1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93        cl::Hidden, cl::init(true),
94        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95 
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97        cl::desc("Number limit for gluing ld/st of memcpy."),
98        cl::Hidden, cl::init(0));
99 
100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103 
104 //===----------------------------------------------------------------------===//
105 //                              ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107 
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113   return getValueAPF().bitwiseIsEqual(V);
114 }
115 
116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117                                            const APFloat& Val) {
118   assert(VT.isFloatingPoint() && "Can only convert between FP types");
119 
120   // convert modifies in place, so make a copy.
121   APFloat Val2 = APFloat(Val);
122   bool losesInfo;
123   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124                       APFloat::rmNearestTiesToEven,
125                       &losesInfo);
126   return !losesInfo;
127 }
128 
129 //===----------------------------------------------------------------------===//
130 //                              ISD Namespace
131 //===----------------------------------------------------------------------===//
132 
133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134   auto *BV = dyn_cast<BuildVectorSDNode>(N);
135   if (!BV)
136     return false;
137 
138   APInt SplatUndef;
139   unsigned SplatBitSize;
140   bool HasUndefs;
141   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143                              EltSize) &&
144          EltSize == SplatBitSize;
145 }
146 
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149 
150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151   // Look through a bit convert.
152   while (N->getOpcode() == ISD::BITCAST)
153     N = N->getOperand(0).getNode();
154 
155   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156 
157   unsigned i = 0, e = N->getNumOperands();
158 
159   // Skip over all of the undef values.
160   while (i != e && N->getOperand(i).isUndef())
161     ++i;
162 
163   // Do not accept an all-undef vector.
164   if (i == e) return false;
165 
166   // Do not accept build_vectors that aren't all constants or which have non-~0
167   // elements. We have to be a bit careful here, as the type of the constant
168   // may not be the same as the type of the vector elements due to type
169   // legalization (the elements are promoted to a legal type for the target and
170   // a vector of a type may be legal when the base element type is not).
171   // We only want to check enough bits to cover the vector elements, because
172   // we care if the resultant vector is all ones, not whether the individual
173   // constants are.
174   SDValue NotZero = N->getOperand(i);
175   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178       return false;
179   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181       return false;
182   } else
183     return false;
184 
185   // Okay, we have at least one ~0 value, check to see if the rest match or are
186   // undefs. Even with the above element type twiddling, this should be OK, as
187   // the same type legalization should have applied to all the elements.
188   for (++i; i != e; ++i)
189     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190       return false;
191   return true;
192 }
193 
194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195   // Look through a bit convert.
196   while (N->getOpcode() == ISD::BITCAST)
197     N = N->getOperand(0).getNode();
198 
199   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200 
201   bool IsAllUndef = true;
202   for (const SDValue &Op : N->op_values()) {
203     if (Op.isUndef())
204       continue;
205     IsAllUndef = false;
206     // Do not accept build_vectors that aren't all constants or which have non-0
207     // elements. We have to be a bit careful here, as the type of the constant
208     // may not be the same as the type of the vector elements due to type
209     // legalization (the elements are promoted to a legal type for the target
210     // and a vector of a type may be legal when the base element type is not).
211     // We only want to check enough bits to cover the vector elements, because
212     // we care if the resultant vector is all zeros, not whether the individual
213     // constants are.
214     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217         return false;
218     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220         return false;
221     } else
222       return false;
223   }
224 
225   // Do not accept an all-undef vector.
226   if (IsAllUndef)
227     return false;
228   return true;
229 }
230 
231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232   if (N->getOpcode() != ISD::BUILD_VECTOR)
233     return false;
234 
235   for (const SDValue &Op : N->op_values()) {
236     if (Op.isUndef())
237       continue;
238     if (!isa<ConstantSDNode>(Op))
239       return false;
240   }
241   return true;
242 }
243 
244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245   if (N->getOpcode() != ISD::BUILD_VECTOR)
246     return false;
247 
248   for (const SDValue &Op : N->op_values()) {
249     if (Op.isUndef())
250       continue;
251     if (!isa<ConstantFPSDNode>(Op))
252       return false;
253   }
254   return true;
255 }
256 
257 bool ISD::allOperandsUndef(const SDNode *N) {
258   // Return false if the node has no operands.
259   // This is "logically inconsistent" with the definition of "all" but
260   // is probably the desired behavior.
261   if (N->getNumOperands() == 0)
262     return false;
263 
264   for (const SDValue &Op : N->op_values())
265     if (!Op.isUndef())
266       return false;
267 
268   return true;
269 }
270 
271 bool ISD::matchUnaryPredicate(SDValue Op,
272                               std::function<bool(ConstantSDNode *)> Match) {
273   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274     return Match(Cst);
275 
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283       return false;
284   }
285   return true;
286 }
287 
288 bool ISD::matchBinaryPredicate(
289     SDValue LHS, SDValue RHS,
290     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291   if (LHS.getValueType() != RHS.getValueType())
292     return false;
293 
294   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296       return Match(LHSCst, RHSCst);
297 
298   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299       ISD::BUILD_VECTOR != RHS.getOpcode())
300     return false;
301 
302   EVT SVT = LHS.getValueType().getScalarType();
303   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304     auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305     auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306     if (!LHSCst || !RHSCst)
307       return false;
308     if (LHSCst->getValueType(0) != SVT ||
309         LHSCst->getValueType(0) != RHSCst->getValueType(0))
310       return false;
311     if (!Match(LHSCst, RHSCst))
312       return false;
313   }
314   return true;
315 }
316 
317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318   switch (ExtType) {
319   case ISD::EXTLOAD:
320     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321   case ISD::SEXTLOAD:
322     return ISD::SIGN_EXTEND;
323   case ISD::ZEXTLOAD:
324     return ISD::ZERO_EXTEND;
325   default:
326     break;
327   }
328 
329   llvm_unreachable("Invalid LoadExtType");
330 }
331 
332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333   // To perform this operation, we just need to swap the L and G bits of the
334   // operation.
335   unsigned OldL = (Operation >> 2) & 1;
336   unsigned OldG = (Operation >> 1) & 1;
337   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
338                        (OldL << 1) |       // New G bit
339                        (OldG << 2));       // New L bit.
340 }
341 
342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343   unsigned Operation = Op;
344   if (isInteger)
345     Operation ^= 7;   // Flip L, G, E bits, but not U.
346   else
347     Operation ^= 15;  // Flip all of the condition bits.
348 
349   if (Operation > ISD::SETTRUE2)
350     Operation &= ~8;  // Don't let N and U bits get set.
351 
352   return ISD::CondCode(Operation);
353 }
354 
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
358 static int isSignedOp(ISD::CondCode Opcode) {
359   switch (Opcode) {
360   default: llvm_unreachable("Illegal integer setcc operation!");
361   case ISD::SETEQ:
362   case ISD::SETNE: return 0;
363   case ISD::SETLT:
364   case ISD::SETLE:
365   case ISD::SETGT:
366   case ISD::SETGE: return 1;
367   case ISD::SETULT:
368   case ISD::SETULE:
369   case ISD::SETUGT:
370   case ISD::SETUGE: return 2;
371   }
372 }
373 
374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375                                        bool IsInteger) {
376   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377     // Cannot fold a signed integer setcc with an unsigned integer setcc.
378     return ISD::SETCC_INVALID;
379 
380   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
381 
382   // If the N and U bits get set, then the resultant comparison DOES suddenly
383   // care about orderedness, and it is true when ordered.
384   if (Op > ISD::SETTRUE2)
385     Op &= ~16;     // Clear the U bit if the N bit is set.
386 
387   // Canonicalize illegal integer setcc's.
388   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
389     Op = ISD::SETNE;
390 
391   return ISD::CondCode(Op);
392 }
393 
394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395                                         bool IsInteger) {
396   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397     // Cannot fold a signed setcc with an unsigned setcc.
398     return ISD::SETCC_INVALID;
399 
400   // Combine all of the condition bits.
401   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402 
403   // Canonicalize illegal integer setcc's.
404   if (IsInteger) {
405     switch (Result) {
406     default: break;
407     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
408     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
409     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
410     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
411     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
412     }
413   }
414 
415   return Result;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                           SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421 
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
424   ID.AddInteger(OpC);
425 }
426 
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430   ID.AddPointer(VTList.VTs);
431 }
432 
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435                               ArrayRef<SDValue> Ops) {
436   for (auto& Op : Ops) {
437     ID.AddPointer(Op.getNode());
438     ID.AddInteger(Op.getResNo());
439   }
440 }
441 
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444                               ArrayRef<SDUse> Ops) {
445   for (auto& Op : Ops) {
446     ID.AddPointer(Op.getNode());
447     ID.AddInteger(Op.getResNo());
448   }
449 }
450 
451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452                           SDVTList VTList, ArrayRef<SDValue> OpList) {
453   AddNodeIDOpcode(ID, OpC);
454   AddNodeIDValueTypes(ID, VTList);
455   AddNodeIDOperands(ID, OpList);
456 }
457 
458 /// If this is an SDNode with special info, add this info to the NodeID data.
459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460   switch (N->getOpcode()) {
461   case ISD::TargetExternalSymbol:
462   case ISD::ExternalSymbol:
463   case ISD::MCSymbol:
464     llvm_unreachable("Should only be used on nodes with operands");
465   default: break;  // Normal nodes don't need extra info.
466   case ISD::TargetConstant:
467   case ISD::Constant: {
468     const ConstantSDNode *C = cast<ConstantSDNode>(N);
469     ID.AddPointer(C->getConstantIntValue());
470     ID.AddBoolean(C->isOpaque());
471     break;
472   }
473   case ISD::TargetConstantFP:
474   case ISD::ConstantFP:
475     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476     break;
477   case ISD::TargetGlobalAddress:
478   case ISD::GlobalAddress:
479   case ISD::TargetGlobalTLSAddress:
480   case ISD::GlobalTLSAddress: {
481     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482     ID.AddPointer(GA->getGlobal());
483     ID.AddInteger(GA->getOffset());
484     ID.AddInteger(GA->getTargetFlags());
485     break;
486   }
487   case ISD::BasicBlock:
488     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489     break;
490   case ISD::Register:
491     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492     break;
493   case ISD::RegisterMask:
494     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495     break;
496   case ISD::SRCVALUE:
497     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498     break;
499   case ISD::FrameIndex:
500   case ISD::TargetFrameIndex:
501     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502     break;
503   case ISD::JumpTable:
504   case ISD::TargetJumpTable:
505     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507     break;
508   case ISD::ConstantPool:
509   case ISD::TargetConstantPool: {
510     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511     ID.AddInteger(CP->getAlignment());
512     ID.AddInteger(CP->getOffset());
513     if (CP->isMachineConstantPoolEntry())
514       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515     else
516       ID.AddPointer(CP->getConstVal());
517     ID.AddInteger(CP->getTargetFlags());
518     break;
519   }
520   case ISD::TargetIndex: {
521     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522     ID.AddInteger(TI->getIndex());
523     ID.AddInteger(TI->getOffset());
524     ID.AddInteger(TI->getTargetFlags());
525     break;
526   }
527   case ISD::LOAD: {
528     const LoadSDNode *LD = cast<LoadSDNode>(N);
529     ID.AddInteger(LD->getMemoryVT().getRawBits());
530     ID.AddInteger(LD->getRawSubclassData());
531     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532     break;
533   }
534   case ISD::STORE: {
535     const StoreSDNode *ST = cast<StoreSDNode>(N);
536     ID.AddInteger(ST->getMemoryVT().getRawBits());
537     ID.AddInteger(ST->getRawSubclassData());
538     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539     break;
540   }
541   case ISD::MLOAD: {
542     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
543     ID.AddInteger(MLD->getMemoryVT().getRawBits());
544     ID.AddInteger(MLD->getRawSubclassData());
545     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
546     break;
547   }
548   case ISD::MSTORE: {
549     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
550     ID.AddInteger(MST->getMemoryVT().getRawBits());
551     ID.AddInteger(MST->getRawSubclassData());
552     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
553     break;
554   }
555   case ISD::MGATHER: {
556     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
557     ID.AddInteger(MG->getMemoryVT().getRawBits());
558     ID.AddInteger(MG->getRawSubclassData());
559     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
560     break;
561   }
562   case ISD::MSCATTER: {
563     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
564     ID.AddInteger(MS->getMemoryVT().getRawBits());
565     ID.AddInteger(MS->getRawSubclassData());
566     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::ATOMIC_CMP_SWAP:
570   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
571   case ISD::ATOMIC_SWAP:
572   case ISD::ATOMIC_LOAD_ADD:
573   case ISD::ATOMIC_LOAD_SUB:
574   case ISD::ATOMIC_LOAD_AND:
575   case ISD::ATOMIC_LOAD_CLR:
576   case ISD::ATOMIC_LOAD_OR:
577   case ISD::ATOMIC_LOAD_XOR:
578   case ISD::ATOMIC_LOAD_NAND:
579   case ISD::ATOMIC_LOAD_MIN:
580   case ISD::ATOMIC_LOAD_MAX:
581   case ISD::ATOMIC_LOAD_UMIN:
582   case ISD::ATOMIC_LOAD_UMAX:
583   case ISD::ATOMIC_LOAD:
584   case ISD::ATOMIC_STORE: {
585     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
586     ID.AddInteger(AT->getMemoryVT().getRawBits());
587     ID.AddInteger(AT->getRawSubclassData());
588     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::PREFETCH: {
592     const MemSDNode *PF = cast<MemSDNode>(N);
593     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
594     break;
595   }
596   case ISD::VECTOR_SHUFFLE: {
597     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
598     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
599          i != e; ++i)
600       ID.AddInteger(SVN->getMaskElt(i));
601     break;
602   }
603   case ISD::TargetBlockAddress:
604   case ISD::BlockAddress: {
605     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
606     ID.AddPointer(BA->getBlockAddress());
607     ID.AddInteger(BA->getOffset());
608     ID.AddInteger(BA->getTargetFlags());
609     break;
610   }
611   } // end switch (N->getOpcode())
612 
613   // Target specific memory nodes could also have address spaces to check.
614   if (N->isTargetMemoryOpcode())
615     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
616 }
617 
618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
619 /// data.
620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
621   AddNodeIDOpcode(ID, N->getOpcode());
622   // Add the return value info.
623   AddNodeIDValueTypes(ID, N->getVTList());
624   // Add the operand info.
625   AddNodeIDOperands(ID, N->ops());
626 
627   // Handle SDNode leafs with special info.
628   AddNodeIDCustom(ID, N);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //                              SelectionDAG Class
633 //===----------------------------------------------------------------------===//
634 
635 /// doNotCSE - Return true if CSE should not be performed for this node.
636 static bool doNotCSE(SDNode *N) {
637   if (N->getValueType(0) == MVT::Glue)
638     return true; // Never CSE anything that produces a flag.
639 
640   switch (N->getOpcode()) {
641   default: break;
642   case ISD::HANDLENODE:
643   case ISD::EH_LABEL:
644     return true;   // Never CSE these nodes.
645   }
646 
647   // Check that remaining values produced are not flags.
648   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
649     if (N->getValueType(i) == MVT::Glue)
650       return true; // Never CSE anything that produces a flag.
651 
652   return false;
653 }
654 
655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
656 /// SelectionDAG.
657 void SelectionDAG::RemoveDeadNodes() {
658   // Create a dummy node (which is not added to allnodes), that adds a reference
659   // to the root node, preventing it from being deleted.
660   HandleSDNode Dummy(getRoot());
661 
662   SmallVector<SDNode*, 128> DeadNodes;
663 
664   // Add all obviously-dead nodes to the DeadNodes worklist.
665   for (SDNode &Node : allnodes())
666     if (Node.use_empty())
667       DeadNodes.push_back(&Node);
668 
669   RemoveDeadNodes(DeadNodes);
670 
671   // If the root changed (e.g. it was a dead load, update the root).
672   setRoot(Dummy.getValue());
673 }
674 
675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
676 /// given list, and any nodes that become unreachable as a result.
677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
678 
679   // Process the worklist, deleting the nodes and adding their uses to the
680   // worklist.
681   while (!DeadNodes.empty()) {
682     SDNode *N = DeadNodes.pop_back_val();
683     // Skip to next node if we've already managed to delete the node. This could
684     // happen if replacing a node causes a node previously added to the node to
685     // be deleted.
686     if (N->getOpcode() == ISD::DELETED_NODE)
687       continue;
688 
689     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
690       DUL->NodeDeleted(N, nullptr);
691 
692     // Take the node out of the appropriate CSE map.
693     RemoveNodeFromCSEMaps(N);
694 
695     // Next, brutally remove the operand list.  This is safe to do, as there are
696     // no cycles in the graph.
697     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
698       SDUse &Use = *I++;
699       SDNode *Operand = Use.getNode();
700       Use.set(SDValue());
701 
702       // Now that we removed this operand, see if there are no uses of it left.
703       if (Operand->use_empty())
704         DeadNodes.push_back(Operand);
705     }
706 
707     DeallocateNode(N);
708   }
709 }
710 
711 void SelectionDAG::RemoveDeadNode(SDNode *N){
712   SmallVector<SDNode*, 16> DeadNodes(1, N);
713 
714   // Create a dummy node that adds a reference to the root node, preventing
715   // it from being deleted.  (This matters if the root is an operand of the
716   // dead node.)
717   HandleSDNode Dummy(getRoot());
718 
719   RemoveDeadNodes(DeadNodes);
720 }
721 
722 void SelectionDAG::DeleteNode(SDNode *N) {
723   // First take this out of the appropriate CSE map.
724   RemoveNodeFromCSEMaps(N);
725 
726   // Finally, remove uses due to operands of this node, remove from the
727   // AllNodes list, and delete the node.
728   DeleteNodeNotInCSEMaps(N);
729 }
730 
731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
732   assert(N->getIterator() != AllNodes.begin() &&
733          "Cannot delete the entry node!");
734   assert(N->use_empty() && "Cannot delete a node that is not dead!");
735 
736   // Drop all of the operands and decrement used node's use counts.
737   N->DropOperands();
738 
739   DeallocateNode(N);
740 }
741 
742 void SDDbgInfo::erase(const SDNode *Node) {
743   DbgValMapType::iterator I = DbgValMap.find(Node);
744   if (I == DbgValMap.end())
745     return;
746   for (auto &Val: I->second)
747     Val->setIsInvalidated();
748   DbgValMap.erase(I);
749 }
750 
751 void SelectionDAG::DeallocateNode(SDNode *N) {
752   // If we have operands, deallocate them.
753   removeOperands(N);
754 
755   NodeAllocator.Deallocate(AllNodes.remove(N));
756 
757   // Set the opcode to DELETED_NODE to help catch bugs when node
758   // memory is reallocated.
759   // FIXME: There are places in SDag that have grown a dependency on the opcode
760   // value in the released node.
761   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
762   N->NodeType = ISD::DELETED_NODE;
763 
764   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
765   // them and forget about that node.
766   DbgInfo->erase(N);
767 }
768 
769 #ifndef NDEBUG
770 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
771 static void VerifySDNode(SDNode *N) {
772   switch (N->getOpcode()) {
773   default:
774     break;
775   case ISD::BUILD_PAIR: {
776     EVT VT = N->getValueType(0);
777     assert(N->getNumValues() == 1 && "Too many results!");
778     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
779            "Wrong return type!");
780     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
781     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
782            "Mismatched operand types!");
783     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
784            "Wrong operand type!");
785     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
786            "Wrong return type size");
787     break;
788   }
789   case ISD::BUILD_VECTOR: {
790     assert(N->getNumValues() == 1 && "Too many results!");
791     assert(N->getValueType(0).isVector() && "Wrong return type!");
792     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793            "Wrong number of operands!");
794     EVT EltVT = N->getValueType(0).getVectorElementType();
795     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
796       assert((I->getValueType() == EltVT ||
797              (EltVT.isInteger() && I->getValueType().isInteger() &&
798               EltVT.bitsLE(I->getValueType()))) &&
799             "Wrong operand type!");
800       assert(I->getValueType() == N->getOperand(0).getValueType() &&
801              "Operands must all have the same type");
802     }
803     break;
804   }
805   }
806 }
807 #endif // NDEBUG
808 
809 /// Insert a newly allocated node into the DAG.
810 ///
811 /// Handles insertion into the all nodes list and CSE map, as well as
812 /// verification and other common operations when a new node is allocated.
813 void SelectionDAG::InsertNode(SDNode *N) {
814   AllNodes.push_back(N);
815 #ifndef NDEBUG
816   N->PersistentId = NextPersistentId++;
817   VerifySDNode(N);
818 #endif
819 }
820 
821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
822 /// correspond to it.  This is useful when we're about to delete or repurpose
823 /// the node.  We don't want future request for structurally identical nodes
824 /// to return N anymore.
825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
826   bool Erased = false;
827   switch (N->getOpcode()) {
828   case ISD::HANDLENODE: return false;  // noop.
829   case ISD::CONDCODE:
830     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
831            "Cond code doesn't exist!");
832     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
833     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
834     break;
835   case ISD::ExternalSymbol:
836     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
837     break;
838   case ISD::TargetExternalSymbol: {
839     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
840     Erased = TargetExternalSymbols.erase(
841                std::pair<std::string,unsigned char>(ESN->getSymbol(),
842                                                     ESN->getTargetFlags()));
843     break;
844   }
845   case ISD::MCSymbol: {
846     auto *MCSN = cast<MCSymbolSDNode>(N);
847     Erased = MCSymbols.erase(MCSN->getMCSymbol());
848     break;
849   }
850   case ISD::VALUETYPE: {
851     EVT VT = cast<VTSDNode>(N)->getVT();
852     if (VT.isExtended()) {
853       Erased = ExtendedValueTypeNodes.erase(VT);
854     } else {
855       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
856       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
857     }
858     break;
859   }
860   default:
861     // Remove it from the CSE Map.
862     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
863     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
864     Erased = CSEMap.RemoveNode(N);
865     break;
866   }
867 #ifndef NDEBUG
868   // Verify that the node was actually in one of the CSE maps, unless it has a
869   // flag result (which cannot be CSE'd) or is one of the special cases that are
870   // not subject to CSE.
871   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
872       !N->isMachineOpcode() && !doNotCSE(N)) {
873     N->dump(this);
874     dbgs() << "\n";
875     llvm_unreachable("Node is not in map!");
876   }
877 #endif
878   return Erased;
879 }
880 
881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
882 /// maps and modified in place. Add it back to the CSE maps, unless an identical
883 /// node already exists, in which case transfer all its users to the existing
884 /// node. This transfer can potentially trigger recursive merging.
885 void
886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
887   // For node types that aren't CSE'd, just act as if no identical node
888   // already exists.
889   if (!doNotCSE(N)) {
890     SDNode *Existing = CSEMap.GetOrInsertNode(N);
891     if (Existing != N) {
892       // If there was already an existing matching node, use ReplaceAllUsesWith
893       // to replace the dead one with the existing one.  This can cause
894       // recursive merging of other unrelated nodes down the line.
895       ReplaceAllUsesWith(N, Existing);
896 
897       // N is now dead. Inform the listeners and delete it.
898       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
899         DUL->NodeDeleted(N, Existing);
900       DeleteNodeNotInCSEMaps(N);
901       return;
902     }
903   }
904 
905   // If the node doesn't already exist, we updated it.  Inform listeners.
906   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
907     DUL->NodeUpdated(N);
908 }
909 
910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
911 /// were replaced with those specified.  If this node is never memoized,
912 /// return null, otherwise return a pointer to the slot it would take.  If a
913 /// node already exists with these operands, the slot will be non-null.
914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
915                                            void *&InsertPos) {
916   if (doNotCSE(N))
917     return nullptr;
918 
919   SDValue Ops[] = { Op };
920   FoldingSetNodeID ID;
921   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
922   AddNodeIDCustom(ID, N);
923   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
924   if (Node)
925     Node->intersectFlagsWith(N->getFlags());
926   return Node;
927 }
928 
929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
930 /// were replaced with those specified.  If this node is never memoized,
931 /// return null, otherwise return a pointer to the slot it would take.  If a
932 /// node already exists with these operands, the slot will be non-null.
933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
934                                            SDValue Op1, SDValue Op2,
935                                            void *&InsertPos) {
936   if (doNotCSE(N))
937     return nullptr;
938 
939   SDValue Ops[] = { Op1, Op2 };
940   FoldingSetNodeID ID;
941   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
942   AddNodeIDCustom(ID, N);
943   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
944   if (Node)
945     Node->intersectFlagsWith(N->getFlags());
946   return Node;
947 }
948 
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified.  If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take.  If a
952 /// node already exists with these operands, the slot will be non-null.
953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
954                                            void *&InsertPos) {
955   if (doNotCSE(N))
956     return nullptr;
957 
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966 
967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
968   Type *Ty = VT == MVT::iPTR ?
969                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
970                    VT.getTypeForEVT(*getContext());
971 
972   return getDataLayout().getABITypeAlignment(Ty);
973 }
974 
975 // EntryNode could meaningfully have debug info if we can find it...
976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
977     : TM(tm), OptLevel(OL),
978       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
979       Root(getEntryNode()) {
980   InsertNode(&EntryNode);
981   DbgInfo = new SDDbgInfo();
982 }
983 
984 void SelectionDAG::init(MachineFunction &NewMF,
985                         OptimizationRemarkEmitter &NewORE,
986                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
987                         LegacyDivergenceAnalysis * Divergence) {
988   MF = &NewMF;
989   SDAGISelPass = PassPtr;
990   ORE = &NewORE;
991   TLI = getSubtarget().getTargetLowering();
992   TSI = getSubtarget().getSelectionDAGInfo();
993   LibInfo = LibraryInfo;
994   Context = &MF->getFunction().getContext();
995   DA = Divergence;
996 }
997 
998 SelectionDAG::~SelectionDAG() {
999   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1000   allnodes_clear();
1001   OperandRecycler.clear(OperandAllocator);
1002   delete DbgInfo;
1003 }
1004 
1005 void SelectionDAG::allnodes_clear() {
1006   assert(&*AllNodes.begin() == &EntryNode);
1007   AllNodes.remove(AllNodes.begin());
1008   while (!AllNodes.empty())
1009     DeallocateNode(&AllNodes.front());
1010 #ifndef NDEBUG
1011   NextPersistentId = 0;
1012 #endif
1013 }
1014 
1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1016                                           void *&InsertPos) {
1017   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1018   if (N) {
1019     switch (N->getOpcode()) {
1020     default: break;
1021     case ISD::Constant:
1022     case ISD::ConstantFP:
1023       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1024                        "debug location.  Use another overload.");
1025     }
1026   }
1027   return N;
1028 }
1029 
1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1031                                           const SDLoc &DL, void *&InsertPos) {
1032   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1033   if (N) {
1034     switch (N->getOpcode()) {
1035     case ISD::Constant:
1036     case ISD::ConstantFP:
1037       // Erase debug location from the node if the node is used at several
1038       // different places. Do not propagate one location to all uses as it
1039       // will cause a worse single stepping debugging experience.
1040       if (N->getDebugLoc() != DL.getDebugLoc())
1041         N->setDebugLoc(DebugLoc());
1042       break;
1043     default:
1044       // When the node's point of use is located earlier in the instruction
1045       // sequence than its prior point of use, update its debug info to the
1046       // earlier location.
1047       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1048         N->setDebugLoc(DL.getDebugLoc());
1049       break;
1050     }
1051   }
1052   return N;
1053 }
1054 
1055 void SelectionDAG::clear() {
1056   allnodes_clear();
1057   OperandRecycler.clear(OperandAllocator);
1058   OperandAllocator.Reset();
1059   CSEMap.clear();
1060 
1061   ExtendedValueTypeNodes.clear();
1062   ExternalSymbols.clear();
1063   TargetExternalSymbols.clear();
1064   MCSymbols.clear();
1065   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1066             static_cast<CondCodeSDNode*>(nullptr));
1067   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1068             static_cast<SDNode*>(nullptr));
1069 
1070   EntryNode.UseList = nullptr;
1071   InsertNode(&EntryNode);
1072   Root = getEntryNode();
1073   DbgInfo->clear();
1074 }
1075 
1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1077   return VT.bitsGT(Op.getValueType())
1078              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1079              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1080 }
1081 
1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1083   return VT.bitsGT(Op.getValueType()) ?
1084     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1085     getNode(ISD::TRUNCATE, DL, VT, Op);
1086 }
1087 
1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1089   return VT.bitsGT(Op.getValueType()) ?
1090     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1091     getNode(ISD::TRUNCATE, DL, VT, Op);
1092 }
1093 
1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1095   return VT.bitsGT(Op.getValueType()) ?
1096     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1097     getNode(ISD::TRUNCATE, DL, VT, Op);
1098 }
1099 
1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1101                                         EVT OpVT) {
1102   if (VT.bitsLE(Op.getValueType()))
1103     return getNode(ISD::TRUNCATE, SL, VT, Op);
1104 
1105   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1106   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1107 }
1108 
1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1110   assert(!VT.isVector() &&
1111          "getZeroExtendInReg should use the vector element type instead of "
1112          "the vector type!");
1113   if (Op.getValueType().getScalarType() == VT) return Op;
1114   unsigned BitWidth = Op.getScalarValueSizeInBits();
1115   APInt Imm = APInt::getLowBitsSet(BitWidth,
1116                                    VT.getSizeInBits());
1117   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1118                  getConstant(Imm, DL, Op.getValueType()));
1119 }
1120 
1121 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1122                                               EVT VT) {
1123   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1124   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1125          "The sizes of the input and result must match in order to perform the "
1126          "extend in-register.");
1127   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1128          "The destination vector type must have fewer lanes than the input.");
1129   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1130 }
1131 
1132 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1133                                                EVT VT) {
1134   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1135   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1136          "The sizes of the input and result must match in order to perform the "
1137          "extend in-register.");
1138   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1139          "The destination vector type must have fewer lanes than the input.");
1140   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1141 }
1142 
1143 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1144                                                EVT VT) {
1145   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1146   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1147          "The sizes of the input and result must match in order to perform the "
1148          "extend in-register.");
1149   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1150          "The destination vector type must have fewer lanes than the input.");
1151   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1152 }
1153 
1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1156   EVT EltVT = VT.getScalarType();
1157   SDValue NegOne =
1158     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1159   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1160 }
1161 
1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1163   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1164   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1165 }
1166 
1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1168                                       EVT OpVT) {
1169   if (!V)
1170     return getConstant(0, DL, VT);
1171 
1172   switch (TLI->getBooleanContents(OpVT)) {
1173   case TargetLowering::ZeroOrOneBooleanContent:
1174   case TargetLowering::UndefinedBooleanContent:
1175     return getConstant(1, DL, VT);
1176   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1177     return getAllOnesConstant(DL, VT);
1178   }
1179   llvm_unreachable("Unexpected boolean content enum!");
1180 }
1181 
1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1183                                   bool isT, bool isO) {
1184   EVT EltVT = VT.getScalarType();
1185   assert((EltVT.getSizeInBits() >= 64 ||
1186          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1187          "getConstant with a uint64_t value that doesn't fit in the type!");
1188   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1189 }
1190 
1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1192                                   bool isT, bool isO) {
1193   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1194 }
1195 
1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1197                                   EVT VT, bool isT, bool isO) {
1198   assert(VT.isInteger() && "Cannot create FP integer constant!");
1199 
1200   EVT EltVT = VT.getScalarType();
1201   const ConstantInt *Elt = &Val;
1202 
1203   // In some cases the vector type is legal but the element type is illegal and
1204   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1205   // inserted value (the type does not need to match the vector element type).
1206   // Any extra bits introduced will be truncated away.
1207   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1208       TargetLowering::TypePromoteInteger) {
1209    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1210    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1211    Elt = ConstantInt::get(*getContext(), NewVal);
1212   }
1213   // In other cases the element type is illegal and needs to be expanded, for
1214   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1215   // the value into n parts and use a vector type with n-times the elements.
1216   // Then bitcast to the type requested.
1217   // Legalizing constants too early makes the DAGCombiner's job harder so we
1218   // only legalize if the DAG tells us we must produce legal types.
1219   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1220            TLI->getTypeAction(*getContext(), EltVT) ==
1221            TargetLowering::TypeExpandInteger) {
1222     const APInt &NewVal = Elt->getValue();
1223     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1224     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1225     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1226     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1227 
1228     // Check the temporary vector is the correct size. If this fails then
1229     // getTypeToTransformTo() probably returned a type whose size (in bits)
1230     // isn't a power-of-2 factor of the requested type size.
1231     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1232 
1233     SmallVector<SDValue, 2> EltParts;
1234     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1235       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1236                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1237                                      ViaEltVT, isT, isO));
1238     }
1239 
1240     // EltParts is currently in little endian order. If we actually want
1241     // big-endian order then reverse it now.
1242     if (getDataLayout().isBigEndian())
1243       std::reverse(EltParts.begin(), EltParts.end());
1244 
1245     // The elements must be reversed when the element order is different
1246     // to the endianness of the elements (because the BITCAST is itself a
1247     // vector shuffle in this situation). However, we do not need any code to
1248     // perform this reversal because getConstant() is producing a vector
1249     // splat.
1250     // This situation occurs in MIPS MSA.
1251 
1252     SmallVector<SDValue, 8> Ops;
1253     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1254       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1255 
1256     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1257     return V;
1258   }
1259 
1260   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1261          "APInt size does not match type size!");
1262   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1263   FoldingSetNodeID ID;
1264   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1265   ID.AddPointer(Elt);
1266   ID.AddBoolean(isO);
1267   void *IP = nullptr;
1268   SDNode *N = nullptr;
1269   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1270     if (!VT.isVector())
1271       return SDValue(N, 0);
1272 
1273   if (!N) {
1274     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1275     CSEMap.InsertNode(N, IP);
1276     InsertNode(N);
1277     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1278   }
1279 
1280   SDValue Result(N, 0);
1281   if (VT.isVector())
1282     Result = getSplatBuildVector(VT, DL, Result);
1283 
1284   return Result;
1285 }
1286 
1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1288                                         bool isTarget) {
1289   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1290 }
1291 
1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1293                                     bool isTarget) {
1294   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1295 }
1296 
1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1298                                     EVT VT, bool isTarget) {
1299   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1300 
1301   EVT EltVT = VT.getScalarType();
1302 
1303   // Do the map lookup using the actual bit pattern for the floating point
1304   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1305   // we don't have issues with SNANs.
1306   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1307   FoldingSetNodeID ID;
1308   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1309   ID.AddPointer(&V);
1310   void *IP = nullptr;
1311   SDNode *N = nullptr;
1312   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1313     if (!VT.isVector())
1314       return SDValue(N, 0);
1315 
1316   if (!N) {
1317     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1318     CSEMap.InsertNode(N, IP);
1319     InsertNode(N);
1320   }
1321 
1322   SDValue Result(N, 0);
1323   if (VT.isVector())
1324     Result = getSplatBuildVector(VT, DL, Result);
1325   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1326   return Result;
1327 }
1328 
1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1330                                     bool isTarget) {
1331   EVT EltVT = VT.getScalarType();
1332   if (EltVT == MVT::f32)
1333     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1334   else if (EltVT == MVT::f64)
1335     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1336   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1337            EltVT == MVT::f16) {
1338     bool Ignored;
1339     APFloat APF = APFloat(Val);
1340     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1341                 &Ignored);
1342     return getConstantFP(APF, DL, VT, isTarget);
1343   } else
1344     llvm_unreachable("Unsupported type in getConstantFP");
1345 }
1346 
1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1348                                        EVT VT, int64_t Offset, bool isTargetGA,
1349                                        unsigned char TargetFlags) {
1350   assert((TargetFlags == 0 || isTargetGA) &&
1351          "Cannot set target flags on target-independent globals");
1352 
1353   // Truncate (with sign-extension) the offset value to the pointer size.
1354   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1355   if (BitWidth < 64)
1356     Offset = SignExtend64(Offset, BitWidth);
1357 
1358   unsigned Opc;
1359   if (GV->isThreadLocal())
1360     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1361   else
1362     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1363 
1364   FoldingSetNodeID ID;
1365   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1366   ID.AddPointer(GV);
1367   ID.AddInteger(Offset);
1368   ID.AddInteger(TargetFlags);
1369   void *IP = nullptr;
1370   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1371     return SDValue(E, 0);
1372 
1373   auto *N = newSDNode<GlobalAddressSDNode>(
1374       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1375   CSEMap.InsertNode(N, IP);
1376     InsertNode(N);
1377   return SDValue(N, 0);
1378 }
1379 
1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1381   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1384   ID.AddInteger(FI);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388 
1389   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394 
1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1396                                    unsigned char TargetFlags) {
1397   assert((TargetFlags == 0 || isTarget) &&
1398          "Cannot set target flags on target-independent jump tables");
1399   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1402   ID.AddInteger(JTI);
1403   ID.AddInteger(TargetFlags);
1404   void *IP = nullptr;
1405   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1406     return SDValue(E, 0);
1407 
1408   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1409   CSEMap.InsertNode(N, IP);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1415                                       unsigned Alignment, int Offset,
1416                                       bool isTarget,
1417                                       unsigned char TargetFlags) {
1418   assert((TargetFlags == 0 || isTarget) &&
1419          "Cannot set target flags on target-independent globals");
1420   if (Alignment == 0)
1421     Alignment = MF->getFunction().optForSize()
1422                     ? getDataLayout().getABITypeAlignment(C->getType())
1423                     : getDataLayout().getPrefTypeAlignment(C->getType());
1424   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1425   FoldingSetNodeID ID;
1426   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1427   ID.AddInteger(Alignment);
1428   ID.AddInteger(Offset);
1429   ID.AddPointer(C);
1430   ID.AddInteger(TargetFlags);
1431   void *IP = nullptr;
1432   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1433     return SDValue(E, 0);
1434 
1435   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1436                                           TargetFlags);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441 
1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1443                                       unsigned Alignment, int Offset,
1444                                       bool isTarget,
1445                                       unsigned char TargetFlags) {
1446   assert((TargetFlags == 0 || isTarget) &&
1447          "Cannot set target flags on target-independent globals");
1448   if (Alignment == 0)
1449     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1450   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1451   FoldingSetNodeID ID;
1452   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1453   ID.AddInteger(Alignment);
1454   ID.AddInteger(Offset);
1455   C->addSelectionDAGCSEId(ID);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1462                                           TargetFlags);
1463   CSEMap.InsertNode(N, IP);
1464   InsertNode(N);
1465   return SDValue(N, 0);
1466 }
1467 
1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1469                                      unsigned char TargetFlags) {
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1472   ID.AddInteger(Index);
1473   ID.AddInteger(Offset);
1474   ID.AddInteger(TargetFlags);
1475   void *IP = nullptr;
1476   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1477     return SDValue(E, 0);
1478 
1479   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1480   CSEMap.InsertNode(N, IP);
1481   InsertNode(N);
1482   return SDValue(N, 0);
1483 }
1484 
1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1486   FoldingSetNodeID ID;
1487   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1488   ID.AddPointer(MBB);
1489   void *IP = nullptr;
1490   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491     return SDValue(E, 0);
1492 
1493   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1494   CSEMap.InsertNode(N, IP);
1495   InsertNode(N);
1496   return SDValue(N, 0);
1497 }
1498 
1499 SDValue SelectionDAG::getValueType(EVT VT) {
1500   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1501       ValueTypeNodes.size())
1502     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1503 
1504   SDNode *&N = VT.isExtended() ?
1505     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1506 
1507   if (N) return SDValue(N, 0);
1508   N = newSDNode<VTSDNode>(VT);
1509   InsertNode(N);
1510   return SDValue(N, 0);
1511 }
1512 
1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1514   SDNode *&N = ExternalSymbols[Sym];
1515   if (N) return SDValue(N, 0);
1516   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1522   SDNode *&N = MCSymbols[Sym];
1523   if (N)
1524     return SDValue(N, 0);
1525   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1526   InsertNode(N);
1527   return SDValue(N, 0);
1528 }
1529 
1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1531                                               unsigned char TargetFlags) {
1532   SDNode *&N =
1533     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1534                                                                TargetFlags)];
1535   if (N) return SDValue(N, 0);
1536   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1537   InsertNode(N);
1538   return SDValue(N, 0);
1539 }
1540 
1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1542   if ((unsigned)Cond >= CondCodeNodes.size())
1543     CondCodeNodes.resize(Cond+1);
1544 
1545   if (!CondCodeNodes[Cond]) {
1546     auto *N = newSDNode<CondCodeSDNode>(Cond);
1547     CondCodeNodes[Cond] = N;
1548     InsertNode(N);
1549   }
1550 
1551   return SDValue(CondCodeNodes[Cond], 0);
1552 }
1553 
1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1557   std::swap(N1, N2);
1558   ShuffleVectorSDNode::commuteMask(M);
1559 }
1560 
1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1562                                        SDValue N2, ArrayRef<int> Mask) {
1563   assert(VT.getVectorNumElements() == Mask.size() &&
1564            "Must have the same number of vector elements as mask elements!");
1565   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1566          "Invalid VECTOR_SHUFFLE");
1567 
1568   // Canonicalize shuffle undef, undef -> undef
1569   if (N1.isUndef() && N2.isUndef())
1570     return getUNDEF(VT);
1571 
1572   // Validate that all indices in Mask are within the range of the elements
1573   // input to the shuffle.
1574   int NElts = Mask.size();
1575   assert(llvm::all_of(Mask,
1576                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1577          "Index out of range");
1578 
1579   // Copy the mask so we can do any needed cleanup.
1580   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1581 
1582   // Canonicalize shuffle v, v -> v, undef
1583   if (N1 == N2) {
1584     N2 = getUNDEF(VT);
1585     for (int i = 0; i != NElts; ++i)
1586       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1587   }
1588 
1589   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1590   if (N1.isUndef())
1591     commuteShuffle(N1, N2, MaskVec);
1592 
1593   if (TLI->hasVectorBlend()) {
1594     // If shuffling a splat, try to blend the splat instead. We do this here so
1595     // that even when this arises during lowering we don't have to re-handle it.
1596     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1597       BitVector UndefElements;
1598       SDValue Splat = BV->getSplatValue(&UndefElements);
1599       if (!Splat)
1600         return;
1601 
1602       for (int i = 0; i < NElts; ++i) {
1603         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1604           continue;
1605 
1606         // If this input comes from undef, mark it as such.
1607         if (UndefElements[MaskVec[i] - Offset]) {
1608           MaskVec[i] = -1;
1609           continue;
1610         }
1611 
1612         // If we can blend a non-undef lane, use that instead.
1613         if (!UndefElements[i])
1614           MaskVec[i] = i + Offset;
1615       }
1616     };
1617     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1618       BlendSplat(N1BV, 0);
1619     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1620       BlendSplat(N2BV, NElts);
1621   }
1622 
1623   // Canonicalize all index into lhs, -> shuffle lhs, undef
1624   // Canonicalize all index into rhs, -> shuffle rhs, undef
1625   bool AllLHS = true, AllRHS = true;
1626   bool N2Undef = N2.isUndef();
1627   for (int i = 0; i != NElts; ++i) {
1628     if (MaskVec[i] >= NElts) {
1629       if (N2Undef)
1630         MaskVec[i] = -1;
1631       else
1632         AllLHS = false;
1633     } else if (MaskVec[i] >= 0) {
1634       AllRHS = false;
1635     }
1636   }
1637   if (AllLHS && AllRHS)
1638     return getUNDEF(VT);
1639   if (AllLHS && !N2Undef)
1640     N2 = getUNDEF(VT);
1641   if (AllRHS) {
1642     N1 = getUNDEF(VT);
1643     commuteShuffle(N1, N2, MaskVec);
1644   }
1645   // Reset our undef status after accounting for the mask.
1646   N2Undef = N2.isUndef();
1647   // Re-check whether both sides ended up undef.
1648   if (N1.isUndef() && N2Undef)
1649     return getUNDEF(VT);
1650 
1651   // If Identity shuffle return that node.
1652   bool Identity = true, AllSame = true;
1653   for (int i = 0; i != NElts; ++i) {
1654     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1655     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1656   }
1657   if (Identity && NElts)
1658     return N1;
1659 
1660   // Shuffling a constant splat doesn't change the result.
1661   if (N2Undef) {
1662     SDValue V = N1;
1663 
1664     // Look through any bitcasts. We check that these don't change the number
1665     // (and size) of elements and just changes their types.
1666     while (V.getOpcode() == ISD::BITCAST)
1667       V = V->getOperand(0);
1668 
1669     // A splat should always show up as a build vector node.
1670     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1671       BitVector UndefElements;
1672       SDValue Splat = BV->getSplatValue(&UndefElements);
1673       // If this is a splat of an undef, shuffling it is also undef.
1674       if (Splat && Splat.isUndef())
1675         return getUNDEF(VT);
1676 
1677       bool SameNumElts =
1678           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1679 
1680       // We only have a splat which can skip shuffles if there is a splatted
1681       // value and no undef lanes rearranged by the shuffle.
1682       if (Splat && UndefElements.none()) {
1683         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1684         // number of elements match or the value splatted is a zero constant.
1685         if (SameNumElts)
1686           return N1;
1687         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1688           if (C->isNullValue())
1689             return N1;
1690       }
1691 
1692       // If the shuffle itself creates a splat, build the vector directly.
1693       if (AllSame && SameNumElts) {
1694         EVT BuildVT = BV->getValueType(0);
1695         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1696         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1697 
1698         // We may have jumped through bitcasts, so the type of the
1699         // BUILD_VECTOR may not match the type of the shuffle.
1700         if (BuildVT != VT)
1701           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1702         return NewBV;
1703       }
1704     }
1705   }
1706 
1707   FoldingSetNodeID ID;
1708   SDValue Ops[2] = { N1, N2 };
1709   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1710   for (int i = 0; i != NElts; ++i)
1711     ID.AddInteger(MaskVec[i]);
1712 
1713   void* IP = nullptr;
1714   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1715     return SDValue(E, 0);
1716 
1717   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1718   // SDNode doesn't have access to it.  This memory will be "leaked" when
1719   // the node is deallocated, but recovered when the NodeAllocator is released.
1720   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1721   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1722 
1723   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1724                                            dl.getDebugLoc(), MaskAlloc);
1725   createOperands(N, Ops);
1726 
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   SDValue V = SDValue(N, 0);
1730   NewSDValueDbgMsg(V, "Creating new node: ", this);
1731   return V;
1732 }
1733 
1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1735   EVT VT = SV.getValueType(0);
1736   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1737   ShuffleVectorSDNode::commuteMask(MaskVec);
1738 
1739   SDValue Op0 = SV.getOperand(0);
1740   SDValue Op1 = SV.getOperand(1);
1741   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1742 }
1743 
1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1745   FoldingSetNodeID ID;
1746   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1747   ID.AddInteger(RegNo);
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751 
1752   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1753   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1754   CSEMap.InsertNode(N, IP);
1755   InsertNode(N);
1756   return SDValue(N, 0);
1757 }
1758 
1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1760   FoldingSetNodeID ID;
1761   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1762   ID.AddPointer(RegMask);
1763   void *IP = nullptr;
1764   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1765     return SDValue(E, 0);
1766 
1767   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1768   CSEMap.InsertNode(N, IP);
1769   InsertNode(N);
1770   return SDValue(N, 0);
1771 }
1772 
1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1774                                  MCSymbol *Label) {
1775   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1776 }
1777 
1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1779                                    SDValue Root, MCSymbol *Label) {
1780   FoldingSetNodeID ID;
1781   SDValue Ops[] = { Root };
1782   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1783   ID.AddPointer(Label);
1784   void *IP = nullptr;
1785   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1786     return SDValue(E, 0);
1787 
1788   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1789   createOperands(N, Ops);
1790 
1791   CSEMap.InsertNode(N, IP);
1792   InsertNode(N);
1793   return SDValue(N, 0);
1794 }
1795 
1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1797                                       int64_t Offset,
1798                                       bool isTarget,
1799                                       unsigned char TargetFlags) {
1800   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1801 
1802   FoldingSetNodeID ID;
1803   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1804   ID.AddPointer(BA);
1805   ID.AddInteger(Offset);
1806   ID.AddInteger(TargetFlags);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816 
1817 SDValue SelectionDAG::getSrcValue(const Value *V) {
1818   assert((!V || V->getType()->isPointerTy()) &&
1819          "SrcValue is not a pointer?");
1820 
1821   FoldingSetNodeID ID;
1822   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1823   ID.AddPointer(V);
1824 
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828 
1829   auto *N = newSDNode<SrcValueSDNode>(V);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834 
1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1836   FoldingSetNodeID ID;
1837   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1838   ID.AddPointer(MD);
1839 
1840   void *IP = nullptr;
1841   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1842     return SDValue(E, 0);
1843 
1844   auto *N = newSDNode<MDNodeSDNode>(MD);
1845   CSEMap.InsertNode(N, IP);
1846   InsertNode(N);
1847   return SDValue(N, 0);
1848 }
1849 
1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1851   if (VT == V.getValueType())
1852     return V;
1853 
1854   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1855 }
1856 
1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1858                                        unsigned SrcAS, unsigned DestAS) {
1859   SDValue Ops[] = {Ptr};
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1862   ID.AddInteger(SrcAS);
1863   ID.AddInteger(DestAS);
1864 
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1867     return SDValue(E, 0);
1868 
1869   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1870                                            VT, SrcAS, DestAS);
1871   createOperands(N, Ops);
1872 
1873   CSEMap.InsertNode(N, IP);
1874   InsertNode(N);
1875   return SDValue(N, 0);
1876 }
1877 
1878 /// getShiftAmountOperand - Return the specified value casted to
1879 /// the target's desired shift amount type.
1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1881   EVT OpTy = Op.getValueType();
1882   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1883   if (OpTy == ShTy || OpTy.isVector()) return Op;
1884 
1885   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1886 }
1887 
1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1889   SDLoc dl(Node);
1890   const TargetLowering &TLI = getTargetLoweringInfo();
1891   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1892   EVT VT = Node->getValueType(0);
1893   SDValue Tmp1 = Node->getOperand(0);
1894   SDValue Tmp2 = Node->getOperand(1);
1895   unsigned Align = Node->getConstantOperandVal(3);
1896 
1897   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1898                                Tmp2, MachinePointerInfo(V));
1899   SDValue VAList = VAListLoad;
1900 
1901   if (Align > TLI.getMinStackArgumentAlignment()) {
1902     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1903 
1904     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1905                      getConstant(Align - 1, dl, VAList.getValueType()));
1906 
1907     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1908                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1909   }
1910 
1911   // Increment the pointer, VAList, to the next vaarg
1912   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913                  getConstant(getDataLayout().getTypeAllocSize(
1914                                                VT.getTypeForEVT(*getContext())),
1915                              dl, VAList.getValueType()));
1916   // Store the incremented VAList to the legalized pointer
1917   Tmp1 =
1918       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1919   // Load the actual argument out of the pointer VAList
1920   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1921 }
1922 
1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1924   SDLoc dl(Node);
1925   const TargetLowering &TLI = getTargetLoweringInfo();
1926   // This defaults to loading a pointer from the input and storing it to the
1927   // output, returning the chain.
1928   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1929   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1930   SDValue Tmp1 =
1931       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1932               Node->getOperand(2), MachinePointerInfo(VS));
1933   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1934                   MachinePointerInfo(VD));
1935 }
1936 
1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1938   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1939   unsigned ByteSize = VT.getStoreSize();
1940   Type *Ty = VT.getTypeForEVT(*getContext());
1941   unsigned StackAlign =
1942       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1943 
1944   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1945   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1946 }
1947 
1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1949   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1950   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1951   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1952   const DataLayout &DL = getDataLayout();
1953   unsigned Align =
1954       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1955 
1956   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1957   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1958   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1959 }
1960 
1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1962                                 ISD::CondCode Cond, const SDLoc &dl) {
1963   EVT OpVT = N1.getValueType();
1964 
1965   // These setcc operations always fold.
1966   switch (Cond) {
1967   default: break;
1968   case ISD::SETFALSE:
1969   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1970   case ISD::SETTRUE:
1971   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1972 
1973   case ISD::SETOEQ:
1974   case ISD::SETOGT:
1975   case ISD::SETOGE:
1976   case ISD::SETOLT:
1977   case ISD::SETOLE:
1978   case ISD::SETONE:
1979   case ISD::SETO:
1980   case ISD::SETUO:
1981   case ISD::SETUEQ:
1982   case ISD::SETUNE:
1983     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1984     break;
1985   }
1986 
1987   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1988     const APInt &C2 = N2C->getAPIntValue();
1989     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1990       const APInt &C1 = N1C->getAPIntValue();
1991 
1992       switch (Cond) {
1993       default: llvm_unreachable("Unknown integer setcc!");
1994       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1995       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1996       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1997       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1998       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1999       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2000       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2001       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2002       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2003       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2004       }
2005     }
2006   }
2007   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
2008     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
2009       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
2010       switch (Cond) {
2011       default: break;
2012       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2013                           return getUNDEF(VT);
2014                         LLVM_FALLTHROUGH;
2015       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2016                                                OpVT);
2017       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2018                           return getUNDEF(VT);
2019                         LLVM_FALLTHROUGH;
2020       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2021                                                R==APFloat::cmpLessThan, dl, VT,
2022                                                OpVT);
2023       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2024                           return getUNDEF(VT);
2025                         LLVM_FALLTHROUGH;
2026       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2027                                                OpVT);
2028       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2029                           return getUNDEF(VT);
2030                         LLVM_FALLTHROUGH;
2031       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2032                                                VT, OpVT);
2033       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2034                           return getUNDEF(VT);
2035                         LLVM_FALLTHROUGH;
2036       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2037                                                R==APFloat::cmpEqual, dl, VT,
2038                                                OpVT);
2039       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2040                           return getUNDEF(VT);
2041                         LLVM_FALLTHROUGH;
2042       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2043                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2044       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2045                                                OpVT);
2046       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2047                                                OpVT);
2048       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2049                                                R==APFloat::cmpEqual, dl, VT,
2050                                                OpVT);
2051       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2052                                                OpVT);
2053       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2054                                                R==APFloat::cmpLessThan, dl, VT,
2055                                                OpVT);
2056       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2057                                                R==APFloat::cmpUnordered, dl, VT,
2058                                                OpVT);
2059       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2060                                                VT, OpVT);
2061       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2062                                                OpVT);
2063       }
2064     } else {
2065       // Ensure that the constant occurs on the RHS.
2066       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2067       MVT CompVT = N1.getValueType().getSimpleVT();
2068       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2069         return SDValue();
2070 
2071       return getSetCC(dl, VT, N2, N1, SwappedCond);
2072     }
2073   }
2074 
2075   // Could not fold it.
2076   return SDValue();
2077 }
2078 
2079 /// See if the specified operand can be simplified with the knowledge that only
2080 /// the bits specified by Mask are used.
2081 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2082   switch (V.getOpcode()) {
2083   default:
2084     break;
2085   case ISD::Constant: {
2086     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2087     assert(CV && "Const value should be ConstSDNode.");
2088     const APInt &CVal = CV->getAPIntValue();
2089     APInt NewVal = CVal & Mask;
2090     if (NewVal != CVal)
2091       return getConstant(NewVal, SDLoc(V), V.getValueType());
2092     break;
2093   }
2094   case ISD::OR:
2095   case ISD::XOR:
2096     // If the LHS or RHS don't contribute bits to the or, drop them.
2097     if (MaskedValueIsZero(V.getOperand(0), Mask))
2098       return V.getOperand(1);
2099     if (MaskedValueIsZero(V.getOperand(1), Mask))
2100       return V.getOperand(0);
2101     break;
2102   case ISD::SRL:
2103     // Only look at single-use SRLs.
2104     if (!V.getNode()->hasOneUse())
2105       break;
2106     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2107       // See if we can recursively simplify the LHS.
2108       unsigned Amt = RHSC->getZExtValue();
2109 
2110       // Watch out for shift count overflow though.
2111       if (Amt >= Mask.getBitWidth())
2112         break;
2113       APInt NewMask = Mask << Amt;
2114       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2115         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2116                        V.getOperand(1));
2117     }
2118     break;
2119   case ISD::AND: {
2120     // X & -1 -> X (ignoring bits which aren't demanded).
2121     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2122     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2123       return V.getOperand(0);
2124     break;
2125   }
2126   case ISD::ANY_EXTEND: {
2127     SDValue Src = V.getOperand(0);
2128     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2129     // Being conservative here - only peek through if we only demand bits in the
2130     // non-extended source (even though the extended bits are technically undef).
2131     if (Mask.getActiveBits() > SrcBitWidth)
2132       break;
2133     APInt SrcMask = Mask.trunc(SrcBitWidth);
2134     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2135       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2136     break;
2137   }
2138   }
2139   return SDValue();
2140 }
2141 
2142 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2143 /// use this predicate to simplify operations downstream.
2144 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2145   unsigned BitWidth = Op.getScalarValueSizeInBits();
2146   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2147 }
2148 
2149 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2150 /// this predicate to simplify operations downstream.  Mask is known to be zero
2151 /// for bits that V cannot have.
2152 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2153                                      unsigned Depth) const {
2154   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2155 }
2156 
2157 /// Helper function that checks to see if a node is a constant or a
2158 /// build vector of splat constants at least within the demanded elts.
2159 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2160                                                    const APInt &DemandedElts) {
2161   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2162     return CN;
2163   if (N.getOpcode() != ISD::BUILD_VECTOR)
2164     return nullptr;
2165   EVT VT = N.getValueType();
2166   ConstantSDNode *Cst = nullptr;
2167   unsigned NumElts = VT.getVectorNumElements();
2168   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2169   for (unsigned i = 0; i != NumElts; ++i) {
2170     if (!DemandedElts[i])
2171       continue;
2172     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2173     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2174         C->getValueType(0) != VT.getScalarType())
2175       return nullptr;
2176     Cst = C;
2177   }
2178   return Cst;
2179 }
2180 
2181 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2182 /// is less than the element bit-width of the shift node, return it.
2183 static const APInt *getValidShiftAmountConstant(SDValue V) {
2184   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2185     // Shifting more than the bitwidth is not valid.
2186     const APInt &ShAmt = SA->getAPIntValue();
2187     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2188       return &ShAmt;
2189   }
2190   return nullptr;
2191 }
2192 
2193 /// Determine which bits of Op are known to be either zero or one and return
2194 /// them in Known. For vectors, the known bits are those that are shared by
2195 /// every vector element.
2196 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2197   EVT VT = Op.getValueType();
2198   APInt DemandedElts = VT.isVector()
2199                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2200                            : APInt(1, 1);
2201   return computeKnownBits(Op, DemandedElts, Depth);
2202 }
2203 
2204 /// Determine which bits of Op are known to be either zero or one and return
2205 /// them in Known. The DemandedElts argument allows us to only collect the known
2206 /// bits that are shared by the requested vector elements.
2207 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2208                                          unsigned Depth) const {
2209   unsigned BitWidth = Op.getScalarValueSizeInBits();
2210 
2211   KnownBits Known(BitWidth);   // Don't know anything.
2212 
2213   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2214     // We know all of the bits for a constant!
2215     Known.One = C->getAPIntValue();
2216     Known.Zero = ~Known.One;
2217     return Known;
2218   }
2219   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2220     // We know all of the bits for a constant fp!
2221     Known.One = C->getValueAPF().bitcastToAPInt();
2222     Known.Zero = ~Known.One;
2223     return Known;
2224   }
2225 
2226   if (Depth == 6)
2227     return Known;  // Limit search depth.
2228 
2229   KnownBits Known2;
2230   unsigned NumElts = DemandedElts.getBitWidth();
2231 
2232   if (!DemandedElts)
2233     return Known;  // No demanded elts, better to assume we don't know anything.
2234 
2235   unsigned Opcode = Op.getOpcode();
2236   switch (Opcode) {
2237   case ISD::BUILD_VECTOR:
2238     // Collect the known bits that are shared by every demanded vector element.
2239     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2240            "Unexpected vector size");
2241     Known.Zero.setAllBits(); Known.One.setAllBits();
2242     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2243       if (!DemandedElts[i])
2244         continue;
2245 
2246       SDValue SrcOp = Op.getOperand(i);
2247       Known2 = computeKnownBits(SrcOp, Depth + 1);
2248 
2249       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2250       if (SrcOp.getValueSizeInBits() != BitWidth) {
2251         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2252                "Expected BUILD_VECTOR implicit truncation");
2253         Known2 = Known2.trunc(BitWidth);
2254       }
2255 
2256       // Known bits are the values that are shared by every demanded element.
2257       Known.One &= Known2.One;
2258       Known.Zero &= Known2.Zero;
2259 
2260       // If we don't know any bits, early out.
2261       if (Known.isUnknown())
2262         break;
2263     }
2264     break;
2265   case ISD::VECTOR_SHUFFLE: {
2266     // Collect the known bits that are shared by every vector element referenced
2267     // by the shuffle.
2268     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2269     Known.Zero.setAllBits(); Known.One.setAllBits();
2270     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2271     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2272     for (unsigned i = 0; i != NumElts; ++i) {
2273       if (!DemandedElts[i])
2274         continue;
2275 
2276       int M = SVN->getMaskElt(i);
2277       if (M < 0) {
2278         // For UNDEF elements, we don't know anything about the common state of
2279         // the shuffle result.
2280         Known.resetAll();
2281         DemandedLHS.clearAllBits();
2282         DemandedRHS.clearAllBits();
2283         break;
2284       }
2285 
2286       if ((unsigned)M < NumElts)
2287         DemandedLHS.setBit((unsigned)M % NumElts);
2288       else
2289         DemandedRHS.setBit((unsigned)M % NumElts);
2290     }
2291     // Known bits are the values that are shared by every demanded element.
2292     if (!!DemandedLHS) {
2293       SDValue LHS = Op.getOperand(0);
2294       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2295       Known.One &= Known2.One;
2296       Known.Zero &= Known2.Zero;
2297     }
2298     // If we don't know any bits, early out.
2299     if (Known.isUnknown())
2300       break;
2301     if (!!DemandedRHS) {
2302       SDValue RHS = Op.getOperand(1);
2303       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2304       Known.One &= Known2.One;
2305       Known.Zero &= Known2.Zero;
2306     }
2307     break;
2308   }
2309   case ISD::CONCAT_VECTORS: {
2310     // Split DemandedElts and test each of the demanded subvectors.
2311     Known.Zero.setAllBits(); Known.One.setAllBits();
2312     EVT SubVectorVT = Op.getOperand(0).getValueType();
2313     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2314     unsigned NumSubVectors = Op.getNumOperands();
2315     for (unsigned i = 0; i != NumSubVectors; ++i) {
2316       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2317       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2318       if (!!DemandedSub) {
2319         SDValue Sub = Op.getOperand(i);
2320         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2321         Known.One &= Known2.One;
2322         Known.Zero &= Known2.Zero;
2323       }
2324       // If we don't know any bits, early out.
2325       if (Known.isUnknown())
2326         break;
2327     }
2328     break;
2329   }
2330   case ISD::INSERT_SUBVECTOR: {
2331     // If we know the element index, demand any elements from the subvector and
2332     // the remainder from the src its inserted into, otherwise demand them all.
2333     SDValue Src = Op.getOperand(0);
2334     SDValue Sub = Op.getOperand(1);
2335     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2336     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2337     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2338       Known.One.setAllBits();
2339       Known.Zero.setAllBits();
2340       uint64_t Idx = SubIdx->getZExtValue();
2341       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2342       if (!!DemandedSubElts) {
2343         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2344         if (Known.isUnknown())
2345           break; // early-out.
2346       }
2347       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2348       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2349       if (!!DemandedSrcElts) {
2350         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2351         Known.One &= Known2.One;
2352         Known.Zero &= Known2.Zero;
2353       }
2354     } else {
2355       Known = computeKnownBits(Sub, Depth + 1);
2356       if (Known.isUnknown())
2357         break; // early-out.
2358       Known2 = computeKnownBits(Src, Depth + 1);
2359       Known.One &= Known2.One;
2360       Known.Zero &= Known2.Zero;
2361     }
2362     break;
2363   }
2364   case ISD::EXTRACT_SUBVECTOR: {
2365     // If we know the element index, just demand that subvector elements,
2366     // otherwise demand them all.
2367     SDValue Src = Op.getOperand(0);
2368     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2369     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2370     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2371       // Offset the demanded elts by the subvector index.
2372       uint64_t Idx = SubIdx->getZExtValue();
2373       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2374       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2375     } else {
2376       Known = computeKnownBits(Src, Depth + 1);
2377     }
2378     break;
2379   }
2380   case ISD::BITCAST: {
2381     SDValue N0 = Op.getOperand(0);
2382     EVT SubVT = N0.getValueType();
2383     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2384 
2385     // Ignore bitcasts from unsupported types.
2386     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2387       break;
2388 
2389     // Fast handling of 'identity' bitcasts.
2390     if (BitWidth == SubBitWidth) {
2391       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2392       break;
2393     }
2394 
2395     bool IsLE = getDataLayout().isLittleEndian();
2396 
2397     // Bitcast 'small element' vector to 'large element' scalar/vector.
2398     if ((BitWidth % SubBitWidth) == 0) {
2399       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2400 
2401       // Collect known bits for the (larger) output by collecting the known
2402       // bits from each set of sub elements and shift these into place.
2403       // We need to separately call computeKnownBits for each set of
2404       // sub elements as the knownbits for each is likely to be different.
2405       unsigned SubScale = BitWidth / SubBitWidth;
2406       APInt SubDemandedElts(NumElts * SubScale, 0);
2407       for (unsigned i = 0; i != NumElts; ++i)
2408         if (DemandedElts[i])
2409           SubDemandedElts.setBit(i * SubScale);
2410 
2411       for (unsigned i = 0; i != SubScale; ++i) {
2412         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2413                          Depth + 1);
2414         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2415         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2416         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2417       }
2418     }
2419 
2420     // Bitcast 'large element' scalar/vector to 'small element' vector.
2421     if ((SubBitWidth % BitWidth) == 0) {
2422       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2423 
2424       // Collect known bits for the (smaller) output by collecting the known
2425       // bits from the overlapping larger input elements and extracting the
2426       // sub sections we actually care about.
2427       unsigned SubScale = SubBitWidth / BitWidth;
2428       APInt SubDemandedElts(NumElts / SubScale, 0);
2429       for (unsigned i = 0; i != NumElts; ++i)
2430         if (DemandedElts[i])
2431           SubDemandedElts.setBit(i / SubScale);
2432 
2433       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2434 
2435       Known.Zero.setAllBits(); Known.One.setAllBits();
2436       for (unsigned i = 0; i != NumElts; ++i)
2437         if (DemandedElts[i]) {
2438           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2439           unsigned Offset = (Shifts % SubScale) * BitWidth;
2440           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2441           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2442           // If we don't know any bits, early out.
2443           if (Known.isUnknown())
2444             break;
2445         }
2446     }
2447     break;
2448   }
2449   case ISD::AND:
2450     // If either the LHS or the RHS are Zero, the result is zero.
2451     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2452     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2453 
2454     // Output known-1 bits are only known if set in both the LHS & RHS.
2455     Known.One &= Known2.One;
2456     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2457     Known.Zero |= Known2.Zero;
2458     break;
2459   case ISD::OR:
2460     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2461     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2462 
2463     // Output known-0 bits are only known if clear in both the LHS & RHS.
2464     Known.Zero &= Known2.Zero;
2465     // Output known-1 are known to be set if set in either the LHS | RHS.
2466     Known.One |= Known2.One;
2467     break;
2468   case ISD::XOR: {
2469     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2470     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2471 
2472     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2473     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2474     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2475     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2476     Known.Zero = KnownZeroOut;
2477     break;
2478   }
2479   case ISD::MUL: {
2480     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2481     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2482 
2483     // If low bits are zero in either operand, output low known-0 bits.
2484     // Also compute a conservative estimate for high known-0 bits.
2485     // More trickiness is possible, but this is sufficient for the
2486     // interesting case of alignment computation.
2487     unsigned TrailZ = Known.countMinTrailingZeros() +
2488                       Known2.countMinTrailingZeros();
2489     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2490                                Known2.countMinLeadingZeros(),
2491                                BitWidth) - BitWidth;
2492 
2493     Known.resetAll();
2494     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2495     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2496     break;
2497   }
2498   case ISD::UDIV: {
2499     // For the purposes of computing leading zeros we can conservatively
2500     // treat a udiv as a logical right shift by the power of 2 known to
2501     // be less than the denominator.
2502     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2503     unsigned LeadZ = Known2.countMinLeadingZeros();
2504 
2505     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2506     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2507     if (RHSMaxLeadingZeros != BitWidth)
2508       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2509 
2510     Known.Zero.setHighBits(LeadZ);
2511     break;
2512   }
2513   case ISD::SELECT:
2514   case ISD::VSELECT:
2515     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2516     // If we don't know any bits, early out.
2517     if (Known.isUnknown())
2518       break;
2519     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2520 
2521     // Only known if known in both the LHS and RHS.
2522     Known.One &= Known2.One;
2523     Known.Zero &= Known2.Zero;
2524     break;
2525   case ISD::SELECT_CC:
2526     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2527     // If we don't know any bits, early out.
2528     if (Known.isUnknown())
2529       break;
2530     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2531 
2532     // Only known if known in both the LHS and RHS.
2533     Known.One &= Known2.One;
2534     Known.Zero &= Known2.Zero;
2535     break;
2536   case ISD::SMULO:
2537   case ISD::UMULO:
2538   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2539     if (Op.getResNo() != 1)
2540       break;
2541     // The boolean result conforms to getBooleanContents.
2542     // If we know the result of a setcc has the top bits zero, use this info.
2543     // We know that we have an integer-based boolean since these operations
2544     // are only available for integer.
2545     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2546             TargetLowering::ZeroOrOneBooleanContent &&
2547         BitWidth > 1)
2548       Known.Zero.setBitsFrom(1);
2549     break;
2550   case ISD::SETCC:
2551     // If we know the result of a setcc has the top bits zero, use this info.
2552     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2553             TargetLowering::ZeroOrOneBooleanContent &&
2554         BitWidth > 1)
2555       Known.Zero.setBitsFrom(1);
2556     break;
2557   case ISD::SHL:
2558     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2559       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2560       unsigned Shift = ShAmt->getZExtValue();
2561       Known.Zero <<= Shift;
2562       Known.One <<= Shift;
2563       // Low bits are known zero.
2564       Known.Zero.setLowBits(Shift);
2565     }
2566     break;
2567   case ISD::SRL:
2568     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2569       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2570       unsigned Shift = ShAmt->getZExtValue();
2571       Known.Zero.lshrInPlace(Shift);
2572       Known.One.lshrInPlace(Shift);
2573       // High bits are known zero.
2574       Known.Zero.setHighBits(Shift);
2575     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2576       // If the shift amount is a vector of constants see if we can bound
2577       // the number of upper zero bits.
2578       unsigned ShiftAmountMin = BitWidth;
2579       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2580         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2581           const APInt &ShAmt = C->getAPIntValue();
2582           if (ShAmt.ult(BitWidth)) {
2583             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2584                                                 ShAmt.getZExtValue());
2585             continue;
2586           }
2587         }
2588         // Don't know anything.
2589         ShiftAmountMin = 0;
2590         break;
2591       }
2592 
2593       Known.Zero.setHighBits(ShiftAmountMin);
2594     }
2595     break;
2596   case ISD::SRA:
2597     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2598       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2599       unsigned Shift = ShAmt->getZExtValue();
2600       // Sign extend known zero/one bit (else is unknown).
2601       Known.Zero.ashrInPlace(Shift);
2602       Known.One.ashrInPlace(Shift);
2603     }
2604     break;
2605   case ISD::SIGN_EXTEND_INREG: {
2606     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2607     unsigned EBits = EVT.getScalarSizeInBits();
2608 
2609     // Sign extension.  Compute the demanded bits in the result that are not
2610     // present in the input.
2611     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2612 
2613     APInt InSignMask = APInt::getSignMask(EBits);
2614     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2615 
2616     // If the sign extended bits are demanded, we know that the sign
2617     // bit is demanded.
2618     InSignMask = InSignMask.zext(BitWidth);
2619     if (NewBits.getBoolValue())
2620       InputDemandedBits |= InSignMask;
2621 
2622     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2623     Known.One &= InputDemandedBits;
2624     Known.Zero &= InputDemandedBits;
2625 
2626     // If the sign bit of the input is known set or clear, then we know the
2627     // top bits of the result.
2628     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2629       Known.Zero |= NewBits;
2630       Known.One  &= ~NewBits;
2631     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2632       Known.One  |= NewBits;
2633       Known.Zero &= ~NewBits;
2634     } else {                              // Input sign bit unknown
2635       Known.Zero &= ~NewBits;
2636       Known.One  &= ~NewBits;
2637     }
2638     break;
2639   }
2640   case ISD::CTTZ:
2641   case ISD::CTTZ_ZERO_UNDEF: {
2642     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2643     // If we have a known 1, its position is our upper bound.
2644     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2645     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2646     Known.Zero.setBitsFrom(LowBits);
2647     break;
2648   }
2649   case ISD::CTLZ:
2650   case ISD::CTLZ_ZERO_UNDEF: {
2651     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2652     // If we have a known 1, its position is our upper bound.
2653     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2654     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2655     Known.Zero.setBitsFrom(LowBits);
2656     break;
2657   }
2658   case ISD::CTPOP: {
2659     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2660     // If we know some of the bits are zero, they can't be one.
2661     unsigned PossibleOnes = Known2.countMaxPopulation();
2662     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2663     break;
2664   }
2665   case ISD::LOAD: {
2666     LoadSDNode *LD = cast<LoadSDNode>(Op);
2667     // If this is a ZEXTLoad and we are looking at the loaded value.
2668     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2669       EVT VT = LD->getMemoryVT();
2670       unsigned MemBits = VT.getScalarSizeInBits();
2671       Known.Zero.setBitsFrom(MemBits);
2672     } else if (const MDNode *Ranges = LD->getRanges()) {
2673       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2674         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2675     }
2676     break;
2677   }
2678   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2679     EVT InVT = Op.getOperand(0).getValueType();
2680     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2681     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2682     Known = Known.zext(BitWidth);
2683     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2684     break;
2685   }
2686   case ISD::ZERO_EXTEND: {
2687     EVT InVT = Op.getOperand(0).getValueType();
2688     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2689     Known = Known.zext(BitWidth);
2690     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2691     break;
2692   }
2693   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2694   case ISD::SIGN_EXTEND: {
2695     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2696     // If the sign bit is known to be zero or one, then sext will extend
2697     // it to the top bits, else it will just zext.
2698     Known = Known.sext(BitWidth);
2699     break;
2700   }
2701   case ISD::ANY_EXTEND: {
2702     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2703     Known = Known.zext(BitWidth);
2704     break;
2705   }
2706   case ISD::TRUNCATE: {
2707     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2708     Known = Known.trunc(BitWidth);
2709     break;
2710   }
2711   case ISD::AssertZext: {
2712     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2713     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2714     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2715     Known.Zero |= (~InMask);
2716     Known.One  &= (~Known.Zero);
2717     break;
2718   }
2719   case ISD::FGETSIGN:
2720     // All bits are zero except the low bit.
2721     Known.Zero.setBitsFrom(1);
2722     break;
2723   case ISD::USUBO:
2724   case ISD::SSUBO:
2725     if (Op.getResNo() == 1) {
2726       // If we know the result of a setcc has the top bits zero, use this info.
2727       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2728               TargetLowering::ZeroOrOneBooleanContent &&
2729           BitWidth > 1)
2730         Known.Zero.setBitsFrom(1);
2731       break;
2732     }
2733     LLVM_FALLTHROUGH;
2734   case ISD::SUB:
2735   case ISD::SUBC: {
2736     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2737       // We know that the top bits of C-X are clear if X contains less bits
2738       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2739       // positive if we can prove that X is >= 0 and < 16.
2740       if (CLHS->getAPIntValue().isNonNegative()) {
2741         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2742         // NLZ can't be BitWidth with no sign bit
2743         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2744         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2745                          Depth + 1);
2746 
2747         // If all of the MaskV bits are known to be zero, then we know the
2748         // output top bits are zero, because we now know that the output is
2749         // from [0-C].
2750         if ((Known2.Zero & MaskV) == MaskV) {
2751           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2752           // Top bits known zero.
2753           Known.Zero.setHighBits(NLZ2);
2754         }
2755       }
2756     }
2757 
2758     // If low bits are know to be zero in both operands, then we know they are
2759     // going to be 0 in the result. Both addition and complement operations
2760     // preserve the low zero bits.
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2763     if (KnownZeroLow == 0)
2764       break;
2765 
2766     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2767     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2768     Known.Zero.setLowBits(KnownZeroLow);
2769     break;
2770   }
2771   case ISD::UADDO:
2772   case ISD::SADDO:
2773   case ISD::ADDCARRY:
2774     if (Op.getResNo() == 1) {
2775       // If we know the result of a setcc has the top bits zero, use this info.
2776       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2777               TargetLowering::ZeroOrOneBooleanContent &&
2778           BitWidth > 1)
2779         Known.Zero.setBitsFrom(1);
2780       break;
2781     }
2782     LLVM_FALLTHROUGH;
2783   case ISD::ADD:
2784   case ISD::ADDC:
2785   case ISD::ADDE: {
2786     // Output known-0 bits are known if clear or set in both the low clear bits
2787     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2788     // low 3 bits clear.
2789     // Output known-0 bits are also known if the top bits of each input are
2790     // known to be clear. For example, if one input has the top 10 bits clear
2791     // and the other has the top 8 bits clear, we know the top 7 bits of the
2792     // output must be clear.
2793     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2794     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2795     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2796 
2797     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2798     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2799     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2800 
2801     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2802       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2803       // use this information if we know (at least) that the low two bits are
2804       // clear. We then return to the caller that the low bit is unknown but
2805       // that other bits are known zero.
2806       if (KnownZeroLow >= 2)
2807         Known.Zero.setBits(1, KnownZeroLow);
2808       break;
2809     }
2810 
2811     Known.Zero.setLowBits(KnownZeroLow);
2812     if (KnownZeroHigh > 1)
2813       Known.Zero.setHighBits(KnownZeroHigh - 1);
2814     break;
2815   }
2816   case ISD::SREM:
2817     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2818       const APInt &RA = Rem->getAPIntValue().abs();
2819       if (RA.isPowerOf2()) {
2820         APInt LowBits = RA - 1;
2821         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2822 
2823         // The low bits of the first operand are unchanged by the srem.
2824         Known.Zero = Known2.Zero & LowBits;
2825         Known.One = Known2.One & LowBits;
2826 
2827         // If the first operand is non-negative or has all low bits zero, then
2828         // the upper bits are all zero.
2829         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2830           Known.Zero |= ~LowBits;
2831 
2832         // If the first operand is negative and not all low bits are zero, then
2833         // the upper bits are all one.
2834         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2835           Known.One |= ~LowBits;
2836         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2837       }
2838     }
2839     break;
2840   case ISD::UREM: {
2841     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2842       const APInt &RA = Rem->getAPIntValue();
2843       if (RA.isPowerOf2()) {
2844         APInt LowBits = (RA - 1);
2845         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2846 
2847         // The upper bits are all zero, the lower ones are unchanged.
2848         Known.Zero = Known2.Zero | ~LowBits;
2849         Known.One = Known2.One & LowBits;
2850         break;
2851       }
2852     }
2853 
2854     // Since the result is less than or equal to either operand, any leading
2855     // zero bits in either operand must also exist in the result.
2856     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2857     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2858 
2859     uint32_t Leaders =
2860         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2861     Known.resetAll();
2862     Known.Zero.setHighBits(Leaders);
2863     break;
2864   }
2865   case ISD::EXTRACT_ELEMENT: {
2866     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2867     const unsigned Index = Op.getConstantOperandVal(1);
2868     const unsigned BitWidth = Op.getValueSizeInBits();
2869 
2870     // Remove low part of known bits mask
2871     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2872     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2873 
2874     // Remove high part of known bit mask
2875     Known = Known.trunc(BitWidth);
2876     break;
2877   }
2878   case ISD::EXTRACT_VECTOR_ELT: {
2879     SDValue InVec = Op.getOperand(0);
2880     SDValue EltNo = Op.getOperand(1);
2881     EVT VecVT = InVec.getValueType();
2882     const unsigned BitWidth = Op.getValueSizeInBits();
2883     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2884     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2885     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2886     // anything about the extended bits.
2887     if (BitWidth > EltBitWidth)
2888       Known = Known.trunc(EltBitWidth);
2889     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2890     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2891       // If we know the element index, just demand that vector element.
2892       unsigned Idx = ConstEltNo->getZExtValue();
2893       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2894       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
2895     } else {
2896       // Unknown element index, so ignore DemandedElts and demand them all.
2897       Known = computeKnownBits(InVec, Depth + 1);
2898     }
2899     if (BitWidth > EltBitWidth)
2900       Known = Known.zext(BitWidth);
2901     break;
2902   }
2903   case ISD::INSERT_VECTOR_ELT: {
2904     SDValue InVec = Op.getOperand(0);
2905     SDValue InVal = Op.getOperand(1);
2906     SDValue EltNo = Op.getOperand(2);
2907 
2908     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2909     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2910       // If we know the element index, split the demand between the
2911       // source vector and the inserted element.
2912       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2913       unsigned EltIdx = CEltNo->getZExtValue();
2914 
2915       // If we demand the inserted element then add its common known bits.
2916       if (DemandedElts[EltIdx]) {
2917         Known2 = computeKnownBits(InVal, Depth + 1);
2918         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2919         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2920       }
2921 
2922       // If we demand the source vector then add its common known bits, ensuring
2923       // that we don't demand the inserted element.
2924       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2925       if (!!VectorElts) {
2926         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
2927         Known.One &= Known2.One;
2928         Known.Zero &= Known2.Zero;
2929       }
2930     } else {
2931       // Unknown element index, so ignore DemandedElts and demand them all.
2932       Known = computeKnownBits(InVec, Depth + 1);
2933       Known2 = computeKnownBits(InVal, Depth + 1);
2934       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2935       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2936     }
2937     break;
2938   }
2939   case ISD::BITREVERSE: {
2940     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2941     Known.Zero = Known2.Zero.reverseBits();
2942     Known.One = Known2.One.reverseBits();
2943     break;
2944   }
2945   case ISD::BSWAP: {
2946     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2947     Known.Zero = Known2.Zero.byteSwap();
2948     Known.One = Known2.One.byteSwap();
2949     break;
2950   }
2951   case ISD::ABS: {
2952     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2953 
2954     // If the source's MSB is zero then we know the rest of the bits already.
2955     if (Known2.isNonNegative()) {
2956       Known.Zero = Known2.Zero;
2957       Known.One = Known2.One;
2958       break;
2959     }
2960 
2961     // We only know that the absolute values's MSB will be zero iff there is
2962     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2963     Known2.One.clearSignBit();
2964     if (Known2.One.getBoolValue()) {
2965       Known.Zero = APInt::getSignMask(BitWidth);
2966       break;
2967     }
2968     break;
2969   }
2970   case ISD::UMIN: {
2971     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2972     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2973 
2974     // UMIN - we know that the result will have the maximum of the
2975     // known zero leading bits of the inputs.
2976     unsigned LeadZero = Known.countMinLeadingZeros();
2977     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2978 
2979     Known.Zero &= Known2.Zero;
2980     Known.One &= Known2.One;
2981     Known.Zero.setHighBits(LeadZero);
2982     break;
2983   }
2984   case ISD::UMAX: {
2985     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2986     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2987 
2988     // UMAX - we know that the result will have the maximum of the
2989     // known one leading bits of the inputs.
2990     unsigned LeadOne = Known.countMinLeadingOnes();
2991     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2992 
2993     Known.Zero &= Known2.Zero;
2994     Known.One &= Known2.One;
2995     Known.One.setHighBits(LeadOne);
2996     break;
2997   }
2998   case ISD::SMIN:
2999   case ISD::SMAX: {
3000     // If we have a clamp pattern, we know that the number of sign bits will be
3001     // the minimum of the clamp min/max range.
3002     bool IsMax = (Opcode == ISD::SMAX);
3003     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3004     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3005       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3006         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3007                                               DemandedElts);
3008     if (CstLow && CstHigh) {
3009       if (!IsMax)
3010         std::swap(CstLow, CstHigh);
3011 
3012       const APInt &ValueLow = CstLow->getAPIntValue();
3013       const APInt &ValueHigh = CstHigh->getAPIntValue();
3014       if (ValueLow.sle(ValueHigh)) {
3015         unsigned LowSignBits = ValueLow.getNumSignBits();
3016         unsigned HighSignBits = ValueHigh.getNumSignBits();
3017         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3018         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3019           Known.One.setHighBits(MinSignBits);
3020           break;
3021         }
3022         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3023           Known.Zero.setHighBits(MinSignBits);
3024           break;
3025         }
3026       }
3027     }
3028 
3029     // Fallback - just get the shared known bits of the operands.
3030     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3031     if (Known.isUnknown()) break; // Early-out
3032     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3033     Known.Zero &= Known2.Zero;
3034     Known.One &= Known2.One;
3035     break;
3036   }
3037   case ISD::FrameIndex:
3038   case ISD::TargetFrameIndex:
3039     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3040     break;
3041 
3042   default:
3043     if (Opcode < ISD::BUILTIN_OP_END)
3044       break;
3045     LLVM_FALLTHROUGH;
3046   case ISD::INTRINSIC_WO_CHAIN:
3047   case ISD::INTRINSIC_W_CHAIN:
3048   case ISD::INTRINSIC_VOID:
3049     // Allow the target to implement this method for its nodes.
3050     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3051     break;
3052   }
3053 
3054   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3055   return Known;
3056 }
3057 
3058 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3059                                                              SDValue N1) const {
3060   // X + 0 never overflow
3061   if (isNullConstant(N1))
3062     return OFK_Never;
3063 
3064   KnownBits N1Known;
3065   computeKnownBits(N1, N1Known);
3066   if (N1Known.Zero.getBoolValue()) {
3067     KnownBits N0Known;
3068     computeKnownBits(N0, N0Known);
3069 
3070     bool overflow;
3071     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3072     if (!overflow)
3073       return OFK_Never;
3074   }
3075 
3076   // mulhi + 1 never overflow
3077   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3078       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3079     return OFK_Never;
3080 
3081   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3082     KnownBits N0Known;
3083     computeKnownBits(N0, N0Known);
3084 
3085     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3086       return OFK_Never;
3087   }
3088 
3089   return OFK_Sometime;
3090 }
3091 
3092 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3093   EVT OpVT = Val.getValueType();
3094   unsigned BitWidth = OpVT.getScalarSizeInBits();
3095 
3096   // Is the constant a known power of 2?
3097   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3098     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3099 
3100   // A left-shift of a constant one will have exactly one bit set because
3101   // shifting the bit off the end is undefined.
3102   if (Val.getOpcode() == ISD::SHL) {
3103     auto *C = isConstOrConstSplat(Val.getOperand(0));
3104     if (C && C->getAPIntValue() == 1)
3105       return true;
3106   }
3107 
3108   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3109   // one bit set.
3110   if (Val.getOpcode() == ISD::SRL) {
3111     auto *C = isConstOrConstSplat(Val.getOperand(0));
3112     if (C && C->getAPIntValue().isSignMask())
3113       return true;
3114   }
3115 
3116   // Are all operands of a build vector constant powers of two?
3117   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3118     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3119           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3120             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3121           return false;
3122         }))
3123       return true;
3124 
3125   // More could be done here, though the above checks are enough
3126   // to handle some common cases.
3127 
3128   // Fall back to computeKnownBits to catch other known cases.
3129   KnownBits Known = computeKnownBits(Val);
3130   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3131 }
3132 
3133 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3134   EVT VT = Op.getValueType();
3135   APInt DemandedElts = VT.isVector()
3136                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3137                            : APInt(1, 1);
3138   return ComputeNumSignBits(Op, DemandedElts, Depth);
3139 }
3140 
3141 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3142                                           unsigned Depth) const {
3143   EVT VT = Op.getValueType();
3144   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3145   unsigned VTBits = VT.getScalarSizeInBits();
3146   unsigned NumElts = DemandedElts.getBitWidth();
3147   unsigned Tmp, Tmp2;
3148   unsigned FirstAnswer = 1;
3149 
3150   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3151     const APInt &Val = C->getAPIntValue();
3152     return Val.getNumSignBits();
3153   }
3154 
3155   if (Depth == 6)
3156     return 1;  // Limit search depth.
3157 
3158   if (!DemandedElts)
3159     return 1;  // No demanded elts, better to assume we don't know anything.
3160 
3161   unsigned Opcode = Op.getOpcode();
3162   switch (Opcode) {
3163   default: break;
3164   case ISD::AssertSext:
3165     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3166     return VTBits-Tmp+1;
3167   case ISD::AssertZext:
3168     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3169     return VTBits-Tmp;
3170 
3171   case ISD::BUILD_VECTOR:
3172     Tmp = VTBits;
3173     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3174       if (!DemandedElts[i])
3175         continue;
3176 
3177       SDValue SrcOp = Op.getOperand(i);
3178       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3179 
3180       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3181       if (SrcOp.getValueSizeInBits() != VTBits) {
3182         assert(SrcOp.getValueSizeInBits() > VTBits &&
3183                "Expected BUILD_VECTOR implicit truncation");
3184         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3185         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3186       }
3187       Tmp = std::min(Tmp, Tmp2);
3188     }
3189     return Tmp;
3190 
3191   case ISD::VECTOR_SHUFFLE: {
3192     // Collect the minimum number of sign bits that are shared by every vector
3193     // element referenced by the shuffle.
3194     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3195     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3196     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3197     for (unsigned i = 0; i != NumElts; ++i) {
3198       int M = SVN->getMaskElt(i);
3199       if (!DemandedElts[i])
3200         continue;
3201       // For UNDEF elements, we don't know anything about the common state of
3202       // the shuffle result.
3203       if (M < 0)
3204         return 1;
3205       if ((unsigned)M < NumElts)
3206         DemandedLHS.setBit((unsigned)M % NumElts);
3207       else
3208         DemandedRHS.setBit((unsigned)M % NumElts);
3209     }
3210     Tmp = std::numeric_limits<unsigned>::max();
3211     if (!!DemandedLHS)
3212       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3213     if (!!DemandedRHS) {
3214       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3215       Tmp = std::min(Tmp, Tmp2);
3216     }
3217     // If we don't know anything, early out and try computeKnownBits fall-back.
3218     if (Tmp == 1)
3219       break;
3220     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3221     return Tmp;
3222   }
3223 
3224   case ISD::BITCAST: {
3225     SDValue N0 = Op.getOperand(0);
3226     EVT SrcVT = N0.getValueType();
3227     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3228 
3229     // Ignore bitcasts from unsupported types..
3230     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3231       break;
3232 
3233     // Fast handling of 'identity' bitcasts.
3234     if (VTBits == SrcBits)
3235       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3236 
3237     bool IsLE = getDataLayout().isLittleEndian();
3238 
3239     // Bitcast 'large element' scalar/vector to 'small element' vector.
3240     if ((SrcBits % VTBits) == 0) {
3241       assert(VT.isVector() && "Expected bitcast to vector");
3242 
3243       unsigned Scale = SrcBits / VTBits;
3244       APInt SrcDemandedElts(NumElts / Scale, 0);
3245       for (unsigned i = 0; i != NumElts; ++i)
3246         if (DemandedElts[i])
3247           SrcDemandedElts.setBit(i / Scale);
3248 
3249       // Fast case - sign splat can be simply split across the small elements.
3250       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3251       if (Tmp == SrcBits)
3252         return VTBits;
3253 
3254       // Slow case - determine how far the sign extends into each sub-element.
3255       Tmp2 = VTBits;
3256       for (unsigned i = 0; i != NumElts; ++i)
3257         if (DemandedElts[i]) {
3258           unsigned SubOffset = i % Scale;
3259           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3260           SubOffset = SubOffset * VTBits;
3261           if (Tmp <= SubOffset)
3262             return 1;
3263           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3264         }
3265       return Tmp2;
3266     }
3267     break;
3268   }
3269 
3270   case ISD::SIGN_EXTEND:
3271     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3272     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3273   case ISD::SIGN_EXTEND_INREG:
3274     // Max of the input and what this extends.
3275     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3276     Tmp = VTBits-Tmp+1;
3277     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3278     return std::max(Tmp, Tmp2);
3279   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3280     SDValue Src = Op.getOperand(0);
3281     EVT SrcVT = Src.getValueType();
3282     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3283     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3284     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3285   }
3286 
3287   case ISD::SRA:
3288     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3289     // SRA X, C   -> adds C sign bits.
3290     if (ConstantSDNode *C =
3291             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3292       APInt ShiftVal = C->getAPIntValue();
3293       ShiftVal += Tmp;
3294       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3295     }
3296     return Tmp;
3297   case ISD::SHL:
3298     if (ConstantSDNode *C =
3299             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3300       // shl destroys sign bits.
3301       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3302       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3303           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3304       return Tmp - C->getZExtValue();
3305     }
3306     break;
3307   case ISD::AND:
3308   case ISD::OR:
3309   case ISD::XOR:    // NOT is handled here.
3310     // Logical binary ops preserve the number of sign bits at the worst.
3311     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3312     if (Tmp != 1) {
3313       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3314       FirstAnswer = std::min(Tmp, Tmp2);
3315       // We computed what we know about the sign bits as our first
3316       // answer. Now proceed to the generic code that uses
3317       // computeKnownBits, and pick whichever answer is better.
3318     }
3319     break;
3320 
3321   case ISD::SELECT:
3322   case ISD::VSELECT:
3323     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3324     if (Tmp == 1) return 1;  // Early out.
3325     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3326     return std::min(Tmp, Tmp2);
3327   case ISD::SELECT_CC:
3328     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3329     if (Tmp == 1) return 1;  // Early out.
3330     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3331     return std::min(Tmp, Tmp2);
3332 
3333   case ISD::SMIN:
3334   case ISD::SMAX: {
3335     // If we have a clamp pattern, we know that the number of sign bits will be
3336     // the minimum of the clamp min/max range.
3337     bool IsMax = (Opcode == ISD::SMAX);
3338     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3339     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3340       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3341         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3342                                               DemandedElts);
3343     if (CstLow && CstHigh) {
3344       if (!IsMax)
3345         std::swap(CstLow, CstHigh);
3346       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3347         Tmp = CstLow->getAPIntValue().getNumSignBits();
3348         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3349         return std::min(Tmp, Tmp2);
3350       }
3351     }
3352 
3353     // Fallback - just get the minimum number of sign bits of the operands.
3354     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3355     if (Tmp == 1)
3356       return 1;  // Early out.
3357     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3358     return std::min(Tmp, Tmp2);
3359   }
3360   case ISD::UMIN:
3361   case ISD::UMAX:
3362     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3363     if (Tmp == 1)
3364       return 1;  // Early out.
3365     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3366     return std::min(Tmp, Tmp2);
3367   case ISD::SADDO:
3368   case ISD::UADDO:
3369   case ISD::SSUBO:
3370   case ISD::USUBO:
3371   case ISD::SMULO:
3372   case ISD::UMULO:
3373     if (Op.getResNo() != 1)
3374       break;
3375     // The boolean result conforms to getBooleanContents.  Fall through.
3376     // If setcc returns 0/-1, all bits are sign bits.
3377     // We know that we have an integer-based boolean since these operations
3378     // are only available for integer.
3379     if (TLI->getBooleanContents(VT.isVector(), false) ==
3380         TargetLowering::ZeroOrNegativeOneBooleanContent)
3381       return VTBits;
3382     break;
3383   case ISD::SETCC:
3384     // If setcc returns 0/-1, all bits are sign bits.
3385     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3386         TargetLowering::ZeroOrNegativeOneBooleanContent)
3387       return VTBits;
3388     break;
3389   case ISD::ROTL:
3390   case ISD::ROTR:
3391     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3392       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3393 
3394       // Handle rotate right by N like a rotate left by 32-N.
3395       if (Opcode == ISD::ROTR)
3396         RotAmt = (VTBits - RotAmt) % VTBits;
3397 
3398       // If we aren't rotating out all of the known-in sign bits, return the
3399       // number that are left.  This handles rotl(sext(x), 1) for example.
3400       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3401       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3402     }
3403     break;
3404   case ISD::ADD:
3405   case ISD::ADDC:
3406     // Add can have at most one carry bit.  Thus we know that the output
3407     // is, at worst, one more bit than the inputs.
3408     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3409     if (Tmp == 1) return 1;  // Early out.
3410 
3411     // Special case decrementing a value (ADD X, -1):
3412     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3413       if (CRHS->isAllOnesValue()) {
3414         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3415 
3416         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3417         // sign bits set.
3418         if ((Known.Zero | 1).isAllOnesValue())
3419           return VTBits;
3420 
3421         // If we are subtracting one from a positive number, there is no carry
3422         // out of the result.
3423         if (Known.isNonNegative())
3424           return Tmp;
3425       }
3426 
3427     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3428     if (Tmp2 == 1) return 1;
3429     return std::min(Tmp, Tmp2)-1;
3430 
3431   case ISD::SUB:
3432     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3433     if (Tmp2 == 1) return 1;
3434 
3435     // Handle NEG.
3436     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3437       if (CLHS->isNullValue()) {
3438         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3439         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3440         // sign bits set.
3441         if ((Known.Zero | 1).isAllOnesValue())
3442           return VTBits;
3443 
3444         // If the input is known to be positive (the sign bit is known clear),
3445         // the output of the NEG has the same number of sign bits as the input.
3446         if (Known.isNonNegative())
3447           return Tmp2;
3448 
3449         // Otherwise, we treat this like a SUB.
3450       }
3451 
3452     // Sub can have at most one carry bit.  Thus we know that the output
3453     // is, at worst, one more bit than the inputs.
3454     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3455     if (Tmp == 1) return 1;  // Early out.
3456     return std::min(Tmp, Tmp2)-1;
3457   case ISD::TRUNCATE: {
3458     // Check if the sign bits of source go down as far as the truncated value.
3459     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3460     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3461     if (NumSrcSignBits > (NumSrcBits - VTBits))
3462       return NumSrcSignBits - (NumSrcBits - VTBits);
3463     break;
3464   }
3465   case ISD::EXTRACT_ELEMENT: {
3466     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3467     const int BitWidth = Op.getValueSizeInBits();
3468     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3469 
3470     // Get reverse index (starting from 1), Op1 value indexes elements from
3471     // little end. Sign starts at big end.
3472     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3473 
3474     // If the sign portion ends in our element the subtraction gives correct
3475     // result. Otherwise it gives either negative or > bitwidth result
3476     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3477   }
3478   case ISD::INSERT_VECTOR_ELT: {
3479     SDValue InVec = Op.getOperand(0);
3480     SDValue InVal = Op.getOperand(1);
3481     SDValue EltNo = Op.getOperand(2);
3482     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3483 
3484     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3485     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3486       // If we know the element index, split the demand between the
3487       // source vector and the inserted element.
3488       unsigned EltIdx = CEltNo->getZExtValue();
3489 
3490       // If we demand the inserted element then get its sign bits.
3491       Tmp = std::numeric_limits<unsigned>::max();
3492       if (DemandedElts[EltIdx]) {
3493         // TODO - handle implicit truncation of inserted elements.
3494         if (InVal.getScalarValueSizeInBits() != VTBits)
3495           break;
3496         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3497       }
3498 
3499       // If we demand the source vector then get its sign bits, and determine
3500       // the minimum.
3501       APInt VectorElts = DemandedElts;
3502       VectorElts.clearBit(EltIdx);
3503       if (!!VectorElts) {
3504         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3505         Tmp = std::min(Tmp, Tmp2);
3506       }
3507     } else {
3508       // Unknown element index, so ignore DemandedElts and demand them all.
3509       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3510       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3511       Tmp = std::min(Tmp, Tmp2);
3512     }
3513     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3514     return Tmp;
3515   }
3516   case ISD::EXTRACT_VECTOR_ELT: {
3517     SDValue InVec = Op.getOperand(0);
3518     SDValue EltNo = Op.getOperand(1);
3519     EVT VecVT = InVec.getValueType();
3520     const unsigned BitWidth = Op.getValueSizeInBits();
3521     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3522     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3523 
3524     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3525     // anything about sign bits. But if the sizes match we can derive knowledge
3526     // about sign bits from the vector operand.
3527     if (BitWidth != EltBitWidth)
3528       break;
3529 
3530     // If we know the element index, just demand that vector element, else for
3531     // an unknown element index, ignore DemandedElts and demand them all.
3532     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3533     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3534     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3535       DemandedSrcElts =
3536           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3537 
3538     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3539   }
3540   case ISD::EXTRACT_SUBVECTOR: {
3541     // If we know the element index, just demand that subvector elements,
3542     // otherwise demand them all.
3543     SDValue Src = Op.getOperand(0);
3544     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3545     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3546     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3547       // Offset the demanded elts by the subvector index.
3548       uint64_t Idx = SubIdx->getZExtValue();
3549       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3550       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3551     }
3552     return ComputeNumSignBits(Src, Depth + 1);
3553   }
3554   case ISD::CONCAT_VECTORS:
3555     // Determine the minimum number of sign bits across all demanded
3556     // elts of the input vectors. Early out if the result is already 1.
3557     Tmp = std::numeric_limits<unsigned>::max();
3558     EVT SubVectorVT = Op.getOperand(0).getValueType();
3559     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3560     unsigned NumSubVectors = Op.getNumOperands();
3561     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3562       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3563       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3564       if (!DemandedSub)
3565         continue;
3566       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3567       Tmp = std::min(Tmp, Tmp2);
3568     }
3569     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3570     return Tmp;
3571   }
3572 
3573   // If we are looking at the loaded value of the SDNode.
3574   if (Op.getResNo() == 0) {
3575     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3576     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3577       unsigned ExtType = LD->getExtensionType();
3578       switch (ExtType) {
3579         default: break;
3580         case ISD::SEXTLOAD:    // '17' bits known
3581           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3582           return VTBits-Tmp+1;
3583         case ISD::ZEXTLOAD:    // '16' bits known
3584           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3585           return VTBits-Tmp;
3586       }
3587     }
3588   }
3589 
3590   // Allow the target to implement this method for its nodes.
3591   if (Opcode >= ISD::BUILTIN_OP_END ||
3592       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3593       Opcode == ISD::INTRINSIC_W_CHAIN ||
3594       Opcode == ISD::INTRINSIC_VOID) {
3595     unsigned NumBits =
3596         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3597     if (NumBits > 1)
3598       FirstAnswer = std::max(FirstAnswer, NumBits);
3599   }
3600 
3601   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3602   // use this information.
3603   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3604 
3605   APInt Mask;
3606   if (Known.isNonNegative()) {        // sign bit is 0
3607     Mask = Known.Zero;
3608   } else if (Known.isNegative()) {  // sign bit is 1;
3609     Mask = Known.One;
3610   } else {
3611     // Nothing known.
3612     return FirstAnswer;
3613   }
3614 
3615   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3616   // the number of identical bits in the top of the input value.
3617   Mask = ~Mask;
3618   Mask <<= Mask.getBitWidth()-VTBits;
3619   // Return # leading zeros.  We use 'min' here in case Val was zero before
3620   // shifting.  We don't want to return '64' as for an i32 "0".
3621   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3622 }
3623 
3624 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3625   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3626       !isa<ConstantSDNode>(Op.getOperand(1)))
3627     return false;
3628 
3629   if (Op.getOpcode() == ISD::OR &&
3630       !MaskedValueIsZero(Op.getOperand(0),
3631                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3632     return false;
3633 
3634   return true;
3635 }
3636 
3637 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3638   // If we're told that NaNs won't happen, assume they won't.
3639   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3640     return true;
3641 
3642   if (Depth == 6)
3643     return false; // Limit search depth.
3644 
3645   // TODO: Handle vectors.
3646   // If the value is a constant, we can obviously see if it is a NaN or not.
3647   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3648     return !C->getValueAPF().isNaN() ||
3649            (SNaN && !C->getValueAPF().isSignaling());
3650   }
3651 
3652   unsigned Opcode = Op.getOpcode();
3653   switch (Opcode) {
3654   case ISD::FADD:
3655   case ISD::FSUB:
3656   case ISD::FMUL:
3657   case ISD::FDIV:
3658   case ISD::FREM:
3659   case ISD::FSIN:
3660   case ISD::FCOS: {
3661     if (SNaN)
3662       return true;
3663     // TODO: Need isKnownNeverInfinity
3664     return false;
3665   }
3666   case ISD::FCANONICALIZE:
3667   case ISD::FEXP:
3668   case ISD::FEXP2:
3669   case ISD::FTRUNC:
3670   case ISD::FFLOOR:
3671   case ISD::FCEIL:
3672   case ISD::FROUND:
3673   case ISD::FRINT:
3674   case ISD::FNEARBYINT: {
3675     if (SNaN)
3676       return true;
3677     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3678   }
3679   case ISD::FABS:
3680   case ISD::FNEG:
3681   case ISD::FCOPYSIGN: {
3682     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3683   }
3684   case ISD::SELECT:
3685     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3686            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3687   case ISD::FP_EXTEND:
3688   case ISD::FP_ROUND: {
3689     if (SNaN)
3690       return true;
3691     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3692   }
3693   case ISD::SINT_TO_FP:
3694   case ISD::UINT_TO_FP:
3695     return true;
3696   case ISD::FMA:
3697   case ISD::FMAD: {
3698     if (SNaN)
3699       return true;
3700     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3701            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3702            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3703   }
3704   case ISD::FSQRT: // Need is known positive
3705   case ISD::FLOG:
3706   case ISD::FLOG2:
3707   case ISD::FLOG10:
3708   case ISD::FPOWI:
3709   case ISD::FPOW: {
3710     if (SNaN)
3711       return true;
3712     // TODO: Refine on operand
3713     return false;
3714   }
3715 
3716   // TODO: Handle FMINNUM/FMAXNUM/FMINNAN/FMAXNAN when there is an agreement on
3717   // what they should do.
3718   case ISD::EXTRACT_VECTOR_ELT: {
3719     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3720   }
3721   default:
3722     if (Opcode >= ISD::BUILTIN_OP_END ||
3723         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3724         Opcode == ISD::INTRINSIC_W_CHAIN ||
3725         Opcode == ISD::INTRINSIC_VOID) {
3726       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3727     }
3728 
3729     return false;
3730   }
3731 }
3732 
3733 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3734   assert(Op.getValueType().isFloatingPoint() &&
3735          "Floating point type expected");
3736 
3737   // If the value is a constant, we can obviously see if it is a zero or not.
3738   // TODO: Add BuildVector support.
3739   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3740     return !C->isZero();
3741   return false;
3742 }
3743 
3744 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3745   assert(!Op.getValueType().isFloatingPoint() &&
3746          "Floating point types unsupported - use isKnownNeverZeroFloat");
3747 
3748   // If the value is a constant, we can obviously see if it is a zero or not.
3749   if (ISD::matchUnaryPredicate(
3750           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3751     return true;
3752 
3753   // TODO: Recognize more cases here.
3754   switch (Op.getOpcode()) {
3755   default: break;
3756   case ISD::OR:
3757     if (isKnownNeverZero(Op.getOperand(1)) ||
3758         isKnownNeverZero(Op.getOperand(0)))
3759       return true;
3760     break;
3761   }
3762 
3763   return false;
3764 }
3765 
3766 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3767   // Check the obvious case.
3768   if (A == B) return true;
3769 
3770   // For for negative and positive zero.
3771   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3772     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3773       if (CA->isZero() && CB->isZero()) return true;
3774 
3775   // Otherwise they may not be equal.
3776   return false;
3777 }
3778 
3779 // FIXME: unify with llvm::haveNoCommonBitsSet.
3780 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3781 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3782   assert(A.getValueType() == B.getValueType() &&
3783          "Values must have the same type");
3784   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3785 }
3786 
3787 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3788                                   ArrayRef<SDValue> Ops,
3789                                   SelectionDAG &DAG) {
3790   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3791   assert(llvm::all_of(Ops,
3792                       [Ops](SDValue Op) {
3793                         return Ops[0].getValueType() == Op.getValueType();
3794                       }) &&
3795          "Concatenation of vectors with inconsistent value types!");
3796   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3797              VT.getVectorNumElements() &&
3798          "Incorrect element count in vector concatenation!");
3799 
3800   if (Ops.size() == 1)
3801     return Ops[0];
3802 
3803   // Concat of UNDEFs is UNDEF.
3804   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3805     return DAG.getUNDEF(VT);
3806 
3807   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3808   // simplified to one big BUILD_VECTOR.
3809   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3810   EVT SVT = VT.getScalarType();
3811   SmallVector<SDValue, 16> Elts;
3812   for (SDValue Op : Ops) {
3813     EVT OpVT = Op.getValueType();
3814     if (Op.isUndef())
3815       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3816     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3817       Elts.append(Op->op_begin(), Op->op_end());
3818     else
3819       return SDValue();
3820   }
3821 
3822   // BUILD_VECTOR requires all inputs to be of the same type, find the
3823   // maximum type and extend them all.
3824   for (SDValue Op : Elts)
3825     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3826 
3827   if (SVT.bitsGT(VT.getScalarType()))
3828     for (SDValue &Op : Elts)
3829       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3830                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3831                : DAG.getSExtOrTrunc(Op, DL, SVT);
3832 
3833   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3834   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3835   return V;
3836 }
3837 
3838 /// Gets or creates the specified node.
3839 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3840   FoldingSetNodeID ID;
3841   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3842   void *IP = nullptr;
3843   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3844     return SDValue(E, 0);
3845 
3846   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3847                               getVTList(VT));
3848   CSEMap.InsertNode(N, IP);
3849 
3850   InsertNode(N);
3851   SDValue V = SDValue(N, 0);
3852   NewSDValueDbgMsg(V, "Creating new node: ", this);
3853   return V;
3854 }
3855 
3856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3857                               SDValue Operand, const SDNodeFlags Flags) {
3858   // Constant fold unary operations with an integer constant operand. Even
3859   // opaque constant will be folded, because the folding of unary operations
3860   // doesn't create new constants with different values. Nevertheless, the
3861   // opaque flag is preserved during folding to prevent future folding with
3862   // other constants.
3863   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3864     const APInt &Val = C->getAPIntValue();
3865     switch (Opcode) {
3866     default: break;
3867     case ISD::SIGN_EXTEND:
3868       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3869                          C->isTargetOpcode(), C->isOpaque());
3870     case ISD::ANY_EXTEND:
3871     case ISD::ZERO_EXTEND:
3872     case ISD::TRUNCATE:
3873       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3874                          C->isTargetOpcode(), C->isOpaque());
3875     case ISD::UINT_TO_FP:
3876     case ISD::SINT_TO_FP: {
3877       APFloat apf(EVTToAPFloatSemantics(VT),
3878                   APInt::getNullValue(VT.getSizeInBits()));
3879       (void)apf.convertFromAPInt(Val,
3880                                  Opcode==ISD::SINT_TO_FP,
3881                                  APFloat::rmNearestTiesToEven);
3882       return getConstantFP(apf, DL, VT);
3883     }
3884     case ISD::BITCAST:
3885       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3886         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3887       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3888         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3889       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3890         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3891       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3892         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3893       break;
3894     case ISD::ABS:
3895       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3896                          C->isOpaque());
3897     case ISD::BITREVERSE:
3898       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3899                          C->isOpaque());
3900     case ISD::BSWAP:
3901       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3902                          C->isOpaque());
3903     case ISD::CTPOP:
3904       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3905                          C->isOpaque());
3906     case ISD::CTLZ:
3907     case ISD::CTLZ_ZERO_UNDEF:
3908       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3909                          C->isOpaque());
3910     case ISD::CTTZ:
3911     case ISD::CTTZ_ZERO_UNDEF:
3912       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3913                          C->isOpaque());
3914     case ISD::FP16_TO_FP: {
3915       bool Ignored;
3916       APFloat FPV(APFloat::IEEEhalf(),
3917                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3918 
3919       // This can return overflow, underflow, or inexact; we don't care.
3920       // FIXME need to be more flexible about rounding mode.
3921       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3922                         APFloat::rmNearestTiesToEven, &Ignored);
3923       return getConstantFP(FPV, DL, VT);
3924     }
3925     }
3926   }
3927 
3928   // Constant fold unary operations with a floating point constant operand.
3929   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3930     APFloat V = C->getValueAPF();    // make copy
3931     switch (Opcode) {
3932     case ISD::FNEG:
3933       V.changeSign();
3934       return getConstantFP(V, DL, VT);
3935     case ISD::FABS:
3936       V.clearSign();
3937       return getConstantFP(V, DL, VT);
3938     case ISD::FCEIL: {
3939       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3940       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3941         return getConstantFP(V, DL, VT);
3942       break;
3943     }
3944     case ISD::FTRUNC: {
3945       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3946       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3947         return getConstantFP(V, DL, VT);
3948       break;
3949     }
3950     case ISD::FFLOOR: {
3951       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3952       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3953         return getConstantFP(V, DL, VT);
3954       break;
3955     }
3956     case ISD::FP_EXTEND: {
3957       bool ignored;
3958       // This can return overflow, underflow, or inexact; we don't care.
3959       // FIXME need to be more flexible about rounding mode.
3960       (void)V.convert(EVTToAPFloatSemantics(VT),
3961                       APFloat::rmNearestTiesToEven, &ignored);
3962       return getConstantFP(V, DL, VT);
3963     }
3964     case ISD::FP_TO_SINT:
3965     case ISD::FP_TO_UINT: {
3966       bool ignored;
3967       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3968       // FIXME need to be more flexible about rounding mode.
3969       APFloat::opStatus s =
3970           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3971       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3972         break;
3973       return getConstant(IntVal, DL, VT);
3974     }
3975     case ISD::BITCAST:
3976       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3977         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3978       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3979         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3980       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3981         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3982       break;
3983     case ISD::FP_TO_FP16: {
3984       bool Ignored;
3985       // This can return overflow, underflow, or inexact; we don't care.
3986       // FIXME need to be more flexible about rounding mode.
3987       (void)V.convert(APFloat::IEEEhalf(),
3988                       APFloat::rmNearestTiesToEven, &Ignored);
3989       return getConstant(V.bitcastToAPInt(), DL, VT);
3990     }
3991     }
3992   }
3993 
3994   // Constant fold unary operations with a vector integer or float operand.
3995   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3996     if (BV->isConstant()) {
3997       switch (Opcode) {
3998       default:
3999         // FIXME: Entirely reasonable to perform folding of other unary
4000         // operations here as the need arises.
4001         break;
4002       case ISD::FNEG:
4003       case ISD::FABS:
4004       case ISD::FCEIL:
4005       case ISD::FTRUNC:
4006       case ISD::FFLOOR:
4007       case ISD::FP_EXTEND:
4008       case ISD::FP_TO_SINT:
4009       case ISD::FP_TO_UINT:
4010       case ISD::TRUNCATE:
4011       case ISD::ANY_EXTEND:
4012       case ISD::ZERO_EXTEND:
4013       case ISD::SIGN_EXTEND:
4014       case ISD::UINT_TO_FP:
4015       case ISD::SINT_TO_FP:
4016       case ISD::ABS:
4017       case ISD::BITREVERSE:
4018       case ISD::BSWAP:
4019       case ISD::CTLZ:
4020       case ISD::CTLZ_ZERO_UNDEF:
4021       case ISD::CTTZ:
4022       case ISD::CTTZ_ZERO_UNDEF:
4023       case ISD::CTPOP: {
4024         SDValue Ops = { Operand };
4025         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4026           return Fold;
4027       }
4028       }
4029     }
4030   }
4031 
4032   unsigned OpOpcode = Operand.getNode()->getOpcode();
4033   switch (Opcode) {
4034   case ISD::TokenFactor:
4035   case ISD::MERGE_VALUES:
4036   case ISD::CONCAT_VECTORS:
4037     return Operand;         // Factor, merge or concat of one node?  No need.
4038   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4039   case ISD::FP_EXTEND:
4040     assert(VT.isFloatingPoint() &&
4041            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4042     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4043     assert((!VT.isVector() ||
4044             VT.getVectorNumElements() ==
4045             Operand.getValueType().getVectorNumElements()) &&
4046            "Vector element count mismatch!");
4047     assert(Operand.getValueType().bitsLT(VT) &&
4048            "Invalid fpext node, dst < src!");
4049     if (Operand.isUndef())
4050       return getUNDEF(VT);
4051     break;
4052   case ISD::SIGN_EXTEND:
4053     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4054            "Invalid SIGN_EXTEND!");
4055     if (Operand.getValueType() == VT) return Operand;   // noop extension
4056     assert((!VT.isVector() ||
4057             VT.getVectorNumElements() ==
4058             Operand.getValueType().getVectorNumElements()) &&
4059            "Vector element count mismatch!");
4060     assert(Operand.getValueType().bitsLT(VT) &&
4061            "Invalid sext node, dst < src!");
4062     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4063       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4064     else if (OpOpcode == ISD::UNDEF)
4065       // sext(undef) = 0, because the top bits will all be the same.
4066       return getConstant(0, DL, VT);
4067     break;
4068   case ISD::ZERO_EXTEND:
4069     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4070            "Invalid ZERO_EXTEND!");
4071     if (Operand.getValueType() == VT) return Operand;   // noop extension
4072     assert((!VT.isVector() ||
4073             VT.getVectorNumElements() ==
4074             Operand.getValueType().getVectorNumElements()) &&
4075            "Vector element count mismatch!");
4076     assert(Operand.getValueType().bitsLT(VT) &&
4077            "Invalid zext node, dst < src!");
4078     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4079       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4080     else if (OpOpcode == ISD::UNDEF)
4081       // zext(undef) = 0, because the top bits will be zero.
4082       return getConstant(0, DL, VT);
4083     break;
4084   case ISD::ANY_EXTEND:
4085     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4086            "Invalid ANY_EXTEND!");
4087     if (Operand.getValueType() == VT) return Operand;   // noop extension
4088     assert((!VT.isVector() ||
4089             VT.getVectorNumElements() ==
4090             Operand.getValueType().getVectorNumElements()) &&
4091            "Vector element count mismatch!");
4092     assert(Operand.getValueType().bitsLT(VT) &&
4093            "Invalid anyext node, dst < src!");
4094 
4095     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4096         OpOpcode == ISD::ANY_EXTEND)
4097       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4098       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4099     else if (OpOpcode == ISD::UNDEF)
4100       return getUNDEF(VT);
4101 
4102     // (ext (trunc x)) -> x
4103     if (OpOpcode == ISD::TRUNCATE) {
4104       SDValue OpOp = Operand.getOperand(0);
4105       if (OpOp.getValueType() == VT) {
4106         transferDbgValues(Operand, OpOp);
4107         return OpOp;
4108       }
4109     }
4110     break;
4111   case ISD::TRUNCATE:
4112     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4113            "Invalid TRUNCATE!");
4114     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4115     assert((!VT.isVector() ||
4116             VT.getVectorNumElements() ==
4117             Operand.getValueType().getVectorNumElements()) &&
4118            "Vector element count mismatch!");
4119     assert(Operand.getValueType().bitsGT(VT) &&
4120            "Invalid truncate node, src < dst!");
4121     if (OpOpcode == ISD::TRUNCATE)
4122       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4123     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4124         OpOpcode == ISD::ANY_EXTEND) {
4125       // If the source is smaller than the dest, we still need an extend.
4126       if (Operand.getOperand(0).getValueType().getScalarType()
4127             .bitsLT(VT.getScalarType()))
4128         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4129       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4130         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4131       return Operand.getOperand(0);
4132     }
4133     if (OpOpcode == ISD::UNDEF)
4134       return getUNDEF(VT);
4135     break;
4136   case ISD::ABS:
4137     assert(VT.isInteger() && VT == Operand.getValueType() &&
4138            "Invalid ABS!");
4139     if (OpOpcode == ISD::UNDEF)
4140       return getUNDEF(VT);
4141     break;
4142   case ISD::BSWAP:
4143     assert(VT.isInteger() && VT == Operand.getValueType() &&
4144            "Invalid BSWAP!");
4145     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4146            "BSWAP types must be a multiple of 16 bits!");
4147     if (OpOpcode == ISD::UNDEF)
4148       return getUNDEF(VT);
4149     break;
4150   case ISD::BITREVERSE:
4151     assert(VT.isInteger() && VT == Operand.getValueType() &&
4152            "Invalid BITREVERSE!");
4153     if (OpOpcode == ISD::UNDEF)
4154       return getUNDEF(VT);
4155     break;
4156   case ISD::BITCAST:
4157     // Basic sanity checking.
4158     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4159            "Cannot BITCAST between types of different sizes!");
4160     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4161     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4162       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4163     if (OpOpcode == ISD::UNDEF)
4164       return getUNDEF(VT);
4165     break;
4166   case ISD::SCALAR_TO_VECTOR:
4167     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4168            (VT.getVectorElementType() == Operand.getValueType() ||
4169             (VT.getVectorElementType().isInteger() &&
4170              Operand.getValueType().isInteger() &&
4171              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4172            "Illegal SCALAR_TO_VECTOR node!");
4173     if (OpOpcode == ISD::UNDEF)
4174       return getUNDEF(VT);
4175     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4176     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4177         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4178         Operand.getConstantOperandVal(1) == 0 &&
4179         Operand.getOperand(0).getValueType() == VT)
4180       return Operand.getOperand(0);
4181     break;
4182   case ISD::FNEG:
4183     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4184     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4185         OpOpcode == ISD::FSUB)
4186       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4187                      Operand.getOperand(0), Flags);
4188     if (OpOpcode == ISD::FNEG)  // --X -> X
4189       return Operand.getOperand(0);
4190     break;
4191   case ISD::FABS:
4192     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4193       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4194     break;
4195   }
4196 
4197   SDNode *N;
4198   SDVTList VTs = getVTList(VT);
4199   SDValue Ops[] = {Operand};
4200   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4201     FoldingSetNodeID ID;
4202     AddNodeIDNode(ID, Opcode, VTs, Ops);
4203     void *IP = nullptr;
4204     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4205       E->intersectFlagsWith(Flags);
4206       return SDValue(E, 0);
4207     }
4208 
4209     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4210     N->setFlags(Flags);
4211     createOperands(N, Ops);
4212     CSEMap.InsertNode(N, IP);
4213   } else {
4214     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4215     createOperands(N, Ops);
4216   }
4217 
4218   InsertNode(N);
4219   SDValue V = SDValue(N, 0);
4220   NewSDValueDbgMsg(V, "Creating new node: ", this);
4221   return V;
4222 }
4223 
4224 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4225                                         const APInt &C2) {
4226   switch (Opcode) {
4227   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4228   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4229   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4230   case ISD::AND:  return std::make_pair(C1 & C2, true);
4231   case ISD::OR:   return std::make_pair(C1 | C2, true);
4232   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4233   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4234   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4235   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4236   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4237   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4238   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4239   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4240   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4241   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4242   case ISD::UDIV:
4243     if (!C2.getBoolValue())
4244       break;
4245     return std::make_pair(C1.udiv(C2), true);
4246   case ISD::UREM:
4247     if (!C2.getBoolValue())
4248       break;
4249     return std::make_pair(C1.urem(C2), true);
4250   case ISD::SDIV:
4251     if (!C2.getBoolValue())
4252       break;
4253     return std::make_pair(C1.sdiv(C2), true);
4254   case ISD::SREM:
4255     if (!C2.getBoolValue())
4256       break;
4257     return std::make_pair(C1.srem(C2), true);
4258   }
4259   return std::make_pair(APInt(1, 0), false);
4260 }
4261 
4262 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4263                                              EVT VT, const ConstantSDNode *Cst1,
4264                                              const ConstantSDNode *Cst2) {
4265   if (Cst1->isOpaque() || Cst2->isOpaque())
4266     return SDValue();
4267 
4268   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4269                                             Cst2->getAPIntValue());
4270   if (!Folded.second)
4271     return SDValue();
4272   return getConstant(Folded.first, DL, VT);
4273 }
4274 
4275 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4276                                        const GlobalAddressSDNode *GA,
4277                                        const SDNode *N2) {
4278   if (GA->getOpcode() != ISD::GlobalAddress)
4279     return SDValue();
4280   if (!TLI->isOffsetFoldingLegal(GA))
4281     return SDValue();
4282   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4283   if (!Cst2)
4284     return SDValue();
4285   int64_t Offset = Cst2->getSExtValue();
4286   switch (Opcode) {
4287   case ISD::ADD: break;
4288   case ISD::SUB: Offset = -uint64_t(Offset); break;
4289   default: return SDValue();
4290   }
4291   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4292                           GA->getOffset() + uint64_t(Offset));
4293 }
4294 
4295 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4296   switch (Opcode) {
4297   case ISD::SDIV:
4298   case ISD::UDIV:
4299   case ISD::SREM:
4300   case ISD::UREM: {
4301     // If a divisor is zero/undef or any element of a divisor vector is
4302     // zero/undef, the whole op is undef.
4303     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4304     SDValue Divisor = Ops[1];
4305     if (Divisor.isUndef() || isNullConstant(Divisor))
4306       return true;
4307 
4308     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4309            llvm::any_of(Divisor->op_values(),
4310                         [](SDValue V) { return V.isUndef() ||
4311                                         isNullConstant(V); });
4312     // TODO: Handle signed overflow.
4313   }
4314   // TODO: Handle oversized shifts.
4315   default:
4316     return false;
4317   }
4318 }
4319 
4320 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4321                                              EVT VT, SDNode *Cst1,
4322                                              SDNode *Cst2) {
4323   // If the opcode is a target-specific ISD node, there's nothing we can
4324   // do here and the operand rules may not line up with the below, so
4325   // bail early.
4326   if (Opcode >= ISD::BUILTIN_OP_END)
4327     return SDValue();
4328 
4329   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4330     return getUNDEF(VT);
4331 
4332   // Handle the case of two scalars.
4333   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4334     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4335       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4336       assert((!Folded || !VT.isVector()) &&
4337              "Can't fold vectors ops with scalar operands");
4338       return Folded;
4339     }
4340   }
4341 
4342   // fold (add Sym, c) -> Sym+c
4343   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4344     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4345   if (TLI->isCommutativeBinOp(Opcode))
4346     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4347       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4348 
4349   // For vectors extract each constant element into Inputs so we can constant
4350   // fold them individually.
4351   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4352   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4353   if (!BV1 || !BV2)
4354     return SDValue();
4355 
4356   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4357 
4358   EVT SVT = VT.getScalarType();
4359   EVT LegalSVT = SVT;
4360   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4361     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4362     if (LegalSVT.bitsLT(SVT))
4363       return SDValue();
4364   }
4365   SmallVector<SDValue, 4> Outputs;
4366   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4367     SDValue V1 = BV1->getOperand(I);
4368     SDValue V2 = BV2->getOperand(I);
4369 
4370     if (SVT.isInteger()) {
4371         if (V1->getValueType(0).bitsGT(SVT))
4372           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4373         if (V2->getValueType(0).bitsGT(SVT))
4374           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4375     }
4376 
4377     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4378       return SDValue();
4379 
4380     // Fold one vector element.
4381     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4382     if (LegalSVT != SVT)
4383       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4384 
4385     // Scalar folding only succeeded if the result is a constant or UNDEF.
4386     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4387         ScalarResult.getOpcode() != ISD::ConstantFP)
4388       return SDValue();
4389     Outputs.push_back(ScalarResult);
4390   }
4391 
4392   assert(VT.getVectorNumElements() == Outputs.size() &&
4393          "Vector size mismatch!");
4394 
4395   // We may have a vector type but a scalar result. Create a splat.
4396   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4397 
4398   // Build a big vector out of the scalar elements we generated.
4399   return getBuildVector(VT, SDLoc(), Outputs);
4400 }
4401 
4402 // TODO: Merge with FoldConstantArithmetic
4403 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4404                                                    const SDLoc &DL, EVT VT,
4405                                                    ArrayRef<SDValue> Ops,
4406                                                    const SDNodeFlags Flags) {
4407   // If the opcode is a target-specific ISD node, there's nothing we can
4408   // do here and the operand rules may not line up with the below, so
4409   // bail early.
4410   if (Opcode >= ISD::BUILTIN_OP_END)
4411     return SDValue();
4412 
4413   if (isUndef(Opcode, Ops))
4414     return getUNDEF(VT);
4415 
4416   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4417   if (!VT.isVector())
4418     return SDValue();
4419 
4420   unsigned NumElts = VT.getVectorNumElements();
4421 
4422   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4423     return !Op.getValueType().isVector() ||
4424            Op.getValueType().getVectorNumElements() == NumElts;
4425   };
4426 
4427   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4428     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4429     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4430            (BV && BV->isConstant());
4431   };
4432 
4433   // All operands must be vector types with the same number of elements as
4434   // the result type and must be either UNDEF or a build vector of constant
4435   // or UNDEF scalars.
4436   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4437       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4438     return SDValue();
4439 
4440   // If we are comparing vectors, then the result needs to be a i1 boolean
4441   // that is then sign-extended back to the legal result type.
4442   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4443 
4444   // Find legal integer scalar type for constant promotion and
4445   // ensure that its scalar size is at least as large as source.
4446   EVT LegalSVT = VT.getScalarType();
4447   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4448     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4449     if (LegalSVT.bitsLT(VT.getScalarType()))
4450       return SDValue();
4451   }
4452 
4453   // Constant fold each scalar lane separately.
4454   SmallVector<SDValue, 4> ScalarResults;
4455   for (unsigned i = 0; i != NumElts; i++) {
4456     SmallVector<SDValue, 4> ScalarOps;
4457     for (SDValue Op : Ops) {
4458       EVT InSVT = Op.getValueType().getScalarType();
4459       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4460       if (!InBV) {
4461         // We've checked that this is UNDEF or a constant of some kind.
4462         if (Op.isUndef())
4463           ScalarOps.push_back(getUNDEF(InSVT));
4464         else
4465           ScalarOps.push_back(Op);
4466         continue;
4467       }
4468 
4469       SDValue ScalarOp = InBV->getOperand(i);
4470       EVT ScalarVT = ScalarOp.getValueType();
4471 
4472       // Build vector (integer) scalar operands may need implicit
4473       // truncation - do this before constant folding.
4474       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4475         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4476 
4477       ScalarOps.push_back(ScalarOp);
4478     }
4479 
4480     // Constant fold the scalar operands.
4481     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4482 
4483     // Legalize the (integer) scalar constant if necessary.
4484     if (LegalSVT != SVT)
4485       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4486 
4487     // Scalar folding only succeeded if the result is a constant or UNDEF.
4488     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4489         ScalarResult.getOpcode() != ISD::ConstantFP)
4490       return SDValue();
4491     ScalarResults.push_back(ScalarResult);
4492   }
4493 
4494   SDValue V = getBuildVector(VT, DL, ScalarResults);
4495   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4496   return V;
4497 }
4498 
4499 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4500                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4501   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4502   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4503   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4504   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4505 
4506   // Canonicalize constant to RHS if commutative.
4507   if (TLI->isCommutativeBinOp(Opcode)) {
4508     if (N1C && !N2C) {
4509       std::swap(N1C, N2C);
4510       std::swap(N1, N2);
4511     } else if (N1CFP && !N2CFP) {
4512       std::swap(N1CFP, N2CFP);
4513       std::swap(N1, N2);
4514     }
4515   }
4516 
4517   switch (Opcode) {
4518   default: break;
4519   case ISD::TokenFactor:
4520     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4521            N2.getValueType() == MVT::Other && "Invalid token factor!");
4522     // Fold trivial token factors.
4523     if (N1.getOpcode() == ISD::EntryToken) return N2;
4524     if (N2.getOpcode() == ISD::EntryToken) return N1;
4525     if (N1 == N2) return N1;
4526     break;
4527   case ISD::CONCAT_VECTORS: {
4528     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4529     SDValue Ops[] = {N1, N2};
4530     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4531       return V;
4532     break;
4533   }
4534   case ISD::AND:
4535     assert(VT.isInteger() && "This operator does not apply to FP types!");
4536     assert(N1.getValueType() == N2.getValueType() &&
4537            N1.getValueType() == VT && "Binary operator types must match!");
4538     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4539     // worth handling here.
4540     if (N2C && N2C->isNullValue())
4541       return N2;
4542     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4543       return N1;
4544     break;
4545   case ISD::OR:
4546   case ISD::XOR:
4547   case ISD::ADD:
4548   case ISD::SUB:
4549     assert(VT.isInteger() && "This operator does not apply to FP types!");
4550     assert(N1.getValueType() == N2.getValueType() &&
4551            N1.getValueType() == VT && "Binary operator types must match!");
4552     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4553     // it's worth handling here.
4554     if (N2C && N2C->isNullValue())
4555       return N1;
4556     break;
4557   case ISD::UDIV:
4558   case ISD::UREM:
4559   case ISD::MULHU:
4560   case ISD::MULHS:
4561   case ISD::MUL:
4562   case ISD::SDIV:
4563   case ISD::SREM:
4564   case ISD::SMIN:
4565   case ISD::SMAX:
4566   case ISD::UMIN:
4567   case ISD::UMAX:
4568     assert(VT.isInteger() && "This operator does not apply to FP types!");
4569     assert(N1.getValueType() == N2.getValueType() &&
4570            N1.getValueType() == VT && "Binary operator types must match!");
4571     break;
4572   case ISD::FADD:
4573   case ISD::FSUB:
4574   case ISD::FMUL:
4575   case ISD::FDIV:
4576   case ISD::FREM:
4577     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4578     assert(N1.getValueType() == N2.getValueType() &&
4579            N1.getValueType() == VT && "Binary operator types must match!");
4580     break;
4581   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4582     assert(N1.getValueType() == VT &&
4583            N1.getValueType().isFloatingPoint() &&
4584            N2.getValueType().isFloatingPoint() &&
4585            "Invalid FCOPYSIGN!");
4586     break;
4587   case ISD::SHL:
4588   case ISD::SRA:
4589   case ISD::SRL:
4590   case ISD::ROTL:
4591   case ISD::ROTR:
4592     assert(VT == N1.getValueType() &&
4593            "Shift operators return type must be the same as their first arg");
4594     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4595            "Shifts only work on integers");
4596     assert((!VT.isVector() || VT == N2.getValueType()) &&
4597            "Vector shift amounts must be in the same as their first arg");
4598     // Verify that the shift amount VT is bit enough to hold valid shift
4599     // amounts.  This catches things like trying to shift an i1024 value by an
4600     // i8, which is easy to fall into in generic code that uses
4601     // TLI.getShiftAmount().
4602     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4603            "Invalid use of small shift amount with oversized value!");
4604 
4605     // Always fold shifts of i1 values so the code generator doesn't need to
4606     // handle them.  Since we know the size of the shift has to be less than the
4607     // size of the value, the shift/rotate count is guaranteed to be zero.
4608     if (VT == MVT::i1)
4609       return N1;
4610     if (N2C && N2C->isNullValue())
4611       return N1;
4612     break;
4613   case ISD::FP_ROUND_INREG: {
4614     EVT EVT = cast<VTSDNode>(N2)->getVT();
4615     assert(VT == N1.getValueType() && "Not an inreg round!");
4616     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4617            "Cannot FP_ROUND_INREG integer types");
4618     assert(EVT.isVector() == VT.isVector() &&
4619            "FP_ROUND_INREG type should be vector iff the operand "
4620            "type is vector!");
4621     assert((!EVT.isVector() ||
4622             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4623            "Vector element counts must match in FP_ROUND_INREG");
4624     assert(EVT.bitsLE(VT) && "Not rounding down!");
4625     (void)EVT;
4626     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4627     break;
4628   }
4629   case ISD::FP_ROUND:
4630     assert(VT.isFloatingPoint() &&
4631            N1.getValueType().isFloatingPoint() &&
4632            VT.bitsLE(N1.getValueType()) &&
4633            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4634            "Invalid FP_ROUND!");
4635     if (N1.getValueType() == VT) return N1;  // noop conversion.
4636     break;
4637   case ISD::AssertSext:
4638   case ISD::AssertZext: {
4639     EVT EVT = cast<VTSDNode>(N2)->getVT();
4640     assert(VT == N1.getValueType() && "Not an inreg extend!");
4641     assert(VT.isInteger() && EVT.isInteger() &&
4642            "Cannot *_EXTEND_INREG FP types");
4643     assert(!EVT.isVector() &&
4644            "AssertSExt/AssertZExt type should be the vector element type "
4645            "rather than the vector type!");
4646     assert(EVT.bitsLE(VT) && "Not extending!");
4647     if (VT == EVT) return N1; // noop assertion.
4648     break;
4649   }
4650   case ISD::SIGN_EXTEND_INREG: {
4651     EVT EVT = cast<VTSDNode>(N2)->getVT();
4652     assert(VT == N1.getValueType() && "Not an inreg extend!");
4653     assert(VT.isInteger() && EVT.isInteger() &&
4654            "Cannot *_EXTEND_INREG FP types");
4655     assert(EVT.isVector() == VT.isVector() &&
4656            "SIGN_EXTEND_INREG type should be vector iff the operand "
4657            "type is vector!");
4658     assert((!EVT.isVector() ||
4659             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4660            "Vector element counts must match in SIGN_EXTEND_INREG");
4661     assert(EVT.bitsLE(VT) && "Not extending!");
4662     if (EVT == VT) return N1;  // Not actually extending
4663 
4664     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4665       unsigned FromBits = EVT.getScalarSizeInBits();
4666       Val <<= Val.getBitWidth() - FromBits;
4667       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4668       return getConstant(Val, DL, ConstantVT);
4669     };
4670 
4671     if (N1C) {
4672       const APInt &Val = N1C->getAPIntValue();
4673       return SignExtendInReg(Val, VT);
4674     }
4675     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4676       SmallVector<SDValue, 8> Ops;
4677       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4678       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4679         SDValue Op = N1.getOperand(i);
4680         if (Op.isUndef()) {
4681           Ops.push_back(getUNDEF(OpVT));
4682           continue;
4683         }
4684         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4685         APInt Val = C->getAPIntValue();
4686         Ops.push_back(SignExtendInReg(Val, OpVT));
4687       }
4688       return getBuildVector(VT, DL, Ops);
4689     }
4690     break;
4691   }
4692   case ISD::EXTRACT_VECTOR_ELT:
4693     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4694            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4695              element type of the vector.");
4696 
4697     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4698     if (N1.isUndef())
4699       return getUNDEF(VT);
4700 
4701     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4702     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4703       return getUNDEF(VT);
4704 
4705     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4706     // expanding copies of large vectors from registers.
4707     if (N2C &&
4708         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4709         N1.getNumOperands() > 0) {
4710       unsigned Factor =
4711         N1.getOperand(0).getValueType().getVectorNumElements();
4712       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4713                      N1.getOperand(N2C->getZExtValue() / Factor),
4714                      getConstant(N2C->getZExtValue() % Factor, DL,
4715                                  N2.getValueType()));
4716     }
4717 
4718     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4719     // expanding large vector constants.
4720     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4721       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4722 
4723       if (VT != Elt.getValueType())
4724         // If the vector element type is not legal, the BUILD_VECTOR operands
4725         // are promoted and implicitly truncated, and the result implicitly
4726         // extended. Make that explicit here.
4727         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4728 
4729       return Elt;
4730     }
4731 
4732     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4733     // operations are lowered to scalars.
4734     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4735       // If the indices are the same, return the inserted element else
4736       // if the indices are known different, extract the element from
4737       // the original vector.
4738       SDValue N1Op2 = N1.getOperand(2);
4739       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4740 
4741       if (N1Op2C && N2C) {
4742         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4743           if (VT == N1.getOperand(1).getValueType())
4744             return N1.getOperand(1);
4745           else
4746             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4747         }
4748 
4749         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4750       }
4751     }
4752 
4753     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4754     // when vector types are scalarized and v1iX is legal.
4755     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4756     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4757         N1.getValueType().getVectorNumElements() == 1) {
4758       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4759                      N1.getOperand(1));
4760     }
4761     break;
4762   case ISD::EXTRACT_ELEMENT:
4763     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4764     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4765            (N1.getValueType().isInteger() == VT.isInteger()) &&
4766            N1.getValueType() != VT &&
4767            "Wrong types for EXTRACT_ELEMENT!");
4768 
4769     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4770     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4771     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4772     if (N1.getOpcode() == ISD::BUILD_PAIR)
4773       return N1.getOperand(N2C->getZExtValue());
4774 
4775     // EXTRACT_ELEMENT of a constant int is also very common.
4776     if (N1C) {
4777       unsigned ElementSize = VT.getSizeInBits();
4778       unsigned Shift = ElementSize * N2C->getZExtValue();
4779       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4780       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4781     }
4782     break;
4783   case ISD::EXTRACT_SUBVECTOR:
4784     if (VT.isSimple() && N1.getValueType().isSimple()) {
4785       assert(VT.isVector() && N1.getValueType().isVector() &&
4786              "Extract subvector VTs must be a vectors!");
4787       assert(VT.getVectorElementType() ==
4788              N1.getValueType().getVectorElementType() &&
4789              "Extract subvector VTs must have the same element type!");
4790       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4791              "Extract subvector must be from larger vector to smaller vector!");
4792 
4793       if (N2C) {
4794         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4795                 <= N1.getValueType().getVectorNumElements())
4796                && "Extract subvector overflow!");
4797       }
4798 
4799       // Trivial extraction.
4800       if (VT.getSimpleVT() == N1.getSimpleValueType())
4801         return N1;
4802 
4803       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4804       if (N1.isUndef())
4805         return getUNDEF(VT);
4806 
4807       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4808       // the concat have the same type as the extract.
4809       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4810           N1.getNumOperands() > 0 &&
4811           VT == N1.getOperand(0).getValueType()) {
4812         unsigned Factor = VT.getVectorNumElements();
4813         return N1.getOperand(N2C->getZExtValue() / Factor);
4814       }
4815 
4816       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4817       // during shuffle legalization.
4818       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4819           VT == N1.getOperand(1).getValueType())
4820         return N1.getOperand(1);
4821     }
4822     break;
4823   }
4824 
4825   // Perform trivial constant folding.
4826   if (SDValue SV =
4827           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4828     return SV;
4829 
4830   // Constant fold FP operations.
4831   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4832   if (N1CFP) {
4833     if (N2CFP) {
4834       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4835       APFloat::opStatus s;
4836       switch (Opcode) {
4837       case ISD::FADD:
4838         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4839         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4840           return getConstantFP(V1, DL, VT);
4841         break;
4842       case ISD::FSUB:
4843         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4844         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4845           return getConstantFP(V1, DL, VT);
4846         break;
4847       case ISD::FMUL:
4848         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4849         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4850           return getConstantFP(V1, DL, VT);
4851         break;
4852       case ISD::FDIV:
4853         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4854         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4855                                  s!=APFloat::opDivByZero)) {
4856           return getConstantFP(V1, DL, VT);
4857         }
4858         break;
4859       case ISD::FREM :
4860         s = V1.mod(V2);
4861         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4862                                  s!=APFloat::opDivByZero)) {
4863           return getConstantFP(V1, DL, VT);
4864         }
4865         break;
4866       case ISD::FCOPYSIGN:
4867         V1.copySign(V2);
4868         return getConstantFP(V1, DL, VT);
4869       default: break;
4870       }
4871     }
4872 
4873     if (Opcode == ISD::FP_ROUND) {
4874       APFloat V = N1CFP->getValueAPF();    // make copy
4875       bool ignored;
4876       // This can return overflow, underflow, or inexact; we don't care.
4877       // FIXME need to be more flexible about rounding mode.
4878       (void)V.convert(EVTToAPFloatSemantics(VT),
4879                       APFloat::rmNearestTiesToEven, &ignored);
4880       return getConstantFP(V, DL, VT);
4881     }
4882   }
4883 
4884   // Any FP binop with an undef operand is folded to NaN. This matches the
4885   // behavior of the IR optimizer.
4886   switch (Opcode) {
4887   case ISD::FADD:
4888   case ISD::FSUB:
4889   case ISD::FMUL:
4890   case ISD::FDIV:
4891   case ISD::FREM:
4892     if (N1.isUndef() || N2.isUndef())
4893       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4894   }
4895 
4896   // Canonicalize an UNDEF to the RHS, even over a constant.
4897   if (N1.isUndef()) {
4898     if (TLI->isCommutativeBinOp(Opcode)) {
4899       std::swap(N1, N2);
4900     } else {
4901       switch (Opcode) {
4902       case ISD::FP_ROUND_INREG:
4903       case ISD::SIGN_EXTEND_INREG:
4904       case ISD::SUB:
4905         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
4906       case ISD::UDIV:
4907       case ISD::SDIV:
4908       case ISD::UREM:
4909       case ISD::SREM:
4910       case ISD::SRA:
4911       case ISD::SRL:
4912       case ISD::SHL:
4913         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4914       }
4915     }
4916   }
4917 
4918   // Fold a bunch of operators when the RHS is undef.
4919   if (N2.isUndef()) {
4920     switch (Opcode) {
4921     case ISD::XOR:
4922       if (N1.isUndef())
4923         // Handle undef ^ undef -> 0 special case. This is a common
4924         // idiom (misuse).
4925         return getConstant(0, DL, VT);
4926       LLVM_FALLTHROUGH;
4927     case ISD::ADD:
4928     case ISD::ADDC:
4929     case ISD::ADDE:
4930     case ISD::SUB:
4931     case ISD::UDIV:
4932     case ISD::SDIV:
4933     case ISD::UREM:
4934     case ISD::SREM:
4935     case ISD::SRA:
4936     case ISD::SRL:
4937     case ISD::SHL:
4938       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
4939     case ISD::MUL:
4940     case ISD::AND:
4941       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4942     case ISD::OR:
4943       return getAllOnesConstant(DL, VT);
4944     }
4945   }
4946 
4947   // Memoize this node if possible.
4948   SDNode *N;
4949   SDVTList VTs = getVTList(VT);
4950   SDValue Ops[] = {N1, N2};
4951   if (VT != MVT::Glue) {
4952     FoldingSetNodeID ID;
4953     AddNodeIDNode(ID, Opcode, VTs, Ops);
4954     void *IP = nullptr;
4955     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4956       E->intersectFlagsWith(Flags);
4957       return SDValue(E, 0);
4958     }
4959 
4960     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4961     N->setFlags(Flags);
4962     createOperands(N, Ops);
4963     CSEMap.InsertNode(N, IP);
4964   } else {
4965     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4966     createOperands(N, Ops);
4967   }
4968 
4969   InsertNode(N);
4970   SDValue V = SDValue(N, 0);
4971   NewSDValueDbgMsg(V, "Creating new node: ", this);
4972   return V;
4973 }
4974 
4975 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4976                               SDValue N1, SDValue N2, SDValue N3,
4977                               const SDNodeFlags Flags) {
4978   // Perform various simplifications.
4979   switch (Opcode) {
4980   case ISD::FMA: {
4981     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4982     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
4983            N3.getValueType() == VT && "FMA types must match!");
4984     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4985     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4986     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4987     if (N1CFP && N2CFP && N3CFP) {
4988       APFloat  V1 = N1CFP->getValueAPF();
4989       const APFloat &V2 = N2CFP->getValueAPF();
4990       const APFloat &V3 = N3CFP->getValueAPF();
4991       APFloat::opStatus s =
4992         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4993       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4994         return getConstantFP(V1, DL, VT);
4995     }
4996     break;
4997   }
4998   case ISD::CONCAT_VECTORS: {
4999     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5000     SDValue Ops[] = {N1, N2, N3};
5001     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5002       return V;
5003     break;
5004   }
5005   case ISD::SETCC: {
5006     // Use FoldSetCC to simplify SETCC's.
5007     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5008       return V;
5009     // Vector constant folding.
5010     SDValue Ops[] = {N1, N2, N3};
5011     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5012       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5013       return V;
5014     }
5015     break;
5016   }
5017   case ISD::SELECT:
5018     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
5019      if (N1C->getZExtValue())
5020        return N2;             // select true, X, Y -> X
5021      return N3;             // select false, X, Y -> Y
5022     }
5023 
5024     if (N2 == N3) return N2;   // select C, X, X -> X
5025     break;
5026   case ISD::VECTOR_SHUFFLE:
5027     llvm_unreachable("should use getVectorShuffle constructor!");
5028   case ISD::INSERT_VECTOR_ELT: {
5029     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5030     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5031     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5032       return getUNDEF(VT);
5033     break;
5034   }
5035   case ISD::INSERT_SUBVECTOR: {
5036     SDValue Index = N3;
5037     if (VT.isSimple() && N1.getValueType().isSimple()
5038         && N2.getValueType().isSimple()) {
5039       assert(VT.isVector() && N1.getValueType().isVector() &&
5040              N2.getValueType().isVector() &&
5041              "Insert subvector VTs must be a vectors");
5042       assert(VT == N1.getValueType() &&
5043              "Dest and insert subvector source types must match!");
5044       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5045              "Insert subvector must be from smaller vector to larger vector!");
5046       if (isa<ConstantSDNode>(Index)) {
5047         assert((N2.getValueType().getVectorNumElements() +
5048                 cast<ConstantSDNode>(Index)->getZExtValue()
5049                 <= VT.getVectorNumElements())
5050                && "Insert subvector overflow!");
5051       }
5052 
5053       // Trivial insertion.
5054       if (VT.getSimpleVT() == N2.getSimpleValueType())
5055         return N2;
5056     }
5057     break;
5058   }
5059   case ISD::BITCAST:
5060     // Fold bit_convert nodes from a type to themselves.
5061     if (N1.getValueType() == VT)
5062       return N1;
5063     break;
5064   }
5065 
5066   // Memoize node if it doesn't produce a flag.
5067   SDNode *N;
5068   SDVTList VTs = getVTList(VT);
5069   SDValue Ops[] = {N1, N2, N3};
5070   if (VT != MVT::Glue) {
5071     FoldingSetNodeID ID;
5072     AddNodeIDNode(ID, Opcode, VTs, Ops);
5073     void *IP = nullptr;
5074     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5075       E->intersectFlagsWith(Flags);
5076       return SDValue(E, 0);
5077     }
5078 
5079     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5080     N->setFlags(Flags);
5081     createOperands(N, Ops);
5082     CSEMap.InsertNode(N, IP);
5083   } else {
5084     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5085     createOperands(N, Ops);
5086   }
5087 
5088   InsertNode(N);
5089   SDValue V = SDValue(N, 0);
5090   NewSDValueDbgMsg(V, "Creating new node: ", this);
5091   return V;
5092 }
5093 
5094 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5095                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5096   SDValue Ops[] = { N1, N2, N3, N4 };
5097   return getNode(Opcode, DL, VT, Ops);
5098 }
5099 
5100 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5101                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5102                               SDValue N5) {
5103   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5104   return getNode(Opcode, DL, VT, Ops);
5105 }
5106 
5107 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5108 /// the incoming stack arguments to be loaded from the stack.
5109 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5110   SmallVector<SDValue, 8> ArgChains;
5111 
5112   // Include the original chain at the beginning of the list. When this is
5113   // used by target LowerCall hooks, this helps legalize find the
5114   // CALLSEQ_BEGIN node.
5115   ArgChains.push_back(Chain);
5116 
5117   // Add a chain value for each stack argument.
5118   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5119        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5120     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5121       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5122         if (FI->getIndex() < 0)
5123           ArgChains.push_back(SDValue(L, 1));
5124 
5125   // Build a tokenfactor for all the chains.
5126   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5127 }
5128 
5129 /// getMemsetValue - Vectorized representation of the memset value
5130 /// operand.
5131 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5132                               const SDLoc &dl) {
5133   assert(!Value.isUndef());
5134 
5135   unsigned NumBits = VT.getScalarSizeInBits();
5136   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5137     assert(C->getAPIntValue().getBitWidth() == 8);
5138     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5139     if (VT.isInteger())
5140       return DAG.getConstant(Val, dl, VT);
5141     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5142                              VT);
5143   }
5144 
5145   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5146   EVT IntVT = VT.getScalarType();
5147   if (!IntVT.isInteger())
5148     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5149 
5150   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5151   if (NumBits > 8) {
5152     // Use a multiplication with 0x010101... to extend the input to the
5153     // required length.
5154     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5155     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5156                         DAG.getConstant(Magic, dl, IntVT));
5157   }
5158 
5159   if (VT != Value.getValueType() && !VT.isInteger())
5160     Value = DAG.getBitcast(VT.getScalarType(), Value);
5161   if (VT != Value.getValueType())
5162     Value = DAG.getSplatBuildVector(VT, dl, Value);
5163 
5164   return Value;
5165 }
5166 
5167 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5168 /// used when a memcpy is turned into a memset when the source is a constant
5169 /// string ptr.
5170 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5171                                   const TargetLowering &TLI,
5172                                   const ConstantDataArraySlice &Slice) {
5173   // Handle vector with all elements zero.
5174   if (Slice.Array == nullptr) {
5175     if (VT.isInteger())
5176       return DAG.getConstant(0, dl, VT);
5177     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5178       return DAG.getConstantFP(0.0, dl, VT);
5179     else if (VT.isVector()) {
5180       unsigned NumElts = VT.getVectorNumElements();
5181       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5182       return DAG.getNode(ISD::BITCAST, dl, VT,
5183                          DAG.getConstant(0, dl,
5184                                          EVT::getVectorVT(*DAG.getContext(),
5185                                                           EltVT, NumElts)));
5186     } else
5187       llvm_unreachable("Expected type!");
5188   }
5189 
5190   assert(!VT.isVector() && "Can't handle vector type here!");
5191   unsigned NumVTBits = VT.getSizeInBits();
5192   unsigned NumVTBytes = NumVTBits / 8;
5193   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5194 
5195   APInt Val(NumVTBits, 0);
5196   if (DAG.getDataLayout().isLittleEndian()) {
5197     for (unsigned i = 0; i != NumBytes; ++i)
5198       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5199   } else {
5200     for (unsigned i = 0; i != NumBytes; ++i)
5201       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5202   }
5203 
5204   // If the "cost" of materializing the integer immediate is less than the cost
5205   // of a load, then it is cost effective to turn the load into the immediate.
5206   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5207   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5208     return DAG.getConstant(Val, dl, VT);
5209   return SDValue(nullptr, 0);
5210 }
5211 
5212 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5213                                            const SDLoc &DL) {
5214   EVT VT = Base.getValueType();
5215   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5216 }
5217 
5218 /// Returns true if memcpy source is constant data.
5219 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5220   uint64_t SrcDelta = 0;
5221   GlobalAddressSDNode *G = nullptr;
5222   if (Src.getOpcode() == ISD::GlobalAddress)
5223     G = cast<GlobalAddressSDNode>(Src);
5224   else if (Src.getOpcode() == ISD::ADD &&
5225            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5226            Src.getOperand(1).getOpcode() == ISD::Constant) {
5227     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5228     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5229   }
5230   if (!G)
5231     return false;
5232 
5233   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5234                                   SrcDelta + G->getOffset());
5235 }
5236 
5237 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5238 /// Return true if the number of memory ops is below the threshold (Limit).
5239 /// It returns the types of the sequence of memory ops to perform
5240 /// memset / memcpy by reference.
5241 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5242                                      unsigned Limit, uint64_t Size,
5243                                      unsigned DstAlign, unsigned SrcAlign,
5244                                      bool IsMemset,
5245                                      bool ZeroMemset,
5246                                      bool MemcpyStrSrc,
5247                                      bool AllowOverlap,
5248                                      unsigned DstAS, unsigned SrcAS,
5249                                      SelectionDAG &DAG,
5250                                      const TargetLowering &TLI) {
5251   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5252          "Expecting memcpy / memset source to meet alignment requirement!");
5253   // If 'SrcAlign' is zero, that means the memory operation does not need to
5254   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5255   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5256   // is the specified alignment of the memory operation. If it is zero, that
5257   // means it's possible to change the alignment of the destination.
5258   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5259   // not need to be loaded.
5260   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5261                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5262                                    DAG.getMachineFunction());
5263 
5264   if (VT == MVT::Other) {
5265     // Use the largest integer type whose alignment constraints are satisfied.
5266     // We only need to check DstAlign here as SrcAlign is always greater or
5267     // equal to DstAlign (or zero).
5268     VT = MVT::i64;
5269     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5270            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5271       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5272     assert(VT.isInteger());
5273 
5274     // Find the largest legal integer type.
5275     MVT LVT = MVT::i64;
5276     while (!TLI.isTypeLegal(LVT))
5277       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5278     assert(LVT.isInteger());
5279 
5280     // If the type we've chosen is larger than the largest legal integer type
5281     // then use that instead.
5282     if (VT.bitsGT(LVT))
5283       VT = LVT;
5284   }
5285 
5286   unsigned NumMemOps = 0;
5287   while (Size != 0) {
5288     unsigned VTSize = VT.getSizeInBits() / 8;
5289     while (VTSize > Size) {
5290       // For now, only use non-vector load / store's for the left-over pieces.
5291       EVT NewVT = VT;
5292       unsigned NewVTSize;
5293 
5294       bool Found = false;
5295       if (VT.isVector() || VT.isFloatingPoint()) {
5296         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5297         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5298             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5299           Found = true;
5300         else if (NewVT == MVT::i64 &&
5301                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5302                  TLI.isSafeMemOpType(MVT::f64)) {
5303           // i64 is usually not legal on 32-bit targets, but f64 may be.
5304           NewVT = MVT::f64;
5305           Found = true;
5306         }
5307       }
5308 
5309       if (!Found) {
5310         do {
5311           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5312           if (NewVT == MVT::i8)
5313             break;
5314         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5315       }
5316       NewVTSize = NewVT.getSizeInBits() / 8;
5317 
5318       // If the new VT cannot cover all of the remaining bits, then consider
5319       // issuing a (or a pair of) unaligned and overlapping load / store.
5320       // FIXME: Only does this for 64-bit or more since we don't have proper
5321       // cost model for unaligned load / store.
5322       bool Fast;
5323       if (NumMemOps && AllowOverlap &&
5324           VTSize >= 8 && NewVTSize < Size &&
5325           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5326         VTSize = Size;
5327       else {
5328         VT = NewVT;
5329         VTSize = NewVTSize;
5330       }
5331     }
5332 
5333     if (++NumMemOps > Limit)
5334       return false;
5335 
5336     MemOps.push_back(VT);
5337     Size -= VTSize;
5338   }
5339 
5340   return true;
5341 }
5342 
5343 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5344   // On Darwin, -Os means optimize for size without hurting performance, so
5345   // only really optimize for size when -Oz (MinSize) is used.
5346   if (MF.getTarget().getTargetTriple().isOSDarwin())
5347     return MF.getFunction().optForMinSize();
5348   return MF.getFunction().optForSize();
5349 }
5350 
5351 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5352                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5353                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5354                           SmallVector<SDValue, 16> &OutStoreChains) {
5355   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5356   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5357   SmallVector<SDValue, 16> GluedLoadChains;
5358   for (unsigned i = From; i < To; ++i) {
5359     OutChains.push_back(OutLoadChains[i]);
5360     GluedLoadChains.push_back(OutLoadChains[i]);
5361   }
5362 
5363   // Chain for all loads.
5364   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5365                                   GluedLoadChains);
5366 
5367   for (unsigned i = From; i < To; ++i) {
5368     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5369     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5370                                   ST->getBasePtr(), ST->getMemoryVT(),
5371                                   ST->getMemOperand());
5372     OutChains.push_back(NewStore);
5373   }
5374 }
5375 
5376 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5377                                        SDValue Chain, SDValue Dst, SDValue Src,
5378                                        uint64_t Size, unsigned Align,
5379                                        bool isVol, bool AlwaysInline,
5380                                        MachinePointerInfo DstPtrInfo,
5381                                        MachinePointerInfo SrcPtrInfo) {
5382   // Turn a memcpy of undef to nop.
5383   if (Src.isUndef())
5384     return Chain;
5385 
5386   // Expand memcpy to a series of load and store ops if the size operand falls
5387   // below a certain threshold.
5388   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5389   // rather than maybe a humongous number of loads and stores.
5390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5391   const DataLayout &DL = DAG.getDataLayout();
5392   LLVMContext &C = *DAG.getContext();
5393   std::vector<EVT> MemOps;
5394   bool DstAlignCanChange = false;
5395   MachineFunction &MF = DAG.getMachineFunction();
5396   MachineFrameInfo &MFI = MF.getFrameInfo();
5397   bool OptSize = shouldLowerMemFuncForSize(MF);
5398   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5399   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5400     DstAlignCanChange = true;
5401   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5402   if (Align > SrcAlign)
5403     SrcAlign = Align;
5404   ConstantDataArraySlice Slice;
5405   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5406   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5407   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5408 
5409   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5410                                 (DstAlignCanChange ? 0 : Align),
5411                                 (isZeroConstant ? 0 : SrcAlign),
5412                                 false, false, CopyFromConstant, true,
5413                                 DstPtrInfo.getAddrSpace(),
5414                                 SrcPtrInfo.getAddrSpace(),
5415                                 DAG, TLI))
5416     return SDValue();
5417 
5418   if (DstAlignCanChange) {
5419     Type *Ty = MemOps[0].getTypeForEVT(C);
5420     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5421 
5422     // Don't promote to an alignment that would require dynamic stack
5423     // realignment.
5424     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5425     if (!TRI->needsStackRealignment(MF))
5426       while (NewAlign > Align &&
5427              DL.exceedsNaturalStackAlignment(NewAlign))
5428           NewAlign /= 2;
5429 
5430     if (NewAlign > Align) {
5431       // Give the stack frame object a larger alignment if needed.
5432       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5433         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5434       Align = NewAlign;
5435     }
5436   }
5437 
5438   MachineMemOperand::Flags MMOFlags =
5439       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5440   SmallVector<SDValue, 16> OutLoadChains;
5441   SmallVector<SDValue, 16> OutStoreChains;
5442   SmallVector<SDValue, 32> OutChains;
5443   unsigned NumMemOps = MemOps.size();
5444   uint64_t SrcOff = 0, DstOff = 0;
5445   for (unsigned i = 0; i != NumMemOps; ++i) {
5446     EVT VT = MemOps[i];
5447     unsigned VTSize = VT.getSizeInBits() / 8;
5448     SDValue Value, Store;
5449 
5450     if (VTSize > Size) {
5451       // Issuing an unaligned load / store pair  that overlaps with the previous
5452       // pair. Adjust the offset accordingly.
5453       assert(i == NumMemOps-1 && i != 0);
5454       SrcOff -= VTSize - Size;
5455       DstOff -= VTSize - Size;
5456     }
5457 
5458     if (CopyFromConstant &&
5459         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5460       // It's unlikely a store of a vector immediate can be done in a single
5461       // instruction. It would require a load from a constantpool first.
5462       // We only handle zero vectors here.
5463       // FIXME: Handle other cases where store of vector immediate is done in
5464       // a single instruction.
5465       ConstantDataArraySlice SubSlice;
5466       if (SrcOff < Slice.Length) {
5467         SubSlice = Slice;
5468         SubSlice.move(SrcOff);
5469       } else {
5470         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5471         SubSlice.Array = nullptr;
5472         SubSlice.Offset = 0;
5473         SubSlice.Length = VTSize;
5474       }
5475       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5476       if (Value.getNode()) {
5477         Store = DAG.getStore(Chain, dl, Value,
5478                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5479                              DstPtrInfo.getWithOffset(DstOff), Align,
5480                              MMOFlags);
5481         OutChains.push_back(Store);
5482       }
5483     }
5484 
5485     if (!Store.getNode()) {
5486       // The type might not be legal for the target.  This should only happen
5487       // if the type is smaller than a legal type, as on PPC, so the right
5488       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5489       // to Load/Store if NVT==VT.
5490       // FIXME does the case above also need this?
5491       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5492       assert(NVT.bitsGE(VT));
5493 
5494       bool isDereferenceable =
5495         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5496       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5497       if (isDereferenceable)
5498         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5499 
5500       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5501                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5502                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5503                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5504       OutLoadChains.push_back(Value.getValue(1));
5505 
5506       Store = DAG.getTruncStore(
5507           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5508           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5509       OutStoreChains.push_back(Store);
5510     }
5511     SrcOff += VTSize;
5512     DstOff += VTSize;
5513     Size -= VTSize;
5514   }
5515 
5516   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5517                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5518   unsigned NumLdStInMemcpy = OutStoreChains.size();
5519 
5520   if (NumLdStInMemcpy) {
5521     // It may be that memcpy might be converted to memset if it's memcpy
5522     // of constants. In such a case, we won't have loads and stores, but
5523     // just stores. In the absence of loads, there is nothing to gang up.
5524     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5525       // If target does not care, just leave as it.
5526       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5527         OutChains.push_back(OutLoadChains[i]);
5528         OutChains.push_back(OutStoreChains[i]);
5529       }
5530     } else {
5531       // Ld/St less than/equal limit set by target.
5532       if (NumLdStInMemcpy <= GluedLdStLimit) {
5533           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5534                                         NumLdStInMemcpy, OutLoadChains,
5535                                         OutStoreChains);
5536       } else {
5537         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5538         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5539         unsigned GlueIter = 0;
5540 
5541         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5542           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5543           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5544 
5545           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5546                                        OutLoadChains, OutStoreChains);
5547           GlueIter += GluedLdStLimit;
5548         }
5549 
5550         // Residual ld/st.
5551         if (RemainingLdStInMemcpy) {
5552           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5553                                         RemainingLdStInMemcpy, OutLoadChains,
5554                                         OutStoreChains);
5555         }
5556       }
5557     }
5558   }
5559   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5560 }
5561 
5562 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5563                                         SDValue Chain, SDValue Dst, SDValue Src,
5564                                         uint64_t Size, unsigned Align,
5565                                         bool isVol, bool AlwaysInline,
5566                                         MachinePointerInfo DstPtrInfo,
5567                                         MachinePointerInfo SrcPtrInfo) {
5568   // Turn a memmove of undef to nop.
5569   if (Src.isUndef())
5570     return Chain;
5571 
5572   // Expand memmove to a series of load and store ops if the size operand falls
5573   // below a certain threshold.
5574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5575   const DataLayout &DL = DAG.getDataLayout();
5576   LLVMContext &C = *DAG.getContext();
5577   std::vector<EVT> MemOps;
5578   bool DstAlignCanChange = false;
5579   MachineFunction &MF = DAG.getMachineFunction();
5580   MachineFrameInfo &MFI = MF.getFrameInfo();
5581   bool OptSize = shouldLowerMemFuncForSize(MF);
5582   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5583   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5584     DstAlignCanChange = true;
5585   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5586   if (Align > SrcAlign)
5587     SrcAlign = Align;
5588   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5589 
5590   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5591                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5592                                 false, false, false, false,
5593                                 DstPtrInfo.getAddrSpace(),
5594                                 SrcPtrInfo.getAddrSpace(),
5595                                 DAG, TLI))
5596     return SDValue();
5597 
5598   if (DstAlignCanChange) {
5599     Type *Ty = MemOps[0].getTypeForEVT(C);
5600     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5601     if (NewAlign > Align) {
5602       // Give the stack frame object a larger alignment if needed.
5603       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5604         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5605       Align = NewAlign;
5606     }
5607   }
5608 
5609   MachineMemOperand::Flags MMOFlags =
5610       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5611   uint64_t SrcOff = 0, DstOff = 0;
5612   SmallVector<SDValue, 8> LoadValues;
5613   SmallVector<SDValue, 8> LoadChains;
5614   SmallVector<SDValue, 8> OutChains;
5615   unsigned NumMemOps = MemOps.size();
5616   for (unsigned i = 0; i < NumMemOps; i++) {
5617     EVT VT = MemOps[i];
5618     unsigned VTSize = VT.getSizeInBits() / 8;
5619     SDValue Value;
5620 
5621     bool isDereferenceable =
5622       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5623     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5624     if (isDereferenceable)
5625       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5626 
5627     Value =
5628         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5629                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5630     LoadValues.push_back(Value);
5631     LoadChains.push_back(Value.getValue(1));
5632     SrcOff += VTSize;
5633   }
5634   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5635   OutChains.clear();
5636   for (unsigned i = 0; i < NumMemOps; i++) {
5637     EVT VT = MemOps[i];
5638     unsigned VTSize = VT.getSizeInBits() / 8;
5639     SDValue Store;
5640 
5641     Store = DAG.getStore(Chain, dl, LoadValues[i],
5642                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5643                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5644     OutChains.push_back(Store);
5645     DstOff += VTSize;
5646   }
5647 
5648   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5649 }
5650 
5651 /// Lower the call to 'memset' intrinsic function into a series of store
5652 /// operations.
5653 ///
5654 /// \param DAG Selection DAG where lowered code is placed.
5655 /// \param dl Link to corresponding IR location.
5656 /// \param Chain Control flow dependency.
5657 /// \param Dst Pointer to destination memory location.
5658 /// \param Src Value of byte to write into the memory.
5659 /// \param Size Number of bytes to write.
5660 /// \param Align Alignment of the destination in bytes.
5661 /// \param isVol True if destination is volatile.
5662 /// \param DstPtrInfo IR information on the memory pointer.
5663 /// \returns New head in the control flow, if lowering was successful, empty
5664 /// SDValue otherwise.
5665 ///
5666 /// The function tries to replace 'llvm.memset' intrinsic with several store
5667 /// operations and value calculation code. This is usually profitable for small
5668 /// memory size.
5669 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5670                                SDValue Chain, SDValue Dst, SDValue Src,
5671                                uint64_t Size, unsigned Align, bool isVol,
5672                                MachinePointerInfo DstPtrInfo) {
5673   // Turn a memset of undef to nop.
5674   if (Src.isUndef())
5675     return Chain;
5676 
5677   // Expand memset to a series of load/store ops if the size operand
5678   // falls below a certain threshold.
5679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5680   std::vector<EVT> MemOps;
5681   bool DstAlignCanChange = false;
5682   MachineFunction &MF = DAG.getMachineFunction();
5683   MachineFrameInfo &MFI = MF.getFrameInfo();
5684   bool OptSize = shouldLowerMemFuncForSize(MF);
5685   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5686   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5687     DstAlignCanChange = true;
5688   bool IsZeroVal =
5689     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5690   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5691                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5692                                 true, IsZeroVal, false, true,
5693                                 DstPtrInfo.getAddrSpace(), ~0u,
5694                                 DAG, TLI))
5695     return SDValue();
5696 
5697   if (DstAlignCanChange) {
5698     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5699     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5700     if (NewAlign > Align) {
5701       // Give the stack frame object a larger alignment if needed.
5702       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5703         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5704       Align = NewAlign;
5705     }
5706   }
5707 
5708   SmallVector<SDValue, 8> OutChains;
5709   uint64_t DstOff = 0;
5710   unsigned NumMemOps = MemOps.size();
5711 
5712   // Find the largest store and generate the bit pattern for it.
5713   EVT LargestVT = MemOps[0];
5714   for (unsigned i = 1; i < NumMemOps; i++)
5715     if (MemOps[i].bitsGT(LargestVT))
5716       LargestVT = MemOps[i];
5717   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5718 
5719   for (unsigned i = 0; i < NumMemOps; i++) {
5720     EVT VT = MemOps[i];
5721     unsigned VTSize = VT.getSizeInBits() / 8;
5722     if (VTSize > Size) {
5723       // Issuing an unaligned load / store pair  that overlaps with the previous
5724       // pair. Adjust the offset accordingly.
5725       assert(i == NumMemOps-1 && i != 0);
5726       DstOff -= VTSize - Size;
5727     }
5728 
5729     // If this store is smaller than the largest store see whether we can get
5730     // the smaller value for free with a truncate.
5731     SDValue Value = MemSetValue;
5732     if (VT.bitsLT(LargestVT)) {
5733       if (!LargestVT.isVector() && !VT.isVector() &&
5734           TLI.isTruncateFree(LargestVT, VT))
5735         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5736       else
5737         Value = getMemsetValue(Src, VT, DAG, dl);
5738     }
5739     assert(Value.getValueType() == VT && "Value with wrong type.");
5740     SDValue Store = DAG.getStore(
5741         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5742         DstPtrInfo.getWithOffset(DstOff), Align,
5743         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5744     OutChains.push_back(Store);
5745     DstOff += VT.getSizeInBits() / 8;
5746     Size -= VTSize;
5747   }
5748 
5749   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5750 }
5751 
5752 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5753                                             unsigned AS) {
5754   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5755   // pointer operands can be losslessly bitcasted to pointers of address space 0
5756   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5757     report_fatal_error("cannot lower memory intrinsic in address space " +
5758                        Twine(AS));
5759   }
5760 }
5761 
5762 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5763                                 SDValue Src, SDValue Size, unsigned Align,
5764                                 bool isVol, bool AlwaysInline, bool isTailCall,
5765                                 MachinePointerInfo DstPtrInfo,
5766                                 MachinePointerInfo SrcPtrInfo) {
5767   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5768 
5769   // Check to see if we should lower the memcpy to loads and stores first.
5770   // For cases within the target-specified limits, this is the best choice.
5771   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5772   if (ConstantSize) {
5773     // Memcpy with size zero? Just return the original chain.
5774     if (ConstantSize->isNullValue())
5775       return Chain;
5776 
5777     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5778                                              ConstantSize->getZExtValue(),Align,
5779                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5780     if (Result.getNode())
5781       return Result;
5782   }
5783 
5784   // Then check to see if we should lower the memcpy with target-specific
5785   // code. If the target chooses to do this, this is the next best.
5786   if (TSI) {
5787     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5788         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5789         DstPtrInfo, SrcPtrInfo);
5790     if (Result.getNode())
5791       return Result;
5792   }
5793 
5794   // If we really need inline code and the target declined to provide it,
5795   // use a (potentially long) sequence of loads and stores.
5796   if (AlwaysInline) {
5797     assert(ConstantSize && "AlwaysInline requires a constant size!");
5798     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5799                                    ConstantSize->getZExtValue(), Align, isVol,
5800                                    true, DstPtrInfo, SrcPtrInfo);
5801   }
5802 
5803   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5804   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5805 
5806   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5807   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5808   // respect volatile, so they may do things like read or write memory
5809   // beyond the given memory regions. But fixing this isn't easy, and most
5810   // people don't care.
5811 
5812   // Emit a library call.
5813   TargetLowering::ArgListTy Args;
5814   TargetLowering::ArgListEntry Entry;
5815   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5816   Entry.Node = Dst; Args.push_back(Entry);
5817   Entry.Node = Src; Args.push_back(Entry);
5818   Entry.Node = Size; Args.push_back(Entry);
5819   // FIXME: pass in SDLoc
5820   TargetLowering::CallLoweringInfo CLI(*this);
5821   CLI.setDebugLoc(dl)
5822       .setChain(Chain)
5823       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5824                     Dst.getValueType().getTypeForEVT(*getContext()),
5825                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5826                                       TLI->getPointerTy(getDataLayout())),
5827                     std::move(Args))
5828       .setDiscardResult()
5829       .setTailCall(isTailCall);
5830 
5831   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5832   return CallResult.second;
5833 }
5834 
5835 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5836                                       SDValue Dst, unsigned DstAlign,
5837                                       SDValue Src, unsigned SrcAlign,
5838                                       SDValue Size, Type *SizeTy,
5839                                       unsigned ElemSz, bool isTailCall,
5840                                       MachinePointerInfo DstPtrInfo,
5841                                       MachinePointerInfo SrcPtrInfo) {
5842   // Emit a library call.
5843   TargetLowering::ArgListTy Args;
5844   TargetLowering::ArgListEntry Entry;
5845   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5846   Entry.Node = Dst;
5847   Args.push_back(Entry);
5848 
5849   Entry.Node = Src;
5850   Args.push_back(Entry);
5851 
5852   Entry.Ty = SizeTy;
5853   Entry.Node = Size;
5854   Args.push_back(Entry);
5855 
5856   RTLIB::Libcall LibraryCall =
5857       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5858   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5859     report_fatal_error("Unsupported element size");
5860 
5861   TargetLowering::CallLoweringInfo CLI(*this);
5862   CLI.setDebugLoc(dl)
5863       .setChain(Chain)
5864       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5865                     Type::getVoidTy(*getContext()),
5866                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5867                                       TLI->getPointerTy(getDataLayout())),
5868                     std::move(Args))
5869       .setDiscardResult()
5870       .setTailCall(isTailCall);
5871 
5872   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5873   return CallResult.second;
5874 }
5875 
5876 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5877                                  SDValue Src, SDValue Size, unsigned Align,
5878                                  bool isVol, bool isTailCall,
5879                                  MachinePointerInfo DstPtrInfo,
5880                                  MachinePointerInfo SrcPtrInfo) {
5881   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5882 
5883   // Check to see if we should lower the memmove to loads and stores first.
5884   // For cases within the target-specified limits, this is the best choice.
5885   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5886   if (ConstantSize) {
5887     // Memmove with size zero? Just return the original chain.
5888     if (ConstantSize->isNullValue())
5889       return Chain;
5890 
5891     SDValue Result =
5892       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5893                                ConstantSize->getZExtValue(), Align, isVol,
5894                                false, DstPtrInfo, SrcPtrInfo);
5895     if (Result.getNode())
5896       return Result;
5897   }
5898 
5899   // Then check to see if we should lower the memmove with target-specific
5900   // code. If the target chooses to do this, this is the next best.
5901   if (TSI) {
5902     SDValue Result = TSI->EmitTargetCodeForMemmove(
5903         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5904     if (Result.getNode())
5905       return Result;
5906   }
5907 
5908   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5909   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5910 
5911   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5912   // not be safe.  See memcpy above for more details.
5913 
5914   // Emit a library call.
5915   TargetLowering::ArgListTy Args;
5916   TargetLowering::ArgListEntry Entry;
5917   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5918   Entry.Node = Dst; Args.push_back(Entry);
5919   Entry.Node = Src; Args.push_back(Entry);
5920   Entry.Node = Size; Args.push_back(Entry);
5921   // FIXME:  pass in SDLoc
5922   TargetLowering::CallLoweringInfo CLI(*this);
5923   CLI.setDebugLoc(dl)
5924       .setChain(Chain)
5925       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5926                     Dst.getValueType().getTypeForEVT(*getContext()),
5927                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5928                                       TLI->getPointerTy(getDataLayout())),
5929                     std::move(Args))
5930       .setDiscardResult()
5931       .setTailCall(isTailCall);
5932 
5933   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5934   return CallResult.second;
5935 }
5936 
5937 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
5938                                        SDValue Dst, unsigned DstAlign,
5939                                        SDValue Src, unsigned SrcAlign,
5940                                        SDValue Size, Type *SizeTy,
5941                                        unsigned ElemSz, bool isTailCall,
5942                                        MachinePointerInfo DstPtrInfo,
5943                                        MachinePointerInfo SrcPtrInfo) {
5944   // Emit a library call.
5945   TargetLowering::ArgListTy Args;
5946   TargetLowering::ArgListEntry Entry;
5947   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5948   Entry.Node = Dst;
5949   Args.push_back(Entry);
5950 
5951   Entry.Node = Src;
5952   Args.push_back(Entry);
5953 
5954   Entry.Ty = SizeTy;
5955   Entry.Node = Size;
5956   Args.push_back(Entry);
5957 
5958   RTLIB::Libcall LibraryCall =
5959       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5960   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5961     report_fatal_error("Unsupported element size");
5962 
5963   TargetLowering::CallLoweringInfo CLI(*this);
5964   CLI.setDebugLoc(dl)
5965       .setChain(Chain)
5966       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5967                     Type::getVoidTy(*getContext()),
5968                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5969                                       TLI->getPointerTy(getDataLayout())),
5970                     std::move(Args))
5971       .setDiscardResult()
5972       .setTailCall(isTailCall);
5973 
5974   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5975   return CallResult.second;
5976 }
5977 
5978 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5979                                 SDValue Src, SDValue Size, unsigned Align,
5980                                 bool isVol, bool isTailCall,
5981                                 MachinePointerInfo DstPtrInfo) {
5982   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5983 
5984   // Check to see if we should lower the memset to stores first.
5985   // For cases within the target-specified limits, this is the best choice.
5986   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5987   if (ConstantSize) {
5988     // Memset with size zero? Just return the original chain.
5989     if (ConstantSize->isNullValue())
5990       return Chain;
5991 
5992     SDValue Result =
5993       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5994                       Align, isVol, DstPtrInfo);
5995 
5996     if (Result.getNode())
5997       return Result;
5998   }
5999 
6000   // Then check to see if we should lower the memset with target-specific
6001   // code. If the target chooses to do this, this is the next best.
6002   if (TSI) {
6003     SDValue Result = TSI->EmitTargetCodeForMemset(
6004         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6005     if (Result.getNode())
6006       return Result;
6007   }
6008 
6009   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6010 
6011   // Emit a library call.
6012   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6013   TargetLowering::ArgListTy Args;
6014   TargetLowering::ArgListEntry Entry;
6015   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6016   Args.push_back(Entry);
6017   Entry.Node = Src;
6018   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6019   Args.push_back(Entry);
6020   Entry.Node = Size;
6021   Entry.Ty = IntPtrTy;
6022   Args.push_back(Entry);
6023 
6024   // FIXME: pass in SDLoc
6025   TargetLowering::CallLoweringInfo CLI(*this);
6026   CLI.setDebugLoc(dl)
6027       .setChain(Chain)
6028       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6029                     Dst.getValueType().getTypeForEVT(*getContext()),
6030                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6031                                       TLI->getPointerTy(getDataLayout())),
6032                     std::move(Args))
6033       .setDiscardResult()
6034       .setTailCall(isTailCall);
6035 
6036   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6037   return CallResult.second;
6038 }
6039 
6040 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6041                                       SDValue Dst, unsigned DstAlign,
6042                                       SDValue Value, SDValue Size, Type *SizeTy,
6043                                       unsigned ElemSz, bool isTailCall,
6044                                       MachinePointerInfo DstPtrInfo) {
6045   // Emit a library call.
6046   TargetLowering::ArgListTy Args;
6047   TargetLowering::ArgListEntry Entry;
6048   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6049   Entry.Node = Dst;
6050   Args.push_back(Entry);
6051 
6052   Entry.Ty = Type::getInt8Ty(*getContext());
6053   Entry.Node = Value;
6054   Args.push_back(Entry);
6055 
6056   Entry.Ty = SizeTy;
6057   Entry.Node = Size;
6058   Args.push_back(Entry);
6059 
6060   RTLIB::Libcall LibraryCall =
6061       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6062   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6063     report_fatal_error("Unsupported element size");
6064 
6065   TargetLowering::CallLoweringInfo CLI(*this);
6066   CLI.setDebugLoc(dl)
6067       .setChain(Chain)
6068       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6069                     Type::getVoidTy(*getContext()),
6070                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6071                                       TLI->getPointerTy(getDataLayout())),
6072                     std::move(Args))
6073       .setDiscardResult()
6074       .setTailCall(isTailCall);
6075 
6076   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6077   return CallResult.second;
6078 }
6079 
6080 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6081                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6082                                 MachineMemOperand *MMO) {
6083   FoldingSetNodeID ID;
6084   ID.AddInteger(MemVT.getRawBits());
6085   AddNodeIDNode(ID, Opcode, VTList, Ops);
6086   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6087   void* IP = nullptr;
6088   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6089     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6090     return SDValue(E, 0);
6091   }
6092 
6093   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6094                                     VTList, MemVT, MMO);
6095   createOperands(N, Ops);
6096 
6097   CSEMap.InsertNode(N, IP);
6098   InsertNode(N);
6099   return SDValue(N, 0);
6100 }
6101 
6102 SDValue SelectionDAG::getAtomicCmpSwap(
6103     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6104     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6105     unsigned Alignment, AtomicOrdering SuccessOrdering,
6106     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6107   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6108          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6109   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6110 
6111   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6112     Alignment = getEVTAlignment(MemVT);
6113 
6114   MachineFunction &MF = getMachineFunction();
6115 
6116   // FIXME: Volatile isn't really correct; we should keep track of atomic
6117   // orderings in the memoperand.
6118   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6119                MachineMemOperand::MOStore;
6120   MachineMemOperand *MMO =
6121     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6122                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6123                             FailureOrdering);
6124 
6125   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6126 }
6127 
6128 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6129                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6130                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6131                                        MachineMemOperand *MMO) {
6132   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6133          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6134   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6135 
6136   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6137   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6138 }
6139 
6140 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6141                                 SDValue Chain, SDValue Ptr, SDValue Val,
6142                                 const Value *PtrVal, unsigned Alignment,
6143                                 AtomicOrdering Ordering,
6144                                 SyncScope::ID SSID) {
6145   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6146     Alignment = getEVTAlignment(MemVT);
6147 
6148   MachineFunction &MF = getMachineFunction();
6149   // An atomic store does not load. An atomic load does not store.
6150   // (An atomicrmw obviously both loads and stores.)
6151   // For now, atomics are considered to be volatile always, and they are
6152   // chained as such.
6153   // FIXME: Volatile isn't really correct; we should keep track of atomic
6154   // orderings in the memoperand.
6155   auto Flags = MachineMemOperand::MOVolatile;
6156   if (Opcode != ISD::ATOMIC_STORE)
6157     Flags |= MachineMemOperand::MOLoad;
6158   if (Opcode != ISD::ATOMIC_LOAD)
6159     Flags |= MachineMemOperand::MOStore;
6160 
6161   MachineMemOperand *MMO =
6162     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6163                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6164                             nullptr, SSID, Ordering);
6165 
6166   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6167 }
6168 
6169 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6170                                 SDValue Chain, SDValue Ptr, SDValue Val,
6171                                 MachineMemOperand *MMO) {
6172   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6173           Opcode == ISD::ATOMIC_LOAD_SUB ||
6174           Opcode == ISD::ATOMIC_LOAD_AND ||
6175           Opcode == ISD::ATOMIC_LOAD_CLR ||
6176           Opcode == ISD::ATOMIC_LOAD_OR ||
6177           Opcode == ISD::ATOMIC_LOAD_XOR ||
6178           Opcode == ISD::ATOMIC_LOAD_NAND ||
6179           Opcode == ISD::ATOMIC_LOAD_MIN ||
6180           Opcode == ISD::ATOMIC_LOAD_MAX ||
6181           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6182           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6183           Opcode == ISD::ATOMIC_SWAP ||
6184           Opcode == ISD::ATOMIC_STORE) &&
6185          "Invalid Atomic Op");
6186 
6187   EVT VT = Val.getValueType();
6188 
6189   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6190                                                getVTList(VT, MVT::Other);
6191   SDValue Ops[] = {Chain, Ptr, Val};
6192   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6193 }
6194 
6195 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6196                                 EVT VT, SDValue Chain, SDValue Ptr,
6197                                 MachineMemOperand *MMO) {
6198   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6199 
6200   SDVTList VTs = getVTList(VT, MVT::Other);
6201   SDValue Ops[] = {Chain, Ptr};
6202   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6203 }
6204 
6205 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6206 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6207   if (Ops.size() == 1)
6208     return Ops[0];
6209 
6210   SmallVector<EVT, 4> VTs;
6211   VTs.reserve(Ops.size());
6212   for (unsigned i = 0; i < Ops.size(); ++i)
6213     VTs.push_back(Ops[i].getValueType());
6214   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6215 }
6216 
6217 SDValue SelectionDAG::getMemIntrinsicNode(
6218     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6219     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6220     MachineMemOperand::Flags Flags, unsigned Size) {
6221   if (Align == 0)  // Ensure that codegen never sees alignment 0
6222     Align = getEVTAlignment(MemVT);
6223 
6224   if (!Size)
6225     Size = MemVT.getStoreSize();
6226 
6227   MachineFunction &MF = getMachineFunction();
6228   MachineMemOperand *MMO =
6229     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6230 
6231   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6232 }
6233 
6234 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6235                                           SDVTList VTList,
6236                                           ArrayRef<SDValue> Ops, EVT MemVT,
6237                                           MachineMemOperand *MMO) {
6238   assert((Opcode == ISD::INTRINSIC_VOID ||
6239           Opcode == ISD::INTRINSIC_W_CHAIN ||
6240           Opcode == ISD::PREFETCH ||
6241           Opcode == ISD::LIFETIME_START ||
6242           Opcode == ISD::LIFETIME_END ||
6243           ((int)Opcode <= std::numeric_limits<int>::max() &&
6244            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6245          "Opcode is not a memory-accessing opcode!");
6246 
6247   // Memoize the node unless it returns a flag.
6248   MemIntrinsicSDNode *N;
6249   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6250     FoldingSetNodeID ID;
6251     AddNodeIDNode(ID, Opcode, VTList, Ops);
6252     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6253         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6254     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6255     void *IP = nullptr;
6256     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6257       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6258       return SDValue(E, 0);
6259     }
6260 
6261     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6262                                       VTList, MemVT, MMO);
6263     createOperands(N, Ops);
6264 
6265   CSEMap.InsertNode(N, IP);
6266   } else {
6267     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6268                                       VTList, MemVT, MMO);
6269     createOperands(N, Ops);
6270   }
6271   InsertNode(N);
6272   return SDValue(N, 0);
6273 }
6274 
6275 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6276 /// MachinePointerInfo record from it.  This is particularly useful because the
6277 /// code generator has many cases where it doesn't bother passing in a
6278 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6279 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6280                                            SelectionDAG &DAG, SDValue Ptr,
6281                                            int64_t Offset = 0) {
6282   // If this is FI+Offset, we can model it.
6283   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6284     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6285                                              FI->getIndex(), Offset);
6286 
6287   // If this is (FI+Offset1)+Offset2, we can model it.
6288   if (Ptr.getOpcode() != ISD::ADD ||
6289       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6290       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6291     return Info;
6292 
6293   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6294   return MachinePointerInfo::getFixedStack(
6295       DAG.getMachineFunction(), FI,
6296       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6297 }
6298 
6299 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6300 /// MachinePointerInfo record from it.  This is particularly useful because the
6301 /// code generator has many cases where it doesn't bother passing in a
6302 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6303 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6304                                            SelectionDAG &DAG, SDValue Ptr,
6305                                            SDValue OffsetOp) {
6306   // If the 'Offset' value isn't a constant, we can't handle this.
6307   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6308     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6309   if (OffsetOp.isUndef())
6310     return InferPointerInfo(Info, DAG, Ptr);
6311   return Info;
6312 }
6313 
6314 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6315                               EVT VT, const SDLoc &dl, SDValue Chain,
6316                               SDValue Ptr, SDValue Offset,
6317                               MachinePointerInfo PtrInfo, EVT MemVT,
6318                               unsigned Alignment,
6319                               MachineMemOperand::Flags MMOFlags,
6320                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6321   assert(Chain.getValueType() == MVT::Other &&
6322         "Invalid chain type");
6323   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6324     Alignment = getEVTAlignment(MemVT);
6325 
6326   MMOFlags |= MachineMemOperand::MOLoad;
6327   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6328   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6329   // clients.
6330   if (PtrInfo.V.isNull())
6331     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6332 
6333   MachineFunction &MF = getMachineFunction();
6334   MachineMemOperand *MMO = MF.getMachineMemOperand(
6335       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6336   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6337 }
6338 
6339 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6340                               EVT VT, const SDLoc &dl, SDValue Chain,
6341                               SDValue Ptr, SDValue Offset, EVT MemVT,
6342                               MachineMemOperand *MMO) {
6343   if (VT == MemVT) {
6344     ExtType = ISD::NON_EXTLOAD;
6345   } else if (ExtType == ISD::NON_EXTLOAD) {
6346     assert(VT == MemVT && "Non-extending load from different memory type!");
6347   } else {
6348     // Extending load.
6349     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6350            "Should only be an extending load, not truncating!");
6351     assert(VT.isInteger() == MemVT.isInteger() &&
6352            "Cannot convert from FP to Int or Int -> FP!");
6353     assert(VT.isVector() == MemVT.isVector() &&
6354            "Cannot use an ext load to convert to or from a vector!");
6355     assert((!VT.isVector() ||
6356             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6357            "Cannot use an ext load to change the number of vector elements!");
6358   }
6359 
6360   bool Indexed = AM != ISD::UNINDEXED;
6361   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6362 
6363   SDVTList VTs = Indexed ?
6364     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6365   SDValue Ops[] = { Chain, Ptr, Offset };
6366   FoldingSetNodeID ID;
6367   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6368   ID.AddInteger(MemVT.getRawBits());
6369   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6370       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6371   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6372   void *IP = nullptr;
6373   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6374     cast<LoadSDNode>(E)->refineAlignment(MMO);
6375     return SDValue(E, 0);
6376   }
6377   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6378                                   ExtType, MemVT, MMO);
6379   createOperands(N, Ops);
6380 
6381   CSEMap.InsertNode(N, IP);
6382   InsertNode(N);
6383   SDValue V(N, 0);
6384   NewSDValueDbgMsg(V, "Creating new node: ", this);
6385   return V;
6386 }
6387 
6388 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6389                               SDValue Ptr, MachinePointerInfo PtrInfo,
6390                               unsigned Alignment,
6391                               MachineMemOperand::Flags MMOFlags,
6392                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6393   SDValue Undef = getUNDEF(Ptr.getValueType());
6394   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6395                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6396 }
6397 
6398 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6399                               SDValue Ptr, MachineMemOperand *MMO) {
6400   SDValue Undef = getUNDEF(Ptr.getValueType());
6401   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6402                  VT, MMO);
6403 }
6404 
6405 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6406                                  EVT VT, SDValue Chain, SDValue Ptr,
6407                                  MachinePointerInfo PtrInfo, EVT MemVT,
6408                                  unsigned Alignment,
6409                                  MachineMemOperand::Flags MMOFlags,
6410                                  const AAMDNodes &AAInfo) {
6411   SDValue Undef = getUNDEF(Ptr.getValueType());
6412   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6413                  MemVT, Alignment, MMOFlags, AAInfo);
6414 }
6415 
6416 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6417                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6418                                  MachineMemOperand *MMO) {
6419   SDValue Undef = getUNDEF(Ptr.getValueType());
6420   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6421                  MemVT, MMO);
6422 }
6423 
6424 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6425                                      SDValue Base, SDValue Offset,
6426                                      ISD::MemIndexedMode AM) {
6427   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6428   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6429   // Don't propagate the invariant or dereferenceable flags.
6430   auto MMOFlags =
6431       LD->getMemOperand()->getFlags() &
6432       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6433   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6434                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6435                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6436                  LD->getAAInfo());
6437 }
6438 
6439 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6440                                SDValue Ptr, MachinePointerInfo PtrInfo,
6441                                unsigned Alignment,
6442                                MachineMemOperand::Flags MMOFlags,
6443                                const AAMDNodes &AAInfo) {
6444   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6445   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6446     Alignment = getEVTAlignment(Val.getValueType());
6447 
6448   MMOFlags |= MachineMemOperand::MOStore;
6449   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6450 
6451   if (PtrInfo.V.isNull())
6452     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6453 
6454   MachineFunction &MF = getMachineFunction();
6455   MachineMemOperand *MMO = MF.getMachineMemOperand(
6456       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6457   return getStore(Chain, dl, Val, Ptr, MMO);
6458 }
6459 
6460 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6461                                SDValue Ptr, MachineMemOperand *MMO) {
6462   assert(Chain.getValueType() == MVT::Other &&
6463         "Invalid chain type");
6464   EVT VT = Val.getValueType();
6465   SDVTList VTs = getVTList(MVT::Other);
6466   SDValue Undef = getUNDEF(Ptr.getValueType());
6467   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6468   FoldingSetNodeID ID;
6469   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6470   ID.AddInteger(VT.getRawBits());
6471   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6472       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6473   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6474   void *IP = nullptr;
6475   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6476     cast<StoreSDNode>(E)->refineAlignment(MMO);
6477     return SDValue(E, 0);
6478   }
6479   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6480                                    ISD::UNINDEXED, false, VT, MMO);
6481   createOperands(N, Ops);
6482 
6483   CSEMap.InsertNode(N, IP);
6484   InsertNode(N);
6485   SDValue V(N, 0);
6486   NewSDValueDbgMsg(V, "Creating new node: ", this);
6487   return V;
6488 }
6489 
6490 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6491                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6492                                     EVT SVT, unsigned Alignment,
6493                                     MachineMemOperand::Flags MMOFlags,
6494                                     const AAMDNodes &AAInfo) {
6495   assert(Chain.getValueType() == MVT::Other &&
6496         "Invalid chain type");
6497   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6498     Alignment = getEVTAlignment(SVT);
6499 
6500   MMOFlags |= MachineMemOperand::MOStore;
6501   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6502 
6503   if (PtrInfo.V.isNull())
6504     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6505 
6506   MachineFunction &MF = getMachineFunction();
6507   MachineMemOperand *MMO = MF.getMachineMemOperand(
6508       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6509   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6510 }
6511 
6512 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6513                                     SDValue Ptr, EVT SVT,
6514                                     MachineMemOperand *MMO) {
6515   EVT VT = Val.getValueType();
6516 
6517   assert(Chain.getValueType() == MVT::Other &&
6518         "Invalid chain type");
6519   if (VT == SVT)
6520     return getStore(Chain, dl, Val, Ptr, MMO);
6521 
6522   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6523          "Should only be a truncating store, not extending!");
6524   assert(VT.isInteger() == SVT.isInteger() &&
6525          "Can't do FP-INT conversion!");
6526   assert(VT.isVector() == SVT.isVector() &&
6527          "Cannot use trunc store to convert to or from a vector!");
6528   assert((!VT.isVector() ||
6529           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6530          "Cannot use trunc store to change the number of vector elements!");
6531 
6532   SDVTList VTs = getVTList(MVT::Other);
6533   SDValue Undef = getUNDEF(Ptr.getValueType());
6534   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6535   FoldingSetNodeID ID;
6536   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6537   ID.AddInteger(SVT.getRawBits());
6538   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6539       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6540   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6541   void *IP = nullptr;
6542   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6543     cast<StoreSDNode>(E)->refineAlignment(MMO);
6544     return SDValue(E, 0);
6545   }
6546   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6547                                    ISD::UNINDEXED, true, SVT, MMO);
6548   createOperands(N, Ops);
6549 
6550   CSEMap.InsertNode(N, IP);
6551   InsertNode(N);
6552   SDValue V(N, 0);
6553   NewSDValueDbgMsg(V, "Creating new node: ", this);
6554   return V;
6555 }
6556 
6557 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6558                                       SDValue Base, SDValue Offset,
6559                                       ISD::MemIndexedMode AM) {
6560   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6561   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6562   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6563   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6564   FoldingSetNodeID ID;
6565   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6566   ID.AddInteger(ST->getMemoryVT().getRawBits());
6567   ID.AddInteger(ST->getRawSubclassData());
6568   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6569   void *IP = nullptr;
6570   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6571     return SDValue(E, 0);
6572 
6573   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6574                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6575                                    ST->getMemOperand());
6576   createOperands(N, Ops);
6577 
6578   CSEMap.InsertNode(N, IP);
6579   InsertNode(N);
6580   SDValue V(N, 0);
6581   NewSDValueDbgMsg(V, "Creating new node: ", this);
6582   return V;
6583 }
6584 
6585 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6586                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6587                                     EVT MemVT, MachineMemOperand *MMO,
6588                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6589   SDVTList VTs = getVTList(VT, MVT::Other);
6590   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6591   FoldingSetNodeID ID;
6592   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6593   ID.AddInteger(VT.getRawBits());
6594   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6595       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6596   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6597   void *IP = nullptr;
6598   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6599     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6600     return SDValue(E, 0);
6601   }
6602   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6603                                         ExtTy, isExpanding, MemVT, MMO);
6604   createOperands(N, Ops);
6605 
6606   CSEMap.InsertNode(N, IP);
6607   InsertNode(N);
6608   SDValue V(N, 0);
6609   NewSDValueDbgMsg(V, "Creating new node: ", this);
6610   return V;
6611 }
6612 
6613 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6614                                      SDValue Val, SDValue Ptr, SDValue Mask,
6615                                      EVT MemVT, MachineMemOperand *MMO,
6616                                      bool IsTruncating, bool IsCompressing) {
6617   assert(Chain.getValueType() == MVT::Other &&
6618         "Invalid chain type");
6619   EVT VT = Val.getValueType();
6620   SDVTList VTs = getVTList(MVT::Other);
6621   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6622   FoldingSetNodeID ID;
6623   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6624   ID.AddInteger(VT.getRawBits());
6625   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6626       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6627   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6628   void *IP = nullptr;
6629   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6630     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6631     return SDValue(E, 0);
6632   }
6633   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6634                                          IsTruncating, IsCompressing, MemVT, MMO);
6635   createOperands(N, Ops);
6636 
6637   CSEMap.InsertNode(N, IP);
6638   InsertNode(N);
6639   SDValue V(N, 0);
6640   NewSDValueDbgMsg(V, "Creating new node: ", this);
6641   return V;
6642 }
6643 
6644 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6645                                       ArrayRef<SDValue> Ops,
6646                                       MachineMemOperand *MMO) {
6647   assert(Ops.size() == 6 && "Incompatible number of operands");
6648 
6649   FoldingSetNodeID ID;
6650   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6651   ID.AddInteger(VT.getRawBits());
6652   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6653       dl.getIROrder(), VTs, VT, MMO));
6654   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6655   void *IP = nullptr;
6656   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6657     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6658     return SDValue(E, 0);
6659   }
6660 
6661   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6662                                           VTs, VT, MMO);
6663   createOperands(N, Ops);
6664 
6665   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6666          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6667   assert(N->getMask().getValueType().getVectorNumElements() ==
6668              N->getValueType(0).getVectorNumElements() &&
6669          "Vector width mismatch between mask and data");
6670   assert(N->getIndex().getValueType().getVectorNumElements() >=
6671              N->getValueType(0).getVectorNumElements() &&
6672          "Vector width mismatch between index and data");
6673   assert(isa<ConstantSDNode>(N->getScale()) &&
6674          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6675          "Scale should be a constant power of 2");
6676 
6677   CSEMap.InsertNode(N, IP);
6678   InsertNode(N);
6679   SDValue V(N, 0);
6680   NewSDValueDbgMsg(V, "Creating new node: ", this);
6681   return V;
6682 }
6683 
6684 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6685                                        ArrayRef<SDValue> Ops,
6686                                        MachineMemOperand *MMO) {
6687   assert(Ops.size() == 6 && "Incompatible number of operands");
6688 
6689   FoldingSetNodeID ID;
6690   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6691   ID.AddInteger(VT.getRawBits());
6692   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6693       dl.getIROrder(), VTs, VT, MMO));
6694   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6695   void *IP = nullptr;
6696   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6697     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6698     return SDValue(E, 0);
6699   }
6700   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6701                                            VTs, VT, MMO);
6702   createOperands(N, Ops);
6703 
6704   assert(N->getMask().getValueType().getVectorNumElements() ==
6705              N->getValue().getValueType().getVectorNumElements() &&
6706          "Vector width mismatch between mask and data");
6707   assert(N->getIndex().getValueType().getVectorNumElements() >=
6708              N->getValue().getValueType().getVectorNumElements() &&
6709          "Vector width mismatch between index and data");
6710   assert(isa<ConstantSDNode>(N->getScale()) &&
6711          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6712          "Scale should be a constant power of 2");
6713 
6714   CSEMap.InsertNode(N, IP);
6715   InsertNode(N);
6716   SDValue V(N, 0);
6717   NewSDValueDbgMsg(V, "Creating new node: ", this);
6718   return V;
6719 }
6720 
6721 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6722                                SDValue Ptr, SDValue SV, unsigned Align) {
6723   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6724   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6725 }
6726 
6727 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6728                               ArrayRef<SDUse> Ops) {
6729   switch (Ops.size()) {
6730   case 0: return getNode(Opcode, DL, VT);
6731   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6732   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6733   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6734   default: break;
6735   }
6736 
6737   // Copy from an SDUse array into an SDValue array for use with
6738   // the regular getNode logic.
6739   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6740   return getNode(Opcode, DL, VT, NewOps);
6741 }
6742 
6743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6744                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6745   unsigned NumOps = Ops.size();
6746   switch (NumOps) {
6747   case 0: return getNode(Opcode, DL, VT);
6748   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6749   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6750   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
6751   default: break;
6752   }
6753 
6754   switch (Opcode) {
6755   default: break;
6756   case ISD::CONCAT_VECTORS:
6757     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6758     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6759       return V;
6760     break;
6761   case ISD::SELECT_CC:
6762     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6763     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6764            "LHS and RHS of condition must have same type!");
6765     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6766            "True and False arms of SelectCC must have same type!");
6767     assert(Ops[2].getValueType() == VT &&
6768            "select_cc node must be of same type as true and false value!");
6769     break;
6770   case ISD::BR_CC:
6771     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6772     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6773            "LHS/RHS of comparison should match types!");
6774     break;
6775   }
6776 
6777   // Memoize nodes.
6778   SDNode *N;
6779   SDVTList VTs = getVTList(VT);
6780 
6781   if (VT != MVT::Glue) {
6782     FoldingSetNodeID ID;
6783     AddNodeIDNode(ID, Opcode, VTs, Ops);
6784     void *IP = nullptr;
6785 
6786     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6787       return SDValue(E, 0);
6788 
6789     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6790     createOperands(N, Ops);
6791 
6792     CSEMap.InsertNode(N, IP);
6793   } else {
6794     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6795     createOperands(N, Ops);
6796   }
6797 
6798   InsertNode(N);
6799   SDValue V(N, 0);
6800   NewSDValueDbgMsg(V, "Creating new node: ", this);
6801   return V;
6802 }
6803 
6804 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6805                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6806   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6807 }
6808 
6809 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6810                               ArrayRef<SDValue> Ops) {
6811   if (VTList.NumVTs == 1)
6812     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6813 
6814 #if 0
6815   switch (Opcode) {
6816   // FIXME: figure out how to safely handle things like
6817   // int foo(int x) { return 1 << (x & 255); }
6818   // int bar() { return foo(256); }
6819   case ISD::SRA_PARTS:
6820   case ISD::SRL_PARTS:
6821   case ISD::SHL_PARTS:
6822     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6823         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6824       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6825     else if (N3.getOpcode() == ISD::AND)
6826       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6827         // If the and is only masking out bits that cannot effect the shift,
6828         // eliminate the and.
6829         unsigned NumBits = VT.getScalarSizeInBits()*2;
6830         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6831           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6832       }
6833     break;
6834   }
6835 #endif
6836 
6837   // Memoize the node unless it returns a flag.
6838   SDNode *N;
6839   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6840     FoldingSetNodeID ID;
6841     AddNodeIDNode(ID, Opcode, VTList, Ops);
6842     void *IP = nullptr;
6843     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6844       return SDValue(E, 0);
6845 
6846     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6847     createOperands(N, Ops);
6848     CSEMap.InsertNode(N, IP);
6849   } else {
6850     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6851     createOperands(N, Ops);
6852   }
6853   InsertNode(N);
6854   SDValue V(N, 0);
6855   NewSDValueDbgMsg(V, "Creating new node: ", this);
6856   return V;
6857 }
6858 
6859 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6860                               SDVTList VTList) {
6861   return getNode(Opcode, DL, VTList, None);
6862 }
6863 
6864 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6865                               SDValue N1) {
6866   SDValue Ops[] = { N1 };
6867   return getNode(Opcode, DL, VTList, Ops);
6868 }
6869 
6870 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6871                               SDValue N1, SDValue N2) {
6872   SDValue Ops[] = { N1, N2 };
6873   return getNode(Opcode, DL, VTList, Ops);
6874 }
6875 
6876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6877                               SDValue N1, SDValue N2, SDValue N3) {
6878   SDValue Ops[] = { N1, N2, N3 };
6879   return getNode(Opcode, DL, VTList, Ops);
6880 }
6881 
6882 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6883                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6884   SDValue Ops[] = { N1, N2, N3, N4 };
6885   return getNode(Opcode, DL, VTList, Ops);
6886 }
6887 
6888 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6889                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6890                               SDValue N5) {
6891   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6892   return getNode(Opcode, DL, VTList, Ops);
6893 }
6894 
6895 SDVTList SelectionDAG::getVTList(EVT VT) {
6896   return makeVTList(SDNode::getValueTypeList(VT), 1);
6897 }
6898 
6899 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6900   FoldingSetNodeID ID;
6901   ID.AddInteger(2U);
6902   ID.AddInteger(VT1.getRawBits());
6903   ID.AddInteger(VT2.getRawBits());
6904 
6905   void *IP = nullptr;
6906   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6907   if (!Result) {
6908     EVT *Array = Allocator.Allocate<EVT>(2);
6909     Array[0] = VT1;
6910     Array[1] = VT2;
6911     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6912     VTListMap.InsertNode(Result, IP);
6913   }
6914   return Result->getSDVTList();
6915 }
6916 
6917 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6918   FoldingSetNodeID ID;
6919   ID.AddInteger(3U);
6920   ID.AddInteger(VT1.getRawBits());
6921   ID.AddInteger(VT2.getRawBits());
6922   ID.AddInteger(VT3.getRawBits());
6923 
6924   void *IP = nullptr;
6925   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6926   if (!Result) {
6927     EVT *Array = Allocator.Allocate<EVT>(3);
6928     Array[0] = VT1;
6929     Array[1] = VT2;
6930     Array[2] = VT3;
6931     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6932     VTListMap.InsertNode(Result, IP);
6933   }
6934   return Result->getSDVTList();
6935 }
6936 
6937 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6938   FoldingSetNodeID ID;
6939   ID.AddInteger(4U);
6940   ID.AddInteger(VT1.getRawBits());
6941   ID.AddInteger(VT2.getRawBits());
6942   ID.AddInteger(VT3.getRawBits());
6943   ID.AddInteger(VT4.getRawBits());
6944 
6945   void *IP = nullptr;
6946   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6947   if (!Result) {
6948     EVT *Array = Allocator.Allocate<EVT>(4);
6949     Array[0] = VT1;
6950     Array[1] = VT2;
6951     Array[2] = VT3;
6952     Array[3] = VT4;
6953     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6954     VTListMap.InsertNode(Result, IP);
6955   }
6956   return Result->getSDVTList();
6957 }
6958 
6959 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6960   unsigned NumVTs = VTs.size();
6961   FoldingSetNodeID ID;
6962   ID.AddInteger(NumVTs);
6963   for (unsigned index = 0; index < NumVTs; index++) {
6964     ID.AddInteger(VTs[index].getRawBits());
6965   }
6966 
6967   void *IP = nullptr;
6968   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6969   if (!Result) {
6970     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6971     std::copy(VTs.begin(), VTs.end(), Array);
6972     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6973     VTListMap.InsertNode(Result, IP);
6974   }
6975   return Result->getSDVTList();
6976 }
6977 
6978 
6979 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6980 /// specified operands.  If the resultant node already exists in the DAG,
6981 /// this does not modify the specified node, instead it returns the node that
6982 /// already exists.  If the resultant node does not exist in the DAG, the
6983 /// input node is returned.  As a degenerate case, if you specify the same
6984 /// input operands as the node already has, the input node is returned.
6985 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6986   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6987 
6988   // Check to see if there is no change.
6989   if (Op == N->getOperand(0)) return N;
6990 
6991   // See if the modified node already exists.
6992   void *InsertPos = nullptr;
6993   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6994     return Existing;
6995 
6996   // Nope it doesn't.  Remove the node from its current place in the maps.
6997   if (InsertPos)
6998     if (!RemoveNodeFromCSEMaps(N))
6999       InsertPos = nullptr;
7000 
7001   // Now we update the operands.
7002   N->OperandList[0].set(Op);
7003 
7004   updateDivergence(N);
7005   // If this gets put into a CSE map, add it.
7006   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7007   return N;
7008 }
7009 
7010 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7011   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7012 
7013   // Check to see if there is no change.
7014   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7015     return N;   // No operands changed, just return the input node.
7016 
7017   // See if the modified node already exists.
7018   void *InsertPos = nullptr;
7019   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7020     return Existing;
7021 
7022   // Nope it doesn't.  Remove the node from its current place in the maps.
7023   if (InsertPos)
7024     if (!RemoveNodeFromCSEMaps(N))
7025       InsertPos = nullptr;
7026 
7027   // Now we update the operands.
7028   if (N->OperandList[0] != Op1)
7029     N->OperandList[0].set(Op1);
7030   if (N->OperandList[1] != Op2)
7031     N->OperandList[1].set(Op2);
7032 
7033   updateDivergence(N);
7034   // If this gets put into a CSE map, add it.
7035   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7036   return N;
7037 }
7038 
7039 SDNode *SelectionDAG::
7040 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7041   SDValue Ops[] = { Op1, Op2, Op3 };
7042   return UpdateNodeOperands(N, Ops);
7043 }
7044 
7045 SDNode *SelectionDAG::
7046 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7047                    SDValue Op3, SDValue Op4) {
7048   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7049   return UpdateNodeOperands(N, Ops);
7050 }
7051 
7052 SDNode *SelectionDAG::
7053 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7054                    SDValue Op3, SDValue Op4, SDValue Op5) {
7055   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7056   return UpdateNodeOperands(N, Ops);
7057 }
7058 
7059 SDNode *SelectionDAG::
7060 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7061   unsigned NumOps = Ops.size();
7062   assert(N->getNumOperands() == NumOps &&
7063          "Update with wrong number of operands");
7064 
7065   // If no operands changed just return the input node.
7066   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7067     return N;
7068 
7069   // See if the modified node already exists.
7070   void *InsertPos = nullptr;
7071   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7072     return Existing;
7073 
7074   // Nope it doesn't.  Remove the node from its current place in the maps.
7075   if (InsertPos)
7076     if (!RemoveNodeFromCSEMaps(N))
7077       InsertPos = nullptr;
7078 
7079   // Now we update the operands.
7080   for (unsigned i = 0; i != NumOps; ++i)
7081     if (N->OperandList[i] != Ops[i])
7082       N->OperandList[i].set(Ops[i]);
7083 
7084   updateDivergence(N);
7085   // If this gets put into a CSE map, add it.
7086   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7087   return N;
7088 }
7089 
7090 /// DropOperands - Release the operands and set this node to have
7091 /// zero operands.
7092 void SDNode::DropOperands() {
7093   // Unlike the code in MorphNodeTo that does this, we don't need to
7094   // watch for dead nodes here.
7095   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7096     SDUse &Use = *I++;
7097     Use.set(SDValue());
7098   }
7099 }
7100 
7101 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7102                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7103   if (NewMemRefs.empty()) {
7104     N->clearMemRefs();
7105     return;
7106   }
7107 
7108   // Check if we can avoid allocating by storing a single reference directly.
7109   if (NewMemRefs.size() == 1) {
7110     N->MemRefs = NewMemRefs[0];
7111     N->NumMemRefs = 1;
7112     return;
7113   }
7114 
7115   MachineMemOperand **MemRefsBuffer =
7116       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7117   std::copy(NewMemRefs.begin(), NewMemRefs.end(), MemRefsBuffer);
7118   N->MemRefs = MemRefsBuffer;
7119   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7120 }
7121 
7122 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7123 /// machine opcode.
7124 ///
7125 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7126                                    EVT VT) {
7127   SDVTList VTs = getVTList(VT);
7128   return SelectNodeTo(N, MachineOpc, VTs, None);
7129 }
7130 
7131 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7132                                    EVT VT, SDValue Op1) {
7133   SDVTList VTs = getVTList(VT);
7134   SDValue Ops[] = { Op1 };
7135   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7136 }
7137 
7138 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7139                                    EVT VT, SDValue Op1,
7140                                    SDValue Op2) {
7141   SDVTList VTs = getVTList(VT);
7142   SDValue Ops[] = { Op1, Op2 };
7143   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7144 }
7145 
7146 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7147                                    EVT VT, SDValue Op1,
7148                                    SDValue Op2, SDValue Op3) {
7149   SDVTList VTs = getVTList(VT);
7150   SDValue Ops[] = { Op1, Op2, Op3 };
7151   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7152 }
7153 
7154 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7155                                    EVT VT, ArrayRef<SDValue> Ops) {
7156   SDVTList VTs = getVTList(VT);
7157   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7158 }
7159 
7160 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7161                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7162   SDVTList VTs = getVTList(VT1, VT2);
7163   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7164 }
7165 
7166 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7167                                    EVT VT1, EVT VT2) {
7168   SDVTList VTs = getVTList(VT1, VT2);
7169   return SelectNodeTo(N, MachineOpc, VTs, None);
7170 }
7171 
7172 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7173                                    EVT VT1, EVT VT2, EVT VT3,
7174                                    ArrayRef<SDValue> Ops) {
7175   SDVTList VTs = getVTList(VT1, VT2, VT3);
7176   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7177 }
7178 
7179 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7180                                    EVT VT1, EVT VT2,
7181                                    SDValue Op1, SDValue Op2) {
7182   SDVTList VTs = getVTList(VT1, VT2);
7183   SDValue Ops[] = { Op1, Op2 };
7184   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7185 }
7186 
7187 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7188                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7189   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7190   // Reset the NodeID to -1.
7191   New->setNodeId(-1);
7192   if (New != N) {
7193     ReplaceAllUsesWith(N, New);
7194     RemoveDeadNode(N);
7195   }
7196   return New;
7197 }
7198 
7199 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7200 /// the line number information on the merged node since it is not possible to
7201 /// preserve the information that operation is associated with multiple lines.
7202 /// This will make the debugger working better at -O0, were there is a higher
7203 /// probability having other instructions associated with that line.
7204 ///
7205 /// For IROrder, we keep the smaller of the two
7206 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7207   DebugLoc NLoc = N->getDebugLoc();
7208   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7209     N->setDebugLoc(DebugLoc());
7210   }
7211   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7212   N->setIROrder(Order);
7213   return N;
7214 }
7215 
7216 /// MorphNodeTo - This *mutates* the specified node to have the specified
7217 /// return type, opcode, and operands.
7218 ///
7219 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7220 /// node of the specified opcode and operands, it returns that node instead of
7221 /// the current one.  Note that the SDLoc need not be the same.
7222 ///
7223 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7224 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7225 /// node, and because it doesn't require CSE recalculation for any of
7226 /// the node's users.
7227 ///
7228 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7229 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7230 /// the legalizer which maintain worklists that would need to be updated when
7231 /// deleting things.
7232 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7233                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7234   // If an identical node already exists, use it.
7235   void *IP = nullptr;
7236   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7237     FoldingSetNodeID ID;
7238     AddNodeIDNode(ID, Opc, VTs, Ops);
7239     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7240       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7241   }
7242 
7243   if (!RemoveNodeFromCSEMaps(N))
7244     IP = nullptr;
7245 
7246   // Start the morphing.
7247   N->NodeType = Opc;
7248   N->ValueList = VTs.VTs;
7249   N->NumValues = VTs.NumVTs;
7250 
7251   // Clear the operands list, updating used nodes to remove this from their
7252   // use list.  Keep track of any operands that become dead as a result.
7253   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7254   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7255     SDUse &Use = *I++;
7256     SDNode *Used = Use.getNode();
7257     Use.set(SDValue());
7258     if (Used->use_empty())
7259       DeadNodeSet.insert(Used);
7260   }
7261 
7262   // For MachineNode, initialize the memory references information.
7263   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7264     MN->clearMemRefs();
7265 
7266   // Swap for an appropriately sized array from the recycler.
7267   removeOperands(N);
7268   createOperands(N, Ops);
7269 
7270   // Delete any nodes that are still dead after adding the uses for the
7271   // new operands.
7272   if (!DeadNodeSet.empty()) {
7273     SmallVector<SDNode *, 16> DeadNodes;
7274     for (SDNode *N : DeadNodeSet)
7275       if (N->use_empty())
7276         DeadNodes.push_back(N);
7277     RemoveDeadNodes(DeadNodes);
7278   }
7279 
7280   if (IP)
7281     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7282   return N;
7283 }
7284 
7285 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7286   unsigned OrigOpc = Node->getOpcode();
7287   unsigned NewOpc;
7288   bool IsUnary = false;
7289   bool IsTernary = false;
7290   switch (OrigOpc) {
7291   default:
7292     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7293   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7294   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7295   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7296   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7297   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7298   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7299   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7300   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7301   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7302   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7303   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7304   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7305   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7306   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7307   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7308   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7309   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7310   case ISD::STRICT_FNEARBYINT:
7311     NewOpc = ISD::FNEARBYINT;
7312     IsUnary = true;
7313     break;
7314   }
7315 
7316   // We're taking this node out of the chain, so we need to re-link things.
7317   SDValue InputChain = Node->getOperand(0);
7318   SDValue OutputChain = SDValue(Node, 1);
7319   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7320 
7321   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7322   SDNode *Res = nullptr;
7323   if (IsUnary)
7324     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7325   else if (IsTernary)
7326     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7327                                            Node->getOperand(2),
7328                                            Node->getOperand(3)});
7329   else
7330     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7331                                            Node->getOperand(2) });
7332 
7333   // MorphNodeTo can operate in two ways: if an existing node with the
7334   // specified operands exists, it can just return it.  Otherwise, it
7335   // updates the node in place to have the requested operands.
7336   if (Res == Node) {
7337     // If we updated the node in place, reset the node ID.  To the isel,
7338     // this should be just like a newly allocated machine node.
7339     Res->setNodeId(-1);
7340   } else {
7341     ReplaceAllUsesWith(Node, Res);
7342     RemoveDeadNode(Node);
7343   }
7344 
7345   return Res;
7346 }
7347 
7348 /// getMachineNode - These are used for target selectors to create a new node
7349 /// with specified return type(s), MachineInstr opcode, and operands.
7350 ///
7351 /// Note that getMachineNode returns the resultant node.  If there is already a
7352 /// node of the specified opcode and operands, it returns that node instead of
7353 /// the current one.
7354 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7355                                             EVT VT) {
7356   SDVTList VTs = getVTList(VT);
7357   return getMachineNode(Opcode, dl, VTs, None);
7358 }
7359 
7360 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7361                                             EVT VT, SDValue Op1) {
7362   SDVTList VTs = getVTList(VT);
7363   SDValue Ops[] = { Op1 };
7364   return getMachineNode(Opcode, dl, VTs, Ops);
7365 }
7366 
7367 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7368                                             EVT VT, SDValue Op1, SDValue Op2) {
7369   SDVTList VTs = getVTList(VT);
7370   SDValue Ops[] = { Op1, Op2 };
7371   return getMachineNode(Opcode, dl, VTs, Ops);
7372 }
7373 
7374 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7375                                             EVT VT, SDValue Op1, SDValue Op2,
7376                                             SDValue Op3) {
7377   SDVTList VTs = getVTList(VT);
7378   SDValue Ops[] = { Op1, Op2, Op3 };
7379   return getMachineNode(Opcode, dl, VTs, Ops);
7380 }
7381 
7382 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7383                                             EVT VT, ArrayRef<SDValue> Ops) {
7384   SDVTList VTs = getVTList(VT);
7385   return getMachineNode(Opcode, dl, VTs, Ops);
7386 }
7387 
7388 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7389                                             EVT VT1, EVT VT2, SDValue Op1,
7390                                             SDValue Op2) {
7391   SDVTList VTs = getVTList(VT1, VT2);
7392   SDValue Ops[] = { Op1, Op2 };
7393   return getMachineNode(Opcode, dl, VTs, Ops);
7394 }
7395 
7396 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7397                                             EVT VT1, EVT VT2, SDValue Op1,
7398                                             SDValue Op2, SDValue Op3) {
7399   SDVTList VTs = getVTList(VT1, VT2);
7400   SDValue Ops[] = { Op1, Op2, Op3 };
7401   return getMachineNode(Opcode, dl, VTs, Ops);
7402 }
7403 
7404 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7405                                             EVT VT1, EVT VT2,
7406                                             ArrayRef<SDValue> Ops) {
7407   SDVTList VTs = getVTList(VT1, VT2);
7408   return getMachineNode(Opcode, dl, VTs, Ops);
7409 }
7410 
7411 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7412                                             EVT VT1, EVT VT2, EVT VT3,
7413                                             SDValue Op1, SDValue Op2) {
7414   SDVTList VTs = getVTList(VT1, VT2, VT3);
7415   SDValue Ops[] = { Op1, Op2 };
7416   return getMachineNode(Opcode, dl, VTs, Ops);
7417 }
7418 
7419 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7420                                             EVT VT1, EVT VT2, EVT VT3,
7421                                             SDValue Op1, SDValue Op2,
7422                                             SDValue Op3) {
7423   SDVTList VTs = getVTList(VT1, VT2, VT3);
7424   SDValue Ops[] = { Op1, Op2, Op3 };
7425   return getMachineNode(Opcode, dl, VTs, Ops);
7426 }
7427 
7428 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7429                                             EVT VT1, EVT VT2, EVT VT3,
7430                                             ArrayRef<SDValue> Ops) {
7431   SDVTList VTs = getVTList(VT1, VT2, VT3);
7432   return getMachineNode(Opcode, dl, VTs, Ops);
7433 }
7434 
7435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7436                                             ArrayRef<EVT> ResultTys,
7437                                             ArrayRef<SDValue> Ops) {
7438   SDVTList VTs = getVTList(ResultTys);
7439   return getMachineNode(Opcode, dl, VTs, Ops);
7440 }
7441 
7442 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7443                                             SDVTList VTs,
7444                                             ArrayRef<SDValue> Ops) {
7445   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7446   MachineSDNode *N;
7447   void *IP = nullptr;
7448 
7449   if (DoCSE) {
7450     FoldingSetNodeID ID;
7451     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7452     IP = nullptr;
7453     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7454       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7455     }
7456   }
7457 
7458   // Allocate a new MachineSDNode.
7459   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7460   createOperands(N, Ops);
7461 
7462   if (DoCSE)
7463     CSEMap.InsertNode(N, IP);
7464 
7465   InsertNode(N);
7466   return N;
7467 }
7468 
7469 /// getTargetExtractSubreg - A convenience function for creating
7470 /// TargetOpcode::EXTRACT_SUBREG nodes.
7471 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7472                                              SDValue Operand) {
7473   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7474   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7475                                   VT, Operand, SRIdxVal);
7476   return SDValue(Subreg, 0);
7477 }
7478 
7479 /// getTargetInsertSubreg - A convenience function for creating
7480 /// TargetOpcode::INSERT_SUBREG nodes.
7481 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7482                                             SDValue Operand, SDValue Subreg) {
7483   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7484   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7485                                   VT, Operand, Subreg, SRIdxVal);
7486   return SDValue(Result, 0);
7487 }
7488 
7489 /// getNodeIfExists - Get the specified node if it's already available, or
7490 /// else return NULL.
7491 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7492                                       ArrayRef<SDValue> Ops,
7493                                       const SDNodeFlags Flags) {
7494   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7495     FoldingSetNodeID ID;
7496     AddNodeIDNode(ID, Opcode, VTList, Ops);
7497     void *IP = nullptr;
7498     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7499       E->intersectFlagsWith(Flags);
7500       return E;
7501     }
7502   }
7503   return nullptr;
7504 }
7505 
7506 /// getDbgValue - Creates a SDDbgValue node.
7507 ///
7508 /// SDNode
7509 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7510                                       SDNode *N, unsigned R, bool IsIndirect,
7511                                       const DebugLoc &DL, unsigned O) {
7512   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7513          "Expected inlined-at fields to agree");
7514   return new (DbgInfo->getAlloc())
7515       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7516 }
7517 
7518 /// Constant
7519 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7520                                               DIExpression *Expr,
7521                                               const Value *C,
7522                                               const DebugLoc &DL, unsigned O) {
7523   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7524          "Expected inlined-at fields to agree");
7525   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7526 }
7527 
7528 /// FrameIndex
7529 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7530                                                 DIExpression *Expr, unsigned FI,
7531                                                 bool IsIndirect,
7532                                                 const DebugLoc &DL,
7533                                                 unsigned O) {
7534   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7535          "Expected inlined-at fields to agree");
7536   return new (DbgInfo->getAlloc())
7537       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7538 }
7539 
7540 /// VReg
7541 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7542                                           DIExpression *Expr,
7543                                           unsigned VReg, bool IsIndirect,
7544                                           const DebugLoc &DL, unsigned O) {
7545   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7546          "Expected inlined-at fields to agree");
7547   return new (DbgInfo->getAlloc())
7548       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7549 }
7550 
7551 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7552                                      unsigned OffsetInBits, unsigned SizeInBits,
7553                                      bool InvalidateDbg) {
7554   SDNode *FromNode = From.getNode();
7555   SDNode *ToNode = To.getNode();
7556   assert(FromNode && ToNode && "Can't modify dbg values");
7557 
7558   // PR35338
7559   // TODO: assert(From != To && "Redundant dbg value transfer");
7560   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7561   if (From == To || FromNode == ToNode)
7562     return;
7563 
7564   if (!FromNode->getHasDebugValue())
7565     return;
7566 
7567   SmallVector<SDDbgValue *, 2> ClonedDVs;
7568   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7569     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7570       continue;
7571 
7572     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7573 
7574     // Just transfer the dbg value attached to From.
7575     if (Dbg->getResNo() != From.getResNo())
7576       continue;
7577 
7578     DIVariable *Var = Dbg->getVariable();
7579     auto *Expr = Dbg->getExpression();
7580     // If a fragment is requested, update the expression.
7581     if (SizeInBits) {
7582       // When splitting a larger (e.g., sign-extended) value whose
7583       // lower bits are described with an SDDbgValue, do not attempt
7584       // to transfer the SDDbgValue to the upper bits.
7585       if (auto FI = Expr->getFragmentInfo())
7586         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7587           continue;
7588       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7589                                                              SizeInBits);
7590       if (!Fragment)
7591         continue;
7592       Expr = *Fragment;
7593     }
7594     // Clone the SDDbgValue and move it to To.
7595     SDDbgValue *Clone =
7596         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7597                     Dbg->getDebugLoc(), Dbg->getOrder());
7598     ClonedDVs.push_back(Clone);
7599 
7600     if (InvalidateDbg)
7601       Dbg->setIsInvalidated();
7602   }
7603 
7604   for (SDDbgValue *Dbg : ClonedDVs)
7605     AddDbgValue(Dbg, ToNode, false);
7606 }
7607 
7608 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7609   if (!N.getHasDebugValue())
7610     return;
7611 
7612   SmallVector<SDDbgValue *, 2> ClonedDVs;
7613   for (auto DV : GetDbgValues(&N)) {
7614     if (DV->isInvalidated())
7615       continue;
7616     switch (N.getOpcode()) {
7617     default:
7618       break;
7619     case ISD::ADD:
7620       SDValue N0 = N.getOperand(0);
7621       SDValue N1 = N.getOperand(1);
7622       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7623           isConstantIntBuildVectorOrConstantInt(N1)) {
7624         uint64_t Offset = N.getConstantOperandVal(1);
7625         // Rewrite an ADD constant node into a DIExpression. Since we are
7626         // performing arithmetic to compute the variable's *value* in the
7627         // DIExpression, we need to mark the expression with a
7628         // DW_OP_stack_value.
7629         auto *DIExpr = DV->getExpression();
7630         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7631                                        DIExpression::NoDeref,
7632                                        DIExpression::WithStackValue);
7633         SDDbgValue *Clone =
7634             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7635                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7636         ClonedDVs.push_back(Clone);
7637         DV->setIsInvalidated();
7638         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7639                    N0.getNode()->dumprFull(this);
7640                    dbgs() << " into " << *DIExpr << '\n');
7641       }
7642     }
7643   }
7644 
7645   for (SDDbgValue *Dbg : ClonedDVs)
7646     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7647 }
7648 
7649 /// Creates a SDDbgLabel node.
7650 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7651                                       const DebugLoc &DL, unsigned O) {
7652   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7653          "Expected inlined-at fields to agree");
7654   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7655 }
7656 
7657 namespace {
7658 
7659 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7660 /// pointed to by a use iterator is deleted, increment the use iterator
7661 /// so that it doesn't dangle.
7662 ///
7663 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7664   SDNode::use_iterator &UI;
7665   SDNode::use_iterator &UE;
7666 
7667   void NodeDeleted(SDNode *N, SDNode *E) override {
7668     // Increment the iterator as needed.
7669     while (UI != UE && N == *UI)
7670       ++UI;
7671   }
7672 
7673 public:
7674   RAUWUpdateListener(SelectionDAG &d,
7675                      SDNode::use_iterator &ui,
7676                      SDNode::use_iterator &ue)
7677     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7678 };
7679 
7680 } // end anonymous namespace
7681 
7682 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7683 /// This can cause recursive merging of nodes in the DAG.
7684 ///
7685 /// This version assumes From has a single result value.
7686 ///
7687 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7688   SDNode *From = FromN.getNode();
7689   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7690          "Cannot replace with this method!");
7691   assert(From != To.getNode() && "Cannot replace uses of with self");
7692 
7693   // Preserve Debug Values
7694   transferDbgValues(FromN, To);
7695 
7696   // Iterate over all the existing uses of From. New uses will be added
7697   // to the beginning of the use list, which we avoid visiting.
7698   // This specifically avoids visiting uses of From that arise while the
7699   // replacement is happening, because any such uses would be the result
7700   // of CSE: If an existing node looks like From after one of its operands
7701   // is replaced by To, we don't want to replace of all its users with To
7702   // too. See PR3018 for more info.
7703   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7704   RAUWUpdateListener Listener(*this, UI, UE);
7705   while (UI != UE) {
7706     SDNode *User = *UI;
7707 
7708     // This node is about to morph, remove its old self from the CSE maps.
7709     RemoveNodeFromCSEMaps(User);
7710 
7711     // A user can appear in a use list multiple times, and when this
7712     // happens the uses are usually next to each other in the list.
7713     // To help reduce the number of CSE recomputations, process all
7714     // the uses of this user that we can find this way.
7715     do {
7716       SDUse &Use = UI.getUse();
7717       ++UI;
7718       Use.set(To);
7719       if (To->isDivergent() != From->isDivergent())
7720         updateDivergence(User);
7721     } while (UI != UE && *UI == User);
7722     // Now that we have modified User, add it back to the CSE maps.  If it
7723     // already exists there, recursively merge the results together.
7724     AddModifiedNodeToCSEMaps(User);
7725   }
7726 
7727   // If we just RAUW'd the root, take note.
7728   if (FromN == getRoot())
7729     setRoot(To);
7730 }
7731 
7732 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7733 /// This can cause recursive merging of nodes in the DAG.
7734 ///
7735 /// This version assumes that for each value of From, there is a
7736 /// corresponding value in To in the same position with the same type.
7737 ///
7738 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7739 #ifndef NDEBUG
7740   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7741     assert((!From->hasAnyUseOfValue(i) ||
7742             From->getValueType(i) == To->getValueType(i)) &&
7743            "Cannot use this version of ReplaceAllUsesWith!");
7744 #endif
7745 
7746   // Handle the trivial case.
7747   if (From == To)
7748     return;
7749 
7750   // Preserve Debug Info. Only do this if there's a use.
7751   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7752     if (From->hasAnyUseOfValue(i)) {
7753       assert((i < To->getNumValues()) && "Invalid To location");
7754       transferDbgValues(SDValue(From, i), SDValue(To, i));
7755     }
7756 
7757   // Iterate over just the existing users of From. See the comments in
7758   // the ReplaceAllUsesWith above.
7759   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7760   RAUWUpdateListener Listener(*this, UI, UE);
7761   while (UI != UE) {
7762     SDNode *User = *UI;
7763 
7764     // This node is about to morph, remove its old self from the CSE maps.
7765     RemoveNodeFromCSEMaps(User);
7766 
7767     // A user can appear in a use list multiple times, and when this
7768     // happens the uses are usually next to each other in the list.
7769     // To help reduce the number of CSE recomputations, process all
7770     // the uses of this user that we can find this way.
7771     do {
7772       SDUse &Use = UI.getUse();
7773       ++UI;
7774       Use.setNode(To);
7775       if (To->isDivergent() != From->isDivergent())
7776         updateDivergence(User);
7777     } while (UI != UE && *UI == User);
7778 
7779     // Now that we have modified User, add it back to the CSE maps.  If it
7780     // already exists there, recursively merge the results together.
7781     AddModifiedNodeToCSEMaps(User);
7782   }
7783 
7784   // If we just RAUW'd the root, take note.
7785   if (From == getRoot().getNode())
7786     setRoot(SDValue(To, getRoot().getResNo()));
7787 }
7788 
7789 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7790 /// This can cause recursive merging of nodes in the DAG.
7791 ///
7792 /// This version can replace From with any result values.  To must match the
7793 /// number and types of values returned by From.
7794 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7795   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7796     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7797 
7798   // Preserve Debug Info.
7799   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7800     transferDbgValues(SDValue(From, i), To[i]);
7801 
7802   // Iterate over just the existing users of From. See the comments in
7803   // the ReplaceAllUsesWith above.
7804   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7805   RAUWUpdateListener Listener(*this, UI, UE);
7806   while (UI != UE) {
7807     SDNode *User = *UI;
7808 
7809     // This node is about to morph, remove its old self from the CSE maps.
7810     RemoveNodeFromCSEMaps(User);
7811 
7812     // A user can appear in a use list multiple times, and when this happens the
7813     // uses are usually next to each other in the list.  To help reduce the
7814     // number of CSE and divergence recomputations, process all the uses of this
7815     // user that we can find this way.
7816     bool To_IsDivergent = false;
7817     do {
7818       SDUse &Use = UI.getUse();
7819       const SDValue &ToOp = To[Use.getResNo()];
7820       ++UI;
7821       Use.set(ToOp);
7822       To_IsDivergent |= ToOp->isDivergent();
7823     } while (UI != UE && *UI == User);
7824 
7825     if (To_IsDivergent != From->isDivergent())
7826       updateDivergence(User);
7827 
7828     // Now that we have modified User, add it back to the CSE maps.  If it
7829     // already exists there, recursively merge the results together.
7830     AddModifiedNodeToCSEMaps(User);
7831   }
7832 
7833   // If we just RAUW'd the root, take note.
7834   if (From == getRoot().getNode())
7835     setRoot(SDValue(To[getRoot().getResNo()]));
7836 }
7837 
7838 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7839 /// uses of other values produced by From.getNode() alone.  The Deleted
7840 /// vector is handled the same way as for ReplaceAllUsesWith.
7841 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7842   // Handle the really simple, really trivial case efficiently.
7843   if (From == To) return;
7844 
7845   // Handle the simple, trivial, case efficiently.
7846   if (From.getNode()->getNumValues() == 1) {
7847     ReplaceAllUsesWith(From, To);
7848     return;
7849   }
7850 
7851   // Preserve Debug Info.
7852   transferDbgValues(From, To);
7853 
7854   // Iterate over just the existing users of From. See the comments in
7855   // the ReplaceAllUsesWith above.
7856   SDNode::use_iterator UI = From.getNode()->use_begin(),
7857                        UE = From.getNode()->use_end();
7858   RAUWUpdateListener Listener(*this, UI, UE);
7859   while (UI != UE) {
7860     SDNode *User = *UI;
7861     bool UserRemovedFromCSEMaps = false;
7862 
7863     // A user can appear in a use list multiple times, and when this
7864     // happens the uses are usually next to each other in the list.
7865     // To help reduce the number of CSE recomputations, process all
7866     // the uses of this user that we can find this way.
7867     do {
7868       SDUse &Use = UI.getUse();
7869 
7870       // Skip uses of different values from the same node.
7871       if (Use.getResNo() != From.getResNo()) {
7872         ++UI;
7873         continue;
7874       }
7875 
7876       // If this node hasn't been modified yet, it's still in the CSE maps,
7877       // so remove its old self from the CSE maps.
7878       if (!UserRemovedFromCSEMaps) {
7879         RemoveNodeFromCSEMaps(User);
7880         UserRemovedFromCSEMaps = true;
7881       }
7882 
7883       ++UI;
7884       Use.set(To);
7885       if (To->isDivergent() != From->isDivergent())
7886         updateDivergence(User);
7887     } while (UI != UE && *UI == User);
7888     // We are iterating over all uses of the From node, so if a use
7889     // doesn't use the specific value, no changes are made.
7890     if (!UserRemovedFromCSEMaps)
7891       continue;
7892 
7893     // Now that we have modified User, add it back to the CSE maps.  If it
7894     // already exists there, recursively merge the results together.
7895     AddModifiedNodeToCSEMaps(User);
7896   }
7897 
7898   // If we just RAUW'd the root, take note.
7899   if (From == getRoot())
7900     setRoot(To);
7901 }
7902 
7903 namespace {
7904 
7905   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7906   /// to record information about a use.
7907   struct UseMemo {
7908     SDNode *User;
7909     unsigned Index;
7910     SDUse *Use;
7911   };
7912 
7913   /// operator< - Sort Memos by User.
7914   bool operator<(const UseMemo &L, const UseMemo &R) {
7915     return (intptr_t)L.User < (intptr_t)R.User;
7916   }
7917 
7918 } // end anonymous namespace
7919 
7920 void SelectionDAG::updateDivergence(SDNode * N)
7921 {
7922   if (TLI->isSDNodeAlwaysUniform(N))
7923     return;
7924   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
7925   for (auto &Op : N->ops()) {
7926     if (Op.Val.getValueType() != MVT::Other)
7927       IsDivergent |= Op.getNode()->isDivergent();
7928   }
7929   if (N->SDNodeBits.IsDivergent != IsDivergent) {
7930     N->SDNodeBits.IsDivergent = IsDivergent;
7931     for (auto U : N->uses()) {
7932       updateDivergence(U);
7933     }
7934   }
7935 }
7936 
7937 
7938 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
7939   DenseMap<SDNode *, unsigned> Degree;
7940   Order.reserve(AllNodes.size());
7941   for (auto & N : allnodes()) {
7942     unsigned NOps = N.getNumOperands();
7943     Degree[&N] = NOps;
7944     if (0 == NOps)
7945       Order.push_back(&N);
7946   }
7947   for (std::vector<SDNode *>::iterator I = Order.begin();
7948   I!=Order.end();++I) {
7949     SDNode * N = *I;
7950     for (auto U : N->uses()) {
7951       unsigned &UnsortedOps = Degree[U];
7952       if (0 == --UnsortedOps)
7953         Order.push_back(U);
7954     }
7955   }
7956 }
7957 
7958 void SelectionDAG::VerifyDAGDiverence()
7959 {
7960   std::vector<SDNode*> TopoOrder;
7961   CreateTopologicalOrder(TopoOrder);
7962   const TargetLowering &TLI = getTargetLoweringInfo();
7963   DenseMap<const SDNode *, bool> DivergenceMap;
7964   for (auto &N : allnodes()) {
7965     DivergenceMap[&N] = false;
7966   }
7967   for (auto N : TopoOrder) {
7968     bool IsDivergent = DivergenceMap[N];
7969     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
7970     for (auto &Op : N->ops()) {
7971       if (Op.Val.getValueType() != MVT::Other)
7972         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
7973     }
7974     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
7975       DivergenceMap[N] = true;
7976     }
7977   }
7978   for (auto &N : allnodes()) {
7979     (void)N;
7980     assert(DivergenceMap[&N] == N.isDivergent() &&
7981            "Divergence bit inconsistency detected\n");
7982   }
7983 }
7984 
7985 
7986 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7987 /// uses of other values produced by From.getNode() alone.  The same value
7988 /// may appear in both the From and To list.  The Deleted vector is
7989 /// handled the same way as for ReplaceAllUsesWith.
7990 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7991                                               const SDValue *To,
7992                                               unsigned Num){
7993   // Handle the simple, trivial case efficiently.
7994   if (Num == 1)
7995     return ReplaceAllUsesOfValueWith(*From, *To);
7996 
7997   transferDbgValues(*From, *To);
7998 
7999   // Read up all the uses and make records of them. This helps
8000   // processing new uses that are introduced during the
8001   // replacement process.
8002   SmallVector<UseMemo, 4> Uses;
8003   for (unsigned i = 0; i != Num; ++i) {
8004     unsigned FromResNo = From[i].getResNo();
8005     SDNode *FromNode = From[i].getNode();
8006     for (SDNode::use_iterator UI = FromNode->use_begin(),
8007          E = FromNode->use_end(); UI != E; ++UI) {
8008       SDUse &Use = UI.getUse();
8009       if (Use.getResNo() == FromResNo) {
8010         UseMemo Memo = { *UI, i, &Use };
8011         Uses.push_back(Memo);
8012       }
8013     }
8014   }
8015 
8016   // Sort the uses, so that all the uses from a given User are together.
8017   llvm::sort(Uses.begin(), Uses.end());
8018 
8019   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8020        UseIndex != UseIndexEnd; ) {
8021     // We know that this user uses some value of From.  If it is the right
8022     // value, update it.
8023     SDNode *User = Uses[UseIndex].User;
8024 
8025     // This node is about to morph, remove its old self from the CSE maps.
8026     RemoveNodeFromCSEMaps(User);
8027 
8028     // The Uses array is sorted, so all the uses for a given User
8029     // are next to each other in the list.
8030     // To help reduce the number of CSE recomputations, process all
8031     // the uses of this user that we can find this way.
8032     do {
8033       unsigned i = Uses[UseIndex].Index;
8034       SDUse &Use = *Uses[UseIndex].Use;
8035       ++UseIndex;
8036 
8037       Use.set(To[i]);
8038     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8039 
8040     // Now that we have modified User, add it back to the CSE maps.  If it
8041     // already exists there, recursively merge the results together.
8042     AddModifiedNodeToCSEMaps(User);
8043   }
8044 }
8045 
8046 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8047 /// based on their topological order. It returns the maximum id and a vector
8048 /// of the SDNodes* in assigned order by reference.
8049 unsigned SelectionDAG::AssignTopologicalOrder() {
8050   unsigned DAGSize = 0;
8051 
8052   // SortedPos tracks the progress of the algorithm. Nodes before it are
8053   // sorted, nodes after it are unsorted. When the algorithm completes
8054   // it is at the end of the list.
8055   allnodes_iterator SortedPos = allnodes_begin();
8056 
8057   // Visit all the nodes. Move nodes with no operands to the front of
8058   // the list immediately. Annotate nodes that do have operands with their
8059   // operand count. Before we do this, the Node Id fields of the nodes
8060   // may contain arbitrary values. After, the Node Id fields for nodes
8061   // before SortedPos will contain the topological sort index, and the
8062   // Node Id fields for nodes At SortedPos and after will contain the
8063   // count of outstanding operands.
8064   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8065     SDNode *N = &*I++;
8066     checkForCycles(N, this);
8067     unsigned Degree = N->getNumOperands();
8068     if (Degree == 0) {
8069       // A node with no uses, add it to the result array immediately.
8070       N->setNodeId(DAGSize++);
8071       allnodes_iterator Q(N);
8072       if (Q != SortedPos)
8073         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8074       assert(SortedPos != AllNodes.end() && "Overran node list");
8075       ++SortedPos;
8076     } else {
8077       // Temporarily use the Node Id as scratch space for the degree count.
8078       N->setNodeId(Degree);
8079     }
8080   }
8081 
8082   // Visit all the nodes. As we iterate, move nodes into sorted order,
8083   // such that by the time the end is reached all nodes will be sorted.
8084   for (SDNode &Node : allnodes()) {
8085     SDNode *N = &Node;
8086     checkForCycles(N, this);
8087     // N is in sorted position, so all its uses have one less operand
8088     // that needs to be sorted.
8089     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8090          UI != UE; ++UI) {
8091       SDNode *P = *UI;
8092       unsigned Degree = P->getNodeId();
8093       assert(Degree != 0 && "Invalid node degree");
8094       --Degree;
8095       if (Degree == 0) {
8096         // All of P's operands are sorted, so P may sorted now.
8097         P->setNodeId(DAGSize++);
8098         if (P->getIterator() != SortedPos)
8099           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8100         assert(SortedPos != AllNodes.end() && "Overran node list");
8101         ++SortedPos;
8102       } else {
8103         // Update P's outstanding operand count.
8104         P->setNodeId(Degree);
8105       }
8106     }
8107     if (Node.getIterator() == SortedPos) {
8108 #ifndef NDEBUG
8109       allnodes_iterator I(N);
8110       SDNode *S = &*++I;
8111       dbgs() << "Overran sorted position:\n";
8112       S->dumprFull(this); dbgs() << "\n";
8113       dbgs() << "Checking if this is due to cycles\n";
8114       checkForCycles(this, true);
8115 #endif
8116       llvm_unreachable(nullptr);
8117     }
8118   }
8119 
8120   assert(SortedPos == AllNodes.end() &&
8121          "Topological sort incomplete!");
8122   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8123          "First node in topological sort is not the entry token!");
8124   assert(AllNodes.front().getNodeId() == 0 &&
8125          "First node in topological sort has non-zero id!");
8126   assert(AllNodes.front().getNumOperands() == 0 &&
8127          "First node in topological sort has operands!");
8128   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8129          "Last node in topologic sort has unexpected id!");
8130   assert(AllNodes.back().use_empty() &&
8131          "Last node in topologic sort has users!");
8132   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8133   return DAGSize;
8134 }
8135 
8136 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8137 /// value is produced by SD.
8138 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8139   if (SD) {
8140     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8141     SD->setHasDebugValue(true);
8142   }
8143   DbgInfo->add(DB, SD, isParameter);
8144 }
8145 
8146 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8147   DbgInfo->add(DB);
8148 }
8149 
8150 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8151                                                    SDValue NewMemOp) {
8152   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8153   // The new memory operation must have the same position as the old load in
8154   // terms of memory dependency. Create a TokenFactor for the old load and new
8155   // memory operation and update uses of the old load's output chain to use that
8156   // TokenFactor.
8157   SDValue OldChain = SDValue(OldLoad, 1);
8158   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8159   if (!OldLoad->hasAnyUseOfValue(1))
8160     return NewChain;
8161 
8162   SDValue TokenFactor =
8163       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8164   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8165   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8166   return TokenFactor;
8167 }
8168 
8169 //===----------------------------------------------------------------------===//
8170 //                              SDNode Class
8171 //===----------------------------------------------------------------------===//
8172 
8173 bool llvm::isNullConstant(SDValue V) {
8174   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8175   return Const != nullptr && Const->isNullValue();
8176 }
8177 
8178 bool llvm::isNullFPConstant(SDValue V) {
8179   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8180   return Const != nullptr && Const->isZero() && !Const->isNegative();
8181 }
8182 
8183 bool llvm::isAllOnesConstant(SDValue V) {
8184   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8185   return Const != nullptr && Const->isAllOnesValue();
8186 }
8187 
8188 bool llvm::isOneConstant(SDValue V) {
8189   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8190   return Const != nullptr && Const->isOne();
8191 }
8192 
8193 SDValue llvm::peekThroughBitcasts(SDValue V) {
8194   while (V.getOpcode() == ISD::BITCAST)
8195     V = V.getOperand(0);
8196   return V;
8197 }
8198 
8199 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8200   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8201     V = V.getOperand(0);
8202   return V;
8203 }
8204 
8205 bool llvm::isBitwiseNot(SDValue V) {
8206   if (V.getOpcode() != ISD::XOR)
8207     return false;
8208   ConstantSDNode *C = isConstOrConstSplat(V.getOperand(1));
8209   return C && C->isAllOnesValue();
8210 }
8211 
8212 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
8213   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8214     return CN;
8215 
8216   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8217     BitVector UndefElements;
8218     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8219 
8220     // BuildVectors can truncate their operands. Ignore that case here.
8221     // FIXME: We blindly ignore splats which include undef which is overly
8222     // pessimistic.
8223     if (CN && UndefElements.none() &&
8224         CN->getValueType(0) == N.getValueType().getScalarType())
8225       return CN;
8226   }
8227 
8228   return nullptr;
8229 }
8230 
8231 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
8232   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8233     return CN;
8234 
8235   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8236     BitVector UndefElements;
8237     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8238 
8239     if (CN && UndefElements.none())
8240       return CN;
8241   }
8242 
8243   return nullptr;
8244 }
8245 
8246 HandleSDNode::~HandleSDNode() {
8247   DropOperands();
8248 }
8249 
8250 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8251                                          const DebugLoc &DL,
8252                                          const GlobalValue *GA, EVT VT,
8253                                          int64_t o, unsigned char TF)
8254     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8255   TheGlobal = GA;
8256 }
8257 
8258 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8259                                          EVT VT, unsigned SrcAS,
8260                                          unsigned DestAS)
8261     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8262       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8263 
8264 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8265                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8266     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8267   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8268   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8269   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8270   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8271 
8272   // We check here that the size of the memory operand fits within the size of
8273   // the MMO. This is because the MMO might indicate only a possible address
8274   // range instead of specifying the affected memory addresses precisely.
8275   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8276 }
8277 
8278 /// Profile - Gather unique data for the node.
8279 ///
8280 void SDNode::Profile(FoldingSetNodeID &ID) const {
8281   AddNodeIDNode(ID, this);
8282 }
8283 
8284 namespace {
8285 
8286   struct EVTArray {
8287     std::vector<EVT> VTs;
8288 
8289     EVTArray() {
8290       VTs.reserve(MVT::LAST_VALUETYPE);
8291       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8292         VTs.push_back(MVT((MVT::SimpleValueType)i));
8293     }
8294   };
8295 
8296 } // end anonymous namespace
8297 
8298 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8299 static ManagedStatic<EVTArray> SimpleVTArray;
8300 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8301 
8302 /// getValueTypeList - Return a pointer to the specified value type.
8303 ///
8304 const EVT *SDNode::getValueTypeList(EVT VT) {
8305   if (VT.isExtended()) {
8306     sys::SmartScopedLock<true> Lock(*VTMutex);
8307     return &(*EVTs->insert(VT).first);
8308   } else {
8309     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8310            "Value type out of range!");
8311     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8312   }
8313 }
8314 
8315 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8316 /// indicated value.  This method ignores uses of other values defined by this
8317 /// operation.
8318 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8319   assert(Value < getNumValues() && "Bad value!");
8320 
8321   // TODO: Only iterate over uses of a given value of the node
8322   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8323     if (UI.getUse().getResNo() == Value) {
8324       if (NUses == 0)
8325         return false;
8326       --NUses;
8327     }
8328   }
8329 
8330   // Found exactly the right number of uses?
8331   return NUses == 0;
8332 }
8333 
8334 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8335 /// value. This method ignores uses of other values defined by this operation.
8336 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8337   assert(Value < getNumValues() && "Bad value!");
8338 
8339   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8340     if (UI.getUse().getResNo() == Value)
8341       return true;
8342 
8343   return false;
8344 }
8345 
8346 /// isOnlyUserOf - Return true if this node is the only use of N.
8347 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8348   bool Seen = false;
8349   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8350     SDNode *User = *I;
8351     if (User == this)
8352       Seen = true;
8353     else
8354       return false;
8355   }
8356 
8357   return Seen;
8358 }
8359 
8360 /// Return true if the only users of N are contained in Nodes.
8361 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8362   bool Seen = false;
8363   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8364     SDNode *User = *I;
8365     if (llvm::any_of(Nodes,
8366                      [&User](const SDNode *Node) { return User == Node; }))
8367       Seen = true;
8368     else
8369       return false;
8370   }
8371 
8372   return Seen;
8373 }
8374 
8375 /// isOperand - Return true if this node is an operand of N.
8376 bool SDValue::isOperandOf(const SDNode *N) const {
8377   for (const SDValue &Op : N->op_values())
8378     if (*this == Op)
8379       return true;
8380   return false;
8381 }
8382 
8383 bool SDNode::isOperandOf(const SDNode *N) const {
8384   for (const SDValue &Op : N->op_values())
8385     if (this == Op.getNode())
8386       return true;
8387   return false;
8388 }
8389 
8390 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8391 /// be a chain) reaches the specified operand without crossing any
8392 /// side-effecting instructions on any chain path.  In practice, this looks
8393 /// through token factors and non-volatile loads.  In order to remain efficient,
8394 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8395 ///
8396 /// Note that we only need to examine chains when we're searching for
8397 /// side-effects; SelectionDAG requires that all side-effects are represented
8398 /// by chains, even if another operand would force a specific ordering. This
8399 /// constraint is necessary to allow transformations like splitting loads.
8400 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8401                                              unsigned Depth) const {
8402   if (*this == Dest) return true;
8403 
8404   // Don't search too deeply, we just want to be able to see through
8405   // TokenFactor's etc.
8406   if (Depth == 0) return false;
8407 
8408   // If this is a token factor, all inputs to the TF happen in parallel.
8409   if (getOpcode() == ISD::TokenFactor) {
8410     // First, try a shallow search.
8411     if (is_contained((*this)->ops(), Dest)) {
8412       // We found the chain we want as an operand of this TokenFactor.
8413       // Essentially, we reach the chain without side-effects if we could
8414       // serialize the TokenFactor into a simple chain of operations with
8415       // Dest as the last operation. This is automatically true if the
8416       // chain has one use: there are no other ordering constraints.
8417       // If the chain has more than one use, we give up: some other
8418       // use of Dest might force a side-effect between Dest and the current
8419       // node.
8420       if (Dest.hasOneUse())
8421         return true;
8422     }
8423     // Next, try a deep search: check whether every operand of the TokenFactor
8424     // reaches Dest.
8425     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8426       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8427     });
8428   }
8429 
8430   // Loads don't have side effects, look through them.
8431   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8432     if (!Ld->isVolatile())
8433       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8434   }
8435   return false;
8436 }
8437 
8438 bool SDNode::hasPredecessor(const SDNode *N) const {
8439   SmallPtrSet<const SDNode *, 32> Visited;
8440   SmallVector<const SDNode *, 16> Worklist;
8441   Worklist.push_back(this);
8442   return hasPredecessorHelper(N, Visited, Worklist);
8443 }
8444 
8445 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8446   this->Flags.intersectWith(Flags);
8447 }
8448 
8449 SDValue
8450 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8451                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8452   // The pattern must end in an extract from index 0.
8453   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8454       !isNullConstant(Extract->getOperand(1)))
8455     return SDValue();
8456 
8457   SDValue Op = Extract->getOperand(0);
8458   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8459 
8460   // Match against one of the candidate binary ops.
8461   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8462         return Op.getOpcode() == unsigned(BinOp);
8463       }))
8464     return SDValue();
8465 
8466   // At each stage, we're looking for something that looks like:
8467   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8468   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8469   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8470   // %a = binop <8 x i32> %op, %s
8471   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8472   // we expect something like:
8473   // <4,5,6,7,u,u,u,u>
8474   // <2,3,u,u,u,u,u,u>
8475   // <1,u,u,u,u,u,u,u>
8476   unsigned CandidateBinOp = Op.getOpcode();
8477   for (unsigned i = 0; i < Stages; ++i) {
8478     if (Op.getOpcode() != CandidateBinOp)
8479       return SDValue();
8480 
8481     SDValue Op0 = Op.getOperand(0);
8482     SDValue Op1 = Op.getOperand(1);
8483 
8484     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8485     if (Shuffle) {
8486       Op = Op1;
8487     } else {
8488       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8489       Op = Op0;
8490     }
8491 
8492     // The first operand of the shuffle should be the same as the other operand
8493     // of the binop.
8494     if (!Shuffle || Shuffle->getOperand(0) != Op)
8495       return SDValue();
8496 
8497     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8498     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8499       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8500         return SDValue();
8501   }
8502 
8503   BinOp = (ISD::NodeType)CandidateBinOp;
8504   return Op;
8505 }
8506 
8507 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8508   assert(N->getNumValues() == 1 &&
8509          "Can't unroll a vector with multiple results!");
8510 
8511   EVT VT = N->getValueType(0);
8512   unsigned NE = VT.getVectorNumElements();
8513   EVT EltVT = VT.getVectorElementType();
8514   SDLoc dl(N);
8515 
8516   SmallVector<SDValue, 8> Scalars;
8517   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8518 
8519   // If ResNE is 0, fully unroll the vector op.
8520   if (ResNE == 0)
8521     ResNE = NE;
8522   else if (NE > ResNE)
8523     NE = ResNE;
8524 
8525   unsigned i;
8526   for (i= 0; i != NE; ++i) {
8527     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8528       SDValue Operand = N->getOperand(j);
8529       EVT OperandVT = Operand.getValueType();
8530       if (OperandVT.isVector()) {
8531         // A vector operand; extract a single element.
8532         EVT OperandEltVT = OperandVT.getVectorElementType();
8533         Operands[j] =
8534             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8535                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8536       } else {
8537         // A scalar operand; just use it as is.
8538         Operands[j] = Operand;
8539       }
8540     }
8541 
8542     switch (N->getOpcode()) {
8543     default: {
8544       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8545                                 N->getFlags()));
8546       break;
8547     }
8548     case ISD::VSELECT:
8549       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8550       break;
8551     case ISD::SHL:
8552     case ISD::SRA:
8553     case ISD::SRL:
8554     case ISD::ROTL:
8555     case ISD::ROTR:
8556       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8557                                getShiftAmountOperand(Operands[0].getValueType(),
8558                                                      Operands[1])));
8559       break;
8560     case ISD::SIGN_EXTEND_INREG:
8561     case ISD::FP_ROUND_INREG: {
8562       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8563       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8564                                 Operands[0],
8565                                 getValueType(ExtVT)));
8566     }
8567     }
8568   }
8569 
8570   for (; i < ResNE; ++i)
8571     Scalars.push_back(getUNDEF(EltVT));
8572 
8573   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8574   return getBuildVector(VecVT, dl, Scalars);
8575 }
8576 
8577 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8578                                                   LoadSDNode *Base,
8579                                                   unsigned Bytes,
8580                                                   int Dist) const {
8581   if (LD->isVolatile() || Base->isVolatile())
8582     return false;
8583   if (LD->isIndexed() || Base->isIndexed())
8584     return false;
8585   if (LD->getChain() != Base->getChain())
8586     return false;
8587   EVT VT = LD->getValueType(0);
8588   if (VT.getSizeInBits() / 8 != Bytes)
8589     return false;
8590 
8591   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8592   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8593 
8594   int64_t Offset = 0;
8595   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8596     return (Dist * Bytes == Offset);
8597   return false;
8598 }
8599 
8600 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8601 /// it cannot be inferred.
8602 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8603   // If this is a GlobalAddress + cst, return the alignment.
8604   const GlobalValue *GV;
8605   int64_t GVOffset = 0;
8606   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8607     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8608     KnownBits Known(IdxWidth);
8609     llvm::computeKnownBits(GV, Known, getDataLayout());
8610     unsigned AlignBits = Known.countMinTrailingZeros();
8611     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8612     if (Align)
8613       return MinAlign(Align, GVOffset);
8614   }
8615 
8616   // If this is a direct reference to a stack slot, use information about the
8617   // stack slot's alignment.
8618   int FrameIdx = 1 << 31;
8619   int64_t FrameOffset = 0;
8620   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8621     FrameIdx = FI->getIndex();
8622   } else if (isBaseWithConstantOffset(Ptr) &&
8623              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8624     // Handle FI+Cst
8625     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8626     FrameOffset = Ptr.getConstantOperandVal(1);
8627   }
8628 
8629   if (FrameIdx != (1 << 31)) {
8630     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8631     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8632                                     FrameOffset);
8633     return FIInfoAlign;
8634   }
8635 
8636   return 0;
8637 }
8638 
8639 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8640 /// which is split (or expanded) into two not necessarily identical pieces.
8641 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8642   // Currently all types are split in half.
8643   EVT LoVT, HiVT;
8644   if (!VT.isVector())
8645     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8646   else
8647     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8648 
8649   return std::make_pair(LoVT, HiVT);
8650 }
8651 
8652 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8653 /// low/high part.
8654 std::pair<SDValue, SDValue>
8655 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8656                           const EVT &HiVT) {
8657   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8658          N.getValueType().getVectorNumElements() &&
8659          "More vector elements requested than available!");
8660   SDValue Lo, Hi;
8661   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8662                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8663   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8664                getConstant(LoVT.getVectorNumElements(), DL,
8665                            TLI->getVectorIdxTy(getDataLayout())));
8666   return std::make_pair(Lo, Hi);
8667 }
8668 
8669 void SelectionDAG::ExtractVectorElements(SDValue Op,
8670                                          SmallVectorImpl<SDValue> &Args,
8671                                          unsigned Start, unsigned Count) {
8672   EVT VT = Op.getValueType();
8673   if (Count == 0)
8674     Count = VT.getVectorNumElements();
8675 
8676   EVT EltVT = VT.getVectorElementType();
8677   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8678   SDLoc SL(Op);
8679   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8680     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8681                            Op, getConstant(i, SL, IdxTy)));
8682   }
8683 }
8684 
8685 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8686 unsigned GlobalAddressSDNode::getAddressSpace() const {
8687   return getGlobal()->getType()->getAddressSpace();
8688 }
8689 
8690 Type *ConstantPoolSDNode::getType() const {
8691   if (isMachineConstantPoolEntry())
8692     return Val.MachineCPVal->getType();
8693   return Val.ConstVal->getType();
8694 }
8695 
8696 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8697                                         unsigned &SplatBitSize,
8698                                         bool &HasAnyUndefs,
8699                                         unsigned MinSplatBits,
8700                                         bool IsBigEndian) const {
8701   EVT VT = getValueType(0);
8702   assert(VT.isVector() && "Expected a vector type");
8703   unsigned VecWidth = VT.getSizeInBits();
8704   if (MinSplatBits > VecWidth)
8705     return false;
8706 
8707   // FIXME: The widths are based on this node's type, but build vectors can
8708   // truncate their operands.
8709   SplatValue = APInt(VecWidth, 0);
8710   SplatUndef = APInt(VecWidth, 0);
8711 
8712   // Get the bits. Bits with undefined values (when the corresponding element
8713   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8714   // in SplatValue. If any of the values are not constant, give up and return
8715   // false.
8716   unsigned int NumOps = getNumOperands();
8717   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8718   unsigned EltWidth = VT.getScalarSizeInBits();
8719 
8720   for (unsigned j = 0; j < NumOps; ++j) {
8721     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8722     SDValue OpVal = getOperand(i);
8723     unsigned BitPos = j * EltWidth;
8724 
8725     if (OpVal.isUndef())
8726       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8727     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8728       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8729     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8730       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8731     else
8732       return false;
8733   }
8734 
8735   // The build_vector is all constants or undefs. Find the smallest element
8736   // size that splats the vector.
8737   HasAnyUndefs = (SplatUndef != 0);
8738 
8739   // FIXME: This does not work for vectors with elements less than 8 bits.
8740   while (VecWidth > 8) {
8741     unsigned HalfSize = VecWidth / 2;
8742     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8743     APInt LowValue = SplatValue.trunc(HalfSize);
8744     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8745     APInt LowUndef = SplatUndef.trunc(HalfSize);
8746 
8747     // If the two halves do not match (ignoring undef bits), stop here.
8748     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8749         MinSplatBits > HalfSize)
8750       break;
8751 
8752     SplatValue = HighValue | LowValue;
8753     SplatUndef = HighUndef & LowUndef;
8754 
8755     VecWidth = HalfSize;
8756   }
8757 
8758   SplatBitSize = VecWidth;
8759   return true;
8760 }
8761 
8762 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8763   if (UndefElements) {
8764     UndefElements->clear();
8765     UndefElements->resize(getNumOperands());
8766   }
8767   SDValue Splatted;
8768   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8769     SDValue Op = getOperand(i);
8770     if (Op.isUndef()) {
8771       if (UndefElements)
8772         (*UndefElements)[i] = true;
8773     } else if (!Splatted) {
8774       Splatted = Op;
8775     } else if (Splatted != Op) {
8776       return SDValue();
8777     }
8778   }
8779 
8780   if (!Splatted) {
8781     assert(getOperand(0).isUndef() &&
8782            "Can only have a splat without a constant for all undefs.");
8783     return getOperand(0);
8784   }
8785 
8786   return Splatted;
8787 }
8788 
8789 ConstantSDNode *
8790 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8791   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8792 }
8793 
8794 ConstantFPSDNode *
8795 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8796   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8797 }
8798 
8799 int32_t
8800 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8801                                                    uint32_t BitWidth) const {
8802   if (ConstantFPSDNode *CN =
8803           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8804     bool IsExact;
8805     APSInt IntVal(BitWidth);
8806     const APFloat &APF = CN->getValueAPF();
8807     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8808             APFloat::opOK ||
8809         !IsExact)
8810       return -1;
8811 
8812     return IntVal.exactLogBase2();
8813   }
8814   return -1;
8815 }
8816 
8817 bool BuildVectorSDNode::isConstant() const {
8818   for (const SDValue &Op : op_values()) {
8819     unsigned Opc = Op.getOpcode();
8820     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8821       return false;
8822   }
8823   return true;
8824 }
8825 
8826 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8827   // Find the first non-undef value in the shuffle mask.
8828   unsigned i, e;
8829   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8830     /* search */;
8831 
8832   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8833 
8834   // Make sure all remaining elements are either undef or the same as the first
8835   // non-undef value.
8836   for (int Idx = Mask[i]; i != e; ++i)
8837     if (Mask[i] >= 0 && Mask[i] != Idx)
8838       return false;
8839   return true;
8840 }
8841 
8842 // Returns the SDNode if it is a constant integer BuildVector
8843 // or constant integer.
8844 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8845   if (isa<ConstantSDNode>(N))
8846     return N.getNode();
8847   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8848     return N.getNode();
8849   // Treat a GlobalAddress supporting constant offset folding as a
8850   // constant integer.
8851   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8852     if (GA->getOpcode() == ISD::GlobalAddress &&
8853         TLI->isOffsetFoldingLegal(GA))
8854       return GA;
8855   return nullptr;
8856 }
8857 
8858 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8859   if (isa<ConstantFPSDNode>(N))
8860     return N.getNode();
8861 
8862   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8863     return N.getNode();
8864 
8865   return nullptr;
8866 }
8867 
8868 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8869   assert(!Node->OperandList && "Node already has operands");
8870   SDUse *Ops = OperandRecycler.allocate(
8871     ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8872 
8873   bool IsDivergent = false;
8874   for (unsigned I = 0; I != Vals.size(); ++I) {
8875     Ops[I].setUser(Node);
8876     Ops[I].setInitial(Vals[I]);
8877     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8878       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8879   }
8880   Node->NumOperands = Vals.size();
8881   Node->OperandList = Ops;
8882   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8883   if (!TLI->isSDNodeAlwaysUniform(Node))
8884     Node->SDNodeBits.IsDivergent = IsDivergent;
8885   checkForCycles(Node);
8886 }
8887 
8888 #ifndef NDEBUG
8889 static void checkForCyclesHelper(const SDNode *N,
8890                                  SmallPtrSetImpl<const SDNode*> &Visited,
8891                                  SmallPtrSetImpl<const SDNode*> &Checked,
8892                                  const llvm::SelectionDAG *DAG) {
8893   // If this node has already been checked, don't check it again.
8894   if (Checked.count(N))
8895     return;
8896 
8897   // If a node has already been visited on this depth-first walk, reject it as
8898   // a cycle.
8899   if (!Visited.insert(N).second) {
8900     errs() << "Detected cycle in SelectionDAG\n";
8901     dbgs() << "Offending node:\n";
8902     N->dumprFull(DAG); dbgs() << "\n";
8903     abort();
8904   }
8905 
8906   for (const SDValue &Op : N->op_values())
8907     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8908 
8909   Checked.insert(N);
8910   Visited.erase(N);
8911 }
8912 #endif
8913 
8914 void llvm::checkForCycles(const llvm::SDNode *N,
8915                           const llvm::SelectionDAG *DAG,
8916                           bool force) {
8917 #ifndef NDEBUG
8918   bool check = force;
8919 #ifdef EXPENSIVE_CHECKS
8920   check = true;
8921 #endif  // EXPENSIVE_CHECKS
8922   if (check) {
8923     assert(N && "Checking nonexistent SDNode");
8924     SmallPtrSet<const SDNode*, 32> visited;
8925     SmallPtrSet<const SDNode*, 32> checked;
8926     checkForCyclesHelper(N, visited, checked, DAG);
8927   }
8928 #endif  // !NDEBUG
8929 }
8930 
8931 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8932   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8933 }
8934