339 }
8340 
8341 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8342                                             EVT VT1, EVT VT2, SDValue Op1,
8343                                             SDValue Op2, SDValue Op3) {
8344   SDVTList VTs = getVTList(VT1, VT2);
8345   SDValue Ops[] = { Op1, Op2, Op3 };
8346   return getMachineNode(Opcode, dl, VTs, Ops);
8347 }
8348 
8349 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8350                                             EVT VT1, EVT VT2,
8351                                             ArrayRef<SDValue> Ops) {
8352   SDVTList VTs = getVTList(VT1, VT2);
8353   return getMachineNode(Opcode, dl, VTs, Ops);
8354 }
8355 
8356 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8357                                             EVT VT1, EVT VT2, EVT VT3,
8358                                             SDValue Op1, SDValue Op2) {
8359   SDVTList VTs = getVTList(VT1, VT2, VT3);
8360   SDValue Ops[] = { Op1, Op2 };
8361   return getMachineNode(Opcode, dl, VTs, Ops);
8362 }
8363 
8364 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8365                                             EVT VT1, EVT VT2, EVT VT3,
8366                                             SDValue Op1, SDValue Op2,
8367                                             SDValue Op3) {
8368   SDVTList VTs = getVTList(VT1, VT2, VT3);
8369   SDValue Ops[] = { Op1, Op2, Op3 };
8370   return getMachineNode(Opcode, dl, VTs, Ops);
8371 }
8372 
8373 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8374                                             EVT VT1, EVT VT2, EVT VT3,
8375                                             ArrayRef<SDValue> Ops) {
8376   SDVTList VTs = getVTList(VT1, VT2, VT3);
8377   return getMachineNode(Opcode, dl, VTs, Ops);
8378 }
8379 
8380 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8381                                             ArrayRef<EVT> ResultTys,
8382                                             ArrayRef<SDValue> Ops) {
8383   SDVTList VTs = getVTList(ResultTys);
8384   return getMachineNode(Opcode, dl, VTs, Ops);
8385 }
8386 
8387 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8388                                             SDVTList VTs,
8389                                             ArrayRef<SDValue> Ops) {
8390   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8391   MachineSDNode *N;
8392   void *IP = nullptr;
8393 
8394   if (DoCSE) {
8395     FoldingSetNodeID ID;
8396     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8397     IP = nullptr;
8398     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8399       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8400     }
8401   }
8402 
8403   // Allocate a new MachineSDNode.
8404   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8405   createOperands(N, Ops);
8406 
8407   if (DoCSE)
8408     CSEMap.InsertNode(N, IP);
8409 
8410   InsertNode(N);
8411   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8412   return N;
8413 }
8414 
8415 /// getTargetExtractSubreg - A convenience function for creating
8416 /// TargetOpcode::EXTRACT_SUBREG nodes.
8417 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8418                                              SDValue Operand) {
8419   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8420   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8421                                   VT, Operand, SRIdxVal);
8422   return SDValue(Subreg, 0);
8423 }
8424 
8425 /// getTargetInsertSubreg - A convenience function for creating
8426 /// TargetOpcode::INSERT_SUBREG nodes.
8427 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8428                                             SDValue Operand, SDValue Subreg) {
8429   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8430   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8431                                   VT, Operand, Subreg, SRIdxVal);
8432   return SDValue(Result, 0);
8433 }
8434 
8435 /// getNodeIfExists - Get the specified node if it's already available, or
8436 /// else return NULL.
8437 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8438                                       ArrayRef<SDValue> Ops) {
8439   SDNodeFlags Flags;
8440   if (Inserter)
8441     Flags = Inserter->getFlags();
8442   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8443 }
8444 
8445 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8446                                       ArrayRef<SDValue> Ops,
8447                                       const SDNodeFlags Flags) {
8448   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8449     FoldingSetNodeID ID;
8450     AddNodeIDNode(ID, Opcode, VTList, Ops);
8451     void *IP = nullptr;
8452     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8453       E->intersectFlagsWith(Flags);
8454       return E;
8455     }
8456   }
8457   return nullptr;
8458 }
8459 
8460 /// doesNodeExist - Check if a node exists without modifying its flags.
8461 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8462                                  ArrayRef<SDValue> Ops) {
8463   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8464     FoldingSetNodeID ID;
8465     AddNodeIDNode(ID, Opcode, VTList, Ops);
8466     void *IP = nullptr;
8467     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8468       return true;
8469   }
8470   return false;
8471 }
8472 
8473 /// getDbgValue - Creates a SDDbgValue node.
8474 ///
8475 /// SDNode
8476 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8477                                       SDNode *N, unsigned R, bool IsIndirect,
8478                                       const DebugLoc &DL, unsigned O) {
8479   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8480          "Expected inlined-at fields to agree");
8481   return new (DbgInfo->getAlloc())
8482       SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O,
8483                  /*IsVariadic=*/false);
8484 }
8485 
8486 /// Constant
8487 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8488                                               DIExpression *Expr,
8489                                               const Value *C,
8490                                               const DebugLoc &DL, unsigned O) {
8491   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8492          "Expected inlined-at fields to agree");
8493   return new (DbgInfo->getAlloc()) SDDbgValue(
8494       Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O,
8495       /*IsVariadic=*/false);
8496 }
8497 
8498 /// FrameIndex
8499 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8500                                                 DIExpression *Expr, unsigned FI,
8501                                                 bool IsIndirect,
8502                                                 const DebugLoc &DL,
8503                                                 unsigned O) {
8504   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8505          "Expected inlined-at fields to agree");
8506   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8507 }
8508 
8509 /// FrameIndex with dependencies
8510 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8511                                                 DIExpression *Expr, unsigned FI,
8512                                                 ArrayRef<SDNode *> Dependencies,
8513                                                 bool IsIndirect,
8514                                                 const DebugLoc &DL,
8515                                                 unsigned O) {
8516   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8517          "Expected inlined-at fields to agree");
8518   return new (DbgInfo->getAlloc())
8519       SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies,
8520                  IsIndirect, DL, O,
8521                  /*IsVariadic=*/false);
8522 }
8523 
8524 /// VReg
8525 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8526                                           unsigned VReg, bool IsIndirect,
8527                                           const DebugLoc &DL, unsigned O) {
8528   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8529          "Expected inlined-at fields to agree");
8530   return new (DbgInfo->getAlloc())
8531       SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O,
8532                  /*IsVariadic=*/false);
8533 }
8534 
8535 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8536                                           ArrayRef<SDDbgOperand> Locs,
8537                                           ArrayRef<SDNode *> Dependencies,
8538                                           bool IsIndirect, const DebugLoc &DL,
8539                                           unsigned O, bool IsVariadic) {
8540   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8541          "Expected inlined-at fields to agree");
8542   return new (DbgInfo->getAlloc())
8543       SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic);
8544 }
8545 
8546 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8547                                      unsigned OffsetInBits, unsigned SizeInBits,
8548                                      bool InvalidateDbg) {
8549   SDNode *FromNode = From.getNode();
8550   SDNode *ToNode = To.getNode();
8551   assert(FromNode && ToNode && "Can't modify dbg values");
8552 
8553   // PR35338
8554   // TODO: assert(From != To && "Redundant dbg value transfer");
8555   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8556   if (From == To || FromNode == ToNode)
8557     return;
8558 
8559   if (!FromNode->getHasDebugValue())
8560     return;
8561 
8562   SDDbgOperand FromLocOp =
8563       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8564   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8565 
8566   SmallVector<SDDbgValue *, 2> ClonedDVs;
8567   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8568     if (Dbg->isInvalidated())
8569       continue;
8570 
8571     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8572 
8573     // Create a new location ops vector that is equal to the old vector, but
8574     // with each instance of FromLocOp replaced with ToLocOp.
8575     bool Changed = false;
8576     auto NewLocOps = Dbg->copyLocationOps();
8577     std::replace_if(
8578         NewLocOps.begin(), NewLocOps.end(),
8579         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8580           bool Match = Op == FromLocOp;
8581           Changed |= Match;
8582           return Match;
8583         },
8584         ToLocOp);
8585     // Ignore this SDDbgValue if we didn't find a matching location.
8586     if (!Changed)
8587       continue;
8588 
8589     DIVariable *Var = Dbg->getVariable();
8590     auto *Expr = Dbg->getExpression();
8591     // If a fragment is requested, update the expression.
8592     if (SizeInBits) {
8593       // When splitting a larger (e.g., sign-extended) value whose
8594       // lower bits are described with an SDDbgValue, do not attempt
8595       // to transfer the SDDbgValue to the upper bits.
8596       if (auto FI = Expr->getFragmentInfo())
8597         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8598           continue;
8599       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8600                                                              SizeInBits);
8601       if (!Fragment)
8602         continue;
8603       Expr = *Fragment;
8604     }
8605 
8606     auto NewDependencies = Dbg->copySDNodes();
8607     std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode,
8608                  ToNode);
8609     // Clone the SDDbgValue and move it to To.
8610     SDDbgValue *Clone = getDbgValueList(
8611         Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(),
8612         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8613         Dbg->isVariadic());
8614     ClonedDVs.push_back(Clone);
8615 
8616     if (InvalidateDbg) {
8617       // Invalidate value and indicate the SDDbgValue should not be emitted.
8618       Dbg->setIsInvalidated();
8619       Dbg->setIsEmitted();
8620     }
8621   }
8622 
8623   for (SDDbgValue *Dbg : ClonedDVs) {
8624     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8625            "Transferred DbgValues should depend on the new SDNode");
8626     AddDbgValue(Dbg, false);
8627   }
8628 }
8629 
8630 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8631   if (!N.getHasDebugValue())
8632     return;
8633 
8634   SmallVector<SDDbgValue *, 2> ClonedDVs;
8635   for (auto DV : GetDbgValues(&N)) {
8636     if (DV->isInvalidated())
8637       continue;
8638     switch (N.getOpcode()) {
8639     default:
8640       break;
8641     case ISD::ADD:
8642       SDValue N0 = N.getOperand(0);
8643       SDValue N1 = N.getOperand(1);
8644       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8645           isConstantIntBuildVectorOrConstantInt(N1)) {
8646         uint64_t Offset = N.getConstantOperandVal(1);
8647 
8648         // Rewrite an ADD constant node into a DIExpression. Since we are
8649         // performing arithmetic to compute the variable's *value* in the
8650         // DIExpression, we need to mark the expression with a
8651         // DW_OP_stack_value.
8652         auto *DIExpr = DV->getExpression();
8653         auto NewLocOps = DV->copyLocationOps();
8654         bool Changed = false;
8655         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8656           // We're not given a ResNo to compare against because the whole
8657           // node is going away. We know that any ISD::ADD only has one
8658           // result, so we can assume any node match is using the result.
8659           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8660               NewLocOps[i].getSDNode() != &N)
8661             continue;
8662           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8663           SmallVector<uint64_t, 3> ExprOps;
8664           DIExpression::appendOffset(ExprOps, Offset);
8665           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8666           Changed = true;
8667         }
8668         (void)Changed;
8669         assert(Changed && "Salvage target doesn't use N");
8670 
8671         auto NewDependencies = DV->copySDNodes();
8672         std::replace(NewDependencies.begin(), NewDependencies.end(), &N,
8673                      N0.getNode());
8674         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8675                                             NewLocOps, NewDependencies,
8676                                             DV->isIndirect(), DV->getDebugLoc(),
8677                                             DV->getOrder(), DV->isVariadic());
8678         ClonedDVs.push_back(Clone);
8679         DV->setIsInvalidated();
8680         DV->setIsEmitted();
8681         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8682                    N0.getNode()->dumprFull(this);
8683                    dbgs() << " into " << *DIExpr << '\n');
8684       }
8685     }
8686   }
8687 
8688   for (SDDbgValue *Dbg : ClonedDVs) {
8689     assert(!Dbg->getSDNodes().empty() &&
8690            "Salvaged DbgValue should depend on a new SDNode");
8691     AddDbgValue(Dbg, false);
8692   }
8693 }
8694 
8695 /// Creates a SDDbgLabel node.
8696 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8697                                       const DebugLoc &DL, unsigned O) {
8698   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8699          "Expected inlined-at fields to agree");
8700   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8701 }
8702 
8703 namespace {
8704 
8705 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8706 /// pointed to by a use iterator is deleted, increment the use iterator
8707 /// so that it doesn't dangle.
8708 ///
8709 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8710   SDNode::use_iterator &UI;
8711   SDNode::use_iterator &UE;
8712 
8713   void NodeDeleted(SDNode *N, SDNode *E) override {
8714     // Increment the iterator as needed.
8715     while (UI != UE && N == *UI)
8716       ++UI;
8717   }
8718 
8719 public:
8720   RAUWUpdateListener(SelectionDAG &d,
8721                      SDNode::use_iterator &ui,
8722                      SDNode::use_iterator &ue)
8723     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8724 };
8725 
8726 } // end anonymous namespace
8727 
8728 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8729 /// This can cause recursive merging of nodes in the DAG.
8730 ///
8731 /// This version assumes From has a single result value.
8732 ///
8733 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8734   SDNode *From = FromN.getNode();
8735   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8736          "Cannot replace with this method!");
8737   assert(From != To.getNode() && "Cannot replace uses of with self");
8738 
8739   // Preserve Debug Values
8740   transferDbgValues(FromN, To);
8741 
8742   // Iterate over all the existing uses of From. New uses will be added
8743   // to the beginning of the use list, which we avoid visiting.
8744   // This specifically avoids visiting uses of From that arise while the
8745   // replacement is happening, because any such uses would be the result
8746   // of CSE: If an existing node looks like From after one of its operands
8747   // is replaced by To, we don't want to replace of all its users with To
8748   // too. See PR3018 for more info.
8749   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8750   RAUWUpdateListener Listener(*this, UI, UE);
8751   while (UI != UE) {
8752     SDNode *User = *UI;
8753 
8754     // This node is about to morph, remove its old self from the CSE maps.
8755     RemoveNodeFromCSEMaps(User);
8756 
8757     // A user can appear in a use list multiple times, and when this
8758     // happens the uses are usually next to each other in the list.
8759     // To help reduce the number of CSE recomputations, process all
8760     // the uses of this user that we can find this way.
8761     do {
8762       SDUse &Use = UI.getUse();
8763       ++UI;
8764       Use.set(To);
8765       if (To->isDivergent() != From->isDivergent())
8766         updateDivergence(User);
8767     } while (UI != UE && *UI == User);
8768     // Now that we have modified User, add it back to the CSE maps.  If it
8769     // already exists there, recursively merge the results together.
8770     AddModifiedNodeToCSEMaps(User);
8771   }
8772 
8773   // If we just RAUW'd the root, take note.
8774   if (FromN == getRoot())
8775     setRoot(To);
8776 }
8777 
8778 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8779 /// This can cause recursive merging of nodes in the DAG.
8780 ///
8781 /// This version assumes that for each value of From, there is a
8782 /// corresponding value in To in the same position with the same type.
8783 ///
8784 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8785 #ifndef NDEBUG
8786   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8787     assert((!From->hasAnyUseOfValue(i) ||
8788             From->getValueType(i) == To->getValueType(i)) &&
8789            "Cannot use this version of ReplaceAllUsesWith!");
8790 #endif
8791 
8792   // Handle the trivial case.
8793   if (From == To)
8794     return;
8795 
8796   // Preserve Debug Info. Only do this if there's a use.
8797   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8798     if (From->hasAnyUseOfValue(i)) {
8799       assert((i < To->getNumValues()) && "Invalid To location");
8800       transferDbgValues(SDValue(From, i), SDValue(To, i));
8801     }
8802 
8803   // Iterate over just the existing users of From. See the comments in
8804   // the ReplaceAllUsesWith above.
8805   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8806   RAUWUpdateListener Listener(*this, UI, UE);
8807   while (UI != UE) {
8808     SDNode *User = *UI;
8809 
8810     // This node is about to morph, remove its old self from the CSE maps.
8811     RemoveNodeFromCSEMaps(User);
8812 
8813     // A user can appear in a use list multiple times, and when this
8814     // happens the uses are usually next to each other in the list.
8815     // To help reduce the number of CSE recomputations, process all
8816     // the uses of this user that we can find this way.
8817     do {
8818       SDUse &Use = UI.getUse();
8819       ++UI;
8820       Use.setNode(To);
8821       if (To->isDivergent() != From->isDivergent())
8822         updateDivergence(User);
8823     } while (UI != UE && *UI == User);
8824 
8825     // Now that we have modified User, add it back to the CSE maps.  If it
8826     // already exists there, recursively merge the results together.
8827     AddModifiedNodeToCSEMaps(User);
8828   }
8829 
8830   // If we just RAUW'd the root, take note.
8831   if (From == getRoot().getNode())
8832     setRoot(SDValue(To, getRoot().getResNo()));
8833 }
8834 
8835 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8836 /// This can cause recursive merging of nodes in the DAG.
8837 ///
8838 /// This version can replace From with any result values.  To must match the
8839 /// number and types of values returned by From.
8840 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8841   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8842     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8843 
8844   // Preserve Debug Info.
8845   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8846     transferDbgValues(SDValue(From, i), To[i]);
8847 
8848   // Iterate over just the existing users of From. See the comments in
8849   // the ReplaceAllUsesWith above.
8850   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8851   RAUWUpdateListener Listener(*this, UI, UE);
8852   while (UI != UE) {
8853     SDNode *User = *UI;
8854 
8855     // This node is about to morph, remove its old self from the CSE maps.
8856     RemoveNodeFromCSEMaps(User);
8857 
8858     // A user can appear in a use list multiple times, and when this happens the
8859     // uses are usually next to each other in the list.  To help reduce the
8860     // number of CSE and divergence recomputations, process all the uses of this
8861     // user that we can find this way.
8862     bool To_IsDivergent = false;
8863     do {
8864       SDUse &Use = UI.getUse();
8865       const SDValue &ToOp = To[Use.getResNo()];
8866       ++UI;
8867       Use.set(ToOp);
8868       To_IsDivergent |= ToOp->isDivergent();
8869     } while (UI != UE && *UI == User);
8870 
8871     if (To_IsDivergent != From->isDivergent())
8872       updateDivergence(User);
8873 
8874     // Now that we have modified User, add it back to the CSE maps.  If it
8875     // already exists there, recursively merge the results together.
8876     AddModifiedNodeToCSEMaps(User);
8877   }
8878 
8879   // If we just RAUW'd the root, take note.
8880   if (From == getRoot().getNode())
8881     setRoot(SDValue(To[getRoot().getResNo()]));
8882 }
8883 
8884 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8885 /// uses of other values produced by From.getNode() alone.  The Deleted
8886 /// vector is handled the same way as for ReplaceAllUsesWith.
8887 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8888   // Handle the really simple, really trivial case efficiently.
8889   if (From == To) return;
8890 
8891   // Handle the simple, trivial, case efficiently.
8892   if (From.getNode()->getNumValues() == 1) {
8893     ReplaceAllUsesWith(From, To);
8894     return;
8895   }
8896 
8897   // Preserve Debug Info.
8898   transferDbgValues(From, To);
8899 
8900   // Iterate over just the existing users of From. See the comments in
8901   // the ReplaceAllUsesWith above.
8902   SDNode::use_iterator UI = From.getNode()->use_begin(),
8903                        UE = From.getNode()->use_end();
8904   RAUWUpdateListener Listener(*this, UI, UE);
8905   while (UI != UE) {
8906     SDNode *User = *UI;
8907     bool UserRemovedFromCSEMaps = false;
8908 
8909     // A user can appear in a use list multiple times, and when this
8910     // happens the uses are usually next to each other in the list.
8911     // To help reduce the number of CSE recomputations, process all
8912     // the uses of this user that we can find this way.
8913     do {
8914       SDUse &Use = UI.getUse();
8915 
8916       // Skip uses of different values from the same node.
8917       if (Use.getResNo() != From.getResNo()) {
8918         ++UI;
8919         continue;
8920       }
8921 
8922       // If this node hasn't been modified yet, it's still in the CSE maps,
8923       // so remove its old self from the CSE maps.
8924       if (!UserRemovedFromCSEMaps) {
8925         RemoveNodeFromCSEMaps(User);
8926         UserRemovedFromCSEMaps = true;
8927       }
8928 
8929       ++UI;
8930       Use.set(To);
8931       if (To->isDivergent() != From->isDivergent())
8932         updateDivergence(User);
8933     } while (UI != UE && *UI == User);
8934     // We are iterating over all uses of the From node, so if a use
8935     // doesn't use the specific value, no changes are made.
8936     if (!UserRemovedFromCSEMaps)
8937       continue;
8938 
8939     // Now that we have modified User, add it back to the CSE maps.  If it
8940     // already exists there, recursively merge the results together.
8941     AddModifiedNodeToCSEMaps(User);
8942   }
8943 
8944   // If we just RAUW'd the root, take note.
8945   if (From == getRoot())
8946     setRoot(To);
8947 }
8948 
8949 namespace {
8950 
8951   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8952   /// to record information about a use.
8953   struct UseMemo {
8954     SDNode *User;
8955     unsigned Index;
8956     SDUse *Use;
8957   };
8958 
8959   /// operator< - Sort Memos by User.
8960   bool operator<(const UseMemo &L, const UseMemo &R) {
8961     return (intptr_t)L.User < (intptr_t)R.User;
8962   }
8963 
8964 } // end anonymous namespace
8965 
8966 bool SelectionDAG::calculateDivergence(SDNode *N) {
8967   if (TLI->isSDNodeAlwaysUniform(N)) {
8968     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8969            "Conflicting divergence information!");
8970     return false;
8971   }
8972   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8973     return true;
8974   for (auto &Op : N->ops()) {
8975     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8976       return true;
8977   }
8978   return false;
8979 }
8980 
8981 void SelectionDAG::updateDivergence(SDNode *N) {
8982   SmallVector<SDNode *, 16> Worklist(1, N);
8983   do {
8984     N = Worklist.pop_back_val();
8985     bool IsDivergent = calculateDivergence(N);
8986     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8987       N->SDNodeBits.IsDivergent = IsDivergent;
8988       llvm::append_range(Worklist, N->uses());
8989     }
8990   } while (!Worklist.empty());
8991 }
8992 
8993 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8994   DenseMap<SDNode *, unsigned> Degree;
8995   Order.reserve(AllNodes.size());
8996   for (auto &N : allnodes()) {
8997     unsigned NOps = N.getNumOperands();
8998     Degree[&N] = NOps;
8999     if (0 == NOps)
9000       Order.push_back(&N);
9001   }
9002   for (size_t I = 0; I != Order.size(); ++I) {
9003     SDNode *N = Order[I];
9004     for (auto U : N->uses()) {
9005       unsigned &UnsortedOps = Degree[U];
9006       if (0 == --UnsortedOps)
9007         Order.push_back(U);
9008     }
9009   }
9010 }
9011 
9012 #ifndef NDEBUG
9013 void SelectionDAG::VerifyDAGDiverence() {
9014   std::vector<SDNode *> TopoOrder;
9015   CreateTopologicalOrder(TopoOrder);
9016   for (auto *N : TopoOrder) {
9017     assert(calculateDivergence(N) == N->isDivergent() &&
9018            "Divergence bit inconsistency detected");
9019   }
9020 }
9021 #endif
9022 
9023 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9024 /// uses of other values produced by From.getNode() alone.  The same value
9025 /// may appear in both the From and To list.  The Deleted vector is
9026 /// handled the same way as for ReplaceAllUsesWith.
9027 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9028                                               const SDValue *To,
9029                                               unsigned Num){
9030   // Handle the simple, trivial case efficiently.
9031   if (Num == 1)
9032     return ReplaceAllUsesOfValueWith(*From, *To);
9033 
9034   transferDbgValues(*From, *To);
9035 
9036   // Read up all the uses and make records of them. This helps
9037   // processing new uses that are introduced during the
9038   // replacement process.
9039   SmallVector<UseMemo, 4> Uses;
9040   for (unsigned i = 0; i != Num; ++i) {
9041     unsigned FromResNo = From[i].getResNo();
9042     SDNode *FromNode = From[i].getNode();
9043     for (SDNode::use_iterator UI = FromNode->use_begin(),
9044          E = FromNode->use_end(); UI != E; ++UI) {
9045       SDUse &Use = UI.getUse();
9046       if (Use.getResNo() == FromResNo) {
9047         UseMemo Memo = { *UI, i, &Use };
9048         Uses.push_back(Memo);
9049       }
9050     }
9051   }
9052 
9053   // Sort the uses, so that all the uses from a given User are together.
9054   llvm::sort(Uses);
9055 
9056   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9057        UseIndex != UseIndexEnd; ) {
9058     // We know that this user uses some value of From.  If it is the right
9059     // value, update it.
9060     SDNode *User = Uses[UseIndex].User;
9061 
9062     // This node is about to morph, remove its old self from the CSE maps.
9063     RemoveNodeFromCSEMaps(User);
9064 
9065     // The Uses array is sorted, so all the uses for a given User
9066     // are next to each other in the list.
9067     // To help reduce the number of CSE recomputations, process all
9068     // the uses of this user that we can find this way.
9069     do {
9070       unsigned i = Uses[UseIndex].Index;
9071       SDUse &Use = *Uses[UseIndex].Use;
9072       ++UseIndex;
9073 
9074       Use.set(To[i]);
9075     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9076 
9077     // Now that we have modified User, add it back to the CSE maps.  If it
9078     // already exists there, recursively merge the results together.
9079     AddModifiedNodeToCSEMaps(User);
9080   }
9081 }
9082 
9083 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9084 /// based on their topological order. It returns the maximum id and a vector
9085 /// of the SDNodes* in assigned order by reference.
9086 unsigned SelectionDAG::AssignTopologicalOrder() {
9087   unsigned DAGSize = 0;
9088 
9089   // SortedPos tracks the progress of the algorithm. Nodes before it are
9090   // sorted, nodes after it are unsorted. When the algorithm completes
9091   // it is at the end of the list.
9092   allnodes_iterator SortedPos = allnodes_begin();
9093 
9094   // Visit all the nodes. Move nodes with no operands to the front of
9095   // the list immediately. Annotate nodes that do have operands with their
9096   // operand count. Before we do this, the Node Id fields of the nodes
9097   // may contain arbitrary values. After, the Node Id fields for nodes
9098   // before SortedPos will contain the topological sort index, and the
9099   // Node Id fields for nodes At SortedPos and after will contain the
9100   // count of outstanding operands.
9101   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9102     SDNode *N = &*I++;
9103     checkForCycles(N, this);
9104     unsigned Degree = N->getNumOperands();
9105     if (Degree == 0) {
9106       // A node with no uses, add it to the result array immediately.
9107       N->setNodeId(DAGSize++);
9108       allnodes_iterator Q(N);
9109       if (Q != SortedPos)
9110         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9111       assert(SortedPos != AllNodes.end() && "Overran node list");
9112       ++SortedPos;
9113     } else {
9114       // Temporarily use the Node Id as scratch space for the degree count.
9115       N->setNodeId(Degree);
9116     }
9117   }
9118 
9119   // Visit all the nodes. As we iterate, move nodes into sorted order,
9120   // such that by the time the end is reached all nodes will be sorted.
9121   for (SDNode &Node : allnodes()) {
9122     SDNode *N = &Node;
9123     checkForCycles(N, this);
9124     // N is in sorted position, so all its uses have one less operand
9125     // that needs to be sorted.
9126     for (SDNode *P : N->uses()) {
9127       unsigned Degree = P->getNodeId();
9128       assert(Degree != 0 && "Invalid node degree");
9129       --Degree;
9130       if (Degree == 0) {
9131         // All of P's operands are sorted, so P may sorted now.
9132         P->setNodeId(DAGSize++);
9133         if (P->getIterator() != SortedPos)
9134           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9135         assert(SortedPos != AllNodes.end() && "Overran node list");
9136         ++SortedPos;
9137       } else {
9138         // Update P's outstanding operand count.
9139         P->setNodeId(Degree);
9140       }
9141     }
9142     if (Node.getIterator() == SortedPos) {
9143 #ifndef NDEBUG
9144       allnodes_iterator I(N);
9145       SDNode *S = &*++I;
9146       dbgs() << "Overran sorted position:\n";
9147       S->dumprFull(this); dbgs() << "\n";
9148       dbgs() << "Checking if this is due to cycles\n";
9149       checkForCycles(this, true);
9150 #endif
9151       llvm_unreachable(nullptr);
9152     }
9153   }
9154 
9155   assert(SortedPos == AllNodes.end() &&
9156          "Topological sort incomplete!");
9157   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9158          "First node in topological sort is not the entry token!");
9159   assert(AllNodes.front().getNodeId() == 0 &&
9160          "First node in topological sort has non-zero id!");
9161   assert(AllNodes.front().getNumOperands() == 0 &&
9162          "First node in topological sort has operands!");
9163   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9164          "Last node in topologic sort has unexpected id!");
9165   assert(AllNodes.back().use_empty() &&
9166          "Last node in topologic sort has users!");
9167   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9168   return DAGSize;
9169 }
9170 
9171 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9172 /// value is produced by SD.
9173 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9174   for (SDNode *SD : DB->getSDNodes()) {
9175     if (!SD)
9176       continue;
9177     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9178     SD->setHasDebugValue(true);
9179   }
9180   DbgInfo->add(DB, isParameter);
9181 }
9182 
9183 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9184 
9185 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9186                                                    SDValue NewMemOpChain) {
9187   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9188   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9189   // The new memory operation must have the same position as the old load in
9190   // terms of memory dependency. Create a TokenFactor for the old load and new
9191   // memory operation and update uses of the old load's output chain to use that
9192   // TokenFactor.
9193   if (OldChain == NewMemOpChain || OldChain.use_empty())
9194     return NewMemOpChain;
9195 
9196   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9197                                 OldChain, NewMemOpChain);
9198   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9199   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9200   return TokenFactor;
9201 }
9202 
9203 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9204                                                    SDValue NewMemOp) {
9205   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9206   SDValue OldChain = SDValue(OldLoad, 1);
9207   SDValue NewMemOpChain = NewMemOp.getValue(1);
9208   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9209 }
9210 
9211 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9212                                                      Function **OutFunction) {
9213   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9214 
9215   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9216   auto *Module = MF->getFunction().getParent();
9217   auto *Function = Module->getFunction(Symbol);
9218 
9219   if (OutFunction != nullptr)
9220       *OutFunction = Function;
9221 
9222   if (Function != nullptr) {
9223     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9224     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9225   }
9226 
9227   std::string ErrorStr;
9228   raw_string_ostream ErrorFormatter(ErrorStr);
9229 
9230   ErrorFormatter << "Undefined external symbol ";
9231   ErrorFormatter << '"' << Symbol << '"';
9232   ErrorFormatter.flush();
9233 
9234   report_fatal_error(ErrorStr);
9235 }
9236 
9237 //===----------------------------------------------------------------------===//
9238 //                              SDNode Class
9239 //===----------------------------------------------------------------------===//
9240 
9241 bool llvm::isNullConstant(SDValue V) {
9242   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9243   return Const != nullptr && Const->isNullValue();
9244 }
9245 
9246 bool llvm::isNullFPConstant(SDValue V) {
9247   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9248   return Const != nullptr && Const->isZero() && !Const->isNegative();
9249 }
9250 
9251 bool llvm::isAllOnesConstant(SDValue V) {
9252   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9253   return Const != nullptr && Const->isAllOnesValue();
9254 }
9255 
9256 bool llvm::isOneConstant(SDValue V) {
9257   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9258   return Const != nullptr && Const->isOne();
9259 }
9260 
9261 SDValue llvm::peekThroughBitcasts(SDValue V) {
9262   while (V.getOpcode() == ISD::BITCAST)
9263     V = V.getOperand(0);
9264   return V;
9265 }
9266 
9267 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9268   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9269     V = V.getOperand(0);
9270   return V;
9271 }
9272 
9273 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9274   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9275     V = V.getOperand(0);
9276   return V;
9277 }
9278 
9279 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9280   if (V.getOpcode() != ISD::XOR)
9281     return false;
9282   V = peekThroughBitcasts(V.getOperand(1));
9283   unsigned NumBits = V.getScalarValueSizeInBits();
9284   ConstantSDNode *C =
9285       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9286   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9287 }
9288 
9289 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9290                                           bool AllowTruncation) {
9291   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9292     return CN;
9293 
9294   // SplatVectors can truncate their operands. Ignore that case here unless
9295   // AllowTruncation is set.
9296   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9297     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9298     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9299       EVT CVT = CN->getValueType(0);
9300       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9301       if (AllowTruncation || CVT == VecEltVT)
9302         return CN;
9303     }
9304   }
9305 
9306   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9307     BitVector UndefElements;
9308     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9309 
9310     // BuildVectors can truncate their operands. Ignore that case here unless
9311     // AllowTruncation is set.
9312     if (CN && (UndefElements.none() || AllowUndefs)) {
9313       EVT CVT = CN->getValueType(0);
9314       EVT NSVT = N.getValueType().getScalarType();
9315       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9316       if (AllowTruncation || (CVT == NSVT))
9317         return CN;
9318     }
9319   }
9320 
9321   return nullptr;
9322 }
9323 
9324 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9325                                           bool AllowUndefs,
9326                                           bool AllowTruncation) {
9327   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9328     return CN;
9329 
9330   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9331     BitVector UndefElements;
9332     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9333 
9334     // BuildVectors can truncate their operands. Ignore that case here unless
9335     // AllowTruncation is set.
9336     if (CN && (UndefElements.none() || AllowUndefs)) {
9337       EVT CVT = CN->getValueType(0);
9338       EVT NSVT = N.getValueType().getScalarType();
9339       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9340       if (AllowTruncation || (CVT == NSVT))
9341         return CN;
9342     }
9343   }
9344 
9345   return nullptr;
9346 }
9347 
9348 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9349   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9350     return CN;
9351 
9352   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9353     BitVector UndefElements;
9354     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9355     if (CN && (UndefElements.none() || AllowUndefs))
9356       return CN;
9357   }
9358 
9359   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9360     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9361       return CN;
9362 
9363   return nullptr;
9364 }
9365 
9366 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9367                                               const APInt &DemandedElts,
9368                                               bool AllowUndefs) {
9369   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9370     return CN;
9371 
9372   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9373     BitVector UndefElements;
9374     ConstantFPSDNode *CN =
9375         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9376     if (CN && (UndefElements.none() || AllowUndefs))
9377       return CN;
9378   }
9379 
9380   return nullptr;
9381 }
9382 
9383 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9384   // TODO: may want to use peekThroughBitcast() here.
9385   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9386   return C && C->isNullValue();
9387 }
9388 
9389 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9390   // TODO: may want to use peekThroughBitcast() here.
9391   unsigned BitWidth = N.getScalarValueSizeInBits();
9392   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9393   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9394 }
9395 
9396 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9397   N = peekThroughBitcasts(N);
9398   unsigned BitWidth = N.getScalarValueSizeInBits();
9399   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9400   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9401 }
9402 
9403 HandleSDNode::~HandleSDNode() {
9404   DropOperands();
9405 }
9406 
9407 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9408                                          const DebugLoc &DL,
9409                                          const GlobalValue *GA, EVT VT,
9410                                          int64_t o, unsigned TF)
9411     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9412   TheGlobal = GA;
9413 }
9414 
9415 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9416                                          EVT VT, unsigned SrcAS,
9417                                          unsigned DestAS)
9418     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9419       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9420 
9421 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9422                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9423     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9424   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9425   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9426   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9427   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9428 
9429   // We check here that the size of the memory operand fits within the size of
9430   // the MMO. This is because the MMO might indicate only a possible address
9431   // range instead of specifying the affected memory addresses precisely.
9432   // TODO: Make MachineMemOperands aware of scalable vectors.
9433   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9434          "Size mismatch!");
9435 }
9436 
9437 /// Profile - Gather unique data for the node.
9438 ///
9439 void SDNode::Profile(FoldingSetNodeID &ID) const {
9440   AddNodeIDNode(ID, this);
9441 }
9442 
9443 namespace {
9444 
9445   struct EVTArray {
9446     std::vector<EVT> VTs;
9447 
9448     EVTArray() {
9449       VTs.reserve(MVT::LAST_VALUETYPE);
9450       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9451         VTs.push_back(MVT((MVT::SimpleValueType)i));
9452     }
9453   };
9454 
9455 } // end anonymous namespace
9456 
9457 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9458 static ManagedStatic<EVTArray> SimpleVTArray;
9459 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9460 
9461 /// getValueTypeList - Return a pointer to the specified value type.
9462 ///
9463 const EVT *SDNode::getValueTypeList(EVT VT) {
9464   if (VT.isExtended()) {
9465     sys::SmartScopedLock<true> Lock(*VTMutex);
9466     return &(*EVTs->insert(VT).first);
9467   } else {
9468     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9469            "Value type out of range!");
9470     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9471   }
9472 }
9473 
9474 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9475 /// indicated value.  This method ignores uses of other values defined by this
9476 /// operation.
9477 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9478   assert(Value < getNumValues() && "Bad value!");
9479 
9480   // TODO: Only iterate over uses of a given value of the node
9481   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9482     if (UI.getUse().getResNo() == Value) {
9483       if (NUses == 0)
9484         return false;
9485       --NUses;
9486     }
9487   }
9488 
9489   // Found exactly the right number of uses?
9490   return NUses == 0;
9491 }
9492 
9493 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9494 /// value. This method ignores uses of other values defined by this operation.
9495 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9496   assert(Value < getNumValues() && "Bad value!");
9497 
9498   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9499     if (UI.getUse().getResNo() == Value)
9500       return true;
9501 
9502   return false;
9503 }
9504 
9505 /// isOnlyUserOf - Return true if this node is the only use of N.
9506 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9507   bool Seen = false;
9508   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9509     SDNode *User = *I;
9510     if (User == this)
9511       Seen = true;
9512     else
9513       return false;
9514   }
9515 
9516   return Seen;
9517 }
9518 
9519 /// Return true if the only users of N are contained in Nodes.
9520 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9521   bool Seen = false;
9522   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9523     SDNode *User = *I;
9524     if (llvm::is_contained(Nodes, User))
9525       Seen = true;
9526     else
9527       return false;
9528   }
9529 
9530   return Seen;
9531 }
9532 
9533 /// isOperand - Return true if this node is an operand of N.
9534 bool SDValue::isOperandOf(const SDNode *N) const {
9535   return is_contained(N->op_values(), *this);
9536 }
9537 
9538 bool SDNode::isOperandOf(const SDNode *N) const {
9539   return any_of(N->op_values(),
9540                 [this](SDValue Op) { return this == Op.getNode(); });
9541 }
9542 
9543 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9544 /// be a chain) reaches the specified operand without crossing any
9545 /// side-effecting instructions on any chain path.  In practice, this looks
9546 /// through token factors and non-volatile loads.  In order to remain efficient,
9547 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9548 ///
9549 /// Note that we only need to examine chains when we're searching for
9550 /// side-effects; SelectionDAG requires that all side-effects are represented
9551 /// by chains, even if another operand would force a specific ordering. This
9552 /// constraint is necessary to allow transformations like splitting loads.
9553 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9554                                              unsigned Depth) const {
9555   if (*this == Dest) return true;
9556 
9557   // Don't search too deeply, we just want to be able to see through
9558   // TokenFactor's etc.
9559   if (Depth == 0) return false;
9560 
9561   // If this is a token factor, all inputs to the TF happen in parallel.
9562   if (getOpcode() == ISD::TokenFactor) {
9563     // First, try a shallow search.
9564     if (is_contained((*this)->ops(), Dest)) {
9565       // We found the chain we want as an operand of this TokenFactor.
9566       // Essentially, we reach the chain without side-effects if we could
9567       // serialize the TokenFactor into a simple chain of operations with
9568       // Dest as the last operation. This is automatically true if the
9569       // chain has one use: there are no other ordering constraints.
9570       // If the chain has more than one use, we give up: some other
9571       // use of Dest might force a side-effect between Dest and the current
9572       // node.
9573       if (Dest.hasOneUse())
9574         return true;
9575     }
9576     // Next, try a deep search: check whether every operand of the TokenFactor
9577     // reaches Dest.
9578     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9579       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9580     });
9581   }
9582 
9583   // Loads don't have side effects, look through them.
9584   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9585     if (Ld->isUnordered())
9586       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9587   }
9588   return false;
9589 }
9590 
9591 bool SDNode::hasPredecessor(const SDNode *N) const {
9592   SmallPtrSet<const SDNode *, 32> Visited;
9593   SmallVector<const SDNode *, 16> Worklist;
9594   Worklist.push_back(this);
9595   return hasPredecessorHelper(N, Visited, Worklist);
9596 }
9597 
9598 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9599   this->Flags.intersectWith(Flags);
9600 }
9601 
9602 SDValue
9603 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9604                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9605                                   bool AllowPartials) {
9606   // The pattern must end in an extract from index 0.
9607   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9608       !isNullConstant(Extract->getOperand(1)))
9609     return SDValue();
9610 
9611   // Match against one of the candidate binary ops.
9612   SDValue Op = Extract->getOperand(0);
9613   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9614         return Op.getOpcode() == unsigned(BinOp);
9615       }))
9616     return SDValue();
9617 
9618   // Floating-point reductions may require relaxed constraints on the final step
9619   // of the reduction because they may reorder intermediate operations.
9620   unsigned CandidateBinOp = Op.getOpcode();
9621   if (Op.getValueType().isFloatingPoint()) {
9622     SDNodeFlags Flags = Op->getFlags();
9623     switch (CandidateBinOp) {
9624     case ISD::FADD:
9625       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9626         return SDValue();
9627       break;
9628     default:
9629       llvm_unreachable("Unhandled FP opcode for binop reduction");
9630     }
9631   }
9632 
9633   // Matching failed - attempt to see if we did enough stages that a partial
9634   // reduction from a subvector is possible.
9635   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9636     if (!AllowPartials || !Op)
9637       return SDValue();
9638     EVT OpVT = Op.getValueType();
9639     EVT OpSVT = OpVT.getScalarType();
9640     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9641     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9642       return SDValue();
9643     BinOp = (ISD::NodeType)CandidateBinOp;
9644     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9645                    getVectorIdxConstant(0, SDLoc(Op)));
9646   };
9647 
9648   // At each stage, we're looking for something that looks like:
9649   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9650   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9651   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9652   // %a = binop <8 x i32> %op, %s
9653   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9654   // we expect something like:
9655   // <4,5,6,7,u,u,u,u>
9656   // <2,3,u,u,u,u,u,u>
9657   // <1,u,u,u,u,u,u,u>
9658   // While a partial reduction match would be:
9659   // <2,3,u,u,u,u,u,u>
9660   // <1,u,u,u,u,u,u,u>
9661   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9662   SDValue PrevOp;
9663   for (unsigned i = 0; i < Stages; ++i) {
9664     unsigned MaskEnd = (1 << i);
9665 
9666     if (Op.getOpcode() != CandidateBinOp)
9667       return PartialReduction(PrevOp, MaskEnd);
9668 
9669     SDValue Op0 = Op.getOperand(0);
9670     SDValue Op1 = Op.getOperand(1);
9671 
9672     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9673     if (Shuffle) {
9674       Op = Op1;
9675     } else {
9676       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9677       Op = Op0;
9678     }
9679 
9680     // The first operand of the shuffle should be the same as the other operand
9681     // of the binop.
9682     if (!Shuffle || Shuffle->getOperand(0) != Op)
9683       return PartialReduction(PrevOp, MaskEnd);
9684 
9685     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9686     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9687       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9688         return PartialReduction(PrevOp, MaskEnd);
9689 
9690     PrevOp = Op;
9691   }
9692 
9693   // Handle subvector reductions, which tend to appear after the shuffle
9694   // reduction stages.
9695   while (Op.getOpcode() == CandidateBinOp) {
9696     unsigned NumElts = Op.getValueType().getVectorNumElements();
9697     SDValue Op0 = Op.getOperand(0);
9698     SDValue Op1 = Op.getOperand(1);
9699     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9700         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9701         Op0.getOperand(0) != Op1.getOperand(0))
9702       break;
9703     SDValue Src = Op0.getOperand(0);
9704     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9705     if (NumSrcElts != (2 * NumElts))
9706       break;
9707     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9708           Op1.getConstantOperandAPInt(1) == NumElts) &&
9709         !(Op1.getConstantOperandAPInt(1) == 0 &&
9710           Op0.getConstantOperandAPInt(1) == NumElts))
9711       break;
9712     Op = Src;
9713   }
9714 
9715   BinOp = (ISD::NodeType)CandidateBinOp;
9716   return Op;
9717 }
9718 
9719 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9720   assert(N->getNumValues() == 1 &&
9721          "Can't unroll a vector with multiple results!");
9722 
9723   EVT VT = N->getValueType(0);
9724   unsigned NE = VT.getVectorNumElements();
9725   EVT EltVT = VT.getVectorElementType();
9726   SDLoc dl(N);
9727 
9728   SmallVector<SDValue, 8> Scalars;
9729   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9730 
9731   // If ResNE is 0, fully unroll the vector op.
9732   if (ResNE == 0)
9733     ResNE = NE;
9734   else if (NE > ResNE)
9735     NE = ResNE;
9736 
9737   unsigned i;
9738   for (i= 0; i != NE; ++i) {
9739     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9740       SDValue Operand = N->getOperand(j);
9741       EVT OperandVT = Operand.getValueType();
9742       if (OperandVT.isVector()) {
9743         // A vector operand; extract a single element.
9744         EVT OperandEltVT = OperandVT.getVectorElementType();
9745         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9746                               Operand, getVectorIdxConstant(i, dl));
9747       } else {
9748         // A scalar operand; just use it as is.
9749         Operands[j] = Operand;
9750       }
9751     }
9752 
9753     switch (N->getOpcode()) {
9754     default: {
9755       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9756                                 N->getFlags()));
9757       break;
9758     }
9759     case ISD::VSELECT:
9760       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9761       break;
9762     case ISD::SHL:
9763     case ISD::SRA:
9764     case ISD::SRL:
9765     case ISD::ROTL:
9766     case ISD::ROTR:
9767       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9768                                getShiftAmountOperand(Operands[0].getValueType(),
9769                                                      Operands[1])));
9770       break;
9771     case ISD::SIGN_EXTEND_INREG: {
9772       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9773       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9774                                 Operands[0],
9775                                 getValueType(ExtVT)));
9776     }
9777     }
9778   }
9779 
9780   for (; i < ResNE; ++i)
9781     Scalars.push_back(getUNDEF(EltVT));
9782 
9783   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9784   return getBuildVector(VecVT, dl, Scalars);
9785 }
9786 
9787 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9788     SDNode *N, unsigned ResNE) {
9789   unsigned Opcode = N->getOpcode();
9790   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9791           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9792           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9793          "Expected an overflow opcode");
9794 
9795   EVT ResVT = N->getValueType(0);
9796   EVT OvVT = N->getValueType(1);
9797   EVT ResEltVT = ResVT.getVectorElementType();
9798   EVT OvEltVT = OvVT.getVectorElementType();
9799   SDLoc dl(N);
9800 
9801   // If ResNE is 0, fully unroll the vector op.
9802   unsigned NE = ResVT.getVectorNumElements();
9803   if (ResNE == 0)
9804     ResNE = NE;
9805   else if (NE > ResNE)
9806     NE = ResNE;
9807 
9808   SmallVector<SDValue, 8> LHSScalars;
9809   SmallVector<SDValue, 8> RHSScalars;
9810   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9811   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9812 
9813   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9814   SDVTList VTs = getVTList(ResEltVT, SVT);
9815   SmallVector<SDValue, 8> ResScalars;
9816   SmallVector<SDValue, 8> OvScalars;
9817   for (unsigned i = 0; i < NE; ++i) {
9818     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9819     SDValue Ov =
9820         getSelect(dl, OvEltVT, Res.getValue(1),
9821                   getBoolConstant(true, dl, OvEltVT, ResVT),
9822                   getConstant(0, dl, OvEltVT));
9823 
9824     ResScalars.push_back(Res);
9825     OvScalars.push_back(Ov);
9826   }
9827 
9828   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9829   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9830 
9831   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9832   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9833   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9834                         getBuildVector(NewOvVT, dl, OvScalars));
9835 }
9836 
9837 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9838                                                   LoadSDNode *Base,
9839                                                   unsigned Bytes,
9840                                                   int Dist) const {
9841   if (LD->isVolatile() || Base->isVolatile())
9842     return false;
9843   // TODO: probably too restrictive for atomics, revisit
9844   if (!LD->isSimple())
9845     return false;
9846   if (LD->isIndexed() || Base->isIndexed())
9847     return false;
9848   if (LD->getChain() != Base->getChain())
9849     return false;
9850   EVT VT = LD->getValueType(0);
9851   if (VT.getSizeInBits() / 8 != Bytes)
9852     return false;
9853 
9854   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9855   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9856 
9857   int64_t Offset = 0;
9858   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9859     return (Dist * Bytes == Offset);
9860   return false;
9861 }
9862 
9863 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9864 /// if it cannot be inferred.
9865 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9866   // If this is a GlobalAddress + cst, return the alignment.
9867   const GlobalValue *GV = nullptr;
9868   int64_t GVOffset = 0;
9869   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9870     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9871     KnownBits Known(PtrWidth);
9872     llvm::computeKnownBits(GV, Known, getDataLayout());
9873     unsigned AlignBits = Known.countMinTrailingZeros();
9874     if (AlignBits)
9875       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9876   }
9877 
9878   // If this is a direct reference to a stack slot, use information about the
9879   // stack slot's alignment.
9880   int FrameIdx = INT_MIN;
9881   int64_t FrameOffset = 0;
9882   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9883     FrameIdx = FI->getIndex();
9884   } else if (isBaseWithConstantOffset(Ptr) &&
9885              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9886     // Handle FI+Cst
9887     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9888     FrameOffset = Ptr.getConstantOperandVal(1);
9889   }
9890 
9891   if (FrameIdx != INT_MIN) {
9892     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9893     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9894   }
9895 
9896   return None;
9897 }
9898 
9899 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9900 /// which is split (or expanded) into two not necessarily identical pieces.
9901 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9902   // Currently all types are split in half.
9903   EVT LoVT, HiVT;
9904   if (!VT.isVector())
9905     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9906   else
9907     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9908 
9909   return std::make_pair(LoVT, HiVT);
9910 }
9911 
9912 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9913 /// type, dependent on an enveloping VT that has been split into two identical
9914 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9915 std::pair<EVT, EVT>
9916 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9917                                        bool *HiIsEmpty) const {
9918   EVT EltTp = VT.getVectorElementType();
9919   // Examples:
9920   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9921   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9922   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9923   //   etc.
9924   ElementCount VTNumElts = VT.getVectorElementCount();
9925   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9926   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9927          "Mixing fixed width and scalable vectors when enveloping a type");
9928   EVT LoVT, HiVT;
9929   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9930     LoVT = EnvVT;
9931     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9932     *HiIsEmpty = false;
9933   } else {
9934     // Flag that hi type has zero storage size, but return split envelop type
9935     // (this would be easier if vector types with zero elements were allowed).
9936     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9937     HiVT = EnvVT;
9938     *HiIsEmpty = true;
9939   }
9940   return std::make_pair(LoVT, HiVT);
9941 }
9942 
9943 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9944 /// low/high part.
9945 std::pair<SDValue, SDValue>
9946 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9947                           const EVT &HiVT) {
9948   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9949          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9950          "Splitting vector with an invalid mixture of fixed and scalable "
9951          "vector types");
9952   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9953              N.getValueType().getVectorMinNumElements() &&
9954          "More vector elements requested than available!");
9955   SDValue Lo, Hi;
9956   Lo =
9957       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9958   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9959   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9960   // IDX with the runtime scaling factor of the result vector type. For
9961   // fixed-width result vectors, that runtime scaling factor is 1.
9962   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9963                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9964   return std::make_pair(Lo, Hi);
9965 }
9966 
9967 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9968 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9969   EVT VT = N.getValueType();
9970   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9971                                 NextPowerOf2(VT.getVectorNumElements()));
9972   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9973                  getVectorIdxConstant(0, DL));
9974 }
9975 
9976 void SelectionDAG::ExtractVectorElements(SDValue Op,
9977                                          SmallVectorImpl<SDValue> &Args,
9978                                          unsigned Start, unsigned Count,
9979                                          EVT EltVT) {
9980   EVT VT = Op.getValueType();
9981   if (Count == 0)
9982     Count = VT.getVectorNumElements();
9983   if (EltVT == EVT())
9984     EltVT = VT.getVectorElementType();
9985   SDLoc SL(Op);
9986   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9987     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9988                            getVectorIdxConstant(i, SL)));
9989   }
9990 }
9991 
9992 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9993 unsigned GlobalAddressSDNode::getAddressSpace() const {
9994   return getGlobal()->getType()->getAddressSpace();
9995 }
9996 
9997 Type *ConstantPoolSDNode::getType() const {
9998   if (isMachineConstantPoolEntry())
9999     return Val.MachineCPVal->getType();
10000   return Val.ConstVal->getType();
10001 }
10002 
10003 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10004                                         unsigned &SplatBitSize,
10005                                         bool &HasAnyUndefs,
10006                                         unsigned MinSplatBits,
10007                                         bool IsBigEndian) const {
10008   EVT VT = getValueType(0);
10009   assert(VT.isVector() && "Expected a vector type");
10010   unsigned VecWidth = VT.getSizeInBits();
10011   if (MinSplatBits > VecWidth)
10012     return false;
10013 
10014   // FIXME: The widths are based on this node's type, but build vectors can
10015   // truncate their operands.
10016   SplatValue = APInt(VecWidth, 0);
10017   SplatUndef = APInt(VecWidth, 0);
10018 
10019   // Get the bits. Bits with undefined values (when the corresponding element
10020   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10021   // in SplatValue. If any of the values are not constant, give up and return
10022   // false.
10023   unsigned int NumOps = getNumOperands();
10024   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10025   unsigned EltWidth = VT.getScalarSizeInBits();
10026 
10027   for (unsigned j = 0; j < NumOps; ++j) {
10028     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10029     SDValue OpVal = getOperand(i);
10030     unsigned BitPos = j * EltWidth;
10031 
10032     if (OpVal.isUndef())
10033       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10034     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10035       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10036     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10037       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10038     else
10039       return false;
10040   }
10041 
10042   // The build_vector is all constants or undefs. Find the smallest element
10043   // size that splats the vector.
10044   HasAnyUndefs = (SplatUndef != 0);
10045 
10046   // FIXME: This does not work for vectors with elements less than 8 bits.
10047   while (VecWidth > 8) {
10048     unsigned HalfSize = VecWidth / 2;
10049     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10050     APInt LowValue = SplatValue.trunc(HalfSize);
10051     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10052     APInt LowUndef = SplatUndef.trunc(HalfSize);
10053 
10054     // If the two halves do not match (ignoring undef bits), stop here.
10055     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10056         MinSplatBits > HalfSize)
10057       break;
10058 
10059     SplatValue = HighValue | LowValue;
10060     SplatUndef = HighUndef & LowUndef;
10061 
10062     VecWidth = HalfSize;
10063   }
10064 
10065   SplatBitSize = VecWidth;
10066   return true;
10067 }
10068 
10069 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10070                                          BitVector *UndefElements) const {
10071   unsigned NumOps = getNumOperands();
10072   if (UndefElements) {
10073     UndefElements->clear();
10074     UndefElements->resize(NumOps);
10075   }
10076   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10077   if (!DemandedElts)
10078     return SDValue();
10079   SDValue Splatted;
10080   for (unsigned i = 0; i != NumOps; ++i) {
10081     if (!DemandedElts[i])
10082       continue;
10083     SDValue Op = getOperand(i);
10084     if (Op.isUndef()) {
10085       if (UndefElements)
10086         (*UndefElements)[i] = true;
10087     } else if (!Splatted) {
10088       Splatted = Op;
10089     } else if (Splatted != Op) {
10090       return SDValue();
10091     }
10092   }
10093 
10094   if (!Splatted) {
10095     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10096     assert(getOperand(FirstDemandedIdx).isUndef() &&
10097            "Can only have a splat without a constant for all undefs.");
10098     return getOperand(FirstDemandedIdx);
10099   }
10100 
10101   return Splatted;
10102 }
10103 
10104 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10105   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10106   return getSplatValue(DemandedElts, UndefElements);
10107 }
10108 
10109 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10110                                             SmallVectorImpl<SDValue> &Sequence,
10111                                             BitVector *UndefElements) const {
10112   unsigned NumOps = getNumOperands();
10113   Sequence.clear();
10114   if (UndefElements) {
10115     UndefElements->clear();
10116     UndefElements->resize(NumOps);
10117   }
10118   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10119   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10120     return false;
10121 
10122   // Set the undefs even if we don't find a sequence (like getSplatValue).
10123   if (UndefElements)
10124     for (unsigned I = 0; I != NumOps; ++I)
10125       if (DemandedElts[I] && getOperand(I).isUndef())
10126         (*UndefElements)[I] = true;
10127 
10128   // Iteratively widen the sequence length looking for repetitions.
10129   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10130     Sequence.append(SeqLen, SDValue());
10131     for (unsigned I = 0; I != NumOps; ++I) {
10132       if (!DemandedElts[I])
10133         continue;
10134       SDValue &SeqOp = Sequence[I % SeqLen];
10135       SDValue Op = getOperand(I);
10136       if (Op.isUndef()) {
10137         if (!SeqOp)
10138           SeqOp = Op;
10139         continue;
10140       }
10141       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10142         Sequence.clear();
10143         break;
10144       }
10145       SeqOp = Op;
10146     }
10147     if (!Sequence.empty())
10148       return true;
10149   }
10150 
10151   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10152   return false;
10153 }
10154 
10155 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10156                                             BitVector *UndefElements) const {
10157   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10158   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10159 }
10160 
10161 ConstantSDNode *
10162 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10163                                         BitVector *UndefElements) const {
10164   return dyn_cast_or_null<ConstantSDNode>(
10165       getSplatValue(DemandedElts, UndefElements));
10166 }
10167 
10168 ConstantSDNode *
10169 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10170   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10171 }
10172 
10173 ConstantFPSDNode *
10174 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10175                                           BitVector *UndefElements) const {
10176   return dyn_cast_or_null<ConstantFPSDNode>(
10177       getSplatValue(DemandedElts, UndefElements));
10178 }
10179 
10180 ConstantFPSDNode *
10181 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10182   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10183 }
10184 
10185 int32_t
10186 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10187                                                    uint32_t BitWidth) const {
10188   if (ConstantFPSDNode *CN =
10189           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10190     bool IsExact;
10191     APSInt IntVal(BitWidth);
10192     const APFloat &APF = CN->getValueAPF();
10193     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10194             APFloat::opOK ||
10195         !IsExact)
10196       return -1;
10197 
10198     return IntVal.exactLogBase2();
10199   }
10200   return -1;
10201 }
10202 
10203 bool BuildVectorSDNode::isConstant() const {
10204   for (const SDValue &Op : op_values()) {
10205     unsigned Opc = Op.getOpcode();
10206     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10207       return false;
10208   }
10209   return true;
10210 }
10211 
10212 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10213   // Find the first non-undef value in the shuffle mask.
10214   unsigned i, e;
10215   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10216     /* search */;
10217 
10218   // If all elements are undefined, this shuffle can be considered a splat
10219   // (although it should eventually get simplified away completely).
10220   if (i == e)
10221     return true;
10222 
10223   // Make sure all remaining elements are either undef or the same as the first
10224   // non-undef value.
10225   for (int Idx = Mask[i]; i != e; ++i)
10226     if (Mask[i] >= 0 && Mask[i] != Idx)
10227       return false;
10228   return true;
10229 }
10230 
10231 // Returns the SDNode if it is a constant integer BuildVector
10232 // or constant integer.
10233 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10234   if (isa<ConstantSDNode>(N))
10235     return N.getNode();
10236   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10237     return N.getNode();
10238   // Treat a GlobalAddress supporting constant offset folding as a
10239   // constant integer.
10240   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10241     if (GA->getOpcode() == ISD::GlobalAddress &&
10242         TLI->isOffsetFoldingLegal(GA))
10243       return GA;
10244   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10245       isa<ConstantSDNode>(N.getOperand(0)))
10246     return N.getNode();
10247   return nullptr;
10248 }
10249 
10250 // Returns the SDNode if it is a constant float BuildVector
10251 // or constant float.
10252 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10253   if (isa<ConstantFPSDNode>(N))
10254     return N.getNode();
10255 
10256   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10257     return N.getNode();
10258 
10259   return nullptr;
10260 }
10261 
10262 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10263   assert(!Node->OperandList && "Node already has operands");
10264   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10265          "too many operands to fit into SDNode");
10266   SDUse *Ops = OperandRecycler.allocate(
10267       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10268 
10269   bool IsDivergent = false;
10270   for (unsigned I = 0; I != Vals.size(); ++I) {
10271     Ops[I].setUser(Node);
10272     Ops[I].setInitial(Vals[I]);
10273     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10274       IsDivergent |= Ops[I].getNode()->isDivergent();
10275   }
10276   Node->NumOperands = Vals.size();
10277   Node->OperandList = Ops;
10278   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10279     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10280     Node->SDNodeBits.IsDivergent = IsDivergent;
10281   }
10282   checkForCycles(Node);
10283 }
10284 
10285 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10286                                      SmallVectorImpl<SDValue> &Vals) {
10287   size_t Limit = SDNode::getMaxNumOperands();
10288   while (Vals.size() > Limit) {
10289     unsigned SliceIdx = Vals.size() - Limit;
10290     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10291     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10292     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10293     Vals.emplace_back(NewTF);
10294   }
10295   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10296 }
10297 
10298 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10299                                         EVT VT, SDNodeFlags Flags) {
10300   switch (Opcode) {
10301   default:
10302     return SDValue();
10303   case ISD::ADD:
10304   case ISD::OR:
10305   case ISD::XOR:
10306   case ISD::UMAX:
10307     return getConstant(0, DL, VT);
10308   case ISD::MUL:
10309     return getConstant(1, DL, VT);
10310   case ISD::AND:
10311   case ISD::UMIN:
10312     return getAllOnesConstant(DL, VT);
10313   case ISD::SMAX:
10314     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10315   case ISD::SMIN:
10316     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10317   case ISD::FADD:
10318     return getConstantFP(-0.0, DL, VT);
10319   case ISD::FMUL:
10320     return getConstantFP(1.0, DL, VT);
10321   case ISD::FMINNUM:
10322   case ISD::FMAXNUM: {
10323     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10324     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10325     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10326                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10327                         APFloat::getLargest(Semantics);
10328     if (Opcode == ISD::FMAXNUM)
10329       NeutralAF.changeSign();
10330 
10331     return getConstantFP(NeutralAF, DL, VT);
10332   }
10333   }
10334 }
10335 
10336 #ifndef NDEBUG
10337 static void checkForCyclesHelper(const SDNode *N,
10338                                  SmallPtrSetImpl<const SDNode*> &Visited,
10339                                  SmallPtrSetImpl<const SDNode*> &Checked,
10340                                  const llvm::SelectionDAG *DAG) {
10341   // If this node has already been checked, don't check it again.
10342   if (Checked.count(N))
10343     return;
10344 
10345   // If a node has already been visited on this depth-first walk, reject it as
10346   // a cycle.
10347   if (!Visited.insert(N).second) {
10348     errs() << "Detected cycle in SelectionDAG\n";
10349     dbgs() << "Offending node:\n";
10350     N->dumprFull(DAG); dbgs() << "\n";
10351     abort();
10352   }
10353 
10354   for (const SDValue &Op : N->op_values())
10355     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10356 
10357   Checked.insert(N);
10358   Visited.erase(N);
10359 }
10360 #endif
10361 
10362 void llvm::checkForCycles(const llvm::SDNode *N,
10363                           const llvm::SelectionDAG *DAG,
10364                           bool force) {
10365 #ifndef NDEBUG
10366   bool check = force;
10367 #ifdef EXPENSIVE_CHECKS
10368   check = true;
10369 #endif  // EXPENSIVE_CHECKS
10370   if (check) {
10371     assert(N && "Checking nonexistent SDNode");
10372     SmallPtrSet<const SDNode*, 32> visited;
10373     SmallPtrSet<const SDNode*, 32> checked;
10374     checkForCyclesHelper(N, visited, checked, DAG);
10375   }
10376 #endif  // !NDEBUG
10377 }
10378 
10379 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10380   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10381 }
10382