1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
883   assert(!(V->isVariadic() && isParameter));
884   if (isParameter)
885     ByvalParmDbgValues.push_back(V);
886   else
887     DbgValues.push_back(V);
888   for (const SDNode *Node : V->getSDNodes())
889     if (Node)
890       DbgValMap[Node].push_back(V);
891 }
892 
893 void SDDbgInfo::erase(const SDNode *Node) {
894   DbgValMapType::iterator I = DbgValMap.find(Node);
895   if (I == DbgValMap.end())
896     return;
897   for (auto &Val: I->second)
898     Val->setIsInvalidated();
899   DbgValMap.erase(I);
900 }
901 
902 void SelectionDAG::DeallocateNode(SDNode *N) {
903   // If we have operands, deallocate them.
904   removeOperands(N);
905 
906   NodeAllocator.Deallocate(AllNodes.remove(N));
907 
908   // Set the opcode to DELETED_NODE to help catch bugs when node
909   // memory is reallocated.
910   // FIXME: There are places in SDag that have grown a dependency on the opcode
911   // value in the released node.
912   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
913   N->NodeType = ISD::DELETED_NODE;
914 
915   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
916   // them and forget about that node.
917   DbgInfo->erase(N);
918 }
919 
920 #ifndef NDEBUG
921 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
922 static void VerifySDNode(SDNode *N) {
923   switch (N->getOpcode()) {
924   default:
925     break;
926   case ISD::BUILD_PAIR: {
927     EVT VT = N->getValueType(0);
928     assert(N->getNumValues() == 1 && "Too many results!");
929     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
930            "Wrong return type!");
931     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
932     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
933            "Mismatched operand types!");
934     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
935            "Wrong operand type!");
936     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
937            "Wrong return type size");
938     break;
939   }
940   case ISD::BUILD_VECTOR: {
941     assert(N->getNumValues() == 1 && "Too many results!");
942     assert(N->getValueType(0).isVector() && "Wrong return type!");
943     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
944            "Wrong number of operands!");
945     EVT EltVT = N->getValueType(0).getVectorElementType();
946     for (const SDUse &Op : N->ops()) {
947       assert((Op.getValueType() == EltVT ||
948               (EltVT.isInteger() && Op.getValueType().isInteger() &&
949                EltVT.bitsLE(Op.getValueType()))) &&
950              "Wrong operand type!");
951       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
952              "Operands must all have the same type");
953     }
954     break;
955   }
956   }
957 }
958 #endif // NDEBUG
959 
960 /// Insert a newly allocated node into the DAG.
961 ///
962 /// Handles insertion into the all nodes list and CSE map, as well as
963 /// verification and other common operations when a new node is allocated.
964 void SelectionDAG::InsertNode(SDNode *N) {
965   AllNodes.push_back(N);
966 #ifndef NDEBUG
967   N->PersistentId = NextPersistentId++;
968   VerifySDNode(N);
969 #endif
970   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
971     DUL->NodeInserted(N);
972 }
973 
974 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
975 /// correspond to it.  This is useful when we're about to delete or repurpose
976 /// the node.  We don't want future request for structurally identical nodes
977 /// to return N anymore.
978 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
979   bool Erased = false;
980   switch (N->getOpcode()) {
981   case ISD::HANDLENODE: return false;  // noop.
982   case ISD::CONDCODE:
983     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
984            "Cond code doesn't exist!");
985     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
986     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
987     break;
988   case ISD::ExternalSymbol:
989     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
990     break;
991   case ISD::TargetExternalSymbol: {
992     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
993     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
994         ESN->getSymbol(), ESN->getTargetFlags()));
995     break;
996   }
997   case ISD::MCSymbol: {
998     auto *MCSN = cast<MCSymbolSDNode>(N);
999     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1000     break;
1001   }
1002   case ISD::VALUETYPE: {
1003     EVT VT = cast<VTSDNode>(N)->getVT();
1004     if (VT.isExtended()) {
1005       Erased = ExtendedValueTypeNodes.erase(VT);
1006     } else {
1007       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1008       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1009     }
1010     break;
1011   }
1012   default:
1013     // Remove it from the CSE Map.
1014     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1015     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1016     Erased = CSEMap.RemoveNode(N);
1017     break;
1018   }
1019 #ifndef NDEBUG
1020   // Verify that the node was actually in one of the CSE maps, unless it has a
1021   // flag result (which cannot be CSE'd) or is one of the special cases that are
1022   // not subject to CSE.
1023   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1024       !N->isMachineOpcode() && !doNotCSE(N)) {
1025     N->dump(this);
1026     dbgs() << "\n";
1027     llvm_unreachable("Node is not in map!");
1028   }
1029 #endif
1030   return Erased;
1031 }
1032 
1033 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1034 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1035 /// node already exists, in which case transfer all its users to the existing
1036 /// node. This transfer can potentially trigger recursive merging.
1037 void
1038 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1039   // For node types that aren't CSE'd, just act as if no identical node
1040   // already exists.
1041   if (!doNotCSE(N)) {
1042     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1043     if (Existing != N) {
1044       // If there was already an existing matching node, use ReplaceAllUsesWith
1045       // to replace the dead one with the existing one.  This can cause
1046       // recursive merging of other unrelated nodes down the line.
1047       ReplaceAllUsesWith(N, Existing);
1048 
1049       // N is now dead. Inform the listeners and delete it.
1050       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1051         DUL->NodeDeleted(N, Existing);
1052       DeleteNodeNotInCSEMaps(N);
1053       return;
1054     }
1055   }
1056 
1057   // If the node doesn't already exist, we updated it.  Inform listeners.
1058   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1059     DUL->NodeUpdated(N);
1060 }
1061 
1062 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1063 /// were replaced with those specified.  If this node is never memoized,
1064 /// return null, otherwise return a pointer to the slot it would take.  If a
1065 /// node already exists with these operands, the slot will be non-null.
1066 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1067                                            void *&InsertPos) {
1068   if (doNotCSE(N))
1069     return nullptr;
1070 
1071   SDValue Ops[] = { Op };
1072   FoldingSetNodeID ID;
1073   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1074   AddNodeIDCustom(ID, N);
1075   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1076   if (Node)
1077     Node->intersectFlagsWith(N->getFlags());
1078   return Node;
1079 }
1080 
1081 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1082 /// were replaced with those specified.  If this node is never memoized,
1083 /// return null, otherwise return a pointer to the slot it would take.  If a
1084 /// node already exists with these operands, the slot will be non-null.
1085 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1086                                            SDValue Op1, SDValue Op2,
1087                                            void *&InsertPos) {
1088   if (doNotCSE(N))
1089     return nullptr;
1090 
1091   SDValue Ops[] = { Op1, Op2 };
1092   FoldingSetNodeID ID;
1093   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1094   AddNodeIDCustom(ID, N);
1095   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1096   if (Node)
1097     Node->intersectFlagsWith(N->getFlags());
1098   return Node;
1099 }
1100 
1101 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1102 /// were replaced with those specified.  If this node is never memoized,
1103 /// return null, otherwise return a pointer to the slot it would take.  If a
1104 /// node already exists with these operands, the slot will be non-null.
1105 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1106                                            void *&InsertPos) {
1107   if (doNotCSE(N))
1108     return nullptr;
1109 
1110   FoldingSetNodeID ID;
1111   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1112   AddNodeIDCustom(ID, N);
1113   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1114   if (Node)
1115     Node->intersectFlagsWith(N->getFlags());
1116   return Node;
1117 }
1118 
1119 Align SelectionDAG::getEVTAlign(EVT VT) const {
1120   Type *Ty = VT == MVT::iPTR ?
1121                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1122                    VT.getTypeForEVT(*getContext());
1123 
1124   return getDataLayout().getABITypeAlign(Ty);
1125 }
1126 
1127 // EntryNode could meaningfully have debug info if we can find it...
1128 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1129     : TM(tm), OptLevel(OL),
1130       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1131       Root(getEntryNode()) {
1132   InsertNode(&EntryNode);
1133   DbgInfo = new SDDbgInfo();
1134 }
1135 
1136 void SelectionDAG::init(MachineFunction &NewMF,
1137                         OptimizationRemarkEmitter &NewORE,
1138                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1139                         LegacyDivergenceAnalysis * Divergence,
1140                         ProfileSummaryInfo *PSIin,
1141                         BlockFrequencyInfo *BFIin) {
1142   MF = &NewMF;
1143   SDAGISelPass = PassPtr;
1144   ORE = &NewORE;
1145   TLI = getSubtarget().getTargetLowering();
1146   TSI = getSubtarget().getSelectionDAGInfo();
1147   LibInfo = LibraryInfo;
1148   Context = &MF->getFunction().getContext();
1149   DA = Divergence;
1150   PSI = PSIin;
1151   BFI = BFIin;
1152 }
1153 
1154 SelectionDAG::~SelectionDAG() {
1155   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1156   allnodes_clear();
1157   OperandRecycler.clear(OperandAllocator);
1158   delete DbgInfo;
1159 }
1160 
1161 bool SelectionDAG::shouldOptForSize() const {
1162   return MF->getFunction().hasOptSize() ||
1163       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1164 }
1165 
1166 void SelectionDAG::allnodes_clear() {
1167   assert(&*AllNodes.begin() == &EntryNode);
1168   AllNodes.remove(AllNodes.begin());
1169   while (!AllNodes.empty())
1170     DeallocateNode(&AllNodes.front());
1171 #ifndef NDEBUG
1172   NextPersistentId = 0;
1173 #endif
1174 }
1175 
1176 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1177                                           void *&InsertPos) {
1178   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1179   if (N) {
1180     switch (N->getOpcode()) {
1181     default: break;
1182     case ISD::Constant:
1183     case ISD::ConstantFP:
1184       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1185                        "debug location.  Use another overload.");
1186     }
1187   }
1188   return N;
1189 }
1190 
1191 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1192                                           const SDLoc &DL, void *&InsertPos) {
1193   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1194   if (N) {
1195     switch (N->getOpcode()) {
1196     case ISD::Constant:
1197     case ISD::ConstantFP:
1198       // Erase debug location from the node if the node is used at several
1199       // different places. Do not propagate one location to all uses as it
1200       // will cause a worse single stepping debugging experience.
1201       if (N->getDebugLoc() != DL.getDebugLoc())
1202         N->setDebugLoc(DebugLoc());
1203       break;
1204     default:
1205       // When the node's point of use is located earlier in the instruction
1206       // sequence than its prior point of use, update its debug info to the
1207       // earlier location.
1208       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1209         N->setDebugLoc(DL.getDebugLoc());
1210       break;
1211     }
1212   }
1213   return N;
1214 }
1215 
1216 void SelectionDAG::clear() {
1217   allnodes_clear();
1218   OperandRecycler.clear(OperandAllocator);
1219   OperandAllocator.Reset();
1220   CSEMap.clear();
1221 
1222   ExtendedValueTypeNodes.clear();
1223   ExternalSymbols.clear();
1224   TargetExternalSymbols.clear();
1225   MCSymbols.clear();
1226   SDCallSiteDbgInfo.clear();
1227   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1228             static_cast<CondCodeSDNode*>(nullptr));
1229   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1230             static_cast<SDNode*>(nullptr));
1231 
1232   EntryNode.UseList = nullptr;
1233   InsertNode(&EntryNode);
1234   Root = getEntryNode();
1235   DbgInfo->clear();
1236 }
1237 
1238 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1239   return VT.bitsGT(Op.getValueType())
1240              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1241              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1242 }
1243 
1244 std::pair<SDValue, SDValue>
1245 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1246                                        const SDLoc &DL, EVT VT) {
1247   assert(!VT.bitsEq(Op.getValueType()) &&
1248          "Strict no-op FP extend/round not allowed.");
1249   SDValue Res =
1250       VT.bitsGT(Op.getValueType())
1251           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1252           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1253                     {Chain, Op, getIntPtrConstant(0, DL)});
1254 
1255   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1256 }
1257 
1258 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1259   return VT.bitsGT(Op.getValueType()) ?
1260     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1261     getNode(ISD::TRUNCATE, DL, VT, Op);
1262 }
1263 
1264 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1265   return VT.bitsGT(Op.getValueType()) ?
1266     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1267     getNode(ISD::TRUNCATE, DL, VT, Op);
1268 }
1269 
1270 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1271   return VT.bitsGT(Op.getValueType()) ?
1272     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1273     getNode(ISD::TRUNCATE, DL, VT, Op);
1274 }
1275 
1276 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1277                                         EVT OpVT) {
1278   if (VT.bitsLE(Op.getValueType()))
1279     return getNode(ISD::TRUNCATE, SL, VT, Op);
1280 
1281   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1282   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1283 }
1284 
1285 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1286   EVT OpVT = Op.getValueType();
1287   assert(VT.isInteger() && OpVT.isInteger() &&
1288          "Cannot getZeroExtendInReg FP types");
1289   assert(VT.isVector() == OpVT.isVector() &&
1290          "getZeroExtendInReg type should be vector iff the operand "
1291          "type is vector!");
1292   assert((!VT.isVector() ||
1293           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1294          "Vector element counts must match in getZeroExtendInReg");
1295   assert(VT.bitsLE(OpVT) && "Not extending!");
1296   if (OpVT == VT)
1297     return Op;
1298   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1299                                    VT.getScalarSizeInBits());
1300   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1301 }
1302 
1303 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1304   // Only unsigned pointer semantics are supported right now. In the future this
1305   // might delegate to TLI to check pointer signedness.
1306   return getZExtOrTrunc(Op, DL, VT);
1307 }
1308 
1309 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1310   // Only unsigned pointer semantics are supported right now. In the future this
1311   // might delegate to TLI to check pointer signedness.
1312   return getZeroExtendInReg(Op, DL, VT);
1313 }
1314 
1315 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1316 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1317   EVT EltVT = VT.getScalarType();
1318   SDValue NegOne =
1319     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1320   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1321 }
1322 
1323 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1324   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1325   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1326 }
1327 
1328 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1329                                       EVT OpVT) {
1330   if (!V)
1331     return getConstant(0, DL, VT);
1332 
1333   switch (TLI->getBooleanContents(OpVT)) {
1334   case TargetLowering::ZeroOrOneBooleanContent:
1335   case TargetLowering::UndefinedBooleanContent:
1336     return getConstant(1, DL, VT);
1337   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1338     return getAllOnesConstant(DL, VT);
1339   }
1340   llvm_unreachable("Unexpected boolean content enum!");
1341 }
1342 
1343 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1344                                   bool isT, bool isO) {
1345   EVT EltVT = VT.getScalarType();
1346   assert((EltVT.getSizeInBits() >= 64 ||
1347           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1348          "getConstant with a uint64_t value that doesn't fit in the type!");
1349   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1350 }
1351 
1352 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1353                                   bool isT, bool isO) {
1354   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1355 }
1356 
1357 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1358                                   EVT VT, bool isT, bool isO) {
1359   assert(VT.isInteger() && "Cannot create FP integer constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362   const ConstantInt *Elt = &Val;
1363 
1364   // In some cases the vector type is legal but the element type is illegal and
1365   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1366   // inserted value (the type does not need to match the vector element type).
1367   // Any extra bits introduced will be truncated away.
1368   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1369                            TargetLowering::TypePromoteInteger) {
1370     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1371     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1372     Elt = ConstantInt::get(*getContext(), NewVal);
1373   }
1374   // In other cases the element type is illegal and needs to be expanded, for
1375   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1376   // the value into n parts and use a vector type with n-times the elements.
1377   // Then bitcast to the type requested.
1378   // Legalizing constants too early makes the DAGCombiner's job harder so we
1379   // only legalize if the DAG tells us we must produce legal types.
1380   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1381            TLI->getTypeAction(*getContext(), EltVT) ==
1382                TargetLowering::TypeExpandInteger) {
1383     const APInt &NewVal = Elt->getValue();
1384     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1385     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1386 
1387     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1388     if (VT.isScalableVector()) {
1389       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1390              "Can only handle an even split!");
1391       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1392 
1393       SmallVector<SDValue, 2> ScalarParts;
1394       for (unsigned i = 0; i != Parts; ++i)
1395         ScalarParts.push_back(getConstant(
1396             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1397             ViaEltVT, isT, isO));
1398 
1399       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1400     }
1401 
1402     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1403     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1404 
1405     // Check the temporary vector is the correct size. If this fails then
1406     // getTypeToTransformTo() probably returned a type whose size (in bits)
1407     // isn't a power-of-2 factor of the requested type size.
1408     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1409 
1410     SmallVector<SDValue, 2> EltParts;
1411     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1412       EltParts.push_back(getConstant(
1413           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1414           ViaEltVT, isT, isO));
1415     }
1416 
1417     // EltParts is currently in little endian order. If we actually want
1418     // big-endian order then reverse it now.
1419     if (getDataLayout().isBigEndian())
1420       std::reverse(EltParts.begin(), EltParts.end());
1421 
1422     // The elements must be reversed when the element order is different
1423     // to the endianness of the elements (because the BITCAST is itself a
1424     // vector shuffle in this situation). However, we do not need any code to
1425     // perform this reversal because getConstant() is producing a vector
1426     // splat.
1427     // This situation occurs in MIPS MSA.
1428 
1429     SmallVector<SDValue, 8> Ops;
1430     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1431       llvm::append_range(Ops, EltParts);
1432 
1433     SDValue V =
1434         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1435     return V;
1436   }
1437 
1438   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1439          "APInt size does not match type size!");
1440   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1443   ID.AddPointer(Elt);
1444   ID.AddBoolean(isO);
1445   void *IP = nullptr;
1446   SDNode *N = nullptr;
1447   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1448     if (!VT.isVector())
1449       return SDValue(N, 0);
1450 
1451   if (!N) {
1452     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1453     CSEMap.InsertNode(N, IP);
1454     InsertNode(N);
1455     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1456   }
1457 
1458   SDValue Result(N, 0);
1459   if (VT.isScalableVector())
1460     Result = getSplatVector(VT, DL, Result);
1461   else if (VT.isVector())
1462     Result = getSplatBuildVector(VT, DL, Result);
1463 
1464   return Result;
1465 }
1466 
1467 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1468                                         bool isTarget) {
1469   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1470 }
1471 
1472 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1473                                              const SDLoc &DL, bool LegalTypes) {
1474   assert(VT.isInteger() && "Shift amount is not an integer type!");
1475   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1476   return getConstant(Val, DL, ShiftVT);
1477 }
1478 
1479 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1480                                            bool isTarget) {
1481   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1482 }
1483 
1484 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1485                                     bool isTarget) {
1486   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1487 }
1488 
1489 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1490                                     EVT VT, bool isTarget) {
1491   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1492 
1493   EVT EltVT = VT.getScalarType();
1494 
1495   // Do the map lookup using the actual bit pattern for the floating point
1496   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1497   // we don't have issues with SNANs.
1498   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1499   FoldingSetNodeID ID;
1500   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1501   ID.AddPointer(&V);
1502   void *IP = nullptr;
1503   SDNode *N = nullptr;
1504   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1505     if (!VT.isVector())
1506       return SDValue(N, 0);
1507 
1508   if (!N) {
1509     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1510     CSEMap.InsertNode(N, IP);
1511     InsertNode(N);
1512   }
1513 
1514   SDValue Result(N, 0);
1515   if (VT.isScalableVector())
1516     Result = getSplatVector(VT, DL, Result);
1517   else if (VT.isVector())
1518     Result = getSplatBuildVector(VT, DL, Result);
1519   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1520   return Result;
1521 }
1522 
1523 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1524                                     bool isTarget) {
1525   EVT EltVT = VT.getScalarType();
1526   if (EltVT == MVT::f32)
1527     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1528   else if (EltVT == MVT::f64)
1529     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1530   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1531            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1532     bool Ignored;
1533     APFloat APF = APFloat(Val);
1534     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1535                 &Ignored);
1536     return getConstantFP(APF, DL, VT, isTarget);
1537   } else
1538     llvm_unreachable("Unsupported type in getConstantFP");
1539 }
1540 
1541 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1542                                        EVT VT, int64_t Offset, bool isTargetGA,
1543                                        unsigned TargetFlags) {
1544   assert((TargetFlags == 0 || isTargetGA) &&
1545          "Cannot set target flags on target-independent globals");
1546 
1547   // Truncate (with sign-extension) the offset value to the pointer size.
1548   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1549   if (BitWidth < 64)
1550     Offset = SignExtend64(Offset, BitWidth);
1551 
1552   unsigned Opc;
1553   if (GV->isThreadLocal())
1554     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1555   else
1556     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1557 
1558   FoldingSetNodeID ID;
1559   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1560   ID.AddPointer(GV);
1561   ID.AddInteger(Offset);
1562   ID.AddInteger(TargetFlags);
1563   void *IP = nullptr;
1564   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1565     return SDValue(E, 0);
1566 
1567   auto *N = newSDNode<GlobalAddressSDNode>(
1568       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1569   CSEMap.InsertNode(N, IP);
1570     InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1575   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1576   FoldingSetNodeID ID;
1577   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1578   ID.AddInteger(FI);
1579   void *IP = nullptr;
1580   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1581     return SDValue(E, 0);
1582 
1583   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1584   CSEMap.InsertNode(N, IP);
1585   InsertNode(N);
1586   return SDValue(N, 0);
1587 }
1588 
1589 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1590                                    unsigned TargetFlags) {
1591   assert((TargetFlags == 0 || isTarget) &&
1592          "Cannot set target flags on target-independent jump tables");
1593   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1594   FoldingSetNodeID ID;
1595   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1596   ID.AddInteger(JTI);
1597   ID.AddInteger(TargetFlags);
1598   void *IP = nullptr;
1599   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1600     return SDValue(E, 0);
1601 
1602   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   return SDValue(N, 0);
1606 }
1607 
1608 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1609                                       MaybeAlign Alignment, int Offset,
1610                                       bool isTarget, unsigned TargetFlags) {
1611   assert((TargetFlags == 0 || isTarget) &&
1612          "Cannot set target flags on target-independent globals");
1613   if (!Alignment)
1614     Alignment = shouldOptForSize()
1615                     ? getDataLayout().getABITypeAlign(C->getType())
1616                     : getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   ID.AddPointer(C);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   SDValue V = SDValue(N, 0);
1633   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1634   return V;
1635 }
1636 
1637 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1638                                       MaybeAlign Alignment, int Offset,
1639                                       bool isTarget, unsigned TargetFlags) {
1640   assert((TargetFlags == 0 || isTarget) &&
1641          "Cannot set target flags on target-independent globals");
1642   if (!Alignment)
1643     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1644   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(Alignment->value());
1648   ID.AddInteger(Offset);
1649   C->addSelectionDAGCSEId(ID);
1650   ID.AddInteger(TargetFlags);
1651   void *IP = nullptr;
1652   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1653     return SDValue(E, 0);
1654 
1655   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1656                                           TargetFlags);
1657   CSEMap.InsertNode(N, IP);
1658   InsertNode(N);
1659   return SDValue(N, 0);
1660 }
1661 
1662 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1663                                      unsigned TargetFlags) {
1664   FoldingSetNodeID ID;
1665   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1666   ID.AddInteger(Index);
1667   ID.AddInteger(Offset);
1668   ID.AddInteger(TargetFlags);
1669   void *IP = nullptr;
1670   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1671     return SDValue(E, 0);
1672 
1673   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675   InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1680   FoldingSetNodeID ID;
1681   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1682   ID.AddPointer(MBB);
1683   void *IP = nullptr;
1684   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1685     return SDValue(E, 0);
1686 
1687   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1688   CSEMap.InsertNode(N, IP);
1689   InsertNode(N);
1690   return SDValue(N, 0);
1691 }
1692 
1693 SDValue SelectionDAG::getValueType(EVT VT) {
1694   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1695       ValueTypeNodes.size())
1696     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1697 
1698   SDNode *&N = VT.isExtended() ?
1699     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1700 
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<VTSDNode>(VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1708   SDNode *&N = ExternalSymbols[Sym];
1709   if (N) return SDValue(N, 0);
1710   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1711   InsertNode(N);
1712   return SDValue(N, 0);
1713 }
1714 
1715 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1716   SDNode *&N = MCSymbols[Sym];
1717   if (N)
1718     return SDValue(N, 0);
1719   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1720   InsertNode(N);
1721   return SDValue(N, 0);
1722 }
1723 
1724 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1725                                               unsigned TargetFlags) {
1726   SDNode *&N =
1727       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1728   if (N) return SDValue(N, 0);
1729   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1730   InsertNode(N);
1731   return SDValue(N, 0);
1732 }
1733 
1734 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1735   if ((unsigned)Cond >= CondCodeNodes.size())
1736     CondCodeNodes.resize(Cond+1);
1737 
1738   if (!CondCodeNodes[Cond]) {
1739     auto *N = newSDNode<CondCodeSDNode>(Cond);
1740     CondCodeNodes[Cond] = N;
1741     InsertNode(N);
1742   }
1743 
1744   return SDValue(CondCodeNodes[Cond], 0);
1745 }
1746 
1747 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1748   if (ResVT.isScalableVector())
1749     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1750 
1751   EVT OpVT = Step.getValueType();
1752   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1753   SmallVector<SDValue, 16> OpsStepConstants;
1754   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1755     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1756   return getBuildVector(ResVT, DL, OpsStepConstants);
1757 }
1758 
1759 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1760 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1761 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1762   std::swap(N1, N2);
1763   ShuffleVectorSDNode::commuteMask(M);
1764 }
1765 
1766 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1767                                        SDValue N2, ArrayRef<int> Mask) {
1768   assert(VT.getVectorNumElements() == Mask.size() &&
1769            "Must have the same number of vector elements as mask elements!");
1770   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1771          "Invalid VECTOR_SHUFFLE");
1772 
1773   // Canonicalize shuffle undef, undef -> undef
1774   if (N1.isUndef() && N2.isUndef())
1775     return getUNDEF(VT);
1776 
1777   // Validate that all indices in Mask are within the range of the elements
1778   // input to the shuffle.
1779   int NElts = Mask.size();
1780   assert(llvm::all_of(Mask,
1781                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1782          "Index out of range");
1783 
1784   // Copy the mask so we can do any needed cleanup.
1785   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1786 
1787   // Canonicalize shuffle v, v -> v, undef
1788   if (N1 == N2) {
1789     N2 = getUNDEF(VT);
1790     for (int i = 0; i != NElts; ++i)
1791       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1792   }
1793 
1794   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1795   if (N1.isUndef())
1796     commuteShuffle(N1, N2, MaskVec);
1797 
1798   if (TLI->hasVectorBlend()) {
1799     // If shuffling a splat, try to blend the splat instead. We do this here so
1800     // that even when this arises during lowering we don't have to re-handle it.
1801     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1802       BitVector UndefElements;
1803       SDValue Splat = BV->getSplatValue(&UndefElements);
1804       if (!Splat)
1805         return;
1806 
1807       for (int i = 0; i < NElts; ++i) {
1808         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1809           continue;
1810 
1811         // If this input comes from undef, mark it as such.
1812         if (UndefElements[MaskVec[i] - Offset]) {
1813           MaskVec[i] = -1;
1814           continue;
1815         }
1816 
1817         // If we can blend a non-undef lane, use that instead.
1818         if (!UndefElements[i])
1819           MaskVec[i] = i + Offset;
1820       }
1821     };
1822     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1823       BlendSplat(N1BV, 0);
1824     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1825       BlendSplat(N2BV, NElts);
1826   }
1827 
1828   // Canonicalize all index into lhs, -> shuffle lhs, undef
1829   // Canonicalize all index into rhs, -> shuffle rhs, undef
1830   bool AllLHS = true, AllRHS = true;
1831   bool N2Undef = N2.isUndef();
1832   for (int i = 0; i != NElts; ++i) {
1833     if (MaskVec[i] >= NElts) {
1834       if (N2Undef)
1835         MaskVec[i] = -1;
1836       else
1837         AllLHS = false;
1838     } else if (MaskVec[i] >= 0) {
1839       AllRHS = false;
1840     }
1841   }
1842   if (AllLHS && AllRHS)
1843     return getUNDEF(VT);
1844   if (AllLHS && !N2Undef)
1845     N2 = getUNDEF(VT);
1846   if (AllRHS) {
1847     N1 = getUNDEF(VT);
1848     commuteShuffle(N1, N2, MaskVec);
1849   }
1850   // Reset our undef status after accounting for the mask.
1851   N2Undef = N2.isUndef();
1852   // Re-check whether both sides ended up undef.
1853   if (N1.isUndef() && N2Undef)
1854     return getUNDEF(VT);
1855 
1856   // If Identity shuffle return that node.
1857   bool Identity = true, AllSame = true;
1858   for (int i = 0; i != NElts; ++i) {
1859     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1860     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1861   }
1862   if (Identity && NElts)
1863     return N1;
1864 
1865   // Shuffling a constant splat doesn't change the result.
1866   if (N2Undef) {
1867     SDValue V = N1;
1868 
1869     // Look through any bitcasts. We check that these don't change the number
1870     // (and size) of elements and just changes their types.
1871     while (V.getOpcode() == ISD::BITCAST)
1872       V = V->getOperand(0);
1873 
1874     // A splat should always show up as a build vector node.
1875     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1876       BitVector UndefElements;
1877       SDValue Splat = BV->getSplatValue(&UndefElements);
1878       // If this is a splat of an undef, shuffling it is also undef.
1879       if (Splat && Splat.isUndef())
1880         return getUNDEF(VT);
1881 
1882       bool SameNumElts =
1883           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1884 
1885       // We only have a splat which can skip shuffles if there is a splatted
1886       // value and no undef lanes rearranged by the shuffle.
1887       if (Splat && UndefElements.none()) {
1888         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1889         // number of elements match or the value splatted is a zero constant.
1890         if (SameNumElts)
1891           return N1;
1892         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1893           if (C->isNullValue())
1894             return N1;
1895       }
1896 
1897       // If the shuffle itself creates a splat, build the vector directly.
1898       if (AllSame && SameNumElts) {
1899         EVT BuildVT = BV->getValueType(0);
1900         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1901         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1902 
1903         // We may have jumped through bitcasts, so the type of the
1904         // BUILD_VECTOR may not match the type of the shuffle.
1905         if (BuildVT != VT)
1906           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1907         return NewBV;
1908       }
1909     }
1910   }
1911 
1912   FoldingSetNodeID ID;
1913   SDValue Ops[2] = { N1, N2 };
1914   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1915   for (int i = 0; i != NElts; ++i)
1916     ID.AddInteger(MaskVec[i]);
1917 
1918   void* IP = nullptr;
1919   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1920     return SDValue(E, 0);
1921 
1922   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1923   // SDNode doesn't have access to it.  This memory will be "leaked" when
1924   // the node is deallocated, but recovered when the NodeAllocator is released.
1925   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1926   llvm::copy(MaskVec, MaskAlloc);
1927 
1928   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1929                                            dl.getDebugLoc(), MaskAlloc);
1930   createOperands(N, Ops);
1931 
1932   CSEMap.InsertNode(N, IP);
1933   InsertNode(N);
1934   SDValue V = SDValue(N, 0);
1935   NewSDValueDbgMsg(V, "Creating new node: ", this);
1936   return V;
1937 }
1938 
1939 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1940   EVT VT = SV.getValueType(0);
1941   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1942   ShuffleVectorSDNode::commuteMask(MaskVec);
1943 
1944   SDValue Op0 = SV.getOperand(0);
1945   SDValue Op1 = SV.getOperand(1);
1946   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1947 }
1948 
1949 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1950   FoldingSetNodeID ID;
1951   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1952   ID.AddInteger(RegNo);
1953   void *IP = nullptr;
1954   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1955     return SDValue(E, 0);
1956 
1957   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1958   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1959   CSEMap.InsertNode(N, IP);
1960   InsertNode(N);
1961   return SDValue(N, 0);
1962 }
1963 
1964 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1965   FoldingSetNodeID ID;
1966   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1967   ID.AddPointer(RegMask);
1968   void *IP = nullptr;
1969   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1970     return SDValue(E, 0);
1971 
1972   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1973   CSEMap.InsertNode(N, IP);
1974   InsertNode(N);
1975   return SDValue(N, 0);
1976 }
1977 
1978 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1979                                  MCSymbol *Label) {
1980   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1981 }
1982 
1983 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1984                                    SDValue Root, MCSymbol *Label) {
1985   FoldingSetNodeID ID;
1986   SDValue Ops[] = { Root };
1987   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1988   ID.AddPointer(Label);
1989   void *IP = nullptr;
1990   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1991     return SDValue(E, 0);
1992 
1993   auto *N =
1994       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1995   createOperands(N, Ops);
1996 
1997   CSEMap.InsertNode(N, IP);
1998   InsertNode(N);
1999   return SDValue(N, 0);
2000 }
2001 
2002 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2003                                       int64_t Offset, bool isTarget,
2004                                       unsigned TargetFlags) {
2005   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2006 
2007   FoldingSetNodeID ID;
2008   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2009   ID.AddPointer(BA);
2010   ID.AddInteger(Offset);
2011   ID.AddInteger(TargetFlags);
2012   void *IP = nullptr;
2013   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2014     return SDValue(E, 0);
2015 
2016   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2017   CSEMap.InsertNode(N, IP);
2018   InsertNode(N);
2019   return SDValue(N, 0);
2020 }
2021 
2022 SDValue SelectionDAG::getSrcValue(const Value *V) {
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2025   ID.AddPointer(V);
2026 
2027   void *IP = nullptr;
2028   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2029     return SDValue(E, 0);
2030 
2031   auto *N = newSDNode<SrcValueSDNode>(V);
2032   CSEMap.InsertNode(N, IP);
2033   InsertNode(N);
2034   return SDValue(N, 0);
2035 }
2036 
2037 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2038   FoldingSetNodeID ID;
2039   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2040   ID.AddPointer(MD);
2041 
2042   void *IP = nullptr;
2043   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2044     return SDValue(E, 0);
2045 
2046   auto *N = newSDNode<MDNodeSDNode>(MD);
2047   CSEMap.InsertNode(N, IP);
2048   InsertNode(N);
2049   return SDValue(N, 0);
2050 }
2051 
2052 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2053   if (VT == V.getValueType())
2054     return V;
2055 
2056   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2057 }
2058 
2059 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2060                                        unsigned SrcAS, unsigned DestAS) {
2061   SDValue Ops[] = {Ptr};
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2064   ID.AddInteger(SrcAS);
2065   ID.AddInteger(DestAS);
2066 
2067   void *IP = nullptr;
2068   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2069     return SDValue(E, 0);
2070 
2071   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2072                                            VT, SrcAS, DestAS);
2073   createOperands(N, Ops);
2074 
2075   CSEMap.InsertNode(N, IP);
2076   InsertNode(N);
2077   return SDValue(N, 0);
2078 }
2079 
2080 SDValue SelectionDAG::getFreeze(SDValue V) {
2081   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2082 }
2083 
2084 /// getShiftAmountOperand - Return the specified value casted to
2085 /// the target's desired shift amount type.
2086 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2087   EVT OpTy = Op.getValueType();
2088   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2089   if (OpTy == ShTy || OpTy.isVector()) return Op;
2090 
2091   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2092 }
2093 
2094 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2095   SDLoc dl(Node);
2096   const TargetLowering &TLI = getTargetLoweringInfo();
2097   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2098   EVT VT = Node->getValueType(0);
2099   SDValue Tmp1 = Node->getOperand(0);
2100   SDValue Tmp2 = Node->getOperand(1);
2101   const MaybeAlign MA(Node->getConstantOperandVal(3));
2102 
2103   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2104                                Tmp2, MachinePointerInfo(V));
2105   SDValue VAList = VAListLoad;
2106 
2107   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2108     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2109                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2110 
2111     VAList =
2112         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2113                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2114   }
2115 
2116   // Increment the pointer, VAList, to the next vaarg
2117   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2118                  getConstant(getDataLayout().getTypeAllocSize(
2119                                                VT.getTypeForEVT(*getContext())),
2120                              dl, VAList.getValueType()));
2121   // Store the incremented VAList to the legalized pointer
2122   Tmp1 =
2123       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2124   // Load the actual argument out of the pointer VAList
2125   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2126 }
2127 
2128 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2129   SDLoc dl(Node);
2130   const TargetLowering &TLI = getTargetLoweringInfo();
2131   // This defaults to loading a pointer from the input and storing it to the
2132   // output, returning the chain.
2133   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2134   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2135   SDValue Tmp1 =
2136       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2137               Node->getOperand(2), MachinePointerInfo(VS));
2138   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2139                   MachinePointerInfo(VD));
2140 }
2141 
2142 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2143   const DataLayout &DL = getDataLayout();
2144   Type *Ty = VT.getTypeForEVT(*getContext());
2145   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2146 
2147   if (TLI->isTypeLegal(VT) || !VT.isVector())
2148     return RedAlign;
2149 
2150   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2151   const Align StackAlign = TFI->getStackAlign();
2152 
2153   // See if we can choose a smaller ABI alignment in cases where it's an
2154   // illegal vector type that will get broken down.
2155   if (RedAlign > StackAlign) {
2156     EVT IntermediateVT;
2157     MVT RegisterVT;
2158     unsigned NumIntermediates;
2159     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2160                                 NumIntermediates, RegisterVT);
2161     Ty = IntermediateVT.getTypeForEVT(*getContext());
2162     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2163     if (RedAlign2 < RedAlign)
2164       RedAlign = RedAlign2;
2165   }
2166 
2167   return RedAlign;
2168 }
2169 
2170 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2171   MachineFrameInfo &MFI = MF->getFrameInfo();
2172   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2173   int StackID = 0;
2174   if (Bytes.isScalable())
2175     StackID = TFI->getStackIDForScalableVectors();
2176   // The stack id gives an indication of whether the object is scalable or
2177   // not, so it's safe to pass in the minimum size here.
2178   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2179                                        false, nullptr, StackID);
2180   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2181 }
2182 
2183 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2184   Type *Ty = VT.getTypeForEVT(*getContext());
2185   Align StackAlign =
2186       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2187   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2188 }
2189 
2190 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2191   TypeSize VT1Size = VT1.getStoreSize();
2192   TypeSize VT2Size = VT2.getStoreSize();
2193   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2194          "Don't know how to choose the maximum size when creating a stack "
2195          "temporary");
2196   TypeSize Bytes =
2197       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2198 
2199   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2200   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2201   const DataLayout &DL = getDataLayout();
2202   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2203   return CreateStackTemporary(Bytes, Align);
2204 }
2205 
2206 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2207                                 ISD::CondCode Cond, const SDLoc &dl) {
2208   EVT OpVT = N1.getValueType();
2209 
2210   // These setcc operations always fold.
2211   switch (Cond) {
2212   default: break;
2213   case ISD::SETFALSE:
2214   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2215   case ISD::SETTRUE:
2216   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2217 
2218   case ISD::SETOEQ:
2219   case ISD::SETOGT:
2220   case ISD::SETOGE:
2221   case ISD::SETOLT:
2222   case ISD::SETOLE:
2223   case ISD::SETONE:
2224   case ISD::SETO:
2225   case ISD::SETUO:
2226   case ISD::SETUEQ:
2227   case ISD::SETUNE:
2228     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2229     break;
2230   }
2231 
2232   if (OpVT.isInteger()) {
2233     // For EQ and NE, we can always pick a value for the undef to make the
2234     // predicate pass or fail, so we can return undef.
2235     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2236     // icmp eq/ne X, undef -> undef.
2237     if ((N1.isUndef() || N2.isUndef()) &&
2238         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2239       return getUNDEF(VT);
2240 
2241     // If both operands are undef, we can return undef for int comparison.
2242     // icmp undef, undef -> undef.
2243     if (N1.isUndef() && N2.isUndef())
2244       return getUNDEF(VT);
2245 
2246     // icmp X, X -> true/false
2247     // icmp X, undef -> true/false because undef could be X.
2248     if (N1 == N2)
2249       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2250   }
2251 
2252   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2253     const APInt &C2 = N2C->getAPIntValue();
2254     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2255       const APInt &C1 = N1C->getAPIntValue();
2256 
2257       switch (Cond) {
2258       default: llvm_unreachable("Unknown integer setcc!");
2259       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2260       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2261       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2262       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2263       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2264       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2265       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2266       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2267       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2268       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2269       }
2270     }
2271   }
2272 
2273   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2274   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2275 
2276   if (N1CFP && N2CFP) {
2277     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2278     switch (Cond) {
2279     default: break;
2280     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2281                         return getUNDEF(VT);
2282                       LLVM_FALLTHROUGH;
2283     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2284                                              OpVT);
2285     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2286                         return getUNDEF(VT);
2287                       LLVM_FALLTHROUGH;
2288     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2289                                              R==APFloat::cmpLessThan, dl, VT,
2290                                              OpVT);
2291     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2292                         return getUNDEF(VT);
2293                       LLVM_FALLTHROUGH;
2294     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2295                                              OpVT);
2296     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2297                         return getUNDEF(VT);
2298                       LLVM_FALLTHROUGH;
2299     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2300                                              VT, OpVT);
2301     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2302                         return getUNDEF(VT);
2303                       LLVM_FALLTHROUGH;
2304     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2305                                              R==APFloat::cmpEqual, dl, VT,
2306                                              OpVT);
2307     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2308                         return getUNDEF(VT);
2309                       LLVM_FALLTHROUGH;
2310     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2311                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2312     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2313                                              OpVT);
2314     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2315                                              OpVT);
2316     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2317                                              R==APFloat::cmpEqual, dl, VT,
2318                                              OpVT);
2319     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2320                                              OpVT);
2321     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2322                                              R==APFloat::cmpLessThan, dl, VT,
2323                                              OpVT);
2324     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2325                                              R==APFloat::cmpUnordered, dl, VT,
2326                                              OpVT);
2327     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2328                                              VT, OpVT);
2329     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2330                                              OpVT);
2331     }
2332   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2333     // Ensure that the constant occurs on the RHS.
2334     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2335     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2336       return SDValue();
2337     return getSetCC(dl, VT, N2, N1, SwappedCond);
2338   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2339              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2340     // If an operand is known to be a nan (or undef that could be a nan), we can
2341     // fold it.
2342     // Choosing NaN for the undef will always make unordered comparison succeed
2343     // and ordered comparison fails.
2344     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2345     switch (ISD::getUnorderedFlavor(Cond)) {
2346     default:
2347       llvm_unreachable("Unknown flavor!");
2348     case 0: // Known false.
2349       return getBoolConstant(false, dl, VT, OpVT);
2350     case 1: // Known true.
2351       return getBoolConstant(true, dl, VT, OpVT);
2352     case 2: // Undefined.
2353       return getUNDEF(VT);
2354     }
2355   }
2356 
2357   // Could not fold it.
2358   return SDValue();
2359 }
2360 
2361 /// See if the specified operand can be simplified with the knowledge that only
2362 /// the bits specified by DemandedBits are used.
2363 /// TODO: really we should be making this into the DAG equivalent of
2364 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2365 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2366   EVT VT = V.getValueType();
2367 
2368   if (VT.isScalableVector())
2369     return SDValue();
2370 
2371   APInt DemandedElts = VT.isVector()
2372                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2373                            : APInt(1, 1);
2374   return GetDemandedBits(V, DemandedBits, DemandedElts);
2375 }
2376 
2377 /// See if the specified operand can be simplified with the knowledge that only
2378 /// the bits specified by DemandedBits are used in the elements specified by
2379 /// DemandedElts.
2380 /// TODO: really we should be making this into the DAG equivalent of
2381 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2382 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2383                                       const APInt &DemandedElts) {
2384   switch (V.getOpcode()) {
2385   default:
2386     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2387                                                 *this, 0);
2388   case ISD::Constant: {
2389     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2390     APInt NewVal = CVal & DemandedBits;
2391     if (NewVal != CVal)
2392       return getConstant(NewVal, SDLoc(V), V.getValueType());
2393     break;
2394   }
2395   case ISD::SRL:
2396     // Only look at single-use SRLs.
2397     if (!V.getNode()->hasOneUse())
2398       break;
2399     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2400       // See if we can recursively simplify the LHS.
2401       unsigned Amt = RHSC->getZExtValue();
2402 
2403       // Watch out for shift count overflow though.
2404       if (Amt >= DemandedBits.getBitWidth())
2405         break;
2406       APInt SrcDemandedBits = DemandedBits << Amt;
2407       if (SDValue SimplifyLHS =
2408               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2409         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2410                        V.getOperand(1));
2411     }
2412     break;
2413   }
2414   return SDValue();
2415 }
2416 
2417 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2418 /// use this predicate to simplify operations downstream.
2419 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2420   unsigned BitWidth = Op.getScalarValueSizeInBits();
2421   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2422 }
2423 
2424 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2425 /// this predicate to simplify operations downstream.  Mask is known to be zero
2426 /// for bits that V cannot have.
2427 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2428                                      unsigned Depth) const {
2429   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2430 }
2431 
2432 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2433 /// DemandedElts.  We use this predicate to simplify operations downstream.
2434 /// Mask is known to be zero for bits that V cannot have.
2435 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2436                                      const APInt &DemandedElts,
2437                                      unsigned Depth) const {
2438   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2439 }
2440 
2441 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2442 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2443                                         unsigned Depth) const {
2444   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2445 }
2446 
2447 /// isSplatValue - Return true if the vector V has the same value
2448 /// across all DemandedElts. For scalable vectors it does not make
2449 /// sense to specify which elements are demanded or undefined, therefore
2450 /// they are simply ignored.
2451 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2452                                 APInt &UndefElts, unsigned Depth) {
2453   EVT VT = V.getValueType();
2454   assert(VT.isVector() && "Vector type expected");
2455 
2456   if (!VT.isScalableVector() && !DemandedElts)
2457     return false; // No demanded elts, better to assume we don't know anything.
2458 
2459   if (Depth >= MaxRecursionDepth)
2460     return false; // Limit search depth.
2461 
2462   // Deal with some common cases here that work for both fixed and scalable
2463   // vector types.
2464   switch (V.getOpcode()) {
2465   case ISD::SPLAT_VECTOR:
2466     UndefElts = V.getOperand(0).isUndef()
2467                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2468                     : APInt(DemandedElts.getBitWidth(), 0);
2469     return true;
2470   case ISD::ADD:
2471   case ISD::SUB:
2472   case ISD::AND:
2473   case ISD::XOR:
2474   case ISD::OR: {
2475     APInt UndefLHS, UndefRHS;
2476     SDValue LHS = V.getOperand(0);
2477     SDValue RHS = V.getOperand(1);
2478     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2479         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2480       UndefElts = UndefLHS | UndefRHS;
2481       return true;
2482     }
2483     break;
2484   }
2485   case ISD::ABS:
2486   case ISD::TRUNCATE:
2487   case ISD::SIGN_EXTEND:
2488   case ISD::ZERO_EXTEND:
2489     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2490   }
2491 
2492   // We don't support other cases than those above for scalable vectors at
2493   // the moment.
2494   if (VT.isScalableVector())
2495     return false;
2496 
2497   unsigned NumElts = VT.getVectorNumElements();
2498   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2499   UndefElts = APInt::getNullValue(NumElts);
2500 
2501   switch (V.getOpcode()) {
2502   case ISD::BUILD_VECTOR: {
2503     SDValue Scl;
2504     for (unsigned i = 0; i != NumElts; ++i) {
2505       SDValue Op = V.getOperand(i);
2506       if (Op.isUndef()) {
2507         UndefElts.setBit(i);
2508         continue;
2509       }
2510       if (!DemandedElts[i])
2511         continue;
2512       if (Scl && Scl != Op)
2513         return false;
2514       Scl = Op;
2515     }
2516     return true;
2517   }
2518   case ISD::VECTOR_SHUFFLE: {
2519     // Check if this is a shuffle node doing a splat.
2520     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2521     int SplatIndex = -1;
2522     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2523     for (int i = 0; i != (int)NumElts; ++i) {
2524       int M = Mask[i];
2525       if (M < 0) {
2526         UndefElts.setBit(i);
2527         continue;
2528       }
2529       if (!DemandedElts[i])
2530         continue;
2531       if (0 <= SplatIndex && SplatIndex != M)
2532         return false;
2533       SplatIndex = M;
2534     }
2535     return true;
2536   }
2537   case ISD::EXTRACT_SUBVECTOR: {
2538     // Offset the demanded elts by the subvector index.
2539     SDValue Src = V.getOperand(0);
2540     // We don't support scalable vectors at the moment.
2541     if (Src.getValueType().isScalableVector())
2542       return false;
2543     uint64_t Idx = V.getConstantOperandVal(1);
2544     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2545     APInt UndefSrcElts;
2546     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2547     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2548       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2549       return true;
2550     }
2551     break;
2552   }
2553   }
2554 
2555   return false;
2556 }
2557 
2558 /// Helper wrapper to main isSplatValue function.
2559 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2560   EVT VT = V.getValueType();
2561   assert(VT.isVector() && "Vector type expected");
2562 
2563   APInt UndefElts;
2564   APInt DemandedElts;
2565 
2566   // For now we don't support this with scalable vectors.
2567   if (!VT.isScalableVector())
2568     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2569   return isSplatValue(V, DemandedElts, UndefElts) &&
2570          (AllowUndefs || !UndefElts);
2571 }
2572 
2573 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2574   V = peekThroughExtractSubvectors(V);
2575 
2576   EVT VT = V.getValueType();
2577   unsigned Opcode = V.getOpcode();
2578   switch (Opcode) {
2579   default: {
2580     APInt UndefElts;
2581     APInt DemandedElts;
2582 
2583     if (!VT.isScalableVector())
2584       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2585 
2586     if (isSplatValue(V, DemandedElts, UndefElts)) {
2587       if (VT.isScalableVector()) {
2588         // DemandedElts and UndefElts are ignored for scalable vectors, since
2589         // the only supported cases are SPLAT_VECTOR nodes.
2590         SplatIdx = 0;
2591       } else {
2592         // Handle case where all demanded elements are UNDEF.
2593         if (DemandedElts.isSubsetOf(UndefElts)) {
2594           SplatIdx = 0;
2595           return getUNDEF(VT);
2596         }
2597         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2598       }
2599       return V;
2600     }
2601     break;
2602   }
2603   case ISD::SPLAT_VECTOR:
2604     SplatIdx = 0;
2605     return V;
2606   case ISD::VECTOR_SHUFFLE: {
2607     if (VT.isScalableVector())
2608       return SDValue();
2609 
2610     // Check if this is a shuffle node doing a splat.
2611     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2612     // getTargetVShiftNode currently struggles without the splat source.
2613     auto *SVN = cast<ShuffleVectorSDNode>(V);
2614     if (!SVN->isSplat())
2615       break;
2616     int Idx = SVN->getSplatIndex();
2617     int NumElts = V.getValueType().getVectorNumElements();
2618     SplatIdx = Idx % NumElts;
2619     return V.getOperand(Idx / NumElts);
2620   }
2621   }
2622 
2623   return SDValue();
2624 }
2625 
2626 SDValue SelectionDAG::getSplatValue(SDValue V) {
2627   int SplatIdx;
2628   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2629     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2630                    SrcVector.getValueType().getScalarType(), SrcVector,
2631                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2632   return SDValue();
2633 }
2634 
2635 const APInt *
2636 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2637                                           const APInt &DemandedElts) const {
2638   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2639           V.getOpcode() == ISD::SRA) &&
2640          "Unknown shift node");
2641   unsigned BitWidth = V.getScalarValueSizeInBits();
2642   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2643     // Shifting more than the bitwidth is not valid.
2644     const APInt &ShAmt = SA->getAPIntValue();
2645     if (ShAmt.ult(BitWidth))
2646       return &ShAmt;
2647   }
2648   return nullptr;
2649 }
2650 
2651 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2652     SDValue V, const APInt &DemandedElts) const {
2653   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2654           V.getOpcode() == ISD::SRA) &&
2655          "Unknown shift node");
2656   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2657     return ValidAmt;
2658   unsigned BitWidth = V.getScalarValueSizeInBits();
2659   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2660   if (!BV)
2661     return nullptr;
2662   const APInt *MinShAmt = nullptr;
2663   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2664     if (!DemandedElts[i])
2665       continue;
2666     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2667     if (!SA)
2668       return nullptr;
2669     // Shifting more than the bitwidth is not valid.
2670     const APInt &ShAmt = SA->getAPIntValue();
2671     if (ShAmt.uge(BitWidth))
2672       return nullptr;
2673     if (MinShAmt && MinShAmt->ule(ShAmt))
2674       continue;
2675     MinShAmt = &ShAmt;
2676   }
2677   return MinShAmt;
2678 }
2679 
2680 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2681     SDValue V, const APInt &DemandedElts) const {
2682   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2683           V.getOpcode() == ISD::SRA) &&
2684          "Unknown shift node");
2685   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2686     return ValidAmt;
2687   unsigned BitWidth = V.getScalarValueSizeInBits();
2688   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2689   if (!BV)
2690     return nullptr;
2691   const APInt *MaxShAmt = nullptr;
2692   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2693     if (!DemandedElts[i])
2694       continue;
2695     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2696     if (!SA)
2697       return nullptr;
2698     // Shifting more than the bitwidth is not valid.
2699     const APInt &ShAmt = SA->getAPIntValue();
2700     if (ShAmt.uge(BitWidth))
2701       return nullptr;
2702     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2703       continue;
2704     MaxShAmt = &ShAmt;
2705   }
2706   return MaxShAmt;
2707 }
2708 
2709 /// Determine which bits of Op are known to be either zero or one and return
2710 /// them in Known. For vectors, the known bits are those that are shared by
2711 /// every vector element.
2712 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2713   EVT VT = Op.getValueType();
2714 
2715   // TOOD: Until we have a plan for how to represent demanded elements for
2716   // scalable vectors, we can just bail out for now.
2717   if (Op.getValueType().isScalableVector()) {
2718     unsigned BitWidth = Op.getScalarValueSizeInBits();
2719     return KnownBits(BitWidth);
2720   }
2721 
2722   APInt DemandedElts = VT.isVector()
2723                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2724                            : APInt(1, 1);
2725   return computeKnownBits(Op, DemandedElts, Depth);
2726 }
2727 
2728 /// Determine which bits of Op are known to be either zero or one and return
2729 /// them in Known. The DemandedElts argument allows us to only collect the known
2730 /// bits that are shared by the requested vector elements.
2731 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2732                                          unsigned Depth) const {
2733   unsigned BitWidth = Op.getScalarValueSizeInBits();
2734 
2735   KnownBits Known(BitWidth);   // Don't know anything.
2736 
2737   // TOOD: Until we have a plan for how to represent demanded elements for
2738   // scalable vectors, we can just bail out for now.
2739   if (Op.getValueType().isScalableVector())
2740     return Known;
2741 
2742   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2743     // We know all of the bits for a constant!
2744     return KnownBits::makeConstant(C->getAPIntValue());
2745   }
2746   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2747     // We know all of the bits for a constant fp!
2748     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2749   }
2750 
2751   if (Depth >= MaxRecursionDepth)
2752     return Known;  // Limit search depth.
2753 
2754   KnownBits Known2;
2755   unsigned NumElts = DemandedElts.getBitWidth();
2756   assert((!Op.getValueType().isVector() ||
2757           NumElts == Op.getValueType().getVectorNumElements()) &&
2758          "Unexpected vector size");
2759 
2760   if (!DemandedElts)
2761     return Known;  // No demanded elts, better to assume we don't know anything.
2762 
2763   unsigned Opcode = Op.getOpcode();
2764   switch (Opcode) {
2765   case ISD::BUILD_VECTOR:
2766     // Collect the known bits that are shared by every demanded vector element.
2767     Known.Zero.setAllBits(); Known.One.setAllBits();
2768     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2769       if (!DemandedElts[i])
2770         continue;
2771 
2772       SDValue SrcOp = Op.getOperand(i);
2773       Known2 = computeKnownBits(SrcOp, Depth + 1);
2774 
2775       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2776       if (SrcOp.getValueSizeInBits() != BitWidth) {
2777         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2778                "Expected BUILD_VECTOR implicit truncation");
2779         Known2 = Known2.trunc(BitWidth);
2780       }
2781 
2782       // Known bits are the values that are shared by every demanded element.
2783       Known = KnownBits::commonBits(Known, Known2);
2784 
2785       // If we don't know any bits, early out.
2786       if (Known.isUnknown())
2787         break;
2788     }
2789     break;
2790   case ISD::VECTOR_SHUFFLE: {
2791     // Collect the known bits that are shared by every vector element referenced
2792     // by the shuffle.
2793     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2794     Known.Zero.setAllBits(); Known.One.setAllBits();
2795     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2796     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2797     for (unsigned i = 0; i != NumElts; ++i) {
2798       if (!DemandedElts[i])
2799         continue;
2800 
2801       int M = SVN->getMaskElt(i);
2802       if (M < 0) {
2803         // For UNDEF elements, we don't know anything about the common state of
2804         // the shuffle result.
2805         Known.resetAll();
2806         DemandedLHS.clearAllBits();
2807         DemandedRHS.clearAllBits();
2808         break;
2809       }
2810 
2811       if ((unsigned)M < NumElts)
2812         DemandedLHS.setBit((unsigned)M % NumElts);
2813       else
2814         DemandedRHS.setBit((unsigned)M % NumElts);
2815     }
2816     // Known bits are the values that are shared by every demanded element.
2817     if (!!DemandedLHS) {
2818       SDValue LHS = Op.getOperand(0);
2819       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2820       Known = KnownBits::commonBits(Known, Known2);
2821     }
2822     // If we don't know any bits, early out.
2823     if (Known.isUnknown())
2824       break;
2825     if (!!DemandedRHS) {
2826       SDValue RHS = Op.getOperand(1);
2827       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2828       Known = KnownBits::commonBits(Known, Known2);
2829     }
2830     break;
2831   }
2832   case ISD::CONCAT_VECTORS: {
2833     // Split DemandedElts and test each of the demanded subvectors.
2834     Known.Zero.setAllBits(); Known.One.setAllBits();
2835     EVT SubVectorVT = Op.getOperand(0).getValueType();
2836     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2837     unsigned NumSubVectors = Op.getNumOperands();
2838     for (unsigned i = 0; i != NumSubVectors; ++i) {
2839       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2840       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2841       if (!!DemandedSub) {
2842         SDValue Sub = Op.getOperand(i);
2843         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2844         Known = KnownBits::commonBits(Known, Known2);
2845       }
2846       // If we don't know any bits, early out.
2847       if (Known.isUnknown())
2848         break;
2849     }
2850     break;
2851   }
2852   case ISD::INSERT_SUBVECTOR: {
2853     // Demand any elements from the subvector and the remainder from the src its
2854     // inserted into.
2855     SDValue Src = Op.getOperand(0);
2856     SDValue Sub = Op.getOperand(1);
2857     uint64_t Idx = Op.getConstantOperandVal(2);
2858     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2859     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2860     APInt DemandedSrcElts = DemandedElts;
2861     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2862 
2863     Known.One.setAllBits();
2864     Known.Zero.setAllBits();
2865     if (!!DemandedSubElts) {
2866       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2867       if (Known.isUnknown())
2868         break; // early-out.
2869     }
2870     if (!!DemandedSrcElts) {
2871       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2872       Known = KnownBits::commonBits(Known, Known2);
2873     }
2874     break;
2875   }
2876   case ISD::EXTRACT_SUBVECTOR: {
2877     // Offset the demanded elts by the subvector index.
2878     SDValue Src = Op.getOperand(0);
2879     // Bail until we can represent demanded elements for scalable vectors.
2880     if (Src.getValueType().isScalableVector())
2881       break;
2882     uint64_t Idx = Op.getConstantOperandVal(1);
2883     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2884     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2885     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2886     break;
2887   }
2888   case ISD::SCALAR_TO_VECTOR: {
2889     // We know about scalar_to_vector as much as we know about it source,
2890     // which becomes the first element of otherwise unknown vector.
2891     if (DemandedElts != 1)
2892       break;
2893 
2894     SDValue N0 = Op.getOperand(0);
2895     Known = computeKnownBits(N0, Depth + 1);
2896     if (N0.getValueSizeInBits() != BitWidth)
2897       Known = Known.trunc(BitWidth);
2898 
2899     break;
2900   }
2901   case ISD::BITCAST: {
2902     SDValue N0 = Op.getOperand(0);
2903     EVT SubVT = N0.getValueType();
2904     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2905 
2906     // Ignore bitcasts from unsupported types.
2907     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2908       break;
2909 
2910     // Fast handling of 'identity' bitcasts.
2911     if (BitWidth == SubBitWidth) {
2912       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2913       break;
2914     }
2915 
2916     bool IsLE = getDataLayout().isLittleEndian();
2917 
2918     // Bitcast 'small element' vector to 'large element' scalar/vector.
2919     if ((BitWidth % SubBitWidth) == 0) {
2920       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2921 
2922       // Collect known bits for the (larger) output by collecting the known
2923       // bits from each set of sub elements and shift these into place.
2924       // We need to separately call computeKnownBits for each set of
2925       // sub elements as the knownbits for each is likely to be different.
2926       unsigned SubScale = BitWidth / SubBitWidth;
2927       APInt SubDemandedElts(NumElts * SubScale, 0);
2928       for (unsigned i = 0; i != NumElts; ++i)
2929         if (DemandedElts[i])
2930           SubDemandedElts.setBit(i * SubScale);
2931 
2932       for (unsigned i = 0; i != SubScale; ++i) {
2933         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2934                          Depth + 1);
2935         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2936         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2937         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2938       }
2939     }
2940 
2941     // Bitcast 'large element' scalar/vector to 'small element' vector.
2942     if ((SubBitWidth % BitWidth) == 0) {
2943       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2944 
2945       // Collect known bits for the (smaller) output by collecting the known
2946       // bits from the overlapping larger input elements and extracting the
2947       // sub sections we actually care about.
2948       unsigned SubScale = SubBitWidth / BitWidth;
2949       APInt SubDemandedElts(NumElts / SubScale, 0);
2950       for (unsigned i = 0; i != NumElts; ++i)
2951         if (DemandedElts[i])
2952           SubDemandedElts.setBit(i / SubScale);
2953 
2954       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2955 
2956       Known.Zero.setAllBits(); Known.One.setAllBits();
2957       for (unsigned i = 0; i != NumElts; ++i)
2958         if (DemandedElts[i]) {
2959           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2960           unsigned Offset = (Shifts % SubScale) * BitWidth;
2961           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2962           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2963           // If we don't know any bits, early out.
2964           if (Known.isUnknown())
2965             break;
2966         }
2967     }
2968     break;
2969   }
2970   case ISD::AND:
2971     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2972     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2973 
2974     Known &= Known2;
2975     break;
2976   case ISD::OR:
2977     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2978     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2979 
2980     Known |= Known2;
2981     break;
2982   case ISD::XOR:
2983     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2984     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2985 
2986     Known ^= Known2;
2987     break;
2988   case ISD::MUL: {
2989     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     Known = KnownBits::computeForMul(Known, Known2);
2992     break;
2993   }
2994   case ISD::MULHU: {
2995     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2996     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997     Known = KnownBits::mulhu(Known, Known2);
2998     break;
2999   }
3000   case ISD::MULHS: {
3001     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3002     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3003     Known = KnownBits::mulhs(Known, Known2);
3004     break;
3005   }
3006   case ISD::UMUL_LOHI: {
3007     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     if (Op.getResNo() == 0)
3011       Known = KnownBits::computeForMul(Known, Known2);
3012     else
3013       Known = KnownBits::mulhu(Known, Known2);
3014     break;
3015   }
3016   case ISD::SMUL_LOHI: {
3017     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3018     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3019     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3020     if (Op.getResNo() == 0)
3021       Known = KnownBits::computeForMul(Known, Known2);
3022     else
3023       Known = KnownBits::mulhs(Known, Known2);
3024     break;
3025   }
3026   case ISD::UDIV: {
3027     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3028     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3029     Known = KnownBits::udiv(Known, Known2);
3030     break;
3031   }
3032   case ISD::SELECT:
3033   case ISD::VSELECT:
3034     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3035     // If we don't know any bits, early out.
3036     if (Known.isUnknown())
3037       break;
3038     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3039 
3040     // Only known if known in both the LHS and RHS.
3041     Known = KnownBits::commonBits(Known, Known2);
3042     break;
3043   case ISD::SELECT_CC:
3044     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3045     // If we don't know any bits, early out.
3046     if (Known.isUnknown())
3047       break;
3048     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3049 
3050     // Only known if known in both the LHS and RHS.
3051     Known = KnownBits::commonBits(Known, Known2);
3052     break;
3053   case ISD::SMULO:
3054   case ISD::UMULO:
3055   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3056     if (Op.getResNo() != 1)
3057       break;
3058     // The boolean result conforms to getBooleanContents.
3059     // If we know the result of a setcc has the top bits zero, use this info.
3060     // We know that we have an integer-based boolean since these operations
3061     // are only available for integer.
3062     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3063             TargetLowering::ZeroOrOneBooleanContent &&
3064         BitWidth > 1)
3065       Known.Zero.setBitsFrom(1);
3066     break;
3067   case ISD::SETCC:
3068   case ISD::STRICT_FSETCC:
3069   case ISD::STRICT_FSETCCS: {
3070     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3071     // If we know the result of a setcc has the top bits zero, use this info.
3072     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3073             TargetLowering::ZeroOrOneBooleanContent &&
3074         BitWidth > 1)
3075       Known.Zero.setBitsFrom(1);
3076     break;
3077   }
3078   case ISD::SHL:
3079     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3080     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3081     Known = KnownBits::shl(Known, Known2);
3082 
3083     // Minimum shift low bits are known zero.
3084     if (const APInt *ShMinAmt =
3085             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3086       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3087     break;
3088   case ISD::SRL:
3089     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3090     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3091     Known = KnownBits::lshr(Known, Known2);
3092 
3093     // Minimum shift high bits are known zero.
3094     if (const APInt *ShMinAmt =
3095             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3096       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3097     break;
3098   case ISD::SRA:
3099     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3100     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3101     Known = KnownBits::ashr(Known, Known2);
3102     // TODO: Add minimum shift high known sign bits.
3103     break;
3104   case ISD::FSHL:
3105   case ISD::FSHR:
3106     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3107       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3108 
3109       // For fshl, 0-shift returns the 1st arg.
3110       // For fshr, 0-shift returns the 2nd arg.
3111       if (Amt == 0) {
3112         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3113                                  DemandedElts, Depth + 1);
3114         break;
3115       }
3116 
3117       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3118       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3119       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3120       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3121       if (Opcode == ISD::FSHL) {
3122         Known.One <<= Amt;
3123         Known.Zero <<= Amt;
3124         Known2.One.lshrInPlace(BitWidth - Amt);
3125         Known2.Zero.lshrInPlace(BitWidth - Amt);
3126       } else {
3127         Known.One <<= BitWidth - Amt;
3128         Known.Zero <<= BitWidth - Amt;
3129         Known2.One.lshrInPlace(Amt);
3130         Known2.Zero.lshrInPlace(Amt);
3131       }
3132       Known.One |= Known2.One;
3133       Known.Zero |= Known2.Zero;
3134     }
3135     break;
3136   case ISD::SIGN_EXTEND_INREG: {
3137     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3139     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3140     break;
3141   }
3142   case ISD::CTTZ:
3143   case ISD::CTTZ_ZERO_UNDEF: {
3144     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3145     // If we have a known 1, its position is our upper bound.
3146     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3147     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3148     Known.Zero.setBitsFrom(LowBits);
3149     break;
3150   }
3151   case ISD::CTLZ:
3152   case ISD::CTLZ_ZERO_UNDEF: {
3153     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3154     // If we have a known 1, its position is our upper bound.
3155     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3156     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3157     Known.Zero.setBitsFrom(LowBits);
3158     break;
3159   }
3160   case ISD::CTPOP: {
3161     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162     // If we know some of the bits are zero, they can't be one.
3163     unsigned PossibleOnes = Known2.countMaxPopulation();
3164     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3165     break;
3166   }
3167   case ISD::PARITY: {
3168     // Parity returns 0 everywhere but the LSB.
3169     Known.Zero.setBitsFrom(1);
3170     break;
3171   }
3172   case ISD::LOAD: {
3173     LoadSDNode *LD = cast<LoadSDNode>(Op);
3174     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3175     if (ISD::isNON_EXTLoad(LD) && Cst) {
3176       // Determine any common known bits from the loaded constant pool value.
3177       Type *CstTy = Cst->getType();
3178       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3179         // If its a vector splat, then we can (quickly) reuse the scalar path.
3180         // NOTE: We assume all elements match and none are UNDEF.
3181         if (CstTy->isVectorTy()) {
3182           if (const Constant *Splat = Cst->getSplatValue()) {
3183             Cst = Splat;
3184             CstTy = Cst->getType();
3185           }
3186         }
3187         // TODO - do we need to handle different bitwidths?
3188         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3189           // Iterate across all vector elements finding common known bits.
3190           Known.One.setAllBits();
3191           Known.Zero.setAllBits();
3192           for (unsigned i = 0; i != NumElts; ++i) {
3193             if (!DemandedElts[i])
3194               continue;
3195             if (Constant *Elt = Cst->getAggregateElement(i)) {
3196               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3197                 const APInt &Value = CInt->getValue();
3198                 Known.One &= Value;
3199                 Known.Zero &= ~Value;
3200                 continue;
3201               }
3202               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3203                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3204                 Known.One &= Value;
3205                 Known.Zero &= ~Value;
3206                 continue;
3207               }
3208             }
3209             Known.One.clearAllBits();
3210             Known.Zero.clearAllBits();
3211             break;
3212           }
3213         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3214           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3215             Known = KnownBits::makeConstant(CInt->getValue());
3216           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3217             Known =
3218                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3219           }
3220         }
3221       }
3222     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3223       // If this is a ZEXTLoad and we are looking at the loaded value.
3224       EVT VT = LD->getMemoryVT();
3225       unsigned MemBits = VT.getScalarSizeInBits();
3226       Known.Zero.setBitsFrom(MemBits);
3227     } else if (const MDNode *Ranges = LD->getRanges()) {
3228       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3229         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3230     }
3231     break;
3232   }
3233   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3234     EVT InVT = Op.getOperand(0).getValueType();
3235     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3236     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3237     Known = Known.zext(BitWidth);
3238     break;
3239   }
3240   case ISD::ZERO_EXTEND: {
3241     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3242     Known = Known.zext(BitWidth);
3243     break;
3244   }
3245   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3246     EVT InVT = Op.getOperand(0).getValueType();
3247     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3248     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3249     // If the sign bit is known to be zero or one, then sext will extend
3250     // it to the top bits, else it will just zext.
3251     Known = Known.sext(BitWidth);
3252     break;
3253   }
3254   case ISD::SIGN_EXTEND: {
3255     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3256     // If the sign bit is known to be zero or one, then sext will extend
3257     // it to the top bits, else it will just zext.
3258     Known = Known.sext(BitWidth);
3259     break;
3260   }
3261   case ISD::ANY_EXTEND_VECTOR_INREG: {
3262     EVT InVT = Op.getOperand(0).getValueType();
3263     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3264     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3265     Known = Known.anyext(BitWidth);
3266     break;
3267   }
3268   case ISD::ANY_EXTEND: {
3269     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3270     Known = Known.anyext(BitWidth);
3271     break;
3272   }
3273   case ISD::TRUNCATE: {
3274     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3275     Known = Known.trunc(BitWidth);
3276     break;
3277   }
3278   case ISD::AssertZext: {
3279     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3280     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3281     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3282     Known.Zero |= (~InMask);
3283     Known.One  &= (~Known.Zero);
3284     break;
3285   }
3286   case ISD::AssertAlign: {
3287     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3288     assert(LogOfAlign != 0);
3289     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3290     // well as clearing one bits.
3291     Known.Zero.setLowBits(LogOfAlign);
3292     Known.One.clearLowBits(LogOfAlign);
3293     break;
3294   }
3295   case ISD::FGETSIGN:
3296     // All bits are zero except the low bit.
3297     Known.Zero.setBitsFrom(1);
3298     break;
3299   case ISD::USUBO:
3300   case ISD::SSUBO:
3301     if (Op.getResNo() == 1) {
3302       // If we know the result of a setcc has the top bits zero, use this info.
3303       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3304               TargetLowering::ZeroOrOneBooleanContent &&
3305           BitWidth > 1)
3306         Known.Zero.setBitsFrom(1);
3307       break;
3308     }
3309     LLVM_FALLTHROUGH;
3310   case ISD::SUB:
3311   case ISD::SUBC: {
3312     assert(Op.getResNo() == 0 &&
3313            "We only compute knownbits for the difference here.");
3314 
3315     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3317     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3318                                         Known, Known2);
3319     break;
3320   }
3321   case ISD::UADDO:
3322   case ISD::SADDO:
3323   case ISD::ADDCARRY:
3324     if (Op.getResNo() == 1) {
3325       // If we know the result of a setcc has the top bits zero, use this info.
3326       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3327               TargetLowering::ZeroOrOneBooleanContent &&
3328           BitWidth > 1)
3329         Known.Zero.setBitsFrom(1);
3330       break;
3331     }
3332     LLVM_FALLTHROUGH;
3333   case ISD::ADD:
3334   case ISD::ADDC:
3335   case ISD::ADDE: {
3336     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3337 
3338     // With ADDE and ADDCARRY, a carry bit may be added in.
3339     KnownBits Carry(1);
3340     if (Opcode == ISD::ADDE)
3341       // Can't track carry from glue, set carry to unknown.
3342       Carry.resetAll();
3343     else if (Opcode == ISD::ADDCARRY)
3344       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3345       // the trouble (how often will we find a known carry bit). And I haven't
3346       // tested this very much yet, but something like this might work:
3347       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3348       //   Carry = Carry.zextOrTrunc(1, false);
3349       Carry.resetAll();
3350     else
3351       Carry.setAllZero();
3352 
3353     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3354     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3355     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3356     break;
3357   }
3358   case ISD::SREM: {
3359     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3360     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3361     Known = KnownBits::srem(Known, Known2);
3362     break;
3363   }
3364   case ISD::UREM: {
3365     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3366     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3367     Known = KnownBits::urem(Known, Known2);
3368     break;
3369   }
3370   case ISD::EXTRACT_ELEMENT: {
3371     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3372     const unsigned Index = Op.getConstantOperandVal(1);
3373     const unsigned EltBitWidth = Op.getValueSizeInBits();
3374 
3375     // Remove low part of known bits mask
3376     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3377     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3378 
3379     // Remove high part of known bit mask
3380     Known = Known.trunc(EltBitWidth);
3381     break;
3382   }
3383   case ISD::EXTRACT_VECTOR_ELT: {
3384     SDValue InVec = Op.getOperand(0);
3385     SDValue EltNo = Op.getOperand(1);
3386     EVT VecVT = InVec.getValueType();
3387     // computeKnownBits not yet implemented for scalable vectors.
3388     if (VecVT.isScalableVector())
3389       break;
3390     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3391     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3392 
3393     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3394     // anything about the extended bits.
3395     if (BitWidth > EltBitWidth)
3396       Known = Known.trunc(EltBitWidth);
3397 
3398     // If we know the element index, just demand that vector element, else for
3399     // an unknown element index, ignore DemandedElts and demand them all.
3400     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3401     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3402     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3403       DemandedSrcElts =
3404           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3405 
3406     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3407     if (BitWidth > EltBitWidth)
3408       Known = Known.anyext(BitWidth);
3409     break;
3410   }
3411   case ISD::INSERT_VECTOR_ELT: {
3412     // If we know the element index, split the demand between the
3413     // source vector and the inserted element, otherwise assume we need
3414     // the original demanded vector elements and the value.
3415     SDValue InVec = Op.getOperand(0);
3416     SDValue InVal = Op.getOperand(1);
3417     SDValue EltNo = Op.getOperand(2);
3418     bool DemandedVal = true;
3419     APInt DemandedVecElts = DemandedElts;
3420     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3421     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3422       unsigned EltIdx = CEltNo->getZExtValue();
3423       DemandedVal = !!DemandedElts[EltIdx];
3424       DemandedVecElts.clearBit(EltIdx);
3425     }
3426     Known.One.setAllBits();
3427     Known.Zero.setAllBits();
3428     if (DemandedVal) {
3429       Known2 = computeKnownBits(InVal, Depth + 1);
3430       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3431     }
3432     if (!!DemandedVecElts) {
3433       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3434       Known = KnownBits::commonBits(Known, Known2);
3435     }
3436     break;
3437   }
3438   case ISD::BITREVERSE: {
3439     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3440     Known = Known2.reverseBits();
3441     break;
3442   }
3443   case ISD::BSWAP: {
3444     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3445     Known = Known2.byteSwap();
3446     break;
3447   }
3448   case ISD::ABS: {
3449     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3450     Known = Known2.abs();
3451     break;
3452   }
3453   case ISD::USUBSAT: {
3454     // The result of usubsat will never be larger than the LHS.
3455     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3456     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3457     break;
3458   }
3459   case ISD::UMIN: {
3460     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3462     Known = KnownBits::umin(Known, Known2);
3463     break;
3464   }
3465   case ISD::UMAX: {
3466     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3467     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3468     Known = KnownBits::umax(Known, Known2);
3469     break;
3470   }
3471   case ISD::SMIN:
3472   case ISD::SMAX: {
3473     // If we have a clamp pattern, we know that the number of sign bits will be
3474     // the minimum of the clamp min/max range.
3475     bool IsMax = (Opcode == ISD::SMAX);
3476     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3477     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3478       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3479         CstHigh =
3480             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3481     if (CstLow && CstHigh) {
3482       if (!IsMax)
3483         std::swap(CstLow, CstHigh);
3484 
3485       const APInt &ValueLow = CstLow->getAPIntValue();
3486       const APInt &ValueHigh = CstHigh->getAPIntValue();
3487       if (ValueLow.sle(ValueHigh)) {
3488         unsigned LowSignBits = ValueLow.getNumSignBits();
3489         unsigned HighSignBits = ValueHigh.getNumSignBits();
3490         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3491         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3492           Known.One.setHighBits(MinSignBits);
3493           break;
3494         }
3495         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3496           Known.Zero.setHighBits(MinSignBits);
3497           break;
3498         }
3499       }
3500     }
3501 
3502     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3503     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3504     if (IsMax)
3505       Known = KnownBits::smax(Known, Known2);
3506     else
3507       Known = KnownBits::smin(Known, Known2);
3508     break;
3509   }
3510   case ISD::FrameIndex:
3511   case ISD::TargetFrameIndex:
3512     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3513                                        Known, getMachineFunction());
3514     break;
3515 
3516   default:
3517     if (Opcode < ISD::BUILTIN_OP_END)
3518       break;
3519     LLVM_FALLTHROUGH;
3520   case ISD::INTRINSIC_WO_CHAIN:
3521   case ISD::INTRINSIC_W_CHAIN:
3522   case ISD::INTRINSIC_VOID:
3523     // Allow the target to implement this method for its nodes.
3524     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3525     break;
3526   }
3527 
3528   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3529   return Known;
3530 }
3531 
3532 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3533                                                              SDValue N1) const {
3534   // X + 0 never overflow
3535   if (isNullConstant(N1))
3536     return OFK_Never;
3537 
3538   KnownBits N1Known = computeKnownBits(N1);
3539   if (N1Known.Zero.getBoolValue()) {
3540     KnownBits N0Known = computeKnownBits(N0);
3541 
3542     bool overflow;
3543     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3544     if (!overflow)
3545       return OFK_Never;
3546   }
3547 
3548   // mulhi + 1 never overflow
3549   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3550       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3551     return OFK_Never;
3552 
3553   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3554     KnownBits N0Known = computeKnownBits(N0);
3555 
3556     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3557       return OFK_Never;
3558   }
3559 
3560   return OFK_Sometime;
3561 }
3562 
3563 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3564   EVT OpVT = Val.getValueType();
3565   unsigned BitWidth = OpVT.getScalarSizeInBits();
3566 
3567   // Is the constant a known power of 2?
3568   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3569     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3570 
3571   // A left-shift of a constant one will have exactly one bit set because
3572   // shifting the bit off the end is undefined.
3573   if (Val.getOpcode() == ISD::SHL) {
3574     auto *C = isConstOrConstSplat(Val.getOperand(0));
3575     if (C && C->getAPIntValue() == 1)
3576       return true;
3577   }
3578 
3579   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3580   // one bit set.
3581   if (Val.getOpcode() == ISD::SRL) {
3582     auto *C = isConstOrConstSplat(Val.getOperand(0));
3583     if (C && C->getAPIntValue().isSignMask())
3584       return true;
3585   }
3586 
3587   // Are all operands of a build vector constant powers of two?
3588   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3589     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3590           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3591             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3592           return false;
3593         }))
3594       return true;
3595 
3596   // More could be done here, though the above checks are enough
3597   // to handle some common cases.
3598 
3599   // Fall back to computeKnownBits to catch other known cases.
3600   KnownBits Known = computeKnownBits(Val);
3601   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3602 }
3603 
3604 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3605   EVT VT = Op.getValueType();
3606 
3607   // TODO: Assume we don't know anything for now.
3608   if (VT.isScalableVector())
3609     return 1;
3610 
3611   APInt DemandedElts = VT.isVector()
3612                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3613                            : APInt(1, 1);
3614   return ComputeNumSignBits(Op, DemandedElts, Depth);
3615 }
3616 
3617 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3618                                           unsigned Depth) const {
3619   EVT VT = Op.getValueType();
3620   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3621   unsigned VTBits = VT.getScalarSizeInBits();
3622   unsigned NumElts = DemandedElts.getBitWidth();
3623   unsigned Tmp, Tmp2;
3624   unsigned FirstAnswer = 1;
3625 
3626   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3627     const APInt &Val = C->getAPIntValue();
3628     return Val.getNumSignBits();
3629   }
3630 
3631   if (Depth >= MaxRecursionDepth)
3632     return 1;  // Limit search depth.
3633 
3634   if (!DemandedElts || VT.isScalableVector())
3635     return 1;  // No demanded elts, better to assume we don't know anything.
3636 
3637   unsigned Opcode = Op.getOpcode();
3638   switch (Opcode) {
3639   default: break;
3640   case ISD::AssertSext:
3641     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3642     return VTBits-Tmp+1;
3643   case ISD::AssertZext:
3644     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3645     return VTBits-Tmp;
3646 
3647   case ISD::BUILD_VECTOR:
3648     Tmp = VTBits;
3649     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3650       if (!DemandedElts[i])
3651         continue;
3652 
3653       SDValue SrcOp = Op.getOperand(i);
3654       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3655 
3656       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3657       if (SrcOp.getValueSizeInBits() != VTBits) {
3658         assert(SrcOp.getValueSizeInBits() > VTBits &&
3659                "Expected BUILD_VECTOR implicit truncation");
3660         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3661         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3662       }
3663       Tmp = std::min(Tmp, Tmp2);
3664     }
3665     return Tmp;
3666 
3667   case ISD::VECTOR_SHUFFLE: {
3668     // Collect the minimum number of sign bits that are shared by every vector
3669     // element referenced by the shuffle.
3670     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3671     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3672     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3673     for (unsigned i = 0; i != NumElts; ++i) {
3674       int M = SVN->getMaskElt(i);
3675       if (!DemandedElts[i])
3676         continue;
3677       // For UNDEF elements, we don't know anything about the common state of
3678       // the shuffle result.
3679       if (M < 0)
3680         return 1;
3681       if ((unsigned)M < NumElts)
3682         DemandedLHS.setBit((unsigned)M % NumElts);
3683       else
3684         DemandedRHS.setBit((unsigned)M % NumElts);
3685     }
3686     Tmp = std::numeric_limits<unsigned>::max();
3687     if (!!DemandedLHS)
3688       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3689     if (!!DemandedRHS) {
3690       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3691       Tmp = std::min(Tmp, Tmp2);
3692     }
3693     // If we don't know anything, early out and try computeKnownBits fall-back.
3694     if (Tmp == 1)
3695       break;
3696     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3697     return Tmp;
3698   }
3699 
3700   case ISD::BITCAST: {
3701     SDValue N0 = Op.getOperand(0);
3702     EVT SrcVT = N0.getValueType();
3703     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3704 
3705     // Ignore bitcasts from unsupported types..
3706     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3707       break;
3708 
3709     // Fast handling of 'identity' bitcasts.
3710     if (VTBits == SrcBits)
3711       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3712 
3713     bool IsLE = getDataLayout().isLittleEndian();
3714 
3715     // Bitcast 'large element' scalar/vector to 'small element' vector.
3716     if ((SrcBits % VTBits) == 0) {
3717       assert(VT.isVector() && "Expected bitcast to vector");
3718 
3719       unsigned Scale = SrcBits / VTBits;
3720       APInt SrcDemandedElts(NumElts / Scale, 0);
3721       for (unsigned i = 0; i != NumElts; ++i)
3722         if (DemandedElts[i])
3723           SrcDemandedElts.setBit(i / Scale);
3724 
3725       // Fast case - sign splat can be simply split across the small elements.
3726       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3727       if (Tmp == SrcBits)
3728         return VTBits;
3729 
3730       // Slow case - determine how far the sign extends into each sub-element.
3731       Tmp2 = VTBits;
3732       for (unsigned i = 0; i != NumElts; ++i)
3733         if (DemandedElts[i]) {
3734           unsigned SubOffset = i % Scale;
3735           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3736           SubOffset = SubOffset * VTBits;
3737           if (Tmp <= SubOffset)
3738             return 1;
3739           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3740         }
3741       return Tmp2;
3742     }
3743     break;
3744   }
3745 
3746   case ISD::SIGN_EXTEND:
3747     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3748     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3749   case ISD::SIGN_EXTEND_INREG:
3750     // Max of the input and what this extends.
3751     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3752     Tmp = VTBits-Tmp+1;
3753     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3754     return std::max(Tmp, Tmp2);
3755   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3756     SDValue Src = Op.getOperand(0);
3757     EVT SrcVT = Src.getValueType();
3758     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3759     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3760     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3761   }
3762   case ISD::SRA:
3763     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3764     // SRA X, C -> adds C sign bits.
3765     if (const APInt *ShAmt =
3766             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3767       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3768     return Tmp;
3769   case ISD::SHL:
3770     if (const APInt *ShAmt =
3771             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3772       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3773       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3774       if (ShAmt->ult(Tmp))
3775         return Tmp - ShAmt->getZExtValue();
3776     }
3777     break;
3778   case ISD::AND:
3779   case ISD::OR:
3780   case ISD::XOR:    // NOT is handled here.
3781     // Logical binary ops preserve the number of sign bits at the worst.
3782     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3783     if (Tmp != 1) {
3784       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3785       FirstAnswer = std::min(Tmp, Tmp2);
3786       // We computed what we know about the sign bits as our first
3787       // answer. Now proceed to the generic code that uses
3788       // computeKnownBits, and pick whichever answer is better.
3789     }
3790     break;
3791 
3792   case ISD::SELECT:
3793   case ISD::VSELECT:
3794     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3795     if (Tmp == 1) return 1;  // Early out.
3796     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3797     return std::min(Tmp, Tmp2);
3798   case ISD::SELECT_CC:
3799     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3800     if (Tmp == 1) return 1;  // Early out.
3801     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3802     return std::min(Tmp, Tmp2);
3803 
3804   case ISD::SMIN:
3805   case ISD::SMAX: {
3806     // If we have a clamp pattern, we know that the number of sign bits will be
3807     // the minimum of the clamp min/max range.
3808     bool IsMax = (Opcode == ISD::SMAX);
3809     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3810     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3811       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3812         CstHigh =
3813             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3814     if (CstLow && CstHigh) {
3815       if (!IsMax)
3816         std::swap(CstLow, CstHigh);
3817       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3818         Tmp = CstLow->getAPIntValue().getNumSignBits();
3819         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3820         return std::min(Tmp, Tmp2);
3821       }
3822     }
3823 
3824     // Fallback - just get the minimum number of sign bits of the operands.
3825     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3826     if (Tmp == 1)
3827       return 1;  // Early out.
3828     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3829     return std::min(Tmp, Tmp2);
3830   }
3831   case ISD::UMIN:
3832   case ISD::UMAX:
3833     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3834     if (Tmp == 1)
3835       return 1;  // Early out.
3836     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3837     return std::min(Tmp, Tmp2);
3838   case ISD::SADDO:
3839   case ISD::UADDO:
3840   case ISD::SSUBO:
3841   case ISD::USUBO:
3842   case ISD::SMULO:
3843   case ISD::UMULO:
3844     if (Op.getResNo() != 1)
3845       break;
3846     // The boolean result conforms to getBooleanContents.  Fall through.
3847     // If setcc returns 0/-1, all bits are sign bits.
3848     // We know that we have an integer-based boolean since these operations
3849     // are only available for integer.
3850     if (TLI->getBooleanContents(VT.isVector(), false) ==
3851         TargetLowering::ZeroOrNegativeOneBooleanContent)
3852       return VTBits;
3853     break;
3854   case ISD::SETCC:
3855   case ISD::STRICT_FSETCC:
3856   case ISD::STRICT_FSETCCS: {
3857     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3858     // If setcc returns 0/-1, all bits are sign bits.
3859     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3860         TargetLowering::ZeroOrNegativeOneBooleanContent)
3861       return VTBits;
3862     break;
3863   }
3864   case ISD::ROTL:
3865   case ISD::ROTR:
3866     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3867 
3868     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3869     if (Tmp == VTBits)
3870       return VTBits;
3871 
3872     if (ConstantSDNode *C =
3873             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3874       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3875 
3876       // Handle rotate right by N like a rotate left by 32-N.
3877       if (Opcode == ISD::ROTR)
3878         RotAmt = (VTBits - RotAmt) % VTBits;
3879 
3880       // If we aren't rotating out all of the known-in sign bits, return the
3881       // number that are left.  This handles rotl(sext(x), 1) for example.
3882       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3883     }
3884     break;
3885   case ISD::ADD:
3886   case ISD::ADDC:
3887     // Add can have at most one carry bit.  Thus we know that the output
3888     // is, at worst, one more bit than the inputs.
3889     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3890     if (Tmp == 1) return 1; // Early out.
3891 
3892     // Special case decrementing a value (ADD X, -1):
3893     if (ConstantSDNode *CRHS =
3894             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3895       if (CRHS->isAllOnesValue()) {
3896         KnownBits Known =
3897             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3898 
3899         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3900         // sign bits set.
3901         if ((Known.Zero | 1).isAllOnesValue())
3902           return VTBits;
3903 
3904         // If we are subtracting one from a positive number, there is no carry
3905         // out of the result.
3906         if (Known.isNonNegative())
3907           return Tmp;
3908       }
3909 
3910     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3911     if (Tmp2 == 1) return 1; // Early out.
3912     return std::min(Tmp, Tmp2) - 1;
3913   case ISD::SUB:
3914     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3915     if (Tmp2 == 1) return 1; // Early out.
3916 
3917     // Handle NEG.
3918     if (ConstantSDNode *CLHS =
3919             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3920       if (CLHS->isNullValue()) {
3921         KnownBits Known =
3922             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3923         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3924         // sign bits set.
3925         if ((Known.Zero | 1).isAllOnesValue())
3926           return VTBits;
3927 
3928         // If the input is known to be positive (the sign bit is known clear),
3929         // the output of the NEG has the same number of sign bits as the input.
3930         if (Known.isNonNegative())
3931           return Tmp2;
3932 
3933         // Otherwise, we treat this like a SUB.
3934       }
3935 
3936     // Sub can have at most one carry bit.  Thus we know that the output
3937     // is, at worst, one more bit than the inputs.
3938     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3939     if (Tmp == 1) return 1; // Early out.
3940     return std::min(Tmp, Tmp2) - 1;
3941   case ISD::MUL: {
3942     // The output of the Mul can be at most twice the valid bits in the inputs.
3943     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3944     if (SignBitsOp0 == 1)
3945       break;
3946     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3947     if (SignBitsOp1 == 1)
3948       break;
3949     unsigned OutValidBits =
3950         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3951     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3952   }
3953   case ISD::SREM:
3954     // The sign bit is the LHS's sign bit, except when the result of the
3955     // remainder is zero. The magnitude of the result should be less than or
3956     // equal to the magnitude of the LHS. Therefore, the result should have
3957     // at least as many sign bits as the left hand side.
3958     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3959   case ISD::TRUNCATE: {
3960     // Check if the sign bits of source go down as far as the truncated value.
3961     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3962     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3963     if (NumSrcSignBits > (NumSrcBits - VTBits))
3964       return NumSrcSignBits - (NumSrcBits - VTBits);
3965     break;
3966   }
3967   case ISD::EXTRACT_ELEMENT: {
3968     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3969     const int BitWidth = Op.getValueSizeInBits();
3970     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3971 
3972     // Get reverse index (starting from 1), Op1 value indexes elements from
3973     // little end. Sign starts at big end.
3974     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3975 
3976     // If the sign portion ends in our element the subtraction gives correct
3977     // result. Otherwise it gives either negative or > bitwidth result
3978     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3979   }
3980   case ISD::INSERT_VECTOR_ELT: {
3981     // If we know the element index, split the demand between the
3982     // source vector and the inserted element, otherwise assume we need
3983     // the original demanded vector elements and the value.
3984     SDValue InVec = Op.getOperand(0);
3985     SDValue InVal = Op.getOperand(1);
3986     SDValue EltNo = Op.getOperand(2);
3987     bool DemandedVal = true;
3988     APInt DemandedVecElts = DemandedElts;
3989     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3990     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3991       unsigned EltIdx = CEltNo->getZExtValue();
3992       DemandedVal = !!DemandedElts[EltIdx];
3993       DemandedVecElts.clearBit(EltIdx);
3994     }
3995     Tmp = std::numeric_limits<unsigned>::max();
3996     if (DemandedVal) {
3997       // TODO - handle implicit truncation of inserted elements.
3998       if (InVal.getScalarValueSizeInBits() != VTBits)
3999         break;
4000       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4001       Tmp = std::min(Tmp, Tmp2);
4002     }
4003     if (!!DemandedVecElts) {
4004       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4005       Tmp = std::min(Tmp, Tmp2);
4006     }
4007     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4008     return Tmp;
4009   }
4010   case ISD::EXTRACT_VECTOR_ELT: {
4011     SDValue InVec = Op.getOperand(0);
4012     SDValue EltNo = Op.getOperand(1);
4013     EVT VecVT = InVec.getValueType();
4014     // ComputeNumSignBits not yet implemented for scalable vectors.
4015     if (VecVT.isScalableVector())
4016       break;
4017     const unsigned BitWidth = Op.getValueSizeInBits();
4018     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4019     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4020 
4021     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4022     // anything about sign bits. But if the sizes match we can derive knowledge
4023     // about sign bits from the vector operand.
4024     if (BitWidth != EltBitWidth)
4025       break;
4026 
4027     // If we know the element index, just demand that vector element, else for
4028     // an unknown element index, ignore DemandedElts and demand them all.
4029     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4030     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4031     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4032       DemandedSrcElts =
4033           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4034 
4035     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4036   }
4037   case ISD::EXTRACT_SUBVECTOR: {
4038     // Offset the demanded elts by the subvector index.
4039     SDValue Src = Op.getOperand(0);
4040     // Bail until we can represent demanded elements for scalable vectors.
4041     if (Src.getValueType().isScalableVector())
4042       break;
4043     uint64_t Idx = Op.getConstantOperandVal(1);
4044     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4045     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4046     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4047   }
4048   case ISD::CONCAT_VECTORS: {
4049     // Determine the minimum number of sign bits across all demanded
4050     // elts of the input vectors. Early out if the result is already 1.
4051     Tmp = std::numeric_limits<unsigned>::max();
4052     EVT SubVectorVT = Op.getOperand(0).getValueType();
4053     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4054     unsigned NumSubVectors = Op.getNumOperands();
4055     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4056       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4057       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4058       if (!DemandedSub)
4059         continue;
4060       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4061       Tmp = std::min(Tmp, Tmp2);
4062     }
4063     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4064     return Tmp;
4065   }
4066   case ISD::INSERT_SUBVECTOR: {
4067     // Demand any elements from the subvector and the remainder from the src its
4068     // inserted into.
4069     SDValue Src = Op.getOperand(0);
4070     SDValue Sub = Op.getOperand(1);
4071     uint64_t Idx = Op.getConstantOperandVal(2);
4072     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4073     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4074     APInt DemandedSrcElts = DemandedElts;
4075     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4076 
4077     Tmp = std::numeric_limits<unsigned>::max();
4078     if (!!DemandedSubElts) {
4079       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4080       if (Tmp == 1)
4081         return 1; // early-out
4082     }
4083     if (!!DemandedSrcElts) {
4084       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4085       Tmp = std::min(Tmp, Tmp2);
4086     }
4087     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4088     return Tmp;
4089   }
4090   }
4091 
4092   // If we are looking at the loaded value of the SDNode.
4093   if (Op.getResNo() == 0) {
4094     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4095     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4096       unsigned ExtType = LD->getExtensionType();
4097       switch (ExtType) {
4098       default: break;
4099       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4100         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4101         return VTBits - Tmp + 1;
4102       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4103         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4104         return VTBits - Tmp;
4105       case ISD::NON_EXTLOAD:
4106         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4107           // We only need to handle vectors - computeKnownBits should handle
4108           // scalar cases.
4109           Type *CstTy = Cst->getType();
4110           if (CstTy->isVectorTy() &&
4111               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4112             Tmp = VTBits;
4113             for (unsigned i = 0; i != NumElts; ++i) {
4114               if (!DemandedElts[i])
4115                 continue;
4116               if (Constant *Elt = Cst->getAggregateElement(i)) {
4117                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4118                   const APInt &Value = CInt->getValue();
4119                   Tmp = std::min(Tmp, Value.getNumSignBits());
4120                   continue;
4121                 }
4122                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4123                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4124                   Tmp = std::min(Tmp, Value.getNumSignBits());
4125                   continue;
4126                 }
4127               }
4128               // Unknown type. Conservatively assume no bits match sign bit.
4129               return 1;
4130             }
4131             return Tmp;
4132           }
4133         }
4134         break;
4135       }
4136     }
4137   }
4138 
4139   // Allow the target to implement this method for its nodes.
4140   if (Opcode >= ISD::BUILTIN_OP_END ||
4141       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4142       Opcode == ISD::INTRINSIC_W_CHAIN ||
4143       Opcode == ISD::INTRINSIC_VOID) {
4144     unsigned NumBits =
4145         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4146     if (NumBits > 1)
4147       FirstAnswer = std::max(FirstAnswer, NumBits);
4148   }
4149 
4150   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4151   // use this information.
4152   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4153 
4154   APInt Mask;
4155   if (Known.isNonNegative()) {        // sign bit is 0
4156     Mask = Known.Zero;
4157   } else if (Known.isNegative()) {  // sign bit is 1;
4158     Mask = Known.One;
4159   } else {
4160     // Nothing known.
4161     return FirstAnswer;
4162   }
4163 
4164   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4165   // the number of identical bits in the top of the input value.
4166   Mask <<= Mask.getBitWidth()-VTBits;
4167   return std::max(FirstAnswer, Mask.countLeadingOnes());
4168 }
4169 
4170 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4171   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4172       !isa<ConstantSDNode>(Op.getOperand(1)))
4173     return false;
4174 
4175   if (Op.getOpcode() == ISD::OR &&
4176       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4177     return false;
4178 
4179   return true;
4180 }
4181 
4182 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4183   // If we're told that NaNs won't happen, assume they won't.
4184   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4185     return true;
4186 
4187   if (Depth >= MaxRecursionDepth)
4188     return false; // Limit search depth.
4189 
4190   // TODO: Handle vectors.
4191   // If the value is a constant, we can obviously see if it is a NaN or not.
4192   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4193     return !C->getValueAPF().isNaN() ||
4194            (SNaN && !C->getValueAPF().isSignaling());
4195   }
4196 
4197   unsigned Opcode = Op.getOpcode();
4198   switch (Opcode) {
4199   case ISD::FADD:
4200   case ISD::FSUB:
4201   case ISD::FMUL:
4202   case ISD::FDIV:
4203   case ISD::FREM:
4204   case ISD::FSIN:
4205   case ISD::FCOS: {
4206     if (SNaN)
4207       return true;
4208     // TODO: Need isKnownNeverInfinity
4209     return false;
4210   }
4211   case ISD::FCANONICALIZE:
4212   case ISD::FEXP:
4213   case ISD::FEXP2:
4214   case ISD::FTRUNC:
4215   case ISD::FFLOOR:
4216   case ISD::FCEIL:
4217   case ISD::FROUND:
4218   case ISD::FROUNDEVEN:
4219   case ISD::FRINT:
4220   case ISD::FNEARBYINT: {
4221     if (SNaN)
4222       return true;
4223     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4224   }
4225   case ISD::FABS:
4226   case ISD::FNEG:
4227   case ISD::FCOPYSIGN: {
4228     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4229   }
4230   case ISD::SELECT:
4231     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4232            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4233   case ISD::FP_EXTEND:
4234   case ISD::FP_ROUND: {
4235     if (SNaN)
4236       return true;
4237     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4238   }
4239   case ISD::SINT_TO_FP:
4240   case ISD::UINT_TO_FP:
4241     return true;
4242   case ISD::FMA:
4243   case ISD::FMAD: {
4244     if (SNaN)
4245       return true;
4246     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4247            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4248            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4249   }
4250   case ISD::FSQRT: // Need is known positive
4251   case ISD::FLOG:
4252   case ISD::FLOG2:
4253   case ISD::FLOG10:
4254   case ISD::FPOWI:
4255   case ISD::FPOW: {
4256     if (SNaN)
4257       return true;
4258     // TODO: Refine on operand
4259     return false;
4260   }
4261   case ISD::FMINNUM:
4262   case ISD::FMAXNUM: {
4263     // Only one needs to be known not-nan, since it will be returned if the
4264     // other ends up being one.
4265     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4266            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4267   }
4268   case ISD::FMINNUM_IEEE:
4269   case ISD::FMAXNUM_IEEE: {
4270     if (SNaN)
4271       return true;
4272     // This can return a NaN if either operand is an sNaN, or if both operands
4273     // are NaN.
4274     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4275             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4276            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4277             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4278   }
4279   case ISD::FMINIMUM:
4280   case ISD::FMAXIMUM: {
4281     // TODO: Does this quiet or return the origina NaN as-is?
4282     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4283            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4284   }
4285   case ISD::EXTRACT_VECTOR_ELT: {
4286     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4287   }
4288   default:
4289     if (Opcode >= ISD::BUILTIN_OP_END ||
4290         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4291         Opcode == ISD::INTRINSIC_W_CHAIN ||
4292         Opcode == ISD::INTRINSIC_VOID) {
4293       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4294     }
4295 
4296     return false;
4297   }
4298 }
4299 
4300 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4301   assert(Op.getValueType().isFloatingPoint() &&
4302          "Floating point type expected");
4303 
4304   // If the value is a constant, we can obviously see if it is a zero or not.
4305   // TODO: Add BuildVector support.
4306   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4307     return !C->isZero();
4308   return false;
4309 }
4310 
4311 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4312   assert(!Op.getValueType().isFloatingPoint() &&
4313          "Floating point types unsupported - use isKnownNeverZeroFloat");
4314 
4315   // If the value is a constant, we can obviously see if it is a zero or not.
4316   if (ISD::matchUnaryPredicate(
4317           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4318     return true;
4319 
4320   // TODO: Recognize more cases here.
4321   switch (Op.getOpcode()) {
4322   default: break;
4323   case ISD::OR:
4324     if (isKnownNeverZero(Op.getOperand(1)) ||
4325         isKnownNeverZero(Op.getOperand(0)))
4326       return true;
4327     break;
4328   }
4329 
4330   return false;
4331 }
4332 
4333 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4334   // Check the obvious case.
4335   if (A == B) return true;
4336 
4337   // For for negative and positive zero.
4338   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4339     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4340       if (CA->isZero() && CB->isZero()) return true;
4341 
4342   // Otherwise they may not be equal.
4343   return false;
4344 }
4345 
4346 // FIXME: unify with llvm::haveNoCommonBitsSet.
4347 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4348 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4349   assert(A.getValueType() == B.getValueType() &&
4350          "Values must have the same type");
4351   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4352 }
4353 
4354 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4355                                SelectionDAG &DAG) {
4356   if (cast<ConstantSDNode>(Step)->isNullValue())
4357     return DAG.getConstant(0, DL, VT);
4358 
4359   return SDValue();
4360 }
4361 
4362 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4363                                 ArrayRef<SDValue> Ops,
4364                                 SelectionDAG &DAG) {
4365   int NumOps = Ops.size();
4366   assert(NumOps != 0 && "Can't build an empty vector!");
4367   assert(!VT.isScalableVector() &&
4368          "BUILD_VECTOR cannot be used with scalable types");
4369   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4370          "Incorrect element count in BUILD_VECTOR!");
4371 
4372   // BUILD_VECTOR of UNDEFs is UNDEF.
4373   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4374     return DAG.getUNDEF(VT);
4375 
4376   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4377   SDValue IdentitySrc;
4378   bool IsIdentity = true;
4379   for (int i = 0; i != NumOps; ++i) {
4380     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4381         Ops[i].getOperand(0).getValueType() != VT ||
4382         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4383         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4384         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4385       IsIdentity = false;
4386       break;
4387     }
4388     IdentitySrc = Ops[i].getOperand(0);
4389   }
4390   if (IsIdentity)
4391     return IdentitySrc;
4392 
4393   return SDValue();
4394 }
4395 
4396 /// Try to simplify vector concatenation to an input value, undef, or build
4397 /// vector.
4398 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4399                                   ArrayRef<SDValue> Ops,
4400                                   SelectionDAG &DAG) {
4401   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4402   assert(llvm::all_of(Ops,
4403                       [Ops](SDValue Op) {
4404                         return Ops[0].getValueType() == Op.getValueType();
4405                       }) &&
4406          "Concatenation of vectors with inconsistent value types!");
4407   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4408              VT.getVectorElementCount() &&
4409          "Incorrect element count in vector concatenation!");
4410 
4411   if (Ops.size() == 1)
4412     return Ops[0];
4413 
4414   // Concat of UNDEFs is UNDEF.
4415   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4416     return DAG.getUNDEF(VT);
4417 
4418   // Scan the operands and look for extract operations from a single source
4419   // that correspond to insertion at the same location via this concatenation:
4420   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4421   SDValue IdentitySrc;
4422   bool IsIdentity = true;
4423   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4424     SDValue Op = Ops[i];
4425     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4426     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4427         Op.getOperand(0).getValueType() != VT ||
4428         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4429         Op.getConstantOperandVal(1) != IdentityIndex) {
4430       IsIdentity = false;
4431       break;
4432     }
4433     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4434            "Unexpected identity source vector for concat of extracts");
4435     IdentitySrc = Op.getOperand(0);
4436   }
4437   if (IsIdentity) {
4438     assert(IdentitySrc && "Failed to set source vector of extracts");
4439     return IdentitySrc;
4440   }
4441 
4442   // The code below this point is only designed to work for fixed width
4443   // vectors, so we bail out for now.
4444   if (VT.isScalableVector())
4445     return SDValue();
4446 
4447   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4448   // simplified to one big BUILD_VECTOR.
4449   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4450   EVT SVT = VT.getScalarType();
4451   SmallVector<SDValue, 16> Elts;
4452   for (SDValue Op : Ops) {
4453     EVT OpVT = Op.getValueType();
4454     if (Op.isUndef())
4455       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4456     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4457       Elts.append(Op->op_begin(), Op->op_end());
4458     else
4459       return SDValue();
4460   }
4461 
4462   // BUILD_VECTOR requires all inputs to be of the same type, find the
4463   // maximum type and extend them all.
4464   for (SDValue Op : Elts)
4465     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4466 
4467   if (SVT.bitsGT(VT.getScalarType())) {
4468     for (SDValue &Op : Elts) {
4469       if (Op.isUndef())
4470         Op = DAG.getUNDEF(SVT);
4471       else
4472         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4473                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4474                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4475     }
4476   }
4477 
4478   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4479   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4480   return V;
4481 }
4482 
4483 /// Gets or creates the specified node.
4484 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4485   FoldingSetNodeID ID;
4486   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4487   void *IP = nullptr;
4488   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4489     return SDValue(E, 0);
4490 
4491   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4492                               getVTList(VT));
4493   CSEMap.InsertNode(N, IP);
4494 
4495   InsertNode(N);
4496   SDValue V = SDValue(N, 0);
4497   NewSDValueDbgMsg(V, "Creating new node: ", this);
4498   return V;
4499 }
4500 
4501 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4502                               SDValue Operand) {
4503   SDNodeFlags Flags;
4504   if (Inserter)
4505     Flags = Inserter->getFlags();
4506   return getNode(Opcode, DL, VT, Operand, Flags);
4507 }
4508 
4509 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4510                               SDValue Operand, const SDNodeFlags Flags) {
4511   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4512          "Operand is DELETED_NODE!");
4513   // Constant fold unary operations with an integer constant operand. Even
4514   // opaque constant will be folded, because the folding of unary operations
4515   // doesn't create new constants with different values. Nevertheless, the
4516   // opaque flag is preserved during folding to prevent future folding with
4517   // other constants.
4518   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4519     const APInt &Val = C->getAPIntValue();
4520     switch (Opcode) {
4521     default: break;
4522     case ISD::SIGN_EXTEND:
4523       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4524                          C->isTargetOpcode(), C->isOpaque());
4525     case ISD::TRUNCATE:
4526       if (C->isOpaque())
4527         break;
4528       LLVM_FALLTHROUGH;
4529     case ISD::ANY_EXTEND:
4530     case ISD::ZERO_EXTEND:
4531       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4532                          C->isTargetOpcode(), C->isOpaque());
4533     case ISD::UINT_TO_FP:
4534     case ISD::SINT_TO_FP: {
4535       APFloat apf(EVTToAPFloatSemantics(VT),
4536                   APInt::getNullValue(VT.getSizeInBits()));
4537       (void)apf.convertFromAPInt(Val,
4538                                  Opcode==ISD::SINT_TO_FP,
4539                                  APFloat::rmNearestTiesToEven);
4540       return getConstantFP(apf, DL, VT);
4541     }
4542     case ISD::BITCAST:
4543       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4544         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4545       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4546         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4547       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4548         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4549       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4550         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4551       break;
4552     case ISD::ABS:
4553       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4554                          C->isOpaque());
4555     case ISD::BITREVERSE:
4556       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4557                          C->isOpaque());
4558     case ISD::BSWAP:
4559       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4560                          C->isOpaque());
4561     case ISD::CTPOP:
4562       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4563                          C->isOpaque());
4564     case ISD::CTLZ:
4565     case ISD::CTLZ_ZERO_UNDEF:
4566       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4567                          C->isOpaque());
4568     case ISD::CTTZ:
4569     case ISD::CTTZ_ZERO_UNDEF:
4570       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4571                          C->isOpaque());
4572     case ISD::FP16_TO_FP: {
4573       bool Ignored;
4574       APFloat FPV(APFloat::IEEEhalf(),
4575                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4576 
4577       // This can return overflow, underflow, or inexact; we don't care.
4578       // FIXME need to be more flexible about rounding mode.
4579       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4580                         APFloat::rmNearestTiesToEven, &Ignored);
4581       return getConstantFP(FPV, DL, VT);
4582     }
4583     case ISD::STEP_VECTOR: {
4584       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4585         return V;
4586       break;
4587     }
4588     }
4589   }
4590 
4591   // Constant fold unary operations with a floating point constant operand.
4592   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4593     APFloat V = C->getValueAPF();    // make copy
4594     switch (Opcode) {
4595     case ISD::FNEG:
4596       V.changeSign();
4597       return getConstantFP(V, DL, VT);
4598     case ISD::FABS:
4599       V.clearSign();
4600       return getConstantFP(V, DL, VT);
4601     case ISD::FCEIL: {
4602       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4603       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4604         return getConstantFP(V, DL, VT);
4605       break;
4606     }
4607     case ISD::FTRUNC: {
4608       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4609       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4610         return getConstantFP(V, DL, VT);
4611       break;
4612     }
4613     case ISD::FFLOOR: {
4614       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4615       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4616         return getConstantFP(V, DL, VT);
4617       break;
4618     }
4619     case ISD::FP_EXTEND: {
4620       bool ignored;
4621       // This can return overflow, underflow, or inexact; we don't care.
4622       // FIXME need to be more flexible about rounding mode.
4623       (void)V.convert(EVTToAPFloatSemantics(VT),
4624                       APFloat::rmNearestTiesToEven, &ignored);
4625       return getConstantFP(V, DL, VT);
4626     }
4627     case ISD::FP_TO_SINT:
4628     case ISD::FP_TO_UINT: {
4629       bool ignored;
4630       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4631       // FIXME need to be more flexible about rounding mode.
4632       APFloat::opStatus s =
4633           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4634       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4635         break;
4636       return getConstant(IntVal, DL, VT);
4637     }
4638     case ISD::BITCAST:
4639       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4640         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4641       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4642         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4643       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4644         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4645       break;
4646     case ISD::FP_TO_FP16: {
4647       bool Ignored;
4648       // This can return overflow, underflow, or inexact; we don't care.
4649       // FIXME need to be more flexible about rounding mode.
4650       (void)V.convert(APFloat::IEEEhalf(),
4651                       APFloat::rmNearestTiesToEven, &Ignored);
4652       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4653     }
4654     }
4655   }
4656 
4657   // Constant fold unary operations with a vector integer or float operand.
4658   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4659     if (BV->isConstant()) {
4660       switch (Opcode) {
4661       default:
4662         // FIXME: Entirely reasonable to perform folding of other unary
4663         // operations here as the need arises.
4664         break;
4665       case ISD::FNEG:
4666       case ISD::FABS:
4667       case ISD::FCEIL:
4668       case ISD::FTRUNC:
4669       case ISD::FFLOOR:
4670       case ISD::FP_EXTEND:
4671       case ISD::FP_TO_SINT:
4672       case ISD::FP_TO_UINT:
4673       case ISD::TRUNCATE:
4674       case ISD::ANY_EXTEND:
4675       case ISD::ZERO_EXTEND:
4676       case ISD::SIGN_EXTEND:
4677       case ISD::UINT_TO_FP:
4678       case ISD::SINT_TO_FP:
4679       case ISD::ABS:
4680       case ISD::BITREVERSE:
4681       case ISD::BSWAP:
4682       case ISD::CTLZ:
4683       case ISD::CTLZ_ZERO_UNDEF:
4684       case ISD::CTTZ:
4685       case ISD::CTTZ_ZERO_UNDEF:
4686       case ISD::CTPOP: {
4687         SDValue Ops = { Operand };
4688         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4689           return Fold;
4690       }
4691       }
4692     }
4693   }
4694 
4695   unsigned OpOpcode = Operand.getNode()->getOpcode();
4696   switch (Opcode) {
4697   case ISD::STEP_VECTOR:
4698     assert(VT.isScalableVector() &&
4699            "STEP_VECTOR can only be used with scalable types");
4700     assert(VT.getScalarSizeInBits() >= 8 &&
4701            "STEP_VECTOR can only be used with vectors of integers that are at "
4702            "least 8 bits wide");
4703     assert(Operand.getValueType().bitsGE(VT.getScalarType()) &&
4704            "Operand type should be at least as large as the element type");
4705     assert(isa<ConstantSDNode>(Operand) &&
4706            cast<ConstantSDNode>(Operand)->getAPIntValue().isNonNegative() &&
4707            "Expected positive integer constant for STEP_VECTOR");
4708     break;
4709   case ISD::FREEZE:
4710     assert(VT == Operand.getValueType() && "Unexpected VT!");
4711     break;
4712   case ISD::TokenFactor:
4713   case ISD::MERGE_VALUES:
4714   case ISD::CONCAT_VECTORS:
4715     return Operand;         // Factor, merge or concat of one node?  No need.
4716   case ISD::BUILD_VECTOR: {
4717     // Attempt to simplify BUILD_VECTOR.
4718     SDValue Ops[] = {Operand};
4719     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4720       return V;
4721     break;
4722   }
4723   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4724   case ISD::FP_EXTEND:
4725     assert(VT.isFloatingPoint() &&
4726            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4727     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4728     assert((!VT.isVector() ||
4729             VT.getVectorElementCount() ==
4730             Operand.getValueType().getVectorElementCount()) &&
4731            "Vector element count mismatch!");
4732     assert(Operand.getValueType().bitsLT(VT) &&
4733            "Invalid fpext node, dst < src!");
4734     if (Operand.isUndef())
4735       return getUNDEF(VT);
4736     break;
4737   case ISD::FP_TO_SINT:
4738   case ISD::FP_TO_UINT:
4739     if (Operand.isUndef())
4740       return getUNDEF(VT);
4741     break;
4742   case ISD::SINT_TO_FP:
4743   case ISD::UINT_TO_FP:
4744     // [us]itofp(undef) = 0, because the result value is bounded.
4745     if (Operand.isUndef())
4746       return getConstantFP(0.0, DL, VT);
4747     break;
4748   case ISD::SIGN_EXTEND:
4749     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4750            "Invalid SIGN_EXTEND!");
4751     assert(VT.isVector() == Operand.getValueType().isVector() &&
4752            "SIGN_EXTEND result type type should be vector iff the operand "
4753            "type is vector!");
4754     if (Operand.getValueType() == VT) return Operand;   // noop extension
4755     assert((!VT.isVector() ||
4756             VT.getVectorElementCount() ==
4757                 Operand.getValueType().getVectorElementCount()) &&
4758            "Vector element count mismatch!");
4759     assert(Operand.getValueType().bitsLT(VT) &&
4760            "Invalid sext node, dst < src!");
4761     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4762       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4763     else if (OpOpcode == ISD::UNDEF)
4764       // sext(undef) = 0, because the top bits will all be the same.
4765       return getConstant(0, DL, VT);
4766     break;
4767   case ISD::ZERO_EXTEND:
4768     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4769            "Invalid ZERO_EXTEND!");
4770     assert(VT.isVector() == Operand.getValueType().isVector() &&
4771            "ZERO_EXTEND result type type should be vector iff the operand "
4772            "type is vector!");
4773     if (Operand.getValueType() == VT) return Operand;   // noop extension
4774     assert((!VT.isVector() ||
4775             VT.getVectorElementCount() ==
4776                 Operand.getValueType().getVectorElementCount()) &&
4777            "Vector element count mismatch!");
4778     assert(Operand.getValueType().bitsLT(VT) &&
4779            "Invalid zext node, dst < src!");
4780     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4781       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4782     else if (OpOpcode == ISD::UNDEF)
4783       // zext(undef) = 0, because the top bits will be zero.
4784       return getConstant(0, DL, VT);
4785     break;
4786   case ISD::ANY_EXTEND:
4787     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4788            "Invalid ANY_EXTEND!");
4789     assert(VT.isVector() == Operand.getValueType().isVector() &&
4790            "ANY_EXTEND result type type should be vector iff the operand "
4791            "type is vector!");
4792     if (Operand.getValueType() == VT) return Operand;   // noop extension
4793     assert((!VT.isVector() ||
4794             VT.getVectorElementCount() ==
4795                 Operand.getValueType().getVectorElementCount()) &&
4796            "Vector element count mismatch!");
4797     assert(Operand.getValueType().bitsLT(VT) &&
4798            "Invalid anyext node, dst < src!");
4799 
4800     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4801         OpOpcode == ISD::ANY_EXTEND)
4802       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4803       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4804     else if (OpOpcode == ISD::UNDEF)
4805       return getUNDEF(VT);
4806 
4807     // (ext (trunc x)) -> x
4808     if (OpOpcode == ISD::TRUNCATE) {
4809       SDValue OpOp = Operand.getOperand(0);
4810       if (OpOp.getValueType() == VT) {
4811         transferDbgValues(Operand, OpOp);
4812         return OpOp;
4813       }
4814     }
4815     break;
4816   case ISD::TRUNCATE:
4817     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4818            "Invalid TRUNCATE!");
4819     assert(VT.isVector() == Operand.getValueType().isVector() &&
4820            "TRUNCATE result type type should be vector iff the operand "
4821            "type is vector!");
4822     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4823     assert((!VT.isVector() ||
4824             VT.getVectorElementCount() ==
4825                 Operand.getValueType().getVectorElementCount()) &&
4826            "Vector element count mismatch!");
4827     assert(Operand.getValueType().bitsGT(VT) &&
4828            "Invalid truncate node, src < dst!");
4829     if (OpOpcode == ISD::TRUNCATE)
4830       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4831     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4832         OpOpcode == ISD::ANY_EXTEND) {
4833       // If the source is smaller than the dest, we still need an extend.
4834       if (Operand.getOperand(0).getValueType().getScalarType()
4835             .bitsLT(VT.getScalarType()))
4836         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4837       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4838         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4839       return Operand.getOperand(0);
4840     }
4841     if (OpOpcode == ISD::UNDEF)
4842       return getUNDEF(VT);
4843     break;
4844   case ISD::ANY_EXTEND_VECTOR_INREG:
4845   case ISD::ZERO_EXTEND_VECTOR_INREG:
4846   case ISD::SIGN_EXTEND_VECTOR_INREG:
4847     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4848     assert(Operand.getValueType().bitsLE(VT) &&
4849            "The input must be the same size or smaller than the result.");
4850     assert(VT.getVectorNumElements() <
4851              Operand.getValueType().getVectorNumElements() &&
4852            "The destination vector type must have fewer lanes than the input.");
4853     break;
4854   case ISD::ABS:
4855     assert(VT.isInteger() && VT == Operand.getValueType() &&
4856            "Invalid ABS!");
4857     if (OpOpcode == ISD::UNDEF)
4858       return getUNDEF(VT);
4859     break;
4860   case ISD::BSWAP:
4861     assert(VT.isInteger() && VT == Operand.getValueType() &&
4862            "Invalid BSWAP!");
4863     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4864            "BSWAP types must be a multiple of 16 bits!");
4865     if (OpOpcode == ISD::UNDEF)
4866       return getUNDEF(VT);
4867     break;
4868   case ISD::BITREVERSE:
4869     assert(VT.isInteger() && VT == Operand.getValueType() &&
4870            "Invalid BITREVERSE!");
4871     if (OpOpcode == ISD::UNDEF)
4872       return getUNDEF(VT);
4873     break;
4874   case ISD::BITCAST:
4875     // Basic sanity checking.
4876     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4877            "Cannot BITCAST between types of different sizes!");
4878     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4879     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4880       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4881     if (OpOpcode == ISD::UNDEF)
4882       return getUNDEF(VT);
4883     break;
4884   case ISD::SCALAR_TO_VECTOR:
4885     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4886            (VT.getVectorElementType() == Operand.getValueType() ||
4887             (VT.getVectorElementType().isInteger() &&
4888              Operand.getValueType().isInteger() &&
4889              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4890            "Illegal SCALAR_TO_VECTOR node!");
4891     if (OpOpcode == ISD::UNDEF)
4892       return getUNDEF(VT);
4893     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4894     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4895         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4896         Operand.getConstantOperandVal(1) == 0 &&
4897         Operand.getOperand(0).getValueType() == VT)
4898       return Operand.getOperand(0);
4899     break;
4900   case ISD::FNEG:
4901     // Negation of an unknown bag of bits is still completely undefined.
4902     if (OpOpcode == ISD::UNDEF)
4903       return getUNDEF(VT);
4904 
4905     if (OpOpcode == ISD::FNEG)  // --X -> X
4906       return Operand.getOperand(0);
4907     break;
4908   case ISD::FABS:
4909     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4910       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4911     break;
4912   case ISD::VSCALE:
4913     assert(VT == Operand.getValueType() && "Unexpected VT!");
4914     break;
4915   case ISD::CTPOP:
4916     if (Operand.getValueType().getScalarType() == MVT::i1)
4917       return Operand;
4918     break;
4919   case ISD::CTLZ:
4920   case ISD::CTTZ:
4921     if (Operand.getValueType().getScalarType() == MVT::i1)
4922       return getNOT(DL, Operand, Operand.getValueType());
4923     break;
4924   case ISD::VECREDUCE_SMIN:
4925   case ISD::VECREDUCE_UMAX:
4926     if (Operand.getValueType().getScalarType() == MVT::i1)
4927       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4928     break;
4929   case ISD::VECREDUCE_SMAX:
4930   case ISD::VECREDUCE_UMIN:
4931     if (Operand.getValueType().getScalarType() == MVT::i1)
4932       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4933     break;
4934   }
4935 
4936   SDNode *N;
4937   SDVTList VTs = getVTList(VT);
4938   SDValue Ops[] = {Operand};
4939   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4940     FoldingSetNodeID ID;
4941     AddNodeIDNode(ID, Opcode, VTs, Ops);
4942     void *IP = nullptr;
4943     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4944       E->intersectFlagsWith(Flags);
4945       return SDValue(E, 0);
4946     }
4947 
4948     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4949     N->setFlags(Flags);
4950     createOperands(N, Ops);
4951     CSEMap.InsertNode(N, IP);
4952   } else {
4953     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4954     createOperands(N, Ops);
4955   }
4956 
4957   InsertNode(N);
4958   SDValue V = SDValue(N, 0);
4959   NewSDValueDbgMsg(V, "Creating new node: ", this);
4960   return V;
4961 }
4962 
4963 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4964                                        const APInt &C2) {
4965   switch (Opcode) {
4966   case ISD::ADD:  return C1 + C2;
4967   case ISD::SUB:  return C1 - C2;
4968   case ISD::MUL:  return C1 * C2;
4969   case ISD::AND:  return C1 & C2;
4970   case ISD::OR:   return C1 | C2;
4971   case ISD::XOR:  return C1 ^ C2;
4972   case ISD::SHL:  return C1 << C2;
4973   case ISD::SRL:  return C1.lshr(C2);
4974   case ISD::SRA:  return C1.ashr(C2);
4975   case ISD::ROTL: return C1.rotl(C2);
4976   case ISD::ROTR: return C1.rotr(C2);
4977   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4978   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4979   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4980   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4981   case ISD::SADDSAT: return C1.sadd_sat(C2);
4982   case ISD::UADDSAT: return C1.uadd_sat(C2);
4983   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4984   case ISD::USUBSAT: return C1.usub_sat(C2);
4985   case ISD::UDIV:
4986     if (!C2.getBoolValue())
4987       break;
4988     return C1.udiv(C2);
4989   case ISD::UREM:
4990     if (!C2.getBoolValue())
4991       break;
4992     return C1.urem(C2);
4993   case ISD::SDIV:
4994     if (!C2.getBoolValue())
4995       break;
4996     return C1.sdiv(C2);
4997   case ISD::SREM:
4998     if (!C2.getBoolValue())
4999       break;
5000     return C1.srem(C2);
5001   }
5002   return llvm::None;
5003 }
5004 
5005 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5006                                        const GlobalAddressSDNode *GA,
5007                                        const SDNode *N2) {
5008   if (GA->getOpcode() != ISD::GlobalAddress)
5009     return SDValue();
5010   if (!TLI->isOffsetFoldingLegal(GA))
5011     return SDValue();
5012   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5013   if (!C2)
5014     return SDValue();
5015   int64_t Offset = C2->getSExtValue();
5016   switch (Opcode) {
5017   case ISD::ADD: break;
5018   case ISD::SUB: Offset = -uint64_t(Offset); break;
5019   default: return SDValue();
5020   }
5021   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5022                           GA->getOffset() + uint64_t(Offset));
5023 }
5024 
5025 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5026   switch (Opcode) {
5027   case ISD::SDIV:
5028   case ISD::UDIV:
5029   case ISD::SREM:
5030   case ISD::UREM: {
5031     // If a divisor is zero/undef or any element of a divisor vector is
5032     // zero/undef, the whole op is undef.
5033     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5034     SDValue Divisor = Ops[1];
5035     if (Divisor.isUndef() || isNullConstant(Divisor))
5036       return true;
5037 
5038     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5039            llvm::any_of(Divisor->op_values(),
5040                         [](SDValue V) { return V.isUndef() ||
5041                                         isNullConstant(V); });
5042     // TODO: Handle signed overflow.
5043   }
5044   // TODO: Handle oversized shifts.
5045   default:
5046     return false;
5047   }
5048 }
5049 
5050 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5051                                              EVT VT, ArrayRef<SDValue> Ops) {
5052   // If the opcode is a target-specific ISD node, there's nothing we can
5053   // do here and the operand rules may not line up with the below, so
5054   // bail early.
5055   if (Opcode >= ISD::BUILTIN_OP_END)
5056     return SDValue();
5057 
5058   // For now, the array Ops should only contain two values.
5059   // This enforcement will be removed once this function is merged with
5060   // FoldConstantVectorArithmetic
5061   if (Ops.size() != 2)
5062     return SDValue();
5063 
5064   if (isUndef(Opcode, Ops))
5065     return getUNDEF(VT);
5066 
5067   SDNode *N1 = Ops[0].getNode();
5068   SDNode *N2 = Ops[1].getNode();
5069 
5070   // Handle the case of two scalars.
5071   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5072     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5073       if (C1->isOpaque() || C2->isOpaque())
5074         return SDValue();
5075 
5076       Optional<APInt> FoldAttempt =
5077           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5078       if (!FoldAttempt)
5079         return SDValue();
5080 
5081       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5082       assert((!Folded || !VT.isVector()) &&
5083              "Can't fold vectors ops with scalar operands");
5084       return Folded;
5085     }
5086   }
5087 
5088   // fold (add Sym, c) -> Sym+c
5089   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5090     return FoldSymbolOffset(Opcode, VT, GA, N2);
5091   if (TLI->isCommutativeBinOp(Opcode))
5092     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5093       return FoldSymbolOffset(Opcode, VT, GA, N1);
5094 
5095   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5096   // vector width, however we should be able to do constant folds involving
5097   // splat vector nodes too.
5098   if (VT.isScalableVector())
5099     return SDValue();
5100 
5101   // For fixed width vectors, extract each constant element and fold them
5102   // individually. Either input may be an undef value.
5103   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5104   if (!BV1 && !N1->isUndef())
5105     return SDValue();
5106   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5107   if (!BV2 && !N2->isUndef())
5108     return SDValue();
5109   // If both operands are undef, that's handled the same way as scalars.
5110   if (!BV1 && !BV2)
5111     return SDValue();
5112 
5113   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5114          "Vector binop with different number of elements in operands?");
5115 
5116   EVT SVT = VT.getScalarType();
5117   EVT LegalSVT = SVT;
5118   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5119     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5120     if (LegalSVT.bitsLT(SVT))
5121       return SDValue();
5122   }
5123   SmallVector<SDValue, 4> Outputs;
5124   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5125   for (unsigned I = 0; I != NumOps; ++I) {
5126     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5127     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5128     if (SVT.isInteger()) {
5129       if (V1->getValueType(0).bitsGT(SVT))
5130         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5131       if (V2->getValueType(0).bitsGT(SVT))
5132         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5133     }
5134 
5135     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5136       return SDValue();
5137 
5138     // Fold one vector element.
5139     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5140     if (LegalSVT != SVT)
5141       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5142 
5143     // Scalar folding only succeeded if the result is a constant or UNDEF.
5144     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5145         ScalarResult.getOpcode() != ISD::ConstantFP)
5146       return SDValue();
5147     Outputs.push_back(ScalarResult);
5148   }
5149 
5150   assert(VT.getVectorNumElements() == Outputs.size() &&
5151          "Vector size mismatch!");
5152 
5153   // We may have a vector type but a scalar result. Create a splat.
5154   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5155 
5156   // Build a big vector out of the scalar elements we generated.
5157   return getBuildVector(VT, SDLoc(), Outputs);
5158 }
5159 
5160 // TODO: Merge with FoldConstantArithmetic
5161 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5162                                                    const SDLoc &DL, EVT VT,
5163                                                    ArrayRef<SDValue> Ops,
5164                                                    const SDNodeFlags Flags) {
5165   // If the opcode is a target-specific ISD node, there's nothing we can
5166   // do here and the operand rules may not line up with the below, so
5167   // bail early.
5168   if (Opcode >= ISD::BUILTIN_OP_END)
5169     return SDValue();
5170 
5171   if (isUndef(Opcode, Ops))
5172     return getUNDEF(VT);
5173 
5174   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5175   if (!VT.isVector())
5176     return SDValue();
5177 
5178   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5179   // vector width, however we should be able to do constant folds involving
5180   // splat vector nodes too.
5181   if (VT.isScalableVector())
5182     return SDValue();
5183 
5184   // From this point onwards all vectors are assumed to be fixed width.
5185   unsigned NumElts = VT.getVectorNumElements();
5186 
5187   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5188     return !Op.getValueType().isVector() ||
5189            Op.getValueType().getVectorNumElements() == NumElts;
5190   };
5191 
5192   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5193     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5194     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5195            (BV && BV->isConstant());
5196   };
5197 
5198   // All operands must be vector types with the same number of elements as
5199   // the result type and must be either UNDEF or a build vector of constant
5200   // or UNDEF scalars.
5201   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5202       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5203     return SDValue();
5204 
5205   // If we are comparing vectors, then the result needs to be a i1 boolean
5206   // that is then sign-extended back to the legal result type.
5207   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5208 
5209   // Find legal integer scalar type for constant promotion and
5210   // ensure that its scalar size is at least as large as source.
5211   EVT LegalSVT = VT.getScalarType();
5212   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5213     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5214     if (LegalSVT.bitsLT(VT.getScalarType()))
5215       return SDValue();
5216   }
5217 
5218   // Constant fold each scalar lane separately.
5219   SmallVector<SDValue, 4> ScalarResults;
5220   for (unsigned i = 0; i != NumElts; i++) {
5221     SmallVector<SDValue, 4> ScalarOps;
5222     for (SDValue Op : Ops) {
5223       EVT InSVT = Op.getValueType().getScalarType();
5224       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5225       if (!InBV) {
5226         // We've checked that this is UNDEF or a constant of some kind.
5227         if (Op.isUndef())
5228           ScalarOps.push_back(getUNDEF(InSVT));
5229         else
5230           ScalarOps.push_back(Op);
5231         continue;
5232       }
5233 
5234       SDValue ScalarOp = InBV->getOperand(i);
5235       EVT ScalarVT = ScalarOp.getValueType();
5236 
5237       // Build vector (integer) scalar operands may need implicit
5238       // truncation - do this before constant folding.
5239       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5240         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5241 
5242       ScalarOps.push_back(ScalarOp);
5243     }
5244 
5245     // Constant fold the scalar operands.
5246     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5247 
5248     // Legalize the (integer) scalar constant if necessary.
5249     if (LegalSVT != SVT)
5250       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5251 
5252     // Scalar folding only succeeded if the result is a constant or UNDEF.
5253     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5254         ScalarResult.getOpcode() != ISD::ConstantFP)
5255       return SDValue();
5256     ScalarResults.push_back(ScalarResult);
5257   }
5258 
5259   SDValue V = getBuildVector(VT, DL, ScalarResults);
5260   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5261   return V;
5262 }
5263 
5264 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5265                                          EVT VT, SDValue N1, SDValue N2) {
5266   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5267   //       should. That will require dealing with a potentially non-default
5268   //       rounding mode, checking the "opStatus" return value from the APFloat
5269   //       math calculations, and possibly other variations.
5270   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5271   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5272   if (N1CFP && N2CFP) {
5273     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5274     switch (Opcode) {
5275     case ISD::FADD:
5276       C1.add(C2, APFloat::rmNearestTiesToEven);
5277       return getConstantFP(C1, DL, VT);
5278     case ISD::FSUB:
5279       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5280       return getConstantFP(C1, DL, VT);
5281     case ISD::FMUL:
5282       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5283       return getConstantFP(C1, DL, VT);
5284     case ISD::FDIV:
5285       C1.divide(C2, APFloat::rmNearestTiesToEven);
5286       return getConstantFP(C1, DL, VT);
5287     case ISD::FREM:
5288       C1.mod(C2);
5289       return getConstantFP(C1, DL, VT);
5290     case ISD::FCOPYSIGN:
5291       C1.copySign(C2);
5292       return getConstantFP(C1, DL, VT);
5293     default: break;
5294     }
5295   }
5296   if (N1CFP && Opcode == ISD::FP_ROUND) {
5297     APFloat C1 = N1CFP->getValueAPF();    // make copy
5298     bool Unused;
5299     // This can return overflow, underflow, or inexact; we don't care.
5300     // FIXME need to be more flexible about rounding mode.
5301     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5302                       &Unused);
5303     return getConstantFP(C1, DL, VT);
5304   }
5305 
5306   switch (Opcode) {
5307   case ISD::FSUB:
5308     // -0.0 - undef --> undef (consistent with "fneg undef")
5309     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5310       return getUNDEF(VT);
5311     LLVM_FALLTHROUGH;
5312 
5313   case ISD::FADD:
5314   case ISD::FMUL:
5315   case ISD::FDIV:
5316   case ISD::FREM:
5317     // If both operands are undef, the result is undef. If 1 operand is undef,
5318     // the result is NaN. This should match the behavior of the IR optimizer.
5319     if (N1.isUndef() && N2.isUndef())
5320       return getUNDEF(VT);
5321     if (N1.isUndef() || N2.isUndef())
5322       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5323   }
5324   return SDValue();
5325 }
5326 
5327 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5328   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5329 
5330   // There's no need to assert on a byte-aligned pointer. All pointers are at
5331   // least byte aligned.
5332   if (A == Align(1))
5333     return Val;
5334 
5335   FoldingSetNodeID ID;
5336   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5337   ID.AddInteger(A.value());
5338 
5339   void *IP = nullptr;
5340   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5341     return SDValue(E, 0);
5342 
5343   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5344                                          Val.getValueType(), A);
5345   createOperands(N, {Val});
5346 
5347   CSEMap.InsertNode(N, IP);
5348   InsertNode(N);
5349 
5350   SDValue V(N, 0);
5351   NewSDValueDbgMsg(V, "Creating new node: ", this);
5352   return V;
5353 }
5354 
5355 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5356                               SDValue N1, SDValue N2) {
5357   SDNodeFlags Flags;
5358   if (Inserter)
5359     Flags = Inserter->getFlags();
5360   return getNode(Opcode, DL, VT, N1, N2, Flags);
5361 }
5362 
5363 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5364                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5365   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5366          N2.getOpcode() != ISD::DELETED_NODE &&
5367          "Operand is DELETED_NODE!");
5368   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5369   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5370   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5371   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5372 
5373   // Canonicalize constant to RHS if commutative.
5374   if (TLI->isCommutativeBinOp(Opcode)) {
5375     if (N1C && !N2C) {
5376       std::swap(N1C, N2C);
5377       std::swap(N1, N2);
5378     } else if (N1CFP && !N2CFP) {
5379       std::swap(N1CFP, N2CFP);
5380       std::swap(N1, N2);
5381     }
5382   }
5383 
5384   switch (Opcode) {
5385   default: break;
5386   case ISD::TokenFactor:
5387     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5388            N2.getValueType() == MVT::Other && "Invalid token factor!");
5389     // Fold trivial token factors.
5390     if (N1.getOpcode() == ISD::EntryToken) return N2;
5391     if (N2.getOpcode() == ISD::EntryToken) return N1;
5392     if (N1 == N2) return N1;
5393     break;
5394   case ISD::BUILD_VECTOR: {
5395     // Attempt to simplify BUILD_VECTOR.
5396     SDValue Ops[] = {N1, N2};
5397     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5398       return V;
5399     break;
5400   }
5401   case ISD::CONCAT_VECTORS: {
5402     SDValue Ops[] = {N1, N2};
5403     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5404       return V;
5405     break;
5406   }
5407   case ISD::AND:
5408     assert(VT.isInteger() && "This operator does not apply to FP types!");
5409     assert(N1.getValueType() == N2.getValueType() &&
5410            N1.getValueType() == VT && "Binary operator types must match!");
5411     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5412     // worth handling here.
5413     if (N2C && N2C->isNullValue())
5414       return N2;
5415     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5416       return N1;
5417     break;
5418   case ISD::OR:
5419   case ISD::XOR:
5420   case ISD::ADD:
5421   case ISD::SUB:
5422     assert(VT.isInteger() && "This operator does not apply to FP types!");
5423     assert(N1.getValueType() == N2.getValueType() &&
5424            N1.getValueType() == VT && "Binary operator types must match!");
5425     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5426     // it's worth handling here.
5427     if (N2C && N2C->isNullValue())
5428       return N1;
5429     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5430         VT.getVectorElementType() == MVT::i1)
5431       return getNode(ISD::XOR, DL, VT, N1, N2);
5432     break;
5433   case ISD::MUL:
5434     assert(VT.isInteger() && "This operator does not apply to FP types!");
5435     assert(N1.getValueType() == N2.getValueType() &&
5436            N1.getValueType() == VT && "Binary operator types must match!");
5437     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5438       return getNode(ISD::AND, DL, VT, N1, N2);
5439     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5440       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5441       const APInt &N2CImm = N2C->getAPIntValue();
5442       return getVScale(DL, VT, MulImm * N2CImm);
5443     }
5444     break;
5445   case ISD::UDIV:
5446   case ISD::UREM:
5447   case ISD::MULHU:
5448   case ISD::MULHS:
5449   case ISD::SDIV:
5450   case ISD::SREM:
5451   case ISD::SADDSAT:
5452   case ISD::SSUBSAT:
5453   case ISD::UADDSAT:
5454   case ISD::USUBSAT:
5455     assert(VT.isInteger() && "This operator does not apply to FP types!");
5456     assert(N1.getValueType() == N2.getValueType() &&
5457            N1.getValueType() == VT && "Binary operator types must match!");
5458     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5459       // fold (add_sat x, y) -> (or x, y) for bool types.
5460       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5461         return getNode(ISD::OR, DL, VT, N1, N2);
5462       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5463       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5464         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5465     }
5466     break;
5467   case ISD::SMIN:
5468   case ISD::UMAX:
5469     assert(VT.isInteger() && "This operator does not apply to FP types!");
5470     assert(N1.getValueType() == N2.getValueType() &&
5471            N1.getValueType() == VT && "Binary operator types must match!");
5472     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5473       return getNode(ISD::OR, DL, VT, N1, N2);
5474     break;
5475   case ISD::SMAX:
5476   case ISD::UMIN:
5477     assert(VT.isInteger() && "This operator does not apply to FP types!");
5478     assert(N1.getValueType() == N2.getValueType() &&
5479            N1.getValueType() == VT && "Binary operator types must match!");
5480     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5481       return getNode(ISD::AND, DL, VT, N1, N2);
5482     break;
5483   case ISD::FADD:
5484   case ISD::FSUB:
5485   case ISD::FMUL:
5486   case ISD::FDIV:
5487   case ISD::FREM:
5488     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5489     assert(N1.getValueType() == N2.getValueType() &&
5490            N1.getValueType() == VT && "Binary operator types must match!");
5491     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5492       return V;
5493     break;
5494   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5495     assert(N1.getValueType() == VT &&
5496            N1.getValueType().isFloatingPoint() &&
5497            N2.getValueType().isFloatingPoint() &&
5498            "Invalid FCOPYSIGN!");
5499     break;
5500   case ISD::SHL:
5501     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5502       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5503       const APInt &ShiftImm = N2C->getAPIntValue();
5504       return getVScale(DL, VT, MulImm << ShiftImm);
5505     }
5506     LLVM_FALLTHROUGH;
5507   case ISD::SRA:
5508   case ISD::SRL:
5509     if (SDValue V = simplifyShift(N1, N2))
5510       return V;
5511     LLVM_FALLTHROUGH;
5512   case ISD::ROTL:
5513   case ISD::ROTR:
5514     assert(VT == N1.getValueType() &&
5515            "Shift operators return type must be the same as their first arg");
5516     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5517            "Shifts only work on integers");
5518     assert((!VT.isVector() || VT == N2.getValueType()) &&
5519            "Vector shift amounts must be in the same as their first arg");
5520     // Verify that the shift amount VT is big enough to hold valid shift
5521     // amounts.  This catches things like trying to shift an i1024 value by an
5522     // i8, which is easy to fall into in generic code that uses
5523     // TLI.getShiftAmount().
5524     assert(N2.getValueType().getScalarSizeInBits() >=
5525                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5526            "Invalid use of small shift amount with oversized value!");
5527 
5528     // Always fold shifts of i1 values so the code generator doesn't need to
5529     // handle them.  Since we know the size of the shift has to be less than the
5530     // size of the value, the shift/rotate count is guaranteed to be zero.
5531     if (VT == MVT::i1)
5532       return N1;
5533     if (N2C && N2C->isNullValue())
5534       return N1;
5535     break;
5536   case ISD::FP_ROUND:
5537     assert(VT.isFloatingPoint() &&
5538            N1.getValueType().isFloatingPoint() &&
5539            VT.bitsLE(N1.getValueType()) &&
5540            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5541            "Invalid FP_ROUND!");
5542     if (N1.getValueType() == VT) return N1;  // noop conversion.
5543     break;
5544   case ISD::AssertSext:
5545   case ISD::AssertZext: {
5546     EVT EVT = cast<VTSDNode>(N2)->getVT();
5547     assert(VT == N1.getValueType() && "Not an inreg extend!");
5548     assert(VT.isInteger() && EVT.isInteger() &&
5549            "Cannot *_EXTEND_INREG FP types");
5550     assert(!EVT.isVector() &&
5551            "AssertSExt/AssertZExt type should be the vector element type "
5552            "rather than the vector type!");
5553     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5554     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5555     break;
5556   }
5557   case ISD::SIGN_EXTEND_INREG: {
5558     EVT EVT = cast<VTSDNode>(N2)->getVT();
5559     assert(VT == N1.getValueType() && "Not an inreg extend!");
5560     assert(VT.isInteger() && EVT.isInteger() &&
5561            "Cannot *_EXTEND_INREG FP types");
5562     assert(EVT.isVector() == VT.isVector() &&
5563            "SIGN_EXTEND_INREG type should be vector iff the operand "
5564            "type is vector!");
5565     assert((!EVT.isVector() ||
5566             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5567            "Vector element counts must match in SIGN_EXTEND_INREG");
5568     assert(EVT.bitsLE(VT) && "Not extending!");
5569     if (EVT == VT) return N1;  // Not actually extending
5570 
5571     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5572       unsigned FromBits = EVT.getScalarSizeInBits();
5573       Val <<= Val.getBitWidth() - FromBits;
5574       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5575       return getConstant(Val, DL, ConstantVT);
5576     };
5577 
5578     if (N1C) {
5579       const APInt &Val = N1C->getAPIntValue();
5580       return SignExtendInReg(Val, VT);
5581     }
5582     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5583       SmallVector<SDValue, 8> Ops;
5584       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5585       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5586         SDValue Op = N1.getOperand(i);
5587         if (Op.isUndef()) {
5588           Ops.push_back(getUNDEF(OpVT));
5589           continue;
5590         }
5591         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5592         APInt Val = C->getAPIntValue();
5593         Ops.push_back(SignExtendInReg(Val, OpVT));
5594       }
5595       return getBuildVector(VT, DL, Ops);
5596     }
5597     break;
5598   }
5599   case ISD::EXTRACT_VECTOR_ELT:
5600     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5601            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5602              element type of the vector.");
5603 
5604     // Extract from an undefined value or using an undefined index is undefined.
5605     if (N1.isUndef() || N2.isUndef())
5606       return getUNDEF(VT);
5607 
5608     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5609     // vectors. For scalable vectors we will provide appropriate support for
5610     // dealing with arbitrary indices.
5611     if (N2C && N1.getValueType().isFixedLengthVector() &&
5612         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5613       return getUNDEF(VT);
5614 
5615     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5616     // expanding copies of large vectors from registers. This only works for
5617     // fixed length vectors, since we need to know the exact number of
5618     // elements.
5619     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5620         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5621       unsigned Factor =
5622         N1.getOperand(0).getValueType().getVectorNumElements();
5623       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5624                      N1.getOperand(N2C->getZExtValue() / Factor),
5625                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5626     }
5627 
5628     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5629     // lowering is expanding large vector constants.
5630     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5631                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5632       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5633               N1.getValueType().isFixedLengthVector()) &&
5634              "BUILD_VECTOR used for scalable vectors");
5635       unsigned Index =
5636           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5637       SDValue Elt = N1.getOperand(Index);
5638 
5639       if (VT != Elt.getValueType())
5640         // If the vector element type is not legal, the BUILD_VECTOR operands
5641         // are promoted and implicitly truncated, and the result implicitly
5642         // extended. Make that explicit here.
5643         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5644 
5645       return Elt;
5646     }
5647 
5648     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5649     // operations are lowered to scalars.
5650     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5651       // If the indices are the same, return the inserted element else
5652       // if the indices are known different, extract the element from
5653       // the original vector.
5654       SDValue N1Op2 = N1.getOperand(2);
5655       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5656 
5657       if (N1Op2C && N2C) {
5658         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5659           if (VT == N1.getOperand(1).getValueType())
5660             return N1.getOperand(1);
5661           else
5662             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5663         }
5664 
5665         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5666       }
5667     }
5668 
5669     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5670     // when vector types are scalarized and v1iX is legal.
5671     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5672     // Here we are completely ignoring the extract element index (N2),
5673     // which is fine for fixed width vectors, since any index other than 0
5674     // is undefined anyway. However, this cannot be ignored for scalable
5675     // vectors - in theory we could support this, but we don't want to do this
5676     // without a profitability check.
5677     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5678         N1.getValueType().isFixedLengthVector() &&
5679         N1.getValueType().getVectorNumElements() == 1) {
5680       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5681                      N1.getOperand(1));
5682     }
5683     break;
5684   case ISD::EXTRACT_ELEMENT:
5685     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5686     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5687            (N1.getValueType().isInteger() == VT.isInteger()) &&
5688            N1.getValueType() != VT &&
5689            "Wrong types for EXTRACT_ELEMENT!");
5690 
5691     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5692     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5693     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5694     if (N1.getOpcode() == ISD::BUILD_PAIR)
5695       return N1.getOperand(N2C->getZExtValue());
5696 
5697     // EXTRACT_ELEMENT of a constant int is also very common.
5698     if (N1C) {
5699       unsigned ElementSize = VT.getSizeInBits();
5700       unsigned Shift = ElementSize * N2C->getZExtValue();
5701       const APInt &Val = N1C->getAPIntValue();
5702       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5703     }
5704     break;
5705   case ISD::EXTRACT_SUBVECTOR:
5706     EVT N1VT = N1.getValueType();
5707     assert(VT.isVector() && N1VT.isVector() &&
5708            "Extract subvector VTs must be vectors!");
5709     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5710            "Extract subvector VTs must have the same element type!");
5711     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5712            "Cannot extract a scalable vector from a fixed length vector!");
5713     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5714             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5715            "Extract subvector must be from larger vector to smaller vector!");
5716     assert(N2C && "Extract subvector index must be a constant");
5717     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5718             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5719                 N1VT.getVectorMinNumElements()) &&
5720            "Extract subvector overflow!");
5721     assert(N2C->getAPIntValue().getBitWidth() ==
5722                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5723            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5724 
5725     // Trivial extraction.
5726     if (VT == N1VT)
5727       return N1;
5728 
5729     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5730     if (N1.isUndef())
5731       return getUNDEF(VT);
5732 
5733     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5734     // the concat have the same type as the extract.
5735     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5736         VT == N1.getOperand(0).getValueType()) {
5737       unsigned Factor = VT.getVectorMinNumElements();
5738       return N1.getOperand(N2C->getZExtValue() / Factor);
5739     }
5740 
5741     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5742     // during shuffle legalization.
5743     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5744         VT == N1.getOperand(1).getValueType())
5745       return N1.getOperand(1);
5746     break;
5747   }
5748 
5749   // Perform trivial constant folding.
5750   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5751     return SV;
5752 
5753   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5754     return V;
5755 
5756   // Canonicalize an UNDEF to the RHS, even over a constant.
5757   if (N1.isUndef()) {
5758     if (TLI->isCommutativeBinOp(Opcode)) {
5759       std::swap(N1, N2);
5760     } else {
5761       switch (Opcode) {
5762       case ISD::SIGN_EXTEND_INREG:
5763       case ISD::SUB:
5764         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5765       case ISD::UDIV:
5766       case ISD::SDIV:
5767       case ISD::UREM:
5768       case ISD::SREM:
5769       case ISD::SSUBSAT:
5770       case ISD::USUBSAT:
5771         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5772       }
5773     }
5774   }
5775 
5776   // Fold a bunch of operators when the RHS is undef.
5777   if (N2.isUndef()) {
5778     switch (Opcode) {
5779     case ISD::XOR:
5780       if (N1.isUndef())
5781         // Handle undef ^ undef -> 0 special case. This is a common
5782         // idiom (misuse).
5783         return getConstant(0, DL, VT);
5784       LLVM_FALLTHROUGH;
5785     case ISD::ADD:
5786     case ISD::SUB:
5787     case ISD::UDIV:
5788     case ISD::SDIV:
5789     case ISD::UREM:
5790     case ISD::SREM:
5791       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5792     case ISD::MUL:
5793     case ISD::AND:
5794     case ISD::SSUBSAT:
5795     case ISD::USUBSAT:
5796       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5797     case ISD::OR:
5798     case ISD::SADDSAT:
5799     case ISD::UADDSAT:
5800       return getAllOnesConstant(DL, VT);
5801     }
5802   }
5803 
5804   // Memoize this node if possible.
5805   SDNode *N;
5806   SDVTList VTs = getVTList(VT);
5807   SDValue Ops[] = {N1, N2};
5808   if (VT != MVT::Glue) {
5809     FoldingSetNodeID ID;
5810     AddNodeIDNode(ID, Opcode, VTs, Ops);
5811     void *IP = nullptr;
5812     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5813       E->intersectFlagsWith(Flags);
5814       return SDValue(E, 0);
5815     }
5816 
5817     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5818     N->setFlags(Flags);
5819     createOperands(N, Ops);
5820     CSEMap.InsertNode(N, IP);
5821   } else {
5822     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5823     createOperands(N, Ops);
5824   }
5825 
5826   InsertNode(N);
5827   SDValue V = SDValue(N, 0);
5828   NewSDValueDbgMsg(V, "Creating new node: ", this);
5829   return V;
5830 }
5831 
5832 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5833                               SDValue N1, SDValue N2, SDValue N3) {
5834   SDNodeFlags Flags;
5835   if (Inserter)
5836     Flags = Inserter->getFlags();
5837   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5838 }
5839 
5840 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5841                               SDValue N1, SDValue N2, SDValue N3,
5842                               const SDNodeFlags Flags) {
5843   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5844          N2.getOpcode() != ISD::DELETED_NODE &&
5845          N3.getOpcode() != ISD::DELETED_NODE &&
5846          "Operand is DELETED_NODE!");
5847   // Perform various simplifications.
5848   switch (Opcode) {
5849   case ISD::FMA: {
5850     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5851     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5852            N3.getValueType() == VT && "FMA types must match!");
5853     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5854     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5855     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5856     if (N1CFP && N2CFP && N3CFP) {
5857       APFloat  V1 = N1CFP->getValueAPF();
5858       const APFloat &V2 = N2CFP->getValueAPF();
5859       const APFloat &V3 = N3CFP->getValueAPF();
5860       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5861       return getConstantFP(V1, DL, VT);
5862     }
5863     break;
5864   }
5865   case ISD::BUILD_VECTOR: {
5866     // Attempt to simplify BUILD_VECTOR.
5867     SDValue Ops[] = {N1, N2, N3};
5868     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5869       return V;
5870     break;
5871   }
5872   case ISD::CONCAT_VECTORS: {
5873     SDValue Ops[] = {N1, N2, N3};
5874     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5875       return V;
5876     break;
5877   }
5878   case ISD::SETCC: {
5879     assert(VT.isInteger() && "SETCC result type must be an integer!");
5880     assert(N1.getValueType() == N2.getValueType() &&
5881            "SETCC operands must have the same type!");
5882     assert(VT.isVector() == N1.getValueType().isVector() &&
5883            "SETCC type should be vector iff the operand type is vector!");
5884     assert((!VT.isVector() || VT.getVectorElementCount() ==
5885                                   N1.getValueType().getVectorElementCount()) &&
5886            "SETCC vector element counts must match!");
5887     // Use FoldSetCC to simplify SETCC's.
5888     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5889       return V;
5890     // Vector constant folding.
5891     SDValue Ops[] = {N1, N2, N3};
5892     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5893       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5894       return V;
5895     }
5896     break;
5897   }
5898   case ISD::SELECT:
5899   case ISD::VSELECT:
5900     if (SDValue V = simplifySelect(N1, N2, N3))
5901       return V;
5902     break;
5903   case ISD::VECTOR_SHUFFLE:
5904     llvm_unreachable("should use getVectorShuffle constructor!");
5905   case ISD::INSERT_VECTOR_ELT: {
5906     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5907     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5908     // for scalable vectors where we will generate appropriate code to
5909     // deal with out-of-bounds cases correctly.
5910     if (N3C && N1.getValueType().isFixedLengthVector() &&
5911         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5912       return getUNDEF(VT);
5913 
5914     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5915     if (N3.isUndef())
5916       return getUNDEF(VT);
5917 
5918     // If the inserted element is an UNDEF, just use the input vector.
5919     if (N2.isUndef())
5920       return N1;
5921 
5922     break;
5923   }
5924   case ISD::INSERT_SUBVECTOR: {
5925     // Inserting undef into undef is still undef.
5926     if (N1.isUndef() && N2.isUndef())
5927       return getUNDEF(VT);
5928 
5929     EVT N2VT = N2.getValueType();
5930     assert(VT == N1.getValueType() &&
5931            "Dest and insert subvector source types must match!");
5932     assert(VT.isVector() && N2VT.isVector() &&
5933            "Insert subvector VTs must be vectors!");
5934     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5935            "Cannot insert a scalable vector into a fixed length vector!");
5936     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5937             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5938            "Insert subvector must be from smaller vector to larger vector!");
5939     assert(isa<ConstantSDNode>(N3) &&
5940            "Insert subvector index must be constant");
5941     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5942             (N2VT.getVectorMinNumElements() +
5943              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5944                 VT.getVectorMinNumElements()) &&
5945            "Insert subvector overflow!");
5946     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
5947                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5948            "Constant index for INSERT_SUBVECTOR has an invalid size");
5949 
5950     // Trivial insertion.
5951     if (VT == N2VT)
5952       return N2;
5953 
5954     // If this is an insert of an extracted vector into an undef vector, we
5955     // can just use the input to the extract.
5956     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5957         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5958       return N2.getOperand(0);
5959     break;
5960   }
5961   case ISD::BITCAST:
5962     // Fold bit_convert nodes from a type to themselves.
5963     if (N1.getValueType() == VT)
5964       return N1;
5965     break;
5966   }
5967 
5968   // Memoize node if it doesn't produce a flag.
5969   SDNode *N;
5970   SDVTList VTs = getVTList(VT);
5971   SDValue Ops[] = {N1, N2, N3};
5972   if (VT != MVT::Glue) {
5973     FoldingSetNodeID ID;
5974     AddNodeIDNode(ID, Opcode, VTs, Ops);
5975     void *IP = nullptr;
5976     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5977       E->intersectFlagsWith(Flags);
5978       return SDValue(E, 0);
5979     }
5980 
5981     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5982     N->setFlags(Flags);
5983     createOperands(N, Ops);
5984     CSEMap.InsertNode(N, IP);
5985   } else {
5986     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5987     createOperands(N, Ops);
5988   }
5989 
5990   InsertNode(N);
5991   SDValue V = SDValue(N, 0);
5992   NewSDValueDbgMsg(V, "Creating new node: ", this);
5993   return V;
5994 }
5995 
5996 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5997                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5998   SDValue Ops[] = { N1, N2, N3, N4 };
5999   return getNode(Opcode, DL, VT, Ops);
6000 }
6001 
6002 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6003                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6004                               SDValue N5) {
6005   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6006   return getNode(Opcode, DL, VT, Ops);
6007 }
6008 
6009 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6010 /// the incoming stack arguments to be loaded from the stack.
6011 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6012   SmallVector<SDValue, 8> ArgChains;
6013 
6014   // Include the original chain at the beginning of the list. When this is
6015   // used by target LowerCall hooks, this helps legalize find the
6016   // CALLSEQ_BEGIN node.
6017   ArgChains.push_back(Chain);
6018 
6019   // Add a chain value for each stack argument.
6020   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6021        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6022     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6023       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6024         if (FI->getIndex() < 0)
6025           ArgChains.push_back(SDValue(L, 1));
6026 
6027   // Build a tokenfactor for all the chains.
6028   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6029 }
6030 
6031 /// getMemsetValue - Vectorized representation of the memset value
6032 /// operand.
6033 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6034                               const SDLoc &dl) {
6035   assert(!Value.isUndef());
6036 
6037   unsigned NumBits = VT.getScalarSizeInBits();
6038   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6039     assert(C->getAPIntValue().getBitWidth() == 8);
6040     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6041     if (VT.isInteger()) {
6042       bool IsOpaque = VT.getSizeInBits() > 64 ||
6043           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6044       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6045     }
6046     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6047                              VT);
6048   }
6049 
6050   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6051   EVT IntVT = VT.getScalarType();
6052   if (!IntVT.isInteger())
6053     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6054 
6055   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6056   if (NumBits > 8) {
6057     // Use a multiplication with 0x010101... to extend the input to the
6058     // required length.
6059     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6060     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6061                         DAG.getConstant(Magic, dl, IntVT));
6062   }
6063 
6064   if (VT != Value.getValueType() && !VT.isInteger())
6065     Value = DAG.getBitcast(VT.getScalarType(), Value);
6066   if (VT != Value.getValueType())
6067     Value = DAG.getSplatBuildVector(VT, dl, Value);
6068 
6069   return Value;
6070 }
6071 
6072 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6073 /// used when a memcpy is turned into a memset when the source is a constant
6074 /// string ptr.
6075 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6076                                   const TargetLowering &TLI,
6077                                   const ConstantDataArraySlice &Slice) {
6078   // Handle vector with all elements zero.
6079   if (Slice.Array == nullptr) {
6080     if (VT.isInteger())
6081       return DAG.getConstant(0, dl, VT);
6082     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6083       return DAG.getConstantFP(0.0, dl, VT);
6084     else if (VT.isVector()) {
6085       unsigned NumElts = VT.getVectorNumElements();
6086       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6087       return DAG.getNode(ISD::BITCAST, dl, VT,
6088                          DAG.getConstant(0, dl,
6089                                          EVT::getVectorVT(*DAG.getContext(),
6090                                                           EltVT, NumElts)));
6091     } else
6092       llvm_unreachable("Expected type!");
6093   }
6094 
6095   assert(!VT.isVector() && "Can't handle vector type here!");
6096   unsigned NumVTBits = VT.getSizeInBits();
6097   unsigned NumVTBytes = NumVTBits / 8;
6098   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6099 
6100   APInt Val(NumVTBits, 0);
6101   if (DAG.getDataLayout().isLittleEndian()) {
6102     for (unsigned i = 0; i != NumBytes; ++i)
6103       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6104   } else {
6105     for (unsigned i = 0; i != NumBytes; ++i)
6106       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6107   }
6108 
6109   // If the "cost" of materializing the integer immediate is less than the cost
6110   // of a load, then it is cost effective to turn the load into the immediate.
6111   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6112   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6113     return DAG.getConstant(Val, dl, VT);
6114   return SDValue(nullptr, 0);
6115 }
6116 
6117 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6118                                            const SDLoc &DL,
6119                                            const SDNodeFlags Flags) {
6120   EVT VT = Base.getValueType();
6121   SDValue Index;
6122 
6123   if (Offset.isScalable())
6124     Index = getVScale(DL, Base.getValueType(),
6125                       APInt(Base.getValueSizeInBits().getFixedSize(),
6126                             Offset.getKnownMinSize()));
6127   else
6128     Index = getConstant(Offset.getFixedSize(), DL, VT);
6129 
6130   return getMemBasePlusOffset(Base, Index, DL, Flags);
6131 }
6132 
6133 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6134                                            const SDLoc &DL,
6135                                            const SDNodeFlags Flags) {
6136   assert(Offset.getValueType().isInteger());
6137   EVT BasePtrVT = Ptr.getValueType();
6138   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6139 }
6140 
6141 /// Returns true if memcpy source is constant data.
6142 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6143   uint64_t SrcDelta = 0;
6144   GlobalAddressSDNode *G = nullptr;
6145   if (Src.getOpcode() == ISD::GlobalAddress)
6146     G = cast<GlobalAddressSDNode>(Src);
6147   else if (Src.getOpcode() == ISD::ADD &&
6148            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6149            Src.getOperand(1).getOpcode() == ISD::Constant) {
6150     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6151     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6152   }
6153   if (!G)
6154     return false;
6155 
6156   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6157                                   SrcDelta + G->getOffset());
6158 }
6159 
6160 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6161                                       SelectionDAG &DAG) {
6162   // On Darwin, -Os means optimize for size without hurting performance, so
6163   // only really optimize for size when -Oz (MinSize) is used.
6164   if (MF.getTarget().getTargetTriple().isOSDarwin())
6165     return MF.getFunction().hasMinSize();
6166   return DAG.shouldOptForSize();
6167 }
6168 
6169 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6170                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6171                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6172                           SmallVector<SDValue, 16> &OutStoreChains) {
6173   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6174   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6175   SmallVector<SDValue, 16> GluedLoadChains;
6176   for (unsigned i = From; i < To; ++i) {
6177     OutChains.push_back(OutLoadChains[i]);
6178     GluedLoadChains.push_back(OutLoadChains[i]);
6179   }
6180 
6181   // Chain for all loads.
6182   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6183                                   GluedLoadChains);
6184 
6185   for (unsigned i = From; i < To; ++i) {
6186     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6187     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6188                                   ST->getBasePtr(), ST->getMemoryVT(),
6189                                   ST->getMemOperand());
6190     OutChains.push_back(NewStore);
6191   }
6192 }
6193 
6194 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6195                                        SDValue Chain, SDValue Dst, SDValue Src,
6196                                        uint64_t Size, Align Alignment,
6197                                        bool isVol, bool AlwaysInline,
6198                                        MachinePointerInfo DstPtrInfo,
6199                                        MachinePointerInfo SrcPtrInfo) {
6200   // Turn a memcpy of undef to nop.
6201   // FIXME: We need to honor volatile even is Src is undef.
6202   if (Src.isUndef())
6203     return Chain;
6204 
6205   // Expand memcpy to a series of load and store ops if the size operand falls
6206   // below a certain threshold.
6207   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6208   // rather than maybe a humongous number of loads and stores.
6209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6210   const DataLayout &DL = DAG.getDataLayout();
6211   LLVMContext &C = *DAG.getContext();
6212   std::vector<EVT> MemOps;
6213   bool DstAlignCanChange = false;
6214   MachineFunction &MF = DAG.getMachineFunction();
6215   MachineFrameInfo &MFI = MF.getFrameInfo();
6216   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6217   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6218   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6219     DstAlignCanChange = true;
6220   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6221   if (!SrcAlign || Alignment > *SrcAlign)
6222     SrcAlign = Alignment;
6223   assert(SrcAlign && "SrcAlign must be set");
6224   ConstantDataArraySlice Slice;
6225   // If marked as volatile, perform a copy even when marked as constant.
6226   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6227   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6228   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6229   const MemOp Op = isZeroConstant
6230                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6231                                     /*IsZeroMemset*/ true, isVol)
6232                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6233                                      *SrcAlign, isVol, CopyFromConstant);
6234   if (!TLI.findOptimalMemOpLowering(
6235           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6236           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6237     return SDValue();
6238 
6239   if (DstAlignCanChange) {
6240     Type *Ty = MemOps[0].getTypeForEVT(C);
6241     Align NewAlign = DL.getABITypeAlign(Ty);
6242 
6243     // Don't promote to an alignment that would require dynamic stack
6244     // realignment.
6245     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6246     if (!TRI->needsStackRealignment(MF))
6247       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6248         NewAlign = NewAlign / 2;
6249 
6250     if (NewAlign > Alignment) {
6251       // Give the stack frame object a larger alignment if needed.
6252       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6253         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6254       Alignment = NewAlign;
6255     }
6256   }
6257 
6258   MachineMemOperand::Flags MMOFlags =
6259       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6260   SmallVector<SDValue, 16> OutLoadChains;
6261   SmallVector<SDValue, 16> OutStoreChains;
6262   SmallVector<SDValue, 32> OutChains;
6263   unsigned NumMemOps = MemOps.size();
6264   uint64_t SrcOff = 0, DstOff = 0;
6265   for (unsigned i = 0; i != NumMemOps; ++i) {
6266     EVT VT = MemOps[i];
6267     unsigned VTSize = VT.getSizeInBits() / 8;
6268     SDValue Value, Store;
6269 
6270     if (VTSize > Size) {
6271       // Issuing an unaligned load / store pair  that overlaps with the previous
6272       // pair. Adjust the offset accordingly.
6273       assert(i == NumMemOps-1 && i != 0);
6274       SrcOff -= VTSize - Size;
6275       DstOff -= VTSize - Size;
6276     }
6277 
6278     if (CopyFromConstant &&
6279         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6280       // It's unlikely a store of a vector immediate can be done in a single
6281       // instruction. It would require a load from a constantpool first.
6282       // We only handle zero vectors here.
6283       // FIXME: Handle other cases where store of vector immediate is done in
6284       // a single instruction.
6285       ConstantDataArraySlice SubSlice;
6286       if (SrcOff < Slice.Length) {
6287         SubSlice = Slice;
6288         SubSlice.move(SrcOff);
6289       } else {
6290         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6291         SubSlice.Array = nullptr;
6292         SubSlice.Offset = 0;
6293         SubSlice.Length = VTSize;
6294       }
6295       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6296       if (Value.getNode()) {
6297         Store = DAG.getStore(
6298             Chain, dl, Value,
6299             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6300             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6301         OutChains.push_back(Store);
6302       }
6303     }
6304 
6305     if (!Store.getNode()) {
6306       // The type might not be legal for the target.  This should only happen
6307       // if the type is smaller than a legal type, as on PPC, so the right
6308       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6309       // to Load/Store if NVT==VT.
6310       // FIXME does the case above also need this?
6311       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6312       assert(NVT.bitsGE(VT));
6313 
6314       bool isDereferenceable =
6315         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6316       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6317       if (isDereferenceable)
6318         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6319 
6320       Value = DAG.getExtLoad(
6321           ISD::EXTLOAD, dl, NVT, Chain,
6322           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6323           SrcPtrInfo.getWithOffset(SrcOff), VT,
6324           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6325       OutLoadChains.push_back(Value.getValue(1));
6326 
6327       Store = DAG.getTruncStore(
6328           Chain, dl, Value,
6329           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6330           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6331       OutStoreChains.push_back(Store);
6332     }
6333     SrcOff += VTSize;
6334     DstOff += VTSize;
6335     Size -= VTSize;
6336   }
6337 
6338   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6339                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6340   unsigned NumLdStInMemcpy = OutStoreChains.size();
6341 
6342   if (NumLdStInMemcpy) {
6343     // It may be that memcpy might be converted to memset if it's memcpy
6344     // of constants. In such a case, we won't have loads and stores, but
6345     // just stores. In the absence of loads, there is nothing to gang up.
6346     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6347       // If target does not care, just leave as it.
6348       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6349         OutChains.push_back(OutLoadChains[i]);
6350         OutChains.push_back(OutStoreChains[i]);
6351       }
6352     } else {
6353       // Ld/St less than/equal limit set by target.
6354       if (NumLdStInMemcpy <= GluedLdStLimit) {
6355           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6356                                         NumLdStInMemcpy, OutLoadChains,
6357                                         OutStoreChains);
6358       } else {
6359         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6360         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6361         unsigned GlueIter = 0;
6362 
6363         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6364           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6365           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6366 
6367           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6368                                        OutLoadChains, OutStoreChains);
6369           GlueIter += GluedLdStLimit;
6370         }
6371 
6372         // Residual ld/st.
6373         if (RemainingLdStInMemcpy) {
6374           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6375                                         RemainingLdStInMemcpy, OutLoadChains,
6376                                         OutStoreChains);
6377         }
6378       }
6379     }
6380   }
6381   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6382 }
6383 
6384 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6385                                         SDValue Chain, SDValue Dst, SDValue Src,
6386                                         uint64_t Size, Align Alignment,
6387                                         bool isVol, bool AlwaysInline,
6388                                         MachinePointerInfo DstPtrInfo,
6389                                         MachinePointerInfo SrcPtrInfo) {
6390   // Turn a memmove of undef to nop.
6391   // FIXME: We need to honor volatile even is Src is undef.
6392   if (Src.isUndef())
6393     return Chain;
6394 
6395   // Expand memmove to a series of load and store ops if the size operand falls
6396   // below a certain threshold.
6397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6398   const DataLayout &DL = DAG.getDataLayout();
6399   LLVMContext &C = *DAG.getContext();
6400   std::vector<EVT> MemOps;
6401   bool DstAlignCanChange = false;
6402   MachineFunction &MF = DAG.getMachineFunction();
6403   MachineFrameInfo &MFI = MF.getFrameInfo();
6404   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6405   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6406   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6407     DstAlignCanChange = true;
6408   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6409   if (!SrcAlign || Alignment > *SrcAlign)
6410     SrcAlign = Alignment;
6411   assert(SrcAlign && "SrcAlign must be set");
6412   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6413   if (!TLI.findOptimalMemOpLowering(
6414           MemOps, Limit,
6415           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6416                       /*IsVolatile*/ true),
6417           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6418           MF.getFunction().getAttributes()))
6419     return SDValue();
6420 
6421   if (DstAlignCanChange) {
6422     Type *Ty = MemOps[0].getTypeForEVT(C);
6423     Align NewAlign = DL.getABITypeAlign(Ty);
6424     if (NewAlign > Alignment) {
6425       // Give the stack frame object a larger alignment if needed.
6426       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6427         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6428       Alignment = NewAlign;
6429     }
6430   }
6431 
6432   MachineMemOperand::Flags MMOFlags =
6433       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6434   uint64_t SrcOff = 0, DstOff = 0;
6435   SmallVector<SDValue, 8> LoadValues;
6436   SmallVector<SDValue, 8> LoadChains;
6437   SmallVector<SDValue, 8> OutChains;
6438   unsigned NumMemOps = MemOps.size();
6439   for (unsigned i = 0; i < NumMemOps; i++) {
6440     EVT VT = MemOps[i];
6441     unsigned VTSize = VT.getSizeInBits() / 8;
6442     SDValue Value;
6443 
6444     bool isDereferenceable =
6445       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6446     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6447     if (isDereferenceable)
6448       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6449 
6450     Value =
6451         DAG.getLoad(VT, dl, Chain,
6452                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6453                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6454     LoadValues.push_back(Value);
6455     LoadChains.push_back(Value.getValue(1));
6456     SrcOff += VTSize;
6457   }
6458   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6459   OutChains.clear();
6460   for (unsigned i = 0; i < NumMemOps; i++) {
6461     EVT VT = MemOps[i];
6462     unsigned VTSize = VT.getSizeInBits() / 8;
6463     SDValue Store;
6464 
6465     Store =
6466         DAG.getStore(Chain, dl, LoadValues[i],
6467                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6468                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6469     OutChains.push_back(Store);
6470     DstOff += VTSize;
6471   }
6472 
6473   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6474 }
6475 
6476 /// Lower the call to 'memset' intrinsic function into a series of store
6477 /// operations.
6478 ///
6479 /// \param DAG Selection DAG where lowered code is placed.
6480 /// \param dl Link to corresponding IR location.
6481 /// \param Chain Control flow dependency.
6482 /// \param Dst Pointer to destination memory location.
6483 /// \param Src Value of byte to write into the memory.
6484 /// \param Size Number of bytes to write.
6485 /// \param Alignment Alignment of the destination in bytes.
6486 /// \param isVol True if destination is volatile.
6487 /// \param DstPtrInfo IR information on the memory pointer.
6488 /// \returns New head in the control flow, if lowering was successful, empty
6489 /// SDValue otherwise.
6490 ///
6491 /// The function tries to replace 'llvm.memset' intrinsic with several store
6492 /// operations and value calculation code. This is usually profitable for small
6493 /// memory size.
6494 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6495                                SDValue Chain, SDValue Dst, SDValue Src,
6496                                uint64_t Size, Align Alignment, bool isVol,
6497                                MachinePointerInfo DstPtrInfo) {
6498   // Turn a memset of undef to nop.
6499   // FIXME: We need to honor volatile even is Src is undef.
6500   if (Src.isUndef())
6501     return Chain;
6502 
6503   // Expand memset to a series of load/store ops if the size operand
6504   // falls below a certain threshold.
6505   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6506   std::vector<EVT> MemOps;
6507   bool DstAlignCanChange = false;
6508   MachineFunction &MF = DAG.getMachineFunction();
6509   MachineFrameInfo &MFI = MF.getFrameInfo();
6510   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6511   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6512   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6513     DstAlignCanChange = true;
6514   bool IsZeroVal =
6515     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6516   if (!TLI.findOptimalMemOpLowering(
6517           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6518           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6519           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6520     return SDValue();
6521 
6522   if (DstAlignCanChange) {
6523     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6524     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6525     if (NewAlign > Alignment) {
6526       // Give the stack frame object a larger alignment if needed.
6527       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6528         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6529       Alignment = NewAlign;
6530     }
6531   }
6532 
6533   SmallVector<SDValue, 8> OutChains;
6534   uint64_t DstOff = 0;
6535   unsigned NumMemOps = MemOps.size();
6536 
6537   // Find the largest store and generate the bit pattern for it.
6538   EVT LargestVT = MemOps[0];
6539   for (unsigned i = 1; i < NumMemOps; i++)
6540     if (MemOps[i].bitsGT(LargestVT))
6541       LargestVT = MemOps[i];
6542   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6543 
6544   for (unsigned i = 0; i < NumMemOps; i++) {
6545     EVT VT = MemOps[i];
6546     unsigned VTSize = VT.getSizeInBits() / 8;
6547     if (VTSize > Size) {
6548       // Issuing an unaligned load / store pair  that overlaps with the previous
6549       // pair. Adjust the offset accordingly.
6550       assert(i == NumMemOps-1 && i != 0);
6551       DstOff -= VTSize - Size;
6552     }
6553 
6554     // If this store is smaller than the largest store see whether we can get
6555     // the smaller value for free with a truncate.
6556     SDValue Value = MemSetValue;
6557     if (VT.bitsLT(LargestVT)) {
6558       if (!LargestVT.isVector() && !VT.isVector() &&
6559           TLI.isTruncateFree(LargestVT, VT))
6560         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6561       else
6562         Value = getMemsetValue(Src, VT, DAG, dl);
6563     }
6564     assert(Value.getValueType() == VT && "Value with wrong type.");
6565     SDValue Store = DAG.getStore(
6566         Chain, dl, Value,
6567         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6568         DstPtrInfo.getWithOffset(DstOff), Alignment,
6569         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6570     OutChains.push_back(Store);
6571     DstOff += VT.getSizeInBits() / 8;
6572     Size -= VTSize;
6573   }
6574 
6575   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6576 }
6577 
6578 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6579                                             unsigned AS) {
6580   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6581   // pointer operands can be losslessly bitcasted to pointers of address space 0
6582   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6583     report_fatal_error("cannot lower memory intrinsic in address space " +
6584                        Twine(AS));
6585   }
6586 }
6587 
6588 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6589                                 SDValue Src, SDValue Size, Align Alignment,
6590                                 bool isVol, bool AlwaysInline, bool isTailCall,
6591                                 MachinePointerInfo DstPtrInfo,
6592                                 MachinePointerInfo SrcPtrInfo) {
6593   // Check to see if we should lower the memcpy to loads and stores first.
6594   // For cases within the target-specified limits, this is the best choice.
6595   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6596   if (ConstantSize) {
6597     // Memcpy with size zero? Just return the original chain.
6598     if (ConstantSize->isNullValue())
6599       return Chain;
6600 
6601     SDValue Result = getMemcpyLoadsAndStores(
6602         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6603         isVol, false, DstPtrInfo, SrcPtrInfo);
6604     if (Result.getNode())
6605       return Result;
6606   }
6607 
6608   // Then check to see if we should lower the memcpy with target-specific
6609   // code. If the target chooses to do this, this is the next best.
6610   if (TSI) {
6611     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6612         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6613         DstPtrInfo, SrcPtrInfo);
6614     if (Result.getNode())
6615       return Result;
6616   }
6617 
6618   // If we really need inline code and the target declined to provide it,
6619   // use a (potentially long) sequence of loads and stores.
6620   if (AlwaysInline) {
6621     assert(ConstantSize && "AlwaysInline requires a constant size!");
6622     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6623                                    ConstantSize->getZExtValue(), Alignment,
6624                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6625   }
6626 
6627   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6628   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6629 
6630   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6631   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6632   // respect volatile, so they may do things like read or write memory
6633   // beyond the given memory regions. But fixing this isn't easy, and most
6634   // people don't care.
6635 
6636   // Emit a library call.
6637   TargetLowering::ArgListTy Args;
6638   TargetLowering::ArgListEntry Entry;
6639   Entry.Ty = Type::getInt8PtrTy(*getContext());
6640   Entry.Node = Dst; Args.push_back(Entry);
6641   Entry.Node = Src; Args.push_back(Entry);
6642 
6643   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6644   Entry.Node = Size; Args.push_back(Entry);
6645   // FIXME: pass in SDLoc
6646   TargetLowering::CallLoweringInfo CLI(*this);
6647   CLI.setDebugLoc(dl)
6648       .setChain(Chain)
6649       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6650                     Dst.getValueType().getTypeForEVT(*getContext()),
6651                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6652                                       TLI->getPointerTy(getDataLayout())),
6653                     std::move(Args))
6654       .setDiscardResult()
6655       .setTailCall(isTailCall);
6656 
6657   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6658   return CallResult.second;
6659 }
6660 
6661 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6662                                       SDValue Dst, unsigned DstAlign,
6663                                       SDValue Src, unsigned SrcAlign,
6664                                       SDValue Size, Type *SizeTy,
6665                                       unsigned ElemSz, bool isTailCall,
6666                                       MachinePointerInfo DstPtrInfo,
6667                                       MachinePointerInfo SrcPtrInfo) {
6668   // Emit a library call.
6669   TargetLowering::ArgListTy Args;
6670   TargetLowering::ArgListEntry Entry;
6671   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6672   Entry.Node = Dst;
6673   Args.push_back(Entry);
6674 
6675   Entry.Node = Src;
6676   Args.push_back(Entry);
6677 
6678   Entry.Ty = SizeTy;
6679   Entry.Node = Size;
6680   Args.push_back(Entry);
6681 
6682   RTLIB::Libcall LibraryCall =
6683       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6684   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6685     report_fatal_error("Unsupported element size");
6686 
6687   TargetLowering::CallLoweringInfo CLI(*this);
6688   CLI.setDebugLoc(dl)
6689       .setChain(Chain)
6690       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6691                     Type::getVoidTy(*getContext()),
6692                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6693                                       TLI->getPointerTy(getDataLayout())),
6694                     std::move(Args))
6695       .setDiscardResult()
6696       .setTailCall(isTailCall);
6697 
6698   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6699   return CallResult.second;
6700 }
6701 
6702 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6703                                  SDValue Src, SDValue Size, Align Alignment,
6704                                  bool isVol, bool isTailCall,
6705                                  MachinePointerInfo DstPtrInfo,
6706                                  MachinePointerInfo SrcPtrInfo) {
6707   // Check to see if we should lower the memmove to loads and stores first.
6708   // For cases within the target-specified limits, this is the best choice.
6709   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6710   if (ConstantSize) {
6711     // Memmove with size zero? Just return the original chain.
6712     if (ConstantSize->isNullValue())
6713       return Chain;
6714 
6715     SDValue Result = getMemmoveLoadsAndStores(
6716         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6717         isVol, false, DstPtrInfo, SrcPtrInfo);
6718     if (Result.getNode())
6719       return Result;
6720   }
6721 
6722   // Then check to see if we should lower the memmove with target-specific
6723   // code. If the target chooses to do this, this is the next best.
6724   if (TSI) {
6725     SDValue Result =
6726         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6727                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6728     if (Result.getNode())
6729       return Result;
6730   }
6731 
6732   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6733   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6734 
6735   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6736   // not be safe.  See memcpy above for more details.
6737 
6738   // Emit a library call.
6739   TargetLowering::ArgListTy Args;
6740   TargetLowering::ArgListEntry Entry;
6741   Entry.Ty = Type::getInt8PtrTy(*getContext());
6742   Entry.Node = Dst; Args.push_back(Entry);
6743   Entry.Node = Src; Args.push_back(Entry);
6744 
6745   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6746   Entry.Node = Size; Args.push_back(Entry);
6747   // FIXME:  pass in SDLoc
6748   TargetLowering::CallLoweringInfo CLI(*this);
6749   CLI.setDebugLoc(dl)
6750       .setChain(Chain)
6751       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6752                     Dst.getValueType().getTypeForEVT(*getContext()),
6753                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6754                                       TLI->getPointerTy(getDataLayout())),
6755                     std::move(Args))
6756       .setDiscardResult()
6757       .setTailCall(isTailCall);
6758 
6759   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6760   return CallResult.second;
6761 }
6762 
6763 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6764                                        SDValue Dst, unsigned DstAlign,
6765                                        SDValue Src, unsigned SrcAlign,
6766                                        SDValue Size, Type *SizeTy,
6767                                        unsigned ElemSz, bool isTailCall,
6768                                        MachinePointerInfo DstPtrInfo,
6769                                        MachinePointerInfo SrcPtrInfo) {
6770   // Emit a library call.
6771   TargetLowering::ArgListTy Args;
6772   TargetLowering::ArgListEntry Entry;
6773   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6774   Entry.Node = Dst;
6775   Args.push_back(Entry);
6776 
6777   Entry.Node = Src;
6778   Args.push_back(Entry);
6779 
6780   Entry.Ty = SizeTy;
6781   Entry.Node = Size;
6782   Args.push_back(Entry);
6783 
6784   RTLIB::Libcall LibraryCall =
6785       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6786   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6787     report_fatal_error("Unsupported element size");
6788 
6789   TargetLowering::CallLoweringInfo CLI(*this);
6790   CLI.setDebugLoc(dl)
6791       .setChain(Chain)
6792       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6793                     Type::getVoidTy(*getContext()),
6794                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6795                                       TLI->getPointerTy(getDataLayout())),
6796                     std::move(Args))
6797       .setDiscardResult()
6798       .setTailCall(isTailCall);
6799 
6800   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6801   return CallResult.second;
6802 }
6803 
6804 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6805                                 SDValue Src, SDValue Size, Align Alignment,
6806                                 bool isVol, bool isTailCall,
6807                                 MachinePointerInfo DstPtrInfo) {
6808   // Check to see if we should lower the memset to stores first.
6809   // For cases within the target-specified limits, this is the best choice.
6810   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6811   if (ConstantSize) {
6812     // Memset with size zero? Just return the original chain.
6813     if (ConstantSize->isNullValue())
6814       return Chain;
6815 
6816     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6817                                      ConstantSize->getZExtValue(), Alignment,
6818                                      isVol, DstPtrInfo);
6819 
6820     if (Result.getNode())
6821       return Result;
6822   }
6823 
6824   // Then check to see if we should lower the memset with target-specific
6825   // code. If the target chooses to do this, this is the next best.
6826   if (TSI) {
6827     SDValue Result = TSI->EmitTargetCodeForMemset(
6828         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6829     if (Result.getNode())
6830       return Result;
6831   }
6832 
6833   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6834 
6835   // Emit a library call.
6836   TargetLowering::ArgListTy Args;
6837   TargetLowering::ArgListEntry Entry;
6838   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6839   Args.push_back(Entry);
6840   Entry.Node = Src;
6841   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6842   Args.push_back(Entry);
6843   Entry.Node = Size;
6844   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6845   Args.push_back(Entry);
6846 
6847   // FIXME: pass in SDLoc
6848   TargetLowering::CallLoweringInfo CLI(*this);
6849   CLI.setDebugLoc(dl)
6850       .setChain(Chain)
6851       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6852                     Dst.getValueType().getTypeForEVT(*getContext()),
6853                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6854                                       TLI->getPointerTy(getDataLayout())),
6855                     std::move(Args))
6856       .setDiscardResult()
6857       .setTailCall(isTailCall);
6858 
6859   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6860   return CallResult.second;
6861 }
6862 
6863 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6864                                       SDValue Dst, unsigned DstAlign,
6865                                       SDValue Value, SDValue Size, Type *SizeTy,
6866                                       unsigned ElemSz, bool isTailCall,
6867                                       MachinePointerInfo DstPtrInfo) {
6868   // Emit a library call.
6869   TargetLowering::ArgListTy Args;
6870   TargetLowering::ArgListEntry Entry;
6871   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6872   Entry.Node = Dst;
6873   Args.push_back(Entry);
6874 
6875   Entry.Ty = Type::getInt8Ty(*getContext());
6876   Entry.Node = Value;
6877   Args.push_back(Entry);
6878 
6879   Entry.Ty = SizeTy;
6880   Entry.Node = Size;
6881   Args.push_back(Entry);
6882 
6883   RTLIB::Libcall LibraryCall =
6884       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6885   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6886     report_fatal_error("Unsupported element size");
6887 
6888   TargetLowering::CallLoweringInfo CLI(*this);
6889   CLI.setDebugLoc(dl)
6890       .setChain(Chain)
6891       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6892                     Type::getVoidTy(*getContext()),
6893                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6894                                       TLI->getPointerTy(getDataLayout())),
6895                     std::move(Args))
6896       .setDiscardResult()
6897       .setTailCall(isTailCall);
6898 
6899   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6900   return CallResult.second;
6901 }
6902 
6903 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6904                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6905                                 MachineMemOperand *MMO) {
6906   FoldingSetNodeID ID;
6907   ID.AddInteger(MemVT.getRawBits());
6908   AddNodeIDNode(ID, Opcode, VTList, Ops);
6909   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6910   void* IP = nullptr;
6911   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6912     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6913     return SDValue(E, 0);
6914   }
6915 
6916   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6917                                     VTList, MemVT, MMO);
6918   createOperands(N, Ops);
6919 
6920   CSEMap.InsertNode(N, IP);
6921   InsertNode(N);
6922   return SDValue(N, 0);
6923 }
6924 
6925 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6926                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6927                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6928                                        MachineMemOperand *MMO) {
6929   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6930          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6931   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6932 
6933   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6934   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6935 }
6936 
6937 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6938                                 SDValue Chain, SDValue Ptr, SDValue Val,
6939                                 MachineMemOperand *MMO) {
6940   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6941           Opcode == ISD::ATOMIC_LOAD_SUB ||
6942           Opcode == ISD::ATOMIC_LOAD_AND ||
6943           Opcode == ISD::ATOMIC_LOAD_CLR ||
6944           Opcode == ISD::ATOMIC_LOAD_OR ||
6945           Opcode == ISD::ATOMIC_LOAD_XOR ||
6946           Opcode == ISD::ATOMIC_LOAD_NAND ||
6947           Opcode == ISD::ATOMIC_LOAD_MIN ||
6948           Opcode == ISD::ATOMIC_LOAD_MAX ||
6949           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6950           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6951           Opcode == ISD::ATOMIC_LOAD_FADD ||
6952           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6953           Opcode == ISD::ATOMIC_SWAP ||
6954           Opcode == ISD::ATOMIC_STORE) &&
6955          "Invalid Atomic Op");
6956 
6957   EVT VT = Val.getValueType();
6958 
6959   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6960                                                getVTList(VT, MVT::Other);
6961   SDValue Ops[] = {Chain, Ptr, Val};
6962   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6963 }
6964 
6965 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6966                                 EVT VT, SDValue Chain, SDValue Ptr,
6967                                 MachineMemOperand *MMO) {
6968   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6969 
6970   SDVTList VTs = getVTList(VT, MVT::Other);
6971   SDValue Ops[] = {Chain, Ptr};
6972   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6973 }
6974 
6975 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6976 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6977   if (Ops.size() == 1)
6978     return Ops[0];
6979 
6980   SmallVector<EVT, 4> VTs;
6981   VTs.reserve(Ops.size());
6982   for (const SDValue &Op : Ops)
6983     VTs.push_back(Op.getValueType());
6984   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6985 }
6986 
6987 SDValue SelectionDAG::getMemIntrinsicNode(
6988     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6989     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6990     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6991   if (!Size && MemVT.isScalableVector())
6992     Size = MemoryLocation::UnknownSize;
6993   else if (!Size)
6994     Size = MemVT.getStoreSize();
6995 
6996   MachineFunction &MF = getMachineFunction();
6997   MachineMemOperand *MMO =
6998       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6999 
7000   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7001 }
7002 
7003 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7004                                           SDVTList VTList,
7005                                           ArrayRef<SDValue> Ops, EVT MemVT,
7006                                           MachineMemOperand *MMO) {
7007   assert((Opcode == ISD::INTRINSIC_VOID ||
7008           Opcode == ISD::INTRINSIC_W_CHAIN ||
7009           Opcode == ISD::PREFETCH ||
7010           ((int)Opcode <= std::numeric_limits<int>::max() &&
7011            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7012          "Opcode is not a memory-accessing opcode!");
7013 
7014   // Memoize the node unless it returns a flag.
7015   MemIntrinsicSDNode *N;
7016   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7017     FoldingSetNodeID ID;
7018     AddNodeIDNode(ID, Opcode, VTList, Ops);
7019     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7020         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7021     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7022     void *IP = nullptr;
7023     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7024       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7025       return SDValue(E, 0);
7026     }
7027 
7028     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7029                                       VTList, MemVT, MMO);
7030     createOperands(N, Ops);
7031 
7032   CSEMap.InsertNode(N, IP);
7033   } else {
7034     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7035                                       VTList, MemVT, MMO);
7036     createOperands(N, Ops);
7037   }
7038   InsertNode(N);
7039   SDValue V(N, 0);
7040   NewSDValueDbgMsg(V, "Creating new node: ", this);
7041   return V;
7042 }
7043 
7044 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7045                                       SDValue Chain, int FrameIndex,
7046                                       int64_t Size, int64_t Offset) {
7047   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7048   const auto VTs = getVTList(MVT::Other);
7049   SDValue Ops[2] = {
7050       Chain,
7051       getFrameIndex(FrameIndex,
7052                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7053                     true)};
7054 
7055   FoldingSetNodeID ID;
7056   AddNodeIDNode(ID, Opcode, VTs, Ops);
7057   ID.AddInteger(FrameIndex);
7058   ID.AddInteger(Size);
7059   ID.AddInteger(Offset);
7060   void *IP = nullptr;
7061   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7062     return SDValue(E, 0);
7063 
7064   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7065       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7066   createOperands(N, Ops);
7067   CSEMap.InsertNode(N, IP);
7068   InsertNode(N);
7069   SDValue V(N, 0);
7070   NewSDValueDbgMsg(V, "Creating new node: ", this);
7071   return V;
7072 }
7073 
7074 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7075                                          uint64_t Guid, uint64_t Index,
7076                                          uint32_t Attr) {
7077   const unsigned Opcode = ISD::PSEUDO_PROBE;
7078   const auto VTs = getVTList(MVT::Other);
7079   SDValue Ops[] = {Chain};
7080   FoldingSetNodeID ID;
7081   AddNodeIDNode(ID, Opcode, VTs, Ops);
7082   ID.AddInteger(Guid);
7083   ID.AddInteger(Index);
7084   void *IP = nullptr;
7085   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7086     return SDValue(E, 0);
7087 
7088   auto *N = newSDNode<PseudoProbeSDNode>(
7089       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7090   createOperands(N, Ops);
7091   CSEMap.InsertNode(N, IP);
7092   InsertNode(N);
7093   SDValue V(N, 0);
7094   NewSDValueDbgMsg(V, "Creating new node: ", this);
7095   return V;
7096 }
7097 
7098 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7099 /// MachinePointerInfo record from it.  This is particularly useful because the
7100 /// code generator has many cases where it doesn't bother passing in a
7101 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7102 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7103                                            SelectionDAG &DAG, SDValue Ptr,
7104                                            int64_t Offset = 0) {
7105   // If this is FI+Offset, we can model it.
7106   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7107     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7108                                              FI->getIndex(), Offset);
7109 
7110   // If this is (FI+Offset1)+Offset2, we can model it.
7111   if (Ptr.getOpcode() != ISD::ADD ||
7112       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7113       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7114     return Info;
7115 
7116   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7117   return MachinePointerInfo::getFixedStack(
7118       DAG.getMachineFunction(), FI,
7119       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7120 }
7121 
7122 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7123 /// MachinePointerInfo record from it.  This is particularly useful because the
7124 /// code generator has many cases where it doesn't bother passing in a
7125 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7126 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7127                                            SelectionDAG &DAG, SDValue Ptr,
7128                                            SDValue OffsetOp) {
7129   // If the 'Offset' value isn't a constant, we can't handle this.
7130   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7131     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7132   if (OffsetOp.isUndef())
7133     return InferPointerInfo(Info, DAG, Ptr);
7134   return Info;
7135 }
7136 
7137 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7138                               EVT VT, const SDLoc &dl, SDValue Chain,
7139                               SDValue Ptr, SDValue Offset,
7140                               MachinePointerInfo PtrInfo, EVT MemVT,
7141                               Align Alignment,
7142                               MachineMemOperand::Flags MMOFlags,
7143                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7144   assert(Chain.getValueType() == MVT::Other &&
7145         "Invalid chain type");
7146 
7147   MMOFlags |= MachineMemOperand::MOLoad;
7148   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7149   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7150   // clients.
7151   if (PtrInfo.V.isNull())
7152     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7153 
7154   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7155   MachineFunction &MF = getMachineFunction();
7156   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7157                                                    Alignment, AAInfo, Ranges);
7158   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7159 }
7160 
7161 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7162                               EVT VT, const SDLoc &dl, SDValue Chain,
7163                               SDValue Ptr, SDValue Offset, EVT MemVT,
7164                               MachineMemOperand *MMO) {
7165   if (VT == MemVT) {
7166     ExtType = ISD::NON_EXTLOAD;
7167   } else if (ExtType == ISD::NON_EXTLOAD) {
7168     assert(VT == MemVT && "Non-extending load from different memory type!");
7169   } else {
7170     // Extending load.
7171     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7172            "Should only be an extending load, not truncating!");
7173     assert(VT.isInteger() == MemVT.isInteger() &&
7174            "Cannot convert from FP to Int or Int -> FP!");
7175     assert(VT.isVector() == MemVT.isVector() &&
7176            "Cannot use an ext load to convert to or from a vector!");
7177     assert((!VT.isVector() ||
7178             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7179            "Cannot use an ext load to change the number of vector elements!");
7180   }
7181 
7182   bool Indexed = AM != ISD::UNINDEXED;
7183   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7184 
7185   SDVTList VTs = Indexed ?
7186     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7187   SDValue Ops[] = { Chain, Ptr, Offset };
7188   FoldingSetNodeID ID;
7189   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7190   ID.AddInteger(MemVT.getRawBits());
7191   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7192       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7193   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7194   void *IP = nullptr;
7195   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7196     cast<LoadSDNode>(E)->refineAlignment(MMO);
7197     return SDValue(E, 0);
7198   }
7199   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7200                                   ExtType, MemVT, MMO);
7201   createOperands(N, Ops);
7202 
7203   CSEMap.InsertNode(N, IP);
7204   InsertNode(N);
7205   SDValue V(N, 0);
7206   NewSDValueDbgMsg(V, "Creating new node: ", this);
7207   return V;
7208 }
7209 
7210 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7211                               SDValue Ptr, MachinePointerInfo PtrInfo,
7212                               MaybeAlign Alignment,
7213                               MachineMemOperand::Flags MMOFlags,
7214                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7215   SDValue Undef = getUNDEF(Ptr.getValueType());
7216   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7217                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7218 }
7219 
7220 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7221                               SDValue Ptr, MachineMemOperand *MMO) {
7222   SDValue Undef = getUNDEF(Ptr.getValueType());
7223   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7224                  VT, MMO);
7225 }
7226 
7227 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7228                                  EVT VT, SDValue Chain, SDValue Ptr,
7229                                  MachinePointerInfo PtrInfo, EVT MemVT,
7230                                  MaybeAlign Alignment,
7231                                  MachineMemOperand::Flags MMOFlags,
7232                                  const AAMDNodes &AAInfo) {
7233   SDValue Undef = getUNDEF(Ptr.getValueType());
7234   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7235                  MemVT, Alignment, MMOFlags, AAInfo);
7236 }
7237 
7238 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7239                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7240                                  MachineMemOperand *MMO) {
7241   SDValue Undef = getUNDEF(Ptr.getValueType());
7242   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7243                  MemVT, MMO);
7244 }
7245 
7246 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7247                                      SDValue Base, SDValue Offset,
7248                                      ISD::MemIndexedMode AM) {
7249   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7250   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7251   // Don't propagate the invariant or dereferenceable flags.
7252   auto MMOFlags =
7253       LD->getMemOperand()->getFlags() &
7254       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7255   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7256                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7257                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7258 }
7259 
7260 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7261                                SDValue Ptr, MachinePointerInfo PtrInfo,
7262                                Align Alignment,
7263                                MachineMemOperand::Flags MMOFlags,
7264                                const AAMDNodes &AAInfo) {
7265   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7266 
7267   MMOFlags |= MachineMemOperand::MOStore;
7268   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7269 
7270   if (PtrInfo.V.isNull())
7271     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7272 
7273   MachineFunction &MF = getMachineFunction();
7274   uint64_t Size =
7275       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7276   MachineMemOperand *MMO =
7277       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7278   return getStore(Chain, dl, Val, Ptr, MMO);
7279 }
7280 
7281 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7282                                SDValue Ptr, MachineMemOperand *MMO) {
7283   assert(Chain.getValueType() == MVT::Other &&
7284         "Invalid chain type");
7285   EVT VT = Val.getValueType();
7286   SDVTList VTs = getVTList(MVT::Other);
7287   SDValue Undef = getUNDEF(Ptr.getValueType());
7288   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7289   FoldingSetNodeID ID;
7290   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7291   ID.AddInteger(VT.getRawBits());
7292   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7293       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7294   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7295   void *IP = nullptr;
7296   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7297     cast<StoreSDNode>(E)->refineAlignment(MMO);
7298     return SDValue(E, 0);
7299   }
7300   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7301                                    ISD::UNINDEXED, false, VT, MMO);
7302   createOperands(N, Ops);
7303 
7304   CSEMap.InsertNode(N, IP);
7305   InsertNode(N);
7306   SDValue V(N, 0);
7307   NewSDValueDbgMsg(V, "Creating new node: ", this);
7308   return V;
7309 }
7310 
7311 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7312                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7313                                     EVT SVT, Align Alignment,
7314                                     MachineMemOperand::Flags MMOFlags,
7315                                     const AAMDNodes &AAInfo) {
7316   assert(Chain.getValueType() == MVT::Other &&
7317         "Invalid chain type");
7318 
7319   MMOFlags |= MachineMemOperand::MOStore;
7320   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7321 
7322   if (PtrInfo.V.isNull())
7323     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7324 
7325   MachineFunction &MF = getMachineFunction();
7326   MachineMemOperand *MMO = MF.getMachineMemOperand(
7327       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7328       Alignment, AAInfo);
7329   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7330 }
7331 
7332 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7333                                     SDValue Ptr, EVT SVT,
7334                                     MachineMemOperand *MMO) {
7335   EVT VT = Val.getValueType();
7336 
7337   assert(Chain.getValueType() == MVT::Other &&
7338         "Invalid chain type");
7339   if (VT == SVT)
7340     return getStore(Chain, dl, Val, Ptr, MMO);
7341 
7342   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7343          "Should only be a truncating store, not extending!");
7344   assert(VT.isInteger() == SVT.isInteger() &&
7345          "Can't do FP-INT conversion!");
7346   assert(VT.isVector() == SVT.isVector() &&
7347          "Cannot use trunc store to convert to or from a vector!");
7348   assert((!VT.isVector() ||
7349           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7350          "Cannot use trunc store to change the number of vector elements!");
7351 
7352   SDVTList VTs = getVTList(MVT::Other);
7353   SDValue Undef = getUNDEF(Ptr.getValueType());
7354   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7355   FoldingSetNodeID ID;
7356   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7357   ID.AddInteger(SVT.getRawBits());
7358   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7359       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7360   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7361   void *IP = nullptr;
7362   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7363     cast<StoreSDNode>(E)->refineAlignment(MMO);
7364     return SDValue(E, 0);
7365   }
7366   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7367                                    ISD::UNINDEXED, true, SVT, MMO);
7368   createOperands(N, Ops);
7369 
7370   CSEMap.InsertNode(N, IP);
7371   InsertNode(N);
7372   SDValue V(N, 0);
7373   NewSDValueDbgMsg(V, "Creating new node: ", this);
7374   return V;
7375 }
7376 
7377 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7378                                       SDValue Base, SDValue Offset,
7379                                       ISD::MemIndexedMode AM) {
7380   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7381   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7382   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7383   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7384   FoldingSetNodeID ID;
7385   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7386   ID.AddInteger(ST->getMemoryVT().getRawBits());
7387   ID.AddInteger(ST->getRawSubclassData());
7388   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7389   void *IP = nullptr;
7390   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7391     return SDValue(E, 0);
7392 
7393   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7394                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7395                                    ST->getMemOperand());
7396   createOperands(N, Ops);
7397 
7398   CSEMap.InsertNode(N, IP);
7399   InsertNode(N);
7400   SDValue V(N, 0);
7401   NewSDValueDbgMsg(V, "Creating new node: ", this);
7402   return V;
7403 }
7404 
7405 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7406                                     SDValue Base, SDValue Offset, SDValue Mask,
7407                                     SDValue PassThru, EVT MemVT,
7408                                     MachineMemOperand *MMO,
7409                                     ISD::MemIndexedMode AM,
7410                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7411   bool Indexed = AM != ISD::UNINDEXED;
7412   assert((Indexed || Offset.isUndef()) &&
7413          "Unindexed masked load with an offset!");
7414   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7415                          : getVTList(VT, MVT::Other);
7416   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7417   FoldingSetNodeID ID;
7418   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7419   ID.AddInteger(MemVT.getRawBits());
7420   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7421       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7422   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7423   void *IP = nullptr;
7424   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7425     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7426     return SDValue(E, 0);
7427   }
7428   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7429                                         AM, ExtTy, isExpanding, MemVT, MMO);
7430   createOperands(N, Ops);
7431 
7432   CSEMap.InsertNode(N, IP);
7433   InsertNode(N);
7434   SDValue V(N, 0);
7435   NewSDValueDbgMsg(V, "Creating new node: ", this);
7436   return V;
7437 }
7438 
7439 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7440                                            SDValue Base, SDValue Offset,
7441                                            ISD::MemIndexedMode AM) {
7442   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7443   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7444   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7445                        Offset, LD->getMask(), LD->getPassThru(),
7446                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7447                        LD->getExtensionType(), LD->isExpandingLoad());
7448 }
7449 
7450 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7451                                      SDValue Val, SDValue Base, SDValue Offset,
7452                                      SDValue Mask, EVT MemVT,
7453                                      MachineMemOperand *MMO,
7454                                      ISD::MemIndexedMode AM, bool IsTruncating,
7455                                      bool IsCompressing) {
7456   assert(Chain.getValueType() == MVT::Other &&
7457         "Invalid chain type");
7458   bool Indexed = AM != ISD::UNINDEXED;
7459   assert((Indexed || Offset.isUndef()) &&
7460          "Unindexed masked store with an offset!");
7461   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7462                          : getVTList(MVT::Other);
7463   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7464   FoldingSetNodeID ID;
7465   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7466   ID.AddInteger(MemVT.getRawBits());
7467   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7468       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7469   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7470   void *IP = nullptr;
7471   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7472     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7473     return SDValue(E, 0);
7474   }
7475   auto *N =
7476       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7477                                    IsTruncating, IsCompressing, MemVT, MMO);
7478   createOperands(N, Ops);
7479 
7480   CSEMap.InsertNode(N, IP);
7481   InsertNode(N);
7482   SDValue V(N, 0);
7483   NewSDValueDbgMsg(V, "Creating new node: ", this);
7484   return V;
7485 }
7486 
7487 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7488                                             SDValue Base, SDValue Offset,
7489                                             ISD::MemIndexedMode AM) {
7490   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7491   assert(ST->getOffset().isUndef() &&
7492          "Masked store is already a indexed store!");
7493   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7494                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7495                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7496 }
7497 
7498 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7499                                       ArrayRef<SDValue> Ops,
7500                                       MachineMemOperand *MMO,
7501                                       ISD::MemIndexType IndexType,
7502                                       ISD::LoadExtType ExtTy) {
7503   assert(Ops.size() == 6 && "Incompatible number of operands");
7504 
7505   FoldingSetNodeID ID;
7506   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7507   ID.AddInteger(VT.getRawBits());
7508   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7509       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7510   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7511   void *IP = nullptr;
7512   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7513     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7514     return SDValue(E, 0);
7515   }
7516 
7517   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7518   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7519                                           VTs, VT, MMO, IndexType, ExtTy);
7520   createOperands(N, Ops);
7521 
7522   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7523          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7524   assert(N->getMask().getValueType().getVectorElementCount() ==
7525              N->getValueType(0).getVectorElementCount() &&
7526          "Vector width mismatch between mask and data");
7527   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7528              N->getValueType(0).getVectorElementCount().isScalable() &&
7529          "Scalable flags of index and data do not match");
7530   assert(ElementCount::isKnownGE(
7531              N->getIndex().getValueType().getVectorElementCount(),
7532              N->getValueType(0).getVectorElementCount()) &&
7533          "Vector width mismatch between index and data");
7534   assert(isa<ConstantSDNode>(N->getScale()) &&
7535          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7536          "Scale should be a constant power of 2");
7537 
7538   CSEMap.InsertNode(N, IP);
7539   InsertNode(N);
7540   SDValue V(N, 0);
7541   NewSDValueDbgMsg(V, "Creating new node: ", this);
7542   return V;
7543 }
7544 
7545 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7546                                        ArrayRef<SDValue> Ops,
7547                                        MachineMemOperand *MMO,
7548                                        ISD::MemIndexType IndexType,
7549                                        bool IsTrunc) {
7550   assert(Ops.size() == 6 && "Incompatible number of operands");
7551 
7552   FoldingSetNodeID ID;
7553   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7554   ID.AddInteger(VT.getRawBits());
7555   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7556       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7557   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7558   void *IP = nullptr;
7559   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7560     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7561     return SDValue(E, 0);
7562   }
7563 
7564   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7565   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7566                                            VTs, VT, MMO, IndexType, IsTrunc);
7567   createOperands(N, Ops);
7568 
7569   assert(N->getMask().getValueType().getVectorElementCount() ==
7570              N->getValue().getValueType().getVectorElementCount() &&
7571          "Vector width mismatch between mask and data");
7572   assert(
7573       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7574           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7575       "Scalable flags of index and data do not match");
7576   assert(ElementCount::isKnownGE(
7577              N->getIndex().getValueType().getVectorElementCount(),
7578              N->getValue().getValueType().getVectorElementCount()) &&
7579          "Vector width mismatch between index and data");
7580   assert(isa<ConstantSDNode>(N->getScale()) &&
7581          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7582          "Scale should be a constant power of 2");
7583 
7584   CSEMap.InsertNode(N, IP);
7585   InsertNode(N);
7586   SDValue V(N, 0);
7587   NewSDValueDbgMsg(V, "Creating new node: ", this);
7588   return V;
7589 }
7590 
7591 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7592   // select undef, T, F --> T (if T is a constant), otherwise F
7593   // select, ?, undef, F --> F
7594   // select, ?, T, undef --> T
7595   if (Cond.isUndef())
7596     return isConstantValueOfAnyType(T) ? T : F;
7597   if (T.isUndef())
7598     return F;
7599   if (F.isUndef())
7600     return T;
7601 
7602   // select true, T, F --> T
7603   // select false, T, F --> F
7604   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7605     return CondC->isNullValue() ? F : T;
7606 
7607   // TODO: This should simplify VSELECT with constant condition using something
7608   // like this (but check boolean contents to be complete?):
7609   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7610   //    return T;
7611   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7612   //    return F;
7613 
7614   // select ?, T, T --> T
7615   if (T == F)
7616     return T;
7617 
7618   return SDValue();
7619 }
7620 
7621 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7622   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7623   if (X.isUndef())
7624     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7625   // shift X, undef --> undef (because it may shift by the bitwidth)
7626   if (Y.isUndef())
7627     return getUNDEF(X.getValueType());
7628 
7629   // shift 0, Y --> 0
7630   // shift X, 0 --> X
7631   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7632     return X;
7633 
7634   // shift X, C >= bitwidth(X) --> undef
7635   // All vector elements must be too big (or undef) to avoid partial undefs.
7636   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7637     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7638   };
7639   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7640     return getUNDEF(X.getValueType());
7641 
7642   return SDValue();
7643 }
7644 
7645 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7646                                       SDNodeFlags Flags) {
7647   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7648   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7649   // operation is poison. That result can be relaxed to undef.
7650   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7651   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7652   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7653                 (YC && YC->getValueAPF().isNaN());
7654   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7655                 (YC && YC->getValueAPF().isInfinity());
7656 
7657   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7658     return getUNDEF(X.getValueType());
7659 
7660   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7661     return getUNDEF(X.getValueType());
7662 
7663   if (!YC)
7664     return SDValue();
7665 
7666   // X + -0.0 --> X
7667   if (Opcode == ISD::FADD)
7668     if (YC->getValueAPF().isNegZero())
7669       return X;
7670 
7671   // X - +0.0 --> X
7672   if (Opcode == ISD::FSUB)
7673     if (YC->getValueAPF().isPosZero())
7674       return X;
7675 
7676   // X * 1.0 --> X
7677   // X / 1.0 --> X
7678   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7679     if (YC->getValueAPF().isExactlyValue(1.0))
7680       return X;
7681 
7682   // X * 0.0 --> 0.0
7683   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7684     if (YC->getValueAPF().isZero())
7685       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7686 
7687   return SDValue();
7688 }
7689 
7690 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7691                                SDValue Ptr, SDValue SV, unsigned Align) {
7692   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7693   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7694 }
7695 
7696 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7697                               ArrayRef<SDUse> Ops) {
7698   switch (Ops.size()) {
7699   case 0: return getNode(Opcode, DL, VT);
7700   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7701   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7702   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7703   default: break;
7704   }
7705 
7706   // Copy from an SDUse array into an SDValue array for use with
7707   // the regular getNode logic.
7708   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7709   return getNode(Opcode, DL, VT, NewOps);
7710 }
7711 
7712 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7713                               ArrayRef<SDValue> Ops) {
7714   SDNodeFlags Flags;
7715   if (Inserter)
7716     Flags = Inserter->getFlags();
7717   return getNode(Opcode, DL, VT, Ops, Flags);
7718 }
7719 
7720 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7721                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7722   unsigned NumOps = Ops.size();
7723   switch (NumOps) {
7724   case 0: return getNode(Opcode, DL, VT);
7725   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7726   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7727   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7728   default: break;
7729   }
7730 
7731 #ifndef NDEBUG
7732   for (auto &Op : Ops)
7733     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7734            "Operand is DELETED_NODE!");
7735 #endif
7736 
7737   switch (Opcode) {
7738   default: break;
7739   case ISD::BUILD_VECTOR:
7740     // Attempt to simplify BUILD_VECTOR.
7741     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7742       return V;
7743     break;
7744   case ISD::CONCAT_VECTORS:
7745     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7746       return V;
7747     break;
7748   case ISD::SELECT_CC:
7749     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7750     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7751            "LHS and RHS of condition must have same type!");
7752     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7753            "True and False arms of SelectCC must have same type!");
7754     assert(Ops[2].getValueType() == VT &&
7755            "select_cc node must be of same type as true and false value!");
7756     break;
7757   case ISD::BR_CC:
7758     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7759     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7760            "LHS/RHS of comparison should match types!");
7761     break;
7762   }
7763 
7764   // Memoize nodes.
7765   SDNode *N;
7766   SDVTList VTs = getVTList(VT);
7767 
7768   if (VT != MVT::Glue) {
7769     FoldingSetNodeID ID;
7770     AddNodeIDNode(ID, Opcode, VTs, Ops);
7771     void *IP = nullptr;
7772 
7773     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7774       return SDValue(E, 0);
7775 
7776     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7777     createOperands(N, Ops);
7778 
7779     CSEMap.InsertNode(N, IP);
7780   } else {
7781     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7782     createOperands(N, Ops);
7783   }
7784 
7785   N->setFlags(Flags);
7786   InsertNode(N);
7787   SDValue V(N, 0);
7788   NewSDValueDbgMsg(V, "Creating new node: ", this);
7789   return V;
7790 }
7791 
7792 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7793                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7794   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7795 }
7796 
7797 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7798                               ArrayRef<SDValue> Ops) {
7799   SDNodeFlags Flags;
7800   if (Inserter)
7801     Flags = Inserter->getFlags();
7802   return getNode(Opcode, DL, VTList, Ops, Flags);
7803 }
7804 
7805 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7806                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7807   if (VTList.NumVTs == 1)
7808     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7809 
7810 #ifndef NDEBUG
7811   for (auto &Op : Ops)
7812     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7813            "Operand is DELETED_NODE!");
7814 #endif
7815 
7816   switch (Opcode) {
7817   case ISD::STRICT_FP_EXTEND:
7818     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7819            "Invalid STRICT_FP_EXTEND!");
7820     assert(VTList.VTs[0].isFloatingPoint() &&
7821            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7822     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7823            "STRICT_FP_EXTEND result type should be vector iff the operand "
7824            "type is vector!");
7825     assert((!VTList.VTs[0].isVector() ||
7826             VTList.VTs[0].getVectorNumElements() ==
7827             Ops[1].getValueType().getVectorNumElements()) &&
7828            "Vector element count mismatch!");
7829     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7830            "Invalid fpext node, dst <= src!");
7831     break;
7832   case ISD::STRICT_FP_ROUND:
7833     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7834     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7835            "STRICT_FP_ROUND result type should be vector iff the operand "
7836            "type is vector!");
7837     assert((!VTList.VTs[0].isVector() ||
7838             VTList.VTs[0].getVectorNumElements() ==
7839             Ops[1].getValueType().getVectorNumElements()) &&
7840            "Vector element count mismatch!");
7841     assert(VTList.VTs[0].isFloatingPoint() &&
7842            Ops[1].getValueType().isFloatingPoint() &&
7843            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7844            isa<ConstantSDNode>(Ops[2]) &&
7845            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7846             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7847            "Invalid STRICT_FP_ROUND!");
7848     break;
7849 #if 0
7850   // FIXME: figure out how to safely handle things like
7851   // int foo(int x) { return 1 << (x & 255); }
7852   // int bar() { return foo(256); }
7853   case ISD::SRA_PARTS:
7854   case ISD::SRL_PARTS:
7855   case ISD::SHL_PARTS:
7856     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7857         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7858       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7859     else if (N3.getOpcode() == ISD::AND)
7860       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7861         // If the and is only masking out bits that cannot effect the shift,
7862         // eliminate the and.
7863         unsigned NumBits = VT.getScalarSizeInBits()*2;
7864         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7865           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7866       }
7867     break;
7868 #endif
7869   }
7870 
7871   // Memoize the node unless it returns a flag.
7872   SDNode *N;
7873   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7874     FoldingSetNodeID ID;
7875     AddNodeIDNode(ID, Opcode, VTList, Ops);
7876     void *IP = nullptr;
7877     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7878       return SDValue(E, 0);
7879 
7880     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7881     createOperands(N, Ops);
7882     CSEMap.InsertNode(N, IP);
7883   } else {
7884     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7885     createOperands(N, Ops);
7886   }
7887 
7888   N->setFlags(Flags);
7889   InsertNode(N);
7890   SDValue V(N, 0);
7891   NewSDValueDbgMsg(V, "Creating new node: ", this);
7892   return V;
7893 }
7894 
7895 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7896                               SDVTList VTList) {
7897   return getNode(Opcode, DL, VTList, None);
7898 }
7899 
7900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7901                               SDValue N1) {
7902   SDValue Ops[] = { N1 };
7903   return getNode(Opcode, DL, VTList, Ops);
7904 }
7905 
7906 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7907                               SDValue N1, SDValue N2) {
7908   SDValue Ops[] = { N1, N2 };
7909   return getNode(Opcode, DL, VTList, Ops);
7910 }
7911 
7912 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7913                               SDValue N1, SDValue N2, SDValue N3) {
7914   SDValue Ops[] = { N1, N2, N3 };
7915   return getNode(Opcode, DL, VTList, Ops);
7916 }
7917 
7918 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7919                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7920   SDValue Ops[] = { N1, N2, N3, N4 };
7921   return getNode(Opcode, DL, VTList, Ops);
7922 }
7923 
7924 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7925                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7926                               SDValue N5) {
7927   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7928   return getNode(Opcode, DL, VTList, Ops);
7929 }
7930 
7931 SDVTList SelectionDAG::getVTList(EVT VT) {
7932   return makeVTList(SDNode::getValueTypeList(VT), 1);
7933 }
7934 
7935 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7936   FoldingSetNodeID ID;
7937   ID.AddInteger(2U);
7938   ID.AddInteger(VT1.getRawBits());
7939   ID.AddInteger(VT2.getRawBits());
7940 
7941   void *IP = nullptr;
7942   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7943   if (!Result) {
7944     EVT *Array = Allocator.Allocate<EVT>(2);
7945     Array[0] = VT1;
7946     Array[1] = VT2;
7947     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7948     VTListMap.InsertNode(Result, IP);
7949   }
7950   return Result->getSDVTList();
7951 }
7952 
7953 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7954   FoldingSetNodeID ID;
7955   ID.AddInteger(3U);
7956   ID.AddInteger(VT1.getRawBits());
7957   ID.AddInteger(VT2.getRawBits());
7958   ID.AddInteger(VT3.getRawBits());
7959 
7960   void *IP = nullptr;
7961   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7962   if (!Result) {
7963     EVT *Array = Allocator.Allocate<EVT>(3);
7964     Array[0] = VT1;
7965     Array[1] = VT2;
7966     Array[2] = VT3;
7967     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7968     VTListMap.InsertNode(Result, IP);
7969   }
7970   return Result->getSDVTList();
7971 }
7972 
7973 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7974   FoldingSetNodeID ID;
7975   ID.AddInteger(4U);
7976   ID.AddInteger(VT1.getRawBits());
7977   ID.AddInteger(VT2.getRawBits());
7978   ID.AddInteger(VT3.getRawBits());
7979   ID.AddInteger(VT4.getRawBits());
7980 
7981   void *IP = nullptr;
7982   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7983   if (!Result) {
7984     EVT *Array = Allocator.Allocate<EVT>(4);
7985     Array[0] = VT1;
7986     Array[1] = VT2;
7987     Array[2] = VT3;
7988     Array[3] = VT4;
7989     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7990     VTListMap.InsertNode(Result, IP);
7991   }
7992   return Result->getSDVTList();
7993 }
7994 
7995 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7996   unsigned NumVTs = VTs.size();
7997   FoldingSetNodeID ID;
7998   ID.AddInteger(NumVTs);
7999   for (unsigned index = 0; index < NumVTs; index++) {
8000     ID.AddInteger(VTs[index].getRawBits());
8001   }
8002 
8003   void *IP = nullptr;
8004   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8005   if (!Result) {
8006     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8007     llvm::copy(VTs, Array);
8008     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8009     VTListMap.InsertNode(Result, IP);
8010   }
8011   return Result->getSDVTList();
8012 }
8013 
8014 
8015 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8016 /// specified operands.  If the resultant node already exists in the DAG,
8017 /// this does not modify the specified node, instead it returns the node that
8018 /// already exists.  If the resultant node does not exist in the DAG, the
8019 /// input node is returned.  As a degenerate case, if you specify the same
8020 /// input operands as the node already has, the input node is returned.
8021 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8022   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8023 
8024   // Check to see if there is no change.
8025   if (Op == N->getOperand(0)) return N;
8026 
8027   // See if the modified node already exists.
8028   void *InsertPos = nullptr;
8029   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8030     return Existing;
8031 
8032   // Nope it doesn't.  Remove the node from its current place in the maps.
8033   if (InsertPos)
8034     if (!RemoveNodeFromCSEMaps(N))
8035       InsertPos = nullptr;
8036 
8037   // Now we update the operands.
8038   N->OperandList[0].set(Op);
8039 
8040   updateDivergence(N);
8041   // If this gets put into a CSE map, add it.
8042   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8043   return N;
8044 }
8045 
8046 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8047   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8048 
8049   // Check to see if there is no change.
8050   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8051     return N;   // No operands changed, just return the input node.
8052 
8053   // See if the modified node already exists.
8054   void *InsertPos = nullptr;
8055   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8056     return Existing;
8057 
8058   // Nope it doesn't.  Remove the node from its current place in the maps.
8059   if (InsertPos)
8060     if (!RemoveNodeFromCSEMaps(N))
8061       InsertPos = nullptr;
8062 
8063   // Now we update the operands.
8064   if (N->OperandList[0] != Op1)
8065     N->OperandList[0].set(Op1);
8066   if (N->OperandList[1] != Op2)
8067     N->OperandList[1].set(Op2);
8068 
8069   updateDivergence(N);
8070   // If this gets put into a CSE map, add it.
8071   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8072   return N;
8073 }
8074 
8075 SDNode *SelectionDAG::
8076 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8077   SDValue Ops[] = { Op1, Op2, Op3 };
8078   return UpdateNodeOperands(N, Ops);
8079 }
8080 
8081 SDNode *SelectionDAG::
8082 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8083                    SDValue Op3, SDValue Op4) {
8084   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8085   return UpdateNodeOperands(N, Ops);
8086 }
8087 
8088 SDNode *SelectionDAG::
8089 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8090                    SDValue Op3, SDValue Op4, SDValue Op5) {
8091   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8092   return UpdateNodeOperands(N, Ops);
8093 }
8094 
8095 SDNode *SelectionDAG::
8096 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8097   unsigned NumOps = Ops.size();
8098   assert(N->getNumOperands() == NumOps &&
8099          "Update with wrong number of operands");
8100 
8101   // If no operands changed just return the input node.
8102   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8103     return N;
8104 
8105   // See if the modified node already exists.
8106   void *InsertPos = nullptr;
8107   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8108     return Existing;
8109 
8110   // Nope it doesn't.  Remove the node from its current place in the maps.
8111   if (InsertPos)
8112     if (!RemoveNodeFromCSEMaps(N))
8113       InsertPos = nullptr;
8114 
8115   // Now we update the operands.
8116   for (unsigned i = 0; i != NumOps; ++i)
8117     if (N->OperandList[i] != Ops[i])
8118       N->OperandList[i].set(Ops[i]);
8119 
8120   updateDivergence(N);
8121   // If this gets put into a CSE map, add it.
8122   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8123   return N;
8124 }
8125 
8126 /// DropOperands - Release the operands and set this node to have
8127 /// zero operands.
8128 void SDNode::DropOperands() {
8129   // Unlike the code in MorphNodeTo that does this, we don't need to
8130   // watch for dead nodes here.
8131   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8132     SDUse &Use = *I++;
8133     Use.set(SDValue());
8134   }
8135 }
8136 
8137 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8138                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8139   if (NewMemRefs.empty()) {
8140     N->clearMemRefs();
8141     return;
8142   }
8143 
8144   // Check if we can avoid allocating by storing a single reference directly.
8145   if (NewMemRefs.size() == 1) {
8146     N->MemRefs = NewMemRefs[0];
8147     N->NumMemRefs = 1;
8148     return;
8149   }
8150 
8151   MachineMemOperand **MemRefsBuffer =
8152       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8153   llvm::copy(NewMemRefs, MemRefsBuffer);
8154   N->MemRefs = MemRefsBuffer;
8155   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8156 }
8157 
8158 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8159 /// machine opcode.
8160 ///
8161 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8162                                    EVT VT) {
8163   SDVTList VTs = getVTList(VT);
8164   return SelectNodeTo(N, MachineOpc, VTs, None);
8165 }
8166 
8167 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8168                                    EVT VT, SDValue Op1) {
8169   SDVTList VTs = getVTList(VT);
8170   SDValue Ops[] = { Op1 };
8171   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8172 }
8173 
8174 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8175                                    EVT VT, SDValue Op1,
8176                                    SDValue Op2) {
8177   SDVTList VTs = getVTList(VT);
8178   SDValue Ops[] = { Op1, Op2 };
8179   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8180 }
8181 
8182 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8183                                    EVT VT, SDValue Op1,
8184                                    SDValue Op2, SDValue Op3) {
8185   SDVTList VTs = getVTList(VT);
8186   SDValue Ops[] = { Op1, Op2, Op3 };
8187   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8188 }
8189 
8190 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8191                                    EVT VT, ArrayRef<SDValue> Ops) {
8192   SDVTList VTs = getVTList(VT);
8193   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8194 }
8195 
8196 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8197                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8198   SDVTList VTs = getVTList(VT1, VT2);
8199   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8200 }
8201 
8202 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8203                                    EVT VT1, EVT VT2) {
8204   SDVTList VTs = getVTList(VT1, VT2);
8205   return SelectNodeTo(N, MachineOpc, VTs, None);
8206 }
8207 
8208 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8209                                    EVT VT1, EVT VT2, EVT VT3,
8210                                    ArrayRef<SDValue> Ops) {
8211   SDVTList VTs = getVTList(VT1, VT2, VT3);
8212   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8213 }
8214 
8215 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8216                                    EVT VT1, EVT VT2,
8217                                    SDValue Op1, SDValue Op2) {
8218   SDVTList VTs = getVTList(VT1, VT2);
8219   SDValue Ops[] = { Op1, Op2 };
8220   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8221 }
8222 
8223 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8224                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8225   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8226   // Reset the NodeID to -1.
8227   New->setNodeId(-1);
8228   if (New != N) {
8229     ReplaceAllUsesWith(N, New);
8230     RemoveDeadNode(N);
8231   }
8232   return New;
8233 }
8234 
8235 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8236 /// the line number information on the merged node since it is not possible to
8237 /// preserve the information that operation is associated with multiple lines.
8238 /// This will make the debugger working better at -O0, were there is a higher
8239 /// probability having other instructions associated with that line.
8240 ///
8241 /// For IROrder, we keep the smaller of the two
8242 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8243   DebugLoc NLoc = N->getDebugLoc();
8244   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8245     N->setDebugLoc(DebugLoc());
8246   }
8247   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8248   N->setIROrder(Order);
8249   return N;
8250 }
8251 
8252 /// MorphNodeTo - This *mutates* the specified node to have the specified
8253 /// return type, opcode, and operands.
8254 ///
8255 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8256 /// node of the specified opcode and operands, it returns that node instead of
8257 /// the current one.  Note that the SDLoc need not be the same.
8258 ///
8259 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8260 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8261 /// node, and because it doesn't require CSE recalculation for any of
8262 /// the node's users.
8263 ///
8264 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8265 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8266 /// the legalizer which maintain worklists that would need to be updated when
8267 /// deleting things.
8268 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8269                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8270   // If an identical node already exists, use it.
8271   void *IP = nullptr;
8272   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8273     FoldingSetNodeID ID;
8274     AddNodeIDNode(ID, Opc, VTs, Ops);
8275     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8276       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8277   }
8278 
8279   if (!RemoveNodeFromCSEMaps(N))
8280     IP = nullptr;
8281 
8282   // Start the morphing.
8283   N->NodeType = Opc;
8284   N->ValueList = VTs.VTs;
8285   N->NumValues = VTs.NumVTs;
8286 
8287   // Clear the operands list, updating used nodes to remove this from their
8288   // use list.  Keep track of any operands that become dead as a result.
8289   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8290   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8291     SDUse &Use = *I++;
8292     SDNode *Used = Use.getNode();
8293     Use.set(SDValue());
8294     if (Used->use_empty())
8295       DeadNodeSet.insert(Used);
8296   }
8297 
8298   // For MachineNode, initialize the memory references information.
8299   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8300     MN->clearMemRefs();
8301 
8302   // Swap for an appropriately sized array from the recycler.
8303   removeOperands(N);
8304   createOperands(N, Ops);
8305 
8306   // Delete any nodes that are still dead after adding the uses for the
8307   // new operands.
8308   if (!DeadNodeSet.empty()) {
8309     SmallVector<SDNode *, 16> DeadNodes;
8310     for (SDNode *N : DeadNodeSet)
8311       if (N->use_empty())
8312         DeadNodes.push_back(N);
8313     RemoveDeadNodes(DeadNodes);
8314   }
8315 
8316   if (IP)
8317     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8318   return N;
8319 }
8320 
8321 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8322   unsigned OrigOpc = Node->getOpcode();
8323   unsigned NewOpc;
8324   switch (OrigOpc) {
8325   default:
8326     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8327 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8328   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8329 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8330   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8331 #include "llvm/IR/ConstrainedOps.def"
8332   }
8333 
8334   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8335 
8336   // We're taking this node out of the chain, so we need to re-link things.
8337   SDValue InputChain = Node->getOperand(0);
8338   SDValue OutputChain = SDValue(Node, 1);
8339   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8340 
8341   SmallVector<SDValue, 3> Ops;
8342   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8343     Ops.push_back(Node->getOperand(i));
8344 
8345   SDVTList VTs = getVTList(Node->getValueType(0));
8346   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8347 
8348   // MorphNodeTo can operate in two ways: if an existing node with the
8349   // specified operands exists, it can just return it.  Otherwise, it
8350   // updates the node in place to have the requested operands.
8351   if (Res == Node) {
8352     // If we updated the node in place, reset the node ID.  To the isel,
8353     // this should be just like a newly allocated machine node.
8354     Res->setNodeId(-1);
8355   } else {
8356     ReplaceAllUsesWith(Node, Res);
8357     RemoveDeadNode(Node);
8358   }
8359 
8360   return Res;
8361 }
8362 
8363 /// getMachineNode - These are used for target selectors to create a new node
8364 /// with specified return type(s), MachineInstr opcode, and operands.
8365 ///
8366 /// Note that getMachineNode returns the resultant node.  If there is already a
8367 /// node of the specified opcode and operands, it returns that node instead of
8368 /// the current one.
8369 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8370                                             EVT VT) {
8371   SDVTList VTs = getVTList(VT);
8372   return getMachineNode(Opcode, dl, VTs, None);
8373 }
8374 
8375 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8376                                             EVT VT, SDValue Op1) {
8377   SDVTList VTs = getVTList(VT);
8378   SDValue Ops[] = { Op1 };
8379   return getMachineNode(Opcode, dl, VTs, Ops);
8380 }
8381 
8382 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8383                                             EVT VT, SDValue Op1, SDValue Op2) {
8384   SDVTList VTs = getVTList(VT);
8385   SDValue Ops[] = { Op1, Op2 };
8386   return getMachineNode(Opcode, dl, VTs, Ops);
8387 }
8388 
8389 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8390                                             EVT VT, SDValue Op1, SDValue Op2,
8391                                             SDValue Op3) {
8392   SDVTList VTs = getVTList(VT);
8393   SDValue Ops[] = { Op1, Op2, Op3 };
8394   return getMachineNode(Opcode, dl, VTs, Ops);
8395 }
8396 
8397 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8398                                             EVT VT, ArrayRef<SDValue> Ops) {
8399   SDVTList VTs = getVTList(VT);
8400   return getMachineNode(Opcode, dl, VTs, Ops);
8401 }
8402 
8403 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8404                                             EVT VT1, EVT VT2, SDValue Op1,
8405                                             SDValue Op2) {
8406   SDVTList VTs = getVTList(VT1, VT2);
8407   SDValue Ops[] = { Op1, Op2 };
8408   return getMachineNode(Opcode, dl, VTs, Ops);
8409 }
8410 
8411 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8412                                             EVT VT1, EVT VT2, SDValue Op1,
8413                                             SDValue Op2, SDValue Op3) {
8414   SDVTList VTs = getVTList(VT1, VT2);
8415   SDValue Ops[] = { Op1, Op2, Op3 };
8416   return getMachineNode(Opcode, dl, VTs, Ops);
8417 }
8418 
8419 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8420                                             EVT VT1, EVT VT2,
8421                                             ArrayRef<SDValue> Ops) {
8422   SDVTList VTs = getVTList(VT1, VT2);
8423   return getMachineNode(Opcode, dl, VTs, Ops);
8424 }
8425 
8426 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8427                                             EVT VT1, EVT VT2, EVT VT3,
8428                                             SDValue Op1, SDValue Op2) {
8429   SDVTList VTs = getVTList(VT1, VT2, VT3);
8430   SDValue Ops[] = { Op1, Op2 };
8431   return getMachineNode(Opcode, dl, VTs, Ops);
8432 }
8433 
8434 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8435                                             EVT VT1, EVT VT2, EVT VT3,
8436                                             SDValue Op1, SDValue Op2,
8437                                             SDValue Op3) {
8438   SDVTList VTs = getVTList(VT1, VT2, VT3);
8439   SDValue Ops[] = { Op1, Op2, Op3 };
8440   return getMachineNode(Opcode, dl, VTs, Ops);
8441 }
8442 
8443 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8444                                             EVT VT1, EVT VT2, EVT VT3,
8445                                             ArrayRef<SDValue> Ops) {
8446   SDVTList VTs = getVTList(VT1, VT2, VT3);
8447   return getMachineNode(Opcode, dl, VTs, Ops);
8448 }
8449 
8450 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8451                                             ArrayRef<EVT> ResultTys,
8452                                             ArrayRef<SDValue> Ops) {
8453   SDVTList VTs = getVTList(ResultTys);
8454   return getMachineNode(Opcode, dl, VTs, Ops);
8455 }
8456 
8457 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8458                                             SDVTList VTs,
8459                                             ArrayRef<SDValue> Ops) {
8460   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8461   MachineSDNode *N;
8462   void *IP = nullptr;
8463 
8464   if (DoCSE) {
8465     FoldingSetNodeID ID;
8466     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8467     IP = nullptr;
8468     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8469       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8470     }
8471   }
8472 
8473   // Allocate a new MachineSDNode.
8474   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8475   createOperands(N, Ops);
8476 
8477   if (DoCSE)
8478     CSEMap.InsertNode(N, IP);
8479 
8480   InsertNode(N);
8481   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8482   return N;
8483 }
8484 
8485 /// getTargetExtractSubreg - A convenience function for creating
8486 /// TargetOpcode::EXTRACT_SUBREG nodes.
8487 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8488                                              SDValue Operand) {
8489   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8490   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8491                                   VT, Operand, SRIdxVal);
8492   return SDValue(Subreg, 0);
8493 }
8494 
8495 /// getTargetInsertSubreg - A convenience function for creating
8496 /// TargetOpcode::INSERT_SUBREG nodes.
8497 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8498                                             SDValue Operand, SDValue Subreg) {
8499   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8500   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8501                                   VT, Operand, Subreg, SRIdxVal);
8502   return SDValue(Result, 0);
8503 }
8504 
8505 /// getNodeIfExists - Get the specified node if it's already available, or
8506 /// else return NULL.
8507 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8508                                       ArrayRef<SDValue> Ops) {
8509   SDNodeFlags Flags;
8510   if (Inserter)
8511     Flags = Inserter->getFlags();
8512   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8513 }
8514 
8515 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8516                                       ArrayRef<SDValue> Ops,
8517                                       const SDNodeFlags Flags) {
8518   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8519     FoldingSetNodeID ID;
8520     AddNodeIDNode(ID, Opcode, VTList, Ops);
8521     void *IP = nullptr;
8522     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8523       E->intersectFlagsWith(Flags);
8524       return E;
8525     }
8526   }
8527   return nullptr;
8528 }
8529 
8530 /// doesNodeExist - Check if a node exists without modifying its flags.
8531 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8532                                  ArrayRef<SDValue> Ops) {
8533   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8534     FoldingSetNodeID ID;
8535     AddNodeIDNode(ID, Opcode, VTList, Ops);
8536     void *IP = nullptr;
8537     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8538       return true;
8539   }
8540   return false;
8541 }
8542 
8543 /// getDbgValue - Creates a SDDbgValue node.
8544 ///
8545 /// SDNode
8546 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8547                                       SDNode *N, unsigned R, bool IsIndirect,
8548                                       const DebugLoc &DL, unsigned O) {
8549   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8550          "Expected inlined-at fields to agree");
8551   return new (DbgInfo->getAlloc())
8552       SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O,
8553                  /*IsVariadic=*/false);
8554 }
8555 
8556 /// Constant
8557 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8558                                               DIExpression *Expr,
8559                                               const Value *C,
8560                                               const DebugLoc &DL, unsigned O) {
8561   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8562          "Expected inlined-at fields to agree");
8563   return new (DbgInfo->getAlloc()) SDDbgValue(
8564       Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O,
8565       /*IsVariadic=*/false);
8566 }
8567 
8568 /// FrameIndex
8569 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8570                                                 DIExpression *Expr, unsigned FI,
8571                                                 bool IsIndirect,
8572                                                 const DebugLoc &DL,
8573                                                 unsigned O) {
8574   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8575          "Expected inlined-at fields to agree");
8576   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8577 }
8578 
8579 /// FrameIndex with dependencies
8580 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8581                                                 DIExpression *Expr, unsigned FI,
8582                                                 ArrayRef<SDNode *> Dependencies,
8583                                                 bool IsIndirect,
8584                                                 const DebugLoc &DL,
8585                                                 unsigned O) {
8586   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8587          "Expected inlined-at fields to agree");
8588   return new (DbgInfo->getAlloc())
8589       SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies,
8590                  IsIndirect, DL, O,
8591                  /*IsVariadic=*/false);
8592 }
8593 
8594 /// VReg
8595 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8596                                           unsigned VReg, bool IsIndirect,
8597                                           const DebugLoc &DL, unsigned O) {
8598   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8599          "Expected inlined-at fields to agree");
8600   return new (DbgInfo->getAlloc())
8601       SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O,
8602                  /*IsVariadic=*/false);
8603 }
8604 
8605 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8606                                           ArrayRef<SDDbgOperand> Locs,
8607                                           ArrayRef<SDNode *> Dependencies,
8608                                           bool IsIndirect, const DebugLoc &DL,
8609                                           unsigned O, bool IsVariadic) {
8610   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8611          "Expected inlined-at fields to agree");
8612   return new (DbgInfo->getAlloc())
8613       SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic);
8614 }
8615 
8616 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8617                                      unsigned OffsetInBits, unsigned SizeInBits,
8618                                      bool InvalidateDbg) {
8619   SDNode *FromNode = From.getNode();
8620   SDNode *ToNode = To.getNode();
8621   assert(FromNode && ToNode && "Can't modify dbg values");
8622 
8623   // PR35338
8624   // TODO: assert(From != To && "Redundant dbg value transfer");
8625   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8626   if (From == To || FromNode == ToNode)
8627     return;
8628 
8629   if (!FromNode->getHasDebugValue())
8630     return;
8631 
8632   SDDbgOperand FromLocOp =
8633       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8634   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8635 
8636   SmallVector<SDDbgValue *, 2> ClonedDVs;
8637   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8638     if (Dbg->isInvalidated())
8639       continue;
8640 
8641     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8642 
8643     // Create a new location ops vector that is equal to the old vector, but
8644     // with each instance of FromLocOp replaced with ToLocOp.
8645     bool Changed = false;
8646     auto NewLocOps = Dbg->copyLocationOps();
8647     std::replace_if(
8648         NewLocOps.begin(), NewLocOps.end(),
8649         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8650           bool Match = Op == FromLocOp;
8651           Changed |= Match;
8652           return Match;
8653         },
8654         ToLocOp);
8655     // Ignore this SDDbgValue if we didn't find a matching location.
8656     if (!Changed)
8657       continue;
8658 
8659     DIVariable *Var = Dbg->getVariable();
8660     auto *Expr = Dbg->getExpression();
8661     // If a fragment is requested, update the expression.
8662     if (SizeInBits) {
8663       // When splitting a larger (e.g., sign-extended) value whose
8664       // lower bits are described with an SDDbgValue, do not attempt
8665       // to transfer the SDDbgValue to the upper bits.
8666       if (auto FI = Expr->getFragmentInfo())
8667         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8668           continue;
8669       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8670                                                              SizeInBits);
8671       if (!Fragment)
8672         continue;
8673       Expr = *Fragment;
8674     }
8675 
8676     auto NewDependencies = Dbg->copySDNodes();
8677     std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode,
8678                  ToNode);
8679     // Clone the SDDbgValue and move it to To.
8680     SDDbgValue *Clone = getDbgValueList(
8681         Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(),
8682         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8683         Dbg->isVariadic());
8684     ClonedDVs.push_back(Clone);
8685 
8686     if (InvalidateDbg) {
8687       // Invalidate value and indicate the SDDbgValue should not be emitted.
8688       Dbg->setIsInvalidated();
8689       Dbg->setIsEmitted();
8690     }
8691   }
8692 
8693   for (SDDbgValue *Dbg : ClonedDVs) {
8694     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8695            "Transferred DbgValues should depend on the new SDNode");
8696     AddDbgValue(Dbg, false);
8697   }
8698 }
8699 
8700 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8701   if (!N.getHasDebugValue())
8702     return;
8703 
8704   SmallVector<SDDbgValue *, 2> ClonedDVs;
8705   for (auto DV : GetDbgValues(&N)) {
8706     if (DV->isInvalidated())
8707       continue;
8708     switch (N.getOpcode()) {
8709     default:
8710       break;
8711     case ISD::ADD:
8712       SDValue N0 = N.getOperand(0);
8713       SDValue N1 = N.getOperand(1);
8714       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8715           isConstantIntBuildVectorOrConstantInt(N1)) {
8716         uint64_t Offset = N.getConstantOperandVal(1);
8717 
8718         // Rewrite an ADD constant node into a DIExpression. Since we are
8719         // performing arithmetic to compute the variable's *value* in the
8720         // DIExpression, we need to mark the expression with a
8721         // DW_OP_stack_value.
8722         auto *DIExpr = DV->getExpression();
8723         auto NewLocOps = DV->copyLocationOps();
8724         bool Changed = false;
8725         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8726           // We're not given a ResNo to compare against because the whole
8727           // node is going away. We know that any ISD::ADD only has one
8728           // result, so we can assume any node match is using the result.
8729           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8730               NewLocOps[i].getSDNode() != &N)
8731             continue;
8732           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8733           SmallVector<uint64_t, 3> ExprOps;
8734           DIExpression::appendOffset(ExprOps, Offset);
8735           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8736           Changed = true;
8737         }
8738         (void)Changed;
8739         assert(Changed && "Salvage target doesn't use N");
8740 
8741         auto NewDependencies = DV->copySDNodes();
8742         std::replace(NewDependencies.begin(), NewDependencies.end(), &N,
8743                      N0.getNode());
8744         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8745                                             NewLocOps, NewDependencies,
8746                                             DV->isIndirect(), DV->getDebugLoc(),
8747                                             DV->getOrder(), DV->isVariadic());
8748         ClonedDVs.push_back(Clone);
8749         DV->setIsInvalidated();
8750         DV->setIsEmitted();
8751         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8752                    N0.getNode()->dumprFull(this);
8753                    dbgs() << " into " << *DIExpr << '\n');
8754       }
8755     }
8756   }
8757 
8758   for (SDDbgValue *Dbg : ClonedDVs) {
8759     assert(!Dbg->getSDNodes().empty() &&
8760            "Salvaged DbgValue should depend on a new SDNode");
8761     AddDbgValue(Dbg, false);
8762   }
8763 }
8764 
8765 /// Creates a SDDbgLabel node.
8766 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8767                                       const DebugLoc &DL, unsigned O) {
8768   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8769          "Expected inlined-at fields to agree");
8770   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8771 }
8772 
8773 namespace {
8774 
8775 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8776 /// pointed to by a use iterator is deleted, increment the use iterator
8777 /// so that it doesn't dangle.
8778 ///
8779 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8780   SDNode::use_iterator &UI;
8781   SDNode::use_iterator &UE;
8782 
8783   void NodeDeleted(SDNode *N, SDNode *E) override {
8784     // Increment the iterator as needed.
8785     while (UI != UE && N == *UI)
8786       ++UI;
8787   }
8788 
8789 public:
8790   RAUWUpdateListener(SelectionDAG &d,
8791                      SDNode::use_iterator &ui,
8792                      SDNode::use_iterator &ue)
8793     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8794 };
8795 
8796 } // end anonymous namespace
8797 
8798 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8799 /// This can cause recursive merging of nodes in the DAG.
8800 ///
8801 /// This version assumes From has a single result value.
8802 ///
8803 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8804   SDNode *From = FromN.getNode();
8805   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8806          "Cannot replace with this method!");
8807   assert(From != To.getNode() && "Cannot replace uses of with self");
8808 
8809   // Preserve Debug Values
8810   transferDbgValues(FromN, To);
8811 
8812   // Iterate over all the existing uses of From. New uses will be added
8813   // to the beginning of the use list, which we avoid visiting.
8814   // This specifically avoids visiting uses of From that arise while the
8815   // replacement is happening, because any such uses would be the result
8816   // of CSE: If an existing node looks like From after one of its operands
8817   // is replaced by To, we don't want to replace of all its users with To
8818   // too. See PR3018 for more info.
8819   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8820   RAUWUpdateListener Listener(*this, UI, UE);
8821   while (UI != UE) {
8822     SDNode *User = *UI;
8823 
8824     // This node is about to morph, remove its old self from the CSE maps.
8825     RemoveNodeFromCSEMaps(User);
8826 
8827     // A user can appear in a use list multiple times, and when this
8828     // happens the uses are usually next to each other in the list.
8829     // To help reduce the number of CSE recomputations, process all
8830     // the uses of this user that we can find this way.
8831     do {
8832       SDUse &Use = UI.getUse();
8833       ++UI;
8834       Use.set(To);
8835       if (To->isDivergent() != From->isDivergent())
8836         updateDivergence(User);
8837     } while (UI != UE && *UI == User);
8838     // Now that we have modified User, add it back to the CSE maps.  If it
8839     // already exists there, recursively merge the results together.
8840     AddModifiedNodeToCSEMaps(User);
8841   }
8842 
8843   // If we just RAUW'd the root, take note.
8844   if (FromN == getRoot())
8845     setRoot(To);
8846 }
8847 
8848 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8849 /// This can cause recursive merging of nodes in the DAG.
8850 ///
8851 /// This version assumes that for each value of From, there is a
8852 /// corresponding value in To in the same position with the same type.
8853 ///
8854 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8855 #ifndef NDEBUG
8856   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8857     assert((!From->hasAnyUseOfValue(i) ||
8858             From->getValueType(i) == To->getValueType(i)) &&
8859            "Cannot use this version of ReplaceAllUsesWith!");
8860 #endif
8861 
8862   // Handle the trivial case.
8863   if (From == To)
8864     return;
8865 
8866   // Preserve Debug Info. Only do this if there's a use.
8867   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8868     if (From->hasAnyUseOfValue(i)) {
8869       assert((i < To->getNumValues()) && "Invalid To location");
8870       transferDbgValues(SDValue(From, i), SDValue(To, i));
8871     }
8872 
8873   // Iterate over just the existing users of From. See the comments in
8874   // the ReplaceAllUsesWith above.
8875   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8876   RAUWUpdateListener Listener(*this, UI, UE);
8877   while (UI != UE) {
8878     SDNode *User = *UI;
8879 
8880     // This node is about to morph, remove its old self from the CSE maps.
8881     RemoveNodeFromCSEMaps(User);
8882 
8883     // A user can appear in a use list multiple times, and when this
8884     // happens the uses are usually next to each other in the list.
8885     // To help reduce the number of CSE recomputations, process all
8886     // the uses of this user that we can find this way.
8887     do {
8888       SDUse &Use = UI.getUse();
8889       ++UI;
8890       Use.setNode(To);
8891       if (To->isDivergent() != From->isDivergent())
8892         updateDivergence(User);
8893     } while (UI != UE && *UI == User);
8894 
8895     // Now that we have modified User, add it back to the CSE maps.  If it
8896     // already exists there, recursively merge the results together.
8897     AddModifiedNodeToCSEMaps(User);
8898   }
8899 
8900   // If we just RAUW'd the root, take note.
8901   if (From == getRoot().getNode())
8902     setRoot(SDValue(To, getRoot().getResNo()));
8903 }
8904 
8905 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8906 /// This can cause recursive merging of nodes in the DAG.
8907 ///
8908 /// This version can replace From with any result values.  To must match the
8909 /// number and types of values returned by From.
8910 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8911   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8912     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8913 
8914   // Preserve Debug Info.
8915   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8916     transferDbgValues(SDValue(From, i), To[i]);
8917 
8918   // Iterate over just the existing users of From. See the comments in
8919   // the ReplaceAllUsesWith above.
8920   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8921   RAUWUpdateListener Listener(*this, UI, UE);
8922   while (UI != UE) {
8923     SDNode *User = *UI;
8924 
8925     // This node is about to morph, remove its old self from the CSE maps.
8926     RemoveNodeFromCSEMaps(User);
8927 
8928     // A user can appear in a use list multiple times, and when this happens the
8929     // uses are usually next to each other in the list.  To help reduce the
8930     // number of CSE and divergence recomputations, process all the uses of this
8931     // user that we can find this way.
8932     bool To_IsDivergent = false;
8933     do {
8934       SDUse &Use = UI.getUse();
8935       const SDValue &ToOp = To[Use.getResNo()];
8936       ++UI;
8937       Use.set(ToOp);
8938       To_IsDivergent |= ToOp->isDivergent();
8939     } while (UI != UE && *UI == User);
8940 
8941     if (To_IsDivergent != From->isDivergent())
8942       updateDivergence(User);
8943 
8944     // Now that we have modified User, add it back to the CSE maps.  If it
8945     // already exists there, recursively merge the results together.
8946     AddModifiedNodeToCSEMaps(User);
8947   }
8948 
8949   // If we just RAUW'd the root, take note.
8950   if (From == getRoot().getNode())
8951     setRoot(SDValue(To[getRoot().getResNo()]));
8952 }
8953 
8954 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8955 /// uses of other values produced by From.getNode() alone.  The Deleted
8956 /// vector is handled the same way as for ReplaceAllUsesWith.
8957 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8958   // Handle the really simple, really trivial case efficiently.
8959   if (From == To) return;
8960 
8961   // Handle the simple, trivial, case efficiently.
8962   if (From.getNode()->getNumValues() == 1) {
8963     ReplaceAllUsesWith(From, To);
8964     return;
8965   }
8966 
8967   // Preserve Debug Info.
8968   transferDbgValues(From, To);
8969 
8970   // Iterate over just the existing users of From. See the comments in
8971   // the ReplaceAllUsesWith above.
8972   SDNode::use_iterator UI = From.getNode()->use_begin(),
8973                        UE = From.getNode()->use_end();
8974   RAUWUpdateListener Listener(*this, UI, UE);
8975   while (UI != UE) {
8976     SDNode *User = *UI;
8977     bool UserRemovedFromCSEMaps = false;
8978 
8979     // A user can appear in a use list multiple times, and when this
8980     // happens the uses are usually next to each other in the list.
8981     // To help reduce the number of CSE recomputations, process all
8982     // the uses of this user that we can find this way.
8983     do {
8984       SDUse &Use = UI.getUse();
8985 
8986       // Skip uses of different values from the same node.
8987       if (Use.getResNo() != From.getResNo()) {
8988         ++UI;
8989         continue;
8990       }
8991 
8992       // If this node hasn't been modified yet, it's still in the CSE maps,
8993       // so remove its old self from the CSE maps.
8994       if (!UserRemovedFromCSEMaps) {
8995         RemoveNodeFromCSEMaps(User);
8996         UserRemovedFromCSEMaps = true;
8997       }
8998 
8999       ++UI;
9000       Use.set(To);
9001       if (To->isDivergent() != From->isDivergent())
9002         updateDivergence(User);
9003     } while (UI != UE && *UI == User);
9004     // We are iterating over all uses of the From node, so if a use
9005     // doesn't use the specific value, no changes are made.
9006     if (!UserRemovedFromCSEMaps)
9007       continue;
9008 
9009     // Now that we have modified User, add it back to the CSE maps.  If it
9010     // already exists there, recursively merge the results together.
9011     AddModifiedNodeToCSEMaps(User);
9012   }
9013 
9014   // If we just RAUW'd the root, take note.
9015   if (From == getRoot())
9016     setRoot(To);
9017 }
9018 
9019 namespace {
9020 
9021   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9022   /// to record information about a use.
9023   struct UseMemo {
9024     SDNode *User;
9025     unsigned Index;
9026     SDUse *Use;
9027   };
9028 
9029   /// operator< - Sort Memos by User.
9030   bool operator<(const UseMemo &L, const UseMemo &R) {
9031     return (intptr_t)L.User < (intptr_t)R.User;
9032   }
9033 
9034 } // end anonymous namespace
9035 
9036 bool SelectionDAG::calculateDivergence(SDNode *N) {
9037   if (TLI->isSDNodeAlwaysUniform(N)) {
9038     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9039            "Conflicting divergence information!");
9040     return false;
9041   }
9042   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9043     return true;
9044   for (auto &Op : N->ops()) {
9045     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9046       return true;
9047   }
9048   return false;
9049 }
9050 
9051 void SelectionDAG::updateDivergence(SDNode *N) {
9052   SmallVector<SDNode *, 16> Worklist(1, N);
9053   do {
9054     N = Worklist.pop_back_val();
9055     bool IsDivergent = calculateDivergence(N);
9056     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9057       N->SDNodeBits.IsDivergent = IsDivergent;
9058       llvm::append_range(Worklist, N->uses());
9059     }
9060   } while (!Worklist.empty());
9061 }
9062 
9063 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9064   DenseMap<SDNode *, unsigned> Degree;
9065   Order.reserve(AllNodes.size());
9066   for (auto &N : allnodes()) {
9067     unsigned NOps = N.getNumOperands();
9068     Degree[&N] = NOps;
9069     if (0 == NOps)
9070       Order.push_back(&N);
9071   }
9072   for (size_t I = 0; I != Order.size(); ++I) {
9073     SDNode *N = Order[I];
9074     for (auto U : N->uses()) {
9075       unsigned &UnsortedOps = Degree[U];
9076       if (0 == --UnsortedOps)
9077         Order.push_back(U);
9078     }
9079   }
9080 }
9081 
9082 #ifndef NDEBUG
9083 void SelectionDAG::VerifyDAGDiverence() {
9084   std::vector<SDNode *> TopoOrder;
9085   CreateTopologicalOrder(TopoOrder);
9086   for (auto *N : TopoOrder) {
9087     assert(calculateDivergence(N) == N->isDivergent() &&
9088            "Divergence bit inconsistency detected");
9089   }
9090 }
9091 #endif
9092 
9093 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9094 /// uses of other values produced by From.getNode() alone.  The same value
9095 /// may appear in both the From and To list.  The Deleted vector is
9096 /// handled the same way as for ReplaceAllUsesWith.
9097 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9098                                               const SDValue *To,
9099                                               unsigned Num){
9100   // Handle the simple, trivial case efficiently.
9101   if (Num == 1)
9102     return ReplaceAllUsesOfValueWith(*From, *To);
9103 
9104   transferDbgValues(*From, *To);
9105 
9106   // Read up all the uses and make records of them. This helps
9107   // processing new uses that are introduced during the
9108   // replacement process.
9109   SmallVector<UseMemo, 4> Uses;
9110   for (unsigned i = 0; i != Num; ++i) {
9111     unsigned FromResNo = From[i].getResNo();
9112     SDNode *FromNode = From[i].getNode();
9113     for (SDNode::use_iterator UI = FromNode->use_begin(),
9114          E = FromNode->use_end(); UI != E; ++UI) {
9115       SDUse &Use = UI.getUse();
9116       if (Use.getResNo() == FromResNo) {
9117         UseMemo Memo = { *UI, i, &Use };
9118         Uses.push_back(Memo);
9119       }
9120     }
9121   }
9122 
9123   // Sort the uses, so that all the uses from a given User are together.
9124   llvm::sort(Uses);
9125 
9126   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9127        UseIndex != UseIndexEnd; ) {
9128     // We know that this user uses some value of From.  If it is the right
9129     // value, update it.
9130     SDNode *User = Uses[UseIndex].User;
9131 
9132     // This node is about to morph, remove its old self from the CSE maps.
9133     RemoveNodeFromCSEMaps(User);
9134 
9135     // The Uses array is sorted, so all the uses for a given User
9136     // are next to each other in the list.
9137     // To help reduce the number of CSE recomputations, process all
9138     // the uses of this user that we can find this way.
9139     do {
9140       unsigned i = Uses[UseIndex].Index;
9141       SDUse &Use = *Uses[UseIndex].Use;
9142       ++UseIndex;
9143 
9144       Use.set(To[i]);
9145     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9146 
9147     // Now that we have modified User, add it back to the CSE maps.  If it
9148     // already exists there, recursively merge the results together.
9149     AddModifiedNodeToCSEMaps(User);
9150   }
9151 }
9152 
9153 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9154 /// based on their topological order. It returns the maximum id and a vector
9155 /// of the SDNodes* in assigned order by reference.
9156 unsigned SelectionDAG::AssignTopologicalOrder() {
9157   unsigned DAGSize = 0;
9158 
9159   // SortedPos tracks the progress of the algorithm. Nodes before it are
9160   // sorted, nodes after it are unsorted. When the algorithm completes
9161   // it is at the end of the list.
9162   allnodes_iterator SortedPos = allnodes_begin();
9163 
9164   // Visit all the nodes. Move nodes with no operands to the front of
9165   // the list immediately. Annotate nodes that do have operands with their
9166   // operand count. Before we do this, the Node Id fields of the nodes
9167   // may contain arbitrary values. After, the Node Id fields for nodes
9168   // before SortedPos will contain the topological sort index, and the
9169   // Node Id fields for nodes At SortedPos and after will contain the
9170   // count of outstanding operands.
9171   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9172     SDNode *N = &*I++;
9173     checkForCycles(N, this);
9174     unsigned Degree = N->getNumOperands();
9175     if (Degree == 0) {
9176       // A node with no uses, add it to the result array immediately.
9177       N->setNodeId(DAGSize++);
9178       allnodes_iterator Q(N);
9179       if (Q != SortedPos)
9180         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9181       assert(SortedPos != AllNodes.end() && "Overran node list");
9182       ++SortedPos;
9183     } else {
9184       // Temporarily use the Node Id as scratch space for the degree count.
9185       N->setNodeId(Degree);
9186     }
9187   }
9188 
9189   // Visit all the nodes. As we iterate, move nodes into sorted order,
9190   // such that by the time the end is reached all nodes will be sorted.
9191   for (SDNode &Node : allnodes()) {
9192     SDNode *N = &Node;
9193     checkForCycles(N, this);
9194     // N is in sorted position, so all its uses have one less operand
9195     // that needs to be sorted.
9196     for (SDNode *P : N->uses()) {
9197       unsigned Degree = P->getNodeId();
9198       assert(Degree != 0 && "Invalid node degree");
9199       --Degree;
9200       if (Degree == 0) {
9201         // All of P's operands are sorted, so P may sorted now.
9202         P->setNodeId(DAGSize++);
9203         if (P->getIterator() != SortedPos)
9204           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9205         assert(SortedPos != AllNodes.end() && "Overran node list");
9206         ++SortedPos;
9207       } else {
9208         // Update P's outstanding operand count.
9209         P->setNodeId(Degree);
9210       }
9211     }
9212     if (Node.getIterator() == SortedPos) {
9213 #ifndef NDEBUG
9214       allnodes_iterator I(N);
9215       SDNode *S = &*++I;
9216       dbgs() << "Overran sorted position:\n";
9217       S->dumprFull(this); dbgs() << "\n";
9218       dbgs() << "Checking if this is due to cycles\n";
9219       checkForCycles(this, true);
9220 #endif
9221       llvm_unreachable(nullptr);
9222     }
9223   }
9224 
9225   assert(SortedPos == AllNodes.end() &&
9226          "Topological sort incomplete!");
9227   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9228          "First node in topological sort is not the entry token!");
9229   assert(AllNodes.front().getNodeId() == 0 &&
9230          "First node in topological sort has non-zero id!");
9231   assert(AllNodes.front().getNumOperands() == 0 &&
9232          "First node in topological sort has operands!");
9233   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9234          "Last node in topologic sort has unexpected id!");
9235   assert(AllNodes.back().use_empty() &&
9236          "Last node in topologic sort has users!");
9237   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9238   return DAGSize;
9239 }
9240 
9241 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9242 /// value is produced by SD.
9243 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9244   for (SDNode *SD : DB->getSDNodes()) {
9245     if (!SD)
9246       continue;
9247     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9248     SD->setHasDebugValue(true);
9249   }
9250   DbgInfo->add(DB, isParameter);
9251 }
9252 
9253 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9254 
9255 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9256                                                    SDValue NewMemOpChain) {
9257   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9258   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9259   // The new memory operation must have the same position as the old load in
9260   // terms of memory dependency. Create a TokenFactor for the old load and new
9261   // memory operation and update uses of the old load's output chain to use that
9262   // TokenFactor.
9263   if (OldChain == NewMemOpChain || OldChain.use_empty())
9264     return NewMemOpChain;
9265 
9266   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9267                                 OldChain, NewMemOpChain);
9268   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9269   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9270   return TokenFactor;
9271 }
9272 
9273 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9274                                                    SDValue NewMemOp) {
9275   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9276   SDValue OldChain = SDValue(OldLoad, 1);
9277   SDValue NewMemOpChain = NewMemOp.getValue(1);
9278   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9279 }
9280 
9281 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9282                                                      Function **OutFunction) {
9283   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9284 
9285   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9286   auto *Module = MF->getFunction().getParent();
9287   auto *Function = Module->getFunction(Symbol);
9288 
9289   if (OutFunction != nullptr)
9290       *OutFunction = Function;
9291 
9292   if (Function != nullptr) {
9293     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9294     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9295   }
9296 
9297   std::string ErrorStr;
9298   raw_string_ostream ErrorFormatter(ErrorStr);
9299 
9300   ErrorFormatter << "Undefined external symbol ";
9301   ErrorFormatter << '"' << Symbol << '"';
9302   ErrorFormatter.flush();
9303 
9304   report_fatal_error(ErrorStr);
9305 }
9306 
9307 //===----------------------------------------------------------------------===//
9308 //                              SDNode Class
9309 //===----------------------------------------------------------------------===//
9310 
9311 bool llvm::isNullConstant(SDValue V) {
9312   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9313   return Const != nullptr && Const->isNullValue();
9314 }
9315 
9316 bool llvm::isNullFPConstant(SDValue V) {
9317   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9318   return Const != nullptr && Const->isZero() && !Const->isNegative();
9319 }
9320 
9321 bool llvm::isAllOnesConstant(SDValue V) {
9322   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9323   return Const != nullptr && Const->isAllOnesValue();
9324 }
9325 
9326 bool llvm::isOneConstant(SDValue V) {
9327   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9328   return Const != nullptr && Const->isOne();
9329 }
9330 
9331 SDValue llvm::peekThroughBitcasts(SDValue V) {
9332   while (V.getOpcode() == ISD::BITCAST)
9333     V = V.getOperand(0);
9334   return V;
9335 }
9336 
9337 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9338   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9339     V = V.getOperand(0);
9340   return V;
9341 }
9342 
9343 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9344   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9345     V = V.getOperand(0);
9346   return V;
9347 }
9348 
9349 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9350   if (V.getOpcode() != ISD::XOR)
9351     return false;
9352   V = peekThroughBitcasts(V.getOperand(1));
9353   unsigned NumBits = V.getScalarValueSizeInBits();
9354   ConstantSDNode *C =
9355       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9356   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9357 }
9358 
9359 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9360                                           bool AllowTruncation) {
9361   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9362     return CN;
9363 
9364   // SplatVectors can truncate their operands. Ignore that case here unless
9365   // AllowTruncation is set.
9366   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9367     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9368     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9369       EVT CVT = CN->getValueType(0);
9370       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9371       if (AllowTruncation || CVT == VecEltVT)
9372         return CN;
9373     }
9374   }
9375 
9376   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9377     BitVector UndefElements;
9378     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9379 
9380     // BuildVectors can truncate their operands. Ignore that case here unless
9381     // AllowTruncation is set.
9382     if (CN && (UndefElements.none() || AllowUndefs)) {
9383       EVT CVT = CN->getValueType(0);
9384       EVT NSVT = N.getValueType().getScalarType();
9385       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9386       if (AllowTruncation || (CVT == NSVT))
9387         return CN;
9388     }
9389   }
9390 
9391   return nullptr;
9392 }
9393 
9394 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9395                                           bool AllowUndefs,
9396                                           bool AllowTruncation) {
9397   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9398     return CN;
9399 
9400   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9401     BitVector UndefElements;
9402     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9403 
9404     // BuildVectors can truncate their operands. Ignore that case here unless
9405     // AllowTruncation is set.
9406     if (CN && (UndefElements.none() || AllowUndefs)) {
9407       EVT CVT = CN->getValueType(0);
9408       EVT NSVT = N.getValueType().getScalarType();
9409       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9410       if (AllowTruncation || (CVT == NSVT))
9411         return CN;
9412     }
9413   }
9414 
9415   return nullptr;
9416 }
9417 
9418 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9419   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9420     return CN;
9421 
9422   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9423     BitVector UndefElements;
9424     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9425     if (CN && (UndefElements.none() || AllowUndefs))
9426       return CN;
9427   }
9428 
9429   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9430     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9431       return CN;
9432 
9433   return nullptr;
9434 }
9435 
9436 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9437                                               const APInt &DemandedElts,
9438                                               bool AllowUndefs) {
9439   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9440     return CN;
9441 
9442   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9443     BitVector UndefElements;
9444     ConstantFPSDNode *CN =
9445         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9446     if (CN && (UndefElements.none() || AllowUndefs))
9447       return CN;
9448   }
9449 
9450   return nullptr;
9451 }
9452 
9453 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9454   // TODO: may want to use peekThroughBitcast() here.
9455   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9456   return C && C->isNullValue();
9457 }
9458 
9459 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9460   // TODO: may want to use peekThroughBitcast() here.
9461   unsigned BitWidth = N.getScalarValueSizeInBits();
9462   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9463   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9464 }
9465 
9466 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9467   N = peekThroughBitcasts(N);
9468   unsigned BitWidth = N.getScalarValueSizeInBits();
9469   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9470   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9471 }
9472 
9473 HandleSDNode::~HandleSDNode() {
9474   DropOperands();
9475 }
9476 
9477 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9478                                          const DebugLoc &DL,
9479                                          const GlobalValue *GA, EVT VT,
9480                                          int64_t o, unsigned TF)
9481     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9482   TheGlobal = GA;
9483 }
9484 
9485 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9486                                          EVT VT, unsigned SrcAS,
9487                                          unsigned DestAS)
9488     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9489       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9490 
9491 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9492                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9493     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9494   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9495   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9496   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9497   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9498 
9499   // We check here that the size of the memory operand fits within the size of
9500   // the MMO. This is because the MMO might indicate only a possible address
9501   // range instead of specifying the affected memory addresses precisely.
9502   // TODO: Make MachineMemOperands aware of scalable vectors.
9503   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9504          "Size mismatch!");
9505 }
9506 
9507 /// Profile - Gather unique data for the node.
9508 ///
9509 void SDNode::Profile(FoldingSetNodeID &ID) const {
9510   AddNodeIDNode(ID, this);
9511 }
9512 
9513 namespace {
9514 
9515   struct EVTArray {
9516     std::vector<EVT> VTs;
9517 
9518     EVTArray() {
9519       VTs.reserve(MVT::LAST_VALUETYPE);
9520       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9521         VTs.push_back(MVT((MVT::SimpleValueType)i));
9522     }
9523   };
9524 
9525 } // end anonymous namespace
9526 
9527 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9528 static ManagedStatic<EVTArray> SimpleVTArray;
9529 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9530 
9531 /// getValueTypeList - Return a pointer to the specified value type.
9532 ///
9533 const EVT *SDNode::getValueTypeList(EVT VT) {
9534   if (VT.isExtended()) {
9535     sys::SmartScopedLock<true> Lock(*VTMutex);
9536     return &(*EVTs->insert(VT).first);
9537   } else {
9538     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9539            "Value type out of range!");
9540     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9541   }
9542 }
9543 
9544 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9545 /// indicated value.  This method ignores uses of other values defined by this
9546 /// operation.
9547 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9548   assert(Value < getNumValues() && "Bad value!");
9549 
9550   // TODO: Only iterate over uses of a given value of the node
9551   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9552     if (UI.getUse().getResNo() == Value) {
9553       if (NUses == 0)
9554         return false;
9555       --NUses;
9556     }
9557   }
9558 
9559   // Found exactly the right number of uses?
9560   return NUses == 0;
9561 }
9562 
9563 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9564 /// value. This method ignores uses of other values defined by this operation.
9565 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9566   assert(Value < getNumValues() && "Bad value!");
9567 
9568   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9569     if (UI.getUse().getResNo() == Value)
9570       return true;
9571 
9572   return false;
9573 }
9574 
9575 /// isOnlyUserOf - Return true if this node is the only use of N.
9576 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9577   bool Seen = false;
9578   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9579     SDNode *User = *I;
9580     if (User == this)
9581       Seen = true;
9582     else
9583       return false;
9584   }
9585 
9586   return Seen;
9587 }
9588 
9589 /// Return true if the only users of N are contained in Nodes.
9590 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9591   bool Seen = false;
9592   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9593     SDNode *User = *I;
9594     if (llvm::is_contained(Nodes, User))
9595       Seen = true;
9596     else
9597       return false;
9598   }
9599 
9600   return Seen;
9601 }
9602 
9603 /// isOperand - Return true if this node is an operand of N.
9604 bool SDValue::isOperandOf(const SDNode *N) const {
9605   return is_contained(N->op_values(), *this);
9606 }
9607 
9608 bool SDNode::isOperandOf(const SDNode *N) const {
9609   return any_of(N->op_values(),
9610                 [this](SDValue Op) { return this == Op.getNode(); });
9611 }
9612 
9613 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9614 /// be a chain) reaches the specified operand without crossing any
9615 /// side-effecting instructions on any chain path.  In practice, this looks
9616 /// through token factors and non-volatile loads.  In order to remain efficient,
9617 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9618 ///
9619 /// Note that we only need to examine chains when we're searching for
9620 /// side-effects; SelectionDAG requires that all side-effects are represented
9621 /// by chains, even if another operand would force a specific ordering. This
9622 /// constraint is necessary to allow transformations like splitting loads.
9623 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9624                                              unsigned Depth) const {
9625   if (*this == Dest) return true;
9626 
9627   // Don't search too deeply, we just want to be able to see through
9628   // TokenFactor's etc.
9629   if (Depth == 0) return false;
9630 
9631   // If this is a token factor, all inputs to the TF happen in parallel.
9632   if (getOpcode() == ISD::TokenFactor) {
9633     // First, try a shallow search.
9634     if (is_contained((*this)->ops(), Dest)) {
9635       // We found the chain we want as an operand of this TokenFactor.
9636       // Essentially, we reach the chain without side-effects if we could
9637       // serialize the TokenFactor into a simple chain of operations with
9638       // Dest as the last operation. This is automatically true if the
9639       // chain has one use: there are no other ordering constraints.
9640       // If the chain has more than one use, we give up: some other
9641       // use of Dest might force a side-effect between Dest and the current
9642       // node.
9643       if (Dest.hasOneUse())
9644         return true;
9645     }
9646     // Next, try a deep search: check whether every operand of the TokenFactor
9647     // reaches Dest.
9648     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9649       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9650     });
9651   }
9652 
9653   // Loads don't have side effects, look through them.
9654   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9655     if (Ld->isUnordered())
9656       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9657   }
9658   return false;
9659 }
9660 
9661 bool SDNode::hasPredecessor(const SDNode *N) const {
9662   SmallPtrSet<const SDNode *, 32> Visited;
9663   SmallVector<const SDNode *, 16> Worklist;
9664   Worklist.push_back(this);
9665   return hasPredecessorHelper(N, Visited, Worklist);
9666 }
9667 
9668 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9669   this->Flags.intersectWith(Flags);
9670 }
9671 
9672 SDValue
9673 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9674                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9675                                   bool AllowPartials) {
9676   // The pattern must end in an extract from index 0.
9677   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9678       !isNullConstant(Extract->getOperand(1)))
9679     return SDValue();
9680 
9681   // Match against one of the candidate binary ops.
9682   SDValue Op = Extract->getOperand(0);
9683   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9684         return Op.getOpcode() == unsigned(BinOp);
9685       }))
9686     return SDValue();
9687 
9688   // Floating-point reductions may require relaxed constraints on the final step
9689   // of the reduction because they may reorder intermediate operations.
9690   unsigned CandidateBinOp = Op.getOpcode();
9691   if (Op.getValueType().isFloatingPoint()) {
9692     SDNodeFlags Flags = Op->getFlags();
9693     switch (CandidateBinOp) {
9694     case ISD::FADD:
9695       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9696         return SDValue();
9697       break;
9698     default:
9699       llvm_unreachable("Unhandled FP opcode for binop reduction");
9700     }
9701   }
9702 
9703   // Matching failed - attempt to see if we did enough stages that a partial
9704   // reduction from a subvector is possible.
9705   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9706     if (!AllowPartials || !Op)
9707       return SDValue();
9708     EVT OpVT = Op.getValueType();
9709     EVT OpSVT = OpVT.getScalarType();
9710     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9711     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9712       return SDValue();
9713     BinOp = (ISD::NodeType)CandidateBinOp;
9714     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9715                    getVectorIdxConstant(0, SDLoc(Op)));
9716   };
9717 
9718   // At each stage, we're looking for something that looks like:
9719   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9720   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9721   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9722   // %a = binop <8 x i32> %op, %s
9723   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9724   // we expect something like:
9725   // <4,5,6,7,u,u,u,u>
9726   // <2,3,u,u,u,u,u,u>
9727   // <1,u,u,u,u,u,u,u>
9728   // While a partial reduction match would be:
9729   // <2,3,u,u,u,u,u,u>
9730   // <1,u,u,u,u,u,u,u>
9731   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9732   SDValue PrevOp;
9733   for (unsigned i = 0; i < Stages; ++i) {
9734     unsigned MaskEnd = (1 << i);
9735 
9736     if (Op.getOpcode() != CandidateBinOp)
9737       return PartialReduction(PrevOp, MaskEnd);
9738 
9739     SDValue Op0 = Op.getOperand(0);
9740     SDValue Op1 = Op.getOperand(1);
9741 
9742     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9743     if (Shuffle) {
9744       Op = Op1;
9745     } else {
9746       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9747       Op = Op0;
9748     }
9749 
9750     // The first operand of the shuffle should be the same as the other operand
9751     // of the binop.
9752     if (!Shuffle || Shuffle->getOperand(0) != Op)
9753       return PartialReduction(PrevOp, MaskEnd);
9754 
9755     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9756     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9757       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9758         return PartialReduction(PrevOp, MaskEnd);
9759 
9760     PrevOp = Op;
9761   }
9762 
9763   // Handle subvector reductions, which tend to appear after the shuffle
9764   // reduction stages.
9765   while (Op.getOpcode() == CandidateBinOp) {
9766     unsigned NumElts = Op.getValueType().getVectorNumElements();
9767     SDValue Op0 = Op.getOperand(0);
9768     SDValue Op1 = Op.getOperand(1);
9769     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9770         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9771         Op0.getOperand(0) != Op1.getOperand(0))
9772       break;
9773     SDValue Src = Op0.getOperand(0);
9774     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9775     if (NumSrcElts != (2 * NumElts))
9776       break;
9777     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9778           Op1.getConstantOperandAPInt(1) == NumElts) &&
9779         !(Op1.getConstantOperandAPInt(1) == 0 &&
9780           Op0.getConstantOperandAPInt(1) == NumElts))
9781       break;
9782     Op = Src;
9783   }
9784 
9785   BinOp = (ISD::NodeType)CandidateBinOp;
9786   return Op;
9787 }
9788 
9789 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9790   assert(N->getNumValues() == 1 &&
9791          "Can't unroll a vector with multiple results!");
9792 
9793   EVT VT = N->getValueType(0);
9794   unsigned NE = VT.getVectorNumElements();
9795   EVT EltVT = VT.getVectorElementType();
9796   SDLoc dl(N);
9797 
9798   SmallVector<SDValue, 8> Scalars;
9799   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9800 
9801   // If ResNE is 0, fully unroll the vector op.
9802   if (ResNE == 0)
9803     ResNE = NE;
9804   else if (NE > ResNE)
9805     NE = ResNE;
9806 
9807   unsigned i;
9808   for (i= 0; i != NE; ++i) {
9809     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9810       SDValue Operand = N->getOperand(j);
9811       EVT OperandVT = Operand.getValueType();
9812       if (OperandVT.isVector()) {
9813         // A vector operand; extract a single element.
9814         EVT OperandEltVT = OperandVT.getVectorElementType();
9815         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9816                               Operand, getVectorIdxConstant(i, dl));
9817       } else {
9818         // A scalar operand; just use it as is.
9819         Operands[j] = Operand;
9820       }
9821     }
9822 
9823     switch (N->getOpcode()) {
9824     default: {
9825       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9826                                 N->getFlags()));
9827       break;
9828     }
9829     case ISD::VSELECT:
9830       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9831       break;
9832     case ISD::SHL:
9833     case ISD::SRA:
9834     case ISD::SRL:
9835     case ISD::ROTL:
9836     case ISD::ROTR:
9837       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9838                                getShiftAmountOperand(Operands[0].getValueType(),
9839                                                      Operands[1])));
9840       break;
9841     case ISD::SIGN_EXTEND_INREG: {
9842       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9843       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9844                                 Operands[0],
9845                                 getValueType(ExtVT)));
9846     }
9847     }
9848   }
9849 
9850   for (; i < ResNE; ++i)
9851     Scalars.push_back(getUNDEF(EltVT));
9852 
9853   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9854   return getBuildVector(VecVT, dl, Scalars);
9855 }
9856 
9857 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9858     SDNode *N, unsigned ResNE) {
9859   unsigned Opcode = N->getOpcode();
9860   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9861           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9862           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9863          "Expected an overflow opcode");
9864 
9865   EVT ResVT = N->getValueType(0);
9866   EVT OvVT = N->getValueType(1);
9867   EVT ResEltVT = ResVT.getVectorElementType();
9868   EVT OvEltVT = OvVT.getVectorElementType();
9869   SDLoc dl(N);
9870 
9871   // If ResNE is 0, fully unroll the vector op.
9872   unsigned NE = ResVT.getVectorNumElements();
9873   if (ResNE == 0)
9874     ResNE = NE;
9875   else if (NE > ResNE)
9876     NE = ResNE;
9877 
9878   SmallVector<SDValue, 8> LHSScalars;
9879   SmallVector<SDValue, 8> RHSScalars;
9880   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9881   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9882 
9883   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9884   SDVTList VTs = getVTList(ResEltVT, SVT);
9885   SmallVector<SDValue, 8> ResScalars;
9886   SmallVector<SDValue, 8> OvScalars;
9887   for (unsigned i = 0; i < NE; ++i) {
9888     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9889     SDValue Ov =
9890         getSelect(dl, OvEltVT, Res.getValue(1),
9891                   getBoolConstant(true, dl, OvEltVT, ResVT),
9892                   getConstant(0, dl, OvEltVT));
9893 
9894     ResScalars.push_back(Res);
9895     OvScalars.push_back(Ov);
9896   }
9897 
9898   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9899   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9900 
9901   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9902   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9903   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9904                         getBuildVector(NewOvVT, dl, OvScalars));
9905 }
9906 
9907 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9908                                                   LoadSDNode *Base,
9909                                                   unsigned Bytes,
9910                                                   int Dist) const {
9911   if (LD->isVolatile() || Base->isVolatile())
9912     return false;
9913   // TODO: probably too restrictive for atomics, revisit
9914   if (!LD->isSimple())
9915     return false;
9916   if (LD->isIndexed() || Base->isIndexed())
9917     return false;
9918   if (LD->getChain() != Base->getChain())
9919     return false;
9920   EVT VT = LD->getValueType(0);
9921   if (VT.getSizeInBits() / 8 != Bytes)
9922     return false;
9923 
9924   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9925   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9926 
9927   int64_t Offset = 0;
9928   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9929     return (Dist * Bytes == Offset);
9930   return false;
9931 }
9932 
9933 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9934 /// if it cannot be inferred.
9935 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9936   // If this is a GlobalAddress + cst, return the alignment.
9937   const GlobalValue *GV = nullptr;
9938   int64_t GVOffset = 0;
9939   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9940     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9941     KnownBits Known(PtrWidth);
9942     llvm::computeKnownBits(GV, Known, getDataLayout());
9943     unsigned AlignBits = Known.countMinTrailingZeros();
9944     if (AlignBits)
9945       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9946   }
9947 
9948   // If this is a direct reference to a stack slot, use information about the
9949   // stack slot's alignment.
9950   int FrameIdx = INT_MIN;
9951   int64_t FrameOffset = 0;
9952   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9953     FrameIdx = FI->getIndex();
9954   } else if (isBaseWithConstantOffset(Ptr) &&
9955              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9956     // Handle FI+Cst
9957     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9958     FrameOffset = Ptr.getConstantOperandVal(1);
9959   }
9960 
9961   if (FrameIdx != INT_MIN) {
9962     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9963     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9964   }
9965 
9966   return None;
9967 }
9968 
9969 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9970 /// which is split (or expanded) into two not necessarily identical pieces.
9971 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9972   // Currently all types are split in half.
9973   EVT LoVT, HiVT;
9974   if (!VT.isVector())
9975     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9976   else
9977     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9978 
9979   return std::make_pair(LoVT, HiVT);
9980 }
9981 
9982 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9983 /// type, dependent on an enveloping VT that has been split into two identical
9984 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9985 std::pair<EVT, EVT>
9986 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9987                                        bool *HiIsEmpty) const {
9988   EVT EltTp = VT.getVectorElementType();
9989   // Examples:
9990   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9991   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9992   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9993   //   etc.
9994   ElementCount VTNumElts = VT.getVectorElementCount();
9995   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9996   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9997          "Mixing fixed width and scalable vectors when enveloping a type");
9998   EVT LoVT, HiVT;
9999   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10000     LoVT = EnvVT;
10001     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10002     *HiIsEmpty = false;
10003   } else {
10004     // Flag that hi type has zero storage size, but return split envelop type
10005     // (this would be easier if vector types with zero elements were allowed).
10006     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10007     HiVT = EnvVT;
10008     *HiIsEmpty = true;
10009   }
10010   return std::make_pair(LoVT, HiVT);
10011 }
10012 
10013 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10014 /// low/high part.
10015 std::pair<SDValue, SDValue>
10016 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10017                           const EVT &HiVT) {
10018   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10019          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10020          "Splitting vector with an invalid mixture of fixed and scalable "
10021          "vector types");
10022   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10023              N.getValueType().getVectorMinNumElements() &&
10024          "More vector elements requested than available!");
10025   SDValue Lo, Hi;
10026   Lo =
10027       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10028   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10029   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10030   // IDX with the runtime scaling factor of the result vector type. For
10031   // fixed-width result vectors, that runtime scaling factor is 1.
10032   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10033                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10034   return std::make_pair(Lo, Hi);
10035 }
10036 
10037 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10038 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10039   EVT VT = N.getValueType();
10040   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10041                                 NextPowerOf2(VT.getVectorNumElements()));
10042   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10043                  getVectorIdxConstant(0, DL));
10044 }
10045 
10046 void SelectionDAG::ExtractVectorElements(SDValue Op,
10047                                          SmallVectorImpl<SDValue> &Args,
10048                                          unsigned Start, unsigned Count,
10049                                          EVT EltVT) {
10050   EVT VT = Op.getValueType();
10051   if (Count == 0)
10052     Count = VT.getVectorNumElements();
10053   if (EltVT == EVT())
10054     EltVT = VT.getVectorElementType();
10055   SDLoc SL(Op);
10056   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10057     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10058                            getVectorIdxConstant(i, SL)));
10059   }
10060 }
10061 
10062 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10063 unsigned GlobalAddressSDNode::getAddressSpace() const {
10064   return getGlobal()->getType()->getAddressSpace();
10065 }
10066 
10067 Type *ConstantPoolSDNode::getType() const {
10068   if (isMachineConstantPoolEntry())
10069     return Val.MachineCPVal->getType();
10070   return Val.ConstVal->getType();
10071 }
10072 
10073 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10074                                         unsigned &SplatBitSize,
10075                                         bool &HasAnyUndefs,
10076                                         unsigned MinSplatBits,
10077                                         bool IsBigEndian) const {
10078   EVT VT = getValueType(0);
10079   assert(VT.isVector() && "Expected a vector type");
10080   unsigned VecWidth = VT.getSizeInBits();
10081   if (MinSplatBits > VecWidth)
10082     return false;
10083 
10084   // FIXME: The widths are based on this node's type, but build vectors can
10085   // truncate their operands.
10086   SplatValue = APInt(VecWidth, 0);
10087   SplatUndef = APInt(VecWidth, 0);
10088 
10089   // Get the bits. Bits with undefined values (when the corresponding element
10090   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10091   // in SplatValue. If any of the values are not constant, give up and return
10092   // false.
10093   unsigned int NumOps = getNumOperands();
10094   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10095   unsigned EltWidth = VT.getScalarSizeInBits();
10096 
10097   for (unsigned j = 0; j < NumOps; ++j) {
10098     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10099     SDValue OpVal = getOperand(i);
10100     unsigned BitPos = j * EltWidth;
10101 
10102     if (OpVal.isUndef())
10103       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10104     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10105       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10106     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10107       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10108     else
10109       return false;
10110   }
10111 
10112   // The build_vector is all constants or undefs. Find the smallest element
10113   // size that splats the vector.
10114   HasAnyUndefs = (SplatUndef != 0);
10115 
10116   // FIXME: This does not work for vectors with elements less than 8 bits.
10117   while (VecWidth > 8) {
10118     unsigned HalfSize = VecWidth / 2;
10119     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10120     APInt LowValue = SplatValue.trunc(HalfSize);
10121     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10122     APInt LowUndef = SplatUndef.trunc(HalfSize);
10123 
10124     // If the two halves do not match (ignoring undef bits), stop here.
10125     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10126         MinSplatBits > HalfSize)
10127       break;
10128 
10129     SplatValue = HighValue | LowValue;
10130     SplatUndef = HighUndef & LowUndef;
10131 
10132     VecWidth = HalfSize;
10133   }
10134 
10135   SplatBitSize = VecWidth;
10136   return true;
10137 }
10138 
10139 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10140                                          BitVector *UndefElements) const {
10141   unsigned NumOps = getNumOperands();
10142   if (UndefElements) {
10143     UndefElements->clear();
10144     UndefElements->resize(NumOps);
10145   }
10146   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10147   if (!DemandedElts)
10148     return SDValue();
10149   SDValue Splatted;
10150   for (unsigned i = 0; i != NumOps; ++i) {
10151     if (!DemandedElts[i])
10152       continue;
10153     SDValue Op = getOperand(i);
10154     if (Op.isUndef()) {
10155       if (UndefElements)
10156         (*UndefElements)[i] = true;
10157     } else if (!Splatted) {
10158       Splatted = Op;
10159     } else if (Splatted != Op) {
10160       return SDValue();
10161     }
10162   }
10163 
10164   if (!Splatted) {
10165     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10166     assert(getOperand(FirstDemandedIdx).isUndef() &&
10167            "Can only have a splat without a constant for all undefs.");
10168     return getOperand(FirstDemandedIdx);
10169   }
10170 
10171   return Splatted;
10172 }
10173 
10174 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10175   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10176   return getSplatValue(DemandedElts, UndefElements);
10177 }
10178 
10179 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10180                                             SmallVectorImpl<SDValue> &Sequence,
10181                                             BitVector *UndefElements) const {
10182   unsigned NumOps = getNumOperands();
10183   Sequence.clear();
10184   if (UndefElements) {
10185     UndefElements->clear();
10186     UndefElements->resize(NumOps);
10187   }
10188   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10189   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10190     return false;
10191 
10192   // Set the undefs even if we don't find a sequence (like getSplatValue).
10193   if (UndefElements)
10194     for (unsigned I = 0; I != NumOps; ++I)
10195       if (DemandedElts[I] && getOperand(I).isUndef())
10196         (*UndefElements)[I] = true;
10197 
10198   // Iteratively widen the sequence length looking for repetitions.
10199   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10200     Sequence.append(SeqLen, SDValue());
10201     for (unsigned I = 0; I != NumOps; ++I) {
10202       if (!DemandedElts[I])
10203         continue;
10204       SDValue &SeqOp = Sequence[I % SeqLen];
10205       SDValue Op = getOperand(I);
10206       if (Op.isUndef()) {
10207         if (!SeqOp)
10208           SeqOp = Op;
10209         continue;
10210       }
10211       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10212         Sequence.clear();
10213         break;
10214       }
10215       SeqOp = Op;
10216     }
10217     if (!Sequence.empty())
10218       return true;
10219   }
10220 
10221   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10222   return false;
10223 }
10224 
10225 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10226                                             BitVector *UndefElements) const {
10227   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10228   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10229 }
10230 
10231 ConstantSDNode *
10232 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10233                                         BitVector *UndefElements) const {
10234   return dyn_cast_or_null<ConstantSDNode>(
10235       getSplatValue(DemandedElts, UndefElements));
10236 }
10237 
10238 ConstantSDNode *
10239 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10240   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10241 }
10242 
10243 ConstantFPSDNode *
10244 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10245                                           BitVector *UndefElements) const {
10246   return dyn_cast_or_null<ConstantFPSDNode>(
10247       getSplatValue(DemandedElts, UndefElements));
10248 }
10249 
10250 ConstantFPSDNode *
10251 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10252   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10253 }
10254 
10255 int32_t
10256 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10257                                                    uint32_t BitWidth) const {
10258   if (ConstantFPSDNode *CN =
10259           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10260     bool IsExact;
10261     APSInt IntVal(BitWidth);
10262     const APFloat &APF = CN->getValueAPF();
10263     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10264             APFloat::opOK ||
10265         !IsExact)
10266       return -1;
10267 
10268     return IntVal.exactLogBase2();
10269   }
10270   return -1;
10271 }
10272 
10273 bool BuildVectorSDNode::isConstant() const {
10274   for (const SDValue &Op : op_values()) {
10275     unsigned Opc = Op.getOpcode();
10276     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10277       return false;
10278   }
10279   return true;
10280 }
10281 
10282 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10283   // Find the first non-undef value in the shuffle mask.
10284   unsigned i, e;
10285   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10286     /* search */;
10287 
10288   // If all elements are undefined, this shuffle can be considered a splat
10289   // (although it should eventually get simplified away completely).
10290   if (i == e)
10291     return true;
10292 
10293   // Make sure all remaining elements are either undef or the same as the first
10294   // non-undef value.
10295   for (int Idx = Mask[i]; i != e; ++i)
10296     if (Mask[i] >= 0 && Mask[i] != Idx)
10297       return false;
10298   return true;
10299 }
10300 
10301 // Returns the SDNode if it is a constant integer BuildVector
10302 // or constant integer.
10303 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10304   if (isa<ConstantSDNode>(N))
10305     return N.getNode();
10306   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10307     return N.getNode();
10308   // Treat a GlobalAddress supporting constant offset folding as a
10309   // constant integer.
10310   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10311     if (GA->getOpcode() == ISD::GlobalAddress &&
10312         TLI->isOffsetFoldingLegal(GA))
10313       return GA;
10314   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10315       isa<ConstantSDNode>(N.getOperand(0)))
10316     return N.getNode();
10317   return nullptr;
10318 }
10319 
10320 // Returns the SDNode if it is a constant float BuildVector
10321 // or constant float.
10322 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10323   if (isa<ConstantFPSDNode>(N))
10324     return N.getNode();
10325 
10326   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10327     return N.getNode();
10328 
10329   return nullptr;
10330 }
10331 
10332 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10333   assert(!Node->OperandList && "Node already has operands");
10334   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10335          "too many operands to fit into SDNode");
10336   SDUse *Ops = OperandRecycler.allocate(
10337       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10338 
10339   bool IsDivergent = false;
10340   for (unsigned I = 0; I != Vals.size(); ++I) {
10341     Ops[I].setUser(Node);
10342     Ops[I].setInitial(Vals[I]);
10343     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10344       IsDivergent |= Ops[I].getNode()->isDivergent();
10345   }
10346   Node->NumOperands = Vals.size();
10347   Node->OperandList = Ops;
10348   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10349     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10350     Node->SDNodeBits.IsDivergent = IsDivergent;
10351   }
10352   checkForCycles(Node);
10353 }
10354 
10355 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10356                                      SmallVectorImpl<SDValue> &Vals) {
10357   size_t Limit = SDNode::getMaxNumOperands();
10358   while (Vals.size() > Limit) {
10359     unsigned SliceIdx = Vals.size() - Limit;
10360     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10361     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10362     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10363     Vals.emplace_back(NewTF);
10364   }
10365   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10366 }
10367 
10368 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10369                                         EVT VT, SDNodeFlags Flags) {
10370   switch (Opcode) {
10371   default:
10372     return SDValue();
10373   case ISD::ADD:
10374   case ISD::OR:
10375   case ISD::XOR:
10376   case ISD::UMAX:
10377     return getConstant(0, DL, VT);
10378   case ISD::MUL:
10379     return getConstant(1, DL, VT);
10380   case ISD::AND:
10381   case ISD::UMIN:
10382     return getAllOnesConstant(DL, VT);
10383   case ISD::SMAX:
10384     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10385   case ISD::SMIN:
10386     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10387   case ISD::FADD:
10388     return getConstantFP(-0.0, DL, VT);
10389   case ISD::FMUL:
10390     return getConstantFP(1.0, DL, VT);
10391   case ISD::FMINNUM:
10392   case ISD::FMAXNUM: {
10393     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10394     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10395     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10396                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10397                         APFloat::getLargest(Semantics);
10398     if (Opcode == ISD::FMAXNUM)
10399       NeutralAF.changeSign();
10400 
10401     return getConstantFP(NeutralAF, DL, VT);
10402   }
10403   }
10404 }
10405 
10406 #ifndef NDEBUG
10407 static void checkForCyclesHelper(const SDNode *N,
10408                                  SmallPtrSetImpl<const SDNode*> &Visited,
10409                                  SmallPtrSetImpl<const SDNode*> &Checked,
10410                                  const llvm::SelectionDAG *DAG) {
10411   // If this node has already been checked, don't check it again.
10412   if (Checked.count(N))
10413     return;
10414 
10415   // If a node has already been visited on this depth-first walk, reject it as
10416   // a cycle.
10417   if (!Visited.insert(N).second) {
10418     errs() << "Detected cycle in SelectionDAG\n";
10419     dbgs() << "Offending node:\n";
10420     N->dumprFull(DAG); dbgs() << "\n";
10421     abort();
10422   }
10423 
10424   for (const SDValue &Op : N->op_values())
10425     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10426 
10427   Checked.insert(N);
10428   Visited.erase(N);
10429 }
10430 #endif
10431 
10432 void llvm::checkForCycles(const llvm::SDNode *N,
10433                           const llvm::SelectionDAG *DAG,
10434                           bool force) {
10435 #ifndef NDEBUG
10436   bool check = force;
10437 #ifdef EXPENSIVE_CHECKS
10438   check = true;
10439 #endif  // EXPENSIVE_CHECKS
10440   if (check) {
10441     assert(N && "Checking nonexistent SDNode");
10442     SmallPtrSet<const SDNode*, 32> visited;
10443     SmallPtrSet<const SDNode*, 32> checked;
10444     checkForCyclesHelper(N, visited, checked, DAG);
10445   }
10446 #endif  // !NDEBUG
10447 }
10448 
10449 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10450   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10451 }
10452