1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2543 /// DemandedElts. We use this predicate to simplify operations downstream. 2544 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2545 unsigned Depth /* = 0 */) const { 2546 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2547 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2548 } 2549 2550 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2551 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2552 unsigned Depth) const { 2553 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2554 } 2555 2556 /// isSplatValue - Return true if the vector V has the same value 2557 /// across all DemandedElts. For scalable vectors it does not make 2558 /// sense to specify which elements are demanded or undefined, therefore 2559 /// they are simply ignored. 2560 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2561 APInt &UndefElts, unsigned Depth) const { 2562 unsigned Opcode = V.getOpcode(); 2563 EVT VT = V.getValueType(); 2564 assert(VT.isVector() && "Vector type expected"); 2565 2566 if (!VT.isScalableVector() && !DemandedElts) 2567 return false; // No demanded elts, better to assume we don't know anything. 2568 2569 if (Depth >= MaxRecursionDepth) 2570 return false; // Limit search depth. 2571 2572 // Deal with some common cases here that work for both fixed and scalable 2573 // vector types. 2574 switch (Opcode) { 2575 case ISD::SPLAT_VECTOR: 2576 UndefElts = V.getOperand(0).isUndef() 2577 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2578 : APInt(DemandedElts.getBitWidth(), 0); 2579 return true; 2580 case ISD::ADD: 2581 case ISD::SUB: 2582 case ISD::AND: 2583 case ISD::XOR: 2584 case ISD::OR: { 2585 APInt UndefLHS, UndefRHS; 2586 SDValue LHS = V.getOperand(0); 2587 SDValue RHS = V.getOperand(1); 2588 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2589 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2590 UndefElts = UndefLHS | UndefRHS; 2591 return true; 2592 } 2593 return false; 2594 } 2595 case ISD::ABS: 2596 case ISD::TRUNCATE: 2597 case ISD::SIGN_EXTEND: 2598 case ISD::ZERO_EXTEND: 2599 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2600 default: 2601 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2602 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2603 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2604 break; 2605 } 2606 2607 // We don't support other cases than those above for scalable vectors at 2608 // the moment. 2609 if (VT.isScalableVector()) 2610 return false; 2611 2612 unsigned NumElts = VT.getVectorNumElements(); 2613 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2614 UndefElts = APInt::getZero(NumElts); 2615 2616 switch (Opcode) { 2617 case ISD::BUILD_VECTOR: { 2618 SDValue Scl; 2619 for (unsigned i = 0; i != NumElts; ++i) { 2620 SDValue Op = V.getOperand(i); 2621 if (Op.isUndef()) { 2622 UndefElts.setBit(i); 2623 continue; 2624 } 2625 if (!DemandedElts[i]) 2626 continue; 2627 if (Scl && Scl != Op) 2628 return false; 2629 Scl = Op; 2630 } 2631 return true; 2632 } 2633 case ISD::VECTOR_SHUFFLE: { 2634 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2635 APInt DemandedLHS = APInt::getNullValue(NumElts); 2636 APInt DemandedRHS = APInt::getNullValue(NumElts); 2637 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2638 for (int i = 0; i != (int)NumElts; ++i) { 2639 int M = Mask[i]; 2640 if (M < 0) { 2641 UndefElts.setBit(i); 2642 continue; 2643 } 2644 if (!DemandedElts[i]) 2645 continue; 2646 if (M < (int)NumElts) 2647 DemandedLHS.setBit(M); 2648 else 2649 DemandedRHS.setBit(M - NumElts); 2650 } 2651 2652 // If we aren't demanding either op, assume there's no splat. 2653 // If we are demanding both ops, assume there's no splat. 2654 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2655 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2656 return false; 2657 2658 // See if the demanded elts of the source op is a splat or we only demand 2659 // one element, which should always be a splat. 2660 // TODO: Handle source ops splats with undefs. 2661 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2662 APInt SrcUndefs; 2663 return (SrcElts.countPopulation() == 1) || 2664 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2665 (SrcElts & SrcUndefs).isZero()); 2666 }; 2667 if (!DemandedLHS.isZero()) 2668 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2669 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2670 } 2671 case ISD::EXTRACT_SUBVECTOR: { 2672 // Offset the demanded elts by the subvector index. 2673 SDValue Src = V.getOperand(0); 2674 // We don't support scalable vectors at the moment. 2675 if (Src.getValueType().isScalableVector()) 2676 return false; 2677 uint64_t Idx = V.getConstantOperandVal(1); 2678 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2679 APInt UndefSrcElts; 2680 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2681 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2682 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2683 return true; 2684 } 2685 break; 2686 } 2687 case ISD::ANY_EXTEND_VECTOR_INREG: 2688 case ISD::SIGN_EXTEND_VECTOR_INREG: 2689 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2690 // Widen the demanded elts by the src element count. 2691 SDValue Src = V.getOperand(0); 2692 // We don't support scalable vectors at the moment. 2693 if (Src.getValueType().isScalableVector()) 2694 return false; 2695 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2696 APInt UndefSrcElts; 2697 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2698 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2699 UndefElts = UndefSrcElts.trunc(NumElts); 2700 return true; 2701 } 2702 break; 2703 } 2704 case ISD::BITCAST: { 2705 SDValue Src = V.getOperand(0); 2706 EVT SrcVT = Src.getValueType(); 2707 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2708 unsigned BitWidth = VT.getScalarSizeInBits(); 2709 2710 // Ignore bitcasts from unsupported types. 2711 // TODO: Add fp support? 2712 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2713 break; 2714 2715 // Bitcast 'small element' vector to 'large element' vector. 2716 if ((BitWidth % SrcBitWidth) == 0) { 2717 // See if each sub element is a splat. 2718 unsigned Scale = BitWidth / SrcBitWidth; 2719 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2720 APInt ScaledDemandedElts = 2721 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2722 for (unsigned I = 0; I != Scale; ++I) { 2723 APInt SubUndefElts; 2724 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2725 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2726 SubDemandedElts &= ScaledDemandedElts; 2727 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2728 return false; 2729 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2730 } 2731 return true; 2732 } 2733 break; 2734 } 2735 } 2736 2737 return false; 2738 } 2739 2740 /// Helper wrapper to main isSplatValue function. 2741 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2742 EVT VT = V.getValueType(); 2743 assert(VT.isVector() && "Vector type expected"); 2744 2745 APInt UndefElts; 2746 APInt DemandedElts; 2747 2748 // For now we don't support this with scalable vectors. 2749 if (!VT.isScalableVector()) 2750 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2751 return isSplatValue(V, DemandedElts, UndefElts) && 2752 (AllowUndefs || !UndefElts); 2753 } 2754 2755 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2756 V = peekThroughExtractSubvectors(V); 2757 2758 EVT VT = V.getValueType(); 2759 unsigned Opcode = V.getOpcode(); 2760 switch (Opcode) { 2761 default: { 2762 APInt UndefElts; 2763 APInt DemandedElts; 2764 2765 if (!VT.isScalableVector()) 2766 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2767 2768 if (isSplatValue(V, DemandedElts, UndefElts)) { 2769 if (VT.isScalableVector()) { 2770 // DemandedElts and UndefElts are ignored for scalable vectors, since 2771 // the only supported cases are SPLAT_VECTOR nodes. 2772 SplatIdx = 0; 2773 } else { 2774 // Handle case where all demanded elements are UNDEF. 2775 if (DemandedElts.isSubsetOf(UndefElts)) { 2776 SplatIdx = 0; 2777 return getUNDEF(VT); 2778 } 2779 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2780 } 2781 return V; 2782 } 2783 break; 2784 } 2785 case ISD::SPLAT_VECTOR: 2786 SplatIdx = 0; 2787 return V; 2788 case ISD::VECTOR_SHUFFLE: { 2789 if (VT.isScalableVector()) 2790 return SDValue(); 2791 2792 // Check if this is a shuffle node doing a splat. 2793 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2794 // getTargetVShiftNode currently struggles without the splat source. 2795 auto *SVN = cast<ShuffleVectorSDNode>(V); 2796 if (!SVN->isSplat()) 2797 break; 2798 int Idx = SVN->getSplatIndex(); 2799 int NumElts = V.getValueType().getVectorNumElements(); 2800 SplatIdx = Idx % NumElts; 2801 return V.getOperand(Idx / NumElts); 2802 } 2803 } 2804 2805 return SDValue(); 2806 } 2807 2808 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2809 int SplatIdx; 2810 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2811 EVT SVT = SrcVector.getValueType().getScalarType(); 2812 EVT LegalSVT = SVT; 2813 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2814 if (!SVT.isInteger()) 2815 return SDValue(); 2816 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2817 if (LegalSVT.bitsLT(SVT)) 2818 return SDValue(); 2819 } 2820 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2821 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2822 } 2823 return SDValue(); 2824 } 2825 2826 const APInt * 2827 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2828 const APInt &DemandedElts) const { 2829 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2830 V.getOpcode() == ISD::SRA) && 2831 "Unknown shift node"); 2832 unsigned BitWidth = V.getScalarValueSizeInBits(); 2833 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2834 // Shifting more than the bitwidth is not valid. 2835 const APInt &ShAmt = SA->getAPIntValue(); 2836 if (ShAmt.ult(BitWidth)) 2837 return &ShAmt; 2838 } 2839 return nullptr; 2840 } 2841 2842 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2843 SDValue V, const APInt &DemandedElts) const { 2844 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2845 V.getOpcode() == ISD::SRA) && 2846 "Unknown shift node"); 2847 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2848 return ValidAmt; 2849 unsigned BitWidth = V.getScalarValueSizeInBits(); 2850 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2851 if (!BV) 2852 return nullptr; 2853 const APInt *MinShAmt = nullptr; 2854 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2855 if (!DemandedElts[i]) 2856 continue; 2857 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2858 if (!SA) 2859 return nullptr; 2860 // Shifting more than the bitwidth is not valid. 2861 const APInt &ShAmt = SA->getAPIntValue(); 2862 if (ShAmt.uge(BitWidth)) 2863 return nullptr; 2864 if (MinShAmt && MinShAmt->ule(ShAmt)) 2865 continue; 2866 MinShAmt = &ShAmt; 2867 } 2868 return MinShAmt; 2869 } 2870 2871 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2872 SDValue V, const APInt &DemandedElts) const { 2873 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2874 V.getOpcode() == ISD::SRA) && 2875 "Unknown shift node"); 2876 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2877 return ValidAmt; 2878 unsigned BitWidth = V.getScalarValueSizeInBits(); 2879 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2880 if (!BV) 2881 return nullptr; 2882 const APInt *MaxShAmt = nullptr; 2883 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2884 if (!DemandedElts[i]) 2885 continue; 2886 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2887 if (!SA) 2888 return nullptr; 2889 // Shifting more than the bitwidth is not valid. 2890 const APInt &ShAmt = SA->getAPIntValue(); 2891 if (ShAmt.uge(BitWidth)) 2892 return nullptr; 2893 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2894 continue; 2895 MaxShAmt = &ShAmt; 2896 } 2897 return MaxShAmt; 2898 } 2899 2900 /// Determine which bits of Op are known to be either zero or one and return 2901 /// them in Known. For vectors, the known bits are those that are shared by 2902 /// every vector element. 2903 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2904 EVT VT = Op.getValueType(); 2905 2906 // TOOD: Until we have a plan for how to represent demanded elements for 2907 // scalable vectors, we can just bail out for now. 2908 if (Op.getValueType().isScalableVector()) { 2909 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2910 return KnownBits(BitWidth); 2911 } 2912 2913 APInt DemandedElts = VT.isVector() 2914 ? APInt::getAllOnes(VT.getVectorNumElements()) 2915 : APInt(1, 1); 2916 return computeKnownBits(Op, DemandedElts, Depth); 2917 } 2918 2919 /// Determine which bits of Op are known to be either zero or one and return 2920 /// them in Known. The DemandedElts argument allows us to only collect the known 2921 /// bits that are shared by the requested vector elements. 2922 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2923 unsigned Depth) const { 2924 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2925 2926 KnownBits Known(BitWidth); // Don't know anything. 2927 2928 // TOOD: Until we have a plan for how to represent demanded elements for 2929 // scalable vectors, we can just bail out for now. 2930 if (Op.getValueType().isScalableVector()) 2931 return Known; 2932 2933 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2934 // We know all of the bits for a constant! 2935 return KnownBits::makeConstant(C->getAPIntValue()); 2936 } 2937 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2938 // We know all of the bits for a constant fp! 2939 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2940 } 2941 2942 if (Depth >= MaxRecursionDepth) 2943 return Known; // Limit search depth. 2944 2945 KnownBits Known2; 2946 unsigned NumElts = DemandedElts.getBitWidth(); 2947 assert((!Op.getValueType().isVector() || 2948 NumElts == Op.getValueType().getVectorNumElements()) && 2949 "Unexpected vector size"); 2950 2951 if (!DemandedElts) 2952 return Known; // No demanded elts, better to assume we don't know anything. 2953 2954 unsigned Opcode = Op.getOpcode(); 2955 switch (Opcode) { 2956 case ISD::BUILD_VECTOR: 2957 // Collect the known bits that are shared by every demanded vector element. 2958 Known.Zero.setAllBits(); Known.One.setAllBits(); 2959 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2960 if (!DemandedElts[i]) 2961 continue; 2962 2963 SDValue SrcOp = Op.getOperand(i); 2964 Known2 = computeKnownBits(SrcOp, Depth + 1); 2965 2966 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2967 if (SrcOp.getValueSizeInBits() != BitWidth) { 2968 assert(SrcOp.getValueSizeInBits() > BitWidth && 2969 "Expected BUILD_VECTOR implicit truncation"); 2970 Known2 = Known2.trunc(BitWidth); 2971 } 2972 2973 // Known bits are the values that are shared by every demanded element. 2974 Known = KnownBits::commonBits(Known, Known2); 2975 2976 // If we don't know any bits, early out. 2977 if (Known.isUnknown()) 2978 break; 2979 } 2980 break; 2981 case ISD::VECTOR_SHUFFLE: { 2982 // Collect the known bits that are shared by every vector element referenced 2983 // by the shuffle. 2984 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2985 Known.Zero.setAllBits(); Known.One.setAllBits(); 2986 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2987 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2988 for (unsigned i = 0; i != NumElts; ++i) { 2989 if (!DemandedElts[i]) 2990 continue; 2991 2992 int M = SVN->getMaskElt(i); 2993 if (M < 0) { 2994 // For UNDEF elements, we don't know anything about the common state of 2995 // the shuffle result. 2996 Known.resetAll(); 2997 DemandedLHS.clearAllBits(); 2998 DemandedRHS.clearAllBits(); 2999 break; 3000 } 3001 3002 if ((unsigned)M < NumElts) 3003 DemandedLHS.setBit((unsigned)M % NumElts); 3004 else 3005 DemandedRHS.setBit((unsigned)M % NumElts); 3006 } 3007 // Known bits are the values that are shared by every demanded element. 3008 if (!!DemandedLHS) { 3009 SDValue LHS = Op.getOperand(0); 3010 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3011 Known = KnownBits::commonBits(Known, Known2); 3012 } 3013 // If we don't know any bits, early out. 3014 if (Known.isUnknown()) 3015 break; 3016 if (!!DemandedRHS) { 3017 SDValue RHS = Op.getOperand(1); 3018 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3019 Known = KnownBits::commonBits(Known, Known2); 3020 } 3021 break; 3022 } 3023 case ISD::CONCAT_VECTORS: { 3024 // Split DemandedElts and test each of the demanded subvectors. 3025 Known.Zero.setAllBits(); Known.One.setAllBits(); 3026 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3027 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3028 unsigned NumSubVectors = Op.getNumOperands(); 3029 for (unsigned i = 0; i != NumSubVectors; ++i) { 3030 APInt DemandedSub = 3031 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3032 if (!!DemandedSub) { 3033 SDValue Sub = Op.getOperand(i); 3034 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3035 Known = KnownBits::commonBits(Known, Known2); 3036 } 3037 // If we don't know any bits, early out. 3038 if (Known.isUnknown()) 3039 break; 3040 } 3041 break; 3042 } 3043 case ISD::INSERT_SUBVECTOR: { 3044 // Demand any elements from the subvector and the remainder from the src its 3045 // inserted into. 3046 SDValue Src = Op.getOperand(0); 3047 SDValue Sub = Op.getOperand(1); 3048 uint64_t Idx = Op.getConstantOperandVal(2); 3049 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3050 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3051 APInt DemandedSrcElts = DemandedElts; 3052 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3053 3054 Known.One.setAllBits(); 3055 Known.Zero.setAllBits(); 3056 if (!!DemandedSubElts) { 3057 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3058 if (Known.isUnknown()) 3059 break; // early-out. 3060 } 3061 if (!!DemandedSrcElts) { 3062 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3063 Known = KnownBits::commonBits(Known, Known2); 3064 } 3065 break; 3066 } 3067 case ISD::EXTRACT_SUBVECTOR: { 3068 // Offset the demanded elts by the subvector index. 3069 SDValue Src = Op.getOperand(0); 3070 // Bail until we can represent demanded elements for scalable vectors. 3071 if (Src.getValueType().isScalableVector()) 3072 break; 3073 uint64_t Idx = Op.getConstantOperandVal(1); 3074 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3075 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3076 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3077 break; 3078 } 3079 case ISD::SCALAR_TO_VECTOR: { 3080 // We know about scalar_to_vector as much as we know about it source, 3081 // which becomes the first element of otherwise unknown vector. 3082 if (DemandedElts != 1) 3083 break; 3084 3085 SDValue N0 = Op.getOperand(0); 3086 Known = computeKnownBits(N0, Depth + 1); 3087 if (N0.getValueSizeInBits() != BitWidth) 3088 Known = Known.trunc(BitWidth); 3089 3090 break; 3091 } 3092 case ISD::BITCAST: { 3093 SDValue N0 = Op.getOperand(0); 3094 EVT SubVT = N0.getValueType(); 3095 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3096 3097 // Ignore bitcasts from unsupported types. 3098 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3099 break; 3100 3101 // Fast handling of 'identity' bitcasts. 3102 if (BitWidth == SubBitWidth) { 3103 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3104 break; 3105 } 3106 3107 bool IsLE = getDataLayout().isLittleEndian(); 3108 3109 // Bitcast 'small element' vector to 'large element' scalar/vector. 3110 if ((BitWidth % SubBitWidth) == 0) { 3111 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3112 3113 // Collect known bits for the (larger) output by collecting the known 3114 // bits from each set of sub elements and shift these into place. 3115 // We need to separately call computeKnownBits for each set of 3116 // sub elements as the knownbits for each is likely to be different. 3117 unsigned SubScale = BitWidth / SubBitWidth; 3118 APInt SubDemandedElts(NumElts * SubScale, 0); 3119 for (unsigned i = 0; i != NumElts; ++i) 3120 if (DemandedElts[i]) 3121 SubDemandedElts.setBit(i * SubScale); 3122 3123 for (unsigned i = 0; i != SubScale; ++i) { 3124 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3125 Depth + 1); 3126 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3127 Known.insertBits(Known2, SubBitWidth * Shifts); 3128 } 3129 } 3130 3131 // Bitcast 'large element' scalar/vector to 'small element' vector. 3132 if ((SubBitWidth % BitWidth) == 0) { 3133 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3134 3135 // Collect known bits for the (smaller) output by collecting the known 3136 // bits from the overlapping larger input elements and extracting the 3137 // sub sections we actually care about. 3138 unsigned SubScale = SubBitWidth / BitWidth; 3139 APInt SubDemandedElts = 3140 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3141 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3142 3143 Known.Zero.setAllBits(); Known.One.setAllBits(); 3144 for (unsigned i = 0; i != NumElts; ++i) 3145 if (DemandedElts[i]) { 3146 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3147 unsigned Offset = (Shifts % SubScale) * BitWidth; 3148 Known = KnownBits::commonBits(Known, 3149 Known2.extractBits(BitWidth, Offset)); 3150 // If we don't know any bits, early out. 3151 if (Known.isUnknown()) 3152 break; 3153 } 3154 } 3155 break; 3156 } 3157 case ISD::AND: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known &= Known2; 3162 break; 3163 case ISD::OR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known |= Known2; 3168 break; 3169 case ISD::XOR: 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 3173 Known ^= Known2; 3174 break; 3175 case ISD::MUL: { 3176 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3177 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3178 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3179 // TODO: SelfMultiply can be poison, but not undef. 3180 if (SelfMultiply) 3181 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3182 Op.getOperand(0), DemandedElts, false, Depth + 1); 3183 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3184 3185 // If the multiplication is known not to overflow, the product of a number 3186 // with itself is non-negative. Only do this if we didn't already computed 3187 // the opposite value for the sign bit. 3188 if (Op->getFlags().hasNoSignedWrap() && 3189 Op.getOperand(0) == Op.getOperand(1) && 3190 !Known.isNegative()) 3191 Known.makeNonNegative(); 3192 break; 3193 } 3194 case ISD::MULHU: { 3195 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known = KnownBits::mulhu(Known, Known2); 3198 break; 3199 } 3200 case ISD::MULHS: { 3201 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3202 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3203 Known = KnownBits::mulhs(Known, Known2); 3204 break; 3205 } 3206 case ISD::UMUL_LOHI: { 3207 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3208 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3209 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3210 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3211 if (Op.getResNo() == 0) 3212 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3213 else 3214 Known = KnownBits::mulhu(Known, Known2); 3215 break; 3216 } 3217 case ISD::SMUL_LOHI: { 3218 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3219 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3220 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3221 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3222 if (Op.getResNo() == 0) 3223 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3224 else 3225 Known = KnownBits::mulhs(Known, Known2); 3226 break; 3227 } 3228 case ISD::UDIV: { 3229 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3230 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3231 Known = KnownBits::udiv(Known, Known2); 3232 break; 3233 } 3234 case ISD::AVGCEILU: { 3235 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3237 Known = Known.zext(BitWidth + 1); 3238 Known2 = Known2.zext(BitWidth + 1); 3239 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3240 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3241 Known = Known.extractBits(BitWidth, 1); 3242 break; 3243 } 3244 case ISD::SELECT: 3245 case ISD::VSELECT: 3246 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3247 // If we don't know any bits, early out. 3248 if (Known.isUnknown()) 3249 break; 3250 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3251 3252 // Only known if known in both the LHS and RHS. 3253 Known = KnownBits::commonBits(Known, Known2); 3254 break; 3255 case ISD::SELECT_CC: 3256 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3257 // If we don't know any bits, early out. 3258 if (Known.isUnknown()) 3259 break; 3260 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3261 3262 // Only known if known in both the LHS and RHS. 3263 Known = KnownBits::commonBits(Known, Known2); 3264 break; 3265 case ISD::SMULO: 3266 case ISD::UMULO: 3267 if (Op.getResNo() != 1) 3268 break; 3269 // The boolean result conforms to getBooleanContents. 3270 // If we know the result of a setcc has the top bits zero, use this info. 3271 // We know that we have an integer-based boolean since these operations 3272 // are only available for integer. 3273 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3274 TargetLowering::ZeroOrOneBooleanContent && 3275 BitWidth > 1) 3276 Known.Zero.setBitsFrom(1); 3277 break; 3278 case ISD::SETCC: 3279 case ISD::STRICT_FSETCC: 3280 case ISD::STRICT_FSETCCS: { 3281 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3282 // If we know the result of a setcc has the top bits zero, use this info. 3283 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3284 TargetLowering::ZeroOrOneBooleanContent && 3285 BitWidth > 1) 3286 Known.Zero.setBitsFrom(1); 3287 break; 3288 } 3289 case ISD::SHL: 3290 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3291 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3292 Known = KnownBits::shl(Known, Known2); 3293 3294 // Minimum shift low bits are known zero. 3295 if (const APInt *ShMinAmt = 3296 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3297 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3298 break; 3299 case ISD::SRL: 3300 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3301 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3302 Known = KnownBits::lshr(Known, Known2); 3303 3304 // Minimum shift high bits are known zero. 3305 if (const APInt *ShMinAmt = 3306 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3307 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3308 break; 3309 case ISD::SRA: 3310 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3311 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3312 Known = KnownBits::ashr(Known, Known2); 3313 // TODO: Add minimum shift high known sign bits. 3314 break; 3315 case ISD::FSHL: 3316 case ISD::FSHR: 3317 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3318 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3319 3320 // For fshl, 0-shift returns the 1st arg. 3321 // For fshr, 0-shift returns the 2nd arg. 3322 if (Amt == 0) { 3323 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3324 DemandedElts, Depth + 1); 3325 break; 3326 } 3327 3328 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3329 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3332 if (Opcode == ISD::FSHL) { 3333 Known.One <<= Amt; 3334 Known.Zero <<= Amt; 3335 Known2.One.lshrInPlace(BitWidth - Amt); 3336 Known2.Zero.lshrInPlace(BitWidth - Amt); 3337 } else { 3338 Known.One <<= BitWidth - Amt; 3339 Known.Zero <<= BitWidth - Amt; 3340 Known2.One.lshrInPlace(Amt); 3341 Known2.Zero.lshrInPlace(Amt); 3342 } 3343 Known.One |= Known2.One; 3344 Known.Zero |= Known2.Zero; 3345 } 3346 break; 3347 case ISD::SIGN_EXTEND_INREG: { 3348 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3349 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3350 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3351 break; 3352 } 3353 case ISD::CTTZ: 3354 case ISD::CTTZ_ZERO_UNDEF: { 3355 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3356 // If we have a known 1, its position is our upper bound. 3357 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3358 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3359 Known.Zero.setBitsFrom(LowBits); 3360 break; 3361 } 3362 case ISD::CTLZ: 3363 case ISD::CTLZ_ZERO_UNDEF: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 // If we have a known 1, its position is our upper bound. 3366 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3367 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3368 Known.Zero.setBitsFrom(LowBits); 3369 break; 3370 } 3371 case ISD::CTPOP: { 3372 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 // If we know some of the bits are zero, they can't be one. 3374 unsigned PossibleOnes = Known2.countMaxPopulation(); 3375 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3376 break; 3377 } 3378 case ISD::PARITY: { 3379 // Parity returns 0 everywhere but the LSB. 3380 Known.Zero.setBitsFrom(1); 3381 break; 3382 } 3383 case ISD::LOAD: { 3384 LoadSDNode *LD = cast<LoadSDNode>(Op); 3385 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3386 if (ISD::isNON_EXTLoad(LD) && Cst) { 3387 // Determine any common known bits from the loaded constant pool value. 3388 Type *CstTy = Cst->getType(); 3389 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3390 // If its a vector splat, then we can (quickly) reuse the scalar path. 3391 // NOTE: We assume all elements match and none are UNDEF. 3392 if (CstTy->isVectorTy()) { 3393 if (const Constant *Splat = Cst->getSplatValue()) { 3394 Cst = Splat; 3395 CstTy = Cst->getType(); 3396 } 3397 } 3398 // TODO - do we need to handle different bitwidths? 3399 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3400 // Iterate across all vector elements finding common known bits. 3401 Known.One.setAllBits(); 3402 Known.Zero.setAllBits(); 3403 for (unsigned i = 0; i != NumElts; ++i) { 3404 if (!DemandedElts[i]) 3405 continue; 3406 if (Constant *Elt = Cst->getAggregateElement(i)) { 3407 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3408 const APInt &Value = CInt->getValue(); 3409 Known.One &= Value; 3410 Known.Zero &= ~Value; 3411 continue; 3412 } 3413 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3414 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3415 Known.One &= Value; 3416 Known.Zero &= ~Value; 3417 continue; 3418 } 3419 } 3420 Known.One.clearAllBits(); 3421 Known.Zero.clearAllBits(); 3422 break; 3423 } 3424 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3425 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3426 Known = KnownBits::makeConstant(CInt->getValue()); 3427 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3428 Known = 3429 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3430 } 3431 } 3432 } 3433 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3434 // If this is a ZEXTLoad and we are looking at the loaded value. 3435 EVT VT = LD->getMemoryVT(); 3436 unsigned MemBits = VT.getScalarSizeInBits(); 3437 Known.Zero.setBitsFrom(MemBits); 3438 } else if (const MDNode *Ranges = LD->getRanges()) { 3439 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3440 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3441 } 3442 break; 3443 } 3444 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3445 EVT InVT = Op.getOperand(0).getValueType(); 3446 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3447 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3448 Known = Known.zext(BitWidth); 3449 break; 3450 } 3451 case ISD::ZERO_EXTEND: { 3452 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 Known = Known.zext(BitWidth); 3454 break; 3455 } 3456 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3457 EVT InVT = Op.getOperand(0).getValueType(); 3458 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3459 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3460 // If the sign bit is known to be zero or one, then sext will extend 3461 // it to the top bits, else it will just zext. 3462 Known = Known.sext(BitWidth); 3463 break; 3464 } 3465 case ISD::SIGN_EXTEND: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 // If the sign bit is known to be zero or one, then sext will extend 3468 // it to the top bits, else it will just zext. 3469 Known = Known.sext(BitWidth); 3470 break; 3471 } 3472 case ISD::ANY_EXTEND_VECTOR_INREG: { 3473 EVT InVT = Op.getOperand(0).getValueType(); 3474 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3475 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3476 Known = Known.anyext(BitWidth); 3477 break; 3478 } 3479 case ISD::ANY_EXTEND: { 3480 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3481 Known = Known.anyext(BitWidth); 3482 break; 3483 } 3484 case ISD::TRUNCATE: { 3485 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3486 Known = Known.trunc(BitWidth); 3487 break; 3488 } 3489 case ISD::AssertZext: { 3490 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3491 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3492 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3493 Known.Zero |= (~InMask); 3494 Known.One &= (~Known.Zero); 3495 break; 3496 } 3497 case ISD::AssertAlign: { 3498 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3499 assert(LogOfAlign != 0); 3500 3501 // TODO: Should use maximum with source 3502 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3503 // well as clearing one bits. 3504 Known.Zero.setLowBits(LogOfAlign); 3505 Known.One.clearLowBits(LogOfAlign); 3506 break; 3507 } 3508 case ISD::FGETSIGN: 3509 // All bits are zero except the low bit. 3510 Known.Zero.setBitsFrom(1); 3511 break; 3512 case ISD::USUBO: 3513 case ISD::SSUBO: 3514 if (Op.getResNo() == 1) { 3515 // If we know the result of a setcc has the top bits zero, use this info. 3516 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3517 TargetLowering::ZeroOrOneBooleanContent && 3518 BitWidth > 1) 3519 Known.Zero.setBitsFrom(1); 3520 break; 3521 } 3522 LLVM_FALLTHROUGH; 3523 case ISD::SUB: 3524 case ISD::SUBC: { 3525 assert(Op.getResNo() == 0 && 3526 "We only compute knownbits for the difference here."); 3527 3528 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3529 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3530 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3531 Known, Known2); 3532 break; 3533 } 3534 case ISD::UADDO: 3535 case ISD::SADDO: 3536 case ISD::ADDCARRY: 3537 if (Op.getResNo() == 1) { 3538 // If we know the result of a setcc has the top bits zero, use this info. 3539 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3540 TargetLowering::ZeroOrOneBooleanContent && 3541 BitWidth > 1) 3542 Known.Zero.setBitsFrom(1); 3543 break; 3544 } 3545 LLVM_FALLTHROUGH; 3546 case ISD::ADD: 3547 case ISD::ADDC: 3548 case ISD::ADDE: { 3549 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3550 3551 // With ADDE and ADDCARRY, a carry bit may be added in. 3552 KnownBits Carry(1); 3553 if (Opcode == ISD::ADDE) 3554 // Can't track carry from glue, set carry to unknown. 3555 Carry.resetAll(); 3556 else if (Opcode == ISD::ADDCARRY) 3557 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3558 // the trouble (how often will we find a known carry bit). And I haven't 3559 // tested this very much yet, but something like this might work: 3560 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3561 // Carry = Carry.zextOrTrunc(1, false); 3562 Carry.resetAll(); 3563 else 3564 Carry.setAllZero(); 3565 3566 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3567 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3568 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3569 break; 3570 } 3571 case ISD::SREM: { 3572 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3573 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3574 Known = KnownBits::srem(Known, Known2); 3575 break; 3576 } 3577 case ISD::UREM: { 3578 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3579 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3580 Known = KnownBits::urem(Known, Known2); 3581 break; 3582 } 3583 case ISD::EXTRACT_ELEMENT: { 3584 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3585 const unsigned Index = Op.getConstantOperandVal(1); 3586 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3587 3588 // Remove low part of known bits mask 3589 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3590 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3591 3592 // Remove high part of known bit mask 3593 Known = Known.trunc(EltBitWidth); 3594 break; 3595 } 3596 case ISD::EXTRACT_VECTOR_ELT: { 3597 SDValue InVec = Op.getOperand(0); 3598 SDValue EltNo = Op.getOperand(1); 3599 EVT VecVT = InVec.getValueType(); 3600 // computeKnownBits not yet implemented for scalable vectors. 3601 if (VecVT.isScalableVector()) 3602 break; 3603 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3604 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3605 3606 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3607 // anything about the extended bits. 3608 if (BitWidth > EltBitWidth) 3609 Known = Known.trunc(EltBitWidth); 3610 3611 // If we know the element index, just demand that vector element, else for 3612 // an unknown element index, ignore DemandedElts and demand them all. 3613 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3614 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3615 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3616 DemandedSrcElts = 3617 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3618 3619 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3620 if (BitWidth > EltBitWidth) 3621 Known = Known.anyext(BitWidth); 3622 break; 3623 } 3624 case ISD::INSERT_VECTOR_ELT: { 3625 // If we know the element index, split the demand between the 3626 // source vector and the inserted element, otherwise assume we need 3627 // the original demanded vector elements and the value. 3628 SDValue InVec = Op.getOperand(0); 3629 SDValue InVal = Op.getOperand(1); 3630 SDValue EltNo = Op.getOperand(2); 3631 bool DemandedVal = true; 3632 APInt DemandedVecElts = DemandedElts; 3633 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3634 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3635 unsigned EltIdx = CEltNo->getZExtValue(); 3636 DemandedVal = !!DemandedElts[EltIdx]; 3637 DemandedVecElts.clearBit(EltIdx); 3638 } 3639 Known.One.setAllBits(); 3640 Known.Zero.setAllBits(); 3641 if (DemandedVal) { 3642 Known2 = computeKnownBits(InVal, Depth + 1); 3643 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3644 } 3645 if (!!DemandedVecElts) { 3646 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3647 Known = KnownBits::commonBits(Known, Known2); 3648 } 3649 break; 3650 } 3651 case ISD::BITREVERSE: { 3652 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3653 Known = Known2.reverseBits(); 3654 break; 3655 } 3656 case ISD::BSWAP: { 3657 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3658 Known = Known2.byteSwap(); 3659 break; 3660 } 3661 case ISD::ABS: { 3662 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3663 Known = Known2.abs(); 3664 break; 3665 } 3666 case ISD::USUBSAT: { 3667 // The result of usubsat will never be larger than the LHS. 3668 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3669 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3670 break; 3671 } 3672 case ISD::UMIN: { 3673 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3674 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3675 Known = KnownBits::umin(Known, Known2); 3676 break; 3677 } 3678 case ISD::UMAX: { 3679 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3680 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3681 Known = KnownBits::umax(Known, Known2); 3682 break; 3683 } 3684 case ISD::SMIN: 3685 case ISD::SMAX: { 3686 // If we have a clamp pattern, we know that the number of sign bits will be 3687 // the minimum of the clamp min/max range. 3688 bool IsMax = (Opcode == ISD::SMAX); 3689 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3690 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3691 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3692 CstHigh = 3693 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3694 if (CstLow && CstHigh) { 3695 if (!IsMax) 3696 std::swap(CstLow, CstHigh); 3697 3698 const APInt &ValueLow = CstLow->getAPIntValue(); 3699 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3700 if (ValueLow.sle(ValueHigh)) { 3701 unsigned LowSignBits = ValueLow.getNumSignBits(); 3702 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3703 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3704 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3705 Known.One.setHighBits(MinSignBits); 3706 break; 3707 } 3708 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3709 Known.Zero.setHighBits(MinSignBits); 3710 break; 3711 } 3712 } 3713 } 3714 3715 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3716 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3717 if (IsMax) 3718 Known = KnownBits::smax(Known, Known2); 3719 else 3720 Known = KnownBits::smin(Known, Known2); 3721 3722 // For SMAX, if CstLow is non-negative we know the result will be 3723 // non-negative and thus all sign bits are 0. 3724 // TODO: There's an equivalent of this for smin with negative constant for 3725 // known ones. 3726 if (IsMax && CstLow) { 3727 const APInt &ValueLow = CstLow->getAPIntValue(); 3728 if (ValueLow.isNonNegative()) { 3729 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3730 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3731 } 3732 } 3733 3734 break; 3735 } 3736 case ISD::FP_TO_UINT_SAT: { 3737 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3738 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3739 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3740 break; 3741 } 3742 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3743 if (Op.getResNo() == 1) { 3744 // The boolean result conforms to getBooleanContents. 3745 // If we know the result of a setcc has the top bits zero, use this info. 3746 // We know that we have an integer-based boolean since these operations 3747 // are only available for integer. 3748 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3749 TargetLowering::ZeroOrOneBooleanContent && 3750 BitWidth > 1) 3751 Known.Zero.setBitsFrom(1); 3752 break; 3753 } 3754 LLVM_FALLTHROUGH; 3755 case ISD::ATOMIC_CMP_SWAP: 3756 case ISD::ATOMIC_SWAP: 3757 case ISD::ATOMIC_LOAD_ADD: 3758 case ISD::ATOMIC_LOAD_SUB: 3759 case ISD::ATOMIC_LOAD_AND: 3760 case ISD::ATOMIC_LOAD_CLR: 3761 case ISD::ATOMIC_LOAD_OR: 3762 case ISD::ATOMIC_LOAD_XOR: 3763 case ISD::ATOMIC_LOAD_NAND: 3764 case ISD::ATOMIC_LOAD_MIN: 3765 case ISD::ATOMIC_LOAD_MAX: 3766 case ISD::ATOMIC_LOAD_UMIN: 3767 case ISD::ATOMIC_LOAD_UMAX: 3768 case ISD::ATOMIC_LOAD: { 3769 unsigned MemBits = 3770 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3771 // If we are looking at the loaded value. 3772 if (Op.getResNo() == 0) { 3773 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3774 Known.Zero.setBitsFrom(MemBits); 3775 } 3776 break; 3777 } 3778 case ISD::FrameIndex: 3779 case ISD::TargetFrameIndex: 3780 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3781 Known, getMachineFunction()); 3782 break; 3783 3784 default: 3785 if (Opcode < ISD::BUILTIN_OP_END) 3786 break; 3787 LLVM_FALLTHROUGH; 3788 case ISD::INTRINSIC_WO_CHAIN: 3789 case ISD::INTRINSIC_W_CHAIN: 3790 case ISD::INTRINSIC_VOID: 3791 // Allow the target to implement this method for its nodes. 3792 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3793 break; 3794 } 3795 3796 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3797 return Known; 3798 } 3799 3800 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3801 SDValue N1) const { 3802 // X + 0 never overflow 3803 if (isNullConstant(N1)) 3804 return OFK_Never; 3805 3806 KnownBits N1Known = computeKnownBits(N1); 3807 if (N1Known.Zero.getBoolValue()) { 3808 KnownBits N0Known = computeKnownBits(N0); 3809 3810 bool overflow; 3811 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3812 if (!overflow) 3813 return OFK_Never; 3814 } 3815 3816 // mulhi + 1 never overflow 3817 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3818 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3819 return OFK_Never; 3820 3821 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3822 KnownBits N0Known = computeKnownBits(N0); 3823 3824 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3825 return OFK_Never; 3826 } 3827 3828 return OFK_Sometime; 3829 } 3830 3831 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3832 EVT OpVT = Val.getValueType(); 3833 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3834 3835 // Is the constant a known power of 2? 3836 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3837 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3838 3839 // A left-shift of a constant one will have exactly one bit set because 3840 // shifting the bit off the end is undefined. 3841 if (Val.getOpcode() == ISD::SHL) { 3842 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3843 if (C && C->getAPIntValue() == 1) 3844 return true; 3845 } 3846 3847 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3848 // one bit set. 3849 if (Val.getOpcode() == ISD::SRL) { 3850 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3851 if (C && C->getAPIntValue().isSignMask()) 3852 return true; 3853 } 3854 3855 // Are all operands of a build vector constant powers of two? 3856 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3857 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3858 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3859 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3860 return false; 3861 })) 3862 return true; 3863 3864 // Is the operand of a splat vector a constant power of two? 3865 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3866 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3867 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3868 return true; 3869 3870 // More could be done here, though the above checks are enough 3871 // to handle some common cases. 3872 3873 // Fall back to computeKnownBits to catch other known cases. 3874 KnownBits Known = computeKnownBits(Val); 3875 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3876 } 3877 3878 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3879 EVT VT = Op.getValueType(); 3880 3881 // TODO: Assume we don't know anything for now. 3882 if (VT.isScalableVector()) 3883 return 1; 3884 3885 APInt DemandedElts = VT.isVector() 3886 ? APInt::getAllOnes(VT.getVectorNumElements()) 3887 : APInt(1, 1); 3888 return ComputeNumSignBits(Op, DemandedElts, Depth); 3889 } 3890 3891 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3892 unsigned Depth) const { 3893 EVT VT = Op.getValueType(); 3894 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3895 unsigned VTBits = VT.getScalarSizeInBits(); 3896 unsigned NumElts = DemandedElts.getBitWidth(); 3897 unsigned Tmp, Tmp2; 3898 unsigned FirstAnswer = 1; 3899 3900 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3901 const APInt &Val = C->getAPIntValue(); 3902 return Val.getNumSignBits(); 3903 } 3904 3905 if (Depth >= MaxRecursionDepth) 3906 return 1; // Limit search depth. 3907 3908 if (!DemandedElts || VT.isScalableVector()) 3909 return 1; // No demanded elts, better to assume we don't know anything. 3910 3911 unsigned Opcode = Op.getOpcode(); 3912 switch (Opcode) { 3913 default: break; 3914 case ISD::AssertSext: 3915 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3916 return VTBits-Tmp+1; 3917 case ISD::AssertZext: 3918 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3919 return VTBits-Tmp; 3920 3921 case ISD::BUILD_VECTOR: 3922 Tmp = VTBits; 3923 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3924 if (!DemandedElts[i]) 3925 continue; 3926 3927 SDValue SrcOp = Op.getOperand(i); 3928 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3929 3930 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3931 if (SrcOp.getValueSizeInBits() != VTBits) { 3932 assert(SrcOp.getValueSizeInBits() > VTBits && 3933 "Expected BUILD_VECTOR implicit truncation"); 3934 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3935 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3936 } 3937 Tmp = std::min(Tmp, Tmp2); 3938 } 3939 return Tmp; 3940 3941 case ISD::VECTOR_SHUFFLE: { 3942 // Collect the minimum number of sign bits that are shared by every vector 3943 // element referenced by the shuffle. 3944 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3945 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3946 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3947 for (unsigned i = 0; i != NumElts; ++i) { 3948 int M = SVN->getMaskElt(i); 3949 if (!DemandedElts[i]) 3950 continue; 3951 // For UNDEF elements, we don't know anything about the common state of 3952 // the shuffle result. 3953 if (M < 0) 3954 return 1; 3955 if ((unsigned)M < NumElts) 3956 DemandedLHS.setBit((unsigned)M % NumElts); 3957 else 3958 DemandedRHS.setBit((unsigned)M % NumElts); 3959 } 3960 Tmp = std::numeric_limits<unsigned>::max(); 3961 if (!!DemandedLHS) 3962 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3963 if (!!DemandedRHS) { 3964 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3965 Tmp = std::min(Tmp, Tmp2); 3966 } 3967 // If we don't know anything, early out and try computeKnownBits fall-back. 3968 if (Tmp == 1) 3969 break; 3970 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3971 return Tmp; 3972 } 3973 3974 case ISD::BITCAST: { 3975 SDValue N0 = Op.getOperand(0); 3976 EVT SrcVT = N0.getValueType(); 3977 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3978 3979 // Ignore bitcasts from unsupported types.. 3980 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3981 break; 3982 3983 // Fast handling of 'identity' bitcasts. 3984 if (VTBits == SrcBits) 3985 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3986 3987 bool IsLE = getDataLayout().isLittleEndian(); 3988 3989 // Bitcast 'large element' scalar/vector to 'small element' vector. 3990 if ((SrcBits % VTBits) == 0) { 3991 assert(VT.isVector() && "Expected bitcast to vector"); 3992 3993 unsigned Scale = SrcBits / VTBits; 3994 APInt SrcDemandedElts = 3995 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3996 3997 // Fast case - sign splat can be simply split across the small elements. 3998 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3999 if (Tmp == SrcBits) 4000 return VTBits; 4001 4002 // Slow case - determine how far the sign extends into each sub-element. 4003 Tmp2 = VTBits; 4004 for (unsigned i = 0; i != NumElts; ++i) 4005 if (DemandedElts[i]) { 4006 unsigned SubOffset = i % Scale; 4007 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4008 SubOffset = SubOffset * VTBits; 4009 if (Tmp <= SubOffset) 4010 return 1; 4011 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4012 } 4013 return Tmp2; 4014 } 4015 break; 4016 } 4017 4018 case ISD::FP_TO_SINT_SAT: 4019 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4020 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4021 return VTBits - Tmp + 1; 4022 case ISD::SIGN_EXTEND: 4023 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4024 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4025 case ISD::SIGN_EXTEND_INREG: 4026 // Max of the input and what this extends. 4027 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4028 Tmp = VTBits-Tmp+1; 4029 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4030 return std::max(Tmp, Tmp2); 4031 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4032 SDValue Src = Op.getOperand(0); 4033 EVT SrcVT = Src.getValueType(); 4034 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4035 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4036 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4037 } 4038 case ISD::SRA: 4039 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4040 // SRA X, C -> adds C sign bits. 4041 if (const APInt *ShAmt = 4042 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4043 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4044 return Tmp; 4045 case ISD::SHL: 4046 if (const APInt *ShAmt = 4047 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4048 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4049 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4050 if (ShAmt->ult(Tmp)) 4051 return Tmp - ShAmt->getZExtValue(); 4052 } 4053 break; 4054 case ISD::AND: 4055 case ISD::OR: 4056 case ISD::XOR: // NOT is handled here. 4057 // Logical binary ops preserve the number of sign bits at the worst. 4058 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4059 if (Tmp != 1) { 4060 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4061 FirstAnswer = std::min(Tmp, Tmp2); 4062 // We computed what we know about the sign bits as our first 4063 // answer. Now proceed to the generic code that uses 4064 // computeKnownBits, and pick whichever answer is better. 4065 } 4066 break; 4067 4068 case ISD::SELECT: 4069 case ISD::VSELECT: 4070 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4071 if (Tmp == 1) return 1; // Early out. 4072 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4073 return std::min(Tmp, Tmp2); 4074 case ISD::SELECT_CC: 4075 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4076 if (Tmp == 1) return 1; // Early out. 4077 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4078 return std::min(Tmp, Tmp2); 4079 4080 case ISD::SMIN: 4081 case ISD::SMAX: { 4082 // If we have a clamp pattern, we know that the number of sign bits will be 4083 // the minimum of the clamp min/max range. 4084 bool IsMax = (Opcode == ISD::SMAX); 4085 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4086 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4087 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4088 CstHigh = 4089 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4090 if (CstLow && CstHigh) { 4091 if (!IsMax) 4092 std::swap(CstLow, CstHigh); 4093 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4094 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4095 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4096 return std::min(Tmp, Tmp2); 4097 } 4098 } 4099 4100 // Fallback - just get the minimum number of sign bits of the operands. 4101 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4102 if (Tmp == 1) 4103 return 1; // Early out. 4104 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4105 return std::min(Tmp, Tmp2); 4106 } 4107 case ISD::UMIN: 4108 case ISD::UMAX: 4109 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4110 if (Tmp == 1) 4111 return 1; // Early out. 4112 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4113 return std::min(Tmp, Tmp2); 4114 case ISD::SADDO: 4115 case ISD::UADDO: 4116 case ISD::SSUBO: 4117 case ISD::USUBO: 4118 case ISD::SMULO: 4119 case ISD::UMULO: 4120 if (Op.getResNo() != 1) 4121 break; 4122 // The boolean result conforms to getBooleanContents. Fall through. 4123 // If setcc returns 0/-1, all bits are sign bits. 4124 // We know that we have an integer-based boolean since these operations 4125 // are only available for integer. 4126 if (TLI->getBooleanContents(VT.isVector(), false) == 4127 TargetLowering::ZeroOrNegativeOneBooleanContent) 4128 return VTBits; 4129 break; 4130 case ISD::SETCC: 4131 case ISD::STRICT_FSETCC: 4132 case ISD::STRICT_FSETCCS: { 4133 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4134 // If setcc returns 0/-1, all bits are sign bits. 4135 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4136 TargetLowering::ZeroOrNegativeOneBooleanContent) 4137 return VTBits; 4138 break; 4139 } 4140 case ISD::ROTL: 4141 case ISD::ROTR: 4142 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4143 4144 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4145 if (Tmp == VTBits) 4146 return VTBits; 4147 4148 if (ConstantSDNode *C = 4149 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4150 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4151 4152 // Handle rotate right by N like a rotate left by 32-N. 4153 if (Opcode == ISD::ROTR) 4154 RotAmt = (VTBits - RotAmt) % VTBits; 4155 4156 // If we aren't rotating out all of the known-in sign bits, return the 4157 // number that are left. This handles rotl(sext(x), 1) for example. 4158 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4159 } 4160 break; 4161 case ISD::ADD: 4162 case ISD::ADDC: 4163 // Add can have at most one carry bit. Thus we know that the output 4164 // is, at worst, one more bit than the inputs. 4165 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4166 if (Tmp == 1) return 1; // Early out. 4167 4168 // Special case decrementing a value (ADD X, -1): 4169 if (ConstantSDNode *CRHS = 4170 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4171 if (CRHS->isAllOnes()) { 4172 KnownBits Known = 4173 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4174 4175 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4176 // sign bits set. 4177 if ((Known.Zero | 1).isAllOnes()) 4178 return VTBits; 4179 4180 // If we are subtracting one from a positive number, there is no carry 4181 // out of the result. 4182 if (Known.isNonNegative()) 4183 return Tmp; 4184 } 4185 4186 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4187 if (Tmp2 == 1) return 1; // Early out. 4188 return std::min(Tmp, Tmp2) - 1; 4189 case ISD::SUB: 4190 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4191 if (Tmp2 == 1) return 1; // Early out. 4192 4193 // Handle NEG. 4194 if (ConstantSDNode *CLHS = 4195 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4196 if (CLHS->isZero()) { 4197 KnownBits Known = 4198 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4199 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4200 // sign bits set. 4201 if ((Known.Zero | 1).isAllOnes()) 4202 return VTBits; 4203 4204 // If the input is known to be positive (the sign bit is known clear), 4205 // the output of the NEG has the same number of sign bits as the input. 4206 if (Known.isNonNegative()) 4207 return Tmp2; 4208 4209 // Otherwise, we treat this like a SUB. 4210 } 4211 4212 // Sub can have at most one carry bit. Thus we know that the output 4213 // is, at worst, one more bit than the inputs. 4214 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4215 if (Tmp == 1) return 1; // Early out. 4216 return std::min(Tmp, Tmp2) - 1; 4217 case ISD::MUL: { 4218 // The output of the Mul can be at most twice the valid bits in the inputs. 4219 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4220 if (SignBitsOp0 == 1) 4221 break; 4222 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4223 if (SignBitsOp1 == 1) 4224 break; 4225 unsigned OutValidBits = 4226 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4227 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4228 } 4229 case ISD::SREM: 4230 // The sign bit is the LHS's sign bit, except when the result of the 4231 // remainder is zero. The magnitude of the result should be less than or 4232 // equal to the magnitude of the LHS. Therefore, the result should have 4233 // at least as many sign bits as the left hand side. 4234 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4235 case ISD::TRUNCATE: { 4236 // Check if the sign bits of source go down as far as the truncated value. 4237 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4238 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4239 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4240 return NumSrcSignBits - (NumSrcBits - VTBits); 4241 break; 4242 } 4243 case ISD::EXTRACT_ELEMENT: { 4244 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4245 const int BitWidth = Op.getValueSizeInBits(); 4246 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4247 4248 // Get reverse index (starting from 1), Op1 value indexes elements from 4249 // little end. Sign starts at big end. 4250 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4251 4252 // If the sign portion ends in our element the subtraction gives correct 4253 // result. Otherwise it gives either negative or > bitwidth result 4254 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4255 } 4256 case ISD::INSERT_VECTOR_ELT: { 4257 // If we know the element index, split the demand between the 4258 // source vector and the inserted element, otherwise assume we need 4259 // the original demanded vector elements and the value. 4260 SDValue InVec = Op.getOperand(0); 4261 SDValue InVal = Op.getOperand(1); 4262 SDValue EltNo = Op.getOperand(2); 4263 bool DemandedVal = true; 4264 APInt DemandedVecElts = DemandedElts; 4265 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4266 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4267 unsigned EltIdx = CEltNo->getZExtValue(); 4268 DemandedVal = !!DemandedElts[EltIdx]; 4269 DemandedVecElts.clearBit(EltIdx); 4270 } 4271 Tmp = std::numeric_limits<unsigned>::max(); 4272 if (DemandedVal) { 4273 // TODO - handle implicit truncation of inserted elements. 4274 if (InVal.getScalarValueSizeInBits() != VTBits) 4275 break; 4276 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4277 Tmp = std::min(Tmp, Tmp2); 4278 } 4279 if (!!DemandedVecElts) { 4280 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4281 Tmp = std::min(Tmp, Tmp2); 4282 } 4283 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4284 return Tmp; 4285 } 4286 case ISD::EXTRACT_VECTOR_ELT: { 4287 SDValue InVec = Op.getOperand(0); 4288 SDValue EltNo = Op.getOperand(1); 4289 EVT VecVT = InVec.getValueType(); 4290 // ComputeNumSignBits not yet implemented for scalable vectors. 4291 if (VecVT.isScalableVector()) 4292 break; 4293 const unsigned BitWidth = Op.getValueSizeInBits(); 4294 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4295 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4296 4297 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4298 // anything about sign bits. But if the sizes match we can derive knowledge 4299 // about sign bits from the vector operand. 4300 if (BitWidth != EltBitWidth) 4301 break; 4302 4303 // If we know the element index, just demand that vector element, else for 4304 // an unknown element index, ignore DemandedElts and demand them all. 4305 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4306 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4307 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4308 DemandedSrcElts = 4309 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4310 4311 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4312 } 4313 case ISD::EXTRACT_SUBVECTOR: { 4314 // Offset the demanded elts by the subvector index. 4315 SDValue Src = Op.getOperand(0); 4316 // Bail until we can represent demanded elements for scalable vectors. 4317 if (Src.getValueType().isScalableVector()) 4318 break; 4319 uint64_t Idx = Op.getConstantOperandVal(1); 4320 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4321 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4322 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4323 } 4324 case ISD::CONCAT_VECTORS: { 4325 // Determine the minimum number of sign bits across all demanded 4326 // elts of the input vectors. Early out if the result is already 1. 4327 Tmp = std::numeric_limits<unsigned>::max(); 4328 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4329 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4330 unsigned NumSubVectors = Op.getNumOperands(); 4331 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4332 APInt DemandedSub = 4333 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4334 if (!DemandedSub) 4335 continue; 4336 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4337 Tmp = std::min(Tmp, Tmp2); 4338 } 4339 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4340 return Tmp; 4341 } 4342 case ISD::INSERT_SUBVECTOR: { 4343 // Demand any elements from the subvector and the remainder from the src its 4344 // inserted into. 4345 SDValue Src = Op.getOperand(0); 4346 SDValue Sub = Op.getOperand(1); 4347 uint64_t Idx = Op.getConstantOperandVal(2); 4348 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4349 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4350 APInt DemandedSrcElts = DemandedElts; 4351 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4352 4353 Tmp = std::numeric_limits<unsigned>::max(); 4354 if (!!DemandedSubElts) { 4355 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4356 if (Tmp == 1) 4357 return 1; // early-out 4358 } 4359 if (!!DemandedSrcElts) { 4360 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4361 Tmp = std::min(Tmp, Tmp2); 4362 } 4363 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4364 return Tmp; 4365 } 4366 case ISD::ATOMIC_CMP_SWAP: 4367 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4368 case ISD::ATOMIC_SWAP: 4369 case ISD::ATOMIC_LOAD_ADD: 4370 case ISD::ATOMIC_LOAD_SUB: 4371 case ISD::ATOMIC_LOAD_AND: 4372 case ISD::ATOMIC_LOAD_CLR: 4373 case ISD::ATOMIC_LOAD_OR: 4374 case ISD::ATOMIC_LOAD_XOR: 4375 case ISD::ATOMIC_LOAD_NAND: 4376 case ISD::ATOMIC_LOAD_MIN: 4377 case ISD::ATOMIC_LOAD_MAX: 4378 case ISD::ATOMIC_LOAD_UMIN: 4379 case ISD::ATOMIC_LOAD_UMAX: 4380 case ISD::ATOMIC_LOAD: { 4381 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4382 // If we are looking at the loaded value. 4383 if (Op.getResNo() == 0) { 4384 if (Tmp == VTBits) 4385 return 1; // early-out 4386 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4387 return VTBits - Tmp + 1; 4388 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4389 return VTBits - Tmp; 4390 } 4391 break; 4392 } 4393 } 4394 4395 // If we are looking at the loaded value of the SDNode. 4396 if (Op.getResNo() == 0) { 4397 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4398 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4399 unsigned ExtType = LD->getExtensionType(); 4400 switch (ExtType) { 4401 default: break; 4402 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4403 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4404 return VTBits - Tmp + 1; 4405 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4406 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4407 return VTBits - Tmp; 4408 case ISD::NON_EXTLOAD: 4409 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4410 // We only need to handle vectors - computeKnownBits should handle 4411 // scalar cases. 4412 Type *CstTy = Cst->getType(); 4413 if (CstTy->isVectorTy() && 4414 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4415 VTBits == CstTy->getScalarSizeInBits()) { 4416 Tmp = VTBits; 4417 for (unsigned i = 0; i != NumElts; ++i) { 4418 if (!DemandedElts[i]) 4419 continue; 4420 if (Constant *Elt = Cst->getAggregateElement(i)) { 4421 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4422 const APInt &Value = CInt->getValue(); 4423 Tmp = std::min(Tmp, Value.getNumSignBits()); 4424 continue; 4425 } 4426 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4427 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4428 Tmp = std::min(Tmp, Value.getNumSignBits()); 4429 continue; 4430 } 4431 } 4432 // Unknown type. Conservatively assume no bits match sign bit. 4433 return 1; 4434 } 4435 return Tmp; 4436 } 4437 } 4438 break; 4439 } 4440 } 4441 } 4442 4443 // Allow the target to implement this method for its nodes. 4444 if (Opcode >= ISD::BUILTIN_OP_END || 4445 Opcode == ISD::INTRINSIC_WO_CHAIN || 4446 Opcode == ISD::INTRINSIC_W_CHAIN || 4447 Opcode == ISD::INTRINSIC_VOID) { 4448 unsigned NumBits = 4449 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4450 if (NumBits > 1) 4451 FirstAnswer = std::max(FirstAnswer, NumBits); 4452 } 4453 4454 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4455 // use this information. 4456 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4457 return std::max(FirstAnswer, Known.countMinSignBits()); 4458 } 4459 4460 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4461 unsigned Depth) const { 4462 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4463 return Op.getScalarValueSizeInBits() - SignBits + 1; 4464 } 4465 4466 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4467 const APInt &DemandedElts, 4468 unsigned Depth) const { 4469 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4470 return Op.getScalarValueSizeInBits() - SignBits + 1; 4471 } 4472 4473 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4474 unsigned Depth) const { 4475 // Early out for FREEZE. 4476 if (Op.getOpcode() == ISD::FREEZE) 4477 return true; 4478 4479 // TODO: Assume we don't know anything for now. 4480 EVT VT = Op.getValueType(); 4481 if (VT.isScalableVector()) 4482 return false; 4483 4484 APInt DemandedElts = VT.isVector() 4485 ? APInt::getAllOnes(VT.getVectorNumElements()) 4486 : APInt(1, 1); 4487 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4488 } 4489 4490 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4491 const APInt &DemandedElts, 4492 bool PoisonOnly, 4493 unsigned Depth) const { 4494 unsigned Opcode = Op.getOpcode(); 4495 4496 // Early out for FREEZE. 4497 if (Opcode == ISD::FREEZE) 4498 return true; 4499 4500 if (Depth >= MaxRecursionDepth) 4501 return false; // Limit search depth. 4502 4503 if (isIntOrFPConstant(Op)) 4504 return true; 4505 4506 switch (Opcode) { 4507 case ISD::UNDEF: 4508 return PoisonOnly; 4509 4510 case ISD::BUILD_VECTOR: 4511 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4512 // this shouldn't affect the result. 4513 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4514 if (!DemandedElts[i]) 4515 continue; 4516 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4517 Depth + 1)) 4518 return false; 4519 } 4520 return true; 4521 4522 // TODO: Search for noundef attributes from library functions. 4523 4524 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4525 4526 default: 4527 // Allow the target to implement this method for its nodes. 4528 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4529 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4530 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4531 Op, DemandedElts, *this, PoisonOnly, Depth); 4532 break; 4533 } 4534 4535 return false; 4536 } 4537 4538 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4539 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4540 !isa<ConstantSDNode>(Op.getOperand(1))) 4541 return false; 4542 4543 if (Op.getOpcode() == ISD::OR && 4544 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4545 return false; 4546 4547 return true; 4548 } 4549 4550 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4551 // If we're told that NaNs won't happen, assume they won't. 4552 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4553 return true; 4554 4555 if (Depth >= MaxRecursionDepth) 4556 return false; // Limit search depth. 4557 4558 // TODO: Handle vectors. 4559 // If the value is a constant, we can obviously see if it is a NaN or not. 4560 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4561 return !C->getValueAPF().isNaN() || 4562 (SNaN && !C->getValueAPF().isSignaling()); 4563 } 4564 4565 unsigned Opcode = Op.getOpcode(); 4566 switch (Opcode) { 4567 case ISD::FADD: 4568 case ISD::FSUB: 4569 case ISD::FMUL: 4570 case ISD::FDIV: 4571 case ISD::FREM: 4572 case ISD::FSIN: 4573 case ISD::FCOS: { 4574 if (SNaN) 4575 return true; 4576 // TODO: Need isKnownNeverInfinity 4577 return false; 4578 } 4579 case ISD::FCANONICALIZE: 4580 case ISD::FEXP: 4581 case ISD::FEXP2: 4582 case ISD::FTRUNC: 4583 case ISD::FFLOOR: 4584 case ISD::FCEIL: 4585 case ISD::FROUND: 4586 case ISD::FROUNDEVEN: 4587 case ISD::FRINT: 4588 case ISD::FNEARBYINT: { 4589 if (SNaN) 4590 return true; 4591 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4592 } 4593 case ISD::FABS: 4594 case ISD::FNEG: 4595 case ISD::FCOPYSIGN: { 4596 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4597 } 4598 case ISD::SELECT: 4599 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4600 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4601 case ISD::FP_EXTEND: 4602 case ISD::FP_ROUND: { 4603 if (SNaN) 4604 return true; 4605 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4606 } 4607 case ISD::SINT_TO_FP: 4608 case ISD::UINT_TO_FP: 4609 return true; 4610 case ISD::FMA: 4611 case ISD::FMAD: { 4612 if (SNaN) 4613 return true; 4614 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4615 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4616 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4617 } 4618 case ISD::FSQRT: // Need is known positive 4619 case ISD::FLOG: 4620 case ISD::FLOG2: 4621 case ISD::FLOG10: 4622 case ISD::FPOWI: 4623 case ISD::FPOW: { 4624 if (SNaN) 4625 return true; 4626 // TODO: Refine on operand 4627 return false; 4628 } 4629 case ISD::FMINNUM: 4630 case ISD::FMAXNUM: { 4631 // Only one needs to be known not-nan, since it will be returned if the 4632 // other ends up being one. 4633 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4634 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4635 } 4636 case ISD::FMINNUM_IEEE: 4637 case ISD::FMAXNUM_IEEE: { 4638 if (SNaN) 4639 return true; 4640 // This can return a NaN if either operand is an sNaN, or if both operands 4641 // are NaN. 4642 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4643 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4644 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4645 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4646 } 4647 case ISD::FMINIMUM: 4648 case ISD::FMAXIMUM: { 4649 // TODO: Does this quiet or return the origina NaN as-is? 4650 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4651 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4652 } 4653 case ISD::EXTRACT_VECTOR_ELT: { 4654 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4655 } 4656 default: 4657 if (Opcode >= ISD::BUILTIN_OP_END || 4658 Opcode == ISD::INTRINSIC_WO_CHAIN || 4659 Opcode == ISD::INTRINSIC_W_CHAIN || 4660 Opcode == ISD::INTRINSIC_VOID) { 4661 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4662 } 4663 4664 return false; 4665 } 4666 } 4667 4668 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4669 assert(Op.getValueType().isFloatingPoint() && 4670 "Floating point type expected"); 4671 4672 // If the value is a constant, we can obviously see if it is a zero or not. 4673 // TODO: Add BuildVector support. 4674 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4675 return !C->isZero(); 4676 return false; 4677 } 4678 4679 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4680 assert(!Op.getValueType().isFloatingPoint() && 4681 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4682 4683 // If the value is a constant, we can obviously see if it is a zero or not. 4684 if (ISD::matchUnaryPredicate(Op, 4685 [](ConstantSDNode *C) { return !C->isZero(); })) 4686 return true; 4687 4688 // TODO: Recognize more cases here. 4689 switch (Op.getOpcode()) { 4690 default: break; 4691 case ISD::OR: 4692 if (isKnownNeverZero(Op.getOperand(1)) || 4693 isKnownNeverZero(Op.getOperand(0))) 4694 return true; 4695 break; 4696 } 4697 4698 return false; 4699 } 4700 4701 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4702 // Check the obvious case. 4703 if (A == B) return true; 4704 4705 // For for negative and positive zero. 4706 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4707 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4708 if (CA->isZero() && CB->isZero()) return true; 4709 4710 // Otherwise they may not be equal. 4711 return false; 4712 } 4713 4714 // Only bits set in Mask must be negated, other bits may be arbitrary. 4715 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4716 if (isBitwiseNot(V, AllowUndefs)) 4717 return V.getOperand(0); 4718 4719 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4720 // bits in the non-extended part. 4721 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4722 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4723 return SDValue(); 4724 SDValue ExtArg = V.getOperand(0); 4725 if (ExtArg.getScalarValueSizeInBits() >= 4726 MaskC->getAPIntValue().getActiveBits() && 4727 isBitwiseNot(ExtArg, AllowUndefs) && 4728 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4729 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4730 return ExtArg.getOperand(0).getOperand(0); 4731 return SDValue(); 4732 } 4733 4734 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4735 // Match masked merge pattern (X & ~M) op (Y & M) 4736 // Including degenerate case (X & ~M) op M 4737 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4738 SDValue Other) { 4739 if (SDValue NotOperand = 4740 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4741 if (Other == NotOperand) 4742 return true; 4743 if (Other->getOpcode() == ISD::AND) 4744 return NotOperand == Other->getOperand(0) || 4745 NotOperand == Other->getOperand(1); 4746 } 4747 return false; 4748 }; 4749 if (A->getOpcode() == ISD::AND) 4750 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4751 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4752 return false; 4753 } 4754 4755 // FIXME: unify with llvm::haveNoCommonBitsSet. 4756 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4757 assert(A.getValueType() == B.getValueType() && 4758 "Values must have the same type"); 4759 if (haveNoCommonBitsSetCommutative(A, B) || 4760 haveNoCommonBitsSetCommutative(B, A)) 4761 return true; 4762 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4763 computeKnownBits(B)); 4764 } 4765 4766 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4767 SelectionDAG &DAG) { 4768 if (cast<ConstantSDNode>(Step)->isZero()) 4769 return DAG.getConstant(0, DL, VT); 4770 4771 return SDValue(); 4772 } 4773 4774 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4775 ArrayRef<SDValue> Ops, 4776 SelectionDAG &DAG) { 4777 int NumOps = Ops.size(); 4778 assert(NumOps != 0 && "Can't build an empty vector!"); 4779 assert(!VT.isScalableVector() && 4780 "BUILD_VECTOR cannot be used with scalable types"); 4781 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4782 "Incorrect element count in BUILD_VECTOR!"); 4783 4784 // BUILD_VECTOR of UNDEFs is UNDEF. 4785 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4786 return DAG.getUNDEF(VT); 4787 4788 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4789 SDValue IdentitySrc; 4790 bool IsIdentity = true; 4791 for (int i = 0; i != NumOps; ++i) { 4792 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4793 Ops[i].getOperand(0).getValueType() != VT || 4794 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4795 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4796 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4797 IsIdentity = false; 4798 break; 4799 } 4800 IdentitySrc = Ops[i].getOperand(0); 4801 } 4802 if (IsIdentity) 4803 return IdentitySrc; 4804 4805 return SDValue(); 4806 } 4807 4808 /// Try to simplify vector concatenation to an input value, undef, or build 4809 /// vector. 4810 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4811 ArrayRef<SDValue> Ops, 4812 SelectionDAG &DAG) { 4813 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4814 assert(llvm::all_of(Ops, 4815 [Ops](SDValue Op) { 4816 return Ops[0].getValueType() == Op.getValueType(); 4817 }) && 4818 "Concatenation of vectors with inconsistent value types!"); 4819 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4820 VT.getVectorElementCount() && 4821 "Incorrect element count in vector concatenation!"); 4822 4823 if (Ops.size() == 1) 4824 return Ops[0]; 4825 4826 // Concat of UNDEFs is UNDEF. 4827 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4828 return DAG.getUNDEF(VT); 4829 4830 // Scan the operands and look for extract operations from a single source 4831 // that correspond to insertion at the same location via this concatenation: 4832 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4833 SDValue IdentitySrc; 4834 bool IsIdentity = true; 4835 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4836 SDValue Op = Ops[i]; 4837 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4838 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4839 Op.getOperand(0).getValueType() != VT || 4840 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4841 Op.getConstantOperandVal(1) != IdentityIndex) { 4842 IsIdentity = false; 4843 break; 4844 } 4845 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4846 "Unexpected identity source vector for concat of extracts"); 4847 IdentitySrc = Op.getOperand(0); 4848 } 4849 if (IsIdentity) { 4850 assert(IdentitySrc && "Failed to set source vector of extracts"); 4851 return IdentitySrc; 4852 } 4853 4854 // The code below this point is only designed to work for fixed width 4855 // vectors, so we bail out for now. 4856 if (VT.isScalableVector()) 4857 return SDValue(); 4858 4859 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4860 // simplified to one big BUILD_VECTOR. 4861 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4862 EVT SVT = VT.getScalarType(); 4863 SmallVector<SDValue, 16> Elts; 4864 for (SDValue Op : Ops) { 4865 EVT OpVT = Op.getValueType(); 4866 if (Op.isUndef()) 4867 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4868 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4869 Elts.append(Op->op_begin(), Op->op_end()); 4870 else 4871 return SDValue(); 4872 } 4873 4874 // BUILD_VECTOR requires all inputs to be of the same type, find the 4875 // maximum type and extend them all. 4876 for (SDValue Op : Elts) 4877 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4878 4879 if (SVT.bitsGT(VT.getScalarType())) { 4880 for (SDValue &Op : Elts) { 4881 if (Op.isUndef()) 4882 Op = DAG.getUNDEF(SVT); 4883 else 4884 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4885 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4886 : DAG.getSExtOrTrunc(Op, DL, SVT); 4887 } 4888 } 4889 4890 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4891 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4892 return V; 4893 } 4894 4895 /// Gets or creates the specified node. 4896 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4897 FoldingSetNodeID ID; 4898 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4899 void *IP = nullptr; 4900 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4901 return SDValue(E, 0); 4902 4903 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4904 getVTList(VT)); 4905 CSEMap.InsertNode(N, IP); 4906 4907 InsertNode(N); 4908 SDValue V = SDValue(N, 0); 4909 NewSDValueDbgMsg(V, "Creating new node: ", this); 4910 return V; 4911 } 4912 4913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4914 SDValue Operand) { 4915 SDNodeFlags Flags; 4916 if (Inserter) 4917 Flags = Inserter->getFlags(); 4918 return getNode(Opcode, DL, VT, Operand, Flags); 4919 } 4920 4921 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4922 SDValue Operand, const SDNodeFlags Flags) { 4923 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4924 "Operand is DELETED_NODE!"); 4925 // Constant fold unary operations with an integer constant operand. Even 4926 // opaque constant will be folded, because the folding of unary operations 4927 // doesn't create new constants with different values. Nevertheless, the 4928 // opaque flag is preserved during folding to prevent future folding with 4929 // other constants. 4930 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4931 const APInt &Val = C->getAPIntValue(); 4932 switch (Opcode) { 4933 default: break; 4934 case ISD::SIGN_EXTEND: 4935 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4936 C->isTargetOpcode(), C->isOpaque()); 4937 case ISD::TRUNCATE: 4938 if (C->isOpaque()) 4939 break; 4940 LLVM_FALLTHROUGH; 4941 case ISD::ZERO_EXTEND: 4942 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4943 C->isTargetOpcode(), C->isOpaque()); 4944 case ISD::ANY_EXTEND: 4945 // Some targets like RISCV prefer to sign extend some types. 4946 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4947 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4948 C->isTargetOpcode(), C->isOpaque()); 4949 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4950 C->isTargetOpcode(), C->isOpaque()); 4951 case ISD::UINT_TO_FP: 4952 case ISD::SINT_TO_FP: { 4953 APFloat apf(EVTToAPFloatSemantics(VT), 4954 APInt::getZero(VT.getSizeInBits())); 4955 (void)apf.convertFromAPInt(Val, 4956 Opcode==ISD::SINT_TO_FP, 4957 APFloat::rmNearestTiesToEven); 4958 return getConstantFP(apf, DL, VT); 4959 } 4960 case ISD::BITCAST: 4961 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4962 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4963 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4964 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4965 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4966 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4967 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4968 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4969 break; 4970 case ISD::ABS: 4971 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4972 C->isOpaque()); 4973 case ISD::BITREVERSE: 4974 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4975 C->isOpaque()); 4976 case ISD::BSWAP: 4977 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4978 C->isOpaque()); 4979 case ISD::CTPOP: 4980 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4981 C->isOpaque()); 4982 case ISD::CTLZ: 4983 case ISD::CTLZ_ZERO_UNDEF: 4984 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4985 C->isOpaque()); 4986 case ISD::CTTZ: 4987 case ISD::CTTZ_ZERO_UNDEF: 4988 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4989 C->isOpaque()); 4990 case ISD::FP16_TO_FP: 4991 case ISD::BF16_TO_FP: { 4992 bool Ignored; 4993 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 4994 : APFloat::BFloat(), 4995 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4996 4997 // This can return overflow, underflow, or inexact; we don't care. 4998 // FIXME need to be more flexible about rounding mode. 4999 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5000 APFloat::rmNearestTiesToEven, &Ignored); 5001 return getConstantFP(FPV, DL, VT); 5002 } 5003 case ISD::STEP_VECTOR: { 5004 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 5005 return V; 5006 break; 5007 } 5008 } 5009 } 5010 5011 // Constant fold unary operations with a floating point constant operand. 5012 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5013 APFloat V = C->getValueAPF(); // make copy 5014 switch (Opcode) { 5015 case ISD::FNEG: 5016 V.changeSign(); 5017 return getConstantFP(V, DL, VT); 5018 case ISD::FABS: 5019 V.clearSign(); 5020 return getConstantFP(V, DL, VT); 5021 case ISD::FCEIL: { 5022 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5023 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5024 return getConstantFP(V, DL, VT); 5025 break; 5026 } 5027 case ISD::FTRUNC: { 5028 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5029 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5030 return getConstantFP(V, DL, VT); 5031 break; 5032 } 5033 case ISD::FFLOOR: { 5034 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5035 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5036 return getConstantFP(V, DL, VT); 5037 break; 5038 } 5039 case ISD::FP_EXTEND: { 5040 bool ignored; 5041 // This can return overflow, underflow, or inexact; we don't care. 5042 // FIXME need to be more flexible about rounding mode. 5043 (void)V.convert(EVTToAPFloatSemantics(VT), 5044 APFloat::rmNearestTiesToEven, &ignored); 5045 return getConstantFP(V, DL, VT); 5046 } 5047 case ISD::FP_TO_SINT: 5048 case ISD::FP_TO_UINT: { 5049 bool ignored; 5050 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5051 // FIXME need to be more flexible about rounding mode. 5052 APFloat::opStatus s = 5053 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5054 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5055 break; 5056 return getConstant(IntVal, DL, VT); 5057 } 5058 case ISD::BITCAST: 5059 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5060 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5061 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5062 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5063 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5064 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5065 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5066 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5067 break; 5068 case ISD::FP_TO_FP16: 5069 case ISD::FP_TO_BF16: { 5070 bool Ignored; 5071 // This can return overflow, underflow, or inexact; we don't care. 5072 // FIXME need to be more flexible about rounding mode. 5073 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5074 : APFloat::BFloat(), 5075 APFloat::rmNearestTiesToEven, &Ignored); 5076 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5077 } 5078 } 5079 } 5080 5081 // Constant fold unary operations with a vector integer or float operand. 5082 switch (Opcode) { 5083 default: 5084 // FIXME: Entirely reasonable to perform folding of other unary 5085 // operations here as the need arises. 5086 break; 5087 case ISD::FNEG: 5088 case ISD::FABS: 5089 case ISD::FCEIL: 5090 case ISD::FTRUNC: 5091 case ISD::FFLOOR: 5092 case ISD::FP_EXTEND: 5093 case ISD::FP_TO_SINT: 5094 case ISD::FP_TO_UINT: 5095 case ISD::TRUNCATE: 5096 case ISD::ANY_EXTEND: 5097 case ISD::ZERO_EXTEND: 5098 case ISD::SIGN_EXTEND: 5099 case ISD::UINT_TO_FP: 5100 case ISD::SINT_TO_FP: 5101 case ISD::ABS: 5102 case ISD::BITREVERSE: 5103 case ISD::BSWAP: 5104 case ISD::CTLZ: 5105 case ISD::CTLZ_ZERO_UNDEF: 5106 case ISD::CTTZ: 5107 case ISD::CTTZ_ZERO_UNDEF: 5108 case ISD::CTPOP: { 5109 SDValue Ops = {Operand}; 5110 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5111 return Fold; 5112 } 5113 } 5114 5115 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5116 switch (Opcode) { 5117 case ISD::STEP_VECTOR: 5118 assert(VT.isScalableVector() && 5119 "STEP_VECTOR can only be used with scalable types"); 5120 assert(OpOpcode == ISD::TargetConstant && 5121 VT.getVectorElementType() == Operand.getValueType() && 5122 "Unexpected step operand"); 5123 break; 5124 case ISD::FREEZE: 5125 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5126 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5127 return Operand; 5128 break; 5129 case ISD::TokenFactor: 5130 case ISD::MERGE_VALUES: 5131 case ISD::CONCAT_VECTORS: 5132 return Operand; // Factor, merge or concat of one node? No need. 5133 case ISD::BUILD_VECTOR: { 5134 // Attempt to simplify BUILD_VECTOR. 5135 SDValue Ops[] = {Operand}; 5136 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5137 return V; 5138 break; 5139 } 5140 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5141 case ISD::FP_EXTEND: 5142 assert(VT.isFloatingPoint() && 5143 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5144 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5145 assert((!VT.isVector() || 5146 VT.getVectorElementCount() == 5147 Operand.getValueType().getVectorElementCount()) && 5148 "Vector element count mismatch!"); 5149 assert(Operand.getValueType().bitsLT(VT) && 5150 "Invalid fpext node, dst < src!"); 5151 if (Operand.isUndef()) 5152 return getUNDEF(VT); 5153 break; 5154 case ISD::FP_TO_SINT: 5155 case ISD::FP_TO_UINT: 5156 if (Operand.isUndef()) 5157 return getUNDEF(VT); 5158 break; 5159 case ISD::SINT_TO_FP: 5160 case ISD::UINT_TO_FP: 5161 // [us]itofp(undef) = 0, because the result value is bounded. 5162 if (Operand.isUndef()) 5163 return getConstantFP(0.0, DL, VT); 5164 break; 5165 case ISD::SIGN_EXTEND: 5166 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5167 "Invalid SIGN_EXTEND!"); 5168 assert(VT.isVector() == Operand.getValueType().isVector() && 5169 "SIGN_EXTEND result type type should be vector iff the operand " 5170 "type is vector!"); 5171 if (Operand.getValueType() == VT) return Operand; // noop extension 5172 assert((!VT.isVector() || 5173 VT.getVectorElementCount() == 5174 Operand.getValueType().getVectorElementCount()) && 5175 "Vector element count mismatch!"); 5176 assert(Operand.getValueType().bitsLT(VT) && 5177 "Invalid sext node, dst < src!"); 5178 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5179 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5180 if (OpOpcode == ISD::UNDEF) 5181 // sext(undef) = 0, because the top bits will all be the same. 5182 return getConstant(0, DL, VT); 5183 break; 5184 case ISD::ZERO_EXTEND: 5185 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5186 "Invalid ZERO_EXTEND!"); 5187 assert(VT.isVector() == Operand.getValueType().isVector() && 5188 "ZERO_EXTEND result type type should be vector iff the operand " 5189 "type is vector!"); 5190 if (Operand.getValueType() == VT) return Operand; // noop extension 5191 assert((!VT.isVector() || 5192 VT.getVectorElementCount() == 5193 Operand.getValueType().getVectorElementCount()) && 5194 "Vector element count mismatch!"); 5195 assert(Operand.getValueType().bitsLT(VT) && 5196 "Invalid zext node, dst < src!"); 5197 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5198 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5199 if (OpOpcode == ISD::UNDEF) 5200 // zext(undef) = 0, because the top bits will be zero. 5201 return getConstant(0, DL, VT); 5202 break; 5203 case ISD::ANY_EXTEND: 5204 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5205 "Invalid ANY_EXTEND!"); 5206 assert(VT.isVector() == Operand.getValueType().isVector() && 5207 "ANY_EXTEND result type type should be vector iff the operand " 5208 "type is vector!"); 5209 if (Operand.getValueType() == VT) return Operand; // noop extension 5210 assert((!VT.isVector() || 5211 VT.getVectorElementCount() == 5212 Operand.getValueType().getVectorElementCount()) && 5213 "Vector element count mismatch!"); 5214 assert(Operand.getValueType().bitsLT(VT) && 5215 "Invalid anyext node, dst < src!"); 5216 5217 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5218 OpOpcode == ISD::ANY_EXTEND) 5219 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5220 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5221 if (OpOpcode == ISD::UNDEF) 5222 return getUNDEF(VT); 5223 5224 // (ext (trunc x)) -> x 5225 if (OpOpcode == ISD::TRUNCATE) { 5226 SDValue OpOp = Operand.getOperand(0); 5227 if (OpOp.getValueType() == VT) { 5228 transferDbgValues(Operand, OpOp); 5229 return OpOp; 5230 } 5231 } 5232 break; 5233 case ISD::TRUNCATE: 5234 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5235 "Invalid TRUNCATE!"); 5236 assert(VT.isVector() == Operand.getValueType().isVector() && 5237 "TRUNCATE result type type should be vector iff the operand " 5238 "type is vector!"); 5239 if (Operand.getValueType() == VT) return Operand; // noop truncate 5240 assert((!VT.isVector() || 5241 VT.getVectorElementCount() == 5242 Operand.getValueType().getVectorElementCount()) && 5243 "Vector element count mismatch!"); 5244 assert(Operand.getValueType().bitsGT(VT) && 5245 "Invalid truncate node, src < dst!"); 5246 if (OpOpcode == ISD::TRUNCATE) 5247 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5248 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5249 OpOpcode == ISD::ANY_EXTEND) { 5250 // If the source is smaller than the dest, we still need an extend. 5251 if (Operand.getOperand(0).getValueType().getScalarType() 5252 .bitsLT(VT.getScalarType())) 5253 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5254 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5255 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5256 return Operand.getOperand(0); 5257 } 5258 if (OpOpcode == ISD::UNDEF) 5259 return getUNDEF(VT); 5260 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5261 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5262 break; 5263 case ISD::ANY_EXTEND_VECTOR_INREG: 5264 case ISD::ZERO_EXTEND_VECTOR_INREG: 5265 case ISD::SIGN_EXTEND_VECTOR_INREG: 5266 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5267 assert(Operand.getValueType().bitsLE(VT) && 5268 "The input must be the same size or smaller than the result."); 5269 assert(VT.getVectorMinNumElements() < 5270 Operand.getValueType().getVectorMinNumElements() && 5271 "The destination vector type must have fewer lanes than the input."); 5272 break; 5273 case ISD::ABS: 5274 assert(VT.isInteger() && VT == Operand.getValueType() && 5275 "Invalid ABS!"); 5276 if (OpOpcode == ISD::UNDEF) 5277 return getConstant(0, DL, VT); 5278 break; 5279 case ISD::BSWAP: 5280 assert(VT.isInteger() && VT == Operand.getValueType() && 5281 "Invalid BSWAP!"); 5282 assert((VT.getScalarSizeInBits() % 16 == 0) && 5283 "BSWAP types must be a multiple of 16 bits!"); 5284 if (OpOpcode == ISD::UNDEF) 5285 return getUNDEF(VT); 5286 // bswap(bswap(X)) -> X. 5287 if (OpOpcode == ISD::BSWAP) 5288 return Operand.getOperand(0); 5289 break; 5290 case ISD::BITREVERSE: 5291 assert(VT.isInteger() && VT == Operand.getValueType() && 5292 "Invalid BITREVERSE!"); 5293 if (OpOpcode == ISD::UNDEF) 5294 return getUNDEF(VT); 5295 break; 5296 case ISD::BITCAST: 5297 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5298 "Cannot BITCAST between types of different sizes!"); 5299 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5300 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5301 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5302 if (OpOpcode == ISD::UNDEF) 5303 return getUNDEF(VT); 5304 break; 5305 case ISD::SCALAR_TO_VECTOR: 5306 assert(VT.isVector() && !Operand.getValueType().isVector() && 5307 (VT.getVectorElementType() == Operand.getValueType() || 5308 (VT.getVectorElementType().isInteger() && 5309 Operand.getValueType().isInteger() && 5310 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5311 "Illegal SCALAR_TO_VECTOR node!"); 5312 if (OpOpcode == ISD::UNDEF) 5313 return getUNDEF(VT); 5314 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5315 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5316 isa<ConstantSDNode>(Operand.getOperand(1)) && 5317 Operand.getConstantOperandVal(1) == 0 && 5318 Operand.getOperand(0).getValueType() == VT) 5319 return Operand.getOperand(0); 5320 break; 5321 case ISD::FNEG: 5322 // Negation of an unknown bag of bits is still completely undefined. 5323 if (OpOpcode == ISD::UNDEF) 5324 return getUNDEF(VT); 5325 5326 if (OpOpcode == ISD::FNEG) // --X -> X 5327 return Operand.getOperand(0); 5328 break; 5329 case ISD::FABS: 5330 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5331 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5332 break; 5333 case ISD::VSCALE: 5334 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5335 break; 5336 case ISD::CTPOP: 5337 if (Operand.getValueType().getScalarType() == MVT::i1) 5338 return Operand; 5339 break; 5340 case ISD::CTLZ: 5341 case ISD::CTTZ: 5342 if (Operand.getValueType().getScalarType() == MVT::i1) 5343 return getNOT(DL, Operand, Operand.getValueType()); 5344 break; 5345 case ISD::VECREDUCE_ADD: 5346 if (Operand.getValueType().getScalarType() == MVT::i1) 5347 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5348 break; 5349 case ISD::VECREDUCE_SMIN: 5350 case ISD::VECREDUCE_UMAX: 5351 if (Operand.getValueType().getScalarType() == MVT::i1) 5352 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5353 break; 5354 case ISD::VECREDUCE_SMAX: 5355 case ISD::VECREDUCE_UMIN: 5356 if (Operand.getValueType().getScalarType() == MVT::i1) 5357 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5358 break; 5359 } 5360 5361 SDNode *N; 5362 SDVTList VTs = getVTList(VT); 5363 SDValue Ops[] = {Operand}; 5364 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5365 FoldingSetNodeID ID; 5366 AddNodeIDNode(ID, Opcode, VTs, Ops); 5367 void *IP = nullptr; 5368 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5369 E->intersectFlagsWith(Flags); 5370 return SDValue(E, 0); 5371 } 5372 5373 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5374 N->setFlags(Flags); 5375 createOperands(N, Ops); 5376 CSEMap.InsertNode(N, IP); 5377 } else { 5378 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5379 createOperands(N, Ops); 5380 } 5381 5382 InsertNode(N); 5383 SDValue V = SDValue(N, 0); 5384 NewSDValueDbgMsg(V, "Creating new node: ", this); 5385 return V; 5386 } 5387 5388 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5389 const APInt &C2) { 5390 switch (Opcode) { 5391 case ISD::ADD: return C1 + C2; 5392 case ISD::SUB: return C1 - C2; 5393 case ISD::MUL: return C1 * C2; 5394 case ISD::AND: return C1 & C2; 5395 case ISD::OR: return C1 | C2; 5396 case ISD::XOR: return C1 ^ C2; 5397 case ISD::SHL: return C1 << C2; 5398 case ISD::SRL: return C1.lshr(C2); 5399 case ISD::SRA: return C1.ashr(C2); 5400 case ISD::ROTL: return C1.rotl(C2); 5401 case ISD::ROTR: return C1.rotr(C2); 5402 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5403 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5404 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5405 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5406 case ISD::SADDSAT: return C1.sadd_sat(C2); 5407 case ISD::UADDSAT: return C1.uadd_sat(C2); 5408 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5409 case ISD::USUBSAT: return C1.usub_sat(C2); 5410 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5411 case ISD::USHLSAT: return C1.ushl_sat(C2); 5412 case ISD::UDIV: 5413 if (!C2.getBoolValue()) 5414 break; 5415 return C1.udiv(C2); 5416 case ISD::UREM: 5417 if (!C2.getBoolValue()) 5418 break; 5419 return C1.urem(C2); 5420 case ISD::SDIV: 5421 if (!C2.getBoolValue()) 5422 break; 5423 return C1.sdiv(C2); 5424 case ISD::SREM: 5425 if (!C2.getBoolValue()) 5426 break; 5427 return C1.srem(C2); 5428 case ISD::MULHS: { 5429 unsigned FullWidth = C1.getBitWidth() * 2; 5430 APInt C1Ext = C1.sext(FullWidth); 5431 APInt C2Ext = C2.sext(FullWidth); 5432 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5433 } 5434 case ISD::MULHU: { 5435 unsigned FullWidth = C1.getBitWidth() * 2; 5436 APInt C1Ext = C1.zext(FullWidth); 5437 APInt C2Ext = C2.zext(FullWidth); 5438 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5439 } 5440 case ISD::AVGFLOORS: { 5441 unsigned FullWidth = C1.getBitWidth() + 1; 5442 APInt C1Ext = C1.sext(FullWidth); 5443 APInt C2Ext = C2.sext(FullWidth); 5444 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5445 } 5446 case ISD::AVGFLOORU: { 5447 unsigned FullWidth = C1.getBitWidth() + 1; 5448 APInt C1Ext = C1.zext(FullWidth); 5449 APInt C2Ext = C2.zext(FullWidth); 5450 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5451 } 5452 case ISD::AVGCEILS: { 5453 unsigned FullWidth = C1.getBitWidth() + 1; 5454 APInt C1Ext = C1.sext(FullWidth); 5455 APInt C2Ext = C2.sext(FullWidth); 5456 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5457 } 5458 case ISD::AVGCEILU: { 5459 unsigned FullWidth = C1.getBitWidth() + 1; 5460 APInt C1Ext = C1.zext(FullWidth); 5461 APInt C2Ext = C2.zext(FullWidth); 5462 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5463 } 5464 } 5465 return llvm::None; 5466 } 5467 5468 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5469 const GlobalAddressSDNode *GA, 5470 const SDNode *N2) { 5471 if (GA->getOpcode() != ISD::GlobalAddress) 5472 return SDValue(); 5473 if (!TLI->isOffsetFoldingLegal(GA)) 5474 return SDValue(); 5475 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5476 if (!C2) 5477 return SDValue(); 5478 int64_t Offset = C2->getSExtValue(); 5479 switch (Opcode) { 5480 case ISD::ADD: break; 5481 case ISD::SUB: Offset = -uint64_t(Offset); break; 5482 default: return SDValue(); 5483 } 5484 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5485 GA->getOffset() + uint64_t(Offset)); 5486 } 5487 5488 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5489 switch (Opcode) { 5490 case ISD::SDIV: 5491 case ISD::UDIV: 5492 case ISD::SREM: 5493 case ISD::UREM: { 5494 // If a divisor is zero/undef or any element of a divisor vector is 5495 // zero/undef, the whole op is undef. 5496 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5497 SDValue Divisor = Ops[1]; 5498 if (Divisor.isUndef() || isNullConstant(Divisor)) 5499 return true; 5500 5501 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5502 llvm::any_of(Divisor->op_values(), 5503 [](SDValue V) { return V.isUndef() || 5504 isNullConstant(V); }); 5505 // TODO: Handle signed overflow. 5506 } 5507 // TODO: Handle oversized shifts. 5508 default: 5509 return false; 5510 } 5511 } 5512 5513 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5514 EVT VT, ArrayRef<SDValue> Ops) { 5515 // If the opcode is a target-specific ISD node, there's nothing we can 5516 // do here and the operand rules may not line up with the below, so 5517 // bail early. 5518 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5519 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5520 // foldCONCAT_VECTORS in getNode before this is called. 5521 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5522 return SDValue(); 5523 5524 unsigned NumOps = Ops.size(); 5525 if (NumOps == 0) 5526 return SDValue(); 5527 5528 if (isUndef(Opcode, Ops)) 5529 return getUNDEF(VT); 5530 5531 // Handle binops special cases. 5532 if (NumOps == 2) { 5533 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5534 return CFP; 5535 5536 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5537 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5538 if (C1->isOpaque() || C2->isOpaque()) 5539 return SDValue(); 5540 5541 Optional<APInt> FoldAttempt = 5542 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5543 if (!FoldAttempt) 5544 return SDValue(); 5545 5546 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5547 assert((!Folded || !VT.isVector()) && 5548 "Can't fold vectors ops with scalar operands"); 5549 return Folded; 5550 } 5551 } 5552 5553 // fold (add Sym, c) -> Sym+c 5554 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5555 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5556 if (TLI->isCommutativeBinOp(Opcode)) 5557 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5558 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5559 } 5560 5561 // This is for vector folding only from here on. 5562 if (!VT.isVector()) 5563 return SDValue(); 5564 5565 ElementCount NumElts = VT.getVectorElementCount(); 5566 5567 // See if we can fold through bitcasted integer ops. 5568 // TODO: Can we handle undef elements? 5569 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5570 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5571 Ops[0].getOpcode() == ISD::BITCAST && 5572 Ops[1].getOpcode() == ISD::BITCAST) { 5573 SDValue N1 = peekThroughBitcasts(Ops[0]); 5574 SDValue N2 = peekThroughBitcasts(Ops[1]); 5575 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5576 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5577 EVT BVVT = N1.getValueType(); 5578 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5579 bool IsLE = getDataLayout().isLittleEndian(); 5580 unsigned EltBits = VT.getScalarSizeInBits(); 5581 SmallVector<APInt> RawBits1, RawBits2; 5582 BitVector UndefElts1, UndefElts2; 5583 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5584 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5585 UndefElts1.none() && UndefElts2.none()) { 5586 SmallVector<APInt> RawBits; 5587 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5588 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5589 if (!Fold) 5590 break; 5591 RawBits.push_back(*Fold); 5592 } 5593 if (RawBits.size() == NumElts.getFixedValue()) { 5594 // We have constant folded, but we need to cast this again back to 5595 // the original (possibly legalized) type. 5596 SmallVector<APInt> DstBits; 5597 BitVector DstUndefs; 5598 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5599 DstBits, RawBits, DstUndefs, 5600 BitVector(RawBits.size(), false)); 5601 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5602 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5603 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5604 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5605 if (DstUndefs[I]) 5606 continue; 5607 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5608 } 5609 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5610 } 5611 } 5612 } 5613 } 5614 5615 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5616 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5617 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5618 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5619 APInt RHSVal; 5620 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5621 APInt NewStep = Opcode == ISD::MUL 5622 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5623 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5624 return getStepVector(DL, VT, NewStep); 5625 } 5626 } 5627 5628 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5629 return !Op.getValueType().isVector() || 5630 Op.getValueType().getVectorElementCount() == NumElts; 5631 }; 5632 5633 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5634 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5635 Op.getOpcode() == ISD::BUILD_VECTOR || 5636 Op.getOpcode() == ISD::SPLAT_VECTOR; 5637 }; 5638 5639 // All operands must be vector types with the same number of elements as 5640 // the result type and must be either UNDEF or a build/splat vector 5641 // or UNDEF scalars. 5642 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5643 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5644 return SDValue(); 5645 5646 // If we are comparing vectors, then the result needs to be a i1 boolean that 5647 // is then extended back to the legal result type depending on how booleans 5648 // are represented. 5649 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5650 ISD::NodeType ExtendCode = 5651 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5652 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5653 : ISD::SIGN_EXTEND; 5654 5655 // Find legal integer scalar type for constant promotion and 5656 // ensure that its scalar size is at least as large as source. 5657 EVT LegalSVT = VT.getScalarType(); 5658 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5659 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5660 if (LegalSVT.bitsLT(VT.getScalarType())) 5661 return SDValue(); 5662 } 5663 5664 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5665 // only have one operand to check. For fixed-length vector types we may have 5666 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5667 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5668 5669 // Constant fold each scalar lane separately. 5670 SmallVector<SDValue, 4> ScalarResults; 5671 for (unsigned I = 0; I != NumVectorElts; I++) { 5672 SmallVector<SDValue, 4> ScalarOps; 5673 for (SDValue Op : Ops) { 5674 EVT InSVT = Op.getValueType().getScalarType(); 5675 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5676 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5677 if (Op.isUndef()) 5678 ScalarOps.push_back(getUNDEF(InSVT)); 5679 else 5680 ScalarOps.push_back(Op); 5681 continue; 5682 } 5683 5684 SDValue ScalarOp = 5685 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5686 EVT ScalarVT = ScalarOp.getValueType(); 5687 5688 // Build vector (integer) scalar operands may need implicit 5689 // truncation - do this before constant folding. 5690 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5691 // Don't create illegally-typed nodes unless they're constants or undef 5692 // - if we fail to constant fold we can't guarantee the (dead) nodes 5693 // we're creating will be cleaned up before being visited for 5694 // legalization. 5695 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5696 !isa<ConstantSDNode>(ScalarOp) && 5697 TLI->getTypeAction(*getContext(), InSVT) != 5698 TargetLowering::TypeLegal) 5699 return SDValue(); 5700 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5701 } 5702 5703 ScalarOps.push_back(ScalarOp); 5704 } 5705 5706 // Constant fold the scalar operands. 5707 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5708 5709 // Legalize the (integer) scalar constant if necessary. 5710 if (LegalSVT != SVT) 5711 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5712 5713 // Scalar folding only succeeded if the result is a constant or UNDEF. 5714 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5715 ScalarResult.getOpcode() != ISD::ConstantFP) 5716 return SDValue(); 5717 ScalarResults.push_back(ScalarResult); 5718 } 5719 5720 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5721 : getBuildVector(VT, DL, ScalarResults); 5722 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5723 return V; 5724 } 5725 5726 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5727 EVT VT, SDValue N1, SDValue N2) { 5728 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5729 // should. That will require dealing with a potentially non-default 5730 // rounding mode, checking the "opStatus" return value from the APFloat 5731 // math calculations, and possibly other variations. 5732 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5733 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5734 if (N1CFP && N2CFP) { 5735 APFloat C1 = N1CFP->getValueAPF(); // make copy 5736 const APFloat &C2 = N2CFP->getValueAPF(); 5737 switch (Opcode) { 5738 case ISD::FADD: 5739 C1.add(C2, APFloat::rmNearestTiesToEven); 5740 return getConstantFP(C1, DL, VT); 5741 case ISD::FSUB: 5742 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5743 return getConstantFP(C1, DL, VT); 5744 case ISD::FMUL: 5745 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5746 return getConstantFP(C1, DL, VT); 5747 case ISD::FDIV: 5748 C1.divide(C2, APFloat::rmNearestTiesToEven); 5749 return getConstantFP(C1, DL, VT); 5750 case ISD::FREM: 5751 C1.mod(C2); 5752 return getConstantFP(C1, DL, VT); 5753 case ISD::FCOPYSIGN: 5754 C1.copySign(C2); 5755 return getConstantFP(C1, DL, VT); 5756 case ISD::FMINNUM: 5757 return getConstantFP(minnum(C1, C2), DL, VT); 5758 case ISD::FMAXNUM: 5759 return getConstantFP(maxnum(C1, C2), DL, VT); 5760 case ISD::FMINIMUM: 5761 return getConstantFP(minimum(C1, C2), DL, VT); 5762 case ISD::FMAXIMUM: 5763 return getConstantFP(maximum(C1, C2), DL, VT); 5764 default: break; 5765 } 5766 } 5767 if (N1CFP && Opcode == ISD::FP_ROUND) { 5768 APFloat C1 = N1CFP->getValueAPF(); // make copy 5769 bool Unused; 5770 // This can return overflow, underflow, or inexact; we don't care. 5771 // FIXME need to be more flexible about rounding mode. 5772 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5773 &Unused); 5774 return getConstantFP(C1, DL, VT); 5775 } 5776 5777 switch (Opcode) { 5778 case ISD::FSUB: 5779 // -0.0 - undef --> undef (consistent with "fneg undef") 5780 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5781 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5782 return getUNDEF(VT); 5783 LLVM_FALLTHROUGH; 5784 5785 case ISD::FADD: 5786 case ISD::FMUL: 5787 case ISD::FDIV: 5788 case ISD::FREM: 5789 // If both operands are undef, the result is undef. If 1 operand is undef, 5790 // the result is NaN. This should match the behavior of the IR optimizer. 5791 if (N1.isUndef() && N2.isUndef()) 5792 return getUNDEF(VT); 5793 if (N1.isUndef() || N2.isUndef()) 5794 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5795 } 5796 return SDValue(); 5797 } 5798 5799 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5800 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5801 5802 // There's no need to assert on a byte-aligned pointer. All pointers are at 5803 // least byte aligned. 5804 if (A == Align(1)) 5805 return Val; 5806 5807 FoldingSetNodeID ID; 5808 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5809 ID.AddInteger(A.value()); 5810 5811 void *IP = nullptr; 5812 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5813 return SDValue(E, 0); 5814 5815 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5816 Val.getValueType(), A); 5817 createOperands(N, {Val}); 5818 5819 CSEMap.InsertNode(N, IP); 5820 InsertNode(N); 5821 5822 SDValue V(N, 0); 5823 NewSDValueDbgMsg(V, "Creating new node: ", this); 5824 return V; 5825 } 5826 5827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5828 SDValue N1, SDValue N2) { 5829 SDNodeFlags Flags; 5830 if (Inserter) 5831 Flags = Inserter->getFlags(); 5832 return getNode(Opcode, DL, VT, N1, N2, Flags); 5833 } 5834 5835 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5836 SDValue &N2) const { 5837 if (!TLI->isCommutativeBinOp(Opcode)) 5838 return; 5839 5840 // Canonicalize: 5841 // binop(const, nonconst) -> binop(nonconst, const) 5842 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5843 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5844 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5845 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5846 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5847 std::swap(N1, N2); 5848 5849 // Canonicalize: 5850 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5851 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5852 N2.getOpcode() == ISD::STEP_VECTOR) 5853 std::swap(N1, N2); 5854 } 5855 5856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5857 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5858 assert(N1.getOpcode() != ISD::DELETED_NODE && 5859 N2.getOpcode() != ISD::DELETED_NODE && 5860 "Operand is DELETED_NODE!"); 5861 5862 canonicalizeCommutativeBinop(Opcode, N1, N2); 5863 5864 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5865 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5866 5867 // Don't allow undefs in vector splats - we might be returning N2 when folding 5868 // to zero etc. 5869 ConstantSDNode *N2CV = 5870 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5871 5872 switch (Opcode) { 5873 default: break; 5874 case ISD::TokenFactor: 5875 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5876 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5877 // Fold trivial token factors. 5878 if (N1.getOpcode() == ISD::EntryToken) return N2; 5879 if (N2.getOpcode() == ISD::EntryToken) return N1; 5880 if (N1 == N2) return N1; 5881 break; 5882 case ISD::BUILD_VECTOR: { 5883 // Attempt to simplify BUILD_VECTOR. 5884 SDValue Ops[] = {N1, N2}; 5885 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5886 return V; 5887 break; 5888 } 5889 case ISD::CONCAT_VECTORS: { 5890 SDValue Ops[] = {N1, N2}; 5891 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5892 return V; 5893 break; 5894 } 5895 case ISD::AND: 5896 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5897 assert(N1.getValueType() == N2.getValueType() && 5898 N1.getValueType() == VT && "Binary operator types must match!"); 5899 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5900 // worth handling here. 5901 if (N2CV && N2CV->isZero()) 5902 return N2; 5903 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5904 return N1; 5905 break; 5906 case ISD::OR: 5907 case ISD::XOR: 5908 case ISD::ADD: 5909 case ISD::SUB: 5910 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5911 assert(N1.getValueType() == N2.getValueType() && 5912 N1.getValueType() == VT && "Binary operator types must match!"); 5913 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5914 // it's worth handling here. 5915 if (N2CV && N2CV->isZero()) 5916 return N1; 5917 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5918 VT.getVectorElementType() == MVT::i1) 5919 return getNode(ISD::XOR, DL, VT, N1, N2); 5920 break; 5921 case ISD::MUL: 5922 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5923 assert(N1.getValueType() == N2.getValueType() && 5924 N1.getValueType() == VT && "Binary operator types must match!"); 5925 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5926 return getNode(ISD::AND, DL, VT, N1, N2); 5927 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5928 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5929 const APInt &N2CImm = N2C->getAPIntValue(); 5930 return getVScale(DL, VT, MulImm * N2CImm); 5931 } 5932 break; 5933 case ISD::UDIV: 5934 case ISD::UREM: 5935 case ISD::MULHU: 5936 case ISD::MULHS: 5937 case ISD::SDIV: 5938 case ISD::SREM: 5939 case ISD::SADDSAT: 5940 case ISD::SSUBSAT: 5941 case ISD::UADDSAT: 5942 case ISD::USUBSAT: 5943 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5944 assert(N1.getValueType() == N2.getValueType() && 5945 N1.getValueType() == VT && "Binary operator types must match!"); 5946 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5947 // fold (add_sat x, y) -> (or x, y) for bool types. 5948 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5949 return getNode(ISD::OR, DL, VT, N1, N2); 5950 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5951 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5952 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5953 } 5954 break; 5955 case ISD::SMIN: 5956 case ISD::UMAX: 5957 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5958 assert(N1.getValueType() == N2.getValueType() && 5959 N1.getValueType() == VT && "Binary operator types must match!"); 5960 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5961 return getNode(ISD::OR, DL, VT, N1, N2); 5962 break; 5963 case ISD::SMAX: 5964 case ISD::UMIN: 5965 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5966 assert(N1.getValueType() == N2.getValueType() && 5967 N1.getValueType() == VT && "Binary operator types must match!"); 5968 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5969 return getNode(ISD::AND, DL, VT, N1, N2); 5970 break; 5971 case ISD::FADD: 5972 case ISD::FSUB: 5973 case ISD::FMUL: 5974 case ISD::FDIV: 5975 case ISD::FREM: 5976 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5977 assert(N1.getValueType() == N2.getValueType() && 5978 N1.getValueType() == VT && "Binary operator types must match!"); 5979 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5980 return V; 5981 break; 5982 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5983 assert(N1.getValueType() == VT && 5984 N1.getValueType().isFloatingPoint() && 5985 N2.getValueType().isFloatingPoint() && 5986 "Invalid FCOPYSIGN!"); 5987 break; 5988 case ISD::SHL: 5989 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5990 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5991 const APInt &ShiftImm = N2C->getAPIntValue(); 5992 return getVScale(DL, VT, MulImm << ShiftImm); 5993 } 5994 LLVM_FALLTHROUGH; 5995 case ISD::SRA: 5996 case ISD::SRL: 5997 if (SDValue V = simplifyShift(N1, N2)) 5998 return V; 5999 LLVM_FALLTHROUGH; 6000 case ISD::ROTL: 6001 case ISD::ROTR: 6002 assert(VT == N1.getValueType() && 6003 "Shift operators return type must be the same as their first arg"); 6004 assert(VT.isInteger() && N2.getValueType().isInteger() && 6005 "Shifts only work on integers"); 6006 assert((!VT.isVector() || VT == N2.getValueType()) && 6007 "Vector shift amounts must be in the same as their first arg"); 6008 // Verify that the shift amount VT is big enough to hold valid shift 6009 // amounts. This catches things like trying to shift an i1024 value by an 6010 // i8, which is easy to fall into in generic code that uses 6011 // TLI.getShiftAmount(). 6012 assert(N2.getValueType().getScalarSizeInBits() >= 6013 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6014 "Invalid use of small shift amount with oversized value!"); 6015 6016 // Always fold shifts of i1 values so the code generator doesn't need to 6017 // handle them. Since we know the size of the shift has to be less than the 6018 // size of the value, the shift/rotate count is guaranteed to be zero. 6019 if (VT == MVT::i1) 6020 return N1; 6021 if (N2CV && N2CV->isZero()) 6022 return N1; 6023 break; 6024 case ISD::FP_ROUND: 6025 assert(VT.isFloatingPoint() && 6026 N1.getValueType().isFloatingPoint() && 6027 VT.bitsLE(N1.getValueType()) && 6028 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6029 "Invalid FP_ROUND!"); 6030 if (N1.getValueType() == VT) return N1; // noop conversion. 6031 break; 6032 case ISD::AssertSext: 6033 case ISD::AssertZext: { 6034 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6035 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6036 assert(VT.isInteger() && EVT.isInteger() && 6037 "Cannot *_EXTEND_INREG FP types"); 6038 assert(!EVT.isVector() && 6039 "AssertSExt/AssertZExt type should be the vector element type " 6040 "rather than the vector type!"); 6041 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6042 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6043 break; 6044 } 6045 case ISD::SIGN_EXTEND_INREG: { 6046 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6047 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6048 assert(VT.isInteger() && EVT.isInteger() && 6049 "Cannot *_EXTEND_INREG FP types"); 6050 assert(EVT.isVector() == VT.isVector() && 6051 "SIGN_EXTEND_INREG type should be vector iff the operand " 6052 "type is vector!"); 6053 assert((!EVT.isVector() || 6054 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6055 "Vector element counts must match in SIGN_EXTEND_INREG"); 6056 assert(EVT.bitsLE(VT) && "Not extending!"); 6057 if (EVT == VT) return N1; // Not actually extending 6058 6059 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6060 unsigned FromBits = EVT.getScalarSizeInBits(); 6061 Val <<= Val.getBitWidth() - FromBits; 6062 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6063 return getConstant(Val, DL, ConstantVT); 6064 }; 6065 6066 if (N1C) { 6067 const APInt &Val = N1C->getAPIntValue(); 6068 return SignExtendInReg(Val, VT); 6069 } 6070 6071 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6072 SmallVector<SDValue, 8> Ops; 6073 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6074 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6075 SDValue Op = N1.getOperand(i); 6076 if (Op.isUndef()) { 6077 Ops.push_back(getUNDEF(OpVT)); 6078 continue; 6079 } 6080 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6081 APInt Val = C->getAPIntValue(); 6082 Ops.push_back(SignExtendInReg(Val, OpVT)); 6083 } 6084 return getBuildVector(VT, DL, Ops); 6085 } 6086 break; 6087 } 6088 case ISD::FP_TO_SINT_SAT: 6089 case ISD::FP_TO_UINT_SAT: { 6090 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6091 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6092 assert(N1.getValueType().isVector() == VT.isVector() && 6093 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6094 "vector!"); 6095 assert((!VT.isVector() || VT.getVectorNumElements() == 6096 N1.getValueType().getVectorNumElements()) && 6097 "Vector element counts must match in FP_TO_*INT_SAT"); 6098 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6099 "Type to saturate to must be a scalar."); 6100 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6101 "Not extending!"); 6102 break; 6103 } 6104 case ISD::EXTRACT_VECTOR_ELT: 6105 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6106 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6107 element type of the vector."); 6108 6109 // Extract from an undefined value or using an undefined index is undefined. 6110 if (N1.isUndef() || N2.isUndef()) 6111 return getUNDEF(VT); 6112 6113 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6114 // vectors. For scalable vectors we will provide appropriate support for 6115 // dealing with arbitrary indices. 6116 if (N2C && N1.getValueType().isFixedLengthVector() && 6117 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6118 return getUNDEF(VT); 6119 6120 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6121 // expanding copies of large vectors from registers. This only works for 6122 // fixed length vectors, since we need to know the exact number of 6123 // elements. 6124 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6125 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6126 unsigned Factor = 6127 N1.getOperand(0).getValueType().getVectorNumElements(); 6128 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6129 N1.getOperand(N2C->getZExtValue() / Factor), 6130 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6131 } 6132 6133 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6134 // lowering is expanding large vector constants. 6135 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6136 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6137 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6138 N1.getValueType().isFixedLengthVector()) && 6139 "BUILD_VECTOR used for scalable vectors"); 6140 unsigned Index = 6141 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6142 SDValue Elt = N1.getOperand(Index); 6143 6144 if (VT != Elt.getValueType()) 6145 // If the vector element type is not legal, the BUILD_VECTOR operands 6146 // are promoted and implicitly truncated, and the result implicitly 6147 // extended. Make that explicit here. 6148 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6149 6150 return Elt; 6151 } 6152 6153 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6154 // operations are lowered to scalars. 6155 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6156 // If the indices are the same, return the inserted element else 6157 // if the indices are known different, extract the element from 6158 // the original vector. 6159 SDValue N1Op2 = N1.getOperand(2); 6160 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6161 6162 if (N1Op2C && N2C) { 6163 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6164 if (VT == N1.getOperand(1).getValueType()) 6165 return N1.getOperand(1); 6166 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6167 } 6168 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6169 } 6170 } 6171 6172 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6173 // when vector types are scalarized and v1iX is legal. 6174 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6175 // Here we are completely ignoring the extract element index (N2), 6176 // which is fine for fixed width vectors, since any index other than 0 6177 // is undefined anyway. However, this cannot be ignored for scalable 6178 // vectors - in theory we could support this, but we don't want to do this 6179 // without a profitability check. 6180 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6181 N1.getValueType().isFixedLengthVector() && 6182 N1.getValueType().getVectorNumElements() == 1) { 6183 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6184 N1.getOperand(1)); 6185 } 6186 break; 6187 case ISD::EXTRACT_ELEMENT: 6188 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6189 assert(!N1.getValueType().isVector() && !VT.isVector() && 6190 (N1.getValueType().isInteger() == VT.isInteger()) && 6191 N1.getValueType() != VT && 6192 "Wrong types for EXTRACT_ELEMENT!"); 6193 6194 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6195 // 64-bit integers into 32-bit parts. Instead of building the extract of 6196 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6197 if (N1.getOpcode() == ISD::BUILD_PAIR) 6198 return N1.getOperand(N2C->getZExtValue()); 6199 6200 // EXTRACT_ELEMENT of a constant int is also very common. 6201 if (N1C) { 6202 unsigned ElementSize = VT.getSizeInBits(); 6203 unsigned Shift = ElementSize * N2C->getZExtValue(); 6204 const APInt &Val = N1C->getAPIntValue(); 6205 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6206 } 6207 break; 6208 case ISD::EXTRACT_SUBVECTOR: { 6209 EVT N1VT = N1.getValueType(); 6210 assert(VT.isVector() && N1VT.isVector() && 6211 "Extract subvector VTs must be vectors!"); 6212 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6213 "Extract subvector VTs must have the same element type!"); 6214 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6215 "Cannot extract a scalable vector from a fixed length vector!"); 6216 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6217 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6218 "Extract subvector must be from larger vector to smaller vector!"); 6219 assert(N2C && "Extract subvector index must be a constant"); 6220 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6221 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6222 N1VT.getVectorMinNumElements()) && 6223 "Extract subvector overflow!"); 6224 assert(N2C->getAPIntValue().getBitWidth() == 6225 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6226 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6227 6228 // Trivial extraction. 6229 if (VT == N1VT) 6230 return N1; 6231 6232 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6233 if (N1.isUndef()) 6234 return getUNDEF(VT); 6235 6236 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6237 // the concat have the same type as the extract. 6238 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6239 VT == N1.getOperand(0).getValueType()) { 6240 unsigned Factor = VT.getVectorMinNumElements(); 6241 return N1.getOperand(N2C->getZExtValue() / Factor); 6242 } 6243 6244 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6245 // during shuffle legalization. 6246 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6247 VT == N1.getOperand(1).getValueType()) 6248 return N1.getOperand(1); 6249 break; 6250 } 6251 } 6252 6253 // Perform trivial constant folding. 6254 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6255 return SV; 6256 6257 // Canonicalize an UNDEF to the RHS, even over a constant. 6258 if (N1.isUndef()) { 6259 if (TLI->isCommutativeBinOp(Opcode)) { 6260 std::swap(N1, N2); 6261 } else { 6262 switch (Opcode) { 6263 case ISD::SUB: 6264 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6265 case ISD::SIGN_EXTEND_INREG: 6266 case ISD::UDIV: 6267 case ISD::SDIV: 6268 case ISD::UREM: 6269 case ISD::SREM: 6270 case ISD::SSUBSAT: 6271 case ISD::USUBSAT: 6272 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6273 } 6274 } 6275 } 6276 6277 // Fold a bunch of operators when the RHS is undef. 6278 if (N2.isUndef()) { 6279 switch (Opcode) { 6280 case ISD::XOR: 6281 if (N1.isUndef()) 6282 // Handle undef ^ undef -> 0 special case. This is a common 6283 // idiom (misuse). 6284 return getConstant(0, DL, VT); 6285 LLVM_FALLTHROUGH; 6286 case ISD::ADD: 6287 case ISD::SUB: 6288 case ISD::UDIV: 6289 case ISD::SDIV: 6290 case ISD::UREM: 6291 case ISD::SREM: 6292 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6293 case ISD::MUL: 6294 case ISD::AND: 6295 case ISD::SSUBSAT: 6296 case ISD::USUBSAT: 6297 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6298 case ISD::OR: 6299 case ISD::SADDSAT: 6300 case ISD::UADDSAT: 6301 return getAllOnesConstant(DL, VT); 6302 } 6303 } 6304 6305 // Memoize this node if possible. 6306 SDNode *N; 6307 SDVTList VTs = getVTList(VT); 6308 SDValue Ops[] = {N1, N2}; 6309 if (VT != MVT::Glue) { 6310 FoldingSetNodeID ID; 6311 AddNodeIDNode(ID, Opcode, VTs, Ops); 6312 void *IP = nullptr; 6313 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6314 E->intersectFlagsWith(Flags); 6315 return SDValue(E, 0); 6316 } 6317 6318 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6319 N->setFlags(Flags); 6320 createOperands(N, Ops); 6321 CSEMap.InsertNode(N, IP); 6322 } else { 6323 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6324 createOperands(N, Ops); 6325 } 6326 6327 InsertNode(N); 6328 SDValue V = SDValue(N, 0); 6329 NewSDValueDbgMsg(V, "Creating new node: ", this); 6330 return V; 6331 } 6332 6333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6334 SDValue N1, SDValue N2, SDValue N3) { 6335 SDNodeFlags Flags; 6336 if (Inserter) 6337 Flags = Inserter->getFlags(); 6338 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6339 } 6340 6341 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6342 SDValue N1, SDValue N2, SDValue N3, 6343 const SDNodeFlags Flags) { 6344 assert(N1.getOpcode() != ISD::DELETED_NODE && 6345 N2.getOpcode() != ISD::DELETED_NODE && 6346 N3.getOpcode() != ISD::DELETED_NODE && 6347 "Operand is DELETED_NODE!"); 6348 // Perform various simplifications. 6349 switch (Opcode) { 6350 case ISD::FMA: { 6351 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6352 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6353 N3.getValueType() == VT && "FMA types must match!"); 6354 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6355 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6356 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6357 if (N1CFP && N2CFP && N3CFP) { 6358 APFloat V1 = N1CFP->getValueAPF(); 6359 const APFloat &V2 = N2CFP->getValueAPF(); 6360 const APFloat &V3 = N3CFP->getValueAPF(); 6361 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6362 return getConstantFP(V1, DL, VT); 6363 } 6364 break; 6365 } 6366 case ISD::BUILD_VECTOR: { 6367 // Attempt to simplify BUILD_VECTOR. 6368 SDValue Ops[] = {N1, N2, N3}; 6369 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6370 return V; 6371 break; 6372 } 6373 case ISD::CONCAT_VECTORS: { 6374 SDValue Ops[] = {N1, N2, N3}; 6375 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6376 return V; 6377 break; 6378 } 6379 case ISD::SETCC: { 6380 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6381 assert(N1.getValueType() == N2.getValueType() && 6382 "SETCC operands must have the same type!"); 6383 assert(VT.isVector() == N1.getValueType().isVector() && 6384 "SETCC type should be vector iff the operand type is vector!"); 6385 assert((!VT.isVector() || VT.getVectorElementCount() == 6386 N1.getValueType().getVectorElementCount()) && 6387 "SETCC vector element counts must match!"); 6388 // Use FoldSetCC to simplify SETCC's. 6389 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6390 return V; 6391 // Vector constant folding. 6392 SDValue Ops[] = {N1, N2, N3}; 6393 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6394 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6395 return V; 6396 } 6397 break; 6398 } 6399 case ISD::SELECT: 6400 case ISD::VSELECT: 6401 if (SDValue V = simplifySelect(N1, N2, N3)) 6402 return V; 6403 break; 6404 case ISD::VECTOR_SHUFFLE: 6405 llvm_unreachable("should use getVectorShuffle constructor!"); 6406 case ISD::VECTOR_SPLICE: { 6407 if (cast<ConstantSDNode>(N3)->isNullValue()) 6408 return N1; 6409 break; 6410 } 6411 case ISD::INSERT_VECTOR_ELT: { 6412 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6413 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6414 // for scalable vectors where we will generate appropriate code to 6415 // deal with out-of-bounds cases correctly. 6416 if (N3C && N1.getValueType().isFixedLengthVector() && 6417 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6418 return getUNDEF(VT); 6419 6420 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6421 if (N3.isUndef()) 6422 return getUNDEF(VT); 6423 6424 // If the inserted element is an UNDEF, just use the input vector. 6425 if (N2.isUndef()) 6426 return N1; 6427 6428 break; 6429 } 6430 case ISD::INSERT_SUBVECTOR: { 6431 // Inserting undef into undef is still undef. 6432 if (N1.isUndef() && N2.isUndef()) 6433 return getUNDEF(VT); 6434 6435 EVT N2VT = N2.getValueType(); 6436 assert(VT == N1.getValueType() && 6437 "Dest and insert subvector source types must match!"); 6438 assert(VT.isVector() && N2VT.isVector() && 6439 "Insert subvector VTs must be vectors!"); 6440 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6441 "Cannot insert a scalable vector into a fixed length vector!"); 6442 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6443 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6444 "Insert subvector must be from smaller vector to larger vector!"); 6445 assert(isa<ConstantSDNode>(N3) && 6446 "Insert subvector index must be constant"); 6447 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6448 (N2VT.getVectorMinNumElements() + 6449 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6450 VT.getVectorMinNumElements()) && 6451 "Insert subvector overflow!"); 6452 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6453 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6454 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6455 6456 // Trivial insertion. 6457 if (VT == N2VT) 6458 return N2; 6459 6460 // If this is an insert of an extracted vector into an undef vector, we 6461 // can just use the input to the extract. 6462 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6463 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6464 return N2.getOperand(0); 6465 break; 6466 } 6467 case ISD::BITCAST: 6468 // Fold bit_convert nodes from a type to themselves. 6469 if (N1.getValueType() == VT) 6470 return N1; 6471 break; 6472 } 6473 6474 // Memoize node if it doesn't produce a flag. 6475 SDNode *N; 6476 SDVTList VTs = getVTList(VT); 6477 SDValue Ops[] = {N1, N2, N3}; 6478 if (VT != MVT::Glue) { 6479 FoldingSetNodeID ID; 6480 AddNodeIDNode(ID, Opcode, VTs, Ops); 6481 void *IP = nullptr; 6482 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6483 E->intersectFlagsWith(Flags); 6484 return SDValue(E, 0); 6485 } 6486 6487 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6488 N->setFlags(Flags); 6489 createOperands(N, Ops); 6490 CSEMap.InsertNode(N, IP); 6491 } else { 6492 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6493 createOperands(N, Ops); 6494 } 6495 6496 InsertNode(N); 6497 SDValue V = SDValue(N, 0); 6498 NewSDValueDbgMsg(V, "Creating new node: ", this); 6499 return V; 6500 } 6501 6502 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6503 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6504 SDValue Ops[] = { N1, N2, N3, N4 }; 6505 return getNode(Opcode, DL, VT, Ops); 6506 } 6507 6508 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6509 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6510 SDValue N5) { 6511 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6512 return getNode(Opcode, DL, VT, Ops); 6513 } 6514 6515 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6516 /// the incoming stack arguments to be loaded from the stack. 6517 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6518 SmallVector<SDValue, 8> ArgChains; 6519 6520 // Include the original chain at the beginning of the list. When this is 6521 // used by target LowerCall hooks, this helps legalize find the 6522 // CALLSEQ_BEGIN node. 6523 ArgChains.push_back(Chain); 6524 6525 // Add a chain value for each stack argument. 6526 for (SDNode *U : getEntryNode().getNode()->uses()) 6527 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6528 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6529 if (FI->getIndex() < 0) 6530 ArgChains.push_back(SDValue(L, 1)); 6531 6532 // Build a tokenfactor for all the chains. 6533 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6534 } 6535 6536 /// getMemsetValue - Vectorized representation of the memset value 6537 /// operand. 6538 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6539 const SDLoc &dl) { 6540 assert(!Value.isUndef()); 6541 6542 unsigned NumBits = VT.getScalarSizeInBits(); 6543 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6544 assert(C->getAPIntValue().getBitWidth() == 8); 6545 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6546 if (VT.isInteger()) { 6547 bool IsOpaque = VT.getSizeInBits() > 64 || 6548 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6549 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6550 } 6551 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6552 VT); 6553 } 6554 6555 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6556 EVT IntVT = VT.getScalarType(); 6557 if (!IntVT.isInteger()) 6558 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6559 6560 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6561 if (NumBits > 8) { 6562 // Use a multiplication with 0x010101... to extend the input to the 6563 // required length. 6564 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6565 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6566 DAG.getConstant(Magic, dl, IntVT)); 6567 } 6568 6569 if (VT != Value.getValueType() && !VT.isInteger()) 6570 Value = DAG.getBitcast(VT.getScalarType(), Value); 6571 if (VT != Value.getValueType()) 6572 Value = DAG.getSplatBuildVector(VT, dl, Value); 6573 6574 return Value; 6575 } 6576 6577 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6578 /// used when a memcpy is turned into a memset when the source is a constant 6579 /// string ptr. 6580 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6581 const TargetLowering &TLI, 6582 const ConstantDataArraySlice &Slice) { 6583 // Handle vector with all elements zero. 6584 if (Slice.Array == nullptr) { 6585 if (VT.isInteger()) 6586 return DAG.getConstant(0, dl, VT); 6587 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6588 return DAG.getConstantFP(0.0, dl, VT); 6589 if (VT.isVector()) { 6590 unsigned NumElts = VT.getVectorNumElements(); 6591 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6592 return DAG.getNode(ISD::BITCAST, dl, VT, 6593 DAG.getConstant(0, dl, 6594 EVT::getVectorVT(*DAG.getContext(), 6595 EltVT, NumElts))); 6596 } 6597 llvm_unreachable("Expected type!"); 6598 } 6599 6600 assert(!VT.isVector() && "Can't handle vector type here!"); 6601 unsigned NumVTBits = VT.getSizeInBits(); 6602 unsigned NumVTBytes = NumVTBits / 8; 6603 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6604 6605 APInt Val(NumVTBits, 0); 6606 if (DAG.getDataLayout().isLittleEndian()) { 6607 for (unsigned i = 0; i != NumBytes; ++i) 6608 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6609 } else { 6610 for (unsigned i = 0; i != NumBytes; ++i) 6611 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6612 } 6613 6614 // If the "cost" of materializing the integer immediate is less than the cost 6615 // of a load, then it is cost effective to turn the load into the immediate. 6616 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6617 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6618 return DAG.getConstant(Val, dl, VT); 6619 return SDValue(); 6620 } 6621 6622 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6623 const SDLoc &DL, 6624 const SDNodeFlags Flags) { 6625 EVT VT = Base.getValueType(); 6626 SDValue Index; 6627 6628 if (Offset.isScalable()) 6629 Index = getVScale(DL, Base.getValueType(), 6630 APInt(Base.getValueSizeInBits().getFixedSize(), 6631 Offset.getKnownMinSize())); 6632 else 6633 Index = getConstant(Offset.getFixedSize(), DL, VT); 6634 6635 return getMemBasePlusOffset(Base, Index, DL, Flags); 6636 } 6637 6638 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6639 const SDLoc &DL, 6640 const SDNodeFlags Flags) { 6641 assert(Offset.getValueType().isInteger()); 6642 EVT BasePtrVT = Ptr.getValueType(); 6643 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6644 } 6645 6646 /// Returns true if memcpy source is constant data. 6647 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6648 uint64_t SrcDelta = 0; 6649 GlobalAddressSDNode *G = nullptr; 6650 if (Src.getOpcode() == ISD::GlobalAddress) 6651 G = cast<GlobalAddressSDNode>(Src); 6652 else if (Src.getOpcode() == ISD::ADD && 6653 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6654 Src.getOperand(1).getOpcode() == ISD::Constant) { 6655 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6656 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6657 } 6658 if (!G) 6659 return false; 6660 6661 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6662 SrcDelta + G->getOffset()); 6663 } 6664 6665 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6666 SelectionDAG &DAG) { 6667 // On Darwin, -Os means optimize for size without hurting performance, so 6668 // only really optimize for size when -Oz (MinSize) is used. 6669 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6670 return MF.getFunction().hasMinSize(); 6671 return DAG.shouldOptForSize(); 6672 } 6673 6674 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6675 SmallVector<SDValue, 32> &OutChains, unsigned From, 6676 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6677 SmallVector<SDValue, 16> &OutStoreChains) { 6678 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6679 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6680 SmallVector<SDValue, 16> GluedLoadChains; 6681 for (unsigned i = From; i < To; ++i) { 6682 OutChains.push_back(OutLoadChains[i]); 6683 GluedLoadChains.push_back(OutLoadChains[i]); 6684 } 6685 6686 // Chain for all loads. 6687 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6688 GluedLoadChains); 6689 6690 for (unsigned i = From; i < To; ++i) { 6691 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6692 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6693 ST->getBasePtr(), ST->getMemoryVT(), 6694 ST->getMemOperand()); 6695 OutChains.push_back(NewStore); 6696 } 6697 } 6698 6699 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6700 SDValue Chain, SDValue Dst, SDValue Src, 6701 uint64_t Size, Align Alignment, 6702 bool isVol, bool AlwaysInline, 6703 MachinePointerInfo DstPtrInfo, 6704 MachinePointerInfo SrcPtrInfo, 6705 const AAMDNodes &AAInfo) { 6706 // Turn a memcpy of undef to nop. 6707 // FIXME: We need to honor volatile even is Src is undef. 6708 if (Src.isUndef()) 6709 return Chain; 6710 6711 // Expand memcpy to a series of load and store ops if the size operand falls 6712 // below a certain threshold. 6713 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6714 // rather than maybe a humongous number of loads and stores. 6715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6716 const DataLayout &DL = DAG.getDataLayout(); 6717 LLVMContext &C = *DAG.getContext(); 6718 std::vector<EVT> MemOps; 6719 bool DstAlignCanChange = false; 6720 MachineFunction &MF = DAG.getMachineFunction(); 6721 MachineFrameInfo &MFI = MF.getFrameInfo(); 6722 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6723 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6724 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6725 DstAlignCanChange = true; 6726 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6727 if (!SrcAlign || Alignment > *SrcAlign) 6728 SrcAlign = Alignment; 6729 assert(SrcAlign && "SrcAlign must be set"); 6730 ConstantDataArraySlice Slice; 6731 // If marked as volatile, perform a copy even when marked as constant. 6732 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6733 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6734 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6735 const MemOp Op = isZeroConstant 6736 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6737 /*IsZeroMemset*/ true, isVol) 6738 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6739 *SrcAlign, isVol, CopyFromConstant); 6740 if (!TLI.findOptimalMemOpLowering( 6741 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6742 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6743 return SDValue(); 6744 6745 if (DstAlignCanChange) { 6746 Type *Ty = MemOps[0].getTypeForEVT(C); 6747 Align NewAlign = DL.getABITypeAlign(Ty); 6748 6749 // Don't promote to an alignment that would require dynamic stack 6750 // realignment. 6751 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6752 if (!TRI->hasStackRealignment(MF)) 6753 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6754 NewAlign = NewAlign.previous(); 6755 6756 if (NewAlign > Alignment) { 6757 // Give the stack frame object a larger alignment if needed. 6758 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6759 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6760 Alignment = NewAlign; 6761 } 6762 } 6763 6764 // Prepare AAInfo for loads/stores after lowering this memcpy. 6765 AAMDNodes NewAAInfo = AAInfo; 6766 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6767 6768 MachineMemOperand::Flags MMOFlags = 6769 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6770 SmallVector<SDValue, 16> OutLoadChains; 6771 SmallVector<SDValue, 16> OutStoreChains; 6772 SmallVector<SDValue, 32> OutChains; 6773 unsigned NumMemOps = MemOps.size(); 6774 uint64_t SrcOff = 0, DstOff = 0; 6775 for (unsigned i = 0; i != NumMemOps; ++i) { 6776 EVT VT = MemOps[i]; 6777 unsigned VTSize = VT.getSizeInBits() / 8; 6778 SDValue Value, Store; 6779 6780 if (VTSize > Size) { 6781 // Issuing an unaligned load / store pair that overlaps with the previous 6782 // pair. Adjust the offset accordingly. 6783 assert(i == NumMemOps-1 && i != 0); 6784 SrcOff -= VTSize - Size; 6785 DstOff -= VTSize - Size; 6786 } 6787 6788 if (CopyFromConstant && 6789 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6790 // It's unlikely a store of a vector immediate can be done in a single 6791 // instruction. It would require a load from a constantpool first. 6792 // We only handle zero vectors here. 6793 // FIXME: Handle other cases where store of vector immediate is done in 6794 // a single instruction. 6795 ConstantDataArraySlice SubSlice; 6796 if (SrcOff < Slice.Length) { 6797 SubSlice = Slice; 6798 SubSlice.move(SrcOff); 6799 } else { 6800 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6801 SubSlice.Array = nullptr; 6802 SubSlice.Offset = 0; 6803 SubSlice.Length = VTSize; 6804 } 6805 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6806 if (Value.getNode()) { 6807 Store = DAG.getStore( 6808 Chain, dl, Value, 6809 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6810 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6811 OutChains.push_back(Store); 6812 } 6813 } 6814 6815 if (!Store.getNode()) { 6816 // The type might not be legal for the target. This should only happen 6817 // if the type is smaller than a legal type, as on PPC, so the right 6818 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6819 // to Load/Store if NVT==VT. 6820 // FIXME does the case above also need this? 6821 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6822 assert(NVT.bitsGE(VT)); 6823 6824 bool isDereferenceable = 6825 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6826 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6827 if (isDereferenceable) 6828 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6829 6830 Value = DAG.getExtLoad( 6831 ISD::EXTLOAD, dl, NVT, Chain, 6832 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6833 SrcPtrInfo.getWithOffset(SrcOff), VT, 6834 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6835 OutLoadChains.push_back(Value.getValue(1)); 6836 6837 Store = DAG.getTruncStore( 6838 Chain, dl, Value, 6839 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6840 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6841 OutStoreChains.push_back(Store); 6842 } 6843 SrcOff += VTSize; 6844 DstOff += VTSize; 6845 Size -= VTSize; 6846 } 6847 6848 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6849 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6850 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6851 6852 if (NumLdStInMemcpy) { 6853 // It may be that memcpy might be converted to memset if it's memcpy 6854 // of constants. In such a case, we won't have loads and stores, but 6855 // just stores. In the absence of loads, there is nothing to gang up. 6856 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6857 // If target does not care, just leave as it. 6858 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6859 OutChains.push_back(OutLoadChains[i]); 6860 OutChains.push_back(OutStoreChains[i]); 6861 } 6862 } else { 6863 // Ld/St less than/equal limit set by target. 6864 if (NumLdStInMemcpy <= GluedLdStLimit) { 6865 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6866 NumLdStInMemcpy, OutLoadChains, 6867 OutStoreChains); 6868 } else { 6869 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6870 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6871 unsigned GlueIter = 0; 6872 6873 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6874 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6875 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6876 6877 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6878 OutLoadChains, OutStoreChains); 6879 GlueIter += GluedLdStLimit; 6880 } 6881 6882 // Residual ld/st. 6883 if (RemainingLdStInMemcpy) { 6884 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6885 RemainingLdStInMemcpy, OutLoadChains, 6886 OutStoreChains); 6887 } 6888 } 6889 } 6890 } 6891 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6892 } 6893 6894 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6895 SDValue Chain, SDValue Dst, SDValue Src, 6896 uint64_t Size, Align Alignment, 6897 bool isVol, bool AlwaysInline, 6898 MachinePointerInfo DstPtrInfo, 6899 MachinePointerInfo SrcPtrInfo, 6900 const AAMDNodes &AAInfo) { 6901 // Turn a memmove of undef to nop. 6902 // FIXME: We need to honor volatile even is Src is undef. 6903 if (Src.isUndef()) 6904 return Chain; 6905 6906 // Expand memmove to a series of load and store ops if the size operand falls 6907 // below a certain threshold. 6908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6909 const DataLayout &DL = DAG.getDataLayout(); 6910 LLVMContext &C = *DAG.getContext(); 6911 std::vector<EVT> MemOps; 6912 bool DstAlignCanChange = false; 6913 MachineFunction &MF = DAG.getMachineFunction(); 6914 MachineFrameInfo &MFI = MF.getFrameInfo(); 6915 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6916 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6917 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6918 DstAlignCanChange = true; 6919 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6920 if (!SrcAlign || Alignment > *SrcAlign) 6921 SrcAlign = Alignment; 6922 assert(SrcAlign && "SrcAlign must be set"); 6923 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6924 if (!TLI.findOptimalMemOpLowering( 6925 MemOps, Limit, 6926 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6927 /*IsVolatile*/ true), 6928 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6929 MF.getFunction().getAttributes())) 6930 return SDValue(); 6931 6932 if (DstAlignCanChange) { 6933 Type *Ty = MemOps[0].getTypeForEVT(C); 6934 Align NewAlign = DL.getABITypeAlign(Ty); 6935 if (NewAlign > Alignment) { 6936 // Give the stack frame object a larger alignment if needed. 6937 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6938 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6939 Alignment = NewAlign; 6940 } 6941 } 6942 6943 // Prepare AAInfo for loads/stores after lowering this memmove. 6944 AAMDNodes NewAAInfo = AAInfo; 6945 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6946 6947 MachineMemOperand::Flags MMOFlags = 6948 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6949 uint64_t SrcOff = 0, DstOff = 0; 6950 SmallVector<SDValue, 8> LoadValues; 6951 SmallVector<SDValue, 8> LoadChains; 6952 SmallVector<SDValue, 8> OutChains; 6953 unsigned NumMemOps = MemOps.size(); 6954 for (unsigned i = 0; i < NumMemOps; i++) { 6955 EVT VT = MemOps[i]; 6956 unsigned VTSize = VT.getSizeInBits() / 8; 6957 SDValue Value; 6958 6959 bool isDereferenceable = 6960 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6961 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6962 if (isDereferenceable) 6963 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6964 6965 Value = DAG.getLoad( 6966 VT, dl, Chain, 6967 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6968 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6969 LoadValues.push_back(Value); 6970 LoadChains.push_back(Value.getValue(1)); 6971 SrcOff += VTSize; 6972 } 6973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6974 OutChains.clear(); 6975 for (unsigned i = 0; i < NumMemOps; i++) { 6976 EVT VT = MemOps[i]; 6977 unsigned VTSize = VT.getSizeInBits() / 8; 6978 SDValue Store; 6979 6980 Store = DAG.getStore( 6981 Chain, dl, LoadValues[i], 6982 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6983 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6984 OutChains.push_back(Store); 6985 DstOff += VTSize; 6986 } 6987 6988 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6989 } 6990 6991 /// Lower the call to 'memset' intrinsic function into a series of store 6992 /// operations. 6993 /// 6994 /// \param DAG Selection DAG where lowered code is placed. 6995 /// \param dl Link to corresponding IR location. 6996 /// \param Chain Control flow dependency. 6997 /// \param Dst Pointer to destination memory location. 6998 /// \param Src Value of byte to write into the memory. 6999 /// \param Size Number of bytes to write. 7000 /// \param Alignment Alignment of the destination in bytes. 7001 /// \param isVol True if destination is volatile. 7002 /// \param AlwaysInline Makes sure no function call is generated. 7003 /// \param DstPtrInfo IR information on the memory pointer. 7004 /// \returns New head in the control flow, if lowering was successful, empty 7005 /// SDValue otherwise. 7006 /// 7007 /// The function tries to replace 'llvm.memset' intrinsic with several store 7008 /// operations and value calculation code. This is usually profitable for small 7009 /// memory size or when the semantic requires inlining. 7010 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7011 SDValue Chain, SDValue Dst, SDValue Src, 7012 uint64_t Size, Align Alignment, bool isVol, 7013 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7014 const AAMDNodes &AAInfo) { 7015 // Turn a memset of undef to nop. 7016 // FIXME: We need to honor volatile even is Src is undef. 7017 if (Src.isUndef()) 7018 return Chain; 7019 7020 // Expand memset to a series of load/store ops if the size operand 7021 // falls below a certain threshold. 7022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7023 std::vector<EVT> MemOps; 7024 bool DstAlignCanChange = false; 7025 MachineFunction &MF = DAG.getMachineFunction(); 7026 MachineFrameInfo &MFI = MF.getFrameInfo(); 7027 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7028 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7029 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7030 DstAlignCanChange = true; 7031 bool IsZeroVal = 7032 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7033 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7034 7035 if (!TLI.findOptimalMemOpLowering( 7036 MemOps, Limit, 7037 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7038 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7039 return SDValue(); 7040 7041 if (DstAlignCanChange) { 7042 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7043 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7044 if (NewAlign > Alignment) { 7045 // Give the stack frame object a larger alignment if needed. 7046 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7047 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7048 Alignment = NewAlign; 7049 } 7050 } 7051 7052 SmallVector<SDValue, 8> OutChains; 7053 uint64_t DstOff = 0; 7054 unsigned NumMemOps = MemOps.size(); 7055 7056 // Find the largest store and generate the bit pattern for it. 7057 EVT LargestVT = MemOps[0]; 7058 for (unsigned i = 1; i < NumMemOps; i++) 7059 if (MemOps[i].bitsGT(LargestVT)) 7060 LargestVT = MemOps[i]; 7061 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7062 7063 // Prepare AAInfo for loads/stores after lowering this memset. 7064 AAMDNodes NewAAInfo = AAInfo; 7065 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7066 7067 for (unsigned i = 0; i < NumMemOps; i++) { 7068 EVT VT = MemOps[i]; 7069 unsigned VTSize = VT.getSizeInBits() / 8; 7070 if (VTSize > Size) { 7071 // Issuing an unaligned load / store pair that overlaps with the previous 7072 // pair. Adjust the offset accordingly. 7073 assert(i == NumMemOps-1 && i != 0); 7074 DstOff -= VTSize - Size; 7075 } 7076 7077 // If this store is smaller than the largest store see whether we can get 7078 // the smaller value for free with a truncate. 7079 SDValue Value = MemSetValue; 7080 if (VT.bitsLT(LargestVT)) { 7081 if (!LargestVT.isVector() && !VT.isVector() && 7082 TLI.isTruncateFree(LargestVT, VT)) 7083 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7084 else 7085 Value = getMemsetValue(Src, VT, DAG, dl); 7086 } 7087 assert(Value.getValueType() == VT && "Value with wrong type."); 7088 SDValue Store = DAG.getStore( 7089 Chain, dl, Value, 7090 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7091 DstPtrInfo.getWithOffset(DstOff), Alignment, 7092 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7093 NewAAInfo); 7094 OutChains.push_back(Store); 7095 DstOff += VT.getSizeInBits() / 8; 7096 Size -= VTSize; 7097 } 7098 7099 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7100 } 7101 7102 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7103 unsigned AS) { 7104 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7105 // pointer operands can be losslessly bitcasted to pointers of address space 0 7106 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7107 report_fatal_error("cannot lower memory intrinsic in address space " + 7108 Twine(AS)); 7109 } 7110 } 7111 7112 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7113 SDValue Src, SDValue Size, Align Alignment, 7114 bool isVol, bool AlwaysInline, bool isTailCall, 7115 MachinePointerInfo DstPtrInfo, 7116 MachinePointerInfo SrcPtrInfo, 7117 const AAMDNodes &AAInfo) { 7118 // Check to see if we should lower the memcpy to loads and stores first. 7119 // For cases within the target-specified limits, this is the best choice. 7120 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7121 if (ConstantSize) { 7122 // Memcpy with size zero? Just return the original chain. 7123 if (ConstantSize->isZero()) 7124 return Chain; 7125 7126 SDValue Result = getMemcpyLoadsAndStores( 7127 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7128 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7129 if (Result.getNode()) 7130 return Result; 7131 } 7132 7133 // Then check to see if we should lower the memcpy with target-specific 7134 // code. If the target chooses to do this, this is the next best. 7135 if (TSI) { 7136 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7137 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7138 DstPtrInfo, SrcPtrInfo); 7139 if (Result.getNode()) 7140 return Result; 7141 } 7142 7143 // If we really need inline code and the target declined to provide it, 7144 // use a (potentially long) sequence of loads and stores. 7145 if (AlwaysInline) { 7146 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7147 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7148 ConstantSize->getZExtValue(), Alignment, 7149 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7150 } 7151 7152 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7153 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7154 7155 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7156 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7157 // respect volatile, so they may do things like read or write memory 7158 // beyond the given memory regions. But fixing this isn't easy, and most 7159 // people don't care. 7160 7161 // Emit a library call. 7162 TargetLowering::ArgListTy Args; 7163 TargetLowering::ArgListEntry Entry; 7164 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7165 Entry.Node = Dst; Args.push_back(Entry); 7166 Entry.Node = Src; Args.push_back(Entry); 7167 7168 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7169 Entry.Node = Size; Args.push_back(Entry); 7170 // FIXME: pass in SDLoc 7171 TargetLowering::CallLoweringInfo CLI(*this); 7172 CLI.setDebugLoc(dl) 7173 .setChain(Chain) 7174 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7175 Dst.getValueType().getTypeForEVT(*getContext()), 7176 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7177 TLI->getPointerTy(getDataLayout())), 7178 std::move(Args)) 7179 .setDiscardResult() 7180 .setTailCall(isTailCall); 7181 7182 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7183 return CallResult.second; 7184 } 7185 7186 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7187 SDValue Dst, SDValue Src, SDValue Size, 7188 Type *SizeTy, unsigned ElemSz, 7189 bool isTailCall, 7190 MachinePointerInfo DstPtrInfo, 7191 MachinePointerInfo SrcPtrInfo) { 7192 // Emit a library call. 7193 TargetLowering::ArgListTy Args; 7194 TargetLowering::ArgListEntry Entry; 7195 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7196 Entry.Node = Dst; 7197 Args.push_back(Entry); 7198 7199 Entry.Node = Src; 7200 Args.push_back(Entry); 7201 7202 Entry.Ty = SizeTy; 7203 Entry.Node = Size; 7204 Args.push_back(Entry); 7205 7206 RTLIB::Libcall LibraryCall = 7207 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7208 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7209 report_fatal_error("Unsupported element size"); 7210 7211 TargetLowering::CallLoweringInfo CLI(*this); 7212 CLI.setDebugLoc(dl) 7213 .setChain(Chain) 7214 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7215 Type::getVoidTy(*getContext()), 7216 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7217 TLI->getPointerTy(getDataLayout())), 7218 std::move(Args)) 7219 .setDiscardResult() 7220 .setTailCall(isTailCall); 7221 7222 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7223 return CallResult.second; 7224 } 7225 7226 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7227 SDValue Src, SDValue Size, Align Alignment, 7228 bool isVol, bool isTailCall, 7229 MachinePointerInfo DstPtrInfo, 7230 MachinePointerInfo SrcPtrInfo, 7231 const AAMDNodes &AAInfo) { 7232 // Check to see if we should lower the memmove to loads and stores first. 7233 // For cases within the target-specified limits, this is the best choice. 7234 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7235 if (ConstantSize) { 7236 // Memmove with size zero? Just return the original chain. 7237 if (ConstantSize->isZero()) 7238 return Chain; 7239 7240 SDValue Result = getMemmoveLoadsAndStores( 7241 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7242 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7243 if (Result.getNode()) 7244 return Result; 7245 } 7246 7247 // Then check to see if we should lower the memmove with target-specific 7248 // code. If the target chooses to do this, this is the next best. 7249 if (TSI) { 7250 SDValue Result = 7251 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7252 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7253 if (Result.getNode()) 7254 return Result; 7255 } 7256 7257 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7258 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7259 7260 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7261 // not be safe. See memcpy above for more details. 7262 7263 // Emit a library call. 7264 TargetLowering::ArgListTy Args; 7265 TargetLowering::ArgListEntry Entry; 7266 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7267 Entry.Node = Dst; Args.push_back(Entry); 7268 Entry.Node = Src; Args.push_back(Entry); 7269 7270 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7271 Entry.Node = Size; Args.push_back(Entry); 7272 // FIXME: pass in SDLoc 7273 TargetLowering::CallLoweringInfo CLI(*this); 7274 CLI.setDebugLoc(dl) 7275 .setChain(Chain) 7276 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7277 Dst.getValueType().getTypeForEVT(*getContext()), 7278 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7279 TLI->getPointerTy(getDataLayout())), 7280 std::move(Args)) 7281 .setDiscardResult() 7282 .setTailCall(isTailCall); 7283 7284 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7285 return CallResult.second; 7286 } 7287 7288 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7289 SDValue Dst, SDValue Src, SDValue Size, 7290 Type *SizeTy, unsigned ElemSz, 7291 bool isTailCall, 7292 MachinePointerInfo DstPtrInfo, 7293 MachinePointerInfo SrcPtrInfo) { 7294 // Emit a library call. 7295 TargetLowering::ArgListTy Args; 7296 TargetLowering::ArgListEntry Entry; 7297 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7298 Entry.Node = Dst; 7299 Args.push_back(Entry); 7300 7301 Entry.Node = Src; 7302 Args.push_back(Entry); 7303 7304 Entry.Ty = SizeTy; 7305 Entry.Node = Size; 7306 Args.push_back(Entry); 7307 7308 RTLIB::Libcall LibraryCall = 7309 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7310 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7311 report_fatal_error("Unsupported element size"); 7312 7313 TargetLowering::CallLoweringInfo CLI(*this); 7314 CLI.setDebugLoc(dl) 7315 .setChain(Chain) 7316 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7317 Type::getVoidTy(*getContext()), 7318 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7319 TLI->getPointerTy(getDataLayout())), 7320 std::move(Args)) 7321 .setDiscardResult() 7322 .setTailCall(isTailCall); 7323 7324 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7325 return CallResult.second; 7326 } 7327 7328 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7329 SDValue Src, SDValue Size, Align Alignment, 7330 bool isVol, bool AlwaysInline, bool isTailCall, 7331 MachinePointerInfo DstPtrInfo, 7332 const AAMDNodes &AAInfo) { 7333 // Check to see if we should lower the memset to stores first. 7334 // For cases within the target-specified limits, this is the best choice. 7335 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7336 if (ConstantSize) { 7337 // Memset with size zero? Just return the original chain. 7338 if (ConstantSize->isZero()) 7339 return Chain; 7340 7341 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7342 ConstantSize->getZExtValue(), Alignment, 7343 isVol, false, DstPtrInfo, AAInfo); 7344 7345 if (Result.getNode()) 7346 return Result; 7347 } 7348 7349 // Then check to see if we should lower the memset with target-specific 7350 // code. If the target chooses to do this, this is the next best. 7351 if (TSI) { 7352 SDValue Result = TSI->EmitTargetCodeForMemset( 7353 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7354 if (Result.getNode()) 7355 return Result; 7356 } 7357 7358 // If we really need inline code and the target declined to provide it, 7359 // use a (potentially long) sequence of loads and stores. 7360 if (AlwaysInline) { 7361 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7362 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7363 ConstantSize->getZExtValue(), Alignment, 7364 isVol, true, DstPtrInfo, AAInfo); 7365 assert(Result && 7366 "getMemsetStores must return a valid sequence when AlwaysInline"); 7367 return Result; 7368 } 7369 7370 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7371 7372 // Emit a library call. 7373 auto &Ctx = *getContext(); 7374 const auto& DL = getDataLayout(); 7375 7376 TargetLowering::CallLoweringInfo CLI(*this); 7377 // FIXME: pass in SDLoc 7378 CLI.setDebugLoc(dl).setChain(Chain); 7379 7380 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7381 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7382 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7383 7384 // Helper function to create an Entry from Node and Type. 7385 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7386 TargetLowering::ArgListEntry Entry; 7387 Entry.Node = Node; 7388 Entry.Ty = Ty; 7389 return Entry; 7390 }; 7391 7392 // If zeroing out and bzero is present, use it. 7393 if (SrcIsZero && BzeroName) { 7394 TargetLowering::ArgListTy Args; 7395 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7396 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7397 CLI.setLibCallee( 7398 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7399 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7400 } else { 7401 TargetLowering::ArgListTy Args; 7402 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7403 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7404 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7405 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7406 Dst.getValueType().getTypeForEVT(Ctx), 7407 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7408 TLI->getPointerTy(DL)), 7409 std::move(Args)); 7410 } 7411 7412 CLI.setDiscardResult().setTailCall(isTailCall); 7413 7414 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7415 return CallResult.second; 7416 } 7417 7418 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7419 SDValue Dst, SDValue Value, SDValue Size, 7420 Type *SizeTy, unsigned ElemSz, 7421 bool isTailCall, 7422 MachinePointerInfo DstPtrInfo) { 7423 // Emit a library call. 7424 TargetLowering::ArgListTy Args; 7425 TargetLowering::ArgListEntry Entry; 7426 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7427 Entry.Node = Dst; 7428 Args.push_back(Entry); 7429 7430 Entry.Ty = Type::getInt8Ty(*getContext()); 7431 Entry.Node = Value; 7432 Args.push_back(Entry); 7433 7434 Entry.Ty = SizeTy; 7435 Entry.Node = Size; 7436 Args.push_back(Entry); 7437 7438 RTLIB::Libcall LibraryCall = 7439 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7440 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7441 report_fatal_error("Unsupported element size"); 7442 7443 TargetLowering::CallLoweringInfo CLI(*this); 7444 CLI.setDebugLoc(dl) 7445 .setChain(Chain) 7446 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7447 Type::getVoidTy(*getContext()), 7448 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7449 TLI->getPointerTy(getDataLayout())), 7450 std::move(Args)) 7451 .setDiscardResult() 7452 .setTailCall(isTailCall); 7453 7454 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7455 return CallResult.second; 7456 } 7457 7458 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7459 SDVTList VTList, ArrayRef<SDValue> Ops, 7460 MachineMemOperand *MMO) { 7461 FoldingSetNodeID ID; 7462 ID.AddInteger(MemVT.getRawBits()); 7463 AddNodeIDNode(ID, Opcode, VTList, Ops); 7464 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7465 ID.AddInteger(MMO->getFlags()); 7466 void* IP = nullptr; 7467 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7468 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7469 return SDValue(E, 0); 7470 } 7471 7472 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7473 VTList, MemVT, MMO); 7474 createOperands(N, Ops); 7475 7476 CSEMap.InsertNode(N, IP); 7477 InsertNode(N); 7478 return SDValue(N, 0); 7479 } 7480 7481 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7482 EVT MemVT, SDVTList VTs, SDValue Chain, 7483 SDValue Ptr, SDValue Cmp, SDValue Swp, 7484 MachineMemOperand *MMO) { 7485 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7486 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7487 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7488 7489 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7490 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7491 } 7492 7493 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7494 SDValue Chain, SDValue Ptr, SDValue Val, 7495 MachineMemOperand *MMO) { 7496 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7497 Opcode == ISD::ATOMIC_LOAD_SUB || 7498 Opcode == ISD::ATOMIC_LOAD_AND || 7499 Opcode == ISD::ATOMIC_LOAD_CLR || 7500 Opcode == ISD::ATOMIC_LOAD_OR || 7501 Opcode == ISD::ATOMIC_LOAD_XOR || 7502 Opcode == ISD::ATOMIC_LOAD_NAND || 7503 Opcode == ISD::ATOMIC_LOAD_MIN || 7504 Opcode == ISD::ATOMIC_LOAD_MAX || 7505 Opcode == ISD::ATOMIC_LOAD_UMIN || 7506 Opcode == ISD::ATOMIC_LOAD_UMAX || 7507 Opcode == ISD::ATOMIC_LOAD_FADD || 7508 Opcode == ISD::ATOMIC_LOAD_FSUB || 7509 Opcode == ISD::ATOMIC_SWAP || 7510 Opcode == ISD::ATOMIC_STORE) && 7511 "Invalid Atomic Op"); 7512 7513 EVT VT = Val.getValueType(); 7514 7515 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7516 getVTList(VT, MVT::Other); 7517 SDValue Ops[] = {Chain, Ptr, Val}; 7518 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7519 } 7520 7521 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7522 EVT VT, SDValue Chain, SDValue Ptr, 7523 MachineMemOperand *MMO) { 7524 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7525 7526 SDVTList VTs = getVTList(VT, MVT::Other); 7527 SDValue Ops[] = {Chain, Ptr}; 7528 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7529 } 7530 7531 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7532 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7533 if (Ops.size() == 1) 7534 return Ops[0]; 7535 7536 SmallVector<EVT, 4> VTs; 7537 VTs.reserve(Ops.size()); 7538 for (const SDValue &Op : Ops) 7539 VTs.push_back(Op.getValueType()); 7540 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7541 } 7542 7543 SDValue SelectionDAG::getMemIntrinsicNode( 7544 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7545 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7546 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7547 if (!Size && MemVT.isScalableVector()) 7548 Size = MemoryLocation::UnknownSize; 7549 else if (!Size) 7550 Size = MemVT.getStoreSize(); 7551 7552 MachineFunction &MF = getMachineFunction(); 7553 MachineMemOperand *MMO = 7554 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7555 7556 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7557 } 7558 7559 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7560 SDVTList VTList, 7561 ArrayRef<SDValue> Ops, EVT MemVT, 7562 MachineMemOperand *MMO) { 7563 assert((Opcode == ISD::INTRINSIC_VOID || 7564 Opcode == ISD::INTRINSIC_W_CHAIN || 7565 Opcode == ISD::PREFETCH || 7566 ((int)Opcode <= std::numeric_limits<int>::max() && 7567 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7568 "Opcode is not a memory-accessing opcode!"); 7569 7570 // Memoize the node unless it returns a flag. 7571 MemIntrinsicSDNode *N; 7572 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7573 FoldingSetNodeID ID; 7574 AddNodeIDNode(ID, Opcode, VTList, Ops); 7575 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7576 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7577 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7578 ID.AddInteger(MMO->getFlags()); 7579 void *IP = nullptr; 7580 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7581 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7582 return SDValue(E, 0); 7583 } 7584 7585 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7586 VTList, MemVT, MMO); 7587 createOperands(N, Ops); 7588 7589 CSEMap.InsertNode(N, IP); 7590 } else { 7591 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7592 VTList, MemVT, MMO); 7593 createOperands(N, Ops); 7594 } 7595 InsertNode(N); 7596 SDValue V(N, 0); 7597 NewSDValueDbgMsg(V, "Creating new node: ", this); 7598 return V; 7599 } 7600 7601 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7602 SDValue Chain, int FrameIndex, 7603 int64_t Size, int64_t Offset) { 7604 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7605 const auto VTs = getVTList(MVT::Other); 7606 SDValue Ops[2] = { 7607 Chain, 7608 getFrameIndex(FrameIndex, 7609 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7610 true)}; 7611 7612 FoldingSetNodeID ID; 7613 AddNodeIDNode(ID, Opcode, VTs, Ops); 7614 ID.AddInteger(FrameIndex); 7615 ID.AddInteger(Size); 7616 ID.AddInteger(Offset); 7617 void *IP = nullptr; 7618 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7619 return SDValue(E, 0); 7620 7621 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7622 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7623 createOperands(N, Ops); 7624 CSEMap.InsertNode(N, IP); 7625 InsertNode(N); 7626 SDValue V(N, 0); 7627 NewSDValueDbgMsg(V, "Creating new node: ", this); 7628 return V; 7629 } 7630 7631 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7632 uint64_t Guid, uint64_t Index, 7633 uint32_t Attr) { 7634 const unsigned Opcode = ISD::PSEUDO_PROBE; 7635 const auto VTs = getVTList(MVT::Other); 7636 SDValue Ops[] = {Chain}; 7637 FoldingSetNodeID ID; 7638 AddNodeIDNode(ID, Opcode, VTs, Ops); 7639 ID.AddInteger(Guid); 7640 ID.AddInteger(Index); 7641 void *IP = nullptr; 7642 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7643 return SDValue(E, 0); 7644 7645 auto *N = newSDNode<PseudoProbeSDNode>( 7646 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7647 createOperands(N, Ops); 7648 CSEMap.InsertNode(N, IP); 7649 InsertNode(N); 7650 SDValue V(N, 0); 7651 NewSDValueDbgMsg(V, "Creating new node: ", this); 7652 return V; 7653 } 7654 7655 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7656 /// MachinePointerInfo record from it. This is particularly useful because the 7657 /// code generator has many cases where it doesn't bother passing in a 7658 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7659 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7660 SelectionDAG &DAG, SDValue Ptr, 7661 int64_t Offset = 0) { 7662 // If this is FI+Offset, we can model it. 7663 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7664 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7665 FI->getIndex(), Offset); 7666 7667 // If this is (FI+Offset1)+Offset2, we can model it. 7668 if (Ptr.getOpcode() != ISD::ADD || 7669 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7670 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7671 return Info; 7672 7673 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7674 return MachinePointerInfo::getFixedStack( 7675 DAG.getMachineFunction(), FI, 7676 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7677 } 7678 7679 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7680 /// MachinePointerInfo record from it. This is particularly useful because the 7681 /// code generator has many cases where it doesn't bother passing in a 7682 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7683 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7684 SelectionDAG &DAG, SDValue Ptr, 7685 SDValue OffsetOp) { 7686 // If the 'Offset' value isn't a constant, we can't handle this. 7687 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7688 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7689 if (OffsetOp.isUndef()) 7690 return InferPointerInfo(Info, DAG, Ptr); 7691 return Info; 7692 } 7693 7694 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7695 EVT VT, const SDLoc &dl, SDValue Chain, 7696 SDValue Ptr, SDValue Offset, 7697 MachinePointerInfo PtrInfo, EVT MemVT, 7698 Align Alignment, 7699 MachineMemOperand::Flags MMOFlags, 7700 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7701 assert(Chain.getValueType() == MVT::Other && 7702 "Invalid chain type"); 7703 7704 MMOFlags |= MachineMemOperand::MOLoad; 7705 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7706 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7707 // clients. 7708 if (PtrInfo.V.isNull()) 7709 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7710 7711 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7712 MachineFunction &MF = getMachineFunction(); 7713 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7714 Alignment, AAInfo, Ranges); 7715 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7716 } 7717 7718 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7719 EVT VT, const SDLoc &dl, SDValue Chain, 7720 SDValue Ptr, SDValue Offset, EVT MemVT, 7721 MachineMemOperand *MMO) { 7722 if (VT == MemVT) { 7723 ExtType = ISD::NON_EXTLOAD; 7724 } else if (ExtType == ISD::NON_EXTLOAD) { 7725 assert(VT == MemVT && "Non-extending load from different memory type!"); 7726 } else { 7727 // Extending load. 7728 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7729 "Should only be an extending load, not truncating!"); 7730 assert(VT.isInteger() == MemVT.isInteger() && 7731 "Cannot convert from FP to Int or Int -> FP!"); 7732 assert(VT.isVector() == MemVT.isVector() && 7733 "Cannot use an ext load to convert to or from a vector!"); 7734 assert((!VT.isVector() || 7735 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7736 "Cannot use an ext load to change the number of vector elements!"); 7737 } 7738 7739 bool Indexed = AM != ISD::UNINDEXED; 7740 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7741 7742 SDVTList VTs = Indexed ? 7743 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7744 SDValue Ops[] = { Chain, Ptr, Offset }; 7745 FoldingSetNodeID ID; 7746 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7747 ID.AddInteger(MemVT.getRawBits()); 7748 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7749 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7750 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7751 ID.AddInteger(MMO->getFlags()); 7752 void *IP = nullptr; 7753 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7754 cast<LoadSDNode>(E)->refineAlignment(MMO); 7755 return SDValue(E, 0); 7756 } 7757 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7758 ExtType, MemVT, MMO); 7759 createOperands(N, Ops); 7760 7761 CSEMap.InsertNode(N, IP); 7762 InsertNode(N); 7763 SDValue V(N, 0); 7764 NewSDValueDbgMsg(V, "Creating new node: ", this); 7765 return V; 7766 } 7767 7768 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7769 SDValue Ptr, MachinePointerInfo PtrInfo, 7770 MaybeAlign Alignment, 7771 MachineMemOperand::Flags MMOFlags, 7772 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7773 SDValue Undef = getUNDEF(Ptr.getValueType()); 7774 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7775 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7776 } 7777 7778 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7779 SDValue Ptr, MachineMemOperand *MMO) { 7780 SDValue Undef = getUNDEF(Ptr.getValueType()); 7781 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7782 VT, MMO); 7783 } 7784 7785 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7786 EVT VT, SDValue Chain, SDValue Ptr, 7787 MachinePointerInfo PtrInfo, EVT MemVT, 7788 MaybeAlign Alignment, 7789 MachineMemOperand::Flags MMOFlags, 7790 const AAMDNodes &AAInfo) { 7791 SDValue Undef = getUNDEF(Ptr.getValueType()); 7792 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7793 MemVT, Alignment, MMOFlags, AAInfo); 7794 } 7795 7796 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7797 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7798 MachineMemOperand *MMO) { 7799 SDValue Undef = getUNDEF(Ptr.getValueType()); 7800 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7801 MemVT, MMO); 7802 } 7803 7804 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7805 SDValue Base, SDValue Offset, 7806 ISD::MemIndexedMode AM) { 7807 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7808 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7809 // Don't propagate the invariant or dereferenceable flags. 7810 auto MMOFlags = 7811 LD->getMemOperand()->getFlags() & 7812 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7813 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7814 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7815 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7816 } 7817 7818 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7819 SDValue Ptr, MachinePointerInfo PtrInfo, 7820 Align Alignment, 7821 MachineMemOperand::Flags MMOFlags, 7822 const AAMDNodes &AAInfo) { 7823 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7824 7825 MMOFlags |= MachineMemOperand::MOStore; 7826 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7827 7828 if (PtrInfo.V.isNull()) 7829 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7830 7831 MachineFunction &MF = getMachineFunction(); 7832 uint64_t Size = 7833 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7834 MachineMemOperand *MMO = 7835 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7836 return getStore(Chain, dl, Val, Ptr, MMO); 7837 } 7838 7839 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7840 SDValue Ptr, MachineMemOperand *MMO) { 7841 assert(Chain.getValueType() == MVT::Other && 7842 "Invalid chain type"); 7843 EVT VT = Val.getValueType(); 7844 SDVTList VTs = getVTList(MVT::Other); 7845 SDValue Undef = getUNDEF(Ptr.getValueType()); 7846 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7847 FoldingSetNodeID ID; 7848 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7849 ID.AddInteger(VT.getRawBits()); 7850 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7851 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7852 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7853 ID.AddInteger(MMO->getFlags()); 7854 void *IP = nullptr; 7855 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7856 cast<StoreSDNode>(E)->refineAlignment(MMO); 7857 return SDValue(E, 0); 7858 } 7859 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7860 ISD::UNINDEXED, false, VT, MMO); 7861 createOperands(N, Ops); 7862 7863 CSEMap.InsertNode(N, IP); 7864 InsertNode(N); 7865 SDValue V(N, 0); 7866 NewSDValueDbgMsg(V, "Creating new node: ", this); 7867 return V; 7868 } 7869 7870 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7871 SDValue Ptr, MachinePointerInfo PtrInfo, 7872 EVT SVT, Align Alignment, 7873 MachineMemOperand::Flags MMOFlags, 7874 const AAMDNodes &AAInfo) { 7875 assert(Chain.getValueType() == MVT::Other && 7876 "Invalid chain type"); 7877 7878 MMOFlags |= MachineMemOperand::MOStore; 7879 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7880 7881 if (PtrInfo.V.isNull()) 7882 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7883 7884 MachineFunction &MF = getMachineFunction(); 7885 MachineMemOperand *MMO = MF.getMachineMemOperand( 7886 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7887 Alignment, AAInfo); 7888 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7889 } 7890 7891 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7892 SDValue Ptr, EVT SVT, 7893 MachineMemOperand *MMO) { 7894 EVT VT = Val.getValueType(); 7895 7896 assert(Chain.getValueType() == MVT::Other && 7897 "Invalid chain type"); 7898 if (VT == SVT) 7899 return getStore(Chain, dl, Val, Ptr, MMO); 7900 7901 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7902 "Should only be a truncating store, not extending!"); 7903 assert(VT.isInteger() == SVT.isInteger() && 7904 "Can't do FP-INT conversion!"); 7905 assert(VT.isVector() == SVT.isVector() && 7906 "Cannot use trunc store to convert to or from a vector!"); 7907 assert((!VT.isVector() || 7908 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7909 "Cannot use trunc store to change the number of vector elements!"); 7910 7911 SDVTList VTs = getVTList(MVT::Other); 7912 SDValue Undef = getUNDEF(Ptr.getValueType()); 7913 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7914 FoldingSetNodeID ID; 7915 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7916 ID.AddInteger(SVT.getRawBits()); 7917 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7918 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7919 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7920 ID.AddInteger(MMO->getFlags()); 7921 void *IP = nullptr; 7922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7923 cast<StoreSDNode>(E)->refineAlignment(MMO); 7924 return SDValue(E, 0); 7925 } 7926 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7927 ISD::UNINDEXED, true, SVT, MMO); 7928 createOperands(N, Ops); 7929 7930 CSEMap.InsertNode(N, IP); 7931 InsertNode(N); 7932 SDValue V(N, 0); 7933 NewSDValueDbgMsg(V, "Creating new node: ", this); 7934 return V; 7935 } 7936 7937 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7938 SDValue Base, SDValue Offset, 7939 ISD::MemIndexedMode AM) { 7940 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7941 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7942 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7943 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7944 FoldingSetNodeID ID; 7945 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7946 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7947 ID.AddInteger(ST->getRawSubclassData()); 7948 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7949 ID.AddInteger(ST->getMemOperand()->getFlags()); 7950 void *IP = nullptr; 7951 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7952 return SDValue(E, 0); 7953 7954 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7955 ST->isTruncatingStore(), ST->getMemoryVT(), 7956 ST->getMemOperand()); 7957 createOperands(N, Ops); 7958 7959 CSEMap.InsertNode(N, IP); 7960 InsertNode(N); 7961 SDValue V(N, 0); 7962 NewSDValueDbgMsg(V, "Creating new node: ", this); 7963 return V; 7964 } 7965 7966 SDValue SelectionDAG::getLoadVP( 7967 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7968 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7969 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7970 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7971 const MDNode *Ranges, bool IsExpanding) { 7972 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7973 7974 MMOFlags |= MachineMemOperand::MOLoad; 7975 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7976 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7977 // clients. 7978 if (PtrInfo.V.isNull()) 7979 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7980 7981 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7982 MachineFunction &MF = getMachineFunction(); 7983 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7984 Alignment, AAInfo, Ranges); 7985 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7986 MMO, IsExpanding); 7987 } 7988 7989 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7990 ISD::LoadExtType ExtType, EVT VT, 7991 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7992 SDValue Offset, SDValue Mask, SDValue EVL, 7993 EVT MemVT, MachineMemOperand *MMO, 7994 bool IsExpanding) { 7995 bool Indexed = AM != ISD::UNINDEXED; 7996 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7997 7998 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7999 : getVTList(VT, MVT::Other); 8000 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8001 FoldingSetNodeID ID; 8002 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8003 ID.AddInteger(VT.getRawBits()); 8004 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8005 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8006 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8007 ID.AddInteger(MMO->getFlags()); 8008 void *IP = nullptr; 8009 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8010 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8011 return SDValue(E, 0); 8012 } 8013 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8014 ExtType, IsExpanding, MemVT, MMO); 8015 createOperands(N, Ops); 8016 8017 CSEMap.InsertNode(N, IP); 8018 InsertNode(N); 8019 SDValue V(N, 0); 8020 NewSDValueDbgMsg(V, "Creating new node: ", this); 8021 return V; 8022 } 8023 8024 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8025 SDValue Ptr, SDValue Mask, SDValue EVL, 8026 MachinePointerInfo PtrInfo, 8027 MaybeAlign Alignment, 8028 MachineMemOperand::Flags MMOFlags, 8029 const AAMDNodes &AAInfo, const MDNode *Ranges, 8030 bool IsExpanding) { 8031 SDValue Undef = getUNDEF(Ptr.getValueType()); 8032 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8033 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8034 IsExpanding); 8035 } 8036 8037 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8038 SDValue Ptr, SDValue Mask, SDValue EVL, 8039 MachineMemOperand *MMO, bool IsExpanding) { 8040 SDValue Undef = getUNDEF(Ptr.getValueType()); 8041 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8042 Mask, EVL, VT, MMO, IsExpanding); 8043 } 8044 8045 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8046 EVT VT, SDValue Chain, SDValue Ptr, 8047 SDValue Mask, SDValue EVL, 8048 MachinePointerInfo PtrInfo, EVT MemVT, 8049 MaybeAlign Alignment, 8050 MachineMemOperand::Flags MMOFlags, 8051 const AAMDNodes &AAInfo, bool IsExpanding) { 8052 SDValue Undef = getUNDEF(Ptr.getValueType()); 8053 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8054 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8055 IsExpanding); 8056 } 8057 8058 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8059 EVT VT, SDValue Chain, SDValue Ptr, 8060 SDValue Mask, SDValue EVL, EVT MemVT, 8061 MachineMemOperand *MMO, bool IsExpanding) { 8062 SDValue Undef = getUNDEF(Ptr.getValueType()); 8063 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8064 EVL, MemVT, MMO, IsExpanding); 8065 } 8066 8067 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8068 SDValue Base, SDValue Offset, 8069 ISD::MemIndexedMode AM) { 8070 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8071 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8072 // Don't propagate the invariant or dereferenceable flags. 8073 auto MMOFlags = 8074 LD->getMemOperand()->getFlags() & 8075 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8076 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8077 LD->getChain(), Base, Offset, LD->getMask(), 8078 LD->getVectorLength(), LD->getPointerInfo(), 8079 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8080 nullptr, LD->isExpandingLoad()); 8081 } 8082 8083 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8084 SDValue Ptr, SDValue Offset, SDValue Mask, 8085 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8086 ISD::MemIndexedMode AM, bool IsTruncating, 8087 bool IsCompressing) { 8088 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8089 bool Indexed = AM != ISD::UNINDEXED; 8090 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8091 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8092 : getVTList(MVT::Other); 8093 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8094 FoldingSetNodeID ID; 8095 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8096 ID.AddInteger(MemVT.getRawBits()); 8097 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8098 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8099 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8100 ID.AddInteger(MMO->getFlags()); 8101 void *IP = nullptr; 8102 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8103 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8104 return SDValue(E, 0); 8105 } 8106 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8107 IsTruncating, IsCompressing, MemVT, MMO); 8108 createOperands(N, Ops); 8109 8110 CSEMap.InsertNode(N, IP); 8111 InsertNode(N); 8112 SDValue V(N, 0); 8113 NewSDValueDbgMsg(V, "Creating new node: ", this); 8114 return V; 8115 } 8116 8117 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8118 SDValue Val, SDValue Ptr, SDValue Mask, 8119 SDValue EVL, MachinePointerInfo PtrInfo, 8120 EVT SVT, Align Alignment, 8121 MachineMemOperand::Flags MMOFlags, 8122 const AAMDNodes &AAInfo, 8123 bool IsCompressing) { 8124 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8125 8126 MMOFlags |= MachineMemOperand::MOStore; 8127 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8128 8129 if (PtrInfo.V.isNull()) 8130 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8131 8132 MachineFunction &MF = getMachineFunction(); 8133 MachineMemOperand *MMO = MF.getMachineMemOperand( 8134 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8135 Alignment, AAInfo); 8136 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8137 IsCompressing); 8138 } 8139 8140 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8141 SDValue Val, SDValue Ptr, SDValue Mask, 8142 SDValue EVL, EVT SVT, 8143 MachineMemOperand *MMO, 8144 bool IsCompressing) { 8145 EVT VT = Val.getValueType(); 8146 8147 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8148 if (VT == SVT) 8149 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8150 EVL, VT, MMO, ISD::UNINDEXED, 8151 /*IsTruncating*/ false, IsCompressing); 8152 8153 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8154 "Should only be a truncating store, not extending!"); 8155 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8156 assert(VT.isVector() == SVT.isVector() && 8157 "Cannot use trunc store to convert to or from a vector!"); 8158 assert((!VT.isVector() || 8159 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8160 "Cannot use trunc store to change the number of vector elements!"); 8161 8162 SDVTList VTs = getVTList(MVT::Other); 8163 SDValue Undef = getUNDEF(Ptr.getValueType()); 8164 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8165 FoldingSetNodeID ID; 8166 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8167 ID.AddInteger(SVT.getRawBits()); 8168 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8169 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8170 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8171 ID.AddInteger(MMO->getFlags()); 8172 void *IP = nullptr; 8173 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8174 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8175 return SDValue(E, 0); 8176 } 8177 auto *N = 8178 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8179 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8180 createOperands(N, Ops); 8181 8182 CSEMap.InsertNode(N, IP); 8183 InsertNode(N); 8184 SDValue V(N, 0); 8185 NewSDValueDbgMsg(V, "Creating new node: ", this); 8186 return V; 8187 } 8188 8189 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8190 SDValue Base, SDValue Offset, 8191 ISD::MemIndexedMode AM) { 8192 auto *ST = cast<VPStoreSDNode>(OrigStore); 8193 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8194 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8195 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8196 Offset, ST->getMask(), ST->getVectorLength()}; 8197 FoldingSetNodeID ID; 8198 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8199 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8200 ID.AddInteger(ST->getRawSubclassData()); 8201 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8202 ID.AddInteger(ST->getMemOperand()->getFlags()); 8203 void *IP = nullptr; 8204 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8205 return SDValue(E, 0); 8206 8207 auto *N = newSDNode<VPStoreSDNode>( 8208 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8209 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8210 createOperands(N, Ops); 8211 8212 CSEMap.InsertNode(N, IP); 8213 InsertNode(N); 8214 SDValue V(N, 0); 8215 NewSDValueDbgMsg(V, "Creating new node: ", this); 8216 return V; 8217 } 8218 8219 SDValue SelectionDAG::getStridedLoadVP( 8220 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8221 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8222 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8223 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8224 const MDNode *Ranges, bool IsExpanding) { 8225 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8226 8227 MMOFlags |= MachineMemOperand::MOLoad; 8228 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8229 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8230 // clients. 8231 if (PtrInfo.V.isNull()) 8232 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8233 8234 uint64_t Size = MemoryLocation::UnknownSize; 8235 MachineFunction &MF = getMachineFunction(); 8236 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8237 Alignment, AAInfo, Ranges); 8238 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8239 EVL, MemVT, MMO, IsExpanding); 8240 } 8241 8242 SDValue SelectionDAG::getStridedLoadVP( 8243 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8244 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8245 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8246 bool Indexed = AM != ISD::UNINDEXED; 8247 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8248 8249 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8250 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8251 : getVTList(VT, MVT::Other); 8252 FoldingSetNodeID ID; 8253 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8254 ID.AddInteger(VT.getRawBits()); 8255 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8256 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8257 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8258 8259 void *IP = nullptr; 8260 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8261 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8262 return SDValue(E, 0); 8263 } 8264 8265 auto *N = 8266 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8267 ExtType, IsExpanding, MemVT, MMO); 8268 createOperands(N, Ops); 8269 CSEMap.InsertNode(N, IP); 8270 InsertNode(N); 8271 SDValue V(N, 0); 8272 NewSDValueDbgMsg(V, "Creating new node: ", this); 8273 return V; 8274 } 8275 8276 SDValue SelectionDAG::getStridedLoadVP( 8277 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8278 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8279 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8280 const MDNode *Ranges, bool IsExpanding) { 8281 SDValue Undef = getUNDEF(Ptr.getValueType()); 8282 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8283 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8284 MMOFlags, AAInfo, Ranges, IsExpanding); 8285 } 8286 8287 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8288 SDValue Ptr, SDValue Stride, 8289 SDValue Mask, SDValue EVL, 8290 MachineMemOperand *MMO, 8291 bool IsExpanding) { 8292 SDValue Undef = getUNDEF(Ptr.getValueType()); 8293 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8294 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8295 } 8296 8297 SDValue SelectionDAG::getExtStridedLoadVP( 8298 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8299 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8300 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8301 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8302 bool IsExpanding) { 8303 SDValue Undef = getUNDEF(Ptr.getValueType()); 8304 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8305 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8306 MMOFlags, AAInfo, nullptr, IsExpanding); 8307 } 8308 8309 SDValue SelectionDAG::getExtStridedLoadVP( 8310 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8311 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8312 MachineMemOperand *MMO, bool IsExpanding) { 8313 SDValue Undef = getUNDEF(Ptr.getValueType()); 8314 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8315 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8316 } 8317 8318 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8319 SDValue Base, SDValue Offset, 8320 ISD::MemIndexedMode AM) { 8321 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8322 assert(SLD->getOffset().isUndef() && 8323 "Strided load is already a indexed load!"); 8324 // Don't propagate the invariant or dereferenceable flags. 8325 auto MMOFlags = 8326 SLD->getMemOperand()->getFlags() & 8327 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8328 return getStridedLoadVP( 8329 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8330 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8331 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8332 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8333 } 8334 8335 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8336 SDValue Val, SDValue Ptr, 8337 SDValue Offset, SDValue Stride, 8338 SDValue Mask, SDValue EVL, EVT MemVT, 8339 MachineMemOperand *MMO, 8340 ISD::MemIndexedMode AM, 8341 bool IsTruncating, bool IsCompressing) { 8342 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8343 bool Indexed = AM != ISD::UNINDEXED; 8344 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8345 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8346 : getVTList(MVT::Other); 8347 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8348 FoldingSetNodeID ID; 8349 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8350 ID.AddInteger(MemVT.getRawBits()); 8351 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8352 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8353 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8354 void *IP = nullptr; 8355 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8356 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8357 return SDValue(E, 0); 8358 } 8359 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8360 VTs, AM, IsTruncating, 8361 IsCompressing, MemVT, MMO); 8362 createOperands(N, Ops); 8363 8364 CSEMap.InsertNode(N, IP); 8365 InsertNode(N); 8366 SDValue V(N, 0); 8367 NewSDValueDbgMsg(V, "Creating new node: ", this); 8368 return V; 8369 } 8370 8371 SDValue SelectionDAG::getTruncStridedStoreVP( 8372 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8373 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8374 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8375 bool IsCompressing) { 8376 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8377 8378 MMOFlags |= MachineMemOperand::MOStore; 8379 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8380 8381 if (PtrInfo.V.isNull()) 8382 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8383 8384 MachineFunction &MF = getMachineFunction(); 8385 MachineMemOperand *MMO = MF.getMachineMemOperand( 8386 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8387 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8388 MMO, IsCompressing); 8389 } 8390 8391 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8392 SDValue Val, SDValue Ptr, 8393 SDValue Stride, SDValue Mask, 8394 SDValue EVL, EVT SVT, 8395 MachineMemOperand *MMO, 8396 bool IsCompressing) { 8397 EVT VT = Val.getValueType(); 8398 8399 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8400 if (VT == SVT) 8401 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8402 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8403 /*IsTruncating*/ false, IsCompressing); 8404 8405 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8406 "Should only be a truncating store, not extending!"); 8407 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8408 assert(VT.isVector() == SVT.isVector() && 8409 "Cannot use trunc store to convert to or from a vector!"); 8410 assert((!VT.isVector() || 8411 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8412 "Cannot use trunc store to change the number of vector elements!"); 8413 8414 SDVTList VTs = getVTList(MVT::Other); 8415 SDValue Undef = getUNDEF(Ptr.getValueType()); 8416 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8417 FoldingSetNodeID ID; 8418 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8419 ID.AddInteger(SVT.getRawBits()); 8420 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8421 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8422 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8423 void *IP = nullptr; 8424 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8425 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8426 return SDValue(E, 0); 8427 } 8428 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8429 VTs, ISD::UNINDEXED, true, 8430 IsCompressing, SVT, MMO); 8431 createOperands(N, Ops); 8432 8433 CSEMap.InsertNode(N, IP); 8434 InsertNode(N); 8435 SDValue V(N, 0); 8436 NewSDValueDbgMsg(V, "Creating new node: ", this); 8437 return V; 8438 } 8439 8440 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8441 const SDLoc &DL, SDValue Base, 8442 SDValue Offset, 8443 ISD::MemIndexedMode AM) { 8444 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8445 assert(SST->getOffset().isUndef() && 8446 "Strided store is already an indexed store!"); 8447 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8448 SDValue Ops[] = { 8449 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8450 SST->getMask(), SST->getVectorLength()}; 8451 FoldingSetNodeID ID; 8452 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8453 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8454 ID.AddInteger(SST->getRawSubclassData()); 8455 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8456 void *IP = nullptr; 8457 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8458 return SDValue(E, 0); 8459 8460 auto *N = newSDNode<VPStridedStoreSDNode>( 8461 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8462 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8463 createOperands(N, Ops); 8464 8465 CSEMap.InsertNode(N, IP); 8466 InsertNode(N); 8467 SDValue V(N, 0); 8468 NewSDValueDbgMsg(V, "Creating new node: ", this); 8469 return V; 8470 } 8471 8472 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8473 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8474 ISD::MemIndexType IndexType) { 8475 assert(Ops.size() == 6 && "Incompatible number of operands"); 8476 8477 FoldingSetNodeID ID; 8478 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8479 ID.AddInteger(VT.getRawBits()); 8480 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8481 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8482 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8483 ID.AddInteger(MMO->getFlags()); 8484 void *IP = nullptr; 8485 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8486 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8487 return SDValue(E, 0); 8488 } 8489 8490 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8491 VT, MMO, IndexType); 8492 createOperands(N, Ops); 8493 8494 assert(N->getMask().getValueType().getVectorElementCount() == 8495 N->getValueType(0).getVectorElementCount() && 8496 "Vector width mismatch between mask and data"); 8497 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8498 N->getValueType(0).getVectorElementCount().isScalable() && 8499 "Scalable flags of index and data do not match"); 8500 assert(ElementCount::isKnownGE( 8501 N->getIndex().getValueType().getVectorElementCount(), 8502 N->getValueType(0).getVectorElementCount()) && 8503 "Vector width mismatch between index and data"); 8504 assert(isa<ConstantSDNode>(N->getScale()) && 8505 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8506 "Scale should be a constant power of 2"); 8507 8508 CSEMap.InsertNode(N, IP); 8509 InsertNode(N); 8510 SDValue V(N, 0); 8511 NewSDValueDbgMsg(V, "Creating new node: ", this); 8512 return V; 8513 } 8514 8515 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8516 ArrayRef<SDValue> Ops, 8517 MachineMemOperand *MMO, 8518 ISD::MemIndexType IndexType) { 8519 assert(Ops.size() == 7 && "Incompatible number of operands"); 8520 8521 FoldingSetNodeID ID; 8522 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8523 ID.AddInteger(VT.getRawBits()); 8524 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8525 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8526 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8527 ID.AddInteger(MMO->getFlags()); 8528 void *IP = nullptr; 8529 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8530 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8531 return SDValue(E, 0); 8532 } 8533 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8534 VT, MMO, IndexType); 8535 createOperands(N, Ops); 8536 8537 assert(N->getMask().getValueType().getVectorElementCount() == 8538 N->getValue().getValueType().getVectorElementCount() && 8539 "Vector width mismatch between mask and data"); 8540 assert( 8541 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8542 N->getValue().getValueType().getVectorElementCount().isScalable() && 8543 "Scalable flags of index and data do not match"); 8544 assert(ElementCount::isKnownGE( 8545 N->getIndex().getValueType().getVectorElementCount(), 8546 N->getValue().getValueType().getVectorElementCount()) && 8547 "Vector width mismatch between index and data"); 8548 assert(isa<ConstantSDNode>(N->getScale()) && 8549 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8550 "Scale should be a constant power of 2"); 8551 8552 CSEMap.InsertNode(N, IP); 8553 InsertNode(N); 8554 SDValue V(N, 0); 8555 NewSDValueDbgMsg(V, "Creating new node: ", this); 8556 return V; 8557 } 8558 8559 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8560 SDValue Base, SDValue Offset, SDValue Mask, 8561 SDValue PassThru, EVT MemVT, 8562 MachineMemOperand *MMO, 8563 ISD::MemIndexedMode AM, 8564 ISD::LoadExtType ExtTy, bool isExpanding) { 8565 bool Indexed = AM != ISD::UNINDEXED; 8566 assert((Indexed || Offset.isUndef()) && 8567 "Unindexed masked load with an offset!"); 8568 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8569 : getVTList(VT, MVT::Other); 8570 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8571 FoldingSetNodeID ID; 8572 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8573 ID.AddInteger(MemVT.getRawBits()); 8574 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8575 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8576 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8577 ID.AddInteger(MMO->getFlags()); 8578 void *IP = nullptr; 8579 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8580 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8581 return SDValue(E, 0); 8582 } 8583 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8584 AM, ExtTy, isExpanding, MemVT, MMO); 8585 createOperands(N, Ops); 8586 8587 CSEMap.InsertNode(N, IP); 8588 InsertNode(N); 8589 SDValue V(N, 0); 8590 NewSDValueDbgMsg(V, "Creating new node: ", this); 8591 return V; 8592 } 8593 8594 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8595 SDValue Base, SDValue Offset, 8596 ISD::MemIndexedMode AM) { 8597 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8598 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8599 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8600 Offset, LD->getMask(), LD->getPassThru(), 8601 LD->getMemoryVT(), LD->getMemOperand(), AM, 8602 LD->getExtensionType(), LD->isExpandingLoad()); 8603 } 8604 8605 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8606 SDValue Val, SDValue Base, SDValue Offset, 8607 SDValue Mask, EVT MemVT, 8608 MachineMemOperand *MMO, 8609 ISD::MemIndexedMode AM, bool IsTruncating, 8610 bool IsCompressing) { 8611 assert(Chain.getValueType() == MVT::Other && 8612 "Invalid chain type"); 8613 bool Indexed = AM != ISD::UNINDEXED; 8614 assert((Indexed || Offset.isUndef()) && 8615 "Unindexed masked store with an offset!"); 8616 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8617 : getVTList(MVT::Other); 8618 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8619 FoldingSetNodeID ID; 8620 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8621 ID.AddInteger(MemVT.getRawBits()); 8622 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8623 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8624 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8625 ID.AddInteger(MMO->getFlags()); 8626 void *IP = nullptr; 8627 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8628 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8629 return SDValue(E, 0); 8630 } 8631 auto *N = 8632 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8633 IsTruncating, IsCompressing, MemVT, MMO); 8634 createOperands(N, Ops); 8635 8636 CSEMap.InsertNode(N, IP); 8637 InsertNode(N); 8638 SDValue V(N, 0); 8639 NewSDValueDbgMsg(V, "Creating new node: ", this); 8640 return V; 8641 } 8642 8643 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8644 SDValue Base, SDValue Offset, 8645 ISD::MemIndexedMode AM) { 8646 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8647 assert(ST->getOffset().isUndef() && 8648 "Masked store is already a indexed store!"); 8649 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8650 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8651 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8652 } 8653 8654 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8655 ArrayRef<SDValue> Ops, 8656 MachineMemOperand *MMO, 8657 ISD::MemIndexType IndexType, 8658 ISD::LoadExtType ExtTy) { 8659 assert(Ops.size() == 6 && "Incompatible number of operands"); 8660 8661 FoldingSetNodeID ID; 8662 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8663 ID.AddInteger(MemVT.getRawBits()); 8664 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8665 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8666 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8667 ID.AddInteger(MMO->getFlags()); 8668 void *IP = nullptr; 8669 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8670 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8671 return SDValue(E, 0); 8672 } 8673 8674 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8675 VTs, MemVT, MMO, IndexType, ExtTy); 8676 createOperands(N, Ops); 8677 8678 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8679 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8680 assert(N->getMask().getValueType().getVectorElementCount() == 8681 N->getValueType(0).getVectorElementCount() && 8682 "Vector width mismatch between mask and data"); 8683 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8684 N->getValueType(0).getVectorElementCount().isScalable() && 8685 "Scalable flags of index and data do not match"); 8686 assert(ElementCount::isKnownGE( 8687 N->getIndex().getValueType().getVectorElementCount(), 8688 N->getValueType(0).getVectorElementCount()) && 8689 "Vector width mismatch between index and data"); 8690 assert(isa<ConstantSDNode>(N->getScale()) && 8691 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8692 "Scale should be a constant power of 2"); 8693 8694 CSEMap.InsertNode(N, IP); 8695 InsertNode(N); 8696 SDValue V(N, 0); 8697 NewSDValueDbgMsg(V, "Creating new node: ", this); 8698 return V; 8699 } 8700 8701 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8702 ArrayRef<SDValue> Ops, 8703 MachineMemOperand *MMO, 8704 ISD::MemIndexType IndexType, 8705 bool IsTrunc) { 8706 assert(Ops.size() == 6 && "Incompatible number of operands"); 8707 8708 FoldingSetNodeID ID; 8709 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8710 ID.AddInteger(MemVT.getRawBits()); 8711 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8712 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8713 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8714 ID.AddInteger(MMO->getFlags()); 8715 void *IP = nullptr; 8716 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8717 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8718 return SDValue(E, 0); 8719 } 8720 8721 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8722 VTs, MemVT, MMO, IndexType, IsTrunc); 8723 createOperands(N, Ops); 8724 8725 assert(N->getMask().getValueType().getVectorElementCount() == 8726 N->getValue().getValueType().getVectorElementCount() && 8727 "Vector width mismatch between mask and data"); 8728 assert( 8729 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8730 N->getValue().getValueType().getVectorElementCount().isScalable() && 8731 "Scalable flags of index and data do not match"); 8732 assert(ElementCount::isKnownGE( 8733 N->getIndex().getValueType().getVectorElementCount(), 8734 N->getValue().getValueType().getVectorElementCount()) && 8735 "Vector width mismatch between index and data"); 8736 assert(isa<ConstantSDNode>(N->getScale()) && 8737 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8738 "Scale should be a constant power of 2"); 8739 8740 CSEMap.InsertNode(N, IP); 8741 InsertNode(N); 8742 SDValue V(N, 0); 8743 NewSDValueDbgMsg(V, "Creating new node: ", this); 8744 return V; 8745 } 8746 8747 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8748 // select undef, T, F --> T (if T is a constant), otherwise F 8749 // select, ?, undef, F --> F 8750 // select, ?, T, undef --> T 8751 if (Cond.isUndef()) 8752 return isConstantValueOfAnyType(T) ? T : F; 8753 if (T.isUndef()) 8754 return F; 8755 if (F.isUndef()) 8756 return T; 8757 8758 // select true, T, F --> T 8759 // select false, T, F --> F 8760 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8761 return CondC->isZero() ? F : T; 8762 8763 // TODO: This should simplify VSELECT with constant condition using something 8764 // like this (but check boolean contents to be complete?): 8765 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8766 // return T; 8767 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8768 // return F; 8769 8770 // select ?, T, T --> T 8771 if (T == F) 8772 return T; 8773 8774 return SDValue(); 8775 } 8776 8777 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8778 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8779 if (X.isUndef()) 8780 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8781 // shift X, undef --> undef (because it may shift by the bitwidth) 8782 if (Y.isUndef()) 8783 return getUNDEF(X.getValueType()); 8784 8785 // shift 0, Y --> 0 8786 // shift X, 0 --> X 8787 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8788 return X; 8789 8790 // shift X, C >= bitwidth(X) --> undef 8791 // All vector elements must be too big (or undef) to avoid partial undefs. 8792 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8793 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8794 }; 8795 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8796 return getUNDEF(X.getValueType()); 8797 8798 return SDValue(); 8799 } 8800 8801 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8802 SDNodeFlags Flags) { 8803 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8804 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8805 // operation is poison. That result can be relaxed to undef. 8806 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8807 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8808 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8809 (YC && YC->getValueAPF().isNaN()); 8810 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8811 (YC && YC->getValueAPF().isInfinity()); 8812 8813 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8814 return getUNDEF(X.getValueType()); 8815 8816 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8817 return getUNDEF(X.getValueType()); 8818 8819 if (!YC) 8820 return SDValue(); 8821 8822 // X + -0.0 --> X 8823 if (Opcode == ISD::FADD) 8824 if (YC->getValueAPF().isNegZero()) 8825 return X; 8826 8827 // X - +0.0 --> X 8828 if (Opcode == ISD::FSUB) 8829 if (YC->getValueAPF().isPosZero()) 8830 return X; 8831 8832 // X * 1.0 --> X 8833 // X / 1.0 --> X 8834 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8835 if (YC->getValueAPF().isExactlyValue(1.0)) 8836 return X; 8837 8838 // X * 0.0 --> 0.0 8839 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8840 if (YC->getValueAPF().isZero()) 8841 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8842 8843 return SDValue(); 8844 } 8845 8846 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8847 SDValue Ptr, SDValue SV, unsigned Align) { 8848 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8849 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8850 } 8851 8852 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8853 ArrayRef<SDUse> Ops) { 8854 switch (Ops.size()) { 8855 case 0: return getNode(Opcode, DL, VT); 8856 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8857 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8858 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8859 default: break; 8860 } 8861 8862 // Copy from an SDUse array into an SDValue array for use with 8863 // the regular getNode logic. 8864 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8865 return getNode(Opcode, DL, VT, NewOps); 8866 } 8867 8868 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8869 ArrayRef<SDValue> Ops) { 8870 SDNodeFlags Flags; 8871 if (Inserter) 8872 Flags = Inserter->getFlags(); 8873 return getNode(Opcode, DL, VT, Ops, Flags); 8874 } 8875 8876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8877 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8878 unsigned NumOps = Ops.size(); 8879 switch (NumOps) { 8880 case 0: return getNode(Opcode, DL, VT); 8881 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8882 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8883 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8884 default: break; 8885 } 8886 8887 #ifndef NDEBUG 8888 for (auto &Op : Ops) 8889 assert(Op.getOpcode() != ISD::DELETED_NODE && 8890 "Operand is DELETED_NODE!"); 8891 #endif 8892 8893 switch (Opcode) { 8894 default: break; 8895 case ISD::BUILD_VECTOR: 8896 // Attempt to simplify BUILD_VECTOR. 8897 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8898 return V; 8899 break; 8900 case ISD::CONCAT_VECTORS: 8901 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8902 return V; 8903 break; 8904 case ISD::SELECT_CC: 8905 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8906 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8907 "LHS and RHS of condition must have same type!"); 8908 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8909 "True and False arms of SelectCC must have same type!"); 8910 assert(Ops[2].getValueType() == VT && 8911 "select_cc node must be of same type as true and false value!"); 8912 break; 8913 case ISD::BR_CC: 8914 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8915 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8916 "LHS/RHS of comparison should match types!"); 8917 break; 8918 case ISD::VP_ADD: 8919 case ISD::VP_SUB: 8920 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8921 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8922 Opcode = ISD::VP_XOR; 8923 break; 8924 case ISD::VP_MUL: 8925 // If it is VP_MUL mask operation then turn it to VP_AND 8926 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8927 Opcode = ISD::VP_AND; 8928 break; 8929 case ISD::VP_REDUCE_MUL: 8930 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8931 if (VT == MVT::i1) 8932 Opcode = ISD::VP_REDUCE_AND; 8933 break; 8934 case ISD::VP_REDUCE_ADD: 8935 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8936 if (VT == MVT::i1) 8937 Opcode = ISD::VP_REDUCE_XOR; 8938 break; 8939 case ISD::VP_REDUCE_SMAX: 8940 case ISD::VP_REDUCE_UMIN: 8941 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8942 // VP_REDUCE_AND. 8943 if (VT == MVT::i1) 8944 Opcode = ISD::VP_REDUCE_AND; 8945 break; 8946 case ISD::VP_REDUCE_SMIN: 8947 case ISD::VP_REDUCE_UMAX: 8948 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8949 // VP_REDUCE_OR. 8950 if (VT == MVT::i1) 8951 Opcode = ISD::VP_REDUCE_OR; 8952 break; 8953 } 8954 8955 // Memoize nodes. 8956 SDNode *N; 8957 SDVTList VTs = getVTList(VT); 8958 8959 if (VT != MVT::Glue) { 8960 FoldingSetNodeID ID; 8961 AddNodeIDNode(ID, Opcode, VTs, Ops); 8962 void *IP = nullptr; 8963 8964 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8965 return SDValue(E, 0); 8966 8967 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8968 createOperands(N, Ops); 8969 8970 CSEMap.InsertNode(N, IP); 8971 } else { 8972 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8973 createOperands(N, Ops); 8974 } 8975 8976 N->setFlags(Flags); 8977 InsertNode(N); 8978 SDValue V(N, 0); 8979 NewSDValueDbgMsg(V, "Creating new node: ", this); 8980 return V; 8981 } 8982 8983 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8984 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8985 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8986 } 8987 8988 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8989 ArrayRef<SDValue> Ops) { 8990 SDNodeFlags Flags; 8991 if (Inserter) 8992 Flags = Inserter->getFlags(); 8993 return getNode(Opcode, DL, VTList, Ops, Flags); 8994 } 8995 8996 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8997 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8998 if (VTList.NumVTs == 1) 8999 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9000 9001 #ifndef NDEBUG 9002 for (auto &Op : Ops) 9003 assert(Op.getOpcode() != ISD::DELETED_NODE && 9004 "Operand is DELETED_NODE!"); 9005 #endif 9006 9007 switch (Opcode) { 9008 case ISD::STRICT_FP_EXTEND: 9009 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9010 "Invalid STRICT_FP_EXTEND!"); 9011 assert(VTList.VTs[0].isFloatingPoint() && 9012 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9013 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9014 "STRICT_FP_EXTEND result type should be vector iff the operand " 9015 "type is vector!"); 9016 assert((!VTList.VTs[0].isVector() || 9017 VTList.VTs[0].getVectorNumElements() == 9018 Ops[1].getValueType().getVectorNumElements()) && 9019 "Vector element count mismatch!"); 9020 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9021 "Invalid fpext node, dst <= src!"); 9022 break; 9023 case ISD::STRICT_FP_ROUND: 9024 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9025 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9026 "STRICT_FP_ROUND result type should be vector iff the operand " 9027 "type is vector!"); 9028 assert((!VTList.VTs[0].isVector() || 9029 VTList.VTs[0].getVectorNumElements() == 9030 Ops[1].getValueType().getVectorNumElements()) && 9031 "Vector element count mismatch!"); 9032 assert(VTList.VTs[0].isFloatingPoint() && 9033 Ops[1].getValueType().isFloatingPoint() && 9034 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9035 isa<ConstantSDNode>(Ops[2]) && 9036 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9037 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9038 "Invalid STRICT_FP_ROUND!"); 9039 break; 9040 #if 0 9041 // FIXME: figure out how to safely handle things like 9042 // int foo(int x) { return 1 << (x & 255); } 9043 // int bar() { return foo(256); } 9044 case ISD::SRA_PARTS: 9045 case ISD::SRL_PARTS: 9046 case ISD::SHL_PARTS: 9047 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9048 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9049 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9050 else if (N3.getOpcode() == ISD::AND) 9051 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9052 // If the and is only masking out bits that cannot effect the shift, 9053 // eliminate the and. 9054 unsigned NumBits = VT.getScalarSizeInBits()*2; 9055 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9056 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9057 } 9058 break; 9059 #endif 9060 } 9061 9062 // Memoize the node unless it returns a flag. 9063 SDNode *N; 9064 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9065 FoldingSetNodeID ID; 9066 AddNodeIDNode(ID, Opcode, VTList, Ops); 9067 void *IP = nullptr; 9068 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9069 return SDValue(E, 0); 9070 9071 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9072 createOperands(N, Ops); 9073 CSEMap.InsertNode(N, IP); 9074 } else { 9075 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9076 createOperands(N, Ops); 9077 } 9078 9079 N->setFlags(Flags); 9080 InsertNode(N); 9081 SDValue V(N, 0); 9082 NewSDValueDbgMsg(V, "Creating new node: ", this); 9083 return V; 9084 } 9085 9086 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9087 SDVTList VTList) { 9088 return getNode(Opcode, DL, VTList, None); 9089 } 9090 9091 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9092 SDValue N1) { 9093 SDValue Ops[] = { N1 }; 9094 return getNode(Opcode, DL, VTList, Ops); 9095 } 9096 9097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9098 SDValue N1, SDValue N2) { 9099 SDValue Ops[] = { N1, N2 }; 9100 return getNode(Opcode, DL, VTList, Ops); 9101 } 9102 9103 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9104 SDValue N1, SDValue N2, SDValue N3) { 9105 SDValue Ops[] = { N1, N2, N3 }; 9106 return getNode(Opcode, DL, VTList, Ops); 9107 } 9108 9109 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9110 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9111 SDValue Ops[] = { N1, N2, N3, N4 }; 9112 return getNode(Opcode, DL, VTList, Ops); 9113 } 9114 9115 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9116 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9117 SDValue N5) { 9118 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9119 return getNode(Opcode, DL, VTList, Ops); 9120 } 9121 9122 SDVTList SelectionDAG::getVTList(EVT VT) { 9123 return makeVTList(SDNode::getValueTypeList(VT), 1); 9124 } 9125 9126 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9127 FoldingSetNodeID ID; 9128 ID.AddInteger(2U); 9129 ID.AddInteger(VT1.getRawBits()); 9130 ID.AddInteger(VT2.getRawBits()); 9131 9132 void *IP = nullptr; 9133 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9134 if (!Result) { 9135 EVT *Array = Allocator.Allocate<EVT>(2); 9136 Array[0] = VT1; 9137 Array[1] = VT2; 9138 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9139 VTListMap.InsertNode(Result, IP); 9140 } 9141 return Result->getSDVTList(); 9142 } 9143 9144 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9145 FoldingSetNodeID ID; 9146 ID.AddInteger(3U); 9147 ID.AddInteger(VT1.getRawBits()); 9148 ID.AddInteger(VT2.getRawBits()); 9149 ID.AddInteger(VT3.getRawBits()); 9150 9151 void *IP = nullptr; 9152 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9153 if (!Result) { 9154 EVT *Array = Allocator.Allocate<EVT>(3); 9155 Array[0] = VT1; 9156 Array[1] = VT2; 9157 Array[2] = VT3; 9158 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9159 VTListMap.InsertNode(Result, IP); 9160 } 9161 return Result->getSDVTList(); 9162 } 9163 9164 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9165 FoldingSetNodeID ID; 9166 ID.AddInteger(4U); 9167 ID.AddInteger(VT1.getRawBits()); 9168 ID.AddInteger(VT2.getRawBits()); 9169 ID.AddInteger(VT3.getRawBits()); 9170 ID.AddInteger(VT4.getRawBits()); 9171 9172 void *IP = nullptr; 9173 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9174 if (!Result) { 9175 EVT *Array = Allocator.Allocate<EVT>(4); 9176 Array[0] = VT1; 9177 Array[1] = VT2; 9178 Array[2] = VT3; 9179 Array[3] = VT4; 9180 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9181 VTListMap.InsertNode(Result, IP); 9182 } 9183 return Result->getSDVTList(); 9184 } 9185 9186 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9187 unsigned NumVTs = VTs.size(); 9188 FoldingSetNodeID ID; 9189 ID.AddInteger(NumVTs); 9190 for (unsigned index = 0; index < NumVTs; index++) { 9191 ID.AddInteger(VTs[index].getRawBits()); 9192 } 9193 9194 void *IP = nullptr; 9195 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9196 if (!Result) { 9197 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9198 llvm::copy(VTs, Array); 9199 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9200 VTListMap.InsertNode(Result, IP); 9201 } 9202 return Result->getSDVTList(); 9203 } 9204 9205 9206 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9207 /// specified operands. If the resultant node already exists in the DAG, 9208 /// this does not modify the specified node, instead it returns the node that 9209 /// already exists. If the resultant node does not exist in the DAG, the 9210 /// input node is returned. As a degenerate case, if you specify the same 9211 /// input operands as the node already has, the input node is returned. 9212 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9213 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9214 9215 // Check to see if there is no change. 9216 if (Op == N->getOperand(0)) return N; 9217 9218 // See if the modified node already exists. 9219 void *InsertPos = nullptr; 9220 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9221 return Existing; 9222 9223 // Nope it doesn't. Remove the node from its current place in the maps. 9224 if (InsertPos) 9225 if (!RemoveNodeFromCSEMaps(N)) 9226 InsertPos = nullptr; 9227 9228 // Now we update the operands. 9229 N->OperandList[0].set(Op); 9230 9231 updateDivergence(N); 9232 // If this gets put into a CSE map, add it. 9233 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9234 return N; 9235 } 9236 9237 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9238 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9239 9240 // Check to see if there is no change. 9241 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9242 return N; // No operands changed, just return the input node. 9243 9244 // See if the modified node already exists. 9245 void *InsertPos = nullptr; 9246 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9247 return Existing; 9248 9249 // Nope it doesn't. Remove the node from its current place in the maps. 9250 if (InsertPos) 9251 if (!RemoveNodeFromCSEMaps(N)) 9252 InsertPos = nullptr; 9253 9254 // Now we update the operands. 9255 if (N->OperandList[0] != Op1) 9256 N->OperandList[0].set(Op1); 9257 if (N->OperandList[1] != Op2) 9258 N->OperandList[1].set(Op2); 9259 9260 updateDivergence(N); 9261 // If this gets put into a CSE map, add it. 9262 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9263 return N; 9264 } 9265 9266 SDNode *SelectionDAG:: 9267 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9268 SDValue Ops[] = { Op1, Op2, Op3 }; 9269 return UpdateNodeOperands(N, Ops); 9270 } 9271 9272 SDNode *SelectionDAG:: 9273 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9274 SDValue Op3, SDValue Op4) { 9275 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9276 return UpdateNodeOperands(N, Ops); 9277 } 9278 9279 SDNode *SelectionDAG:: 9280 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9281 SDValue Op3, SDValue Op4, SDValue Op5) { 9282 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9283 return UpdateNodeOperands(N, Ops); 9284 } 9285 9286 SDNode *SelectionDAG:: 9287 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9288 unsigned NumOps = Ops.size(); 9289 assert(N->getNumOperands() == NumOps && 9290 "Update with wrong number of operands"); 9291 9292 // If no operands changed just return the input node. 9293 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9294 return N; 9295 9296 // See if the modified node already exists. 9297 void *InsertPos = nullptr; 9298 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9299 return Existing; 9300 9301 // Nope it doesn't. Remove the node from its current place in the maps. 9302 if (InsertPos) 9303 if (!RemoveNodeFromCSEMaps(N)) 9304 InsertPos = nullptr; 9305 9306 // Now we update the operands. 9307 for (unsigned i = 0; i != NumOps; ++i) 9308 if (N->OperandList[i] != Ops[i]) 9309 N->OperandList[i].set(Ops[i]); 9310 9311 updateDivergence(N); 9312 // If this gets put into a CSE map, add it. 9313 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9314 return N; 9315 } 9316 9317 /// DropOperands - Release the operands and set this node to have 9318 /// zero operands. 9319 void SDNode::DropOperands() { 9320 // Unlike the code in MorphNodeTo that does this, we don't need to 9321 // watch for dead nodes here. 9322 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9323 SDUse &Use = *I++; 9324 Use.set(SDValue()); 9325 } 9326 } 9327 9328 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9329 ArrayRef<MachineMemOperand *> NewMemRefs) { 9330 if (NewMemRefs.empty()) { 9331 N->clearMemRefs(); 9332 return; 9333 } 9334 9335 // Check if we can avoid allocating by storing a single reference directly. 9336 if (NewMemRefs.size() == 1) { 9337 N->MemRefs = NewMemRefs[0]; 9338 N->NumMemRefs = 1; 9339 return; 9340 } 9341 9342 MachineMemOperand **MemRefsBuffer = 9343 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9344 llvm::copy(NewMemRefs, MemRefsBuffer); 9345 N->MemRefs = MemRefsBuffer; 9346 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9347 } 9348 9349 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9350 /// machine opcode. 9351 /// 9352 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9353 EVT VT) { 9354 SDVTList VTs = getVTList(VT); 9355 return SelectNodeTo(N, MachineOpc, VTs, None); 9356 } 9357 9358 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9359 EVT VT, SDValue Op1) { 9360 SDVTList VTs = getVTList(VT); 9361 SDValue Ops[] = { Op1 }; 9362 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9363 } 9364 9365 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9366 EVT VT, SDValue Op1, 9367 SDValue Op2) { 9368 SDVTList VTs = getVTList(VT); 9369 SDValue Ops[] = { Op1, Op2 }; 9370 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9371 } 9372 9373 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9374 EVT VT, SDValue Op1, 9375 SDValue Op2, SDValue Op3) { 9376 SDVTList VTs = getVTList(VT); 9377 SDValue Ops[] = { Op1, Op2, Op3 }; 9378 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9379 } 9380 9381 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9382 EVT VT, ArrayRef<SDValue> Ops) { 9383 SDVTList VTs = getVTList(VT); 9384 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9385 } 9386 9387 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9388 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9389 SDVTList VTs = getVTList(VT1, VT2); 9390 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9391 } 9392 9393 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9394 EVT VT1, EVT VT2) { 9395 SDVTList VTs = getVTList(VT1, VT2); 9396 return SelectNodeTo(N, MachineOpc, VTs, None); 9397 } 9398 9399 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9400 EVT VT1, EVT VT2, EVT VT3, 9401 ArrayRef<SDValue> Ops) { 9402 SDVTList VTs = getVTList(VT1, VT2, VT3); 9403 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9404 } 9405 9406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9407 EVT VT1, EVT VT2, 9408 SDValue Op1, SDValue Op2) { 9409 SDVTList VTs = getVTList(VT1, VT2); 9410 SDValue Ops[] = { Op1, Op2 }; 9411 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9412 } 9413 9414 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9415 SDVTList VTs,ArrayRef<SDValue> Ops) { 9416 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9417 // Reset the NodeID to -1. 9418 New->setNodeId(-1); 9419 if (New != N) { 9420 ReplaceAllUsesWith(N, New); 9421 RemoveDeadNode(N); 9422 } 9423 return New; 9424 } 9425 9426 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9427 /// the line number information on the merged node since it is not possible to 9428 /// preserve the information that operation is associated with multiple lines. 9429 /// This will make the debugger working better at -O0, were there is a higher 9430 /// probability having other instructions associated with that line. 9431 /// 9432 /// For IROrder, we keep the smaller of the two 9433 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9434 DebugLoc NLoc = N->getDebugLoc(); 9435 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9436 N->setDebugLoc(DebugLoc()); 9437 } 9438 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9439 N->setIROrder(Order); 9440 return N; 9441 } 9442 9443 /// MorphNodeTo - This *mutates* the specified node to have the specified 9444 /// return type, opcode, and operands. 9445 /// 9446 /// Note that MorphNodeTo returns the resultant node. If there is already a 9447 /// node of the specified opcode and operands, it returns that node instead of 9448 /// the current one. Note that the SDLoc need not be the same. 9449 /// 9450 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9451 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9452 /// node, and because it doesn't require CSE recalculation for any of 9453 /// the node's users. 9454 /// 9455 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9456 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9457 /// the legalizer which maintain worklists that would need to be updated when 9458 /// deleting things. 9459 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9460 SDVTList VTs, ArrayRef<SDValue> Ops) { 9461 // If an identical node already exists, use it. 9462 void *IP = nullptr; 9463 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9464 FoldingSetNodeID ID; 9465 AddNodeIDNode(ID, Opc, VTs, Ops); 9466 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9467 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9468 } 9469 9470 if (!RemoveNodeFromCSEMaps(N)) 9471 IP = nullptr; 9472 9473 // Start the morphing. 9474 N->NodeType = Opc; 9475 N->ValueList = VTs.VTs; 9476 N->NumValues = VTs.NumVTs; 9477 9478 // Clear the operands list, updating used nodes to remove this from their 9479 // use list. Keep track of any operands that become dead as a result. 9480 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9481 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9482 SDUse &Use = *I++; 9483 SDNode *Used = Use.getNode(); 9484 Use.set(SDValue()); 9485 if (Used->use_empty()) 9486 DeadNodeSet.insert(Used); 9487 } 9488 9489 // For MachineNode, initialize the memory references information. 9490 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9491 MN->clearMemRefs(); 9492 9493 // Swap for an appropriately sized array from the recycler. 9494 removeOperands(N); 9495 createOperands(N, Ops); 9496 9497 // Delete any nodes that are still dead after adding the uses for the 9498 // new operands. 9499 if (!DeadNodeSet.empty()) { 9500 SmallVector<SDNode *, 16> DeadNodes; 9501 for (SDNode *N : DeadNodeSet) 9502 if (N->use_empty()) 9503 DeadNodes.push_back(N); 9504 RemoveDeadNodes(DeadNodes); 9505 } 9506 9507 if (IP) 9508 CSEMap.InsertNode(N, IP); // Memoize the new node. 9509 return N; 9510 } 9511 9512 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9513 unsigned OrigOpc = Node->getOpcode(); 9514 unsigned NewOpc; 9515 switch (OrigOpc) { 9516 default: 9517 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9518 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9519 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9520 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9521 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9522 #include "llvm/IR/ConstrainedOps.def" 9523 } 9524 9525 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9526 9527 // We're taking this node out of the chain, so we need to re-link things. 9528 SDValue InputChain = Node->getOperand(0); 9529 SDValue OutputChain = SDValue(Node, 1); 9530 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9531 9532 SmallVector<SDValue, 3> Ops; 9533 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9534 Ops.push_back(Node->getOperand(i)); 9535 9536 SDVTList VTs = getVTList(Node->getValueType(0)); 9537 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9538 9539 // MorphNodeTo can operate in two ways: if an existing node with the 9540 // specified operands exists, it can just return it. Otherwise, it 9541 // updates the node in place to have the requested operands. 9542 if (Res == Node) { 9543 // If we updated the node in place, reset the node ID. To the isel, 9544 // this should be just like a newly allocated machine node. 9545 Res->setNodeId(-1); 9546 } else { 9547 ReplaceAllUsesWith(Node, Res); 9548 RemoveDeadNode(Node); 9549 } 9550 9551 return Res; 9552 } 9553 9554 /// getMachineNode - These are used for target selectors to create a new node 9555 /// with specified return type(s), MachineInstr opcode, and operands. 9556 /// 9557 /// Note that getMachineNode returns the resultant node. If there is already a 9558 /// node of the specified opcode and operands, it returns that node instead of 9559 /// the current one. 9560 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9561 EVT VT) { 9562 SDVTList VTs = getVTList(VT); 9563 return getMachineNode(Opcode, dl, VTs, None); 9564 } 9565 9566 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9567 EVT VT, SDValue Op1) { 9568 SDVTList VTs = getVTList(VT); 9569 SDValue Ops[] = { Op1 }; 9570 return getMachineNode(Opcode, dl, VTs, Ops); 9571 } 9572 9573 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9574 EVT VT, SDValue Op1, SDValue Op2) { 9575 SDVTList VTs = getVTList(VT); 9576 SDValue Ops[] = { Op1, Op2 }; 9577 return getMachineNode(Opcode, dl, VTs, Ops); 9578 } 9579 9580 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9581 EVT VT, SDValue Op1, SDValue Op2, 9582 SDValue Op3) { 9583 SDVTList VTs = getVTList(VT); 9584 SDValue Ops[] = { Op1, Op2, Op3 }; 9585 return getMachineNode(Opcode, dl, VTs, Ops); 9586 } 9587 9588 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9589 EVT VT, ArrayRef<SDValue> Ops) { 9590 SDVTList VTs = getVTList(VT); 9591 return getMachineNode(Opcode, dl, VTs, Ops); 9592 } 9593 9594 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9595 EVT VT1, EVT VT2, SDValue Op1, 9596 SDValue Op2) { 9597 SDVTList VTs = getVTList(VT1, VT2); 9598 SDValue Ops[] = { Op1, Op2 }; 9599 return getMachineNode(Opcode, dl, VTs, Ops); 9600 } 9601 9602 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9603 EVT VT1, EVT VT2, SDValue Op1, 9604 SDValue Op2, SDValue Op3) { 9605 SDVTList VTs = getVTList(VT1, VT2); 9606 SDValue Ops[] = { Op1, Op2, Op3 }; 9607 return getMachineNode(Opcode, dl, VTs, Ops); 9608 } 9609 9610 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9611 EVT VT1, EVT VT2, 9612 ArrayRef<SDValue> Ops) { 9613 SDVTList VTs = getVTList(VT1, VT2); 9614 return getMachineNode(Opcode, dl, VTs, Ops); 9615 } 9616 9617 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9618 EVT VT1, EVT VT2, EVT VT3, 9619 SDValue Op1, SDValue Op2) { 9620 SDVTList VTs = getVTList(VT1, VT2, VT3); 9621 SDValue Ops[] = { Op1, Op2 }; 9622 return getMachineNode(Opcode, dl, VTs, Ops); 9623 } 9624 9625 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9626 EVT VT1, EVT VT2, EVT VT3, 9627 SDValue Op1, SDValue Op2, 9628 SDValue Op3) { 9629 SDVTList VTs = getVTList(VT1, VT2, VT3); 9630 SDValue Ops[] = { Op1, Op2, Op3 }; 9631 return getMachineNode(Opcode, dl, VTs, Ops); 9632 } 9633 9634 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9635 EVT VT1, EVT VT2, EVT VT3, 9636 ArrayRef<SDValue> Ops) { 9637 SDVTList VTs = getVTList(VT1, VT2, VT3); 9638 return getMachineNode(Opcode, dl, VTs, Ops); 9639 } 9640 9641 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9642 ArrayRef<EVT> ResultTys, 9643 ArrayRef<SDValue> Ops) { 9644 SDVTList VTs = getVTList(ResultTys); 9645 return getMachineNode(Opcode, dl, VTs, Ops); 9646 } 9647 9648 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9649 SDVTList VTs, 9650 ArrayRef<SDValue> Ops) { 9651 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9652 MachineSDNode *N; 9653 void *IP = nullptr; 9654 9655 if (DoCSE) { 9656 FoldingSetNodeID ID; 9657 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9658 IP = nullptr; 9659 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9660 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9661 } 9662 } 9663 9664 // Allocate a new MachineSDNode. 9665 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9666 createOperands(N, Ops); 9667 9668 if (DoCSE) 9669 CSEMap.InsertNode(N, IP); 9670 9671 InsertNode(N); 9672 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9673 return N; 9674 } 9675 9676 /// getTargetExtractSubreg - A convenience function for creating 9677 /// TargetOpcode::EXTRACT_SUBREG nodes. 9678 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9679 SDValue Operand) { 9680 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9681 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9682 VT, Operand, SRIdxVal); 9683 return SDValue(Subreg, 0); 9684 } 9685 9686 /// getTargetInsertSubreg - A convenience function for creating 9687 /// TargetOpcode::INSERT_SUBREG nodes. 9688 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9689 SDValue Operand, SDValue Subreg) { 9690 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9691 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9692 VT, Operand, Subreg, SRIdxVal); 9693 return SDValue(Result, 0); 9694 } 9695 9696 /// getNodeIfExists - Get the specified node if it's already available, or 9697 /// else return NULL. 9698 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9699 ArrayRef<SDValue> Ops) { 9700 SDNodeFlags Flags; 9701 if (Inserter) 9702 Flags = Inserter->getFlags(); 9703 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9704 } 9705 9706 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9707 ArrayRef<SDValue> Ops, 9708 const SDNodeFlags Flags) { 9709 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9710 FoldingSetNodeID ID; 9711 AddNodeIDNode(ID, Opcode, VTList, Ops); 9712 void *IP = nullptr; 9713 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9714 E->intersectFlagsWith(Flags); 9715 return E; 9716 } 9717 } 9718 return nullptr; 9719 } 9720 9721 /// doesNodeExist - Check if a node exists without modifying its flags. 9722 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9723 ArrayRef<SDValue> Ops) { 9724 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9725 FoldingSetNodeID ID; 9726 AddNodeIDNode(ID, Opcode, VTList, Ops); 9727 void *IP = nullptr; 9728 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9729 return true; 9730 } 9731 return false; 9732 } 9733 9734 /// getDbgValue - Creates a SDDbgValue node. 9735 /// 9736 /// SDNode 9737 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9738 SDNode *N, unsigned R, bool IsIndirect, 9739 const DebugLoc &DL, unsigned O) { 9740 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9741 "Expected inlined-at fields to agree"); 9742 return new (DbgInfo->getAlloc()) 9743 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9744 {}, IsIndirect, DL, O, 9745 /*IsVariadic=*/false); 9746 } 9747 9748 /// Constant 9749 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9750 DIExpression *Expr, 9751 const Value *C, 9752 const DebugLoc &DL, unsigned O) { 9753 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9754 "Expected inlined-at fields to agree"); 9755 return new (DbgInfo->getAlloc()) 9756 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9757 /*IsIndirect=*/false, DL, O, 9758 /*IsVariadic=*/false); 9759 } 9760 9761 /// FrameIndex 9762 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9763 DIExpression *Expr, unsigned FI, 9764 bool IsIndirect, 9765 const DebugLoc &DL, 9766 unsigned O) { 9767 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9768 "Expected inlined-at fields to agree"); 9769 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9770 } 9771 9772 /// FrameIndex with dependencies 9773 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9774 DIExpression *Expr, unsigned FI, 9775 ArrayRef<SDNode *> Dependencies, 9776 bool IsIndirect, 9777 const DebugLoc &DL, 9778 unsigned O) { 9779 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9780 "Expected inlined-at fields to agree"); 9781 return new (DbgInfo->getAlloc()) 9782 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9783 Dependencies, IsIndirect, DL, O, 9784 /*IsVariadic=*/false); 9785 } 9786 9787 /// VReg 9788 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9789 unsigned VReg, bool IsIndirect, 9790 const DebugLoc &DL, unsigned O) { 9791 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9792 "Expected inlined-at fields to agree"); 9793 return new (DbgInfo->getAlloc()) 9794 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9795 {}, IsIndirect, DL, O, 9796 /*IsVariadic=*/false); 9797 } 9798 9799 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9800 ArrayRef<SDDbgOperand> Locs, 9801 ArrayRef<SDNode *> Dependencies, 9802 bool IsIndirect, const DebugLoc &DL, 9803 unsigned O, bool IsVariadic) { 9804 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9805 "Expected inlined-at fields to agree"); 9806 return new (DbgInfo->getAlloc()) 9807 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9808 DL, O, IsVariadic); 9809 } 9810 9811 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9812 unsigned OffsetInBits, unsigned SizeInBits, 9813 bool InvalidateDbg) { 9814 SDNode *FromNode = From.getNode(); 9815 SDNode *ToNode = To.getNode(); 9816 assert(FromNode && ToNode && "Can't modify dbg values"); 9817 9818 // PR35338 9819 // TODO: assert(From != To && "Redundant dbg value transfer"); 9820 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9821 if (From == To || FromNode == ToNode) 9822 return; 9823 9824 if (!FromNode->getHasDebugValue()) 9825 return; 9826 9827 SDDbgOperand FromLocOp = 9828 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9829 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9830 9831 SmallVector<SDDbgValue *, 2> ClonedDVs; 9832 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9833 if (Dbg->isInvalidated()) 9834 continue; 9835 9836 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9837 9838 // Create a new location ops vector that is equal to the old vector, but 9839 // with each instance of FromLocOp replaced with ToLocOp. 9840 bool Changed = false; 9841 auto NewLocOps = Dbg->copyLocationOps(); 9842 std::replace_if( 9843 NewLocOps.begin(), NewLocOps.end(), 9844 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9845 bool Match = Op == FromLocOp; 9846 Changed |= Match; 9847 return Match; 9848 }, 9849 ToLocOp); 9850 // Ignore this SDDbgValue if we didn't find a matching location. 9851 if (!Changed) 9852 continue; 9853 9854 DIVariable *Var = Dbg->getVariable(); 9855 auto *Expr = Dbg->getExpression(); 9856 // If a fragment is requested, update the expression. 9857 if (SizeInBits) { 9858 // When splitting a larger (e.g., sign-extended) value whose 9859 // lower bits are described with an SDDbgValue, do not attempt 9860 // to transfer the SDDbgValue to the upper bits. 9861 if (auto FI = Expr->getFragmentInfo()) 9862 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9863 continue; 9864 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9865 SizeInBits); 9866 if (!Fragment) 9867 continue; 9868 Expr = *Fragment; 9869 } 9870 9871 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9872 // Clone the SDDbgValue and move it to To. 9873 SDDbgValue *Clone = getDbgValueList( 9874 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9875 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9876 Dbg->isVariadic()); 9877 ClonedDVs.push_back(Clone); 9878 9879 if (InvalidateDbg) { 9880 // Invalidate value and indicate the SDDbgValue should not be emitted. 9881 Dbg->setIsInvalidated(); 9882 Dbg->setIsEmitted(); 9883 } 9884 } 9885 9886 for (SDDbgValue *Dbg : ClonedDVs) { 9887 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9888 "Transferred DbgValues should depend on the new SDNode"); 9889 AddDbgValue(Dbg, false); 9890 } 9891 } 9892 9893 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9894 if (!N.getHasDebugValue()) 9895 return; 9896 9897 SmallVector<SDDbgValue *, 2> ClonedDVs; 9898 for (auto DV : GetDbgValues(&N)) { 9899 if (DV->isInvalidated()) 9900 continue; 9901 switch (N.getOpcode()) { 9902 default: 9903 break; 9904 case ISD::ADD: 9905 SDValue N0 = N.getOperand(0); 9906 SDValue N1 = N.getOperand(1); 9907 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9908 isConstantIntBuildVectorOrConstantInt(N1)) { 9909 uint64_t Offset = N.getConstantOperandVal(1); 9910 9911 // Rewrite an ADD constant node into a DIExpression. Since we are 9912 // performing arithmetic to compute the variable's *value* in the 9913 // DIExpression, we need to mark the expression with a 9914 // DW_OP_stack_value. 9915 auto *DIExpr = DV->getExpression(); 9916 auto NewLocOps = DV->copyLocationOps(); 9917 bool Changed = false; 9918 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9919 // We're not given a ResNo to compare against because the whole 9920 // node is going away. We know that any ISD::ADD only has one 9921 // result, so we can assume any node match is using the result. 9922 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9923 NewLocOps[i].getSDNode() != &N) 9924 continue; 9925 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9926 SmallVector<uint64_t, 3> ExprOps; 9927 DIExpression::appendOffset(ExprOps, Offset); 9928 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9929 Changed = true; 9930 } 9931 (void)Changed; 9932 assert(Changed && "Salvage target doesn't use N"); 9933 9934 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9935 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9936 NewLocOps, AdditionalDependencies, 9937 DV->isIndirect(), DV->getDebugLoc(), 9938 DV->getOrder(), DV->isVariadic()); 9939 ClonedDVs.push_back(Clone); 9940 DV->setIsInvalidated(); 9941 DV->setIsEmitted(); 9942 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9943 N0.getNode()->dumprFull(this); 9944 dbgs() << " into " << *DIExpr << '\n'); 9945 } 9946 } 9947 } 9948 9949 for (SDDbgValue *Dbg : ClonedDVs) { 9950 assert(!Dbg->getSDNodes().empty() && 9951 "Salvaged DbgValue should depend on a new SDNode"); 9952 AddDbgValue(Dbg, false); 9953 } 9954 } 9955 9956 /// Creates a SDDbgLabel node. 9957 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9958 const DebugLoc &DL, unsigned O) { 9959 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9960 "Expected inlined-at fields to agree"); 9961 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9962 } 9963 9964 namespace { 9965 9966 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9967 /// pointed to by a use iterator is deleted, increment the use iterator 9968 /// so that it doesn't dangle. 9969 /// 9970 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9971 SDNode::use_iterator &UI; 9972 SDNode::use_iterator &UE; 9973 9974 void NodeDeleted(SDNode *N, SDNode *E) override { 9975 // Increment the iterator as needed. 9976 while (UI != UE && N == *UI) 9977 ++UI; 9978 } 9979 9980 public: 9981 RAUWUpdateListener(SelectionDAG &d, 9982 SDNode::use_iterator &ui, 9983 SDNode::use_iterator &ue) 9984 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9985 }; 9986 9987 } // end anonymous namespace 9988 9989 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9990 /// This can cause recursive merging of nodes in the DAG. 9991 /// 9992 /// This version assumes From has a single result value. 9993 /// 9994 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9995 SDNode *From = FromN.getNode(); 9996 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9997 "Cannot replace with this method!"); 9998 assert(From != To.getNode() && "Cannot replace uses of with self"); 9999 10000 // Preserve Debug Values 10001 transferDbgValues(FromN, To); 10002 10003 // Iterate over all the existing uses of From. New uses will be added 10004 // to the beginning of the use list, which we avoid visiting. 10005 // This specifically avoids visiting uses of From that arise while the 10006 // replacement is happening, because any such uses would be the result 10007 // of CSE: If an existing node looks like From after one of its operands 10008 // is replaced by To, we don't want to replace of all its users with To 10009 // too. See PR3018 for more info. 10010 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10011 RAUWUpdateListener Listener(*this, UI, UE); 10012 while (UI != UE) { 10013 SDNode *User = *UI; 10014 10015 // This node is about to morph, remove its old self from the CSE maps. 10016 RemoveNodeFromCSEMaps(User); 10017 10018 // A user can appear in a use list multiple times, and when this 10019 // happens the uses are usually next to each other in the list. 10020 // To help reduce the number of CSE recomputations, process all 10021 // the uses of this user that we can find this way. 10022 do { 10023 SDUse &Use = UI.getUse(); 10024 ++UI; 10025 Use.set(To); 10026 if (To->isDivergent() != From->isDivergent()) 10027 updateDivergence(User); 10028 } while (UI != UE && *UI == User); 10029 // Now that we have modified User, add it back to the CSE maps. If it 10030 // already exists there, recursively merge the results together. 10031 AddModifiedNodeToCSEMaps(User); 10032 } 10033 10034 // If we just RAUW'd the root, take note. 10035 if (FromN == getRoot()) 10036 setRoot(To); 10037 } 10038 10039 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10040 /// This can cause recursive merging of nodes in the DAG. 10041 /// 10042 /// This version assumes that for each value of From, there is a 10043 /// corresponding value in To in the same position with the same type. 10044 /// 10045 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10046 #ifndef NDEBUG 10047 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10048 assert((!From->hasAnyUseOfValue(i) || 10049 From->getValueType(i) == To->getValueType(i)) && 10050 "Cannot use this version of ReplaceAllUsesWith!"); 10051 #endif 10052 10053 // Handle the trivial case. 10054 if (From == To) 10055 return; 10056 10057 // Preserve Debug Info. Only do this if there's a use. 10058 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10059 if (From->hasAnyUseOfValue(i)) { 10060 assert((i < To->getNumValues()) && "Invalid To location"); 10061 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10062 } 10063 10064 // Iterate over just the existing users of From. See the comments in 10065 // the ReplaceAllUsesWith above. 10066 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10067 RAUWUpdateListener Listener(*this, UI, UE); 10068 while (UI != UE) { 10069 SDNode *User = *UI; 10070 10071 // This node is about to morph, remove its old self from the CSE maps. 10072 RemoveNodeFromCSEMaps(User); 10073 10074 // A user can appear in a use list multiple times, and when this 10075 // happens the uses are usually next to each other in the list. 10076 // To help reduce the number of CSE recomputations, process all 10077 // the uses of this user that we can find this way. 10078 do { 10079 SDUse &Use = UI.getUse(); 10080 ++UI; 10081 Use.setNode(To); 10082 if (To->isDivergent() != From->isDivergent()) 10083 updateDivergence(User); 10084 } while (UI != UE && *UI == User); 10085 10086 // Now that we have modified User, add it back to the CSE maps. If it 10087 // already exists there, recursively merge the results together. 10088 AddModifiedNodeToCSEMaps(User); 10089 } 10090 10091 // If we just RAUW'd the root, take note. 10092 if (From == getRoot().getNode()) 10093 setRoot(SDValue(To, getRoot().getResNo())); 10094 } 10095 10096 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10097 /// This can cause recursive merging of nodes in the DAG. 10098 /// 10099 /// This version can replace From with any result values. To must match the 10100 /// number and types of values returned by From. 10101 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10102 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10103 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10104 10105 // Preserve Debug Info. 10106 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10107 transferDbgValues(SDValue(From, i), To[i]); 10108 10109 // Iterate over just the existing users of From. See the comments in 10110 // the ReplaceAllUsesWith above. 10111 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10112 RAUWUpdateListener Listener(*this, UI, UE); 10113 while (UI != UE) { 10114 SDNode *User = *UI; 10115 10116 // This node is about to morph, remove its old self from the CSE maps. 10117 RemoveNodeFromCSEMaps(User); 10118 10119 // A user can appear in a use list multiple times, and when this happens the 10120 // uses are usually next to each other in the list. To help reduce the 10121 // number of CSE and divergence recomputations, process all the uses of this 10122 // user that we can find this way. 10123 bool To_IsDivergent = false; 10124 do { 10125 SDUse &Use = UI.getUse(); 10126 const SDValue &ToOp = To[Use.getResNo()]; 10127 ++UI; 10128 Use.set(ToOp); 10129 To_IsDivergent |= ToOp->isDivergent(); 10130 } while (UI != UE && *UI == User); 10131 10132 if (To_IsDivergent != From->isDivergent()) 10133 updateDivergence(User); 10134 10135 // Now that we have modified User, add it back to the CSE maps. If it 10136 // already exists there, recursively merge the results together. 10137 AddModifiedNodeToCSEMaps(User); 10138 } 10139 10140 // If we just RAUW'd the root, take note. 10141 if (From == getRoot().getNode()) 10142 setRoot(SDValue(To[getRoot().getResNo()])); 10143 } 10144 10145 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10146 /// uses of other values produced by From.getNode() alone. The Deleted 10147 /// vector is handled the same way as for ReplaceAllUsesWith. 10148 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10149 // Handle the really simple, really trivial case efficiently. 10150 if (From == To) return; 10151 10152 // Handle the simple, trivial, case efficiently. 10153 if (From.getNode()->getNumValues() == 1) { 10154 ReplaceAllUsesWith(From, To); 10155 return; 10156 } 10157 10158 // Preserve Debug Info. 10159 transferDbgValues(From, To); 10160 10161 // Iterate over just the existing users of From. See the comments in 10162 // the ReplaceAllUsesWith above. 10163 SDNode::use_iterator UI = From.getNode()->use_begin(), 10164 UE = From.getNode()->use_end(); 10165 RAUWUpdateListener Listener(*this, UI, UE); 10166 while (UI != UE) { 10167 SDNode *User = *UI; 10168 bool UserRemovedFromCSEMaps = false; 10169 10170 // A user can appear in a use list multiple times, and when this 10171 // happens the uses are usually next to each other in the list. 10172 // To help reduce the number of CSE recomputations, process all 10173 // the uses of this user that we can find this way. 10174 do { 10175 SDUse &Use = UI.getUse(); 10176 10177 // Skip uses of different values from the same node. 10178 if (Use.getResNo() != From.getResNo()) { 10179 ++UI; 10180 continue; 10181 } 10182 10183 // If this node hasn't been modified yet, it's still in the CSE maps, 10184 // so remove its old self from the CSE maps. 10185 if (!UserRemovedFromCSEMaps) { 10186 RemoveNodeFromCSEMaps(User); 10187 UserRemovedFromCSEMaps = true; 10188 } 10189 10190 ++UI; 10191 Use.set(To); 10192 if (To->isDivergent() != From->isDivergent()) 10193 updateDivergence(User); 10194 } while (UI != UE && *UI == User); 10195 // We are iterating over all uses of the From node, so if a use 10196 // doesn't use the specific value, no changes are made. 10197 if (!UserRemovedFromCSEMaps) 10198 continue; 10199 10200 // Now that we have modified User, add it back to the CSE maps. If it 10201 // already exists there, recursively merge the results together. 10202 AddModifiedNodeToCSEMaps(User); 10203 } 10204 10205 // If we just RAUW'd the root, take note. 10206 if (From == getRoot()) 10207 setRoot(To); 10208 } 10209 10210 namespace { 10211 10212 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10213 /// to record information about a use. 10214 struct UseMemo { 10215 SDNode *User; 10216 unsigned Index; 10217 SDUse *Use; 10218 }; 10219 10220 /// operator< - Sort Memos by User. 10221 bool operator<(const UseMemo &L, const UseMemo &R) { 10222 return (intptr_t)L.User < (intptr_t)R.User; 10223 } 10224 10225 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10226 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10227 /// the node already has been taken care of recursively. 10228 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10229 SmallVector<UseMemo, 4> &Uses; 10230 10231 void NodeDeleted(SDNode *N, SDNode *E) override { 10232 for (UseMemo &Memo : Uses) 10233 if (Memo.User == N) 10234 Memo.User = nullptr; 10235 } 10236 10237 public: 10238 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10239 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10240 }; 10241 10242 } // end anonymous namespace 10243 10244 bool SelectionDAG::calculateDivergence(SDNode *N) { 10245 if (TLI->isSDNodeAlwaysUniform(N)) { 10246 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10247 "Conflicting divergence information!"); 10248 return false; 10249 } 10250 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10251 return true; 10252 for (auto &Op : N->ops()) { 10253 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10254 return true; 10255 } 10256 return false; 10257 } 10258 10259 void SelectionDAG::updateDivergence(SDNode *N) { 10260 SmallVector<SDNode *, 16> Worklist(1, N); 10261 do { 10262 N = Worklist.pop_back_val(); 10263 bool IsDivergent = calculateDivergence(N); 10264 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10265 N->SDNodeBits.IsDivergent = IsDivergent; 10266 llvm::append_range(Worklist, N->uses()); 10267 } 10268 } while (!Worklist.empty()); 10269 } 10270 10271 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10272 DenseMap<SDNode *, unsigned> Degree; 10273 Order.reserve(AllNodes.size()); 10274 for (auto &N : allnodes()) { 10275 unsigned NOps = N.getNumOperands(); 10276 Degree[&N] = NOps; 10277 if (0 == NOps) 10278 Order.push_back(&N); 10279 } 10280 for (size_t I = 0; I != Order.size(); ++I) { 10281 SDNode *N = Order[I]; 10282 for (auto U : N->uses()) { 10283 unsigned &UnsortedOps = Degree[U]; 10284 if (0 == --UnsortedOps) 10285 Order.push_back(U); 10286 } 10287 } 10288 } 10289 10290 #ifndef NDEBUG 10291 void SelectionDAG::VerifyDAGDivergence() { 10292 std::vector<SDNode *> TopoOrder; 10293 CreateTopologicalOrder(TopoOrder); 10294 for (auto *N : TopoOrder) { 10295 assert(calculateDivergence(N) == N->isDivergent() && 10296 "Divergence bit inconsistency detected"); 10297 } 10298 } 10299 #endif 10300 10301 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10302 /// uses of other values produced by From.getNode() alone. The same value 10303 /// may appear in both the From and To list. The Deleted vector is 10304 /// handled the same way as for ReplaceAllUsesWith. 10305 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10306 const SDValue *To, 10307 unsigned Num){ 10308 // Handle the simple, trivial case efficiently. 10309 if (Num == 1) 10310 return ReplaceAllUsesOfValueWith(*From, *To); 10311 10312 transferDbgValues(*From, *To); 10313 10314 // Read up all the uses and make records of them. This helps 10315 // processing new uses that are introduced during the 10316 // replacement process. 10317 SmallVector<UseMemo, 4> Uses; 10318 for (unsigned i = 0; i != Num; ++i) { 10319 unsigned FromResNo = From[i].getResNo(); 10320 SDNode *FromNode = From[i].getNode(); 10321 for (SDNode::use_iterator UI = FromNode->use_begin(), 10322 E = FromNode->use_end(); UI != E; ++UI) { 10323 SDUse &Use = UI.getUse(); 10324 if (Use.getResNo() == FromResNo) { 10325 UseMemo Memo = { *UI, i, &Use }; 10326 Uses.push_back(Memo); 10327 } 10328 } 10329 } 10330 10331 // Sort the uses, so that all the uses from a given User are together. 10332 llvm::sort(Uses); 10333 RAUOVWUpdateListener Listener(*this, Uses); 10334 10335 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10336 UseIndex != UseIndexEnd; ) { 10337 // We know that this user uses some value of From. If it is the right 10338 // value, update it. 10339 SDNode *User = Uses[UseIndex].User; 10340 // If the node has been deleted by recursive CSE updates when updating 10341 // another node, then just skip this entry. 10342 if (User == nullptr) { 10343 ++UseIndex; 10344 continue; 10345 } 10346 10347 // This node is about to morph, remove its old self from the CSE maps. 10348 RemoveNodeFromCSEMaps(User); 10349 10350 // The Uses array is sorted, so all the uses for a given User 10351 // are next to each other in the list. 10352 // To help reduce the number of CSE recomputations, process all 10353 // the uses of this user that we can find this way. 10354 do { 10355 unsigned i = Uses[UseIndex].Index; 10356 SDUse &Use = *Uses[UseIndex].Use; 10357 ++UseIndex; 10358 10359 Use.set(To[i]); 10360 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10361 10362 // Now that we have modified User, add it back to the CSE maps. If it 10363 // already exists there, recursively merge the results together. 10364 AddModifiedNodeToCSEMaps(User); 10365 } 10366 } 10367 10368 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10369 /// based on their topological order. It returns the maximum id and a vector 10370 /// of the SDNodes* in assigned order by reference. 10371 unsigned SelectionDAG::AssignTopologicalOrder() { 10372 unsigned DAGSize = 0; 10373 10374 // SortedPos tracks the progress of the algorithm. Nodes before it are 10375 // sorted, nodes after it are unsorted. When the algorithm completes 10376 // it is at the end of the list. 10377 allnodes_iterator SortedPos = allnodes_begin(); 10378 10379 // Visit all the nodes. Move nodes with no operands to the front of 10380 // the list immediately. Annotate nodes that do have operands with their 10381 // operand count. Before we do this, the Node Id fields of the nodes 10382 // may contain arbitrary values. After, the Node Id fields for nodes 10383 // before SortedPos will contain the topological sort index, and the 10384 // Node Id fields for nodes At SortedPos and after will contain the 10385 // count of outstanding operands. 10386 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10387 checkForCycles(&N, this); 10388 unsigned Degree = N.getNumOperands(); 10389 if (Degree == 0) { 10390 // A node with no uses, add it to the result array immediately. 10391 N.setNodeId(DAGSize++); 10392 allnodes_iterator Q(&N); 10393 if (Q != SortedPos) 10394 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10395 assert(SortedPos != AllNodes.end() && "Overran node list"); 10396 ++SortedPos; 10397 } else { 10398 // Temporarily use the Node Id as scratch space for the degree count. 10399 N.setNodeId(Degree); 10400 } 10401 } 10402 10403 // Visit all the nodes. As we iterate, move nodes into sorted order, 10404 // such that by the time the end is reached all nodes will be sorted. 10405 for (SDNode &Node : allnodes()) { 10406 SDNode *N = &Node; 10407 checkForCycles(N, this); 10408 // N is in sorted position, so all its uses have one less operand 10409 // that needs to be sorted. 10410 for (SDNode *P : N->uses()) { 10411 unsigned Degree = P->getNodeId(); 10412 assert(Degree != 0 && "Invalid node degree"); 10413 --Degree; 10414 if (Degree == 0) { 10415 // All of P's operands are sorted, so P may sorted now. 10416 P->setNodeId(DAGSize++); 10417 if (P->getIterator() != SortedPos) 10418 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10419 assert(SortedPos != AllNodes.end() && "Overran node list"); 10420 ++SortedPos; 10421 } else { 10422 // Update P's outstanding operand count. 10423 P->setNodeId(Degree); 10424 } 10425 } 10426 if (Node.getIterator() == SortedPos) { 10427 #ifndef NDEBUG 10428 allnodes_iterator I(N); 10429 SDNode *S = &*++I; 10430 dbgs() << "Overran sorted position:\n"; 10431 S->dumprFull(this); dbgs() << "\n"; 10432 dbgs() << "Checking if this is due to cycles\n"; 10433 checkForCycles(this, true); 10434 #endif 10435 llvm_unreachable(nullptr); 10436 } 10437 } 10438 10439 assert(SortedPos == AllNodes.end() && 10440 "Topological sort incomplete!"); 10441 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10442 "First node in topological sort is not the entry token!"); 10443 assert(AllNodes.front().getNodeId() == 0 && 10444 "First node in topological sort has non-zero id!"); 10445 assert(AllNodes.front().getNumOperands() == 0 && 10446 "First node in topological sort has operands!"); 10447 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10448 "Last node in topologic sort has unexpected id!"); 10449 assert(AllNodes.back().use_empty() && 10450 "Last node in topologic sort has users!"); 10451 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10452 return DAGSize; 10453 } 10454 10455 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10456 /// value is produced by SD. 10457 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10458 for (SDNode *SD : DB->getSDNodes()) { 10459 if (!SD) 10460 continue; 10461 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10462 SD->setHasDebugValue(true); 10463 } 10464 DbgInfo->add(DB, isParameter); 10465 } 10466 10467 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10468 10469 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10470 SDValue NewMemOpChain) { 10471 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10472 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10473 // The new memory operation must have the same position as the old load in 10474 // terms of memory dependency. Create a TokenFactor for the old load and new 10475 // memory operation and update uses of the old load's output chain to use that 10476 // TokenFactor. 10477 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10478 return NewMemOpChain; 10479 10480 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10481 OldChain, NewMemOpChain); 10482 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10483 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10484 return TokenFactor; 10485 } 10486 10487 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10488 SDValue NewMemOp) { 10489 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10490 SDValue OldChain = SDValue(OldLoad, 1); 10491 SDValue NewMemOpChain = NewMemOp.getValue(1); 10492 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10493 } 10494 10495 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10496 Function **OutFunction) { 10497 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10498 10499 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10500 auto *Module = MF->getFunction().getParent(); 10501 auto *Function = Module->getFunction(Symbol); 10502 10503 if (OutFunction != nullptr) 10504 *OutFunction = Function; 10505 10506 if (Function != nullptr) { 10507 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10508 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10509 } 10510 10511 std::string ErrorStr; 10512 raw_string_ostream ErrorFormatter(ErrorStr); 10513 ErrorFormatter << "Undefined external symbol "; 10514 ErrorFormatter << '"' << Symbol << '"'; 10515 report_fatal_error(Twine(ErrorFormatter.str())); 10516 } 10517 10518 //===----------------------------------------------------------------------===// 10519 // SDNode Class 10520 //===----------------------------------------------------------------------===// 10521 10522 bool llvm::isNullConstant(SDValue V) { 10523 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10524 return Const != nullptr && Const->isZero(); 10525 } 10526 10527 bool llvm::isNullFPConstant(SDValue V) { 10528 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10529 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10530 } 10531 10532 bool llvm::isAllOnesConstant(SDValue V) { 10533 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10534 return Const != nullptr && Const->isAllOnes(); 10535 } 10536 10537 bool llvm::isOneConstant(SDValue V) { 10538 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10539 return Const != nullptr && Const->isOne(); 10540 } 10541 10542 bool llvm::isMinSignedConstant(SDValue V) { 10543 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10544 return Const != nullptr && Const->isMinSignedValue(); 10545 } 10546 10547 SDValue llvm::peekThroughBitcasts(SDValue V) { 10548 while (V.getOpcode() == ISD::BITCAST) 10549 V = V.getOperand(0); 10550 return V; 10551 } 10552 10553 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10554 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10555 V = V.getOperand(0); 10556 return V; 10557 } 10558 10559 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10560 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10561 V = V.getOperand(0); 10562 return V; 10563 } 10564 10565 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10566 if (V.getOpcode() != ISD::XOR) 10567 return false; 10568 V = peekThroughBitcasts(V.getOperand(1)); 10569 unsigned NumBits = V.getScalarValueSizeInBits(); 10570 ConstantSDNode *C = 10571 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10572 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10573 } 10574 10575 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10576 bool AllowTruncation) { 10577 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10578 return CN; 10579 10580 // SplatVectors can truncate their operands. Ignore that case here unless 10581 // AllowTruncation is set. 10582 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10583 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10584 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10585 EVT CVT = CN->getValueType(0); 10586 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10587 if (AllowTruncation || CVT == VecEltVT) 10588 return CN; 10589 } 10590 } 10591 10592 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10593 BitVector UndefElements; 10594 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10595 10596 // BuildVectors can truncate their operands. Ignore that case here unless 10597 // AllowTruncation is set. 10598 if (CN && (UndefElements.none() || AllowUndefs)) { 10599 EVT CVT = CN->getValueType(0); 10600 EVT NSVT = N.getValueType().getScalarType(); 10601 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10602 if (AllowTruncation || (CVT == NSVT)) 10603 return CN; 10604 } 10605 } 10606 10607 return nullptr; 10608 } 10609 10610 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10611 bool AllowUndefs, 10612 bool AllowTruncation) { 10613 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10614 return CN; 10615 10616 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10617 BitVector UndefElements; 10618 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10619 10620 // BuildVectors can truncate their operands. Ignore that case here unless 10621 // AllowTruncation is set. 10622 if (CN && (UndefElements.none() || AllowUndefs)) { 10623 EVT CVT = CN->getValueType(0); 10624 EVT NSVT = N.getValueType().getScalarType(); 10625 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10626 if (AllowTruncation || (CVT == NSVT)) 10627 return CN; 10628 } 10629 } 10630 10631 return nullptr; 10632 } 10633 10634 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10635 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10636 return CN; 10637 10638 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10639 BitVector UndefElements; 10640 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10641 if (CN && (UndefElements.none() || AllowUndefs)) 10642 return CN; 10643 } 10644 10645 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10646 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10647 return CN; 10648 10649 return nullptr; 10650 } 10651 10652 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10653 const APInt &DemandedElts, 10654 bool AllowUndefs) { 10655 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10656 return CN; 10657 10658 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10659 BitVector UndefElements; 10660 ConstantFPSDNode *CN = 10661 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10662 if (CN && (UndefElements.none() || AllowUndefs)) 10663 return CN; 10664 } 10665 10666 return nullptr; 10667 } 10668 10669 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10670 // TODO: may want to use peekThroughBitcast() here. 10671 ConstantSDNode *C = 10672 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10673 return C && C->isZero(); 10674 } 10675 10676 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10677 ConstantSDNode *C = 10678 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10679 return C && C->isOne(); 10680 } 10681 10682 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10683 N = peekThroughBitcasts(N); 10684 unsigned BitWidth = N.getScalarValueSizeInBits(); 10685 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10686 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10687 } 10688 10689 HandleSDNode::~HandleSDNode() { 10690 DropOperands(); 10691 } 10692 10693 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10694 const DebugLoc &DL, 10695 const GlobalValue *GA, EVT VT, 10696 int64_t o, unsigned TF) 10697 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10698 TheGlobal = GA; 10699 } 10700 10701 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10702 EVT VT, unsigned SrcAS, 10703 unsigned DestAS) 10704 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10705 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10706 10707 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10708 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10709 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10710 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10711 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10712 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10713 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10714 10715 // We check here that the size of the memory operand fits within the size of 10716 // the MMO. This is because the MMO might indicate only a possible address 10717 // range instead of specifying the affected memory addresses precisely. 10718 // TODO: Make MachineMemOperands aware of scalable vectors. 10719 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10720 "Size mismatch!"); 10721 } 10722 10723 /// Profile - Gather unique data for the node. 10724 /// 10725 void SDNode::Profile(FoldingSetNodeID &ID) const { 10726 AddNodeIDNode(ID, this); 10727 } 10728 10729 namespace { 10730 10731 struct EVTArray { 10732 std::vector<EVT> VTs; 10733 10734 EVTArray() { 10735 VTs.reserve(MVT::VALUETYPE_SIZE); 10736 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10737 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10738 } 10739 }; 10740 10741 } // end anonymous namespace 10742 10743 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10744 static ManagedStatic<EVTArray> SimpleVTArray; 10745 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10746 10747 /// getValueTypeList - Return a pointer to the specified value type. 10748 /// 10749 const EVT *SDNode::getValueTypeList(EVT VT) { 10750 if (VT.isExtended()) { 10751 sys::SmartScopedLock<true> Lock(*VTMutex); 10752 return &(*EVTs->insert(VT).first); 10753 } 10754 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10755 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10756 } 10757 10758 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10759 /// indicated value. This method ignores uses of other values defined by this 10760 /// operation. 10761 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10762 assert(Value < getNumValues() && "Bad value!"); 10763 10764 // TODO: Only iterate over uses of a given value of the node 10765 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10766 if (UI.getUse().getResNo() == Value) { 10767 if (NUses == 0) 10768 return false; 10769 --NUses; 10770 } 10771 } 10772 10773 // Found exactly the right number of uses? 10774 return NUses == 0; 10775 } 10776 10777 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10778 /// value. This method ignores uses of other values defined by this operation. 10779 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10780 assert(Value < getNumValues() && "Bad value!"); 10781 10782 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10783 if (UI.getUse().getResNo() == Value) 10784 return true; 10785 10786 return false; 10787 } 10788 10789 /// isOnlyUserOf - Return true if this node is the only use of N. 10790 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10791 bool Seen = false; 10792 for (const SDNode *User : N->uses()) { 10793 if (User == this) 10794 Seen = true; 10795 else 10796 return false; 10797 } 10798 10799 return Seen; 10800 } 10801 10802 /// Return true if the only users of N are contained in Nodes. 10803 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10804 bool Seen = false; 10805 for (const SDNode *User : N->uses()) { 10806 if (llvm::is_contained(Nodes, User)) 10807 Seen = true; 10808 else 10809 return false; 10810 } 10811 10812 return Seen; 10813 } 10814 10815 /// isOperand - Return true if this node is an operand of N. 10816 bool SDValue::isOperandOf(const SDNode *N) const { 10817 return is_contained(N->op_values(), *this); 10818 } 10819 10820 bool SDNode::isOperandOf(const SDNode *N) const { 10821 return any_of(N->op_values(), 10822 [this](SDValue Op) { return this == Op.getNode(); }); 10823 } 10824 10825 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10826 /// be a chain) reaches the specified operand without crossing any 10827 /// side-effecting instructions on any chain path. In practice, this looks 10828 /// through token factors and non-volatile loads. In order to remain efficient, 10829 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10830 /// 10831 /// Note that we only need to examine chains when we're searching for 10832 /// side-effects; SelectionDAG requires that all side-effects are represented 10833 /// by chains, even if another operand would force a specific ordering. This 10834 /// constraint is necessary to allow transformations like splitting loads. 10835 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10836 unsigned Depth) const { 10837 if (*this == Dest) return true; 10838 10839 // Don't search too deeply, we just want to be able to see through 10840 // TokenFactor's etc. 10841 if (Depth == 0) return false; 10842 10843 // If this is a token factor, all inputs to the TF happen in parallel. 10844 if (getOpcode() == ISD::TokenFactor) { 10845 // First, try a shallow search. 10846 if (is_contained((*this)->ops(), Dest)) { 10847 // We found the chain we want as an operand of this TokenFactor. 10848 // Essentially, we reach the chain without side-effects if we could 10849 // serialize the TokenFactor into a simple chain of operations with 10850 // Dest as the last operation. This is automatically true if the 10851 // chain has one use: there are no other ordering constraints. 10852 // If the chain has more than one use, we give up: some other 10853 // use of Dest might force a side-effect between Dest and the current 10854 // node. 10855 if (Dest.hasOneUse()) 10856 return true; 10857 } 10858 // Next, try a deep search: check whether every operand of the TokenFactor 10859 // reaches Dest. 10860 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10861 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10862 }); 10863 } 10864 10865 // Loads don't have side effects, look through them. 10866 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10867 if (Ld->isUnordered()) 10868 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10869 } 10870 return false; 10871 } 10872 10873 bool SDNode::hasPredecessor(const SDNode *N) const { 10874 SmallPtrSet<const SDNode *, 32> Visited; 10875 SmallVector<const SDNode *, 16> Worklist; 10876 Worklist.push_back(this); 10877 return hasPredecessorHelper(N, Visited, Worklist); 10878 } 10879 10880 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10881 this->Flags.intersectWith(Flags); 10882 } 10883 10884 SDValue 10885 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10886 ArrayRef<ISD::NodeType> CandidateBinOps, 10887 bool AllowPartials) { 10888 // The pattern must end in an extract from index 0. 10889 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10890 !isNullConstant(Extract->getOperand(1))) 10891 return SDValue(); 10892 10893 // Match against one of the candidate binary ops. 10894 SDValue Op = Extract->getOperand(0); 10895 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10896 return Op.getOpcode() == unsigned(BinOp); 10897 })) 10898 return SDValue(); 10899 10900 // Floating-point reductions may require relaxed constraints on the final step 10901 // of the reduction because they may reorder intermediate operations. 10902 unsigned CandidateBinOp = Op.getOpcode(); 10903 if (Op.getValueType().isFloatingPoint()) { 10904 SDNodeFlags Flags = Op->getFlags(); 10905 switch (CandidateBinOp) { 10906 case ISD::FADD: 10907 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10908 return SDValue(); 10909 break; 10910 default: 10911 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10912 } 10913 } 10914 10915 // Matching failed - attempt to see if we did enough stages that a partial 10916 // reduction from a subvector is possible. 10917 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10918 if (!AllowPartials || !Op) 10919 return SDValue(); 10920 EVT OpVT = Op.getValueType(); 10921 EVT OpSVT = OpVT.getScalarType(); 10922 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10923 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10924 return SDValue(); 10925 BinOp = (ISD::NodeType)CandidateBinOp; 10926 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10927 getVectorIdxConstant(0, SDLoc(Op))); 10928 }; 10929 10930 // At each stage, we're looking for something that looks like: 10931 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10932 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10933 // i32 undef, i32 undef, i32 undef, i32 undef> 10934 // %a = binop <8 x i32> %op, %s 10935 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10936 // we expect something like: 10937 // <4,5,6,7,u,u,u,u> 10938 // <2,3,u,u,u,u,u,u> 10939 // <1,u,u,u,u,u,u,u> 10940 // While a partial reduction match would be: 10941 // <2,3,u,u,u,u,u,u> 10942 // <1,u,u,u,u,u,u,u> 10943 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10944 SDValue PrevOp; 10945 for (unsigned i = 0; i < Stages; ++i) { 10946 unsigned MaskEnd = (1 << i); 10947 10948 if (Op.getOpcode() != CandidateBinOp) 10949 return PartialReduction(PrevOp, MaskEnd); 10950 10951 SDValue Op0 = Op.getOperand(0); 10952 SDValue Op1 = Op.getOperand(1); 10953 10954 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10955 if (Shuffle) { 10956 Op = Op1; 10957 } else { 10958 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10959 Op = Op0; 10960 } 10961 10962 // The first operand of the shuffle should be the same as the other operand 10963 // of the binop. 10964 if (!Shuffle || Shuffle->getOperand(0) != Op) 10965 return PartialReduction(PrevOp, MaskEnd); 10966 10967 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10968 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10969 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10970 return PartialReduction(PrevOp, MaskEnd); 10971 10972 PrevOp = Op; 10973 } 10974 10975 // Handle subvector reductions, which tend to appear after the shuffle 10976 // reduction stages. 10977 while (Op.getOpcode() == CandidateBinOp) { 10978 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10979 SDValue Op0 = Op.getOperand(0); 10980 SDValue Op1 = Op.getOperand(1); 10981 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10982 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10983 Op0.getOperand(0) != Op1.getOperand(0)) 10984 break; 10985 SDValue Src = Op0.getOperand(0); 10986 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10987 if (NumSrcElts != (2 * NumElts)) 10988 break; 10989 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10990 Op1.getConstantOperandAPInt(1) == NumElts) && 10991 !(Op1.getConstantOperandAPInt(1) == 0 && 10992 Op0.getConstantOperandAPInt(1) == NumElts)) 10993 break; 10994 Op = Src; 10995 } 10996 10997 BinOp = (ISD::NodeType)CandidateBinOp; 10998 return Op; 10999 } 11000 11001 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11002 assert(N->getNumValues() == 1 && 11003 "Can't unroll a vector with multiple results!"); 11004 11005 EVT VT = N->getValueType(0); 11006 unsigned NE = VT.getVectorNumElements(); 11007 EVT EltVT = VT.getVectorElementType(); 11008 SDLoc dl(N); 11009 11010 SmallVector<SDValue, 8> Scalars; 11011 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11012 11013 // If ResNE is 0, fully unroll the vector op. 11014 if (ResNE == 0) 11015 ResNE = NE; 11016 else if (NE > ResNE) 11017 NE = ResNE; 11018 11019 unsigned i; 11020 for (i= 0; i != NE; ++i) { 11021 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11022 SDValue Operand = N->getOperand(j); 11023 EVT OperandVT = Operand.getValueType(); 11024 if (OperandVT.isVector()) { 11025 // A vector operand; extract a single element. 11026 EVT OperandEltVT = OperandVT.getVectorElementType(); 11027 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11028 Operand, getVectorIdxConstant(i, dl)); 11029 } else { 11030 // A scalar operand; just use it as is. 11031 Operands[j] = Operand; 11032 } 11033 } 11034 11035 switch (N->getOpcode()) { 11036 default: { 11037 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11038 N->getFlags())); 11039 break; 11040 } 11041 case ISD::VSELECT: 11042 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11043 break; 11044 case ISD::SHL: 11045 case ISD::SRA: 11046 case ISD::SRL: 11047 case ISD::ROTL: 11048 case ISD::ROTR: 11049 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11050 getShiftAmountOperand(Operands[0].getValueType(), 11051 Operands[1]))); 11052 break; 11053 case ISD::SIGN_EXTEND_INREG: { 11054 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11055 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11056 Operands[0], 11057 getValueType(ExtVT))); 11058 } 11059 } 11060 } 11061 11062 for (; i < ResNE; ++i) 11063 Scalars.push_back(getUNDEF(EltVT)); 11064 11065 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11066 return getBuildVector(VecVT, dl, Scalars); 11067 } 11068 11069 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11070 SDNode *N, unsigned ResNE) { 11071 unsigned Opcode = N->getOpcode(); 11072 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11073 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11074 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11075 "Expected an overflow opcode"); 11076 11077 EVT ResVT = N->getValueType(0); 11078 EVT OvVT = N->getValueType(1); 11079 EVT ResEltVT = ResVT.getVectorElementType(); 11080 EVT OvEltVT = OvVT.getVectorElementType(); 11081 SDLoc dl(N); 11082 11083 // If ResNE is 0, fully unroll the vector op. 11084 unsigned NE = ResVT.getVectorNumElements(); 11085 if (ResNE == 0) 11086 ResNE = NE; 11087 else if (NE > ResNE) 11088 NE = ResNE; 11089 11090 SmallVector<SDValue, 8> LHSScalars; 11091 SmallVector<SDValue, 8> RHSScalars; 11092 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11093 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11094 11095 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11096 SDVTList VTs = getVTList(ResEltVT, SVT); 11097 SmallVector<SDValue, 8> ResScalars; 11098 SmallVector<SDValue, 8> OvScalars; 11099 for (unsigned i = 0; i < NE; ++i) { 11100 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11101 SDValue Ov = 11102 getSelect(dl, OvEltVT, Res.getValue(1), 11103 getBoolConstant(true, dl, OvEltVT, ResVT), 11104 getConstant(0, dl, OvEltVT)); 11105 11106 ResScalars.push_back(Res); 11107 OvScalars.push_back(Ov); 11108 } 11109 11110 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11111 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11112 11113 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11114 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11115 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11116 getBuildVector(NewOvVT, dl, OvScalars)); 11117 } 11118 11119 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11120 LoadSDNode *Base, 11121 unsigned Bytes, 11122 int Dist) const { 11123 if (LD->isVolatile() || Base->isVolatile()) 11124 return false; 11125 // TODO: probably too restrictive for atomics, revisit 11126 if (!LD->isSimple()) 11127 return false; 11128 if (LD->isIndexed() || Base->isIndexed()) 11129 return false; 11130 if (LD->getChain() != Base->getChain()) 11131 return false; 11132 EVT VT = LD->getValueType(0); 11133 if (VT.getSizeInBits() / 8 != Bytes) 11134 return false; 11135 11136 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11137 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11138 11139 int64_t Offset = 0; 11140 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11141 return (Dist * Bytes == Offset); 11142 return false; 11143 } 11144 11145 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11146 /// if it cannot be inferred. 11147 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11148 // If this is a GlobalAddress + cst, return the alignment. 11149 const GlobalValue *GV = nullptr; 11150 int64_t GVOffset = 0; 11151 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11152 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11153 KnownBits Known(PtrWidth); 11154 llvm::computeKnownBits(GV, Known, getDataLayout()); 11155 unsigned AlignBits = Known.countMinTrailingZeros(); 11156 if (AlignBits) 11157 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11158 } 11159 11160 // If this is a direct reference to a stack slot, use information about the 11161 // stack slot's alignment. 11162 int FrameIdx = INT_MIN; 11163 int64_t FrameOffset = 0; 11164 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11165 FrameIdx = FI->getIndex(); 11166 } else if (isBaseWithConstantOffset(Ptr) && 11167 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11168 // Handle FI+Cst 11169 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11170 FrameOffset = Ptr.getConstantOperandVal(1); 11171 } 11172 11173 if (FrameIdx != INT_MIN) { 11174 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11175 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11176 } 11177 11178 return None; 11179 } 11180 11181 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11182 /// which is split (or expanded) into two not necessarily identical pieces. 11183 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11184 // Currently all types are split in half. 11185 EVT LoVT, HiVT; 11186 if (!VT.isVector()) 11187 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11188 else 11189 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11190 11191 return std::make_pair(LoVT, HiVT); 11192 } 11193 11194 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11195 /// type, dependent on an enveloping VT that has been split into two identical 11196 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11197 std::pair<EVT, EVT> 11198 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11199 bool *HiIsEmpty) const { 11200 EVT EltTp = VT.getVectorElementType(); 11201 // Examples: 11202 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11203 // custom VL=9 with enveloping VL=8/8 yields 8/1 11204 // custom VL=10 with enveloping VL=8/8 yields 8/2 11205 // etc. 11206 ElementCount VTNumElts = VT.getVectorElementCount(); 11207 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11208 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11209 "Mixing fixed width and scalable vectors when enveloping a type"); 11210 EVT LoVT, HiVT; 11211 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11212 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11213 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11214 *HiIsEmpty = false; 11215 } else { 11216 // Flag that hi type has zero storage size, but return split envelop type 11217 // (this would be easier if vector types with zero elements were allowed). 11218 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11219 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11220 *HiIsEmpty = true; 11221 } 11222 return std::make_pair(LoVT, HiVT); 11223 } 11224 11225 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11226 /// low/high part. 11227 std::pair<SDValue, SDValue> 11228 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11229 const EVT &HiVT) { 11230 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11231 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11232 "Splitting vector with an invalid mixture of fixed and scalable " 11233 "vector types"); 11234 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11235 N.getValueType().getVectorMinNumElements() && 11236 "More vector elements requested than available!"); 11237 SDValue Lo, Hi; 11238 Lo = 11239 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11240 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11241 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11242 // IDX with the runtime scaling factor of the result vector type. For 11243 // fixed-width result vectors, that runtime scaling factor is 1. 11244 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11245 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11246 return std::make_pair(Lo, Hi); 11247 } 11248 11249 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11250 const SDLoc &DL) { 11251 // Split the vector length parameter. 11252 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11253 EVT VT = N.getValueType(); 11254 assert(VecVT.getVectorElementCount().isKnownEven() && 11255 "Expecting the mask to be an evenly-sized vector"); 11256 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11257 SDValue HalfNumElts = 11258 VecVT.isFixedLengthVector() 11259 ? getConstant(HalfMinNumElts, DL, VT) 11260 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11261 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11262 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11263 return std::make_pair(Lo, Hi); 11264 } 11265 11266 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11267 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11268 EVT VT = N.getValueType(); 11269 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11270 NextPowerOf2(VT.getVectorNumElements())); 11271 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11272 getVectorIdxConstant(0, DL)); 11273 } 11274 11275 void SelectionDAG::ExtractVectorElements(SDValue Op, 11276 SmallVectorImpl<SDValue> &Args, 11277 unsigned Start, unsigned Count, 11278 EVT EltVT) { 11279 EVT VT = Op.getValueType(); 11280 if (Count == 0) 11281 Count = VT.getVectorNumElements(); 11282 if (EltVT == EVT()) 11283 EltVT = VT.getVectorElementType(); 11284 SDLoc SL(Op); 11285 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11286 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11287 getVectorIdxConstant(i, SL))); 11288 } 11289 } 11290 11291 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11292 unsigned GlobalAddressSDNode::getAddressSpace() const { 11293 return getGlobal()->getType()->getAddressSpace(); 11294 } 11295 11296 Type *ConstantPoolSDNode::getType() const { 11297 if (isMachineConstantPoolEntry()) 11298 return Val.MachineCPVal->getType(); 11299 return Val.ConstVal->getType(); 11300 } 11301 11302 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11303 unsigned &SplatBitSize, 11304 bool &HasAnyUndefs, 11305 unsigned MinSplatBits, 11306 bool IsBigEndian) const { 11307 EVT VT = getValueType(0); 11308 assert(VT.isVector() && "Expected a vector type"); 11309 unsigned VecWidth = VT.getSizeInBits(); 11310 if (MinSplatBits > VecWidth) 11311 return false; 11312 11313 // FIXME: The widths are based on this node's type, but build vectors can 11314 // truncate their operands. 11315 SplatValue = APInt(VecWidth, 0); 11316 SplatUndef = APInt(VecWidth, 0); 11317 11318 // Get the bits. Bits with undefined values (when the corresponding element 11319 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11320 // in SplatValue. If any of the values are not constant, give up and return 11321 // false. 11322 unsigned int NumOps = getNumOperands(); 11323 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11324 unsigned EltWidth = VT.getScalarSizeInBits(); 11325 11326 for (unsigned j = 0; j < NumOps; ++j) { 11327 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11328 SDValue OpVal = getOperand(i); 11329 unsigned BitPos = j * EltWidth; 11330 11331 if (OpVal.isUndef()) 11332 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11333 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11334 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11335 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11336 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11337 else 11338 return false; 11339 } 11340 11341 // The build_vector is all constants or undefs. Find the smallest element 11342 // size that splats the vector. 11343 HasAnyUndefs = (SplatUndef != 0); 11344 11345 // FIXME: This does not work for vectors with elements less than 8 bits. 11346 while (VecWidth > 8) { 11347 unsigned HalfSize = VecWidth / 2; 11348 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11349 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11350 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11351 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11352 11353 // If the two halves do not match (ignoring undef bits), stop here. 11354 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11355 MinSplatBits > HalfSize) 11356 break; 11357 11358 SplatValue = HighValue | LowValue; 11359 SplatUndef = HighUndef & LowUndef; 11360 11361 VecWidth = HalfSize; 11362 } 11363 11364 SplatBitSize = VecWidth; 11365 return true; 11366 } 11367 11368 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11369 BitVector *UndefElements) const { 11370 unsigned NumOps = getNumOperands(); 11371 if (UndefElements) { 11372 UndefElements->clear(); 11373 UndefElements->resize(NumOps); 11374 } 11375 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11376 if (!DemandedElts) 11377 return SDValue(); 11378 SDValue Splatted; 11379 for (unsigned i = 0; i != NumOps; ++i) { 11380 if (!DemandedElts[i]) 11381 continue; 11382 SDValue Op = getOperand(i); 11383 if (Op.isUndef()) { 11384 if (UndefElements) 11385 (*UndefElements)[i] = true; 11386 } else if (!Splatted) { 11387 Splatted = Op; 11388 } else if (Splatted != Op) { 11389 return SDValue(); 11390 } 11391 } 11392 11393 if (!Splatted) { 11394 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11395 assert(getOperand(FirstDemandedIdx).isUndef() && 11396 "Can only have a splat without a constant for all undefs."); 11397 return getOperand(FirstDemandedIdx); 11398 } 11399 11400 return Splatted; 11401 } 11402 11403 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11404 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11405 return getSplatValue(DemandedElts, UndefElements); 11406 } 11407 11408 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11409 SmallVectorImpl<SDValue> &Sequence, 11410 BitVector *UndefElements) const { 11411 unsigned NumOps = getNumOperands(); 11412 Sequence.clear(); 11413 if (UndefElements) { 11414 UndefElements->clear(); 11415 UndefElements->resize(NumOps); 11416 } 11417 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11418 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11419 return false; 11420 11421 // Set the undefs even if we don't find a sequence (like getSplatValue). 11422 if (UndefElements) 11423 for (unsigned I = 0; I != NumOps; ++I) 11424 if (DemandedElts[I] && getOperand(I).isUndef()) 11425 (*UndefElements)[I] = true; 11426 11427 // Iteratively widen the sequence length looking for repetitions. 11428 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11429 Sequence.append(SeqLen, SDValue()); 11430 for (unsigned I = 0; I != NumOps; ++I) { 11431 if (!DemandedElts[I]) 11432 continue; 11433 SDValue &SeqOp = Sequence[I % SeqLen]; 11434 SDValue Op = getOperand(I); 11435 if (Op.isUndef()) { 11436 if (!SeqOp) 11437 SeqOp = Op; 11438 continue; 11439 } 11440 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11441 Sequence.clear(); 11442 break; 11443 } 11444 SeqOp = Op; 11445 } 11446 if (!Sequence.empty()) 11447 return true; 11448 } 11449 11450 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11451 return false; 11452 } 11453 11454 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11455 BitVector *UndefElements) const { 11456 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11457 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11458 } 11459 11460 ConstantSDNode * 11461 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11462 BitVector *UndefElements) const { 11463 return dyn_cast_or_null<ConstantSDNode>( 11464 getSplatValue(DemandedElts, UndefElements)); 11465 } 11466 11467 ConstantSDNode * 11468 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11469 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11470 } 11471 11472 ConstantFPSDNode * 11473 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11474 BitVector *UndefElements) const { 11475 return dyn_cast_or_null<ConstantFPSDNode>( 11476 getSplatValue(DemandedElts, UndefElements)); 11477 } 11478 11479 ConstantFPSDNode * 11480 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11481 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11482 } 11483 11484 int32_t 11485 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11486 uint32_t BitWidth) const { 11487 if (ConstantFPSDNode *CN = 11488 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11489 bool IsExact; 11490 APSInt IntVal(BitWidth); 11491 const APFloat &APF = CN->getValueAPF(); 11492 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11493 APFloat::opOK || 11494 !IsExact) 11495 return -1; 11496 11497 return IntVal.exactLogBase2(); 11498 } 11499 return -1; 11500 } 11501 11502 bool BuildVectorSDNode::getConstantRawBits( 11503 bool IsLittleEndian, unsigned DstEltSizeInBits, 11504 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11505 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11506 if (!isConstant()) 11507 return false; 11508 11509 unsigned NumSrcOps = getNumOperands(); 11510 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11511 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11512 "Invalid bitcast scale"); 11513 11514 // Extract raw src bits. 11515 SmallVector<APInt> SrcBitElements(NumSrcOps, 11516 APInt::getNullValue(SrcEltSizeInBits)); 11517 BitVector SrcUndeElements(NumSrcOps, false); 11518 11519 for (unsigned I = 0; I != NumSrcOps; ++I) { 11520 SDValue Op = getOperand(I); 11521 if (Op.isUndef()) { 11522 SrcUndeElements.set(I); 11523 continue; 11524 } 11525 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11526 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11527 assert((CInt || CFP) && "Unknown constant"); 11528 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11529 : CFP->getValueAPF().bitcastToAPInt(); 11530 } 11531 11532 // Recast to dst width. 11533 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11534 SrcBitElements, UndefElements, SrcUndeElements); 11535 return true; 11536 } 11537 11538 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11539 unsigned DstEltSizeInBits, 11540 SmallVectorImpl<APInt> &DstBitElements, 11541 ArrayRef<APInt> SrcBitElements, 11542 BitVector &DstUndefElements, 11543 const BitVector &SrcUndefElements) { 11544 unsigned NumSrcOps = SrcBitElements.size(); 11545 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11546 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11547 "Invalid bitcast scale"); 11548 assert(NumSrcOps == SrcUndefElements.size() && 11549 "Vector size mismatch"); 11550 11551 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11552 DstUndefElements.clear(); 11553 DstUndefElements.resize(NumDstOps, false); 11554 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11555 11556 // Concatenate src elements constant bits together into dst element. 11557 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11558 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11559 for (unsigned I = 0; I != NumDstOps; ++I) { 11560 DstUndefElements.set(I); 11561 APInt &DstBits = DstBitElements[I]; 11562 for (unsigned J = 0; J != Scale; ++J) { 11563 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11564 if (SrcUndefElements[Idx]) 11565 continue; 11566 DstUndefElements.reset(I); 11567 const APInt &SrcBits = SrcBitElements[Idx]; 11568 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11569 "Illegal constant bitwidths"); 11570 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11571 } 11572 } 11573 return; 11574 } 11575 11576 // Split src element constant bits into dst elements. 11577 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11578 for (unsigned I = 0; I != NumSrcOps; ++I) { 11579 if (SrcUndefElements[I]) { 11580 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11581 continue; 11582 } 11583 const APInt &SrcBits = SrcBitElements[I]; 11584 for (unsigned J = 0; J != Scale; ++J) { 11585 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11586 APInt &DstBits = DstBitElements[Idx]; 11587 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11588 } 11589 } 11590 } 11591 11592 bool BuildVectorSDNode::isConstant() const { 11593 for (const SDValue &Op : op_values()) { 11594 unsigned Opc = Op.getOpcode(); 11595 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11596 return false; 11597 } 11598 return true; 11599 } 11600 11601 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11602 // Find the first non-undef value in the shuffle mask. 11603 unsigned i, e; 11604 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11605 /* search */; 11606 11607 // If all elements are undefined, this shuffle can be considered a splat 11608 // (although it should eventually get simplified away completely). 11609 if (i == e) 11610 return true; 11611 11612 // Make sure all remaining elements are either undef or the same as the first 11613 // non-undef value. 11614 for (int Idx = Mask[i]; i != e; ++i) 11615 if (Mask[i] >= 0 && Mask[i] != Idx) 11616 return false; 11617 return true; 11618 } 11619 11620 // Returns the SDNode if it is a constant integer BuildVector 11621 // or constant integer. 11622 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11623 if (isa<ConstantSDNode>(N)) 11624 return N.getNode(); 11625 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11626 return N.getNode(); 11627 // Treat a GlobalAddress supporting constant offset folding as a 11628 // constant integer. 11629 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11630 if (GA->getOpcode() == ISD::GlobalAddress && 11631 TLI->isOffsetFoldingLegal(GA)) 11632 return GA; 11633 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11634 isa<ConstantSDNode>(N.getOperand(0))) 11635 return N.getNode(); 11636 return nullptr; 11637 } 11638 11639 // Returns the SDNode if it is a constant float BuildVector 11640 // or constant float. 11641 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11642 if (isa<ConstantFPSDNode>(N)) 11643 return N.getNode(); 11644 11645 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11646 return N.getNode(); 11647 11648 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11649 isa<ConstantFPSDNode>(N.getOperand(0))) 11650 return N.getNode(); 11651 11652 return nullptr; 11653 } 11654 11655 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11656 assert(!Node->OperandList && "Node already has operands"); 11657 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11658 "too many operands to fit into SDNode"); 11659 SDUse *Ops = OperandRecycler.allocate( 11660 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11661 11662 bool IsDivergent = false; 11663 for (unsigned I = 0; I != Vals.size(); ++I) { 11664 Ops[I].setUser(Node); 11665 Ops[I].setInitial(Vals[I]); 11666 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11667 IsDivergent |= Ops[I].getNode()->isDivergent(); 11668 } 11669 Node->NumOperands = Vals.size(); 11670 Node->OperandList = Ops; 11671 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11672 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11673 Node->SDNodeBits.IsDivergent = IsDivergent; 11674 } 11675 checkForCycles(Node); 11676 } 11677 11678 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11679 SmallVectorImpl<SDValue> &Vals) { 11680 size_t Limit = SDNode::getMaxNumOperands(); 11681 while (Vals.size() > Limit) { 11682 unsigned SliceIdx = Vals.size() - Limit; 11683 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11684 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11685 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11686 Vals.emplace_back(NewTF); 11687 } 11688 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11689 } 11690 11691 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11692 EVT VT, SDNodeFlags Flags) { 11693 switch (Opcode) { 11694 default: 11695 return SDValue(); 11696 case ISD::ADD: 11697 case ISD::OR: 11698 case ISD::XOR: 11699 case ISD::UMAX: 11700 return getConstant(0, DL, VT); 11701 case ISD::MUL: 11702 return getConstant(1, DL, VT); 11703 case ISD::AND: 11704 case ISD::UMIN: 11705 return getAllOnesConstant(DL, VT); 11706 case ISD::SMAX: 11707 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11708 case ISD::SMIN: 11709 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11710 case ISD::FADD: 11711 return getConstantFP(-0.0, DL, VT); 11712 case ISD::FMUL: 11713 return getConstantFP(1.0, DL, VT); 11714 case ISD::FMINNUM: 11715 case ISD::FMAXNUM: { 11716 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11717 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11718 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11719 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11720 APFloat::getLargest(Semantics); 11721 if (Opcode == ISD::FMAXNUM) 11722 NeutralAF.changeSign(); 11723 11724 return getConstantFP(NeutralAF, DL, VT); 11725 } 11726 } 11727 } 11728 11729 #ifndef NDEBUG 11730 static void checkForCyclesHelper(const SDNode *N, 11731 SmallPtrSetImpl<const SDNode*> &Visited, 11732 SmallPtrSetImpl<const SDNode*> &Checked, 11733 const llvm::SelectionDAG *DAG) { 11734 // If this node has already been checked, don't check it again. 11735 if (Checked.count(N)) 11736 return; 11737 11738 // If a node has already been visited on this depth-first walk, reject it as 11739 // a cycle. 11740 if (!Visited.insert(N).second) { 11741 errs() << "Detected cycle in SelectionDAG\n"; 11742 dbgs() << "Offending node:\n"; 11743 N->dumprFull(DAG); dbgs() << "\n"; 11744 abort(); 11745 } 11746 11747 for (const SDValue &Op : N->op_values()) 11748 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11749 11750 Checked.insert(N); 11751 Visited.erase(N); 11752 } 11753 #endif 11754 11755 void llvm::checkForCycles(const llvm::SDNode *N, 11756 const llvm::SelectionDAG *DAG, 11757 bool force) { 11758 #ifndef NDEBUG 11759 bool check = force; 11760 #ifdef EXPENSIVE_CHECKS 11761 check = true; 11762 #endif // EXPENSIVE_CHECKS 11763 if (check) { 11764 assert(N && "Checking nonexistent SDNode"); 11765 SmallPtrSet<const SDNode*, 32> visited; 11766 SmallPtrSet<const SDNode*, 32> checked; 11767 checkForCyclesHelper(N, visited, checked, DAG); 11768 } 11769 #endif // !NDEBUG 11770 } 11771 11772 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11773 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11774 } 11775