1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 auto *BV = dyn_cast<BuildVectorSDNode>(N); 143 if (!BV) 144 return false; 145 146 APInt SplatUndef; 147 unsigned SplatBitSize; 148 bool HasUndefs; 149 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 150 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 151 EltSize) && 152 EltSize == SplatBitSize; 153 } 154 155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 156 // specializations of the more general isConstantSplatVector()? 157 158 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 159 // Look through a bit convert. 160 while (N->getOpcode() == ISD::BITCAST) 161 N = N->getOperand(0).getNode(); 162 163 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 164 165 unsigned i = 0, e = N->getNumOperands(); 166 167 // Skip over all of the undef values. 168 while (i != e && N->getOperand(i).isUndef()) 169 ++i; 170 171 // Do not accept an all-undef vector. 172 if (i == e) return false; 173 174 // Do not accept build_vectors that aren't all constants or which have non-~0 175 // elements. We have to be a bit careful here, as the type of the constant 176 // may not be the same as the type of the vector elements due to type 177 // legalization (the elements are promoted to a legal type for the target and 178 // a vector of a type may be legal when the base element type is not). 179 // We only want to check enough bits to cover the vector elements, because 180 // we care if the resultant vector is all ones, not whether the individual 181 // constants are. 182 SDValue NotZero = N->getOperand(i); 183 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 184 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 185 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 186 return false; 187 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 188 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 189 return false; 190 } else 191 return false; 192 193 // Okay, we have at least one ~0 value, check to see if the rest match or are 194 // undefs. Even with the above element type twiddling, this should be OK, as 195 // the same type legalization should have applied to all the elements. 196 for (++i; i != e; ++i) 197 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 198 return false; 199 return true; 200 } 201 202 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 203 // Look through a bit convert. 204 while (N->getOpcode() == ISD::BITCAST) 205 N = N->getOperand(0).getNode(); 206 207 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 208 209 bool IsAllUndef = true; 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 IsAllUndef = false; 214 // Do not accept build_vectors that aren't all constants or which have non-0 215 // elements. We have to be a bit careful here, as the type of the constant 216 // may not be the same as the type of the vector elements due to type 217 // legalization (the elements are promoted to a legal type for the target 218 // and a vector of a type may be legal when the base element type is not). 219 // We only want to check enough bits to cover the vector elements, because 220 // we care if the resultant vector is all zeros, not whether the individual 221 // constants are. 222 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 223 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 224 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 225 return false; 226 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 227 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 228 return false; 229 } else 230 return false; 231 } 232 233 // Do not accept an all-undef vector. 234 if (IsAllUndef) 235 return false; 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 253 if (N->getOpcode() != ISD::BUILD_VECTOR) 254 return false; 255 256 for (const SDValue &Op : N->op_values()) { 257 if (Op.isUndef()) 258 continue; 259 if (!isa<ConstantFPSDNode>(Op)) 260 return false; 261 } 262 return true; 263 } 264 265 bool ISD::allOperandsUndef(const SDNode *N) { 266 // Return false if the node has no operands. 267 // This is "logically inconsistent" with the definition of "all" but 268 // is probably the desired behavior. 269 if (N->getNumOperands() == 0) 270 return false; 271 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 272 } 273 274 bool ISD::matchUnaryPredicate(SDValue Op, 275 std::function<bool(ConstantSDNode *)> Match, 276 bool AllowUndefs) { 277 // FIXME: Add support for scalar UNDEF cases? 278 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 279 return Match(Cst); 280 281 // FIXME: Add support for vector UNDEF cases? 282 if (ISD::BUILD_VECTOR != Op.getOpcode()) 283 return false; 284 285 EVT SVT = Op.getValueType().getScalarType(); 286 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 287 if (AllowUndefs && Op.getOperand(i).isUndef()) { 288 if (!Match(nullptr)) 289 return false; 290 continue; 291 } 292 293 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 294 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 295 return false; 296 } 297 return true; 298 } 299 300 bool ISD::matchBinaryPredicate( 301 SDValue LHS, SDValue RHS, 302 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 303 bool AllowUndefs, bool AllowTypeMismatch) { 304 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 305 return false; 306 307 // TODO: Add support for scalar UNDEF cases? 308 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 309 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 310 return Match(LHSCst, RHSCst); 311 312 // TODO: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 314 ISD::BUILD_VECTOR != RHS.getOpcode()) 315 return false; 316 317 EVT SVT = LHS.getValueType().getScalarType(); 318 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 319 SDValue LHSOp = LHS.getOperand(i); 320 SDValue RHSOp = RHS.getOperand(i); 321 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 322 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 323 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 324 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 325 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 326 return false; 327 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 328 LHSOp.getValueType() != RHSOp.getValueType())) 329 return false; 330 if (!Match(LHSCst, RHSCst)) 331 return false; 332 } 333 return true; 334 } 335 336 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 337 switch (ExtType) { 338 case ISD::EXTLOAD: 339 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 340 case ISD::SEXTLOAD: 341 return ISD::SIGN_EXTEND; 342 case ISD::ZEXTLOAD: 343 return ISD::ZERO_EXTEND; 344 default: 345 break; 346 } 347 348 llvm_unreachable("Invalid LoadExtType"); 349 } 350 351 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 352 // To perform this operation, we just need to swap the L and G bits of the 353 // operation. 354 unsigned OldL = (Operation >> 2) & 1; 355 unsigned OldG = (Operation >> 1) & 1; 356 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 357 (OldL << 1) | // New G bit 358 (OldG << 2)); // New L bit. 359 } 360 361 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 362 unsigned Operation = Op; 363 if (isIntegerLike) 364 Operation ^= 7; // Flip L, G, E bits, but not U. 365 else 366 Operation ^= 15; // Flip all of the condition bits. 367 368 if (Operation > ISD::SETTRUE2) 369 Operation &= ~8; // Don't let N and U bits get set. 370 371 return ISD::CondCode(Operation); 372 } 373 374 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 375 return getSetCCInverseImpl(Op, Type.isInteger()); 376 } 377 378 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 379 bool isIntegerLike) { 380 return getSetCCInverseImpl(Op, isIntegerLike); 381 } 382 383 /// For an integer comparison, return 1 if the comparison is a signed operation 384 /// and 2 if the result is an unsigned comparison. Return zero if the operation 385 /// does not depend on the sign of the input (setne and seteq). 386 static int isSignedOp(ISD::CondCode Opcode) { 387 switch (Opcode) { 388 default: llvm_unreachable("Illegal integer setcc operation!"); 389 case ISD::SETEQ: 390 case ISD::SETNE: return 0; 391 case ISD::SETLT: 392 case ISD::SETLE: 393 case ISD::SETGT: 394 case ISD::SETGE: return 1; 395 case ISD::SETULT: 396 case ISD::SETULE: 397 case ISD::SETUGT: 398 case ISD::SETUGE: return 2; 399 } 400 } 401 402 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 403 EVT Type) { 404 bool IsInteger = Type.isInteger(); 405 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 406 // Cannot fold a signed integer setcc with an unsigned integer setcc. 407 return ISD::SETCC_INVALID; 408 409 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 410 411 // If the N and U bits get set, then the resultant comparison DOES suddenly 412 // care about orderedness, and it is true when ordered. 413 if (Op > ISD::SETTRUE2) 414 Op &= ~16; // Clear the U bit if the N bit is set. 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 418 Op = ISD::SETNE; 419 420 return ISD::CondCode(Op); 421 } 422 423 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 424 EVT Type) { 425 bool IsInteger = Type.isInteger(); 426 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 427 // Cannot fold a signed setcc with an unsigned setcc. 428 return ISD::SETCC_INVALID; 429 430 // Combine all of the condition bits. 431 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 432 433 // Canonicalize illegal integer setcc's. 434 if (IsInteger) { 435 switch (Result) { 436 default: break; 437 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 438 case ISD::SETOEQ: // SETEQ & SETU[LG]E 439 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 440 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 441 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 442 } 443 } 444 445 return Result; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SDNode Profile Support 450 //===----------------------------------------------------------------------===// 451 452 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 453 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 454 ID.AddInteger(OpC); 455 } 456 457 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 458 /// solely with their pointer. 459 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 460 ID.AddPointer(VTList.VTs); 461 } 462 463 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 464 static void AddNodeIDOperands(FoldingSetNodeID &ID, 465 ArrayRef<SDValue> Ops) { 466 for (auto& Op : Ops) { 467 ID.AddPointer(Op.getNode()); 468 ID.AddInteger(Op.getResNo()); 469 } 470 } 471 472 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 473 static void AddNodeIDOperands(FoldingSetNodeID &ID, 474 ArrayRef<SDUse> Ops) { 475 for (auto& Op : Ops) { 476 ID.AddPointer(Op.getNode()); 477 ID.AddInteger(Op.getResNo()); 478 } 479 } 480 481 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 482 SDVTList VTList, ArrayRef<SDValue> OpList) { 483 AddNodeIDOpcode(ID, OpC); 484 AddNodeIDValueTypes(ID, VTList); 485 AddNodeIDOperands(ID, OpList); 486 } 487 488 /// If this is an SDNode with special info, add this info to the NodeID data. 489 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 490 switch (N->getOpcode()) { 491 case ISD::TargetExternalSymbol: 492 case ISD::ExternalSymbol: 493 case ISD::MCSymbol: 494 llvm_unreachable("Should only be used on nodes with operands"); 495 default: break; // Normal nodes don't need extra info. 496 case ISD::TargetConstant: 497 case ISD::Constant: { 498 const ConstantSDNode *C = cast<ConstantSDNode>(N); 499 ID.AddPointer(C->getConstantIntValue()); 500 ID.AddBoolean(C->isOpaque()); 501 break; 502 } 503 case ISD::TargetConstantFP: 504 case ISD::ConstantFP: 505 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 506 break; 507 case ISD::TargetGlobalAddress: 508 case ISD::GlobalAddress: 509 case ISD::TargetGlobalTLSAddress: 510 case ISD::GlobalTLSAddress: { 511 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 512 ID.AddPointer(GA->getGlobal()); 513 ID.AddInteger(GA->getOffset()); 514 ID.AddInteger(GA->getTargetFlags()); 515 break; 516 } 517 case ISD::BasicBlock: 518 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 519 break; 520 case ISD::Register: 521 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 522 break; 523 case ISD::RegisterMask: 524 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 525 break; 526 case ISD::SRCVALUE: 527 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 528 break; 529 case ISD::FrameIndex: 530 case ISD::TargetFrameIndex: 531 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 532 break; 533 case ISD::LIFETIME_START: 534 case ISD::LIFETIME_END: 535 if (cast<LifetimeSDNode>(N)->hasOffset()) { 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 537 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 538 } 539 break; 540 case ISD::JumpTable: 541 case ISD::TargetJumpTable: 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 543 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 544 break; 545 case ISD::ConstantPool: 546 case ISD::TargetConstantPool: { 547 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 548 ID.AddInteger(CP->getAlign().value()); 549 ID.AddInteger(CP->getOffset()); 550 if (CP->isMachineConstantPoolEntry()) 551 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 552 else 553 ID.AddPointer(CP->getConstVal()); 554 ID.AddInteger(CP->getTargetFlags()); 555 break; 556 } 557 case ISD::TargetIndex: { 558 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 559 ID.AddInteger(TI->getIndex()); 560 ID.AddInteger(TI->getOffset()); 561 ID.AddInteger(TI->getTargetFlags()); 562 break; 563 } 564 case ISD::LOAD: { 565 const LoadSDNode *LD = cast<LoadSDNode>(N); 566 ID.AddInteger(LD->getMemoryVT().getRawBits()); 567 ID.AddInteger(LD->getRawSubclassData()); 568 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 569 break; 570 } 571 case ISD::STORE: { 572 const StoreSDNode *ST = cast<StoreSDNode>(N); 573 ID.AddInteger(ST->getMemoryVT().getRawBits()); 574 ID.AddInteger(ST->getRawSubclassData()); 575 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 576 break; 577 } 578 case ISD::MLOAD: { 579 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 580 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 581 ID.AddInteger(MLD->getRawSubclassData()); 582 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 583 break; 584 } 585 case ISD::MSTORE: { 586 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 587 ID.AddInteger(MST->getMemoryVT().getRawBits()); 588 ID.AddInteger(MST->getRawSubclassData()); 589 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 590 break; 591 } 592 case ISD::MGATHER: { 593 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 594 ID.AddInteger(MG->getMemoryVT().getRawBits()); 595 ID.AddInteger(MG->getRawSubclassData()); 596 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 597 break; 598 } 599 case ISD::MSCATTER: { 600 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 601 ID.AddInteger(MS->getMemoryVT().getRawBits()); 602 ID.AddInteger(MS->getRawSubclassData()); 603 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 604 break; 605 } 606 case ISD::ATOMIC_CMP_SWAP: 607 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 608 case ISD::ATOMIC_SWAP: 609 case ISD::ATOMIC_LOAD_ADD: 610 case ISD::ATOMIC_LOAD_SUB: 611 case ISD::ATOMIC_LOAD_AND: 612 case ISD::ATOMIC_LOAD_CLR: 613 case ISD::ATOMIC_LOAD_OR: 614 case ISD::ATOMIC_LOAD_XOR: 615 case ISD::ATOMIC_LOAD_NAND: 616 case ISD::ATOMIC_LOAD_MIN: 617 case ISD::ATOMIC_LOAD_MAX: 618 case ISD::ATOMIC_LOAD_UMIN: 619 case ISD::ATOMIC_LOAD_UMAX: 620 case ISD::ATOMIC_LOAD: 621 case ISD::ATOMIC_STORE: { 622 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 623 ID.AddInteger(AT->getMemoryVT().getRawBits()); 624 ID.AddInteger(AT->getRawSubclassData()); 625 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 626 break; 627 } 628 case ISD::PREFETCH: { 629 const MemSDNode *PF = cast<MemSDNode>(N); 630 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 631 break; 632 } 633 case ISD::VECTOR_SHUFFLE: { 634 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 635 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 636 i != e; ++i) 637 ID.AddInteger(SVN->getMaskElt(i)); 638 break; 639 } 640 case ISD::TargetBlockAddress: 641 case ISD::BlockAddress: { 642 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 643 ID.AddPointer(BA->getBlockAddress()); 644 ID.AddInteger(BA->getOffset()); 645 ID.AddInteger(BA->getTargetFlags()); 646 break; 647 } 648 } // end switch (N->getOpcode()) 649 650 // Target specific memory nodes could also have address spaces to check. 651 if (N->isTargetMemoryOpcode()) 652 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 653 } 654 655 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 656 /// data. 657 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 658 AddNodeIDOpcode(ID, N->getOpcode()); 659 // Add the return value info. 660 AddNodeIDValueTypes(ID, N->getVTList()); 661 // Add the operand info. 662 AddNodeIDOperands(ID, N->ops()); 663 664 // Handle SDNode leafs with special info. 665 AddNodeIDCustom(ID, N); 666 } 667 668 //===----------------------------------------------------------------------===// 669 // SelectionDAG Class 670 //===----------------------------------------------------------------------===// 671 672 /// doNotCSE - Return true if CSE should not be performed for this node. 673 static bool doNotCSE(SDNode *N) { 674 if (N->getValueType(0) == MVT::Glue) 675 return true; // Never CSE anything that produces a flag. 676 677 switch (N->getOpcode()) { 678 default: break; 679 case ISD::HANDLENODE: 680 case ISD::EH_LABEL: 681 return true; // Never CSE these nodes. 682 } 683 684 // Check that remaining values produced are not flags. 685 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 686 if (N->getValueType(i) == MVT::Glue) 687 return true; // Never CSE anything that produces a flag. 688 689 return false; 690 } 691 692 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 693 /// SelectionDAG. 694 void SelectionDAG::RemoveDeadNodes() { 695 // Create a dummy node (which is not added to allnodes), that adds a reference 696 // to the root node, preventing it from being deleted. 697 HandleSDNode Dummy(getRoot()); 698 699 SmallVector<SDNode*, 128> DeadNodes; 700 701 // Add all obviously-dead nodes to the DeadNodes worklist. 702 for (SDNode &Node : allnodes()) 703 if (Node.use_empty()) 704 DeadNodes.push_back(&Node); 705 706 RemoveDeadNodes(DeadNodes); 707 708 // If the root changed (e.g. it was a dead load, update the root). 709 setRoot(Dummy.getValue()); 710 } 711 712 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 713 /// given list, and any nodes that become unreachable as a result. 714 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 715 716 // Process the worklist, deleting the nodes and adding their uses to the 717 // worklist. 718 while (!DeadNodes.empty()) { 719 SDNode *N = DeadNodes.pop_back_val(); 720 // Skip to next node if we've already managed to delete the node. This could 721 // happen if replacing a node causes a node previously added to the node to 722 // be deleted. 723 if (N->getOpcode() == ISD::DELETED_NODE) 724 continue; 725 726 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 727 DUL->NodeDeleted(N, nullptr); 728 729 // Take the node out of the appropriate CSE map. 730 RemoveNodeFromCSEMaps(N); 731 732 // Next, brutally remove the operand list. This is safe to do, as there are 733 // no cycles in the graph. 734 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 735 SDUse &Use = *I++; 736 SDNode *Operand = Use.getNode(); 737 Use.set(SDValue()); 738 739 // Now that we removed this operand, see if there are no uses of it left. 740 if (Operand->use_empty()) 741 DeadNodes.push_back(Operand); 742 } 743 744 DeallocateNode(N); 745 } 746 } 747 748 void SelectionDAG::RemoveDeadNode(SDNode *N){ 749 SmallVector<SDNode*, 16> DeadNodes(1, N); 750 751 // Create a dummy node that adds a reference to the root node, preventing 752 // it from being deleted. (This matters if the root is an operand of the 753 // dead node.) 754 HandleSDNode Dummy(getRoot()); 755 756 RemoveDeadNodes(DeadNodes); 757 } 758 759 void SelectionDAG::DeleteNode(SDNode *N) { 760 // First take this out of the appropriate CSE map. 761 RemoveNodeFromCSEMaps(N); 762 763 // Finally, remove uses due to operands of this node, remove from the 764 // AllNodes list, and delete the node. 765 DeleteNodeNotInCSEMaps(N); 766 } 767 768 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 769 assert(N->getIterator() != AllNodes.begin() && 770 "Cannot delete the entry node!"); 771 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 772 773 // Drop all of the operands and decrement used node's use counts. 774 N->DropOperands(); 775 776 DeallocateNode(N); 777 } 778 779 void SDDbgInfo::erase(const SDNode *Node) { 780 DbgValMapType::iterator I = DbgValMap.find(Node); 781 if (I == DbgValMap.end()) 782 return; 783 for (auto &Val: I->second) 784 Val->setIsInvalidated(); 785 DbgValMap.erase(I); 786 } 787 788 void SelectionDAG::DeallocateNode(SDNode *N) { 789 // If we have operands, deallocate them. 790 removeOperands(N); 791 792 NodeAllocator.Deallocate(AllNodes.remove(N)); 793 794 // Set the opcode to DELETED_NODE to help catch bugs when node 795 // memory is reallocated. 796 // FIXME: There are places in SDag that have grown a dependency on the opcode 797 // value in the released node. 798 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 799 N->NodeType = ISD::DELETED_NODE; 800 801 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 802 // them and forget about that node. 803 DbgInfo->erase(N); 804 } 805 806 #ifndef NDEBUG 807 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 808 static void VerifySDNode(SDNode *N) { 809 switch (N->getOpcode()) { 810 default: 811 break; 812 case ISD::BUILD_PAIR: { 813 EVT VT = N->getValueType(0); 814 assert(N->getNumValues() == 1 && "Too many results!"); 815 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 816 "Wrong return type!"); 817 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 818 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 819 "Mismatched operand types!"); 820 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 821 "Wrong operand type!"); 822 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 823 "Wrong return type size"); 824 break; 825 } 826 case ISD::BUILD_VECTOR: { 827 assert(N->getNumValues() == 1 && "Too many results!"); 828 assert(N->getValueType(0).isVector() && "Wrong return type!"); 829 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 830 "Wrong number of operands!"); 831 EVT EltVT = N->getValueType(0).getVectorElementType(); 832 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 833 assert((I->getValueType() == EltVT || 834 (EltVT.isInteger() && I->getValueType().isInteger() && 835 EltVT.bitsLE(I->getValueType()))) && 836 "Wrong operand type!"); 837 assert(I->getValueType() == N->getOperand(0).getValueType() && 838 "Operands must all have the same type"); 839 } 840 break; 841 } 842 } 843 } 844 #endif // NDEBUG 845 846 /// Insert a newly allocated node into the DAG. 847 /// 848 /// Handles insertion into the all nodes list and CSE map, as well as 849 /// verification and other common operations when a new node is allocated. 850 void SelectionDAG::InsertNode(SDNode *N) { 851 AllNodes.push_back(N); 852 #ifndef NDEBUG 853 N->PersistentId = NextPersistentId++; 854 VerifySDNode(N); 855 #endif 856 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 857 DUL->NodeInserted(N); 858 } 859 860 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 861 /// correspond to it. This is useful when we're about to delete or repurpose 862 /// the node. We don't want future request for structurally identical nodes 863 /// to return N anymore. 864 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 865 bool Erased = false; 866 switch (N->getOpcode()) { 867 case ISD::HANDLENODE: return false; // noop. 868 case ISD::CONDCODE: 869 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 870 "Cond code doesn't exist!"); 871 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 872 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 873 break; 874 case ISD::ExternalSymbol: 875 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 876 break; 877 case ISD::TargetExternalSymbol: { 878 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 879 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 880 ESN->getSymbol(), ESN->getTargetFlags())); 881 break; 882 } 883 case ISD::MCSymbol: { 884 auto *MCSN = cast<MCSymbolSDNode>(N); 885 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 886 break; 887 } 888 case ISD::VALUETYPE: { 889 EVT VT = cast<VTSDNode>(N)->getVT(); 890 if (VT.isExtended()) { 891 Erased = ExtendedValueTypeNodes.erase(VT); 892 } else { 893 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 894 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 895 } 896 break; 897 } 898 default: 899 // Remove it from the CSE Map. 900 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 901 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 902 Erased = CSEMap.RemoveNode(N); 903 break; 904 } 905 #ifndef NDEBUG 906 // Verify that the node was actually in one of the CSE maps, unless it has a 907 // flag result (which cannot be CSE'd) or is one of the special cases that are 908 // not subject to CSE. 909 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 910 !N->isMachineOpcode() && !doNotCSE(N)) { 911 N->dump(this); 912 dbgs() << "\n"; 913 llvm_unreachable("Node is not in map!"); 914 } 915 #endif 916 return Erased; 917 } 918 919 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 920 /// maps and modified in place. Add it back to the CSE maps, unless an identical 921 /// node already exists, in which case transfer all its users to the existing 922 /// node. This transfer can potentially trigger recursive merging. 923 void 924 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 925 // For node types that aren't CSE'd, just act as if no identical node 926 // already exists. 927 if (!doNotCSE(N)) { 928 SDNode *Existing = CSEMap.GetOrInsertNode(N); 929 if (Existing != N) { 930 // If there was already an existing matching node, use ReplaceAllUsesWith 931 // to replace the dead one with the existing one. This can cause 932 // recursive merging of other unrelated nodes down the line. 933 ReplaceAllUsesWith(N, Existing); 934 935 // N is now dead. Inform the listeners and delete it. 936 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 937 DUL->NodeDeleted(N, Existing); 938 DeleteNodeNotInCSEMaps(N); 939 return; 940 } 941 } 942 943 // If the node doesn't already exist, we updated it. Inform listeners. 944 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 945 DUL->NodeUpdated(N); 946 } 947 948 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 949 /// were replaced with those specified. If this node is never memoized, 950 /// return null, otherwise return a pointer to the slot it would take. If a 951 /// node already exists with these operands, the slot will be non-null. 952 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 953 void *&InsertPos) { 954 if (doNotCSE(N)) 955 return nullptr; 956 957 SDValue Ops[] = { Op }; 958 FoldingSetNodeID ID; 959 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 960 AddNodeIDCustom(ID, N); 961 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 962 if (Node) 963 Node->intersectFlagsWith(N->getFlags()); 964 return Node; 965 } 966 967 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 968 /// were replaced with those specified. If this node is never memoized, 969 /// return null, otherwise return a pointer to the slot it would take. If a 970 /// node already exists with these operands, the slot will be non-null. 971 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 972 SDValue Op1, SDValue Op2, 973 void *&InsertPos) { 974 if (doNotCSE(N)) 975 return nullptr; 976 977 SDValue Ops[] = { Op1, Op2 }; 978 FoldingSetNodeID ID; 979 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 980 AddNodeIDCustom(ID, N); 981 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 982 if (Node) 983 Node->intersectFlagsWith(N->getFlags()); 984 return Node; 985 } 986 987 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 988 /// were replaced with those specified. If this node is never memoized, 989 /// return null, otherwise return a pointer to the slot it would take. If a 990 /// node already exists with these operands, the slot will be non-null. 991 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 992 void *&InsertPos) { 993 if (doNotCSE(N)) 994 return nullptr; 995 996 FoldingSetNodeID ID; 997 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 998 AddNodeIDCustom(ID, N); 999 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1000 if (Node) 1001 Node->intersectFlagsWith(N->getFlags()); 1002 return Node; 1003 } 1004 1005 Align SelectionDAG::getEVTAlign(EVT VT) const { 1006 Type *Ty = VT == MVT::iPTR ? 1007 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1008 VT.getTypeForEVT(*getContext()); 1009 1010 return getDataLayout().getABITypeAlign(Ty); 1011 } 1012 1013 // EntryNode could meaningfully have debug info if we can find it... 1014 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1015 : TM(tm), OptLevel(OL), 1016 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1017 Root(getEntryNode()) { 1018 InsertNode(&EntryNode); 1019 DbgInfo = new SDDbgInfo(); 1020 } 1021 1022 void SelectionDAG::init(MachineFunction &NewMF, 1023 OptimizationRemarkEmitter &NewORE, 1024 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1025 LegacyDivergenceAnalysis * Divergence, 1026 ProfileSummaryInfo *PSIin, 1027 BlockFrequencyInfo *BFIin) { 1028 MF = &NewMF; 1029 SDAGISelPass = PassPtr; 1030 ORE = &NewORE; 1031 TLI = getSubtarget().getTargetLowering(); 1032 TSI = getSubtarget().getSelectionDAGInfo(); 1033 LibInfo = LibraryInfo; 1034 Context = &MF->getFunction().getContext(); 1035 DA = Divergence; 1036 PSI = PSIin; 1037 BFI = BFIin; 1038 } 1039 1040 SelectionDAG::~SelectionDAG() { 1041 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1042 allnodes_clear(); 1043 OperandRecycler.clear(OperandAllocator); 1044 delete DbgInfo; 1045 } 1046 1047 bool SelectionDAG::shouldOptForSize() const { 1048 return MF->getFunction().hasOptSize() || 1049 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1050 } 1051 1052 void SelectionDAG::allnodes_clear() { 1053 assert(&*AllNodes.begin() == &EntryNode); 1054 AllNodes.remove(AllNodes.begin()); 1055 while (!AllNodes.empty()) 1056 DeallocateNode(&AllNodes.front()); 1057 #ifndef NDEBUG 1058 NextPersistentId = 0; 1059 #endif 1060 } 1061 1062 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1063 void *&InsertPos) { 1064 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1065 if (N) { 1066 switch (N->getOpcode()) { 1067 default: break; 1068 case ISD::Constant: 1069 case ISD::ConstantFP: 1070 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1071 "debug location. Use another overload."); 1072 } 1073 } 1074 return N; 1075 } 1076 1077 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1078 const SDLoc &DL, void *&InsertPos) { 1079 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1080 if (N) { 1081 switch (N->getOpcode()) { 1082 case ISD::Constant: 1083 case ISD::ConstantFP: 1084 // Erase debug location from the node if the node is used at several 1085 // different places. Do not propagate one location to all uses as it 1086 // will cause a worse single stepping debugging experience. 1087 if (N->getDebugLoc() != DL.getDebugLoc()) 1088 N->setDebugLoc(DebugLoc()); 1089 break; 1090 default: 1091 // When the node's point of use is located earlier in the instruction 1092 // sequence than its prior point of use, update its debug info to the 1093 // earlier location. 1094 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1095 N->setDebugLoc(DL.getDebugLoc()); 1096 break; 1097 } 1098 } 1099 return N; 1100 } 1101 1102 void SelectionDAG::clear() { 1103 allnodes_clear(); 1104 OperandRecycler.clear(OperandAllocator); 1105 OperandAllocator.Reset(); 1106 CSEMap.clear(); 1107 1108 ExtendedValueTypeNodes.clear(); 1109 ExternalSymbols.clear(); 1110 TargetExternalSymbols.clear(); 1111 MCSymbols.clear(); 1112 SDCallSiteDbgInfo.clear(); 1113 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1114 static_cast<CondCodeSDNode*>(nullptr)); 1115 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1116 static_cast<SDNode*>(nullptr)); 1117 1118 EntryNode.UseList = nullptr; 1119 InsertNode(&EntryNode); 1120 Root = getEntryNode(); 1121 DbgInfo->clear(); 1122 } 1123 1124 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1125 return VT.bitsGT(Op.getValueType()) 1126 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1127 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1128 } 1129 1130 std::pair<SDValue, SDValue> 1131 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1132 const SDLoc &DL, EVT VT) { 1133 assert(!VT.bitsEq(Op.getValueType()) && 1134 "Strict no-op FP extend/round not allowed."); 1135 SDValue Res = 1136 VT.bitsGT(Op.getValueType()) 1137 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1138 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1139 {Chain, Op, getIntPtrConstant(0, DL)}); 1140 1141 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1142 } 1143 1144 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1145 return VT.bitsGT(Op.getValueType()) ? 1146 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1147 getNode(ISD::TRUNCATE, DL, VT, Op); 1148 } 1149 1150 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1151 return VT.bitsGT(Op.getValueType()) ? 1152 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1153 getNode(ISD::TRUNCATE, DL, VT, Op); 1154 } 1155 1156 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1157 return VT.bitsGT(Op.getValueType()) ? 1158 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1159 getNode(ISD::TRUNCATE, DL, VT, Op); 1160 } 1161 1162 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1163 EVT OpVT) { 1164 if (VT.bitsLE(Op.getValueType())) 1165 return getNode(ISD::TRUNCATE, SL, VT, Op); 1166 1167 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1168 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1169 } 1170 1171 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1172 EVT OpVT = Op.getValueType(); 1173 assert(VT.isInteger() && OpVT.isInteger() && 1174 "Cannot getZeroExtendInReg FP types"); 1175 assert(VT.isVector() == OpVT.isVector() && 1176 "getZeroExtendInReg type should be vector iff the operand " 1177 "type is vector!"); 1178 assert((!VT.isVector() || 1179 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1180 "Vector element counts must match in getZeroExtendInReg"); 1181 assert(VT.bitsLE(OpVT) && "Not extending!"); 1182 if (OpVT == VT) 1183 return Op; 1184 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1185 VT.getScalarSizeInBits()); 1186 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1187 } 1188 1189 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1190 // Only unsigned pointer semantics are supported right now. In the future this 1191 // might delegate to TLI to check pointer signedness. 1192 return getZExtOrTrunc(Op, DL, VT); 1193 } 1194 1195 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1196 // Only unsigned pointer semantics are supported right now. In the future this 1197 // might delegate to TLI to check pointer signedness. 1198 return getZeroExtendInReg(Op, DL, VT); 1199 } 1200 1201 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1202 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1203 EVT EltVT = VT.getScalarType(); 1204 SDValue NegOne = 1205 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1206 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1207 } 1208 1209 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1210 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1211 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1212 } 1213 1214 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1215 EVT OpVT) { 1216 if (!V) 1217 return getConstant(0, DL, VT); 1218 1219 switch (TLI->getBooleanContents(OpVT)) { 1220 case TargetLowering::ZeroOrOneBooleanContent: 1221 case TargetLowering::UndefinedBooleanContent: 1222 return getConstant(1, DL, VT); 1223 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1224 return getAllOnesConstant(DL, VT); 1225 } 1226 llvm_unreachable("Unexpected boolean content enum!"); 1227 } 1228 1229 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1230 bool isT, bool isO) { 1231 EVT EltVT = VT.getScalarType(); 1232 assert((EltVT.getSizeInBits() >= 64 || 1233 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1234 "getConstant with a uint64_t value that doesn't fit in the type!"); 1235 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1236 } 1237 1238 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1239 bool isT, bool isO) { 1240 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1241 } 1242 1243 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1244 EVT VT, bool isT, bool isO) { 1245 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1246 1247 EVT EltVT = VT.getScalarType(); 1248 const ConstantInt *Elt = &Val; 1249 1250 // In some cases the vector type is legal but the element type is illegal and 1251 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1252 // inserted value (the type does not need to match the vector element type). 1253 // Any extra bits introduced will be truncated away. 1254 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1255 TargetLowering::TypePromoteInteger) { 1256 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1257 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1258 Elt = ConstantInt::get(*getContext(), NewVal); 1259 } 1260 // In other cases the element type is illegal and needs to be expanded, for 1261 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1262 // the value into n parts and use a vector type with n-times the elements. 1263 // Then bitcast to the type requested. 1264 // Legalizing constants too early makes the DAGCombiner's job harder so we 1265 // only legalize if the DAG tells us we must produce legal types. 1266 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1267 TLI->getTypeAction(*getContext(), EltVT) == 1268 TargetLowering::TypeExpandInteger) { 1269 const APInt &NewVal = Elt->getValue(); 1270 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1271 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1272 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1273 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1274 1275 // Check the temporary vector is the correct size. If this fails then 1276 // getTypeToTransformTo() probably returned a type whose size (in bits) 1277 // isn't a power-of-2 factor of the requested type size. 1278 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1279 1280 SmallVector<SDValue, 2> EltParts; 1281 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1282 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1283 .zextOrTrunc(ViaEltSizeInBits), DL, 1284 ViaEltVT, isT, isO)); 1285 } 1286 1287 // EltParts is currently in little endian order. If we actually want 1288 // big-endian order then reverse it now. 1289 if (getDataLayout().isBigEndian()) 1290 std::reverse(EltParts.begin(), EltParts.end()); 1291 1292 // The elements must be reversed when the element order is different 1293 // to the endianness of the elements (because the BITCAST is itself a 1294 // vector shuffle in this situation). However, we do not need any code to 1295 // perform this reversal because getConstant() is producing a vector 1296 // splat. 1297 // This situation occurs in MIPS MSA. 1298 1299 SmallVector<SDValue, 8> Ops; 1300 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1301 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1302 1303 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1304 return V; 1305 } 1306 1307 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1308 "APInt size does not match type size!"); 1309 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1310 FoldingSetNodeID ID; 1311 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1312 ID.AddPointer(Elt); 1313 ID.AddBoolean(isO); 1314 void *IP = nullptr; 1315 SDNode *N = nullptr; 1316 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1317 if (!VT.isVector()) 1318 return SDValue(N, 0); 1319 1320 if (!N) { 1321 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1322 CSEMap.InsertNode(N, IP); 1323 InsertNode(N); 1324 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1325 } 1326 1327 SDValue Result(N, 0); 1328 if (VT.isScalableVector()) 1329 Result = getSplatVector(VT, DL, Result); 1330 else if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1337 bool isTarget) { 1338 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1339 } 1340 1341 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1342 const SDLoc &DL, bool LegalTypes) { 1343 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1344 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1345 return getConstant(Val, DL, ShiftVT); 1346 } 1347 1348 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1349 bool isTarget) { 1350 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1351 } 1352 1353 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1354 bool isTarget) { 1355 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1356 } 1357 1358 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1359 EVT VT, bool isTarget) { 1360 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1361 1362 EVT EltVT = VT.getScalarType(); 1363 1364 // Do the map lookup using the actual bit pattern for the floating point 1365 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1366 // we don't have issues with SNANs. 1367 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1368 FoldingSetNodeID ID; 1369 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1370 ID.AddPointer(&V); 1371 void *IP = nullptr; 1372 SDNode *N = nullptr; 1373 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1374 if (!VT.isVector()) 1375 return SDValue(N, 0); 1376 1377 if (!N) { 1378 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1379 CSEMap.InsertNode(N, IP); 1380 InsertNode(N); 1381 } 1382 1383 SDValue Result(N, 0); 1384 if (VT.isScalableVector()) 1385 Result = getSplatVector(VT, DL, Result); 1386 else if (VT.isVector()) 1387 Result = getSplatBuildVector(VT, DL, Result); 1388 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1389 return Result; 1390 } 1391 1392 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1393 bool isTarget) { 1394 EVT EltVT = VT.getScalarType(); 1395 if (EltVT == MVT::f32) 1396 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1397 else if (EltVT == MVT::f64) 1398 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1399 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1400 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1401 bool Ignored; 1402 APFloat APF = APFloat(Val); 1403 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1404 &Ignored); 1405 return getConstantFP(APF, DL, VT, isTarget); 1406 } else 1407 llvm_unreachable("Unsupported type in getConstantFP"); 1408 } 1409 1410 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1411 EVT VT, int64_t Offset, bool isTargetGA, 1412 unsigned TargetFlags) { 1413 assert((TargetFlags == 0 || isTargetGA) && 1414 "Cannot set target flags on target-independent globals"); 1415 1416 // Truncate (with sign-extension) the offset value to the pointer size. 1417 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1418 if (BitWidth < 64) 1419 Offset = SignExtend64(Offset, BitWidth); 1420 1421 unsigned Opc; 1422 if (GV->isThreadLocal()) 1423 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1424 else 1425 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1426 1427 FoldingSetNodeID ID; 1428 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1429 ID.AddPointer(GV); 1430 ID.AddInteger(Offset); 1431 ID.AddInteger(TargetFlags); 1432 void *IP = nullptr; 1433 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1434 return SDValue(E, 0); 1435 1436 auto *N = newSDNode<GlobalAddressSDNode>( 1437 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1438 CSEMap.InsertNode(N, IP); 1439 InsertNode(N); 1440 return SDValue(N, 0); 1441 } 1442 1443 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1444 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1445 FoldingSetNodeID ID; 1446 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1447 ID.AddInteger(FI); 1448 void *IP = nullptr; 1449 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1450 return SDValue(E, 0); 1451 1452 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1453 CSEMap.InsertNode(N, IP); 1454 InsertNode(N); 1455 return SDValue(N, 0); 1456 } 1457 1458 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1459 unsigned TargetFlags) { 1460 assert((TargetFlags == 0 || isTarget) && 1461 "Cannot set target flags on target-independent jump tables"); 1462 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1463 FoldingSetNodeID ID; 1464 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1465 ID.AddInteger(JTI); 1466 ID.AddInteger(TargetFlags); 1467 void *IP = nullptr; 1468 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1469 return SDValue(E, 0); 1470 1471 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1472 CSEMap.InsertNode(N, IP); 1473 InsertNode(N); 1474 return SDValue(N, 0); 1475 } 1476 1477 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1478 MaybeAlign Alignment, int Offset, 1479 bool isTarget, unsigned TargetFlags) { 1480 assert((TargetFlags == 0 || isTarget) && 1481 "Cannot set target flags on target-independent globals"); 1482 if (!Alignment) 1483 Alignment = shouldOptForSize() 1484 ? getDataLayout().getABITypeAlign(C->getType()) 1485 : getDataLayout().getPrefTypeAlign(C->getType()); 1486 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1487 FoldingSetNodeID ID; 1488 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1489 ID.AddInteger(Alignment->value()); 1490 ID.AddInteger(Offset); 1491 ID.AddPointer(C); 1492 ID.AddInteger(TargetFlags); 1493 void *IP = nullptr; 1494 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1495 return SDValue(E, 0); 1496 1497 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1498 TargetFlags); 1499 CSEMap.InsertNode(N, IP); 1500 InsertNode(N); 1501 SDValue V = SDValue(N, 0); 1502 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1503 return V; 1504 } 1505 1506 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1507 MaybeAlign Alignment, int Offset, 1508 bool isTarget, unsigned TargetFlags) { 1509 assert((TargetFlags == 0 || isTarget) && 1510 "Cannot set target flags on target-independent globals"); 1511 if (!Alignment) 1512 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1513 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1514 FoldingSetNodeID ID; 1515 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1516 ID.AddInteger(Alignment->value()); 1517 ID.AddInteger(Offset); 1518 C->addSelectionDAGCSEId(ID); 1519 ID.AddInteger(TargetFlags); 1520 void *IP = nullptr; 1521 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1522 return SDValue(E, 0); 1523 1524 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1525 TargetFlags); 1526 CSEMap.InsertNode(N, IP); 1527 InsertNode(N); 1528 return SDValue(N, 0); 1529 } 1530 1531 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1532 unsigned TargetFlags) { 1533 FoldingSetNodeID ID; 1534 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1535 ID.AddInteger(Index); 1536 ID.AddInteger(Offset); 1537 ID.AddInteger(TargetFlags); 1538 void *IP = nullptr; 1539 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1540 return SDValue(E, 0); 1541 1542 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1543 CSEMap.InsertNode(N, IP); 1544 InsertNode(N); 1545 return SDValue(N, 0); 1546 } 1547 1548 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1551 ID.AddPointer(MBB); 1552 void *IP = nullptr; 1553 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1554 return SDValue(E, 0); 1555 1556 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 return SDValue(N, 0); 1560 } 1561 1562 SDValue SelectionDAG::getValueType(EVT VT) { 1563 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1564 ValueTypeNodes.size()) 1565 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1566 1567 SDNode *&N = VT.isExtended() ? 1568 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1569 1570 if (N) return SDValue(N, 0); 1571 N = newSDNode<VTSDNode>(VT); 1572 InsertNode(N); 1573 return SDValue(N, 0); 1574 } 1575 1576 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1577 SDNode *&N = ExternalSymbols[Sym]; 1578 if (N) return SDValue(N, 0); 1579 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1580 InsertNode(N); 1581 return SDValue(N, 0); 1582 } 1583 1584 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1585 SDNode *&N = MCSymbols[Sym]; 1586 if (N) 1587 return SDValue(N, 0); 1588 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1594 unsigned TargetFlags) { 1595 SDNode *&N = 1596 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1597 if (N) return SDValue(N, 0); 1598 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1599 InsertNode(N); 1600 return SDValue(N, 0); 1601 } 1602 1603 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1604 if ((unsigned)Cond >= CondCodeNodes.size()) 1605 CondCodeNodes.resize(Cond+1); 1606 1607 if (!CondCodeNodes[Cond]) { 1608 auto *N = newSDNode<CondCodeSDNode>(Cond); 1609 CondCodeNodes[Cond] = N; 1610 InsertNode(N); 1611 } 1612 1613 return SDValue(CondCodeNodes[Cond], 0); 1614 } 1615 1616 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1617 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1618 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1619 std::swap(N1, N2); 1620 ShuffleVectorSDNode::commuteMask(M); 1621 } 1622 1623 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1624 SDValue N2, ArrayRef<int> Mask) { 1625 assert(VT.getVectorNumElements() == Mask.size() && 1626 "Must have the same number of vector elements as mask elements!"); 1627 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1628 "Invalid VECTOR_SHUFFLE"); 1629 1630 // Canonicalize shuffle undef, undef -> undef 1631 if (N1.isUndef() && N2.isUndef()) 1632 return getUNDEF(VT); 1633 1634 // Validate that all indices in Mask are within the range of the elements 1635 // input to the shuffle. 1636 int NElts = Mask.size(); 1637 assert(llvm::all_of(Mask, 1638 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1639 "Index out of range"); 1640 1641 // Copy the mask so we can do any needed cleanup. 1642 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1643 1644 // Canonicalize shuffle v, v -> v, undef 1645 if (N1 == N2) { 1646 N2 = getUNDEF(VT); 1647 for (int i = 0; i != NElts; ++i) 1648 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1649 } 1650 1651 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1652 if (N1.isUndef()) 1653 commuteShuffle(N1, N2, MaskVec); 1654 1655 if (TLI->hasVectorBlend()) { 1656 // If shuffling a splat, try to blend the splat instead. We do this here so 1657 // that even when this arises during lowering we don't have to re-handle it. 1658 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1659 BitVector UndefElements; 1660 SDValue Splat = BV->getSplatValue(&UndefElements); 1661 if (!Splat) 1662 return; 1663 1664 for (int i = 0; i < NElts; ++i) { 1665 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1666 continue; 1667 1668 // If this input comes from undef, mark it as such. 1669 if (UndefElements[MaskVec[i] - Offset]) { 1670 MaskVec[i] = -1; 1671 continue; 1672 } 1673 1674 // If we can blend a non-undef lane, use that instead. 1675 if (!UndefElements[i]) 1676 MaskVec[i] = i + Offset; 1677 } 1678 }; 1679 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1680 BlendSplat(N1BV, 0); 1681 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1682 BlendSplat(N2BV, NElts); 1683 } 1684 1685 // Canonicalize all index into lhs, -> shuffle lhs, undef 1686 // Canonicalize all index into rhs, -> shuffle rhs, undef 1687 bool AllLHS = true, AllRHS = true; 1688 bool N2Undef = N2.isUndef(); 1689 for (int i = 0; i != NElts; ++i) { 1690 if (MaskVec[i] >= NElts) { 1691 if (N2Undef) 1692 MaskVec[i] = -1; 1693 else 1694 AllLHS = false; 1695 } else if (MaskVec[i] >= 0) { 1696 AllRHS = false; 1697 } 1698 } 1699 if (AllLHS && AllRHS) 1700 return getUNDEF(VT); 1701 if (AllLHS && !N2Undef) 1702 N2 = getUNDEF(VT); 1703 if (AllRHS) { 1704 N1 = getUNDEF(VT); 1705 commuteShuffle(N1, N2, MaskVec); 1706 } 1707 // Reset our undef status after accounting for the mask. 1708 N2Undef = N2.isUndef(); 1709 // Re-check whether both sides ended up undef. 1710 if (N1.isUndef() && N2Undef) 1711 return getUNDEF(VT); 1712 1713 // If Identity shuffle return that node. 1714 bool Identity = true, AllSame = true; 1715 for (int i = 0; i != NElts; ++i) { 1716 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1717 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1718 } 1719 if (Identity && NElts) 1720 return N1; 1721 1722 // Shuffling a constant splat doesn't change the result. 1723 if (N2Undef) { 1724 SDValue V = N1; 1725 1726 // Look through any bitcasts. We check that these don't change the number 1727 // (and size) of elements and just changes their types. 1728 while (V.getOpcode() == ISD::BITCAST) 1729 V = V->getOperand(0); 1730 1731 // A splat should always show up as a build vector node. 1732 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1733 BitVector UndefElements; 1734 SDValue Splat = BV->getSplatValue(&UndefElements); 1735 // If this is a splat of an undef, shuffling it is also undef. 1736 if (Splat && Splat.isUndef()) 1737 return getUNDEF(VT); 1738 1739 bool SameNumElts = 1740 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1741 1742 // We only have a splat which can skip shuffles if there is a splatted 1743 // value and no undef lanes rearranged by the shuffle. 1744 if (Splat && UndefElements.none()) { 1745 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1746 // number of elements match or the value splatted is a zero constant. 1747 if (SameNumElts) 1748 return N1; 1749 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1750 if (C->isNullValue()) 1751 return N1; 1752 } 1753 1754 // If the shuffle itself creates a splat, build the vector directly. 1755 if (AllSame && SameNumElts) { 1756 EVT BuildVT = BV->getValueType(0); 1757 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1758 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1759 1760 // We may have jumped through bitcasts, so the type of the 1761 // BUILD_VECTOR may not match the type of the shuffle. 1762 if (BuildVT != VT) 1763 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1764 return NewBV; 1765 } 1766 } 1767 } 1768 1769 FoldingSetNodeID ID; 1770 SDValue Ops[2] = { N1, N2 }; 1771 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1772 for (int i = 0; i != NElts; ++i) 1773 ID.AddInteger(MaskVec[i]); 1774 1775 void* IP = nullptr; 1776 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1777 return SDValue(E, 0); 1778 1779 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1780 // SDNode doesn't have access to it. This memory will be "leaked" when 1781 // the node is deallocated, but recovered when the NodeAllocator is released. 1782 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1783 llvm::copy(MaskVec, MaskAlloc); 1784 1785 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1786 dl.getDebugLoc(), MaskAlloc); 1787 createOperands(N, Ops); 1788 1789 CSEMap.InsertNode(N, IP); 1790 InsertNode(N); 1791 SDValue V = SDValue(N, 0); 1792 NewSDValueDbgMsg(V, "Creating new node: ", this); 1793 return V; 1794 } 1795 1796 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1797 EVT VT = SV.getValueType(0); 1798 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1799 ShuffleVectorSDNode::commuteMask(MaskVec); 1800 1801 SDValue Op0 = SV.getOperand(0); 1802 SDValue Op1 = SV.getOperand(1); 1803 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1804 } 1805 1806 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1807 FoldingSetNodeID ID; 1808 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1809 ID.AddInteger(RegNo); 1810 void *IP = nullptr; 1811 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1812 return SDValue(E, 0); 1813 1814 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1815 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1816 CSEMap.InsertNode(N, IP); 1817 InsertNode(N); 1818 return SDValue(N, 0); 1819 } 1820 1821 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1822 FoldingSetNodeID ID; 1823 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1824 ID.AddPointer(RegMask); 1825 void *IP = nullptr; 1826 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1827 return SDValue(E, 0); 1828 1829 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1830 CSEMap.InsertNode(N, IP); 1831 InsertNode(N); 1832 return SDValue(N, 0); 1833 } 1834 1835 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1836 MCSymbol *Label) { 1837 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1838 } 1839 1840 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1841 SDValue Root, MCSymbol *Label) { 1842 FoldingSetNodeID ID; 1843 SDValue Ops[] = { Root }; 1844 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1845 ID.AddPointer(Label); 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = 1851 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1852 createOperands(N, Ops); 1853 1854 CSEMap.InsertNode(N, IP); 1855 InsertNode(N); 1856 return SDValue(N, 0); 1857 } 1858 1859 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1860 int64_t Offset, bool isTarget, 1861 unsigned TargetFlags) { 1862 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1863 1864 FoldingSetNodeID ID; 1865 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1866 ID.AddPointer(BA); 1867 ID.AddInteger(Offset); 1868 ID.AddInteger(TargetFlags); 1869 void *IP = nullptr; 1870 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1871 return SDValue(E, 0); 1872 1873 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1874 CSEMap.InsertNode(N, IP); 1875 InsertNode(N); 1876 return SDValue(N, 0); 1877 } 1878 1879 SDValue SelectionDAG::getSrcValue(const Value *V) { 1880 FoldingSetNodeID ID; 1881 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1882 ID.AddPointer(V); 1883 1884 void *IP = nullptr; 1885 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1886 return SDValue(E, 0); 1887 1888 auto *N = newSDNode<SrcValueSDNode>(V); 1889 CSEMap.InsertNode(N, IP); 1890 InsertNode(N); 1891 return SDValue(N, 0); 1892 } 1893 1894 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1895 FoldingSetNodeID ID; 1896 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1897 ID.AddPointer(MD); 1898 1899 void *IP = nullptr; 1900 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1901 return SDValue(E, 0); 1902 1903 auto *N = newSDNode<MDNodeSDNode>(MD); 1904 CSEMap.InsertNode(N, IP); 1905 InsertNode(N); 1906 return SDValue(N, 0); 1907 } 1908 1909 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1910 if (VT == V.getValueType()) 1911 return V; 1912 1913 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1914 } 1915 1916 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1917 unsigned SrcAS, unsigned DestAS) { 1918 SDValue Ops[] = {Ptr}; 1919 FoldingSetNodeID ID; 1920 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1921 ID.AddInteger(SrcAS); 1922 ID.AddInteger(DestAS); 1923 1924 void *IP = nullptr; 1925 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1926 return SDValue(E, 0); 1927 1928 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1929 VT, SrcAS, DestAS); 1930 createOperands(N, Ops); 1931 1932 CSEMap.InsertNode(N, IP); 1933 InsertNode(N); 1934 return SDValue(N, 0); 1935 } 1936 1937 SDValue SelectionDAG::getFreeze(SDValue V) { 1938 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1939 } 1940 1941 /// getShiftAmountOperand - Return the specified value casted to 1942 /// the target's desired shift amount type. 1943 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1944 EVT OpTy = Op.getValueType(); 1945 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1946 if (OpTy == ShTy || OpTy.isVector()) return Op; 1947 1948 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1949 } 1950 1951 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1952 SDLoc dl(Node); 1953 const TargetLowering &TLI = getTargetLoweringInfo(); 1954 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1955 EVT VT = Node->getValueType(0); 1956 SDValue Tmp1 = Node->getOperand(0); 1957 SDValue Tmp2 = Node->getOperand(1); 1958 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1959 1960 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1961 Tmp2, MachinePointerInfo(V)); 1962 SDValue VAList = VAListLoad; 1963 1964 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1965 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1966 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1967 1968 VAList = 1969 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1970 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1971 } 1972 1973 // Increment the pointer, VAList, to the next vaarg 1974 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1975 getConstant(getDataLayout().getTypeAllocSize( 1976 VT.getTypeForEVT(*getContext())), 1977 dl, VAList.getValueType())); 1978 // Store the incremented VAList to the legalized pointer 1979 Tmp1 = 1980 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1981 // Load the actual argument out of the pointer VAList 1982 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1983 } 1984 1985 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1986 SDLoc dl(Node); 1987 const TargetLowering &TLI = getTargetLoweringInfo(); 1988 // This defaults to loading a pointer from the input and storing it to the 1989 // output, returning the chain. 1990 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1991 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1992 SDValue Tmp1 = 1993 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1994 Node->getOperand(2), MachinePointerInfo(VS)); 1995 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1996 MachinePointerInfo(VD)); 1997 } 1998 1999 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2000 const DataLayout &DL = getDataLayout(); 2001 Type *Ty = VT.getTypeForEVT(*getContext()); 2002 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2003 2004 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2005 return RedAlign; 2006 2007 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2008 const Align StackAlign = TFI->getStackAlign(); 2009 2010 // See if we can choose a smaller ABI alignment in cases where it's an 2011 // illegal vector type that will get broken down. 2012 if (RedAlign > StackAlign) { 2013 EVT IntermediateVT; 2014 MVT RegisterVT; 2015 unsigned NumIntermediates; 2016 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2017 NumIntermediates, RegisterVT); 2018 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2019 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2020 if (RedAlign2 < RedAlign) 2021 RedAlign = RedAlign2; 2022 } 2023 2024 return RedAlign; 2025 } 2026 2027 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2028 MachineFrameInfo &MFI = MF->getFrameInfo(); 2029 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2030 int StackID = 0; 2031 if (Bytes.isScalable()) 2032 StackID = TFI->getStackIDForScalableVectors(); 2033 // The stack id gives an indication of whether the object is scalable or 2034 // not, so it's safe to pass in the minimum size here. 2035 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2036 false, nullptr, StackID); 2037 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2038 } 2039 2040 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2041 Type *Ty = VT.getTypeForEVT(*getContext()); 2042 Align StackAlign = 2043 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2044 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2045 } 2046 2047 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2048 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2049 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2050 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2051 const DataLayout &DL = getDataLayout(); 2052 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2053 return CreateStackTemporary(Bytes, Align); 2054 } 2055 2056 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2057 ISD::CondCode Cond, const SDLoc &dl) { 2058 EVT OpVT = N1.getValueType(); 2059 2060 // These setcc operations always fold. 2061 switch (Cond) { 2062 default: break; 2063 case ISD::SETFALSE: 2064 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2065 case ISD::SETTRUE: 2066 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2067 2068 case ISD::SETOEQ: 2069 case ISD::SETOGT: 2070 case ISD::SETOGE: 2071 case ISD::SETOLT: 2072 case ISD::SETOLE: 2073 case ISD::SETONE: 2074 case ISD::SETO: 2075 case ISD::SETUO: 2076 case ISD::SETUEQ: 2077 case ISD::SETUNE: 2078 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2079 break; 2080 } 2081 2082 if (OpVT.isInteger()) { 2083 // For EQ and NE, we can always pick a value for the undef to make the 2084 // predicate pass or fail, so we can return undef. 2085 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2086 // icmp eq/ne X, undef -> undef. 2087 if ((N1.isUndef() || N2.isUndef()) && 2088 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2089 return getUNDEF(VT); 2090 2091 // If both operands are undef, we can return undef for int comparison. 2092 // icmp undef, undef -> undef. 2093 if (N1.isUndef() && N2.isUndef()) 2094 return getUNDEF(VT); 2095 2096 // icmp X, X -> true/false 2097 // icmp X, undef -> true/false because undef could be X. 2098 if (N1 == N2) 2099 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2100 } 2101 2102 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2103 const APInt &C2 = N2C->getAPIntValue(); 2104 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2105 const APInt &C1 = N1C->getAPIntValue(); 2106 2107 switch (Cond) { 2108 default: llvm_unreachable("Unknown integer setcc!"); 2109 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2110 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2111 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2112 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2113 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2114 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2115 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2116 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2117 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2118 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2119 } 2120 } 2121 } 2122 2123 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2124 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2125 2126 if (N1CFP && N2CFP) { 2127 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2128 switch (Cond) { 2129 default: break; 2130 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2131 return getUNDEF(VT); 2132 LLVM_FALLTHROUGH; 2133 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2134 OpVT); 2135 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2136 return getUNDEF(VT); 2137 LLVM_FALLTHROUGH; 2138 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2139 R==APFloat::cmpLessThan, dl, VT, 2140 OpVT); 2141 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2142 return getUNDEF(VT); 2143 LLVM_FALLTHROUGH; 2144 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2145 OpVT); 2146 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2147 return getUNDEF(VT); 2148 LLVM_FALLTHROUGH; 2149 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2150 VT, OpVT); 2151 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2152 return getUNDEF(VT); 2153 LLVM_FALLTHROUGH; 2154 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2155 R==APFloat::cmpEqual, dl, VT, 2156 OpVT); 2157 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2158 return getUNDEF(VT); 2159 LLVM_FALLTHROUGH; 2160 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2161 R==APFloat::cmpEqual, dl, VT, OpVT); 2162 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2163 OpVT); 2164 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2165 OpVT); 2166 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2167 R==APFloat::cmpEqual, dl, VT, 2168 OpVT); 2169 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2170 OpVT); 2171 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2172 R==APFloat::cmpLessThan, dl, VT, 2173 OpVT); 2174 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2175 R==APFloat::cmpUnordered, dl, VT, 2176 OpVT); 2177 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2178 VT, OpVT); 2179 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2180 OpVT); 2181 } 2182 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2183 // Ensure that the constant occurs on the RHS. 2184 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2185 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2186 return SDValue(); 2187 return getSetCC(dl, VT, N2, N1, SwappedCond); 2188 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2189 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2190 // If an operand is known to be a nan (or undef that could be a nan), we can 2191 // fold it. 2192 // Choosing NaN for the undef will always make unordered comparison succeed 2193 // and ordered comparison fails. 2194 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2195 switch (ISD::getUnorderedFlavor(Cond)) { 2196 default: 2197 llvm_unreachable("Unknown flavor!"); 2198 case 0: // Known false. 2199 return getBoolConstant(false, dl, VT, OpVT); 2200 case 1: // Known true. 2201 return getBoolConstant(true, dl, VT, OpVT); 2202 case 2: // Undefined. 2203 return getUNDEF(VT); 2204 } 2205 } 2206 2207 // Could not fold it. 2208 return SDValue(); 2209 } 2210 2211 /// See if the specified operand can be simplified with the knowledge that only 2212 /// the bits specified by DemandedBits are used. 2213 /// TODO: really we should be making this into the DAG equivalent of 2214 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2215 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2216 EVT VT = V.getValueType(); 2217 APInt DemandedElts = VT.isVector() 2218 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2219 : APInt(1, 1); 2220 return GetDemandedBits(V, DemandedBits, DemandedElts); 2221 } 2222 2223 /// See if the specified operand can be simplified with the knowledge that only 2224 /// the bits specified by DemandedBits are used in the elements specified by 2225 /// DemandedElts. 2226 /// TODO: really we should be making this into the DAG equivalent of 2227 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2228 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2229 const APInt &DemandedElts) { 2230 switch (V.getOpcode()) { 2231 default: 2232 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2233 *this, 0); 2234 case ISD::Constant: { 2235 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2236 APInt NewVal = CVal & DemandedBits; 2237 if (NewVal != CVal) 2238 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2239 break; 2240 } 2241 case ISD::SRL: 2242 // Only look at single-use SRLs. 2243 if (!V.getNode()->hasOneUse()) 2244 break; 2245 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2246 // See if we can recursively simplify the LHS. 2247 unsigned Amt = RHSC->getZExtValue(); 2248 2249 // Watch out for shift count overflow though. 2250 if (Amt >= DemandedBits.getBitWidth()) 2251 break; 2252 APInt SrcDemandedBits = DemandedBits << Amt; 2253 if (SDValue SimplifyLHS = 2254 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2255 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2256 V.getOperand(1)); 2257 } 2258 break; 2259 } 2260 return SDValue(); 2261 } 2262 2263 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2264 /// use this predicate to simplify operations downstream. 2265 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2266 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2267 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2268 } 2269 2270 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2271 /// this predicate to simplify operations downstream. Mask is known to be zero 2272 /// for bits that V cannot have. 2273 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2274 unsigned Depth) const { 2275 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2276 } 2277 2278 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2279 /// DemandedElts. We use this predicate to simplify operations downstream. 2280 /// Mask is known to be zero for bits that V cannot have. 2281 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2282 const APInt &DemandedElts, 2283 unsigned Depth) const { 2284 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2285 } 2286 2287 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2288 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2289 unsigned Depth) const { 2290 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2291 } 2292 2293 /// isSplatValue - Return true if the vector V has the same value 2294 /// across all DemandedElts. For scalable vectors it does not make 2295 /// sense to specify which elements are demanded or undefined, therefore 2296 /// they are simply ignored. 2297 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2298 APInt &UndefElts) { 2299 EVT VT = V.getValueType(); 2300 assert(VT.isVector() && "Vector type expected"); 2301 2302 if (!VT.isScalableVector() && !DemandedElts) 2303 return false; // No demanded elts, better to assume we don't know anything. 2304 2305 // Deal with some common cases here that work for both fixed and scalable 2306 // vector types. 2307 switch (V.getOpcode()) { 2308 case ISD::SPLAT_VECTOR: 2309 return true; 2310 case ISD::ADD: 2311 case ISD::SUB: 2312 case ISD::AND: { 2313 APInt UndefLHS, UndefRHS; 2314 SDValue LHS = V.getOperand(0); 2315 SDValue RHS = V.getOperand(1); 2316 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2317 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2318 UndefElts = UndefLHS | UndefRHS; 2319 return true; 2320 } 2321 break; 2322 } 2323 case ISD::TRUNCATE: 2324 case ISD::SIGN_EXTEND: 2325 case ISD::ZERO_EXTEND: 2326 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2327 } 2328 2329 // We don't support other cases than those above for scalable vectors at 2330 // the moment. 2331 if (VT.isScalableVector()) 2332 return false; 2333 2334 unsigned NumElts = VT.getVectorNumElements(); 2335 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2336 UndefElts = APInt::getNullValue(NumElts); 2337 2338 switch (V.getOpcode()) { 2339 case ISD::BUILD_VECTOR: { 2340 SDValue Scl; 2341 for (unsigned i = 0; i != NumElts; ++i) { 2342 SDValue Op = V.getOperand(i); 2343 if (Op.isUndef()) { 2344 UndefElts.setBit(i); 2345 continue; 2346 } 2347 if (!DemandedElts[i]) 2348 continue; 2349 if (Scl && Scl != Op) 2350 return false; 2351 Scl = Op; 2352 } 2353 return true; 2354 } 2355 case ISD::VECTOR_SHUFFLE: { 2356 // Check if this is a shuffle node doing a splat. 2357 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2358 int SplatIndex = -1; 2359 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2360 for (int i = 0; i != (int)NumElts; ++i) { 2361 int M = Mask[i]; 2362 if (M < 0) { 2363 UndefElts.setBit(i); 2364 continue; 2365 } 2366 if (!DemandedElts[i]) 2367 continue; 2368 if (0 <= SplatIndex && SplatIndex != M) 2369 return false; 2370 SplatIndex = M; 2371 } 2372 return true; 2373 } 2374 case ISD::EXTRACT_SUBVECTOR: { 2375 // Offset the demanded elts by the subvector index. 2376 SDValue Src = V.getOperand(0); 2377 uint64_t Idx = V.getConstantOperandVal(1); 2378 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2379 APInt UndefSrcElts; 2380 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2381 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2382 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2383 return true; 2384 } 2385 break; 2386 } 2387 } 2388 2389 return false; 2390 } 2391 2392 /// Helper wrapper to main isSplatValue function. 2393 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2394 EVT VT = V.getValueType(); 2395 assert(VT.isVector() && "Vector type expected"); 2396 2397 APInt UndefElts; 2398 APInt DemandedElts; 2399 2400 // For now we don't support this with scalable vectors. 2401 if (!VT.isScalableVector()) 2402 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2403 return isSplatValue(V, DemandedElts, UndefElts) && 2404 (AllowUndefs || !UndefElts); 2405 } 2406 2407 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2408 V = peekThroughExtractSubvectors(V); 2409 2410 EVT VT = V.getValueType(); 2411 unsigned Opcode = V.getOpcode(); 2412 switch (Opcode) { 2413 default: { 2414 APInt UndefElts; 2415 APInt DemandedElts; 2416 2417 if (!VT.isScalableVector()) 2418 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2419 2420 if (isSplatValue(V, DemandedElts, UndefElts)) { 2421 if (VT.isScalableVector()) { 2422 // DemandedElts and UndefElts are ignored for scalable vectors, since 2423 // the only supported cases are SPLAT_VECTOR nodes. 2424 SplatIdx = 0; 2425 } else { 2426 // Handle case where all demanded elements are UNDEF. 2427 if (DemandedElts.isSubsetOf(UndefElts)) { 2428 SplatIdx = 0; 2429 return getUNDEF(VT); 2430 } 2431 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2432 } 2433 return V; 2434 } 2435 break; 2436 } 2437 case ISD::SPLAT_VECTOR: 2438 SplatIdx = 0; 2439 return V; 2440 case ISD::VECTOR_SHUFFLE: { 2441 if (VT.isScalableVector()) 2442 return SDValue(); 2443 2444 // Check if this is a shuffle node doing a splat. 2445 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2446 // getTargetVShiftNode currently struggles without the splat source. 2447 auto *SVN = cast<ShuffleVectorSDNode>(V); 2448 if (!SVN->isSplat()) 2449 break; 2450 int Idx = SVN->getSplatIndex(); 2451 int NumElts = V.getValueType().getVectorNumElements(); 2452 SplatIdx = Idx % NumElts; 2453 return V.getOperand(Idx / NumElts); 2454 } 2455 } 2456 2457 return SDValue(); 2458 } 2459 2460 SDValue SelectionDAG::getSplatValue(SDValue V) { 2461 int SplatIdx; 2462 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2463 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2464 SrcVector.getValueType().getScalarType(), SrcVector, 2465 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2466 return SDValue(); 2467 } 2468 2469 const APInt * 2470 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2471 const APInt &DemandedElts) const { 2472 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2473 V.getOpcode() == ISD::SRA) && 2474 "Unknown shift node"); 2475 unsigned BitWidth = V.getScalarValueSizeInBits(); 2476 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2477 // Shifting more than the bitwidth is not valid. 2478 const APInt &ShAmt = SA->getAPIntValue(); 2479 if (ShAmt.ult(BitWidth)) 2480 return &ShAmt; 2481 } 2482 return nullptr; 2483 } 2484 2485 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2486 SDValue V, const APInt &DemandedElts) const { 2487 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2488 V.getOpcode() == ISD::SRA) && 2489 "Unknown shift node"); 2490 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2491 return ValidAmt; 2492 unsigned BitWidth = V.getScalarValueSizeInBits(); 2493 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2494 if (!BV) 2495 return nullptr; 2496 const APInt *MinShAmt = nullptr; 2497 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2498 if (!DemandedElts[i]) 2499 continue; 2500 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2501 if (!SA) 2502 return nullptr; 2503 // Shifting more than the bitwidth is not valid. 2504 const APInt &ShAmt = SA->getAPIntValue(); 2505 if (ShAmt.uge(BitWidth)) 2506 return nullptr; 2507 if (MinShAmt && MinShAmt->ule(ShAmt)) 2508 continue; 2509 MinShAmt = &ShAmt; 2510 } 2511 return MinShAmt; 2512 } 2513 2514 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2515 SDValue V, const APInt &DemandedElts) const { 2516 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2517 V.getOpcode() == ISD::SRA) && 2518 "Unknown shift node"); 2519 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2520 return ValidAmt; 2521 unsigned BitWidth = V.getScalarValueSizeInBits(); 2522 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2523 if (!BV) 2524 return nullptr; 2525 const APInt *MaxShAmt = nullptr; 2526 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2527 if (!DemandedElts[i]) 2528 continue; 2529 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2530 if (!SA) 2531 return nullptr; 2532 // Shifting more than the bitwidth is not valid. 2533 const APInt &ShAmt = SA->getAPIntValue(); 2534 if (ShAmt.uge(BitWidth)) 2535 return nullptr; 2536 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2537 continue; 2538 MaxShAmt = &ShAmt; 2539 } 2540 return MaxShAmt; 2541 } 2542 2543 /// Determine which bits of Op are known to be either zero or one and return 2544 /// them in Known. For vectors, the known bits are those that are shared by 2545 /// every vector element. 2546 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2547 EVT VT = Op.getValueType(); 2548 2549 // TOOD: Until we have a plan for how to represent demanded elements for 2550 // scalable vectors, we can just bail out for now. 2551 if (Op.getValueType().isScalableVector()) { 2552 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2553 return KnownBits(BitWidth); 2554 } 2555 2556 APInt DemandedElts = VT.isVector() 2557 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2558 : APInt(1, 1); 2559 return computeKnownBits(Op, DemandedElts, Depth); 2560 } 2561 2562 /// Determine which bits of Op are known to be either zero or one and return 2563 /// them in Known. The DemandedElts argument allows us to only collect the known 2564 /// bits that are shared by the requested vector elements. 2565 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2566 unsigned Depth) const { 2567 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2568 2569 KnownBits Known(BitWidth); // Don't know anything. 2570 2571 // TOOD: Until we have a plan for how to represent demanded elements for 2572 // scalable vectors, we can just bail out for now. 2573 if (Op.getValueType().isScalableVector()) 2574 return Known; 2575 2576 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2577 // We know all of the bits for a constant! 2578 Known.One = C->getAPIntValue(); 2579 Known.Zero = ~Known.One; 2580 return Known; 2581 } 2582 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2583 // We know all of the bits for a constant fp! 2584 Known.One = C->getValueAPF().bitcastToAPInt(); 2585 Known.Zero = ~Known.One; 2586 return Known; 2587 } 2588 2589 if (Depth >= MaxRecursionDepth) 2590 return Known; // Limit search depth. 2591 2592 KnownBits Known2; 2593 unsigned NumElts = DemandedElts.getBitWidth(); 2594 assert((!Op.getValueType().isVector() || 2595 NumElts == Op.getValueType().getVectorNumElements()) && 2596 "Unexpected vector size"); 2597 2598 if (!DemandedElts) 2599 return Known; // No demanded elts, better to assume we don't know anything. 2600 2601 unsigned Opcode = Op.getOpcode(); 2602 switch (Opcode) { 2603 case ISD::BUILD_VECTOR: 2604 // Collect the known bits that are shared by every demanded vector element. 2605 Known.Zero.setAllBits(); Known.One.setAllBits(); 2606 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2607 if (!DemandedElts[i]) 2608 continue; 2609 2610 SDValue SrcOp = Op.getOperand(i); 2611 Known2 = computeKnownBits(SrcOp, Depth + 1); 2612 2613 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2614 if (SrcOp.getValueSizeInBits() != BitWidth) { 2615 assert(SrcOp.getValueSizeInBits() > BitWidth && 2616 "Expected BUILD_VECTOR implicit truncation"); 2617 Known2 = Known2.trunc(BitWidth); 2618 } 2619 2620 // Known bits are the values that are shared by every demanded element. 2621 Known.One &= Known2.One; 2622 Known.Zero &= Known2.Zero; 2623 2624 // If we don't know any bits, early out. 2625 if (Known.isUnknown()) 2626 break; 2627 } 2628 break; 2629 case ISD::VECTOR_SHUFFLE: { 2630 // Collect the known bits that are shared by every vector element referenced 2631 // by the shuffle. 2632 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2633 Known.Zero.setAllBits(); Known.One.setAllBits(); 2634 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2635 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2636 for (unsigned i = 0; i != NumElts; ++i) { 2637 if (!DemandedElts[i]) 2638 continue; 2639 2640 int M = SVN->getMaskElt(i); 2641 if (M < 0) { 2642 // For UNDEF elements, we don't know anything about the common state of 2643 // the shuffle result. 2644 Known.resetAll(); 2645 DemandedLHS.clearAllBits(); 2646 DemandedRHS.clearAllBits(); 2647 break; 2648 } 2649 2650 if ((unsigned)M < NumElts) 2651 DemandedLHS.setBit((unsigned)M % NumElts); 2652 else 2653 DemandedRHS.setBit((unsigned)M % NumElts); 2654 } 2655 // Known bits are the values that are shared by every demanded element. 2656 if (!!DemandedLHS) { 2657 SDValue LHS = Op.getOperand(0); 2658 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2659 Known.One &= Known2.One; 2660 Known.Zero &= Known2.Zero; 2661 } 2662 // If we don't know any bits, early out. 2663 if (Known.isUnknown()) 2664 break; 2665 if (!!DemandedRHS) { 2666 SDValue RHS = Op.getOperand(1); 2667 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2668 Known.One &= Known2.One; 2669 Known.Zero &= Known2.Zero; 2670 } 2671 break; 2672 } 2673 case ISD::CONCAT_VECTORS: { 2674 // Split DemandedElts and test each of the demanded subvectors. 2675 Known.Zero.setAllBits(); Known.One.setAllBits(); 2676 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2677 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2678 unsigned NumSubVectors = Op.getNumOperands(); 2679 for (unsigned i = 0; i != NumSubVectors; ++i) { 2680 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2681 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2682 if (!!DemandedSub) { 2683 SDValue Sub = Op.getOperand(i); 2684 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2685 Known.One &= Known2.One; 2686 Known.Zero &= Known2.Zero; 2687 } 2688 // If we don't know any bits, early out. 2689 if (Known.isUnknown()) 2690 break; 2691 } 2692 break; 2693 } 2694 case ISD::INSERT_SUBVECTOR: { 2695 // Demand any elements from the subvector and the remainder from the src its 2696 // inserted into. 2697 SDValue Src = Op.getOperand(0); 2698 SDValue Sub = Op.getOperand(1); 2699 uint64_t Idx = Op.getConstantOperandVal(2); 2700 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2701 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2702 APInt DemandedSrcElts = DemandedElts; 2703 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2704 2705 Known.One.setAllBits(); 2706 Known.Zero.setAllBits(); 2707 if (!!DemandedSubElts) { 2708 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2709 if (Known.isUnknown()) 2710 break; // early-out. 2711 } 2712 if (!!DemandedSrcElts) { 2713 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2714 Known.One &= Known2.One; 2715 Known.Zero &= Known2.Zero; 2716 } 2717 break; 2718 } 2719 case ISD::EXTRACT_SUBVECTOR: { 2720 // Offset the demanded elts by the subvector index. 2721 SDValue Src = Op.getOperand(0); 2722 // Bail until we can represent demanded elements for scalable vectors. 2723 if (Src.getValueType().isScalableVector()) 2724 break; 2725 uint64_t Idx = Op.getConstantOperandVal(1); 2726 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2727 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2728 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2729 break; 2730 } 2731 case ISD::SCALAR_TO_VECTOR: { 2732 // We know about scalar_to_vector as much as we know about it source, 2733 // which becomes the first element of otherwise unknown vector. 2734 if (DemandedElts != 1) 2735 break; 2736 2737 SDValue N0 = Op.getOperand(0); 2738 Known = computeKnownBits(N0, Depth + 1); 2739 if (N0.getValueSizeInBits() != BitWidth) 2740 Known = Known.trunc(BitWidth); 2741 2742 break; 2743 } 2744 case ISD::BITCAST: { 2745 SDValue N0 = Op.getOperand(0); 2746 EVT SubVT = N0.getValueType(); 2747 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2748 2749 // Ignore bitcasts from unsupported types. 2750 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2751 break; 2752 2753 // Fast handling of 'identity' bitcasts. 2754 if (BitWidth == SubBitWidth) { 2755 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2756 break; 2757 } 2758 2759 bool IsLE = getDataLayout().isLittleEndian(); 2760 2761 // Bitcast 'small element' vector to 'large element' scalar/vector. 2762 if ((BitWidth % SubBitWidth) == 0) { 2763 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2764 2765 // Collect known bits for the (larger) output by collecting the known 2766 // bits from each set of sub elements and shift these into place. 2767 // We need to separately call computeKnownBits for each set of 2768 // sub elements as the knownbits for each is likely to be different. 2769 unsigned SubScale = BitWidth / SubBitWidth; 2770 APInt SubDemandedElts(NumElts * SubScale, 0); 2771 for (unsigned i = 0; i != NumElts; ++i) 2772 if (DemandedElts[i]) 2773 SubDemandedElts.setBit(i * SubScale); 2774 2775 for (unsigned i = 0; i != SubScale; ++i) { 2776 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2777 Depth + 1); 2778 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2779 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2780 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2781 } 2782 } 2783 2784 // Bitcast 'large element' scalar/vector to 'small element' vector. 2785 if ((SubBitWidth % BitWidth) == 0) { 2786 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2787 2788 // Collect known bits for the (smaller) output by collecting the known 2789 // bits from the overlapping larger input elements and extracting the 2790 // sub sections we actually care about. 2791 unsigned SubScale = SubBitWidth / BitWidth; 2792 APInt SubDemandedElts(NumElts / SubScale, 0); 2793 for (unsigned i = 0; i != NumElts; ++i) 2794 if (DemandedElts[i]) 2795 SubDemandedElts.setBit(i / SubScale); 2796 2797 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2798 2799 Known.Zero.setAllBits(); Known.One.setAllBits(); 2800 for (unsigned i = 0; i != NumElts; ++i) 2801 if (DemandedElts[i]) { 2802 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2803 unsigned Offset = (Shifts % SubScale) * BitWidth; 2804 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2805 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2806 // If we don't know any bits, early out. 2807 if (Known.isUnknown()) 2808 break; 2809 } 2810 } 2811 break; 2812 } 2813 case ISD::AND: 2814 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2815 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2816 2817 Known &= Known2; 2818 break; 2819 case ISD::OR: 2820 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2821 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2822 2823 Known |= Known2; 2824 break; 2825 case ISD::XOR: 2826 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2827 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2828 2829 Known ^= Known2; 2830 break; 2831 case ISD::MUL: { 2832 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2833 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2834 2835 // If low bits are zero in either operand, output low known-0 bits. 2836 // Also compute a conservative estimate for high known-0 bits. 2837 // More trickiness is possible, but this is sufficient for the 2838 // interesting case of alignment computation. 2839 unsigned TrailZ = Known.countMinTrailingZeros() + 2840 Known2.countMinTrailingZeros(); 2841 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2842 Known2.countMinLeadingZeros(), 2843 BitWidth) - BitWidth; 2844 2845 Known.resetAll(); 2846 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2847 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2848 break; 2849 } 2850 case ISD::UDIV: { 2851 // For the purposes of computing leading zeros we can conservatively 2852 // treat a udiv as a logical right shift by the power of 2 known to 2853 // be less than the denominator. 2854 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2855 unsigned LeadZ = Known2.countMinLeadingZeros(); 2856 2857 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2858 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2859 if (RHSMaxLeadingZeros != BitWidth) 2860 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2861 2862 Known.Zero.setHighBits(LeadZ); 2863 break; 2864 } 2865 case ISD::SELECT: 2866 case ISD::VSELECT: 2867 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2868 // If we don't know any bits, early out. 2869 if (Known.isUnknown()) 2870 break; 2871 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2872 2873 // Only known if known in both the LHS and RHS. 2874 Known.One &= Known2.One; 2875 Known.Zero &= Known2.Zero; 2876 break; 2877 case ISD::SELECT_CC: 2878 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2879 // If we don't know any bits, early out. 2880 if (Known.isUnknown()) 2881 break; 2882 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2883 2884 // Only known if known in both the LHS and RHS. 2885 Known.One &= Known2.One; 2886 Known.Zero &= Known2.Zero; 2887 break; 2888 case ISD::SMULO: 2889 case ISD::UMULO: 2890 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2891 if (Op.getResNo() != 1) 2892 break; 2893 // The boolean result conforms to getBooleanContents. 2894 // If we know the result of a setcc has the top bits zero, use this info. 2895 // We know that we have an integer-based boolean since these operations 2896 // are only available for integer. 2897 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2898 TargetLowering::ZeroOrOneBooleanContent && 2899 BitWidth > 1) 2900 Known.Zero.setBitsFrom(1); 2901 break; 2902 case ISD::SETCC: 2903 case ISD::STRICT_FSETCC: 2904 case ISD::STRICT_FSETCCS: { 2905 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2906 // If we know the result of a setcc has the top bits zero, use this info. 2907 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2908 TargetLowering::ZeroOrOneBooleanContent && 2909 BitWidth > 1) 2910 Known.Zero.setBitsFrom(1); 2911 break; 2912 } 2913 case ISD::SHL: 2914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2915 2916 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2917 unsigned Shift = ShAmt->getZExtValue(); 2918 Known.Zero <<= Shift; 2919 Known.One <<= Shift; 2920 // Low bits are known zero. 2921 Known.Zero.setLowBits(Shift); 2922 break; 2923 } 2924 2925 // No matter the shift amount, the trailing zeros will stay zero. 2926 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2927 Known.One.clearAllBits(); 2928 2929 // Minimum shift low bits are known zero. 2930 if (const APInt *ShMinAmt = 2931 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2932 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2933 break; 2934 case ISD::SRL: 2935 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2936 2937 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2938 unsigned Shift = ShAmt->getZExtValue(); 2939 Known.Zero.lshrInPlace(Shift); 2940 Known.One.lshrInPlace(Shift); 2941 // High bits are known zero. 2942 Known.Zero.setHighBits(Shift); 2943 break; 2944 } 2945 2946 // No matter the shift amount, the leading zeros will stay zero. 2947 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2948 Known.One.clearAllBits(); 2949 2950 // Minimum shift high bits are known zero. 2951 if (const APInt *ShMinAmt = 2952 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2953 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2954 break; 2955 case ISD::SRA: 2956 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2957 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2958 unsigned Shift = ShAmt->getZExtValue(); 2959 // Sign extend known zero/one bit (else is unknown). 2960 Known.Zero.ashrInPlace(Shift); 2961 Known.One.ashrInPlace(Shift); 2962 } 2963 break; 2964 case ISD::FSHL: 2965 case ISD::FSHR: 2966 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2967 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2968 2969 // For fshl, 0-shift returns the 1st arg. 2970 // For fshr, 0-shift returns the 2nd arg. 2971 if (Amt == 0) { 2972 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2973 DemandedElts, Depth + 1); 2974 break; 2975 } 2976 2977 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2978 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2979 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2980 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2981 if (Opcode == ISD::FSHL) { 2982 Known.One <<= Amt; 2983 Known.Zero <<= Amt; 2984 Known2.One.lshrInPlace(BitWidth - Amt); 2985 Known2.Zero.lshrInPlace(BitWidth - Amt); 2986 } else { 2987 Known.One <<= BitWidth - Amt; 2988 Known.Zero <<= BitWidth - Amt; 2989 Known2.One.lshrInPlace(Amt); 2990 Known2.Zero.lshrInPlace(Amt); 2991 } 2992 Known.One |= Known2.One; 2993 Known.Zero |= Known2.Zero; 2994 } 2995 break; 2996 case ISD::SIGN_EXTEND_INREG: { 2997 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2998 unsigned EBits = EVT.getScalarSizeInBits(); 2999 3000 // Sign extension. Compute the demanded bits in the result that are not 3001 // present in the input. 3002 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3003 3004 APInt InSignMask = APInt::getSignMask(EBits); 3005 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3006 3007 // If the sign extended bits are demanded, we know that the sign 3008 // bit is demanded. 3009 InSignMask = InSignMask.zext(BitWidth); 3010 if (NewBits.getBoolValue()) 3011 InputDemandedBits |= InSignMask; 3012 3013 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3014 Known.One &= InputDemandedBits; 3015 Known.Zero &= InputDemandedBits; 3016 3017 // If the sign bit of the input is known set or clear, then we know the 3018 // top bits of the result. 3019 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3020 Known.Zero |= NewBits; 3021 Known.One &= ~NewBits; 3022 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3023 Known.One |= NewBits; 3024 Known.Zero &= ~NewBits; 3025 } else { // Input sign bit unknown 3026 Known.Zero &= ~NewBits; 3027 Known.One &= ~NewBits; 3028 } 3029 break; 3030 } 3031 case ISD::CTTZ: 3032 case ISD::CTTZ_ZERO_UNDEF: { 3033 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3034 // If we have a known 1, its position is our upper bound. 3035 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3036 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3037 Known.Zero.setBitsFrom(LowBits); 3038 break; 3039 } 3040 case ISD::CTLZ: 3041 case ISD::CTLZ_ZERO_UNDEF: { 3042 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3043 // If we have a known 1, its position is our upper bound. 3044 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3045 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3046 Known.Zero.setBitsFrom(LowBits); 3047 break; 3048 } 3049 case ISD::CTPOP: { 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 // If we know some of the bits are zero, they can't be one. 3052 unsigned PossibleOnes = Known2.countMaxPopulation(); 3053 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3054 break; 3055 } 3056 case ISD::PARITY: { 3057 // Parity returns 0 everywhere but the LSB. 3058 Known.Zero.setBitsFrom(1); 3059 break; 3060 } 3061 case ISD::LOAD: { 3062 LoadSDNode *LD = cast<LoadSDNode>(Op); 3063 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3064 if (ISD::isNON_EXTLoad(LD) && Cst) { 3065 // Determine any common known bits from the loaded constant pool value. 3066 Type *CstTy = Cst->getType(); 3067 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3068 // If its a vector splat, then we can (quickly) reuse the scalar path. 3069 // NOTE: We assume all elements match and none are UNDEF. 3070 if (CstTy->isVectorTy()) { 3071 if (const Constant *Splat = Cst->getSplatValue()) { 3072 Cst = Splat; 3073 CstTy = Cst->getType(); 3074 } 3075 } 3076 // TODO - do we need to handle different bitwidths? 3077 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3078 // Iterate across all vector elements finding common known bits. 3079 Known.One.setAllBits(); 3080 Known.Zero.setAllBits(); 3081 for (unsigned i = 0; i != NumElts; ++i) { 3082 if (!DemandedElts[i]) 3083 continue; 3084 if (Constant *Elt = Cst->getAggregateElement(i)) { 3085 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3086 const APInt &Value = CInt->getValue(); 3087 Known.One &= Value; 3088 Known.Zero &= ~Value; 3089 continue; 3090 } 3091 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3092 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3093 Known.One &= Value; 3094 Known.Zero &= ~Value; 3095 continue; 3096 } 3097 } 3098 Known.One.clearAllBits(); 3099 Known.Zero.clearAllBits(); 3100 break; 3101 } 3102 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3103 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3104 const APInt &Value = CInt->getValue(); 3105 Known.One = Value; 3106 Known.Zero = ~Value; 3107 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3108 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3109 Known.One = Value; 3110 Known.Zero = ~Value; 3111 } 3112 } 3113 } 3114 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3115 // If this is a ZEXTLoad and we are looking at the loaded value. 3116 EVT VT = LD->getMemoryVT(); 3117 unsigned MemBits = VT.getScalarSizeInBits(); 3118 Known.Zero.setBitsFrom(MemBits); 3119 } else if (const MDNode *Ranges = LD->getRanges()) { 3120 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3121 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3122 } 3123 break; 3124 } 3125 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3126 EVT InVT = Op.getOperand(0).getValueType(); 3127 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3128 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3129 Known = Known.zext(BitWidth); 3130 break; 3131 } 3132 case ISD::ZERO_EXTEND: { 3133 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3134 Known = Known.zext(BitWidth); 3135 break; 3136 } 3137 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3138 EVT InVT = Op.getOperand(0).getValueType(); 3139 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3140 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3141 // If the sign bit is known to be zero or one, then sext will extend 3142 // it to the top bits, else it will just zext. 3143 Known = Known.sext(BitWidth); 3144 break; 3145 } 3146 case ISD::SIGN_EXTEND: { 3147 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3148 // If the sign bit is known to be zero or one, then sext will extend 3149 // it to the top bits, else it will just zext. 3150 Known = Known.sext(BitWidth); 3151 break; 3152 } 3153 case ISD::ANY_EXTEND_VECTOR_INREG: { 3154 EVT InVT = Op.getOperand(0).getValueType(); 3155 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3156 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3157 Known = Known.anyext(BitWidth); 3158 break; 3159 } 3160 case ISD::ANY_EXTEND: { 3161 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3162 Known = Known.anyext(BitWidth); 3163 break; 3164 } 3165 case ISD::TRUNCATE: { 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known = Known.trunc(BitWidth); 3168 break; 3169 } 3170 case ISD::AssertZext: { 3171 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3172 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3173 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3174 Known.Zero |= (~InMask); 3175 Known.One &= (~Known.Zero); 3176 break; 3177 } 3178 case ISD::AssertAlign: { 3179 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3180 assert(LogOfAlign != 0); 3181 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3182 // well as clearing one bits. 3183 Known.Zero.setLowBits(LogOfAlign); 3184 Known.One.clearLowBits(LogOfAlign); 3185 break; 3186 } 3187 case ISD::FGETSIGN: 3188 // All bits are zero except the low bit. 3189 Known.Zero.setBitsFrom(1); 3190 break; 3191 case ISD::USUBO: 3192 case ISD::SSUBO: 3193 if (Op.getResNo() == 1) { 3194 // If we know the result of a setcc has the top bits zero, use this info. 3195 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3196 TargetLowering::ZeroOrOneBooleanContent && 3197 BitWidth > 1) 3198 Known.Zero.setBitsFrom(1); 3199 break; 3200 } 3201 LLVM_FALLTHROUGH; 3202 case ISD::SUB: 3203 case ISD::SUBC: { 3204 assert(Op.getResNo() == 0 && 3205 "We only compute knownbits for the difference here."); 3206 3207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3209 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3210 Known, Known2); 3211 break; 3212 } 3213 case ISD::UADDO: 3214 case ISD::SADDO: 3215 case ISD::ADDCARRY: 3216 if (Op.getResNo() == 1) { 3217 // If we know the result of a setcc has the top bits zero, use this info. 3218 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3219 TargetLowering::ZeroOrOneBooleanContent && 3220 BitWidth > 1) 3221 Known.Zero.setBitsFrom(1); 3222 break; 3223 } 3224 LLVM_FALLTHROUGH; 3225 case ISD::ADD: 3226 case ISD::ADDC: 3227 case ISD::ADDE: { 3228 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3229 3230 // With ADDE and ADDCARRY, a carry bit may be added in. 3231 KnownBits Carry(1); 3232 if (Opcode == ISD::ADDE) 3233 // Can't track carry from glue, set carry to unknown. 3234 Carry.resetAll(); 3235 else if (Opcode == ISD::ADDCARRY) 3236 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3237 // the trouble (how often will we find a known carry bit). And I haven't 3238 // tested this very much yet, but something like this might work: 3239 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3240 // Carry = Carry.zextOrTrunc(1, false); 3241 Carry.resetAll(); 3242 else 3243 Carry.setAllZero(); 3244 3245 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3246 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3247 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3248 break; 3249 } 3250 case ISD::SREM: 3251 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3252 const APInt &RA = Rem->getAPIntValue().abs(); 3253 if (RA.isPowerOf2()) { 3254 APInt LowBits = RA - 1; 3255 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 3257 // The low bits of the first operand are unchanged by the srem. 3258 Known.Zero = Known2.Zero & LowBits; 3259 Known.One = Known2.One & LowBits; 3260 3261 // If the first operand is non-negative or has all low bits zero, then 3262 // the upper bits are all zero. 3263 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3264 Known.Zero |= ~LowBits; 3265 3266 // If the first operand is negative and not all low bits are zero, then 3267 // the upper bits are all one. 3268 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3269 Known.One |= ~LowBits; 3270 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3271 } 3272 } 3273 break; 3274 case ISD::UREM: { 3275 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3276 const APInt &RA = Rem->getAPIntValue(); 3277 if (RA.isPowerOf2()) { 3278 APInt LowBits = (RA - 1); 3279 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3280 3281 // The upper bits are all zero, the lower ones are unchanged. 3282 Known.Zero = Known2.Zero | ~LowBits; 3283 Known.One = Known2.One & LowBits; 3284 break; 3285 } 3286 } 3287 3288 // Since the result is less than or equal to either operand, any leading 3289 // zero bits in either operand must also exist in the result. 3290 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3291 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3292 3293 uint32_t Leaders = 3294 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3295 Known.resetAll(); 3296 Known.Zero.setHighBits(Leaders); 3297 break; 3298 } 3299 case ISD::EXTRACT_ELEMENT: { 3300 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3301 const unsigned Index = Op.getConstantOperandVal(1); 3302 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3303 3304 // Remove low part of known bits mask 3305 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3306 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3307 3308 // Remove high part of known bit mask 3309 Known = Known.trunc(EltBitWidth); 3310 break; 3311 } 3312 case ISD::EXTRACT_VECTOR_ELT: { 3313 SDValue InVec = Op.getOperand(0); 3314 SDValue EltNo = Op.getOperand(1); 3315 EVT VecVT = InVec.getValueType(); 3316 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3317 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3318 3319 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3320 // anything about the extended bits. 3321 if (BitWidth > EltBitWidth) 3322 Known = Known.trunc(EltBitWidth); 3323 3324 // If we know the element index, just demand that vector element, else for 3325 // an unknown element index, ignore DemandedElts and demand them all. 3326 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3327 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3328 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3329 DemandedSrcElts = 3330 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3331 3332 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3333 if (BitWidth > EltBitWidth) 3334 Known = Known.anyext(BitWidth); 3335 break; 3336 } 3337 case ISD::INSERT_VECTOR_ELT: { 3338 // If we know the element index, split the demand between the 3339 // source vector and the inserted element, otherwise assume we need 3340 // the original demanded vector elements and the value. 3341 SDValue InVec = Op.getOperand(0); 3342 SDValue InVal = Op.getOperand(1); 3343 SDValue EltNo = Op.getOperand(2); 3344 bool DemandedVal = true; 3345 APInt DemandedVecElts = DemandedElts; 3346 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3347 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3348 unsigned EltIdx = CEltNo->getZExtValue(); 3349 DemandedVal = !!DemandedElts[EltIdx]; 3350 DemandedVecElts.clearBit(EltIdx); 3351 } 3352 Known.One.setAllBits(); 3353 Known.Zero.setAllBits(); 3354 if (DemandedVal) { 3355 Known2 = computeKnownBits(InVal, Depth + 1); 3356 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3357 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3358 } 3359 if (!!DemandedVecElts) { 3360 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3361 Known.One &= Known2.One; 3362 Known.Zero &= Known2.Zero; 3363 } 3364 break; 3365 } 3366 case ISD::BITREVERSE: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known = Known2.reverseBits(); 3369 break; 3370 } 3371 case ISD::BSWAP: { 3372 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known = Known2.byteSwap(); 3374 break; 3375 } 3376 case ISD::ABS: { 3377 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3378 Known = Known2.abs(); 3379 break; 3380 } 3381 case ISD::UMIN: { 3382 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3383 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3384 Known = KnownBits::umin(Known, Known2); 3385 break; 3386 } 3387 case ISD::UMAX: { 3388 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3389 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3390 Known = KnownBits::umax(Known, Known2); 3391 break; 3392 } 3393 case ISD::SMIN: 3394 case ISD::SMAX: { 3395 // If we have a clamp pattern, we know that the number of sign bits will be 3396 // the minimum of the clamp min/max range. 3397 bool IsMax = (Opcode == ISD::SMAX); 3398 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3399 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3400 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3401 CstHigh = 3402 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3403 if (CstLow && CstHigh) { 3404 if (!IsMax) 3405 std::swap(CstLow, CstHigh); 3406 3407 const APInt &ValueLow = CstLow->getAPIntValue(); 3408 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3409 if (ValueLow.sle(ValueHigh)) { 3410 unsigned LowSignBits = ValueLow.getNumSignBits(); 3411 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3412 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3413 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3414 Known.One.setHighBits(MinSignBits); 3415 break; 3416 } 3417 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3418 Known.Zero.setHighBits(MinSignBits); 3419 break; 3420 } 3421 } 3422 } 3423 3424 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3425 if (Known.isUnknown()) break; // Early-out 3426 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3427 if (IsMax) 3428 Known = KnownBits::smax(Known, Known2); 3429 else 3430 Known = KnownBits::smin(Known, Known2); 3431 break; 3432 } 3433 case ISD::FrameIndex: 3434 case ISD::TargetFrameIndex: 3435 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3436 Known, getMachineFunction()); 3437 break; 3438 3439 default: 3440 if (Opcode < ISD::BUILTIN_OP_END) 3441 break; 3442 LLVM_FALLTHROUGH; 3443 case ISD::INTRINSIC_WO_CHAIN: 3444 case ISD::INTRINSIC_W_CHAIN: 3445 case ISD::INTRINSIC_VOID: 3446 // Allow the target to implement this method for its nodes. 3447 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3448 break; 3449 } 3450 3451 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3452 return Known; 3453 } 3454 3455 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3456 SDValue N1) const { 3457 // X + 0 never overflow 3458 if (isNullConstant(N1)) 3459 return OFK_Never; 3460 3461 KnownBits N1Known = computeKnownBits(N1); 3462 if (N1Known.Zero.getBoolValue()) { 3463 KnownBits N0Known = computeKnownBits(N0); 3464 3465 bool overflow; 3466 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3467 if (!overflow) 3468 return OFK_Never; 3469 } 3470 3471 // mulhi + 1 never overflow 3472 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3473 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3474 return OFK_Never; 3475 3476 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3477 KnownBits N0Known = computeKnownBits(N0); 3478 3479 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3480 return OFK_Never; 3481 } 3482 3483 return OFK_Sometime; 3484 } 3485 3486 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3487 EVT OpVT = Val.getValueType(); 3488 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3489 3490 // Is the constant a known power of 2? 3491 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3492 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3493 3494 // A left-shift of a constant one will have exactly one bit set because 3495 // shifting the bit off the end is undefined. 3496 if (Val.getOpcode() == ISD::SHL) { 3497 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3498 if (C && C->getAPIntValue() == 1) 3499 return true; 3500 } 3501 3502 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3503 // one bit set. 3504 if (Val.getOpcode() == ISD::SRL) { 3505 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3506 if (C && C->getAPIntValue().isSignMask()) 3507 return true; 3508 } 3509 3510 // Are all operands of a build vector constant powers of two? 3511 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3512 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3513 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3514 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3515 return false; 3516 })) 3517 return true; 3518 3519 // More could be done here, though the above checks are enough 3520 // to handle some common cases. 3521 3522 // Fall back to computeKnownBits to catch other known cases. 3523 KnownBits Known = computeKnownBits(Val); 3524 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3525 } 3526 3527 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3528 EVT VT = Op.getValueType(); 3529 3530 // TODO: Assume we don't know anything for now. 3531 if (VT.isScalableVector()) 3532 return 1; 3533 3534 APInt DemandedElts = VT.isVector() 3535 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3536 : APInt(1, 1); 3537 return ComputeNumSignBits(Op, DemandedElts, Depth); 3538 } 3539 3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3541 unsigned Depth) const { 3542 EVT VT = Op.getValueType(); 3543 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3544 unsigned VTBits = VT.getScalarSizeInBits(); 3545 unsigned NumElts = DemandedElts.getBitWidth(); 3546 unsigned Tmp, Tmp2; 3547 unsigned FirstAnswer = 1; 3548 3549 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3550 const APInt &Val = C->getAPIntValue(); 3551 return Val.getNumSignBits(); 3552 } 3553 3554 if (Depth >= MaxRecursionDepth) 3555 return 1; // Limit search depth. 3556 3557 if (!DemandedElts || VT.isScalableVector()) 3558 return 1; // No demanded elts, better to assume we don't know anything. 3559 3560 unsigned Opcode = Op.getOpcode(); 3561 switch (Opcode) { 3562 default: break; 3563 case ISD::AssertSext: 3564 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3565 return VTBits-Tmp+1; 3566 case ISD::AssertZext: 3567 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3568 return VTBits-Tmp; 3569 3570 case ISD::BUILD_VECTOR: 3571 Tmp = VTBits; 3572 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3573 if (!DemandedElts[i]) 3574 continue; 3575 3576 SDValue SrcOp = Op.getOperand(i); 3577 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3578 3579 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3580 if (SrcOp.getValueSizeInBits() != VTBits) { 3581 assert(SrcOp.getValueSizeInBits() > VTBits && 3582 "Expected BUILD_VECTOR implicit truncation"); 3583 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3584 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3585 } 3586 Tmp = std::min(Tmp, Tmp2); 3587 } 3588 return Tmp; 3589 3590 case ISD::VECTOR_SHUFFLE: { 3591 // Collect the minimum number of sign bits that are shared by every vector 3592 // element referenced by the shuffle. 3593 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3594 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3595 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3596 for (unsigned i = 0; i != NumElts; ++i) { 3597 int M = SVN->getMaskElt(i); 3598 if (!DemandedElts[i]) 3599 continue; 3600 // For UNDEF elements, we don't know anything about the common state of 3601 // the shuffle result. 3602 if (M < 0) 3603 return 1; 3604 if ((unsigned)M < NumElts) 3605 DemandedLHS.setBit((unsigned)M % NumElts); 3606 else 3607 DemandedRHS.setBit((unsigned)M % NumElts); 3608 } 3609 Tmp = std::numeric_limits<unsigned>::max(); 3610 if (!!DemandedLHS) 3611 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3612 if (!!DemandedRHS) { 3613 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3614 Tmp = std::min(Tmp, Tmp2); 3615 } 3616 // If we don't know anything, early out and try computeKnownBits fall-back. 3617 if (Tmp == 1) 3618 break; 3619 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3620 return Tmp; 3621 } 3622 3623 case ISD::BITCAST: { 3624 SDValue N0 = Op.getOperand(0); 3625 EVT SrcVT = N0.getValueType(); 3626 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3627 3628 // Ignore bitcasts from unsupported types.. 3629 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3630 break; 3631 3632 // Fast handling of 'identity' bitcasts. 3633 if (VTBits == SrcBits) 3634 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3635 3636 bool IsLE = getDataLayout().isLittleEndian(); 3637 3638 // Bitcast 'large element' scalar/vector to 'small element' vector. 3639 if ((SrcBits % VTBits) == 0) { 3640 assert(VT.isVector() && "Expected bitcast to vector"); 3641 3642 unsigned Scale = SrcBits / VTBits; 3643 APInt SrcDemandedElts(NumElts / Scale, 0); 3644 for (unsigned i = 0; i != NumElts; ++i) 3645 if (DemandedElts[i]) 3646 SrcDemandedElts.setBit(i / Scale); 3647 3648 // Fast case - sign splat can be simply split across the small elements. 3649 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3650 if (Tmp == SrcBits) 3651 return VTBits; 3652 3653 // Slow case - determine how far the sign extends into each sub-element. 3654 Tmp2 = VTBits; 3655 for (unsigned i = 0; i != NumElts; ++i) 3656 if (DemandedElts[i]) { 3657 unsigned SubOffset = i % Scale; 3658 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3659 SubOffset = SubOffset * VTBits; 3660 if (Tmp <= SubOffset) 3661 return 1; 3662 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3663 } 3664 return Tmp2; 3665 } 3666 break; 3667 } 3668 3669 case ISD::SIGN_EXTEND: 3670 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3671 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3672 case ISD::SIGN_EXTEND_INREG: 3673 // Max of the input and what this extends. 3674 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3675 Tmp = VTBits-Tmp+1; 3676 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3677 return std::max(Tmp, Tmp2); 3678 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3679 SDValue Src = Op.getOperand(0); 3680 EVT SrcVT = Src.getValueType(); 3681 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3682 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3683 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3684 } 3685 case ISD::SRA: 3686 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3687 // SRA X, C -> adds C sign bits. 3688 if (const APInt *ShAmt = 3689 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3690 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3691 return Tmp; 3692 case ISD::SHL: 3693 if (const APInt *ShAmt = 3694 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3695 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3696 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3697 if (ShAmt->ult(Tmp)) 3698 return Tmp - ShAmt->getZExtValue(); 3699 } 3700 break; 3701 case ISD::AND: 3702 case ISD::OR: 3703 case ISD::XOR: // NOT is handled here. 3704 // Logical binary ops preserve the number of sign bits at the worst. 3705 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3706 if (Tmp != 1) { 3707 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3708 FirstAnswer = std::min(Tmp, Tmp2); 3709 // We computed what we know about the sign bits as our first 3710 // answer. Now proceed to the generic code that uses 3711 // computeKnownBits, and pick whichever answer is better. 3712 } 3713 break; 3714 3715 case ISD::SELECT: 3716 case ISD::VSELECT: 3717 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3718 if (Tmp == 1) return 1; // Early out. 3719 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3720 return std::min(Tmp, Tmp2); 3721 case ISD::SELECT_CC: 3722 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3723 if (Tmp == 1) return 1; // Early out. 3724 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3725 return std::min(Tmp, Tmp2); 3726 3727 case ISD::SMIN: 3728 case ISD::SMAX: { 3729 // If we have a clamp pattern, we know that the number of sign bits will be 3730 // the minimum of the clamp min/max range. 3731 bool IsMax = (Opcode == ISD::SMAX); 3732 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3733 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3734 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3735 CstHigh = 3736 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3737 if (CstLow && CstHigh) { 3738 if (!IsMax) 3739 std::swap(CstLow, CstHigh); 3740 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3741 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3742 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3743 return std::min(Tmp, Tmp2); 3744 } 3745 } 3746 3747 // Fallback - just get the minimum number of sign bits of the operands. 3748 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3749 if (Tmp == 1) 3750 return 1; // Early out. 3751 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3752 return std::min(Tmp, Tmp2); 3753 } 3754 case ISD::UMIN: 3755 case ISD::UMAX: 3756 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3757 if (Tmp == 1) 3758 return 1; // Early out. 3759 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3760 return std::min(Tmp, Tmp2); 3761 case ISD::SADDO: 3762 case ISD::UADDO: 3763 case ISD::SSUBO: 3764 case ISD::USUBO: 3765 case ISD::SMULO: 3766 case ISD::UMULO: 3767 if (Op.getResNo() != 1) 3768 break; 3769 // The boolean result conforms to getBooleanContents. Fall through. 3770 // If setcc returns 0/-1, all bits are sign bits. 3771 // We know that we have an integer-based boolean since these operations 3772 // are only available for integer. 3773 if (TLI->getBooleanContents(VT.isVector(), false) == 3774 TargetLowering::ZeroOrNegativeOneBooleanContent) 3775 return VTBits; 3776 break; 3777 case ISD::SETCC: 3778 case ISD::STRICT_FSETCC: 3779 case ISD::STRICT_FSETCCS: { 3780 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3781 // If setcc returns 0/-1, all bits are sign bits. 3782 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3783 TargetLowering::ZeroOrNegativeOneBooleanContent) 3784 return VTBits; 3785 break; 3786 } 3787 case ISD::ROTL: 3788 case ISD::ROTR: 3789 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3790 3791 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3792 if (Tmp == VTBits) 3793 return VTBits; 3794 3795 if (ConstantSDNode *C = 3796 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3797 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3798 3799 // Handle rotate right by N like a rotate left by 32-N. 3800 if (Opcode == ISD::ROTR) 3801 RotAmt = (VTBits - RotAmt) % VTBits; 3802 3803 // If we aren't rotating out all of the known-in sign bits, return the 3804 // number that are left. This handles rotl(sext(x), 1) for example. 3805 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3806 } 3807 break; 3808 case ISD::ADD: 3809 case ISD::ADDC: 3810 // Add can have at most one carry bit. Thus we know that the output 3811 // is, at worst, one more bit than the inputs. 3812 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3813 if (Tmp == 1) return 1; // Early out. 3814 3815 // Special case decrementing a value (ADD X, -1): 3816 if (ConstantSDNode *CRHS = 3817 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3818 if (CRHS->isAllOnesValue()) { 3819 KnownBits Known = 3820 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3821 3822 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3823 // sign bits set. 3824 if ((Known.Zero | 1).isAllOnesValue()) 3825 return VTBits; 3826 3827 // If we are subtracting one from a positive number, there is no carry 3828 // out of the result. 3829 if (Known.isNonNegative()) 3830 return Tmp; 3831 } 3832 3833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3834 if (Tmp2 == 1) return 1; // Early out. 3835 return std::min(Tmp, Tmp2) - 1; 3836 case ISD::SUB: 3837 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3838 if (Tmp2 == 1) return 1; // Early out. 3839 3840 // Handle NEG. 3841 if (ConstantSDNode *CLHS = 3842 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3843 if (CLHS->isNullValue()) { 3844 KnownBits Known = 3845 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3846 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3847 // sign bits set. 3848 if ((Known.Zero | 1).isAllOnesValue()) 3849 return VTBits; 3850 3851 // If the input is known to be positive (the sign bit is known clear), 3852 // the output of the NEG has the same number of sign bits as the input. 3853 if (Known.isNonNegative()) 3854 return Tmp2; 3855 3856 // Otherwise, we treat this like a SUB. 3857 } 3858 3859 // Sub can have at most one carry bit. Thus we know that the output 3860 // is, at worst, one more bit than the inputs. 3861 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3862 if (Tmp == 1) return 1; // Early out. 3863 return std::min(Tmp, Tmp2) - 1; 3864 case ISD::MUL: { 3865 // The output of the Mul can be at most twice the valid bits in the inputs. 3866 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3867 if (SignBitsOp0 == 1) 3868 break; 3869 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3870 if (SignBitsOp1 == 1) 3871 break; 3872 unsigned OutValidBits = 3873 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3874 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3875 } 3876 case ISD::TRUNCATE: { 3877 // Check if the sign bits of source go down as far as the truncated value. 3878 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3879 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3880 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3881 return NumSrcSignBits - (NumSrcBits - VTBits); 3882 break; 3883 } 3884 case ISD::EXTRACT_ELEMENT: { 3885 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3886 const int BitWidth = Op.getValueSizeInBits(); 3887 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3888 3889 // Get reverse index (starting from 1), Op1 value indexes elements from 3890 // little end. Sign starts at big end. 3891 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3892 3893 // If the sign portion ends in our element the subtraction gives correct 3894 // result. Otherwise it gives either negative or > bitwidth result 3895 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3896 } 3897 case ISD::INSERT_VECTOR_ELT: { 3898 // If we know the element index, split the demand between the 3899 // source vector and the inserted element, otherwise assume we need 3900 // the original demanded vector elements and the value. 3901 SDValue InVec = Op.getOperand(0); 3902 SDValue InVal = Op.getOperand(1); 3903 SDValue EltNo = Op.getOperand(2); 3904 bool DemandedVal = true; 3905 APInt DemandedVecElts = DemandedElts; 3906 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3907 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3908 unsigned EltIdx = CEltNo->getZExtValue(); 3909 DemandedVal = !!DemandedElts[EltIdx]; 3910 DemandedVecElts.clearBit(EltIdx); 3911 } 3912 Tmp = std::numeric_limits<unsigned>::max(); 3913 if (DemandedVal) { 3914 // TODO - handle implicit truncation of inserted elements. 3915 if (InVal.getScalarValueSizeInBits() != VTBits) 3916 break; 3917 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3918 Tmp = std::min(Tmp, Tmp2); 3919 } 3920 if (!!DemandedVecElts) { 3921 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3922 Tmp = std::min(Tmp, Tmp2); 3923 } 3924 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3925 return Tmp; 3926 } 3927 case ISD::EXTRACT_VECTOR_ELT: { 3928 SDValue InVec = Op.getOperand(0); 3929 SDValue EltNo = Op.getOperand(1); 3930 EVT VecVT = InVec.getValueType(); 3931 const unsigned BitWidth = Op.getValueSizeInBits(); 3932 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3933 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3934 3935 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3936 // anything about sign bits. But if the sizes match we can derive knowledge 3937 // about sign bits from the vector operand. 3938 if (BitWidth != EltBitWidth) 3939 break; 3940 3941 // If we know the element index, just demand that vector element, else for 3942 // an unknown element index, ignore DemandedElts and demand them all. 3943 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3944 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3945 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3946 DemandedSrcElts = 3947 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3948 3949 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3950 } 3951 case ISD::EXTRACT_SUBVECTOR: { 3952 // Offset the demanded elts by the subvector index. 3953 SDValue Src = Op.getOperand(0); 3954 // Bail until we can represent demanded elements for scalable vectors. 3955 if (Src.getValueType().isScalableVector()) 3956 break; 3957 uint64_t Idx = Op.getConstantOperandVal(1); 3958 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3959 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3960 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3961 } 3962 case ISD::CONCAT_VECTORS: { 3963 // Determine the minimum number of sign bits across all demanded 3964 // elts of the input vectors. Early out if the result is already 1. 3965 Tmp = std::numeric_limits<unsigned>::max(); 3966 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3967 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3968 unsigned NumSubVectors = Op.getNumOperands(); 3969 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3970 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3971 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3972 if (!DemandedSub) 3973 continue; 3974 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3975 Tmp = std::min(Tmp, Tmp2); 3976 } 3977 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3978 return Tmp; 3979 } 3980 case ISD::INSERT_SUBVECTOR: { 3981 // Demand any elements from the subvector and the remainder from the src its 3982 // inserted into. 3983 SDValue Src = Op.getOperand(0); 3984 SDValue Sub = Op.getOperand(1); 3985 uint64_t Idx = Op.getConstantOperandVal(2); 3986 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3987 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3988 APInt DemandedSrcElts = DemandedElts; 3989 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3990 3991 Tmp = std::numeric_limits<unsigned>::max(); 3992 if (!!DemandedSubElts) { 3993 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3994 if (Tmp == 1) 3995 return 1; // early-out 3996 } 3997 if (!!DemandedSrcElts) { 3998 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3999 Tmp = std::min(Tmp, Tmp2); 4000 } 4001 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4002 return Tmp; 4003 } 4004 } 4005 4006 // If we are looking at the loaded value of the SDNode. 4007 if (Op.getResNo() == 0) { 4008 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4009 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4010 unsigned ExtType = LD->getExtensionType(); 4011 switch (ExtType) { 4012 default: break; 4013 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4014 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4015 return VTBits - Tmp + 1; 4016 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4017 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4018 return VTBits - Tmp; 4019 case ISD::NON_EXTLOAD: 4020 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4021 // We only need to handle vectors - computeKnownBits should handle 4022 // scalar cases. 4023 Type *CstTy = Cst->getType(); 4024 if (CstTy->isVectorTy() && 4025 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4026 Tmp = VTBits; 4027 for (unsigned i = 0; i != NumElts; ++i) { 4028 if (!DemandedElts[i]) 4029 continue; 4030 if (Constant *Elt = Cst->getAggregateElement(i)) { 4031 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4032 const APInt &Value = CInt->getValue(); 4033 Tmp = std::min(Tmp, Value.getNumSignBits()); 4034 continue; 4035 } 4036 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4037 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4038 Tmp = std::min(Tmp, Value.getNumSignBits()); 4039 continue; 4040 } 4041 } 4042 // Unknown type. Conservatively assume no bits match sign bit. 4043 return 1; 4044 } 4045 return Tmp; 4046 } 4047 } 4048 break; 4049 } 4050 } 4051 } 4052 4053 // Allow the target to implement this method for its nodes. 4054 if (Opcode >= ISD::BUILTIN_OP_END || 4055 Opcode == ISD::INTRINSIC_WO_CHAIN || 4056 Opcode == ISD::INTRINSIC_W_CHAIN || 4057 Opcode == ISD::INTRINSIC_VOID) { 4058 unsigned NumBits = 4059 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4060 if (NumBits > 1) 4061 FirstAnswer = std::max(FirstAnswer, NumBits); 4062 } 4063 4064 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4065 // use this information. 4066 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4067 4068 APInt Mask; 4069 if (Known.isNonNegative()) { // sign bit is 0 4070 Mask = Known.Zero; 4071 } else if (Known.isNegative()) { // sign bit is 1; 4072 Mask = Known.One; 4073 } else { 4074 // Nothing known. 4075 return FirstAnswer; 4076 } 4077 4078 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4079 // the number of identical bits in the top of the input value. 4080 Mask <<= Mask.getBitWidth()-VTBits; 4081 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4082 } 4083 4084 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4085 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4086 !isa<ConstantSDNode>(Op.getOperand(1))) 4087 return false; 4088 4089 if (Op.getOpcode() == ISD::OR && 4090 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4091 return false; 4092 4093 return true; 4094 } 4095 4096 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4097 // If we're told that NaNs won't happen, assume they won't. 4098 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4099 return true; 4100 4101 if (Depth >= MaxRecursionDepth) 4102 return false; // Limit search depth. 4103 4104 // TODO: Handle vectors. 4105 // If the value is a constant, we can obviously see if it is a NaN or not. 4106 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4107 return !C->getValueAPF().isNaN() || 4108 (SNaN && !C->getValueAPF().isSignaling()); 4109 } 4110 4111 unsigned Opcode = Op.getOpcode(); 4112 switch (Opcode) { 4113 case ISD::FADD: 4114 case ISD::FSUB: 4115 case ISD::FMUL: 4116 case ISD::FDIV: 4117 case ISD::FREM: 4118 case ISD::FSIN: 4119 case ISD::FCOS: { 4120 if (SNaN) 4121 return true; 4122 // TODO: Need isKnownNeverInfinity 4123 return false; 4124 } 4125 case ISD::FCANONICALIZE: 4126 case ISD::FEXP: 4127 case ISD::FEXP2: 4128 case ISD::FTRUNC: 4129 case ISD::FFLOOR: 4130 case ISD::FCEIL: 4131 case ISD::FROUND: 4132 case ISD::FROUNDEVEN: 4133 case ISD::FRINT: 4134 case ISD::FNEARBYINT: { 4135 if (SNaN) 4136 return true; 4137 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4138 } 4139 case ISD::FABS: 4140 case ISD::FNEG: 4141 case ISD::FCOPYSIGN: { 4142 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4143 } 4144 case ISD::SELECT: 4145 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4146 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4147 case ISD::FP_EXTEND: 4148 case ISD::FP_ROUND: { 4149 if (SNaN) 4150 return true; 4151 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4152 } 4153 case ISD::SINT_TO_FP: 4154 case ISD::UINT_TO_FP: 4155 return true; 4156 case ISD::FMA: 4157 case ISD::FMAD: { 4158 if (SNaN) 4159 return true; 4160 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4161 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4162 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4163 } 4164 case ISD::FSQRT: // Need is known positive 4165 case ISD::FLOG: 4166 case ISD::FLOG2: 4167 case ISD::FLOG10: 4168 case ISD::FPOWI: 4169 case ISD::FPOW: { 4170 if (SNaN) 4171 return true; 4172 // TODO: Refine on operand 4173 return false; 4174 } 4175 case ISD::FMINNUM: 4176 case ISD::FMAXNUM: { 4177 // Only one needs to be known not-nan, since it will be returned if the 4178 // other ends up being one. 4179 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4180 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4181 } 4182 case ISD::FMINNUM_IEEE: 4183 case ISD::FMAXNUM_IEEE: { 4184 if (SNaN) 4185 return true; 4186 // This can return a NaN if either operand is an sNaN, or if both operands 4187 // are NaN. 4188 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4189 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4190 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4191 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4192 } 4193 case ISD::FMINIMUM: 4194 case ISD::FMAXIMUM: { 4195 // TODO: Does this quiet or return the origina NaN as-is? 4196 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4197 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4198 } 4199 case ISD::EXTRACT_VECTOR_ELT: { 4200 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4201 } 4202 default: 4203 if (Opcode >= ISD::BUILTIN_OP_END || 4204 Opcode == ISD::INTRINSIC_WO_CHAIN || 4205 Opcode == ISD::INTRINSIC_W_CHAIN || 4206 Opcode == ISD::INTRINSIC_VOID) { 4207 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4208 } 4209 4210 return false; 4211 } 4212 } 4213 4214 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4215 assert(Op.getValueType().isFloatingPoint() && 4216 "Floating point type expected"); 4217 4218 // If the value is a constant, we can obviously see if it is a zero or not. 4219 // TODO: Add BuildVector support. 4220 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4221 return !C->isZero(); 4222 return false; 4223 } 4224 4225 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4226 assert(!Op.getValueType().isFloatingPoint() && 4227 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4228 4229 // If the value is a constant, we can obviously see if it is a zero or not. 4230 if (ISD::matchUnaryPredicate( 4231 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4232 return true; 4233 4234 // TODO: Recognize more cases here. 4235 switch (Op.getOpcode()) { 4236 default: break; 4237 case ISD::OR: 4238 if (isKnownNeverZero(Op.getOperand(1)) || 4239 isKnownNeverZero(Op.getOperand(0))) 4240 return true; 4241 break; 4242 } 4243 4244 return false; 4245 } 4246 4247 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4248 // Check the obvious case. 4249 if (A == B) return true; 4250 4251 // For for negative and positive zero. 4252 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4253 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4254 if (CA->isZero() && CB->isZero()) return true; 4255 4256 // Otherwise they may not be equal. 4257 return false; 4258 } 4259 4260 // FIXME: unify with llvm::haveNoCommonBitsSet. 4261 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4262 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4263 assert(A.getValueType() == B.getValueType() && 4264 "Values must have the same type"); 4265 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4266 } 4267 4268 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4269 ArrayRef<SDValue> Ops, 4270 SelectionDAG &DAG) { 4271 int NumOps = Ops.size(); 4272 assert(NumOps != 0 && "Can't build an empty vector!"); 4273 assert(!VT.isScalableVector() && 4274 "BUILD_VECTOR cannot be used with scalable types"); 4275 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4276 "Incorrect element count in BUILD_VECTOR!"); 4277 4278 // BUILD_VECTOR of UNDEFs is UNDEF. 4279 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4280 return DAG.getUNDEF(VT); 4281 4282 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4283 SDValue IdentitySrc; 4284 bool IsIdentity = true; 4285 for (int i = 0; i != NumOps; ++i) { 4286 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4287 Ops[i].getOperand(0).getValueType() != VT || 4288 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4289 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4290 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4291 IsIdentity = false; 4292 break; 4293 } 4294 IdentitySrc = Ops[i].getOperand(0); 4295 } 4296 if (IsIdentity) 4297 return IdentitySrc; 4298 4299 return SDValue(); 4300 } 4301 4302 /// Try to simplify vector concatenation to an input value, undef, or build 4303 /// vector. 4304 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4305 ArrayRef<SDValue> Ops, 4306 SelectionDAG &DAG) { 4307 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4308 assert(llvm::all_of(Ops, 4309 [Ops](SDValue Op) { 4310 return Ops[0].getValueType() == Op.getValueType(); 4311 }) && 4312 "Concatenation of vectors with inconsistent value types!"); 4313 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4314 VT.getVectorElementCount() && 4315 "Incorrect element count in vector concatenation!"); 4316 4317 if (Ops.size() == 1) 4318 return Ops[0]; 4319 4320 // Concat of UNDEFs is UNDEF. 4321 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4322 return DAG.getUNDEF(VT); 4323 4324 // Scan the operands and look for extract operations from a single source 4325 // that correspond to insertion at the same location via this concatenation: 4326 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4327 SDValue IdentitySrc; 4328 bool IsIdentity = true; 4329 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4330 SDValue Op = Ops[i]; 4331 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4332 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4333 Op.getOperand(0).getValueType() != VT || 4334 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4335 Op.getConstantOperandVal(1) != IdentityIndex) { 4336 IsIdentity = false; 4337 break; 4338 } 4339 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4340 "Unexpected identity source vector for concat of extracts"); 4341 IdentitySrc = Op.getOperand(0); 4342 } 4343 if (IsIdentity) { 4344 assert(IdentitySrc && "Failed to set source vector of extracts"); 4345 return IdentitySrc; 4346 } 4347 4348 // The code below this point is only designed to work for fixed width 4349 // vectors, so we bail out for now. 4350 if (VT.isScalableVector()) 4351 return SDValue(); 4352 4353 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4354 // simplified to one big BUILD_VECTOR. 4355 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4356 EVT SVT = VT.getScalarType(); 4357 SmallVector<SDValue, 16> Elts; 4358 for (SDValue Op : Ops) { 4359 EVT OpVT = Op.getValueType(); 4360 if (Op.isUndef()) 4361 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4362 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4363 Elts.append(Op->op_begin(), Op->op_end()); 4364 else 4365 return SDValue(); 4366 } 4367 4368 // BUILD_VECTOR requires all inputs to be of the same type, find the 4369 // maximum type and extend them all. 4370 for (SDValue Op : Elts) 4371 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4372 4373 if (SVT.bitsGT(VT.getScalarType())) { 4374 for (SDValue &Op : Elts) { 4375 if (Op.isUndef()) 4376 Op = DAG.getUNDEF(SVT); 4377 else 4378 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4379 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4380 : DAG.getSExtOrTrunc(Op, DL, SVT); 4381 } 4382 } 4383 4384 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4385 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4386 return V; 4387 } 4388 4389 /// Gets or creates the specified node. 4390 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4391 FoldingSetNodeID ID; 4392 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4393 void *IP = nullptr; 4394 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4395 return SDValue(E, 0); 4396 4397 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4398 getVTList(VT)); 4399 CSEMap.InsertNode(N, IP); 4400 4401 InsertNode(N); 4402 SDValue V = SDValue(N, 0); 4403 NewSDValueDbgMsg(V, "Creating new node: ", this); 4404 return V; 4405 } 4406 4407 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4408 SDValue Operand) { 4409 SDNodeFlags Flags; 4410 if (Inserter) 4411 Flags = Inserter->getFlags(); 4412 return getNode(Opcode, DL, VT, Operand, Flags); 4413 } 4414 4415 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4416 SDValue Operand, const SDNodeFlags Flags) { 4417 // Constant fold unary operations with an integer constant operand. Even 4418 // opaque constant will be folded, because the folding of unary operations 4419 // doesn't create new constants with different values. Nevertheless, the 4420 // opaque flag is preserved during folding to prevent future folding with 4421 // other constants. 4422 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4423 const APInt &Val = C->getAPIntValue(); 4424 switch (Opcode) { 4425 default: break; 4426 case ISD::SIGN_EXTEND: 4427 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4428 C->isTargetOpcode(), C->isOpaque()); 4429 case ISD::TRUNCATE: 4430 if (C->isOpaque()) 4431 break; 4432 LLVM_FALLTHROUGH; 4433 case ISD::ANY_EXTEND: 4434 case ISD::ZERO_EXTEND: 4435 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4436 C->isTargetOpcode(), C->isOpaque()); 4437 case ISD::UINT_TO_FP: 4438 case ISD::SINT_TO_FP: { 4439 APFloat apf(EVTToAPFloatSemantics(VT), 4440 APInt::getNullValue(VT.getSizeInBits())); 4441 (void)apf.convertFromAPInt(Val, 4442 Opcode==ISD::SINT_TO_FP, 4443 APFloat::rmNearestTiesToEven); 4444 return getConstantFP(apf, DL, VT); 4445 } 4446 case ISD::BITCAST: 4447 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4448 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4449 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4450 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4451 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4452 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4453 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4454 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4455 break; 4456 case ISD::ABS: 4457 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4458 C->isOpaque()); 4459 case ISD::BITREVERSE: 4460 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4461 C->isOpaque()); 4462 case ISD::BSWAP: 4463 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4464 C->isOpaque()); 4465 case ISD::CTPOP: 4466 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4467 C->isOpaque()); 4468 case ISD::CTLZ: 4469 case ISD::CTLZ_ZERO_UNDEF: 4470 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4471 C->isOpaque()); 4472 case ISD::CTTZ: 4473 case ISD::CTTZ_ZERO_UNDEF: 4474 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4475 C->isOpaque()); 4476 case ISD::FP16_TO_FP: { 4477 bool Ignored; 4478 APFloat FPV(APFloat::IEEEhalf(), 4479 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4480 4481 // This can return overflow, underflow, or inexact; we don't care. 4482 // FIXME need to be more flexible about rounding mode. 4483 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4484 APFloat::rmNearestTiesToEven, &Ignored); 4485 return getConstantFP(FPV, DL, VT); 4486 } 4487 } 4488 } 4489 4490 // Constant fold unary operations with a floating point constant operand. 4491 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4492 APFloat V = C->getValueAPF(); // make copy 4493 switch (Opcode) { 4494 case ISD::FNEG: 4495 V.changeSign(); 4496 return getConstantFP(V, DL, VT); 4497 case ISD::FABS: 4498 V.clearSign(); 4499 return getConstantFP(V, DL, VT); 4500 case ISD::FCEIL: { 4501 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4502 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4503 return getConstantFP(V, DL, VT); 4504 break; 4505 } 4506 case ISD::FTRUNC: { 4507 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4508 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4509 return getConstantFP(V, DL, VT); 4510 break; 4511 } 4512 case ISD::FFLOOR: { 4513 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4514 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4515 return getConstantFP(V, DL, VT); 4516 break; 4517 } 4518 case ISD::FP_EXTEND: { 4519 bool ignored; 4520 // This can return overflow, underflow, or inexact; we don't care. 4521 // FIXME need to be more flexible about rounding mode. 4522 (void)V.convert(EVTToAPFloatSemantics(VT), 4523 APFloat::rmNearestTiesToEven, &ignored); 4524 return getConstantFP(V, DL, VT); 4525 } 4526 case ISD::FP_TO_SINT: 4527 case ISD::FP_TO_UINT: { 4528 bool ignored; 4529 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4530 // FIXME need to be more flexible about rounding mode. 4531 APFloat::opStatus s = 4532 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4533 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4534 break; 4535 return getConstant(IntVal, DL, VT); 4536 } 4537 case ISD::BITCAST: 4538 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4539 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4540 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4541 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4542 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4543 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4544 break; 4545 case ISD::FP_TO_FP16: { 4546 bool Ignored; 4547 // This can return overflow, underflow, or inexact; we don't care. 4548 // FIXME need to be more flexible about rounding mode. 4549 (void)V.convert(APFloat::IEEEhalf(), 4550 APFloat::rmNearestTiesToEven, &Ignored); 4551 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4552 } 4553 } 4554 } 4555 4556 // Constant fold unary operations with a vector integer or float operand. 4557 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4558 if (BV->isConstant()) { 4559 switch (Opcode) { 4560 default: 4561 // FIXME: Entirely reasonable to perform folding of other unary 4562 // operations here as the need arises. 4563 break; 4564 case ISD::FNEG: 4565 case ISD::FABS: 4566 case ISD::FCEIL: 4567 case ISD::FTRUNC: 4568 case ISD::FFLOOR: 4569 case ISD::FP_EXTEND: 4570 case ISD::FP_TO_SINT: 4571 case ISD::FP_TO_UINT: 4572 case ISD::TRUNCATE: 4573 case ISD::ANY_EXTEND: 4574 case ISD::ZERO_EXTEND: 4575 case ISD::SIGN_EXTEND: 4576 case ISD::UINT_TO_FP: 4577 case ISD::SINT_TO_FP: 4578 case ISD::ABS: 4579 case ISD::BITREVERSE: 4580 case ISD::BSWAP: 4581 case ISD::CTLZ: 4582 case ISD::CTLZ_ZERO_UNDEF: 4583 case ISD::CTTZ: 4584 case ISD::CTTZ_ZERO_UNDEF: 4585 case ISD::CTPOP: { 4586 SDValue Ops = { Operand }; 4587 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4588 return Fold; 4589 } 4590 } 4591 } 4592 } 4593 4594 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4595 switch (Opcode) { 4596 case ISD::FREEZE: 4597 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4598 break; 4599 case ISD::TokenFactor: 4600 case ISD::MERGE_VALUES: 4601 case ISD::CONCAT_VECTORS: 4602 return Operand; // Factor, merge or concat of one node? No need. 4603 case ISD::BUILD_VECTOR: { 4604 // Attempt to simplify BUILD_VECTOR. 4605 SDValue Ops[] = {Operand}; 4606 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4607 return V; 4608 break; 4609 } 4610 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4611 case ISD::FP_EXTEND: 4612 assert(VT.isFloatingPoint() && 4613 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4614 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4615 assert((!VT.isVector() || 4616 VT.getVectorElementCount() == 4617 Operand.getValueType().getVectorElementCount()) && 4618 "Vector element count mismatch!"); 4619 assert(Operand.getValueType().bitsLT(VT) && 4620 "Invalid fpext node, dst < src!"); 4621 if (Operand.isUndef()) 4622 return getUNDEF(VT); 4623 break; 4624 case ISD::FP_TO_SINT: 4625 case ISD::FP_TO_UINT: 4626 if (Operand.isUndef()) 4627 return getUNDEF(VT); 4628 break; 4629 case ISD::SINT_TO_FP: 4630 case ISD::UINT_TO_FP: 4631 // [us]itofp(undef) = 0, because the result value is bounded. 4632 if (Operand.isUndef()) 4633 return getConstantFP(0.0, DL, VT); 4634 break; 4635 case ISD::SIGN_EXTEND: 4636 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4637 "Invalid SIGN_EXTEND!"); 4638 assert(VT.isVector() == Operand.getValueType().isVector() && 4639 "SIGN_EXTEND result type type should be vector iff the operand " 4640 "type is vector!"); 4641 if (Operand.getValueType() == VT) return Operand; // noop extension 4642 assert((!VT.isVector() || 4643 VT.getVectorElementCount() == 4644 Operand.getValueType().getVectorElementCount()) && 4645 "Vector element count mismatch!"); 4646 assert(Operand.getValueType().bitsLT(VT) && 4647 "Invalid sext node, dst < src!"); 4648 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4649 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4650 else if (OpOpcode == ISD::UNDEF) 4651 // sext(undef) = 0, because the top bits will all be the same. 4652 return getConstant(0, DL, VT); 4653 break; 4654 case ISD::ZERO_EXTEND: 4655 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4656 "Invalid ZERO_EXTEND!"); 4657 assert(VT.isVector() == Operand.getValueType().isVector() && 4658 "ZERO_EXTEND result type type should be vector iff the operand " 4659 "type is vector!"); 4660 if (Operand.getValueType() == VT) return Operand; // noop extension 4661 assert((!VT.isVector() || 4662 VT.getVectorElementCount() == 4663 Operand.getValueType().getVectorElementCount()) && 4664 "Vector element count mismatch!"); 4665 assert(Operand.getValueType().bitsLT(VT) && 4666 "Invalid zext node, dst < src!"); 4667 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4668 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4669 else if (OpOpcode == ISD::UNDEF) 4670 // zext(undef) = 0, because the top bits will be zero. 4671 return getConstant(0, DL, VT); 4672 break; 4673 case ISD::ANY_EXTEND: 4674 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4675 "Invalid ANY_EXTEND!"); 4676 assert(VT.isVector() == Operand.getValueType().isVector() && 4677 "ANY_EXTEND result type type should be vector iff the operand " 4678 "type is vector!"); 4679 if (Operand.getValueType() == VT) return Operand; // noop extension 4680 assert((!VT.isVector() || 4681 VT.getVectorElementCount() == 4682 Operand.getValueType().getVectorElementCount()) && 4683 "Vector element count mismatch!"); 4684 assert(Operand.getValueType().bitsLT(VT) && 4685 "Invalid anyext node, dst < src!"); 4686 4687 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4688 OpOpcode == ISD::ANY_EXTEND) 4689 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4690 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4691 else if (OpOpcode == ISD::UNDEF) 4692 return getUNDEF(VT); 4693 4694 // (ext (trunc x)) -> x 4695 if (OpOpcode == ISD::TRUNCATE) { 4696 SDValue OpOp = Operand.getOperand(0); 4697 if (OpOp.getValueType() == VT) { 4698 transferDbgValues(Operand, OpOp); 4699 return OpOp; 4700 } 4701 } 4702 break; 4703 case ISD::TRUNCATE: 4704 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4705 "Invalid TRUNCATE!"); 4706 assert(VT.isVector() == Operand.getValueType().isVector() && 4707 "TRUNCATE result type type should be vector iff the operand " 4708 "type is vector!"); 4709 if (Operand.getValueType() == VT) return Operand; // noop truncate 4710 assert((!VT.isVector() || 4711 VT.getVectorElementCount() == 4712 Operand.getValueType().getVectorElementCount()) && 4713 "Vector element count mismatch!"); 4714 assert(Operand.getValueType().bitsGT(VT) && 4715 "Invalid truncate node, src < dst!"); 4716 if (OpOpcode == ISD::TRUNCATE) 4717 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4718 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4719 OpOpcode == ISD::ANY_EXTEND) { 4720 // If the source is smaller than the dest, we still need an extend. 4721 if (Operand.getOperand(0).getValueType().getScalarType() 4722 .bitsLT(VT.getScalarType())) 4723 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4724 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4725 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4726 return Operand.getOperand(0); 4727 } 4728 if (OpOpcode == ISD::UNDEF) 4729 return getUNDEF(VT); 4730 break; 4731 case ISD::ANY_EXTEND_VECTOR_INREG: 4732 case ISD::ZERO_EXTEND_VECTOR_INREG: 4733 case ISD::SIGN_EXTEND_VECTOR_INREG: 4734 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4735 assert(Operand.getValueType().bitsLE(VT) && 4736 "The input must be the same size or smaller than the result."); 4737 assert(VT.getVectorNumElements() < 4738 Operand.getValueType().getVectorNumElements() && 4739 "The destination vector type must have fewer lanes than the input."); 4740 break; 4741 case ISD::ABS: 4742 assert(VT.isInteger() && VT == Operand.getValueType() && 4743 "Invalid ABS!"); 4744 if (OpOpcode == ISD::UNDEF) 4745 return getUNDEF(VT); 4746 break; 4747 case ISD::BSWAP: 4748 assert(VT.isInteger() && VT == Operand.getValueType() && 4749 "Invalid BSWAP!"); 4750 assert((VT.getScalarSizeInBits() % 16 == 0) && 4751 "BSWAP types must be a multiple of 16 bits!"); 4752 if (OpOpcode == ISD::UNDEF) 4753 return getUNDEF(VT); 4754 break; 4755 case ISD::BITREVERSE: 4756 assert(VT.isInteger() && VT == Operand.getValueType() && 4757 "Invalid BITREVERSE!"); 4758 if (OpOpcode == ISD::UNDEF) 4759 return getUNDEF(VT); 4760 break; 4761 case ISD::BITCAST: 4762 // Basic sanity checking. 4763 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4764 "Cannot BITCAST between types of different sizes!"); 4765 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4766 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4767 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4768 if (OpOpcode == ISD::UNDEF) 4769 return getUNDEF(VT); 4770 break; 4771 case ISD::SCALAR_TO_VECTOR: 4772 assert(VT.isVector() && !Operand.getValueType().isVector() && 4773 (VT.getVectorElementType() == Operand.getValueType() || 4774 (VT.getVectorElementType().isInteger() && 4775 Operand.getValueType().isInteger() && 4776 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4777 "Illegal SCALAR_TO_VECTOR node!"); 4778 if (OpOpcode == ISD::UNDEF) 4779 return getUNDEF(VT); 4780 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4781 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4782 isa<ConstantSDNode>(Operand.getOperand(1)) && 4783 Operand.getConstantOperandVal(1) == 0 && 4784 Operand.getOperand(0).getValueType() == VT) 4785 return Operand.getOperand(0); 4786 break; 4787 case ISD::FNEG: 4788 // Negation of an unknown bag of bits is still completely undefined. 4789 if (OpOpcode == ISD::UNDEF) 4790 return getUNDEF(VT); 4791 4792 if (OpOpcode == ISD::FNEG) // --X -> X 4793 return Operand.getOperand(0); 4794 break; 4795 case ISD::FABS: 4796 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4797 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4798 break; 4799 case ISD::VSCALE: 4800 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4801 break; 4802 } 4803 4804 SDNode *N; 4805 SDVTList VTs = getVTList(VT); 4806 SDValue Ops[] = {Operand}; 4807 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4808 FoldingSetNodeID ID; 4809 AddNodeIDNode(ID, Opcode, VTs, Ops); 4810 void *IP = nullptr; 4811 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4812 E->intersectFlagsWith(Flags); 4813 return SDValue(E, 0); 4814 } 4815 4816 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4817 N->setFlags(Flags); 4818 createOperands(N, Ops); 4819 CSEMap.InsertNode(N, IP); 4820 } else { 4821 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4822 createOperands(N, Ops); 4823 } 4824 4825 InsertNode(N); 4826 SDValue V = SDValue(N, 0); 4827 NewSDValueDbgMsg(V, "Creating new node: ", this); 4828 return V; 4829 } 4830 4831 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4832 const APInt &C2) { 4833 switch (Opcode) { 4834 case ISD::ADD: return C1 + C2; 4835 case ISD::SUB: return C1 - C2; 4836 case ISD::MUL: return C1 * C2; 4837 case ISD::AND: return C1 & C2; 4838 case ISD::OR: return C1 | C2; 4839 case ISD::XOR: return C1 ^ C2; 4840 case ISD::SHL: return C1 << C2; 4841 case ISD::SRL: return C1.lshr(C2); 4842 case ISD::SRA: return C1.ashr(C2); 4843 case ISD::ROTL: return C1.rotl(C2); 4844 case ISD::ROTR: return C1.rotr(C2); 4845 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4846 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4847 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4848 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4849 case ISD::SADDSAT: return C1.sadd_sat(C2); 4850 case ISD::UADDSAT: return C1.uadd_sat(C2); 4851 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4852 case ISD::USUBSAT: return C1.usub_sat(C2); 4853 case ISD::UDIV: 4854 if (!C2.getBoolValue()) 4855 break; 4856 return C1.udiv(C2); 4857 case ISD::UREM: 4858 if (!C2.getBoolValue()) 4859 break; 4860 return C1.urem(C2); 4861 case ISD::SDIV: 4862 if (!C2.getBoolValue()) 4863 break; 4864 return C1.sdiv(C2); 4865 case ISD::SREM: 4866 if (!C2.getBoolValue()) 4867 break; 4868 return C1.srem(C2); 4869 } 4870 return llvm::None; 4871 } 4872 4873 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4874 const GlobalAddressSDNode *GA, 4875 const SDNode *N2) { 4876 if (GA->getOpcode() != ISD::GlobalAddress) 4877 return SDValue(); 4878 if (!TLI->isOffsetFoldingLegal(GA)) 4879 return SDValue(); 4880 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4881 if (!C2) 4882 return SDValue(); 4883 int64_t Offset = C2->getSExtValue(); 4884 switch (Opcode) { 4885 case ISD::ADD: break; 4886 case ISD::SUB: Offset = -uint64_t(Offset); break; 4887 default: return SDValue(); 4888 } 4889 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4890 GA->getOffset() + uint64_t(Offset)); 4891 } 4892 4893 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4894 switch (Opcode) { 4895 case ISD::SDIV: 4896 case ISD::UDIV: 4897 case ISD::SREM: 4898 case ISD::UREM: { 4899 // If a divisor is zero/undef or any element of a divisor vector is 4900 // zero/undef, the whole op is undef. 4901 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4902 SDValue Divisor = Ops[1]; 4903 if (Divisor.isUndef() || isNullConstant(Divisor)) 4904 return true; 4905 4906 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4907 llvm::any_of(Divisor->op_values(), 4908 [](SDValue V) { return V.isUndef() || 4909 isNullConstant(V); }); 4910 // TODO: Handle signed overflow. 4911 } 4912 // TODO: Handle oversized shifts. 4913 default: 4914 return false; 4915 } 4916 } 4917 4918 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4919 EVT VT, ArrayRef<SDValue> Ops) { 4920 // If the opcode is a target-specific ISD node, there's nothing we can 4921 // do here and the operand rules may not line up with the below, so 4922 // bail early. 4923 if (Opcode >= ISD::BUILTIN_OP_END) 4924 return SDValue(); 4925 4926 // For now, the array Ops should only contain two values. 4927 // This enforcement will be removed once this function is merged with 4928 // FoldConstantVectorArithmetic 4929 if (Ops.size() != 2) 4930 return SDValue(); 4931 4932 if (isUndef(Opcode, Ops)) 4933 return getUNDEF(VT); 4934 4935 SDNode *N1 = Ops[0].getNode(); 4936 SDNode *N2 = Ops[1].getNode(); 4937 4938 // Handle the case of two scalars. 4939 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4940 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4941 if (C1->isOpaque() || C2->isOpaque()) 4942 return SDValue(); 4943 4944 Optional<APInt> FoldAttempt = 4945 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4946 if (!FoldAttempt) 4947 return SDValue(); 4948 4949 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4950 assert((!Folded || !VT.isVector()) && 4951 "Can't fold vectors ops with scalar operands"); 4952 return Folded; 4953 } 4954 } 4955 4956 // fold (add Sym, c) -> Sym+c 4957 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4958 return FoldSymbolOffset(Opcode, VT, GA, N2); 4959 if (TLI->isCommutativeBinOp(Opcode)) 4960 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4961 return FoldSymbolOffset(Opcode, VT, GA, N1); 4962 4963 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4964 // vector width, however we should be able to do constant folds involving 4965 // splat vector nodes too. 4966 if (VT.isScalableVector()) 4967 return SDValue(); 4968 4969 // For fixed width vectors, extract each constant element and fold them 4970 // individually. Either input may be an undef value. 4971 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4972 if (!BV1 && !N1->isUndef()) 4973 return SDValue(); 4974 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4975 if (!BV2 && !N2->isUndef()) 4976 return SDValue(); 4977 // If both operands are undef, that's handled the same way as scalars. 4978 if (!BV1 && !BV2) 4979 return SDValue(); 4980 4981 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4982 "Vector binop with different number of elements in operands?"); 4983 4984 EVT SVT = VT.getScalarType(); 4985 EVT LegalSVT = SVT; 4986 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4987 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4988 if (LegalSVT.bitsLT(SVT)) 4989 return SDValue(); 4990 } 4991 SmallVector<SDValue, 4> Outputs; 4992 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4993 for (unsigned I = 0; I != NumOps; ++I) { 4994 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4995 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4996 if (SVT.isInteger()) { 4997 if (V1->getValueType(0).bitsGT(SVT)) 4998 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4999 if (V2->getValueType(0).bitsGT(SVT)) 5000 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5001 } 5002 5003 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5004 return SDValue(); 5005 5006 // Fold one vector element. 5007 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5008 if (LegalSVT != SVT) 5009 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5010 5011 // Scalar folding only succeeded if the result is a constant or UNDEF. 5012 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5013 ScalarResult.getOpcode() != ISD::ConstantFP) 5014 return SDValue(); 5015 Outputs.push_back(ScalarResult); 5016 } 5017 5018 assert(VT.getVectorNumElements() == Outputs.size() && 5019 "Vector size mismatch!"); 5020 5021 // We may have a vector type but a scalar result. Create a splat. 5022 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5023 5024 // Build a big vector out of the scalar elements we generated. 5025 return getBuildVector(VT, SDLoc(), Outputs); 5026 } 5027 5028 // TODO: Merge with FoldConstantArithmetic 5029 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5030 const SDLoc &DL, EVT VT, 5031 ArrayRef<SDValue> Ops, 5032 const SDNodeFlags Flags) { 5033 // If the opcode is a target-specific ISD node, there's nothing we can 5034 // do here and the operand rules may not line up with the below, so 5035 // bail early. 5036 if (Opcode >= ISD::BUILTIN_OP_END) 5037 return SDValue(); 5038 5039 if (isUndef(Opcode, Ops)) 5040 return getUNDEF(VT); 5041 5042 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5043 if (!VT.isVector()) 5044 return SDValue(); 5045 5046 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5047 // vector width, however we should be able to do constant folds involving 5048 // splat vector nodes too. 5049 if (VT.isScalableVector()) 5050 return SDValue(); 5051 5052 // From this point onwards all vectors are assumed to be fixed width. 5053 unsigned NumElts = VT.getVectorNumElements(); 5054 5055 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5056 return !Op.getValueType().isVector() || 5057 Op.getValueType().getVectorNumElements() == NumElts; 5058 }; 5059 5060 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5061 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5062 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5063 (BV && BV->isConstant()); 5064 }; 5065 5066 // All operands must be vector types with the same number of elements as 5067 // the result type and must be either UNDEF or a build vector of constant 5068 // or UNDEF scalars. 5069 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5070 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5071 return SDValue(); 5072 5073 // If we are comparing vectors, then the result needs to be a i1 boolean 5074 // that is then sign-extended back to the legal result type. 5075 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5076 5077 // Find legal integer scalar type for constant promotion and 5078 // ensure that its scalar size is at least as large as source. 5079 EVT LegalSVT = VT.getScalarType(); 5080 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5081 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5082 if (LegalSVT.bitsLT(VT.getScalarType())) 5083 return SDValue(); 5084 } 5085 5086 // Constant fold each scalar lane separately. 5087 SmallVector<SDValue, 4> ScalarResults; 5088 for (unsigned i = 0; i != NumElts; i++) { 5089 SmallVector<SDValue, 4> ScalarOps; 5090 for (SDValue Op : Ops) { 5091 EVT InSVT = Op.getValueType().getScalarType(); 5092 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5093 if (!InBV) { 5094 // We've checked that this is UNDEF or a constant of some kind. 5095 if (Op.isUndef()) 5096 ScalarOps.push_back(getUNDEF(InSVT)); 5097 else 5098 ScalarOps.push_back(Op); 5099 continue; 5100 } 5101 5102 SDValue ScalarOp = InBV->getOperand(i); 5103 EVT ScalarVT = ScalarOp.getValueType(); 5104 5105 // Build vector (integer) scalar operands may need implicit 5106 // truncation - do this before constant folding. 5107 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5108 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5109 5110 ScalarOps.push_back(ScalarOp); 5111 } 5112 5113 // Constant fold the scalar operands. 5114 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5115 5116 // Legalize the (integer) scalar constant if necessary. 5117 if (LegalSVT != SVT) 5118 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5119 5120 // Scalar folding only succeeded if the result is a constant or UNDEF. 5121 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5122 ScalarResult.getOpcode() != ISD::ConstantFP) 5123 return SDValue(); 5124 ScalarResults.push_back(ScalarResult); 5125 } 5126 5127 SDValue V = getBuildVector(VT, DL, ScalarResults); 5128 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5129 return V; 5130 } 5131 5132 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5133 EVT VT, SDValue N1, SDValue N2) { 5134 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5135 // should. That will require dealing with a potentially non-default 5136 // rounding mode, checking the "opStatus" return value from the APFloat 5137 // math calculations, and possibly other variations. 5138 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5139 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5140 if (N1CFP && N2CFP) { 5141 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5142 switch (Opcode) { 5143 case ISD::FADD: 5144 C1.add(C2, APFloat::rmNearestTiesToEven); 5145 return getConstantFP(C1, DL, VT); 5146 case ISD::FSUB: 5147 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5148 return getConstantFP(C1, DL, VT); 5149 case ISD::FMUL: 5150 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5151 return getConstantFP(C1, DL, VT); 5152 case ISD::FDIV: 5153 C1.divide(C2, APFloat::rmNearestTiesToEven); 5154 return getConstantFP(C1, DL, VT); 5155 case ISD::FREM: 5156 C1.mod(C2); 5157 return getConstantFP(C1, DL, VT); 5158 case ISD::FCOPYSIGN: 5159 C1.copySign(C2); 5160 return getConstantFP(C1, DL, VT); 5161 default: break; 5162 } 5163 } 5164 if (N1CFP && Opcode == ISD::FP_ROUND) { 5165 APFloat C1 = N1CFP->getValueAPF(); // make copy 5166 bool Unused; 5167 // This can return overflow, underflow, or inexact; we don't care. 5168 // FIXME need to be more flexible about rounding mode. 5169 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5170 &Unused); 5171 return getConstantFP(C1, DL, VT); 5172 } 5173 5174 switch (Opcode) { 5175 case ISD::FSUB: 5176 // -0.0 - undef --> undef (consistent with "fneg undef") 5177 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5178 return getUNDEF(VT); 5179 LLVM_FALLTHROUGH; 5180 5181 case ISD::FADD: 5182 case ISD::FMUL: 5183 case ISD::FDIV: 5184 case ISD::FREM: 5185 // If both operands are undef, the result is undef. If 1 operand is undef, 5186 // the result is NaN. This should match the behavior of the IR optimizer. 5187 if (N1.isUndef() && N2.isUndef()) 5188 return getUNDEF(VT); 5189 if (N1.isUndef() || N2.isUndef()) 5190 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5191 } 5192 return SDValue(); 5193 } 5194 5195 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5196 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5197 5198 // There's no need to assert on a byte-aligned pointer. All pointers are at 5199 // least byte aligned. 5200 if (A == Align(1)) 5201 return Val; 5202 5203 FoldingSetNodeID ID; 5204 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5205 ID.AddInteger(A.value()); 5206 5207 void *IP = nullptr; 5208 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5209 return SDValue(E, 0); 5210 5211 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5212 Val.getValueType(), A); 5213 createOperands(N, {Val}); 5214 5215 CSEMap.InsertNode(N, IP); 5216 InsertNode(N); 5217 5218 SDValue V(N, 0); 5219 NewSDValueDbgMsg(V, "Creating new node: ", this); 5220 return V; 5221 } 5222 5223 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5224 SDValue N1, SDValue N2) { 5225 SDNodeFlags Flags; 5226 if (Inserter) 5227 Flags = Inserter->getFlags(); 5228 return getNode(Opcode, DL, VT, N1, N2, Flags); 5229 } 5230 5231 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5232 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5233 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5234 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5235 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5236 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5237 5238 // Canonicalize constant to RHS if commutative. 5239 if (TLI->isCommutativeBinOp(Opcode)) { 5240 if (N1C && !N2C) { 5241 std::swap(N1C, N2C); 5242 std::swap(N1, N2); 5243 } else if (N1CFP && !N2CFP) { 5244 std::swap(N1CFP, N2CFP); 5245 std::swap(N1, N2); 5246 } 5247 } 5248 5249 switch (Opcode) { 5250 default: break; 5251 case ISD::TokenFactor: 5252 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5253 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5254 // Fold trivial token factors. 5255 if (N1.getOpcode() == ISD::EntryToken) return N2; 5256 if (N2.getOpcode() == ISD::EntryToken) return N1; 5257 if (N1 == N2) return N1; 5258 break; 5259 case ISD::BUILD_VECTOR: { 5260 // Attempt to simplify BUILD_VECTOR. 5261 SDValue Ops[] = {N1, N2}; 5262 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5263 return V; 5264 break; 5265 } 5266 case ISD::CONCAT_VECTORS: { 5267 SDValue Ops[] = {N1, N2}; 5268 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5269 return V; 5270 break; 5271 } 5272 case ISD::AND: 5273 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5274 assert(N1.getValueType() == N2.getValueType() && 5275 N1.getValueType() == VT && "Binary operator types must match!"); 5276 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5277 // worth handling here. 5278 if (N2C && N2C->isNullValue()) 5279 return N2; 5280 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5281 return N1; 5282 break; 5283 case ISD::OR: 5284 case ISD::XOR: 5285 case ISD::ADD: 5286 case ISD::SUB: 5287 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5288 assert(N1.getValueType() == N2.getValueType() && 5289 N1.getValueType() == VT && "Binary operator types must match!"); 5290 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5291 // it's worth handling here. 5292 if (N2C && N2C->isNullValue()) 5293 return N1; 5294 break; 5295 case ISD::MUL: 5296 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5297 assert(N1.getValueType() == N2.getValueType() && 5298 N1.getValueType() == VT && "Binary operator types must match!"); 5299 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5300 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5301 APInt N2CImm = N2C->getAPIntValue(); 5302 return getVScale(DL, VT, MulImm * N2CImm); 5303 } 5304 break; 5305 case ISD::UDIV: 5306 case ISD::UREM: 5307 case ISD::MULHU: 5308 case ISD::MULHS: 5309 case ISD::SDIV: 5310 case ISD::SREM: 5311 case ISD::SMIN: 5312 case ISD::SMAX: 5313 case ISD::UMIN: 5314 case ISD::UMAX: 5315 case ISD::SADDSAT: 5316 case ISD::SSUBSAT: 5317 case ISD::UADDSAT: 5318 case ISD::USUBSAT: 5319 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5320 assert(N1.getValueType() == N2.getValueType() && 5321 N1.getValueType() == VT && "Binary operator types must match!"); 5322 break; 5323 case ISD::FADD: 5324 case ISD::FSUB: 5325 case ISD::FMUL: 5326 case ISD::FDIV: 5327 case ISD::FREM: 5328 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5329 assert(N1.getValueType() == N2.getValueType() && 5330 N1.getValueType() == VT && "Binary operator types must match!"); 5331 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5332 return V; 5333 break; 5334 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5335 assert(N1.getValueType() == VT && 5336 N1.getValueType().isFloatingPoint() && 5337 N2.getValueType().isFloatingPoint() && 5338 "Invalid FCOPYSIGN!"); 5339 break; 5340 case ISD::SHL: 5341 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5342 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5343 APInt ShiftImm = N2C->getAPIntValue(); 5344 return getVScale(DL, VT, MulImm << ShiftImm); 5345 } 5346 LLVM_FALLTHROUGH; 5347 case ISD::SRA: 5348 case ISD::SRL: 5349 if (SDValue V = simplifyShift(N1, N2)) 5350 return V; 5351 LLVM_FALLTHROUGH; 5352 case ISD::ROTL: 5353 case ISD::ROTR: 5354 assert(VT == N1.getValueType() && 5355 "Shift operators return type must be the same as their first arg"); 5356 assert(VT.isInteger() && N2.getValueType().isInteger() && 5357 "Shifts only work on integers"); 5358 assert((!VT.isVector() || VT == N2.getValueType()) && 5359 "Vector shift amounts must be in the same as their first arg"); 5360 // Verify that the shift amount VT is big enough to hold valid shift 5361 // amounts. This catches things like trying to shift an i1024 value by an 5362 // i8, which is easy to fall into in generic code that uses 5363 // TLI.getShiftAmount(). 5364 assert(N2.getValueType().getScalarSizeInBits() >= 5365 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5366 "Invalid use of small shift amount with oversized value!"); 5367 5368 // Always fold shifts of i1 values so the code generator doesn't need to 5369 // handle them. Since we know the size of the shift has to be less than the 5370 // size of the value, the shift/rotate count is guaranteed to be zero. 5371 if (VT == MVT::i1) 5372 return N1; 5373 if (N2C && N2C->isNullValue()) 5374 return N1; 5375 break; 5376 case ISD::FP_ROUND: 5377 assert(VT.isFloatingPoint() && 5378 N1.getValueType().isFloatingPoint() && 5379 VT.bitsLE(N1.getValueType()) && 5380 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5381 "Invalid FP_ROUND!"); 5382 if (N1.getValueType() == VT) return N1; // noop conversion. 5383 break; 5384 case ISD::AssertSext: 5385 case ISD::AssertZext: { 5386 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5387 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5388 assert(VT.isInteger() && EVT.isInteger() && 5389 "Cannot *_EXTEND_INREG FP types"); 5390 assert(!EVT.isVector() && 5391 "AssertSExt/AssertZExt type should be the vector element type " 5392 "rather than the vector type!"); 5393 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5394 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5395 break; 5396 } 5397 case ISD::SIGN_EXTEND_INREG: { 5398 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5399 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5400 assert(VT.isInteger() && EVT.isInteger() && 5401 "Cannot *_EXTEND_INREG FP types"); 5402 assert(EVT.isVector() == VT.isVector() && 5403 "SIGN_EXTEND_INREG type should be vector iff the operand " 5404 "type is vector!"); 5405 assert((!EVT.isVector() || 5406 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5407 "Vector element counts must match in SIGN_EXTEND_INREG"); 5408 assert(EVT.bitsLE(VT) && "Not extending!"); 5409 if (EVT == VT) return N1; // Not actually extending 5410 5411 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5412 unsigned FromBits = EVT.getScalarSizeInBits(); 5413 Val <<= Val.getBitWidth() - FromBits; 5414 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5415 return getConstant(Val, DL, ConstantVT); 5416 }; 5417 5418 if (N1C) { 5419 const APInt &Val = N1C->getAPIntValue(); 5420 return SignExtendInReg(Val, VT); 5421 } 5422 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5423 SmallVector<SDValue, 8> Ops; 5424 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5425 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5426 SDValue Op = N1.getOperand(i); 5427 if (Op.isUndef()) { 5428 Ops.push_back(getUNDEF(OpVT)); 5429 continue; 5430 } 5431 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5432 APInt Val = C->getAPIntValue(); 5433 Ops.push_back(SignExtendInReg(Val, OpVT)); 5434 } 5435 return getBuildVector(VT, DL, Ops); 5436 } 5437 break; 5438 } 5439 case ISD::EXTRACT_VECTOR_ELT: 5440 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5441 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5442 element type of the vector."); 5443 5444 // Extract from an undefined value or using an undefined index is undefined. 5445 if (N1.isUndef() || N2.isUndef()) 5446 return getUNDEF(VT); 5447 5448 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5449 // vectors. For scalable vectors we will provide appropriate support for 5450 // dealing with arbitrary indices. 5451 if (N2C && N1.getValueType().isFixedLengthVector() && 5452 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5453 return getUNDEF(VT); 5454 5455 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5456 // expanding copies of large vectors from registers. This only works for 5457 // fixed length vectors, since we need to know the exact number of 5458 // elements. 5459 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5460 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5461 unsigned Factor = 5462 N1.getOperand(0).getValueType().getVectorNumElements(); 5463 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5464 N1.getOperand(N2C->getZExtValue() / Factor), 5465 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5466 } 5467 5468 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5469 // lowering is expanding large vector constants. 5470 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5471 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5472 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5473 N1.getValueType().isFixedLengthVector()) && 5474 "BUILD_VECTOR used for scalable vectors"); 5475 unsigned Index = 5476 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5477 SDValue Elt = N1.getOperand(Index); 5478 5479 if (VT != Elt.getValueType()) 5480 // If the vector element type is not legal, the BUILD_VECTOR operands 5481 // are promoted and implicitly truncated, and the result implicitly 5482 // extended. Make that explicit here. 5483 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5484 5485 return Elt; 5486 } 5487 5488 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5489 // operations are lowered to scalars. 5490 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5491 // If the indices are the same, return the inserted element else 5492 // if the indices are known different, extract the element from 5493 // the original vector. 5494 SDValue N1Op2 = N1.getOperand(2); 5495 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5496 5497 if (N1Op2C && N2C) { 5498 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5499 if (VT == N1.getOperand(1).getValueType()) 5500 return N1.getOperand(1); 5501 else 5502 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5503 } 5504 5505 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5506 } 5507 } 5508 5509 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5510 // when vector types are scalarized and v1iX is legal. 5511 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5512 // Here we are completely ignoring the extract element index (N2), 5513 // which is fine for fixed width vectors, since any index other than 0 5514 // is undefined anyway. However, this cannot be ignored for scalable 5515 // vectors - in theory we could support this, but we don't want to do this 5516 // without a profitability check. 5517 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5518 N1.getValueType().isFixedLengthVector() && 5519 N1.getValueType().getVectorNumElements() == 1) { 5520 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5521 N1.getOperand(1)); 5522 } 5523 break; 5524 case ISD::EXTRACT_ELEMENT: 5525 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5526 assert(!N1.getValueType().isVector() && !VT.isVector() && 5527 (N1.getValueType().isInteger() == VT.isInteger()) && 5528 N1.getValueType() != VT && 5529 "Wrong types for EXTRACT_ELEMENT!"); 5530 5531 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5532 // 64-bit integers into 32-bit parts. Instead of building the extract of 5533 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5534 if (N1.getOpcode() == ISD::BUILD_PAIR) 5535 return N1.getOperand(N2C->getZExtValue()); 5536 5537 // EXTRACT_ELEMENT of a constant int is also very common. 5538 if (N1C) { 5539 unsigned ElementSize = VT.getSizeInBits(); 5540 unsigned Shift = ElementSize * N2C->getZExtValue(); 5541 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5542 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5543 } 5544 break; 5545 case ISD::EXTRACT_SUBVECTOR: 5546 EVT N1VT = N1.getValueType(); 5547 assert(VT.isVector() && N1VT.isVector() && 5548 "Extract subvector VTs must be vectors!"); 5549 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5550 "Extract subvector VTs must have the same element type!"); 5551 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5552 "Cannot extract a scalable vector from a fixed length vector!"); 5553 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5554 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5555 "Extract subvector must be from larger vector to smaller vector!"); 5556 assert(N2C && "Extract subvector index must be a constant"); 5557 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5558 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5559 N1VT.getVectorMinNumElements()) && 5560 "Extract subvector overflow!"); 5561 assert(N2C->getAPIntValue().getBitWidth() == 5562 TLI->getVectorIdxTy(getDataLayout()) 5563 .getSizeInBits() 5564 .getFixedSize() && 5565 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5566 5567 // Trivial extraction. 5568 if (VT == N1VT) 5569 return N1; 5570 5571 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5572 if (N1.isUndef()) 5573 return getUNDEF(VT); 5574 5575 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5576 // the concat have the same type as the extract. 5577 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5578 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5579 unsigned Factor = VT.getVectorMinNumElements(); 5580 return N1.getOperand(N2C->getZExtValue() / Factor); 5581 } 5582 5583 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5584 // during shuffle legalization. 5585 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5586 VT == N1.getOperand(1).getValueType()) 5587 return N1.getOperand(1); 5588 break; 5589 } 5590 5591 // Perform trivial constant folding. 5592 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5593 return SV; 5594 5595 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5596 return V; 5597 5598 // Canonicalize an UNDEF to the RHS, even over a constant. 5599 if (N1.isUndef()) { 5600 if (TLI->isCommutativeBinOp(Opcode)) { 5601 std::swap(N1, N2); 5602 } else { 5603 switch (Opcode) { 5604 case ISD::SIGN_EXTEND_INREG: 5605 case ISD::SUB: 5606 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5607 case ISD::UDIV: 5608 case ISD::SDIV: 5609 case ISD::UREM: 5610 case ISD::SREM: 5611 case ISD::SSUBSAT: 5612 case ISD::USUBSAT: 5613 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5614 } 5615 } 5616 } 5617 5618 // Fold a bunch of operators when the RHS is undef. 5619 if (N2.isUndef()) { 5620 switch (Opcode) { 5621 case ISD::XOR: 5622 if (N1.isUndef()) 5623 // Handle undef ^ undef -> 0 special case. This is a common 5624 // idiom (misuse). 5625 return getConstant(0, DL, VT); 5626 LLVM_FALLTHROUGH; 5627 case ISD::ADD: 5628 case ISD::SUB: 5629 case ISD::UDIV: 5630 case ISD::SDIV: 5631 case ISD::UREM: 5632 case ISD::SREM: 5633 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5634 case ISD::MUL: 5635 case ISD::AND: 5636 case ISD::SSUBSAT: 5637 case ISD::USUBSAT: 5638 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5639 case ISD::OR: 5640 case ISD::SADDSAT: 5641 case ISD::UADDSAT: 5642 return getAllOnesConstant(DL, VT); 5643 } 5644 } 5645 5646 // Memoize this node if possible. 5647 SDNode *N; 5648 SDVTList VTs = getVTList(VT); 5649 SDValue Ops[] = {N1, N2}; 5650 if (VT != MVT::Glue) { 5651 FoldingSetNodeID ID; 5652 AddNodeIDNode(ID, Opcode, VTs, Ops); 5653 void *IP = nullptr; 5654 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5655 E->intersectFlagsWith(Flags); 5656 return SDValue(E, 0); 5657 } 5658 5659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5660 N->setFlags(Flags); 5661 createOperands(N, Ops); 5662 CSEMap.InsertNode(N, IP); 5663 } else { 5664 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5665 createOperands(N, Ops); 5666 } 5667 5668 InsertNode(N); 5669 SDValue V = SDValue(N, 0); 5670 NewSDValueDbgMsg(V, "Creating new node: ", this); 5671 return V; 5672 } 5673 5674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5675 SDValue N1, SDValue N2, SDValue N3) { 5676 SDNodeFlags Flags; 5677 if (Inserter) 5678 Flags = Inserter->getFlags(); 5679 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5680 } 5681 5682 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5683 SDValue N1, SDValue N2, SDValue N3, 5684 const SDNodeFlags Flags) { 5685 // Perform various simplifications. 5686 switch (Opcode) { 5687 case ISD::FMA: { 5688 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5689 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5690 N3.getValueType() == VT && "FMA types must match!"); 5691 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5692 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5693 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5694 if (N1CFP && N2CFP && N3CFP) { 5695 APFloat V1 = N1CFP->getValueAPF(); 5696 const APFloat &V2 = N2CFP->getValueAPF(); 5697 const APFloat &V3 = N3CFP->getValueAPF(); 5698 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5699 return getConstantFP(V1, DL, VT); 5700 } 5701 break; 5702 } 5703 case ISD::BUILD_VECTOR: { 5704 // Attempt to simplify BUILD_VECTOR. 5705 SDValue Ops[] = {N1, N2, N3}; 5706 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5707 return V; 5708 break; 5709 } 5710 case ISD::CONCAT_VECTORS: { 5711 SDValue Ops[] = {N1, N2, N3}; 5712 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5713 return V; 5714 break; 5715 } 5716 case ISD::SETCC: { 5717 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5718 assert(N1.getValueType() == N2.getValueType() && 5719 "SETCC operands must have the same type!"); 5720 assert(VT.isVector() == N1.getValueType().isVector() && 5721 "SETCC type should be vector iff the operand type is vector!"); 5722 assert((!VT.isVector() || VT.getVectorElementCount() == 5723 N1.getValueType().getVectorElementCount()) && 5724 "SETCC vector element counts must match!"); 5725 // Use FoldSetCC to simplify SETCC's. 5726 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5727 return V; 5728 // Vector constant folding. 5729 SDValue Ops[] = {N1, N2, N3}; 5730 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5731 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5732 return V; 5733 } 5734 break; 5735 } 5736 case ISD::SELECT: 5737 case ISD::VSELECT: 5738 if (SDValue V = simplifySelect(N1, N2, N3)) 5739 return V; 5740 break; 5741 case ISD::VECTOR_SHUFFLE: 5742 llvm_unreachable("should use getVectorShuffle constructor!"); 5743 case ISD::INSERT_VECTOR_ELT: { 5744 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5745 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5746 // for scalable vectors where we will generate appropriate code to 5747 // deal with out-of-bounds cases correctly. 5748 if (N3C && N1.getValueType().isFixedLengthVector() && 5749 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5750 return getUNDEF(VT); 5751 5752 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5753 if (N3.isUndef()) 5754 return getUNDEF(VT); 5755 5756 // If the inserted element is an UNDEF, just use the input vector. 5757 if (N2.isUndef()) 5758 return N1; 5759 5760 break; 5761 } 5762 case ISD::INSERT_SUBVECTOR: { 5763 // Inserting undef into undef is still undef. 5764 if (N1.isUndef() && N2.isUndef()) 5765 return getUNDEF(VT); 5766 5767 EVT N2VT = N2.getValueType(); 5768 assert(VT == N1.getValueType() && 5769 "Dest and insert subvector source types must match!"); 5770 assert(VT.isVector() && N2VT.isVector() && 5771 "Insert subvector VTs must be vectors!"); 5772 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5773 "Cannot insert a scalable vector into a fixed length vector!"); 5774 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5775 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5776 "Insert subvector must be from smaller vector to larger vector!"); 5777 assert(isa<ConstantSDNode>(N3) && 5778 "Insert subvector index must be constant"); 5779 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5780 (N2VT.getVectorMinNumElements() + 5781 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5782 VT.getVectorMinNumElements()) && 5783 "Insert subvector overflow!"); 5784 5785 // Trivial insertion. 5786 if (VT == N2VT) 5787 return N2; 5788 5789 // If this is an insert of an extracted vector into an undef vector, we 5790 // can just use the input to the extract. 5791 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5792 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5793 return N2.getOperand(0); 5794 break; 5795 } 5796 case ISD::BITCAST: 5797 // Fold bit_convert nodes from a type to themselves. 5798 if (N1.getValueType() == VT) 5799 return N1; 5800 break; 5801 } 5802 5803 // Memoize node if it doesn't produce a flag. 5804 SDNode *N; 5805 SDVTList VTs = getVTList(VT); 5806 SDValue Ops[] = {N1, N2, N3}; 5807 if (VT != MVT::Glue) { 5808 FoldingSetNodeID ID; 5809 AddNodeIDNode(ID, Opcode, VTs, Ops); 5810 void *IP = nullptr; 5811 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5812 E->intersectFlagsWith(Flags); 5813 return SDValue(E, 0); 5814 } 5815 5816 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5817 N->setFlags(Flags); 5818 createOperands(N, Ops); 5819 CSEMap.InsertNode(N, IP); 5820 } else { 5821 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5822 createOperands(N, Ops); 5823 } 5824 5825 InsertNode(N); 5826 SDValue V = SDValue(N, 0); 5827 NewSDValueDbgMsg(V, "Creating new node: ", this); 5828 return V; 5829 } 5830 5831 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5832 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5833 SDValue Ops[] = { N1, N2, N3, N4 }; 5834 return getNode(Opcode, DL, VT, Ops); 5835 } 5836 5837 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5838 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5839 SDValue N5) { 5840 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5841 return getNode(Opcode, DL, VT, Ops); 5842 } 5843 5844 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5845 /// the incoming stack arguments to be loaded from the stack. 5846 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5847 SmallVector<SDValue, 8> ArgChains; 5848 5849 // Include the original chain at the beginning of the list. When this is 5850 // used by target LowerCall hooks, this helps legalize find the 5851 // CALLSEQ_BEGIN node. 5852 ArgChains.push_back(Chain); 5853 5854 // Add a chain value for each stack argument. 5855 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5856 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5857 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5859 if (FI->getIndex() < 0) 5860 ArgChains.push_back(SDValue(L, 1)); 5861 5862 // Build a tokenfactor for all the chains. 5863 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5864 } 5865 5866 /// getMemsetValue - Vectorized representation of the memset value 5867 /// operand. 5868 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5869 const SDLoc &dl) { 5870 assert(!Value.isUndef()); 5871 5872 unsigned NumBits = VT.getScalarSizeInBits(); 5873 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5874 assert(C->getAPIntValue().getBitWidth() == 8); 5875 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5876 if (VT.isInteger()) { 5877 bool IsOpaque = VT.getSizeInBits() > 64 || 5878 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5879 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5880 } 5881 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5882 VT); 5883 } 5884 5885 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5886 EVT IntVT = VT.getScalarType(); 5887 if (!IntVT.isInteger()) 5888 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5889 5890 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5891 if (NumBits > 8) { 5892 // Use a multiplication with 0x010101... to extend the input to the 5893 // required length. 5894 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5895 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5896 DAG.getConstant(Magic, dl, IntVT)); 5897 } 5898 5899 if (VT != Value.getValueType() && !VT.isInteger()) 5900 Value = DAG.getBitcast(VT.getScalarType(), Value); 5901 if (VT != Value.getValueType()) 5902 Value = DAG.getSplatBuildVector(VT, dl, Value); 5903 5904 return Value; 5905 } 5906 5907 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5908 /// used when a memcpy is turned into a memset when the source is a constant 5909 /// string ptr. 5910 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5911 const TargetLowering &TLI, 5912 const ConstantDataArraySlice &Slice) { 5913 // Handle vector with all elements zero. 5914 if (Slice.Array == nullptr) { 5915 if (VT.isInteger()) 5916 return DAG.getConstant(0, dl, VT); 5917 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5918 return DAG.getConstantFP(0.0, dl, VT); 5919 else if (VT.isVector()) { 5920 unsigned NumElts = VT.getVectorNumElements(); 5921 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5922 return DAG.getNode(ISD::BITCAST, dl, VT, 5923 DAG.getConstant(0, dl, 5924 EVT::getVectorVT(*DAG.getContext(), 5925 EltVT, NumElts))); 5926 } else 5927 llvm_unreachable("Expected type!"); 5928 } 5929 5930 assert(!VT.isVector() && "Can't handle vector type here!"); 5931 unsigned NumVTBits = VT.getSizeInBits(); 5932 unsigned NumVTBytes = NumVTBits / 8; 5933 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5934 5935 APInt Val(NumVTBits, 0); 5936 if (DAG.getDataLayout().isLittleEndian()) { 5937 for (unsigned i = 0; i != NumBytes; ++i) 5938 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5939 } else { 5940 for (unsigned i = 0; i != NumBytes; ++i) 5941 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5942 } 5943 5944 // If the "cost" of materializing the integer immediate is less than the cost 5945 // of a load, then it is cost effective to turn the load into the immediate. 5946 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5947 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5948 return DAG.getConstant(Val, dl, VT); 5949 return SDValue(nullptr, 0); 5950 } 5951 5952 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5953 const SDLoc &DL, 5954 const SDNodeFlags Flags) { 5955 EVT VT = Base.getValueType(); 5956 SDValue Index; 5957 5958 if (Offset.isScalable()) 5959 Index = getVScale(DL, Base.getValueType(), 5960 APInt(Base.getValueSizeInBits().getFixedSize(), 5961 Offset.getKnownMinSize())); 5962 else 5963 Index = getConstant(Offset.getFixedSize(), DL, VT); 5964 5965 return getMemBasePlusOffset(Base, Index, DL, Flags); 5966 } 5967 5968 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5969 const SDLoc &DL, 5970 const SDNodeFlags Flags) { 5971 assert(Offset.getValueType().isInteger()); 5972 EVT BasePtrVT = Ptr.getValueType(); 5973 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5974 } 5975 5976 /// Returns true if memcpy source is constant data. 5977 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5978 uint64_t SrcDelta = 0; 5979 GlobalAddressSDNode *G = nullptr; 5980 if (Src.getOpcode() == ISD::GlobalAddress) 5981 G = cast<GlobalAddressSDNode>(Src); 5982 else if (Src.getOpcode() == ISD::ADD && 5983 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5984 Src.getOperand(1).getOpcode() == ISD::Constant) { 5985 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5986 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5987 } 5988 if (!G) 5989 return false; 5990 5991 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5992 SrcDelta + G->getOffset()); 5993 } 5994 5995 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5996 SelectionDAG &DAG) { 5997 // On Darwin, -Os means optimize for size without hurting performance, so 5998 // only really optimize for size when -Oz (MinSize) is used. 5999 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6000 return MF.getFunction().hasMinSize(); 6001 return DAG.shouldOptForSize(); 6002 } 6003 6004 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6005 SmallVector<SDValue, 32> &OutChains, unsigned From, 6006 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6007 SmallVector<SDValue, 16> &OutStoreChains) { 6008 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6009 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6010 SmallVector<SDValue, 16> GluedLoadChains; 6011 for (unsigned i = From; i < To; ++i) { 6012 OutChains.push_back(OutLoadChains[i]); 6013 GluedLoadChains.push_back(OutLoadChains[i]); 6014 } 6015 6016 // Chain for all loads. 6017 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6018 GluedLoadChains); 6019 6020 for (unsigned i = From; i < To; ++i) { 6021 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6022 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6023 ST->getBasePtr(), ST->getMemoryVT(), 6024 ST->getMemOperand()); 6025 OutChains.push_back(NewStore); 6026 } 6027 } 6028 6029 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6030 SDValue Chain, SDValue Dst, SDValue Src, 6031 uint64_t Size, Align Alignment, 6032 bool isVol, bool AlwaysInline, 6033 MachinePointerInfo DstPtrInfo, 6034 MachinePointerInfo SrcPtrInfo) { 6035 // Turn a memcpy of undef to nop. 6036 // FIXME: We need to honor volatile even is Src is undef. 6037 if (Src.isUndef()) 6038 return Chain; 6039 6040 // Expand memcpy to a series of load and store ops if the size operand falls 6041 // below a certain threshold. 6042 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6043 // rather than maybe a humongous number of loads and stores. 6044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6045 const DataLayout &DL = DAG.getDataLayout(); 6046 LLVMContext &C = *DAG.getContext(); 6047 std::vector<EVT> MemOps; 6048 bool DstAlignCanChange = false; 6049 MachineFunction &MF = DAG.getMachineFunction(); 6050 MachineFrameInfo &MFI = MF.getFrameInfo(); 6051 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6052 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6053 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6054 DstAlignCanChange = true; 6055 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6056 if (!SrcAlign || Alignment > *SrcAlign) 6057 SrcAlign = Alignment; 6058 assert(SrcAlign && "SrcAlign must be set"); 6059 ConstantDataArraySlice Slice; 6060 // If marked as volatile, perform a copy even when marked as constant. 6061 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6062 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6063 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6064 const MemOp Op = isZeroConstant 6065 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6066 /*IsZeroMemset*/ true, isVol) 6067 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6068 *SrcAlign, isVol, CopyFromConstant); 6069 if (!TLI.findOptimalMemOpLowering( 6070 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6071 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6072 return SDValue(); 6073 6074 if (DstAlignCanChange) { 6075 Type *Ty = MemOps[0].getTypeForEVT(C); 6076 Align NewAlign = DL.getABITypeAlign(Ty); 6077 6078 // Don't promote to an alignment that would require dynamic stack 6079 // realignment. 6080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6081 if (!TRI->needsStackRealignment(MF)) 6082 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6083 NewAlign = NewAlign / 2; 6084 6085 if (NewAlign > Alignment) { 6086 // Give the stack frame object a larger alignment if needed. 6087 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6088 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6089 Alignment = NewAlign; 6090 } 6091 } 6092 6093 MachineMemOperand::Flags MMOFlags = 6094 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6095 SmallVector<SDValue, 16> OutLoadChains; 6096 SmallVector<SDValue, 16> OutStoreChains; 6097 SmallVector<SDValue, 32> OutChains; 6098 unsigned NumMemOps = MemOps.size(); 6099 uint64_t SrcOff = 0, DstOff = 0; 6100 for (unsigned i = 0; i != NumMemOps; ++i) { 6101 EVT VT = MemOps[i]; 6102 unsigned VTSize = VT.getSizeInBits() / 8; 6103 SDValue Value, Store; 6104 6105 if (VTSize > Size) { 6106 // Issuing an unaligned load / store pair that overlaps with the previous 6107 // pair. Adjust the offset accordingly. 6108 assert(i == NumMemOps-1 && i != 0); 6109 SrcOff -= VTSize - Size; 6110 DstOff -= VTSize - Size; 6111 } 6112 6113 if (CopyFromConstant && 6114 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6115 // It's unlikely a store of a vector immediate can be done in a single 6116 // instruction. It would require a load from a constantpool first. 6117 // We only handle zero vectors here. 6118 // FIXME: Handle other cases where store of vector immediate is done in 6119 // a single instruction. 6120 ConstantDataArraySlice SubSlice; 6121 if (SrcOff < Slice.Length) { 6122 SubSlice = Slice; 6123 SubSlice.move(SrcOff); 6124 } else { 6125 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6126 SubSlice.Array = nullptr; 6127 SubSlice.Offset = 0; 6128 SubSlice.Length = VTSize; 6129 } 6130 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6131 if (Value.getNode()) { 6132 Store = DAG.getStore( 6133 Chain, dl, Value, 6134 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6135 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6136 OutChains.push_back(Store); 6137 } 6138 } 6139 6140 if (!Store.getNode()) { 6141 // The type might not be legal for the target. This should only happen 6142 // if the type is smaller than a legal type, as on PPC, so the right 6143 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6144 // to Load/Store if NVT==VT. 6145 // FIXME does the case above also need this? 6146 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6147 assert(NVT.bitsGE(VT)); 6148 6149 bool isDereferenceable = 6150 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6151 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6152 if (isDereferenceable) 6153 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6154 6155 Value = DAG.getExtLoad( 6156 ISD::EXTLOAD, dl, NVT, Chain, 6157 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6158 SrcPtrInfo.getWithOffset(SrcOff), VT, 6159 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6160 OutLoadChains.push_back(Value.getValue(1)); 6161 6162 Store = DAG.getTruncStore( 6163 Chain, dl, Value, 6164 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6165 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6166 OutStoreChains.push_back(Store); 6167 } 6168 SrcOff += VTSize; 6169 DstOff += VTSize; 6170 Size -= VTSize; 6171 } 6172 6173 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6174 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6175 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6176 6177 if (NumLdStInMemcpy) { 6178 // It may be that memcpy might be converted to memset if it's memcpy 6179 // of constants. In such a case, we won't have loads and stores, but 6180 // just stores. In the absence of loads, there is nothing to gang up. 6181 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6182 // If target does not care, just leave as it. 6183 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6184 OutChains.push_back(OutLoadChains[i]); 6185 OutChains.push_back(OutStoreChains[i]); 6186 } 6187 } else { 6188 // Ld/St less than/equal limit set by target. 6189 if (NumLdStInMemcpy <= GluedLdStLimit) { 6190 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6191 NumLdStInMemcpy, OutLoadChains, 6192 OutStoreChains); 6193 } else { 6194 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6195 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6196 unsigned GlueIter = 0; 6197 6198 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6199 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6200 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6201 6202 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6203 OutLoadChains, OutStoreChains); 6204 GlueIter += GluedLdStLimit; 6205 } 6206 6207 // Residual ld/st. 6208 if (RemainingLdStInMemcpy) { 6209 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6210 RemainingLdStInMemcpy, OutLoadChains, 6211 OutStoreChains); 6212 } 6213 } 6214 } 6215 } 6216 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6217 } 6218 6219 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6220 SDValue Chain, SDValue Dst, SDValue Src, 6221 uint64_t Size, Align Alignment, 6222 bool isVol, bool AlwaysInline, 6223 MachinePointerInfo DstPtrInfo, 6224 MachinePointerInfo SrcPtrInfo) { 6225 // Turn a memmove of undef to nop. 6226 // FIXME: We need to honor volatile even is Src is undef. 6227 if (Src.isUndef()) 6228 return Chain; 6229 6230 // Expand memmove to a series of load and store ops if the size operand falls 6231 // below a certain threshold. 6232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6233 const DataLayout &DL = DAG.getDataLayout(); 6234 LLVMContext &C = *DAG.getContext(); 6235 std::vector<EVT> MemOps; 6236 bool DstAlignCanChange = false; 6237 MachineFunction &MF = DAG.getMachineFunction(); 6238 MachineFrameInfo &MFI = MF.getFrameInfo(); 6239 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6240 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6241 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6242 DstAlignCanChange = true; 6243 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6244 if (!SrcAlign || Alignment > *SrcAlign) 6245 SrcAlign = Alignment; 6246 assert(SrcAlign && "SrcAlign must be set"); 6247 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6248 if (!TLI.findOptimalMemOpLowering( 6249 MemOps, Limit, 6250 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6251 /*IsVolatile*/ true), 6252 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6253 MF.getFunction().getAttributes())) 6254 return SDValue(); 6255 6256 if (DstAlignCanChange) { 6257 Type *Ty = MemOps[0].getTypeForEVT(C); 6258 Align NewAlign = DL.getABITypeAlign(Ty); 6259 if (NewAlign > Alignment) { 6260 // Give the stack frame object a larger alignment if needed. 6261 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6262 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6263 Alignment = NewAlign; 6264 } 6265 } 6266 6267 MachineMemOperand::Flags MMOFlags = 6268 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6269 uint64_t SrcOff = 0, DstOff = 0; 6270 SmallVector<SDValue, 8> LoadValues; 6271 SmallVector<SDValue, 8> LoadChains; 6272 SmallVector<SDValue, 8> OutChains; 6273 unsigned NumMemOps = MemOps.size(); 6274 for (unsigned i = 0; i < NumMemOps; i++) { 6275 EVT VT = MemOps[i]; 6276 unsigned VTSize = VT.getSizeInBits() / 8; 6277 SDValue Value; 6278 6279 bool isDereferenceable = 6280 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6281 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6282 if (isDereferenceable) 6283 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6284 6285 Value = 6286 DAG.getLoad(VT, dl, Chain, 6287 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6288 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6289 LoadValues.push_back(Value); 6290 LoadChains.push_back(Value.getValue(1)); 6291 SrcOff += VTSize; 6292 } 6293 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6294 OutChains.clear(); 6295 for (unsigned i = 0; i < NumMemOps; i++) { 6296 EVT VT = MemOps[i]; 6297 unsigned VTSize = VT.getSizeInBits() / 8; 6298 SDValue Store; 6299 6300 Store = 6301 DAG.getStore(Chain, dl, LoadValues[i], 6302 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6303 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6304 OutChains.push_back(Store); 6305 DstOff += VTSize; 6306 } 6307 6308 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6309 } 6310 6311 /// Lower the call to 'memset' intrinsic function into a series of store 6312 /// operations. 6313 /// 6314 /// \param DAG Selection DAG where lowered code is placed. 6315 /// \param dl Link to corresponding IR location. 6316 /// \param Chain Control flow dependency. 6317 /// \param Dst Pointer to destination memory location. 6318 /// \param Src Value of byte to write into the memory. 6319 /// \param Size Number of bytes to write. 6320 /// \param Alignment Alignment of the destination in bytes. 6321 /// \param isVol True if destination is volatile. 6322 /// \param DstPtrInfo IR information on the memory pointer. 6323 /// \returns New head in the control flow, if lowering was successful, empty 6324 /// SDValue otherwise. 6325 /// 6326 /// The function tries to replace 'llvm.memset' intrinsic with several store 6327 /// operations and value calculation code. This is usually profitable for small 6328 /// memory size. 6329 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6330 SDValue Chain, SDValue Dst, SDValue Src, 6331 uint64_t Size, Align Alignment, bool isVol, 6332 MachinePointerInfo DstPtrInfo) { 6333 // Turn a memset of undef to nop. 6334 // FIXME: We need to honor volatile even is Src is undef. 6335 if (Src.isUndef()) 6336 return Chain; 6337 6338 // Expand memset to a series of load/store ops if the size operand 6339 // falls below a certain threshold. 6340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6341 std::vector<EVT> MemOps; 6342 bool DstAlignCanChange = false; 6343 MachineFunction &MF = DAG.getMachineFunction(); 6344 MachineFrameInfo &MFI = MF.getFrameInfo(); 6345 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6346 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6347 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6348 DstAlignCanChange = true; 6349 bool IsZeroVal = 6350 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6351 if (!TLI.findOptimalMemOpLowering( 6352 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6353 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6354 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6355 return SDValue(); 6356 6357 if (DstAlignCanChange) { 6358 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6359 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6360 if (NewAlign > Alignment) { 6361 // Give the stack frame object a larger alignment if needed. 6362 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6363 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6364 Alignment = NewAlign; 6365 } 6366 } 6367 6368 SmallVector<SDValue, 8> OutChains; 6369 uint64_t DstOff = 0; 6370 unsigned NumMemOps = MemOps.size(); 6371 6372 // Find the largest store and generate the bit pattern for it. 6373 EVT LargestVT = MemOps[0]; 6374 for (unsigned i = 1; i < NumMemOps; i++) 6375 if (MemOps[i].bitsGT(LargestVT)) 6376 LargestVT = MemOps[i]; 6377 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6378 6379 for (unsigned i = 0; i < NumMemOps; i++) { 6380 EVT VT = MemOps[i]; 6381 unsigned VTSize = VT.getSizeInBits() / 8; 6382 if (VTSize > Size) { 6383 // Issuing an unaligned load / store pair that overlaps with the previous 6384 // pair. Adjust the offset accordingly. 6385 assert(i == NumMemOps-1 && i != 0); 6386 DstOff -= VTSize - Size; 6387 } 6388 6389 // If this store is smaller than the largest store see whether we can get 6390 // the smaller value for free with a truncate. 6391 SDValue Value = MemSetValue; 6392 if (VT.bitsLT(LargestVT)) { 6393 if (!LargestVT.isVector() && !VT.isVector() && 6394 TLI.isTruncateFree(LargestVT, VT)) 6395 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6396 else 6397 Value = getMemsetValue(Src, VT, DAG, dl); 6398 } 6399 assert(Value.getValueType() == VT && "Value with wrong type."); 6400 SDValue Store = DAG.getStore( 6401 Chain, dl, Value, 6402 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6403 DstPtrInfo.getWithOffset(DstOff), Alignment, 6404 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6405 OutChains.push_back(Store); 6406 DstOff += VT.getSizeInBits() / 8; 6407 Size -= VTSize; 6408 } 6409 6410 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6411 } 6412 6413 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6414 unsigned AS) { 6415 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6416 // pointer operands can be losslessly bitcasted to pointers of address space 0 6417 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6418 report_fatal_error("cannot lower memory intrinsic in address space " + 6419 Twine(AS)); 6420 } 6421 } 6422 6423 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6424 SDValue Src, SDValue Size, Align Alignment, 6425 bool isVol, bool AlwaysInline, bool isTailCall, 6426 MachinePointerInfo DstPtrInfo, 6427 MachinePointerInfo SrcPtrInfo) { 6428 // Check to see if we should lower the memcpy to loads and stores first. 6429 // For cases within the target-specified limits, this is the best choice. 6430 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6431 if (ConstantSize) { 6432 // Memcpy with size zero? Just return the original chain. 6433 if (ConstantSize->isNullValue()) 6434 return Chain; 6435 6436 SDValue Result = getMemcpyLoadsAndStores( 6437 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6438 isVol, false, DstPtrInfo, SrcPtrInfo); 6439 if (Result.getNode()) 6440 return Result; 6441 } 6442 6443 // Then check to see if we should lower the memcpy with target-specific 6444 // code. If the target chooses to do this, this is the next best. 6445 if (TSI) { 6446 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6447 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6448 DstPtrInfo, SrcPtrInfo); 6449 if (Result.getNode()) 6450 return Result; 6451 } 6452 6453 // If we really need inline code and the target declined to provide it, 6454 // use a (potentially long) sequence of loads and stores. 6455 if (AlwaysInline) { 6456 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6457 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6458 ConstantSize->getZExtValue(), Alignment, 6459 isVol, true, DstPtrInfo, SrcPtrInfo); 6460 } 6461 6462 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6463 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6464 6465 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6466 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6467 // respect volatile, so they may do things like read or write memory 6468 // beyond the given memory regions. But fixing this isn't easy, and most 6469 // people don't care. 6470 6471 // Emit a library call. 6472 TargetLowering::ArgListTy Args; 6473 TargetLowering::ArgListEntry Entry; 6474 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6475 Entry.Node = Dst; Args.push_back(Entry); 6476 Entry.Node = Src; Args.push_back(Entry); 6477 6478 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6479 Entry.Node = Size; Args.push_back(Entry); 6480 // FIXME: pass in SDLoc 6481 TargetLowering::CallLoweringInfo CLI(*this); 6482 CLI.setDebugLoc(dl) 6483 .setChain(Chain) 6484 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6485 Dst.getValueType().getTypeForEVT(*getContext()), 6486 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6487 TLI->getPointerTy(getDataLayout())), 6488 std::move(Args)) 6489 .setDiscardResult() 6490 .setTailCall(isTailCall); 6491 6492 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6493 return CallResult.second; 6494 } 6495 6496 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6497 SDValue Dst, unsigned DstAlign, 6498 SDValue Src, unsigned SrcAlign, 6499 SDValue Size, Type *SizeTy, 6500 unsigned ElemSz, bool isTailCall, 6501 MachinePointerInfo DstPtrInfo, 6502 MachinePointerInfo SrcPtrInfo) { 6503 // Emit a library call. 6504 TargetLowering::ArgListTy Args; 6505 TargetLowering::ArgListEntry Entry; 6506 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6507 Entry.Node = Dst; 6508 Args.push_back(Entry); 6509 6510 Entry.Node = Src; 6511 Args.push_back(Entry); 6512 6513 Entry.Ty = SizeTy; 6514 Entry.Node = Size; 6515 Args.push_back(Entry); 6516 6517 RTLIB::Libcall LibraryCall = 6518 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6519 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6520 report_fatal_error("Unsupported element size"); 6521 6522 TargetLowering::CallLoweringInfo CLI(*this); 6523 CLI.setDebugLoc(dl) 6524 .setChain(Chain) 6525 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6526 Type::getVoidTy(*getContext()), 6527 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6528 TLI->getPointerTy(getDataLayout())), 6529 std::move(Args)) 6530 .setDiscardResult() 6531 .setTailCall(isTailCall); 6532 6533 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6534 return CallResult.second; 6535 } 6536 6537 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6538 SDValue Src, SDValue Size, Align Alignment, 6539 bool isVol, bool isTailCall, 6540 MachinePointerInfo DstPtrInfo, 6541 MachinePointerInfo SrcPtrInfo) { 6542 // Check to see if we should lower the memmove to loads and stores first. 6543 // For cases within the target-specified limits, this is the best choice. 6544 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6545 if (ConstantSize) { 6546 // Memmove with size zero? Just return the original chain. 6547 if (ConstantSize->isNullValue()) 6548 return Chain; 6549 6550 SDValue Result = getMemmoveLoadsAndStores( 6551 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6552 isVol, false, DstPtrInfo, SrcPtrInfo); 6553 if (Result.getNode()) 6554 return Result; 6555 } 6556 6557 // Then check to see if we should lower the memmove with target-specific 6558 // code. If the target chooses to do this, this is the next best. 6559 if (TSI) { 6560 SDValue Result = 6561 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6562 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6563 if (Result.getNode()) 6564 return Result; 6565 } 6566 6567 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6568 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6569 6570 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6571 // not be safe. See memcpy above for more details. 6572 6573 // Emit a library call. 6574 TargetLowering::ArgListTy Args; 6575 TargetLowering::ArgListEntry Entry; 6576 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6577 Entry.Node = Dst; Args.push_back(Entry); 6578 Entry.Node = Src; Args.push_back(Entry); 6579 6580 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6581 Entry.Node = Size; Args.push_back(Entry); 6582 // FIXME: pass in SDLoc 6583 TargetLowering::CallLoweringInfo CLI(*this); 6584 CLI.setDebugLoc(dl) 6585 .setChain(Chain) 6586 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6587 Dst.getValueType().getTypeForEVT(*getContext()), 6588 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6589 TLI->getPointerTy(getDataLayout())), 6590 std::move(Args)) 6591 .setDiscardResult() 6592 .setTailCall(isTailCall); 6593 6594 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6595 return CallResult.second; 6596 } 6597 6598 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6599 SDValue Dst, unsigned DstAlign, 6600 SDValue Src, unsigned SrcAlign, 6601 SDValue Size, Type *SizeTy, 6602 unsigned ElemSz, bool isTailCall, 6603 MachinePointerInfo DstPtrInfo, 6604 MachinePointerInfo SrcPtrInfo) { 6605 // Emit a library call. 6606 TargetLowering::ArgListTy Args; 6607 TargetLowering::ArgListEntry Entry; 6608 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6609 Entry.Node = Dst; 6610 Args.push_back(Entry); 6611 6612 Entry.Node = Src; 6613 Args.push_back(Entry); 6614 6615 Entry.Ty = SizeTy; 6616 Entry.Node = Size; 6617 Args.push_back(Entry); 6618 6619 RTLIB::Libcall LibraryCall = 6620 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6621 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6622 report_fatal_error("Unsupported element size"); 6623 6624 TargetLowering::CallLoweringInfo CLI(*this); 6625 CLI.setDebugLoc(dl) 6626 .setChain(Chain) 6627 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6628 Type::getVoidTy(*getContext()), 6629 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6630 TLI->getPointerTy(getDataLayout())), 6631 std::move(Args)) 6632 .setDiscardResult() 6633 .setTailCall(isTailCall); 6634 6635 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6636 return CallResult.second; 6637 } 6638 6639 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6640 SDValue Src, SDValue Size, Align Alignment, 6641 bool isVol, bool isTailCall, 6642 MachinePointerInfo DstPtrInfo) { 6643 // Check to see if we should lower the memset to stores first. 6644 // For cases within the target-specified limits, this is the best choice. 6645 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6646 if (ConstantSize) { 6647 // Memset with size zero? Just return the original chain. 6648 if (ConstantSize->isNullValue()) 6649 return Chain; 6650 6651 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6652 ConstantSize->getZExtValue(), Alignment, 6653 isVol, DstPtrInfo); 6654 6655 if (Result.getNode()) 6656 return Result; 6657 } 6658 6659 // Then check to see if we should lower the memset with target-specific 6660 // code. If the target chooses to do this, this is the next best. 6661 if (TSI) { 6662 SDValue Result = TSI->EmitTargetCodeForMemset( 6663 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6664 if (Result.getNode()) 6665 return Result; 6666 } 6667 6668 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6669 6670 // Emit a library call. 6671 TargetLowering::ArgListTy Args; 6672 TargetLowering::ArgListEntry Entry; 6673 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6674 Args.push_back(Entry); 6675 Entry.Node = Src; 6676 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6677 Args.push_back(Entry); 6678 Entry.Node = Size; 6679 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6680 Args.push_back(Entry); 6681 6682 // FIXME: pass in SDLoc 6683 TargetLowering::CallLoweringInfo CLI(*this); 6684 CLI.setDebugLoc(dl) 6685 .setChain(Chain) 6686 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6687 Dst.getValueType().getTypeForEVT(*getContext()), 6688 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6689 TLI->getPointerTy(getDataLayout())), 6690 std::move(Args)) 6691 .setDiscardResult() 6692 .setTailCall(isTailCall); 6693 6694 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6695 return CallResult.second; 6696 } 6697 6698 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6699 SDValue Dst, unsigned DstAlign, 6700 SDValue Value, SDValue Size, Type *SizeTy, 6701 unsigned ElemSz, bool isTailCall, 6702 MachinePointerInfo DstPtrInfo) { 6703 // Emit a library call. 6704 TargetLowering::ArgListTy Args; 6705 TargetLowering::ArgListEntry Entry; 6706 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6707 Entry.Node = Dst; 6708 Args.push_back(Entry); 6709 6710 Entry.Ty = Type::getInt8Ty(*getContext()); 6711 Entry.Node = Value; 6712 Args.push_back(Entry); 6713 6714 Entry.Ty = SizeTy; 6715 Entry.Node = Size; 6716 Args.push_back(Entry); 6717 6718 RTLIB::Libcall LibraryCall = 6719 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6720 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6721 report_fatal_error("Unsupported element size"); 6722 6723 TargetLowering::CallLoweringInfo CLI(*this); 6724 CLI.setDebugLoc(dl) 6725 .setChain(Chain) 6726 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6727 Type::getVoidTy(*getContext()), 6728 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6729 TLI->getPointerTy(getDataLayout())), 6730 std::move(Args)) 6731 .setDiscardResult() 6732 .setTailCall(isTailCall); 6733 6734 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6735 return CallResult.second; 6736 } 6737 6738 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6739 SDVTList VTList, ArrayRef<SDValue> Ops, 6740 MachineMemOperand *MMO) { 6741 FoldingSetNodeID ID; 6742 ID.AddInteger(MemVT.getRawBits()); 6743 AddNodeIDNode(ID, Opcode, VTList, Ops); 6744 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6745 void* IP = nullptr; 6746 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6747 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6748 return SDValue(E, 0); 6749 } 6750 6751 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6752 VTList, MemVT, MMO); 6753 createOperands(N, Ops); 6754 6755 CSEMap.InsertNode(N, IP); 6756 InsertNode(N); 6757 return SDValue(N, 0); 6758 } 6759 6760 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6761 EVT MemVT, SDVTList VTs, SDValue Chain, 6762 SDValue Ptr, SDValue Cmp, SDValue Swp, 6763 MachineMemOperand *MMO) { 6764 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6765 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6766 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6767 6768 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6769 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6770 } 6771 6772 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6773 SDValue Chain, SDValue Ptr, SDValue Val, 6774 MachineMemOperand *MMO) { 6775 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6776 Opcode == ISD::ATOMIC_LOAD_SUB || 6777 Opcode == ISD::ATOMIC_LOAD_AND || 6778 Opcode == ISD::ATOMIC_LOAD_CLR || 6779 Opcode == ISD::ATOMIC_LOAD_OR || 6780 Opcode == ISD::ATOMIC_LOAD_XOR || 6781 Opcode == ISD::ATOMIC_LOAD_NAND || 6782 Opcode == ISD::ATOMIC_LOAD_MIN || 6783 Opcode == ISD::ATOMIC_LOAD_MAX || 6784 Opcode == ISD::ATOMIC_LOAD_UMIN || 6785 Opcode == ISD::ATOMIC_LOAD_UMAX || 6786 Opcode == ISD::ATOMIC_LOAD_FADD || 6787 Opcode == ISD::ATOMIC_LOAD_FSUB || 6788 Opcode == ISD::ATOMIC_SWAP || 6789 Opcode == ISD::ATOMIC_STORE) && 6790 "Invalid Atomic Op"); 6791 6792 EVT VT = Val.getValueType(); 6793 6794 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6795 getVTList(VT, MVT::Other); 6796 SDValue Ops[] = {Chain, Ptr, Val}; 6797 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6798 } 6799 6800 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6801 EVT VT, SDValue Chain, SDValue Ptr, 6802 MachineMemOperand *MMO) { 6803 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6804 6805 SDVTList VTs = getVTList(VT, MVT::Other); 6806 SDValue Ops[] = {Chain, Ptr}; 6807 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6808 } 6809 6810 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6811 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6812 if (Ops.size() == 1) 6813 return Ops[0]; 6814 6815 SmallVector<EVT, 4> VTs; 6816 VTs.reserve(Ops.size()); 6817 for (unsigned i = 0; i < Ops.size(); ++i) 6818 VTs.push_back(Ops[i].getValueType()); 6819 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6820 } 6821 6822 SDValue SelectionDAG::getMemIntrinsicNode( 6823 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6824 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6825 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6826 if (!Size && MemVT.isScalableVector()) 6827 Size = MemoryLocation::UnknownSize; 6828 else if (!Size) 6829 Size = MemVT.getStoreSize(); 6830 6831 MachineFunction &MF = getMachineFunction(); 6832 MachineMemOperand *MMO = 6833 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6834 6835 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6836 } 6837 6838 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6839 SDVTList VTList, 6840 ArrayRef<SDValue> Ops, EVT MemVT, 6841 MachineMemOperand *MMO) { 6842 assert((Opcode == ISD::INTRINSIC_VOID || 6843 Opcode == ISD::INTRINSIC_W_CHAIN || 6844 Opcode == ISD::PREFETCH || 6845 ((int)Opcode <= std::numeric_limits<int>::max() && 6846 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6847 "Opcode is not a memory-accessing opcode!"); 6848 6849 // Memoize the node unless it returns a flag. 6850 MemIntrinsicSDNode *N; 6851 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6852 FoldingSetNodeID ID; 6853 AddNodeIDNode(ID, Opcode, VTList, Ops); 6854 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6855 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6856 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6857 void *IP = nullptr; 6858 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6859 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6860 return SDValue(E, 0); 6861 } 6862 6863 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6864 VTList, MemVT, MMO); 6865 createOperands(N, Ops); 6866 6867 CSEMap.InsertNode(N, IP); 6868 } else { 6869 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6870 VTList, MemVT, MMO); 6871 createOperands(N, Ops); 6872 } 6873 InsertNode(N); 6874 SDValue V(N, 0); 6875 NewSDValueDbgMsg(V, "Creating new node: ", this); 6876 return V; 6877 } 6878 6879 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6880 SDValue Chain, int FrameIndex, 6881 int64_t Size, int64_t Offset) { 6882 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6883 const auto VTs = getVTList(MVT::Other); 6884 SDValue Ops[2] = { 6885 Chain, 6886 getFrameIndex(FrameIndex, 6887 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6888 true)}; 6889 6890 FoldingSetNodeID ID; 6891 AddNodeIDNode(ID, Opcode, VTs, Ops); 6892 ID.AddInteger(FrameIndex); 6893 ID.AddInteger(Size); 6894 ID.AddInteger(Offset); 6895 void *IP = nullptr; 6896 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6897 return SDValue(E, 0); 6898 6899 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6900 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6901 createOperands(N, Ops); 6902 CSEMap.InsertNode(N, IP); 6903 InsertNode(N); 6904 SDValue V(N, 0); 6905 NewSDValueDbgMsg(V, "Creating new node: ", this); 6906 return V; 6907 } 6908 6909 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6910 /// MachinePointerInfo record from it. This is particularly useful because the 6911 /// code generator has many cases where it doesn't bother passing in a 6912 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6913 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6914 SelectionDAG &DAG, SDValue Ptr, 6915 int64_t Offset = 0) { 6916 // If this is FI+Offset, we can model it. 6917 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6918 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6919 FI->getIndex(), Offset); 6920 6921 // If this is (FI+Offset1)+Offset2, we can model it. 6922 if (Ptr.getOpcode() != ISD::ADD || 6923 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6924 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6925 return Info; 6926 6927 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6928 return MachinePointerInfo::getFixedStack( 6929 DAG.getMachineFunction(), FI, 6930 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6931 } 6932 6933 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6934 /// MachinePointerInfo record from it. This is particularly useful because the 6935 /// code generator has many cases where it doesn't bother passing in a 6936 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6937 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6938 SelectionDAG &DAG, SDValue Ptr, 6939 SDValue OffsetOp) { 6940 // If the 'Offset' value isn't a constant, we can't handle this. 6941 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6942 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6943 if (OffsetOp.isUndef()) 6944 return InferPointerInfo(Info, DAG, Ptr); 6945 return Info; 6946 } 6947 6948 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6949 EVT VT, const SDLoc &dl, SDValue Chain, 6950 SDValue Ptr, SDValue Offset, 6951 MachinePointerInfo PtrInfo, EVT MemVT, 6952 Align Alignment, 6953 MachineMemOperand::Flags MMOFlags, 6954 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6955 assert(Chain.getValueType() == MVT::Other && 6956 "Invalid chain type"); 6957 6958 MMOFlags |= MachineMemOperand::MOLoad; 6959 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6960 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6961 // clients. 6962 if (PtrInfo.V.isNull()) 6963 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6964 6965 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6966 MachineFunction &MF = getMachineFunction(); 6967 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6968 Alignment, AAInfo, Ranges); 6969 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6970 } 6971 6972 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6973 EVT VT, const SDLoc &dl, SDValue Chain, 6974 SDValue Ptr, SDValue Offset, EVT MemVT, 6975 MachineMemOperand *MMO) { 6976 if (VT == MemVT) { 6977 ExtType = ISD::NON_EXTLOAD; 6978 } else if (ExtType == ISD::NON_EXTLOAD) { 6979 assert(VT == MemVT && "Non-extending load from different memory type!"); 6980 } else { 6981 // Extending load. 6982 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6983 "Should only be an extending load, not truncating!"); 6984 assert(VT.isInteger() == MemVT.isInteger() && 6985 "Cannot convert from FP to Int or Int -> FP!"); 6986 assert(VT.isVector() == MemVT.isVector() && 6987 "Cannot use an ext load to convert to or from a vector!"); 6988 assert((!VT.isVector() || 6989 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6990 "Cannot use an ext load to change the number of vector elements!"); 6991 } 6992 6993 bool Indexed = AM != ISD::UNINDEXED; 6994 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6995 6996 SDVTList VTs = Indexed ? 6997 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6998 SDValue Ops[] = { Chain, Ptr, Offset }; 6999 FoldingSetNodeID ID; 7000 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7001 ID.AddInteger(MemVT.getRawBits()); 7002 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7003 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7004 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7005 void *IP = nullptr; 7006 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7007 cast<LoadSDNode>(E)->refineAlignment(MMO); 7008 return SDValue(E, 0); 7009 } 7010 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7011 ExtType, MemVT, MMO); 7012 createOperands(N, Ops); 7013 7014 CSEMap.InsertNode(N, IP); 7015 InsertNode(N); 7016 SDValue V(N, 0); 7017 NewSDValueDbgMsg(V, "Creating new node: ", this); 7018 return V; 7019 } 7020 7021 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7022 SDValue Ptr, MachinePointerInfo PtrInfo, 7023 MaybeAlign Alignment, 7024 MachineMemOperand::Flags MMOFlags, 7025 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7026 SDValue Undef = getUNDEF(Ptr.getValueType()); 7027 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7028 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7029 } 7030 7031 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7032 SDValue Ptr, MachineMemOperand *MMO) { 7033 SDValue Undef = getUNDEF(Ptr.getValueType()); 7034 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7035 VT, MMO); 7036 } 7037 7038 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7039 EVT VT, SDValue Chain, SDValue Ptr, 7040 MachinePointerInfo PtrInfo, EVT MemVT, 7041 MaybeAlign Alignment, 7042 MachineMemOperand::Flags MMOFlags, 7043 const AAMDNodes &AAInfo) { 7044 SDValue Undef = getUNDEF(Ptr.getValueType()); 7045 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7046 MemVT, Alignment, MMOFlags, AAInfo); 7047 } 7048 7049 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7050 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7051 MachineMemOperand *MMO) { 7052 SDValue Undef = getUNDEF(Ptr.getValueType()); 7053 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7054 MemVT, MMO); 7055 } 7056 7057 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7058 SDValue Base, SDValue Offset, 7059 ISD::MemIndexedMode AM) { 7060 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7061 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7062 // Don't propagate the invariant or dereferenceable flags. 7063 auto MMOFlags = 7064 LD->getMemOperand()->getFlags() & 7065 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7066 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7067 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7068 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7069 } 7070 7071 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7072 SDValue Ptr, MachinePointerInfo PtrInfo, 7073 Align Alignment, 7074 MachineMemOperand::Flags MMOFlags, 7075 const AAMDNodes &AAInfo) { 7076 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7077 7078 MMOFlags |= MachineMemOperand::MOStore; 7079 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7080 7081 if (PtrInfo.V.isNull()) 7082 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7083 7084 MachineFunction &MF = getMachineFunction(); 7085 uint64_t Size = 7086 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7087 MachineMemOperand *MMO = 7088 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7089 return getStore(Chain, dl, Val, Ptr, MMO); 7090 } 7091 7092 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7093 SDValue Ptr, MachineMemOperand *MMO) { 7094 assert(Chain.getValueType() == MVT::Other && 7095 "Invalid chain type"); 7096 EVT VT = Val.getValueType(); 7097 SDVTList VTs = getVTList(MVT::Other); 7098 SDValue Undef = getUNDEF(Ptr.getValueType()); 7099 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7100 FoldingSetNodeID ID; 7101 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7102 ID.AddInteger(VT.getRawBits()); 7103 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7104 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7105 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7106 void *IP = nullptr; 7107 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7108 cast<StoreSDNode>(E)->refineAlignment(MMO); 7109 return SDValue(E, 0); 7110 } 7111 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7112 ISD::UNINDEXED, false, VT, MMO); 7113 createOperands(N, Ops); 7114 7115 CSEMap.InsertNode(N, IP); 7116 InsertNode(N); 7117 SDValue V(N, 0); 7118 NewSDValueDbgMsg(V, "Creating new node: ", this); 7119 return V; 7120 } 7121 7122 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7123 SDValue Ptr, MachinePointerInfo PtrInfo, 7124 EVT SVT, Align Alignment, 7125 MachineMemOperand::Flags MMOFlags, 7126 const AAMDNodes &AAInfo) { 7127 assert(Chain.getValueType() == MVT::Other && 7128 "Invalid chain type"); 7129 7130 MMOFlags |= MachineMemOperand::MOStore; 7131 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7132 7133 if (PtrInfo.V.isNull()) 7134 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7135 7136 MachineFunction &MF = getMachineFunction(); 7137 MachineMemOperand *MMO = MF.getMachineMemOperand( 7138 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7139 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7140 } 7141 7142 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7143 SDValue Ptr, EVT SVT, 7144 MachineMemOperand *MMO) { 7145 EVT VT = Val.getValueType(); 7146 7147 assert(Chain.getValueType() == MVT::Other && 7148 "Invalid chain type"); 7149 if (VT == SVT) 7150 return getStore(Chain, dl, Val, Ptr, MMO); 7151 7152 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7153 "Should only be a truncating store, not extending!"); 7154 assert(VT.isInteger() == SVT.isInteger() && 7155 "Can't do FP-INT conversion!"); 7156 assert(VT.isVector() == SVT.isVector() && 7157 "Cannot use trunc store to convert to or from a vector!"); 7158 assert((!VT.isVector() || 7159 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7160 "Cannot use trunc store to change the number of vector elements!"); 7161 7162 SDVTList VTs = getVTList(MVT::Other); 7163 SDValue Undef = getUNDEF(Ptr.getValueType()); 7164 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7165 FoldingSetNodeID ID; 7166 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7167 ID.AddInteger(SVT.getRawBits()); 7168 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7169 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7170 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7171 void *IP = nullptr; 7172 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7173 cast<StoreSDNode>(E)->refineAlignment(MMO); 7174 return SDValue(E, 0); 7175 } 7176 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7177 ISD::UNINDEXED, true, SVT, MMO); 7178 createOperands(N, Ops); 7179 7180 CSEMap.InsertNode(N, IP); 7181 InsertNode(N); 7182 SDValue V(N, 0); 7183 NewSDValueDbgMsg(V, "Creating new node: ", this); 7184 return V; 7185 } 7186 7187 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7188 SDValue Base, SDValue Offset, 7189 ISD::MemIndexedMode AM) { 7190 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7191 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7192 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7193 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7194 FoldingSetNodeID ID; 7195 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7196 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7197 ID.AddInteger(ST->getRawSubclassData()); 7198 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7199 void *IP = nullptr; 7200 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7201 return SDValue(E, 0); 7202 7203 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7204 ST->isTruncatingStore(), ST->getMemoryVT(), 7205 ST->getMemOperand()); 7206 createOperands(N, Ops); 7207 7208 CSEMap.InsertNode(N, IP); 7209 InsertNode(N); 7210 SDValue V(N, 0); 7211 NewSDValueDbgMsg(V, "Creating new node: ", this); 7212 return V; 7213 } 7214 7215 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7216 SDValue Base, SDValue Offset, SDValue Mask, 7217 SDValue PassThru, EVT MemVT, 7218 MachineMemOperand *MMO, 7219 ISD::MemIndexedMode AM, 7220 ISD::LoadExtType ExtTy, bool isExpanding) { 7221 bool Indexed = AM != ISD::UNINDEXED; 7222 assert((Indexed || Offset.isUndef()) && 7223 "Unindexed masked load with an offset!"); 7224 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7225 : getVTList(VT, MVT::Other); 7226 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7227 FoldingSetNodeID ID; 7228 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7229 ID.AddInteger(MemVT.getRawBits()); 7230 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7231 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7232 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7233 void *IP = nullptr; 7234 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7235 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7236 return SDValue(E, 0); 7237 } 7238 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7239 AM, ExtTy, isExpanding, MemVT, MMO); 7240 createOperands(N, Ops); 7241 7242 CSEMap.InsertNode(N, IP); 7243 InsertNode(N); 7244 SDValue V(N, 0); 7245 NewSDValueDbgMsg(V, "Creating new node: ", this); 7246 return V; 7247 } 7248 7249 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7250 SDValue Base, SDValue Offset, 7251 ISD::MemIndexedMode AM) { 7252 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7253 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7254 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7255 Offset, LD->getMask(), LD->getPassThru(), 7256 LD->getMemoryVT(), LD->getMemOperand(), AM, 7257 LD->getExtensionType(), LD->isExpandingLoad()); 7258 } 7259 7260 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7261 SDValue Val, SDValue Base, SDValue Offset, 7262 SDValue Mask, EVT MemVT, 7263 MachineMemOperand *MMO, 7264 ISD::MemIndexedMode AM, bool IsTruncating, 7265 bool IsCompressing) { 7266 assert(Chain.getValueType() == MVT::Other && 7267 "Invalid chain type"); 7268 bool Indexed = AM != ISD::UNINDEXED; 7269 assert((Indexed || Offset.isUndef()) && 7270 "Unindexed masked store with an offset!"); 7271 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7272 : getVTList(MVT::Other); 7273 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7274 FoldingSetNodeID ID; 7275 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7276 ID.AddInteger(MemVT.getRawBits()); 7277 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7278 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7279 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7280 void *IP = nullptr; 7281 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7282 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7283 return SDValue(E, 0); 7284 } 7285 auto *N = 7286 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7287 IsTruncating, IsCompressing, MemVT, MMO); 7288 createOperands(N, Ops); 7289 7290 CSEMap.InsertNode(N, IP); 7291 InsertNode(N); 7292 SDValue V(N, 0); 7293 NewSDValueDbgMsg(V, "Creating new node: ", this); 7294 return V; 7295 } 7296 7297 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7298 SDValue Base, SDValue Offset, 7299 ISD::MemIndexedMode AM) { 7300 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7301 assert(ST->getOffset().isUndef() && 7302 "Masked store is already a indexed store!"); 7303 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7304 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7305 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7306 } 7307 7308 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7309 ArrayRef<SDValue> Ops, 7310 MachineMemOperand *MMO, 7311 ISD::MemIndexType IndexType) { 7312 assert(Ops.size() == 6 && "Incompatible number of operands"); 7313 7314 FoldingSetNodeID ID; 7315 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7316 ID.AddInteger(VT.getRawBits()); 7317 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7318 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7319 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7320 void *IP = nullptr; 7321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7322 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7323 return SDValue(E, 0); 7324 } 7325 7326 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7327 VTs, VT, MMO, IndexType); 7328 createOperands(N, Ops); 7329 7330 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7331 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7332 assert(N->getMask().getValueType().getVectorNumElements() == 7333 N->getValueType(0).getVectorNumElements() && 7334 "Vector width mismatch between mask and data"); 7335 assert(N->getIndex().getValueType().getVectorNumElements() >= 7336 N->getValueType(0).getVectorNumElements() && 7337 "Vector width mismatch between index and data"); 7338 assert(isa<ConstantSDNode>(N->getScale()) && 7339 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7340 "Scale should be a constant power of 2"); 7341 7342 CSEMap.InsertNode(N, IP); 7343 InsertNode(N); 7344 SDValue V(N, 0); 7345 NewSDValueDbgMsg(V, "Creating new node: ", this); 7346 return V; 7347 } 7348 7349 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7350 ArrayRef<SDValue> Ops, 7351 MachineMemOperand *MMO, 7352 ISD::MemIndexType IndexType) { 7353 assert(Ops.size() == 6 && "Incompatible number of operands"); 7354 7355 FoldingSetNodeID ID; 7356 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7357 ID.AddInteger(VT.getRawBits()); 7358 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7359 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7360 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7361 void *IP = nullptr; 7362 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7363 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7364 return SDValue(E, 0); 7365 } 7366 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7367 VTs, VT, MMO, IndexType); 7368 createOperands(N, Ops); 7369 7370 assert(N->getMask().getValueType().getVectorNumElements() == 7371 N->getValue().getValueType().getVectorNumElements() && 7372 "Vector width mismatch between mask and data"); 7373 assert(N->getIndex().getValueType().getVectorNumElements() >= 7374 N->getValue().getValueType().getVectorNumElements() && 7375 "Vector width mismatch between index and data"); 7376 assert(isa<ConstantSDNode>(N->getScale()) && 7377 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7378 "Scale should be a constant power of 2"); 7379 7380 CSEMap.InsertNode(N, IP); 7381 InsertNode(N); 7382 SDValue V(N, 0); 7383 NewSDValueDbgMsg(V, "Creating new node: ", this); 7384 return V; 7385 } 7386 7387 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7388 // select undef, T, F --> T (if T is a constant), otherwise F 7389 // select, ?, undef, F --> F 7390 // select, ?, T, undef --> T 7391 if (Cond.isUndef()) 7392 return isConstantValueOfAnyType(T) ? T : F; 7393 if (T.isUndef()) 7394 return F; 7395 if (F.isUndef()) 7396 return T; 7397 7398 // select true, T, F --> T 7399 // select false, T, F --> F 7400 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7401 return CondC->isNullValue() ? F : T; 7402 7403 // TODO: This should simplify VSELECT with constant condition using something 7404 // like this (but check boolean contents to be complete?): 7405 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7406 // return T; 7407 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7408 // return F; 7409 7410 // select ?, T, T --> T 7411 if (T == F) 7412 return T; 7413 7414 return SDValue(); 7415 } 7416 7417 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7418 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7419 if (X.isUndef()) 7420 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7421 // shift X, undef --> undef (because it may shift by the bitwidth) 7422 if (Y.isUndef()) 7423 return getUNDEF(X.getValueType()); 7424 7425 // shift 0, Y --> 0 7426 // shift X, 0 --> X 7427 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7428 return X; 7429 7430 // shift X, C >= bitwidth(X) --> undef 7431 // All vector elements must be too big (or undef) to avoid partial undefs. 7432 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7433 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7434 }; 7435 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7436 return getUNDEF(X.getValueType()); 7437 7438 return SDValue(); 7439 } 7440 7441 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7442 SDNodeFlags Flags) { 7443 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7444 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7445 // operation is poison. That result can be relaxed to undef. 7446 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7447 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7448 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7449 (YC && YC->getValueAPF().isNaN()); 7450 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7451 (YC && YC->getValueAPF().isInfinity()); 7452 7453 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7454 return getUNDEF(X.getValueType()); 7455 7456 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7457 return getUNDEF(X.getValueType()); 7458 7459 if (!YC) 7460 return SDValue(); 7461 7462 // X + -0.0 --> X 7463 if (Opcode == ISD::FADD) 7464 if (YC->getValueAPF().isNegZero()) 7465 return X; 7466 7467 // X - +0.0 --> X 7468 if (Opcode == ISD::FSUB) 7469 if (YC->getValueAPF().isPosZero()) 7470 return X; 7471 7472 // X * 1.0 --> X 7473 // X / 1.0 --> X 7474 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7475 if (YC->getValueAPF().isExactlyValue(1.0)) 7476 return X; 7477 7478 return SDValue(); 7479 } 7480 7481 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7482 SDValue Ptr, SDValue SV, unsigned Align) { 7483 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7484 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7485 } 7486 7487 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7488 ArrayRef<SDUse> Ops) { 7489 switch (Ops.size()) { 7490 case 0: return getNode(Opcode, DL, VT); 7491 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7492 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7493 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7494 default: break; 7495 } 7496 7497 // Copy from an SDUse array into an SDValue array for use with 7498 // the regular getNode logic. 7499 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7500 return getNode(Opcode, DL, VT, NewOps); 7501 } 7502 7503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7504 ArrayRef<SDValue> Ops) { 7505 SDNodeFlags Flags; 7506 if (Inserter) 7507 Flags = Inserter->getFlags(); 7508 return getNode(Opcode, DL, VT, Ops, Flags); 7509 } 7510 7511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7512 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7513 unsigned NumOps = Ops.size(); 7514 switch (NumOps) { 7515 case 0: return getNode(Opcode, DL, VT); 7516 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7517 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7518 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7519 default: break; 7520 } 7521 7522 switch (Opcode) { 7523 default: break; 7524 case ISD::BUILD_VECTOR: 7525 // Attempt to simplify BUILD_VECTOR. 7526 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7527 return V; 7528 break; 7529 case ISD::CONCAT_VECTORS: 7530 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7531 return V; 7532 break; 7533 case ISD::SELECT_CC: 7534 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7535 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7536 "LHS and RHS of condition must have same type!"); 7537 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7538 "True and False arms of SelectCC must have same type!"); 7539 assert(Ops[2].getValueType() == VT && 7540 "select_cc node must be of same type as true and false value!"); 7541 break; 7542 case ISD::BR_CC: 7543 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7544 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7545 "LHS/RHS of comparison should match types!"); 7546 break; 7547 } 7548 7549 // Memoize nodes. 7550 SDNode *N; 7551 SDVTList VTs = getVTList(VT); 7552 7553 if (VT != MVT::Glue) { 7554 FoldingSetNodeID ID; 7555 AddNodeIDNode(ID, Opcode, VTs, Ops); 7556 void *IP = nullptr; 7557 7558 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7559 return SDValue(E, 0); 7560 7561 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7562 createOperands(N, Ops); 7563 7564 CSEMap.InsertNode(N, IP); 7565 } else { 7566 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7567 createOperands(N, Ops); 7568 } 7569 7570 N->setFlags(Flags); 7571 InsertNode(N); 7572 SDValue V(N, 0); 7573 NewSDValueDbgMsg(V, "Creating new node: ", this); 7574 return V; 7575 } 7576 7577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7578 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7579 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7580 } 7581 7582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7583 ArrayRef<SDValue> Ops) { 7584 SDNodeFlags Flags; 7585 if (Inserter) 7586 Flags = Inserter->getFlags(); 7587 return getNode(Opcode, DL, VTList, Ops, Flags); 7588 } 7589 7590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7591 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7592 if (VTList.NumVTs == 1) 7593 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7594 7595 switch (Opcode) { 7596 case ISD::STRICT_FP_EXTEND: 7597 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7598 "Invalid STRICT_FP_EXTEND!"); 7599 assert(VTList.VTs[0].isFloatingPoint() && 7600 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7601 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7602 "STRICT_FP_EXTEND result type should be vector iff the operand " 7603 "type is vector!"); 7604 assert((!VTList.VTs[0].isVector() || 7605 VTList.VTs[0].getVectorNumElements() == 7606 Ops[1].getValueType().getVectorNumElements()) && 7607 "Vector element count mismatch!"); 7608 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7609 "Invalid fpext node, dst <= src!"); 7610 break; 7611 case ISD::STRICT_FP_ROUND: 7612 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7613 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7614 "STRICT_FP_ROUND result type should be vector iff the operand " 7615 "type is vector!"); 7616 assert((!VTList.VTs[0].isVector() || 7617 VTList.VTs[0].getVectorNumElements() == 7618 Ops[1].getValueType().getVectorNumElements()) && 7619 "Vector element count mismatch!"); 7620 assert(VTList.VTs[0].isFloatingPoint() && 7621 Ops[1].getValueType().isFloatingPoint() && 7622 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7623 isa<ConstantSDNode>(Ops[2]) && 7624 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7625 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7626 "Invalid STRICT_FP_ROUND!"); 7627 break; 7628 #if 0 7629 // FIXME: figure out how to safely handle things like 7630 // int foo(int x) { return 1 << (x & 255); } 7631 // int bar() { return foo(256); } 7632 case ISD::SRA_PARTS: 7633 case ISD::SRL_PARTS: 7634 case ISD::SHL_PARTS: 7635 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7636 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7637 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7638 else if (N3.getOpcode() == ISD::AND) 7639 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7640 // If the and is only masking out bits that cannot effect the shift, 7641 // eliminate the and. 7642 unsigned NumBits = VT.getScalarSizeInBits()*2; 7643 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7644 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7645 } 7646 break; 7647 #endif 7648 } 7649 7650 // Memoize the node unless it returns a flag. 7651 SDNode *N; 7652 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7653 FoldingSetNodeID ID; 7654 AddNodeIDNode(ID, Opcode, VTList, Ops); 7655 void *IP = nullptr; 7656 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7657 return SDValue(E, 0); 7658 7659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7660 createOperands(N, Ops); 7661 CSEMap.InsertNode(N, IP); 7662 } else { 7663 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7664 createOperands(N, Ops); 7665 } 7666 7667 N->setFlags(Flags); 7668 InsertNode(N); 7669 SDValue V(N, 0); 7670 NewSDValueDbgMsg(V, "Creating new node: ", this); 7671 return V; 7672 } 7673 7674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7675 SDVTList VTList) { 7676 return getNode(Opcode, DL, VTList, None); 7677 } 7678 7679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7680 SDValue N1) { 7681 SDValue Ops[] = { N1 }; 7682 return getNode(Opcode, DL, VTList, Ops); 7683 } 7684 7685 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7686 SDValue N1, SDValue N2) { 7687 SDValue Ops[] = { N1, N2 }; 7688 return getNode(Opcode, DL, VTList, Ops); 7689 } 7690 7691 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7692 SDValue N1, SDValue N2, SDValue N3) { 7693 SDValue Ops[] = { N1, N2, N3 }; 7694 return getNode(Opcode, DL, VTList, Ops); 7695 } 7696 7697 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7698 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7699 SDValue Ops[] = { N1, N2, N3, N4 }; 7700 return getNode(Opcode, DL, VTList, Ops); 7701 } 7702 7703 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7704 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7705 SDValue N5) { 7706 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7707 return getNode(Opcode, DL, VTList, Ops); 7708 } 7709 7710 SDVTList SelectionDAG::getVTList(EVT VT) { 7711 return makeVTList(SDNode::getValueTypeList(VT), 1); 7712 } 7713 7714 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7715 FoldingSetNodeID ID; 7716 ID.AddInteger(2U); 7717 ID.AddInteger(VT1.getRawBits()); 7718 ID.AddInteger(VT2.getRawBits()); 7719 7720 void *IP = nullptr; 7721 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7722 if (!Result) { 7723 EVT *Array = Allocator.Allocate<EVT>(2); 7724 Array[0] = VT1; 7725 Array[1] = VT2; 7726 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7727 VTListMap.InsertNode(Result, IP); 7728 } 7729 return Result->getSDVTList(); 7730 } 7731 7732 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7733 FoldingSetNodeID ID; 7734 ID.AddInteger(3U); 7735 ID.AddInteger(VT1.getRawBits()); 7736 ID.AddInteger(VT2.getRawBits()); 7737 ID.AddInteger(VT3.getRawBits()); 7738 7739 void *IP = nullptr; 7740 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7741 if (!Result) { 7742 EVT *Array = Allocator.Allocate<EVT>(3); 7743 Array[0] = VT1; 7744 Array[1] = VT2; 7745 Array[2] = VT3; 7746 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7747 VTListMap.InsertNode(Result, IP); 7748 } 7749 return Result->getSDVTList(); 7750 } 7751 7752 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7753 FoldingSetNodeID ID; 7754 ID.AddInteger(4U); 7755 ID.AddInteger(VT1.getRawBits()); 7756 ID.AddInteger(VT2.getRawBits()); 7757 ID.AddInteger(VT3.getRawBits()); 7758 ID.AddInteger(VT4.getRawBits()); 7759 7760 void *IP = nullptr; 7761 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7762 if (!Result) { 7763 EVT *Array = Allocator.Allocate<EVT>(4); 7764 Array[0] = VT1; 7765 Array[1] = VT2; 7766 Array[2] = VT3; 7767 Array[3] = VT4; 7768 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7769 VTListMap.InsertNode(Result, IP); 7770 } 7771 return Result->getSDVTList(); 7772 } 7773 7774 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7775 unsigned NumVTs = VTs.size(); 7776 FoldingSetNodeID ID; 7777 ID.AddInteger(NumVTs); 7778 for (unsigned index = 0; index < NumVTs; index++) { 7779 ID.AddInteger(VTs[index].getRawBits()); 7780 } 7781 7782 void *IP = nullptr; 7783 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7784 if (!Result) { 7785 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7786 llvm::copy(VTs, Array); 7787 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7788 VTListMap.InsertNode(Result, IP); 7789 } 7790 return Result->getSDVTList(); 7791 } 7792 7793 7794 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7795 /// specified operands. If the resultant node already exists in the DAG, 7796 /// this does not modify the specified node, instead it returns the node that 7797 /// already exists. If the resultant node does not exist in the DAG, the 7798 /// input node is returned. As a degenerate case, if you specify the same 7799 /// input operands as the node already has, the input node is returned. 7800 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7801 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7802 7803 // Check to see if there is no change. 7804 if (Op == N->getOperand(0)) return N; 7805 7806 // See if the modified node already exists. 7807 void *InsertPos = nullptr; 7808 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7809 return Existing; 7810 7811 // Nope it doesn't. Remove the node from its current place in the maps. 7812 if (InsertPos) 7813 if (!RemoveNodeFromCSEMaps(N)) 7814 InsertPos = nullptr; 7815 7816 // Now we update the operands. 7817 N->OperandList[0].set(Op); 7818 7819 updateDivergence(N); 7820 // If this gets put into a CSE map, add it. 7821 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7822 return N; 7823 } 7824 7825 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7826 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7827 7828 // Check to see if there is no change. 7829 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7830 return N; // No operands changed, just return the input node. 7831 7832 // See if the modified node already exists. 7833 void *InsertPos = nullptr; 7834 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7835 return Existing; 7836 7837 // Nope it doesn't. Remove the node from its current place in the maps. 7838 if (InsertPos) 7839 if (!RemoveNodeFromCSEMaps(N)) 7840 InsertPos = nullptr; 7841 7842 // Now we update the operands. 7843 if (N->OperandList[0] != Op1) 7844 N->OperandList[0].set(Op1); 7845 if (N->OperandList[1] != Op2) 7846 N->OperandList[1].set(Op2); 7847 7848 updateDivergence(N); 7849 // If this gets put into a CSE map, add it. 7850 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7851 return N; 7852 } 7853 7854 SDNode *SelectionDAG:: 7855 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7856 SDValue Ops[] = { Op1, Op2, Op3 }; 7857 return UpdateNodeOperands(N, Ops); 7858 } 7859 7860 SDNode *SelectionDAG:: 7861 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7862 SDValue Op3, SDValue Op4) { 7863 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7864 return UpdateNodeOperands(N, Ops); 7865 } 7866 7867 SDNode *SelectionDAG:: 7868 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7869 SDValue Op3, SDValue Op4, SDValue Op5) { 7870 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7871 return UpdateNodeOperands(N, Ops); 7872 } 7873 7874 SDNode *SelectionDAG:: 7875 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7876 unsigned NumOps = Ops.size(); 7877 assert(N->getNumOperands() == NumOps && 7878 "Update with wrong number of operands"); 7879 7880 // If no operands changed just return the input node. 7881 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7882 return N; 7883 7884 // See if the modified node already exists. 7885 void *InsertPos = nullptr; 7886 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7887 return Existing; 7888 7889 // Nope it doesn't. Remove the node from its current place in the maps. 7890 if (InsertPos) 7891 if (!RemoveNodeFromCSEMaps(N)) 7892 InsertPos = nullptr; 7893 7894 // Now we update the operands. 7895 for (unsigned i = 0; i != NumOps; ++i) 7896 if (N->OperandList[i] != Ops[i]) 7897 N->OperandList[i].set(Ops[i]); 7898 7899 updateDivergence(N); 7900 // If this gets put into a CSE map, add it. 7901 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7902 return N; 7903 } 7904 7905 /// DropOperands - Release the operands and set this node to have 7906 /// zero operands. 7907 void SDNode::DropOperands() { 7908 // Unlike the code in MorphNodeTo that does this, we don't need to 7909 // watch for dead nodes here. 7910 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7911 SDUse &Use = *I++; 7912 Use.set(SDValue()); 7913 } 7914 } 7915 7916 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7917 ArrayRef<MachineMemOperand *> NewMemRefs) { 7918 if (NewMemRefs.empty()) { 7919 N->clearMemRefs(); 7920 return; 7921 } 7922 7923 // Check if we can avoid allocating by storing a single reference directly. 7924 if (NewMemRefs.size() == 1) { 7925 N->MemRefs = NewMemRefs[0]; 7926 N->NumMemRefs = 1; 7927 return; 7928 } 7929 7930 MachineMemOperand **MemRefsBuffer = 7931 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7932 llvm::copy(NewMemRefs, MemRefsBuffer); 7933 N->MemRefs = MemRefsBuffer; 7934 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7935 } 7936 7937 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7938 /// machine opcode. 7939 /// 7940 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7941 EVT VT) { 7942 SDVTList VTs = getVTList(VT); 7943 return SelectNodeTo(N, MachineOpc, VTs, None); 7944 } 7945 7946 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7947 EVT VT, SDValue Op1) { 7948 SDVTList VTs = getVTList(VT); 7949 SDValue Ops[] = { Op1 }; 7950 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7951 } 7952 7953 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7954 EVT VT, SDValue Op1, 7955 SDValue Op2) { 7956 SDVTList VTs = getVTList(VT); 7957 SDValue Ops[] = { Op1, Op2 }; 7958 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7959 } 7960 7961 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7962 EVT VT, SDValue Op1, 7963 SDValue Op2, SDValue Op3) { 7964 SDVTList VTs = getVTList(VT); 7965 SDValue Ops[] = { Op1, Op2, Op3 }; 7966 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7967 } 7968 7969 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7970 EVT VT, ArrayRef<SDValue> Ops) { 7971 SDVTList VTs = getVTList(VT); 7972 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7973 } 7974 7975 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7976 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7977 SDVTList VTs = getVTList(VT1, VT2); 7978 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7979 } 7980 7981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7982 EVT VT1, EVT VT2) { 7983 SDVTList VTs = getVTList(VT1, VT2); 7984 return SelectNodeTo(N, MachineOpc, VTs, None); 7985 } 7986 7987 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7988 EVT VT1, EVT VT2, EVT VT3, 7989 ArrayRef<SDValue> Ops) { 7990 SDVTList VTs = getVTList(VT1, VT2, VT3); 7991 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7992 } 7993 7994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7995 EVT VT1, EVT VT2, 7996 SDValue Op1, SDValue Op2) { 7997 SDVTList VTs = getVTList(VT1, VT2); 7998 SDValue Ops[] = { Op1, Op2 }; 7999 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8000 } 8001 8002 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8003 SDVTList VTs,ArrayRef<SDValue> Ops) { 8004 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8005 // Reset the NodeID to -1. 8006 New->setNodeId(-1); 8007 if (New != N) { 8008 ReplaceAllUsesWith(N, New); 8009 RemoveDeadNode(N); 8010 } 8011 return New; 8012 } 8013 8014 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8015 /// the line number information on the merged node since it is not possible to 8016 /// preserve the information that operation is associated with multiple lines. 8017 /// This will make the debugger working better at -O0, were there is a higher 8018 /// probability having other instructions associated with that line. 8019 /// 8020 /// For IROrder, we keep the smaller of the two 8021 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8022 DebugLoc NLoc = N->getDebugLoc(); 8023 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8024 N->setDebugLoc(DebugLoc()); 8025 } 8026 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8027 N->setIROrder(Order); 8028 return N; 8029 } 8030 8031 /// MorphNodeTo - This *mutates* the specified node to have the specified 8032 /// return type, opcode, and operands. 8033 /// 8034 /// Note that MorphNodeTo returns the resultant node. If there is already a 8035 /// node of the specified opcode and operands, it returns that node instead of 8036 /// the current one. Note that the SDLoc need not be the same. 8037 /// 8038 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8039 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8040 /// node, and because it doesn't require CSE recalculation for any of 8041 /// the node's users. 8042 /// 8043 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8044 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8045 /// the legalizer which maintain worklists that would need to be updated when 8046 /// deleting things. 8047 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8048 SDVTList VTs, ArrayRef<SDValue> Ops) { 8049 // If an identical node already exists, use it. 8050 void *IP = nullptr; 8051 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8052 FoldingSetNodeID ID; 8053 AddNodeIDNode(ID, Opc, VTs, Ops); 8054 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8055 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8056 } 8057 8058 if (!RemoveNodeFromCSEMaps(N)) 8059 IP = nullptr; 8060 8061 // Start the morphing. 8062 N->NodeType = Opc; 8063 N->ValueList = VTs.VTs; 8064 N->NumValues = VTs.NumVTs; 8065 8066 // Clear the operands list, updating used nodes to remove this from their 8067 // use list. Keep track of any operands that become dead as a result. 8068 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8069 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8070 SDUse &Use = *I++; 8071 SDNode *Used = Use.getNode(); 8072 Use.set(SDValue()); 8073 if (Used->use_empty()) 8074 DeadNodeSet.insert(Used); 8075 } 8076 8077 // For MachineNode, initialize the memory references information. 8078 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8079 MN->clearMemRefs(); 8080 8081 // Swap for an appropriately sized array from the recycler. 8082 removeOperands(N); 8083 createOperands(N, Ops); 8084 8085 // Delete any nodes that are still dead after adding the uses for the 8086 // new operands. 8087 if (!DeadNodeSet.empty()) { 8088 SmallVector<SDNode *, 16> DeadNodes; 8089 for (SDNode *N : DeadNodeSet) 8090 if (N->use_empty()) 8091 DeadNodes.push_back(N); 8092 RemoveDeadNodes(DeadNodes); 8093 } 8094 8095 if (IP) 8096 CSEMap.InsertNode(N, IP); // Memoize the new node. 8097 return N; 8098 } 8099 8100 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8101 unsigned OrigOpc = Node->getOpcode(); 8102 unsigned NewOpc; 8103 switch (OrigOpc) { 8104 default: 8105 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8106 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8107 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8108 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8109 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8110 #include "llvm/IR/ConstrainedOps.def" 8111 } 8112 8113 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8114 8115 // We're taking this node out of the chain, so we need to re-link things. 8116 SDValue InputChain = Node->getOperand(0); 8117 SDValue OutputChain = SDValue(Node, 1); 8118 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8119 8120 SmallVector<SDValue, 3> Ops; 8121 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8122 Ops.push_back(Node->getOperand(i)); 8123 8124 SDVTList VTs = getVTList(Node->getValueType(0)); 8125 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8126 8127 // MorphNodeTo can operate in two ways: if an existing node with the 8128 // specified operands exists, it can just return it. Otherwise, it 8129 // updates the node in place to have the requested operands. 8130 if (Res == Node) { 8131 // If we updated the node in place, reset the node ID. To the isel, 8132 // this should be just like a newly allocated machine node. 8133 Res->setNodeId(-1); 8134 } else { 8135 ReplaceAllUsesWith(Node, Res); 8136 RemoveDeadNode(Node); 8137 } 8138 8139 return Res; 8140 } 8141 8142 /// getMachineNode - These are used for target selectors to create a new node 8143 /// with specified return type(s), MachineInstr opcode, and operands. 8144 /// 8145 /// Note that getMachineNode returns the resultant node. If there is already a 8146 /// node of the specified opcode and operands, it returns that node instead of 8147 /// the current one. 8148 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8149 EVT VT) { 8150 SDVTList VTs = getVTList(VT); 8151 return getMachineNode(Opcode, dl, VTs, None); 8152 } 8153 8154 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8155 EVT VT, SDValue Op1) { 8156 SDVTList VTs = getVTList(VT); 8157 SDValue Ops[] = { Op1 }; 8158 return getMachineNode(Opcode, dl, VTs, Ops); 8159 } 8160 8161 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8162 EVT VT, SDValue Op1, SDValue Op2) { 8163 SDVTList VTs = getVTList(VT); 8164 SDValue Ops[] = { Op1, Op2 }; 8165 return getMachineNode(Opcode, dl, VTs, Ops); 8166 } 8167 8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8169 EVT VT, SDValue Op1, SDValue Op2, 8170 SDValue Op3) { 8171 SDVTList VTs = getVTList(VT); 8172 SDValue Ops[] = { Op1, Op2, Op3 }; 8173 return getMachineNode(Opcode, dl, VTs, Ops); 8174 } 8175 8176 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8177 EVT VT, ArrayRef<SDValue> Ops) { 8178 SDVTList VTs = getVTList(VT); 8179 return getMachineNode(Opcode, dl, VTs, Ops); 8180 } 8181 8182 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8183 EVT VT1, EVT VT2, SDValue Op1, 8184 SDValue Op2) { 8185 SDVTList VTs = getVTList(VT1, VT2); 8186 SDValue Ops[] = { Op1, Op2 }; 8187 return getMachineNode(Opcode, dl, VTs, Ops); 8188 } 8189 8190 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8191 EVT VT1, EVT VT2, SDValue Op1, 8192 SDValue Op2, SDValue Op3) { 8193 SDVTList VTs = getVTList(VT1, VT2); 8194 SDValue Ops[] = { Op1, Op2, Op3 }; 8195 return getMachineNode(Opcode, dl, VTs, Ops); 8196 } 8197 8198 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8199 EVT VT1, EVT VT2, 8200 ArrayRef<SDValue> Ops) { 8201 SDVTList VTs = getVTList(VT1, VT2); 8202 return getMachineNode(Opcode, dl, VTs, Ops); 8203 } 8204 8205 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8206 EVT VT1, EVT VT2, EVT VT3, 8207 SDValue Op1, SDValue Op2) { 8208 SDVTList VTs = getVTList(VT1, VT2, VT3); 8209 SDValue Ops[] = { Op1, Op2 }; 8210 return getMachineNode(Opcode, dl, VTs, Ops); 8211 } 8212 8213 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8214 EVT VT1, EVT VT2, EVT VT3, 8215 SDValue Op1, SDValue Op2, 8216 SDValue Op3) { 8217 SDVTList VTs = getVTList(VT1, VT2, VT3); 8218 SDValue Ops[] = { Op1, Op2, Op3 }; 8219 return getMachineNode(Opcode, dl, VTs, Ops); 8220 } 8221 8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8223 EVT VT1, EVT VT2, EVT VT3, 8224 ArrayRef<SDValue> Ops) { 8225 SDVTList VTs = getVTList(VT1, VT2, VT3); 8226 return getMachineNode(Opcode, dl, VTs, Ops); 8227 } 8228 8229 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8230 ArrayRef<EVT> ResultTys, 8231 ArrayRef<SDValue> Ops) { 8232 SDVTList VTs = getVTList(ResultTys); 8233 return getMachineNode(Opcode, dl, VTs, Ops); 8234 } 8235 8236 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8237 SDVTList VTs, 8238 ArrayRef<SDValue> Ops) { 8239 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8240 MachineSDNode *N; 8241 void *IP = nullptr; 8242 8243 if (DoCSE) { 8244 FoldingSetNodeID ID; 8245 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8246 IP = nullptr; 8247 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8248 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8249 } 8250 } 8251 8252 // Allocate a new MachineSDNode. 8253 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8254 createOperands(N, Ops); 8255 8256 if (DoCSE) 8257 CSEMap.InsertNode(N, IP); 8258 8259 InsertNode(N); 8260 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8261 return N; 8262 } 8263 8264 /// getTargetExtractSubreg - A convenience function for creating 8265 /// TargetOpcode::EXTRACT_SUBREG nodes. 8266 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8267 SDValue Operand) { 8268 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8269 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8270 VT, Operand, SRIdxVal); 8271 return SDValue(Subreg, 0); 8272 } 8273 8274 /// getTargetInsertSubreg - A convenience function for creating 8275 /// TargetOpcode::INSERT_SUBREG nodes. 8276 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8277 SDValue Operand, SDValue Subreg) { 8278 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8279 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8280 VT, Operand, Subreg, SRIdxVal); 8281 return SDValue(Result, 0); 8282 } 8283 8284 /// getNodeIfExists - Get the specified node if it's already available, or 8285 /// else return NULL. 8286 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8287 ArrayRef<SDValue> Ops) { 8288 SDNodeFlags Flags; 8289 if (Inserter) 8290 Flags = Inserter->getFlags(); 8291 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8292 } 8293 8294 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8295 ArrayRef<SDValue> Ops, 8296 const SDNodeFlags Flags) { 8297 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8298 FoldingSetNodeID ID; 8299 AddNodeIDNode(ID, Opcode, VTList, Ops); 8300 void *IP = nullptr; 8301 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8302 E->intersectFlagsWith(Flags); 8303 return E; 8304 } 8305 } 8306 return nullptr; 8307 } 8308 8309 /// getDbgValue - Creates a SDDbgValue node. 8310 /// 8311 /// SDNode 8312 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8313 SDNode *N, unsigned R, bool IsIndirect, 8314 const DebugLoc &DL, unsigned O) { 8315 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8316 "Expected inlined-at fields to agree"); 8317 return new (DbgInfo->getAlloc()) 8318 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8319 } 8320 8321 /// Constant 8322 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8323 DIExpression *Expr, 8324 const Value *C, 8325 const DebugLoc &DL, unsigned O) { 8326 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8327 "Expected inlined-at fields to agree"); 8328 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8329 } 8330 8331 /// FrameIndex 8332 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8333 DIExpression *Expr, unsigned FI, 8334 bool IsIndirect, 8335 const DebugLoc &DL, 8336 unsigned O) { 8337 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8338 "Expected inlined-at fields to agree"); 8339 return new (DbgInfo->getAlloc()) 8340 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8341 } 8342 8343 /// VReg 8344 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8345 DIExpression *Expr, 8346 unsigned VReg, bool IsIndirect, 8347 const DebugLoc &DL, unsigned O) { 8348 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8349 "Expected inlined-at fields to agree"); 8350 return new (DbgInfo->getAlloc()) 8351 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8352 } 8353 8354 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8355 unsigned OffsetInBits, unsigned SizeInBits, 8356 bool InvalidateDbg) { 8357 SDNode *FromNode = From.getNode(); 8358 SDNode *ToNode = To.getNode(); 8359 assert(FromNode && ToNode && "Can't modify dbg values"); 8360 8361 // PR35338 8362 // TODO: assert(From != To && "Redundant dbg value transfer"); 8363 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8364 if (From == To || FromNode == ToNode) 8365 return; 8366 8367 if (!FromNode->getHasDebugValue()) 8368 return; 8369 8370 SmallVector<SDDbgValue *, 2> ClonedDVs; 8371 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8372 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8373 continue; 8374 8375 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8376 8377 // Just transfer the dbg value attached to From. 8378 if (Dbg->getResNo() != From.getResNo()) 8379 continue; 8380 8381 DIVariable *Var = Dbg->getVariable(); 8382 auto *Expr = Dbg->getExpression(); 8383 // If a fragment is requested, update the expression. 8384 if (SizeInBits) { 8385 // When splitting a larger (e.g., sign-extended) value whose 8386 // lower bits are described with an SDDbgValue, do not attempt 8387 // to transfer the SDDbgValue to the upper bits. 8388 if (auto FI = Expr->getFragmentInfo()) 8389 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8390 continue; 8391 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8392 SizeInBits); 8393 if (!Fragment) 8394 continue; 8395 Expr = *Fragment; 8396 } 8397 // Clone the SDDbgValue and move it to To. 8398 SDDbgValue *Clone = getDbgValue( 8399 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8400 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8401 ClonedDVs.push_back(Clone); 8402 8403 if (InvalidateDbg) { 8404 // Invalidate value and indicate the SDDbgValue should not be emitted. 8405 Dbg->setIsInvalidated(); 8406 Dbg->setIsEmitted(); 8407 } 8408 } 8409 8410 for (SDDbgValue *Dbg : ClonedDVs) 8411 AddDbgValue(Dbg, ToNode, false); 8412 } 8413 8414 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8415 if (!N.getHasDebugValue()) 8416 return; 8417 8418 SmallVector<SDDbgValue *, 2> ClonedDVs; 8419 for (auto DV : GetDbgValues(&N)) { 8420 if (DV->isInvalidated()) 8421 continue; 8422 switch (N.getOpcode()) { 8423 default: 8424 break; 8425 case ISD::ADD: 8426 SDValue N0 = N.getOperand(0); 8427 SDValue N1 = N.getOperand(1); 8428 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8429 isConstantIntBuildVectorOrConstantInt(N1)) { 8430 uint64_t Offset = N.getConstantOperandVal(1); 8431 // Rewrite an ADD constant node into a DIExpression. Since we are 8432 // performing arithmetic to compute the variable's *value* in the 8433 // DIExpression, we need to mark the expression with a 8434 // DW_OP_stack_value. 8435 auto *DIExpr = DV->getExpression(); 8436 DIExpr = 8437 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8438 SDDbgValue *Clone = 8439 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8440 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8441 ClonedDVs.push_back(Clone); 8442 DV->setIsInvalidated(); 8443 DV->setIsEmitted(); 8444 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8445 N0.getNode()->dumprFull(this); 8446 dbgs() << " into " << *DIExpr << '\n'); 8447 } 8448 } 8449 } 8450 8451 for (SDDbgValue *Dbg : ClonedDVs) 8452 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8453 } 8454 8455 /// Creates a SDDbgLabel node. 8456 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8457 const DebugLoc &DL, unsigned O) { 8458 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8459 "Expected inlined-at fields to agree"); 8460 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8461 } 8462 8463 namespace { 8464 8465 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8466 /// pointed to by a use iterator is deleted, increment the use iterator 8467 /// so that it doesn't dangle. 8468 /// 8469 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8470 SDNode::use_iterator &UI; 8471 SDNode::use_iterator &UE; 8472 8473 void NodeDeleted(SDNode *N, SDNode *E) override { 8474 // Increment the iterator as needed. 8475 while (UI != UE && N == *UI) 8476 ++UI; 8477 } 8478 8479 public: 8480 RAUWUpdateListener(SelectionDAG &d, 8481 SDNode::use_iterator &ui, 8482 SDNode::use_iterator &ue) 8483 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8484 }; 8485 8486 } // end anonymous namespace 8487 8488 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8489 /// This can cause recursive merging of nodes in the DAG. 8490 /// 8491 /// This version assumes From has a single result value. 8492 /// 8493 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8494 SDNode *From = FromN.getNode(); 8495 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8496 "Cannot replace with this method!"); 8497 assert(From != To.getNode() && "Cannot replace uses of with self"); 8498 8499 // Preserve Debug Values 8500 transferDbgValues(FromN, To); 8501 8502 // Iterate over all the existing uses of From. New uses will be added 8503 // to the beginning of the use list, which we avoid visiting. 8504 // This specifically avoids visiting uses of From that arise while the 8505 // replacement is happening, because any such uses would be the result 8506 // of CSE: If an existing node looks like From after one of its operands 8507 // is replaced by To, we don't want to replace of all its users with To 8508 // too. See PR3018 for more info. 8509 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8510 RAUWUpdateListener Listener(*this, UI, UE); 8511 while (UI != UE) { 8512 SDNode *User = *UI; 8513 8514 // This node is about to morph, remove its old self from the CSE maps. 8515 RemoveNodeFromCSEMaps(User); 8516 8517 // A user can appear in a use list multiple times, and when this 8518 // happens the uses are usually next to each other in the list. 8519 // To help reduce the number of CSE recomputations, process all 8520 // the uses of this user that we can find this way. 8521 do { 8522 SDUse &Use = UI.getUse(); 8523 ++UI; 8524 Use.set(To); 8525 if (To->isDivergent() != From->isDivergent()) 8526 updateDivergence(User); 8527 } while (UI != UE && *UI == User); 8528 // Now that we have modified User, add it back to the CSE maps. If it 8529 // already exists there, recursively merge the results together. 8530 AddModifiedNodeToCSEMaps(User); 8531 } 8532 8533 // If we just RAUW'd the root, take note. 8534 if (FromN == getRoot()) 8535 setRoot(To); 8536 } 8537 8538 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8539 /// This can cause recursive merging of nodes in the DAG. 8540 /// 8541 /// This version assumes that for each value of From, there is a 8542 /// corresponding value in To in the same position with the same type. 8543 /// 8544 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8545 #ifndef NDEBUG 8546 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8547 assert((!From->hasAnyUseOfValue(i) || 8548 From->getValueType(i) == To->getValueType(i)) && 8549 "Cannot use this version of ReplaceAllUsesWith!"); 8550 #endif 8551 8552 // Handle the trivial case. 8553 if (From == To) 8554 return; 8555 8556 // Preserve Debug Info. Only do this if there's a use. 8557 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8558 if (From->hasAnyUseOfValue(i)) { 8559 assert((i < To->getNumValues()) && "Invalid To location"); 8560 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8561 } 8562 8563 // Iterate over just the existing users of From. See the comments in 8564 // the ReplaceAllUsesWith above. 8565 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8566 RAUWUpdateListener Listener(*this, UI, UE); 8567 while (UI != UE) { 8568 SDNode *User = *UI; 8569 8570 // This node is about to morph, remove its old self from the CSE maps. 8571 RemoveNodeFromCSEMaps(User); 8572 8573 // A user can appear in a use list multiple times, and when this 8574 // happens the uses are usually next to each other in the list. 8575 // To help reduce the number of CSE recomputations, process all 8576 // the uses of this user that we can find this way. 8577 do { 8578 SDUse &Use = UI.getUse(); 8579 ++UI; 8580 Use.setNode(To); 8581 if (To->isDivergent() != From->isDivergent()) 8582 updateDivergence(User); 8583 } while (UI != UE && *UI == User); 8584 8585 // Now that we have modified User, add it back to the CSE maps. If it 8586 // already exists there, recursively merge the results together. 8587 AddModifiedNodeToCSEMaps(User); 8588 } 8589 8590 // If we just RAUW'd the root, take note. 8591 if (From == getRoot().getNode()) 8592 setRoot(SDValue(To, getRoot().getResNo())); 8593 } 8594 8595 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8596 /// This can cause recursive merging of nodes in the DAG. 8597 /// 8598 /// This version can replace From with any result values. To must match the 8599 /// number and types of values returned by From. 8600 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8601 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8602 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8603 8604 // Preserve Debug Info. 8605 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8606 transferDbgValues(SDValue(From, i), To[i]); 8607 8608 // Iterate over just the existing users of From. See the comments in 8609 // the ReplaceAllUsesWith above. 8610 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8611 RAUWUpdateListener Listener(*this, UI, UE); 8612 while (UI != UE) { 8613 SDNode *User = *UI; 8614 8615 // This node is about to morph, remove its old self from the CSE maps. 8616 RemoveNodeFromCSEMaps(User); 8617 8618 // A user can appear in a use list multiple times, and when this happens the 8619 // uses are usually next to each other in the list. To help reduce the 8620 // number of CSE and divergence recomputations, process all the uses of this 8621 // user that we can find this way. 8622 bool To_IsDivergent = false; 8623 do { 8624 SDUse &Use = UI.getUse(); 8625 const SDValue &ToOp = To[Use.getResNo()]; 8626 ++UI; 8627 Use.set(ToOp); 8628 To_IsDivergent |= ToOp->isDivergent(); 8629 } while (UI != UE && *UI == User); 8630 8631 if (To_IsDivergent != From->isDivergent()) 8632 updateDivergence(User); 8633 8634 // Now that we have modified User, add it back to the CSE maps. If it 8635 // already exists there, recursively merge the results together. 8636 AddModifiedNodeToCSEMaps(User); 8637 } 8638 8639 // If we just RAUW'd the root, take note. 8640 if (From == getRoot().getNode()) 8641 setRoot(SDValue(To[getRoot().getResNo()])); 8642 } 8643 8644 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8645 /// uses of other values produced by From.getNode() alone. The Deleted 8646 /// vector is handled the same way as for ReplaceAllUsesWith. 8647 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8648 // Handle the really simple, really trivial case efficiently. 8649 if (From == To) return; 8650 8651 // Handle the simple, trivial, case efficiently. 8652 if (From.getNode()->getNumValues() == 1) { 8653 ReplaceAllUsesWith(From, To); 8654 return; 8655 } 8656 8657 // Preserve Debug Info. 8658 transferDbgValues(From, To); 8659 8660 // Iterate over just the existing users of From. See the comments in 8661 // the ReplaceAllUsesWith above. 8662 SDNode::use_iterator UI = From.getNode()->use_begin(), 8663 UE = From.getNode()->use_end(); 8664 RAUWUpdateListener Listener(*this, UI, UE); 8665 while (UI != UE) { 8666 SDNode *User = *UI; 8667 bool UserRemovedFromCSEMaps = false; 8668 8669 // A user can appear in a use list multiple times, and when this 8670 // happens the uses are usually next to each other in the list. 8671 // To help reduce the number of CSE recomputations, process all 8672 // the uses of this user that we can find this way. 8673 do { 8674 SDUse &Use = UI.getUse(); 8675 8676 // Skip uses of different values from the same node. 8677 if (Use.getResNo() != From.getResNo()) { 8678 ++UI; 8679 continue; 8680 } 8681 8682 // If this node hasn't been modified yet, it's still in the CSE maps, 8683 // so remove its old self from the CSE maps. 8684 if (!UserRemovedFromCSEMaps) { 8685 RemoveNodeFromCSEMaps(User); 8686 UserRemovedFromCSEMaps = true; 8687 } 8688 8689 ++UI; 8690 Use.set(To); 8691 if (To->isDivergent() != From->isDivergent()) 8692 updateDivergence(User); 8693 } while (UI != UE && *UI == User); 8694 // We are iterating over all uses of the From node, so if a use 8695 // doesn't use the specific value, no changes are made. 8696 if (!UserRemovedFromCSEMaps) 8697 continue; 8698 8699 // Now that we have modified User, add it back to the CSE maps. If it 8700 // already exists there, recursively merge the results together. 8701 AddModifiedNodeToCSEMaps(User); 8702 } 8703 8704 // If we just RAUW'd the root, take note. 8705 if (From == getRoot()) 8706 setRoot(To); 8707 } 8708 8709 namespace { 8710 8711 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8712 /// to record information about a use. 8713 struct UseMemo { 8714 SDNode *User; 8715 unsigned Index; 8716 SDUse *Use; 8717 }; 8718 8719 /// operator< - Sort Memos by User. 8720 bool operator<(const UseMemo &L, const UseMemo &R) { 8721 return (intptr_t)L.User < (intptr_t)R.User; 8722 } 8723 8724 } // end anonymous namespace 8725 8726 bool SelectionDAG::calculateDivergence(SDNode *N) { 8727 if (TLI->isSDNodeAlwaysUniform(N)) { 8728 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8729 "Conflicting divergence information!"); 8730 return false; 8731 } 8732 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8733 return true; 8734 for (auto &Op : N->ops()) { 8735 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8736 return true; 8737 } 8738 return false; 8739 } 8740 8741 void SelectionDAG::updateDivergence(SDNode *N) { 8742 SmallVector<SDNode *, 16> Worklist(1, N); 8743 do { 8744 N = Worklist.pop_back_val(); 8745 bool IsDivergent = calculateDivergence(N); 8746 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8747 N->SDNodeBits.IsDivergent = IsDivergent; 8748 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8749 } 8750 } while (!Worklist.empty()); 8751 } 8752 8753 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8754 DenseMap<SDNode *, unsigned> Degree; 8755 Order.reserve(AllNodes.size()); 8756 for (auto &N : allnodes()) { 8757 unsigned NOps = N.getNumOperands(); 8758 Degree[&N] = NOps; 8759 if (0 == NOps) 8760 Order.push_back(&N); 8761 } 8762 for (size_t I = 0; I != Order.size(); ++I) { 8763 SDNode *N = Order[I]; 8764 for (auto U : N->uses()) { 8765 unsigned &UnsortedOps = Degree[U]; 8766 if (0 == --UnsortedOps) 8767 Order.push_back(U); 8768 } 8769 } 8770 } 8771 8772 #ifndef NDEBUG 8773 void SelectionDAG::VerifyDAGDiverence() { 8774 std::vector<SDNode *> TopoOrder; 8775 CreateTopologicalOrder(TopoOrder); 8776 for (auto *N : TopoOrder) { 8777 assert(calculateDivergence(N) == N->isDivergent() && 8778 "Divergence bit inconsistency detected"); 8779 } 8780 } 8781 #endif 8782 8783 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8784 /// uses of other values produced by From.getNode() alone. The same value 8785 /// may appear in both the From and To list. The Deleted vector is 8786 /// handled the same way as for ReplaceAllUsesWith. 8787 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8788 const SDValue *To, 8789 unsigned Num){ 8790 // Handle the simple, trivial case efficiently. 8791 if (Num == 1) 8792 return ReplaceAllUsesOfValueWith(*From, *To); 8793 8794 transferDbgValues(*From, *To); 8795 8796 // Read up all the uses and make records of them. This helps 8797 // processing new uses that are introduced during the 8798 // replacement process. 8799 SmallVector<UseMemo, 4> Uses; 8800 for (unsigned i = 0; i != Num; ++i) { 8801 unsigned FromResNo = From[i].getResNo(); 8802 SDNode *FromNode = From[i].getNode(); 8803 for (SDNode::use_iterator UI = FromNode->use_begin(), 8804 E = FromNode->use_end(); UI != E; ++UI) { 8805 SDUse &Use = UI.getUse(); 8806 if (Use.getResNo() == FromResNo) { 8807 UseMemo Memo = { *UI, i, &Use }; 8808 Uses.push_back(Memo); 8809 } 8810 } 8811 } 8812 8813 // Sort the uses, so that all the uses from a given User are together. 8814 llvm::sort(Uses); 8815 8816 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8817 UseIndex != UseIndexEnd; ) { 8818 // We know that this user uses some value of From. If it is the right 8819 // value, update it. 8820 SDNode *User = Uses[UseIndex].User; 8821 8822 // This node is about to morph, remove its old self from the CSE maps. 8823 RemoveNodeFromCSEMaps(User); 8824 8825 // The Uses array is sorted, so all the uses for a given User 8826 // are next to each other in the list. 8827 // To help reduce the number of CSE recomputations, process all 8828 // the uses of this user that we can find this way. 8829 do { 8830 unsigned i = Uses[UseIndex].Index; 8831 SDUse &Use = *Uses[UseIndex].Use; 8832 ++UseIndex; 8833 8834 Use.set(To[i]); 8835 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8836 8837 // Now that we have modified User, add it back to the CSE maps. If it 8838 // already exists there, recursively merge the results together. 8839 AddModifiedNodeToCSEMaps(User); 8840 } 8841 } 8842 8843 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8844 /// based on their topological order. It returns the maximum id and a vector 8845 /// of the SDNodes* in assigned order by reference. 8846 unsigned SelectionDAG::AssignTopologicalOrder() { 8847 unsigned DAGSize = 0; 8848 8849 // SortedPos tracks the progress of the algorithm. Nodes before it are 8850 // sorted, nodes after it are unsorted. When the algorithm completes 8851 // it is at the end of the list. 8852 allnodes_iterator SortedPos = allnodes_begin(); 8853 8854 // Visit all the nodes. Move nodes with no operands to the front of 8855 // the list immediately. Annotate nodes that do have operands with their 8856 // operand count. Before we do this, the Node Id fields of the nodes 8857 // may contain arbitrary values. After, the Node Id fields for nodes 8858 // before SortedPos will contain the topological sort index, and the 8859 // Node Id fields for nodes At SortedPos and after will contain the 8860 // count of outstanding operands. 8861 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8862 SDNode *N = &*I++; 8863 checkForCycles(N, this); 8864 unsigned Degree = N->getNumOperands(); 8865 if (Degree == 0) { 8866 // A node with no uses, add it to the result array immediately. 8867 N->setNodeId(DAGSize++); 8868 allnodes_iterator Q(N); 8869 if (Q != SortedPos) 8870 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8871 assert(SortedPos != AllNodes.end() && "Overran node list"); 8872 ++SortedPos; 8873 } else { 8874 // Temporarily use the Node Id as scratch space for the degree count. 8875 N->setNodeId(Degree); 8876 } 8877 } 8878 8879 // Visit all the nodes. As we iterate, move nodes into sorted order, 8880 // such that by the time the end is reached all nodes will be sorted. 8881 for (SDNode &Node : allnodes()) { 8882 SDNode *N = &Node; 8883 checkForCycles(N, this); 8884 // N is in sorted position, so all its uses have one less operand 8885 // that needs to be sorted. 8886 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8887 UI != UE; ++UI) { 8888 SDNode *P = *UI; 8889 unsigned Degree = P->getNodeId(); 8890 assert(Degree != 0 && "Invalid node degree"); 8891 --Degree; 8892 if (Degree == 0) { 8893 // All of P's operands are sorted, so P may sorted now. 8894 P->setNodeId(DAGSize++); 8895 if (P->getIterator() != SortedPos) 8896 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8897 assert(SortedPos != AllNodes.end() && "Overran node list"); 8898 ++SortedPos; 8899 } else { 8900 // Update P's outstanding operand count. 8901 P->setNodeId(Degree); 8902 } 8903 } 8904 if (Node.getIterator() == SortedPos) { 8905 #ifndef NDEBUG 8906 allnodes_iterator I(N); 8907 SDNode *S = &*++I; 8908 dbgs() << "Overran sorted position:\n"; 8909 S->dumprFull(this); dbgs() << "\n"; 8910 dbgs() << "Checking if this is due to cycles\n"; 8911 checkForCycles(this, true); 8912 #endif 8913 llvm_unreachable(nullptr); 8914 } 8915 } 8916 8917 assert(SortedPos == AllNodes.end() && 8918 "Topological sort incomplete!"); 8919 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8920 "First node in topological sort is not the entry token!"); 8921 assert(AllNodes.front().getNodeId() == 0 && 8922 "First node in topological sort has non-zero id!"); 8923 assert(AllNodes.front().getNumOperands() == 0 && 8924 "First node in topological sort has operands!"); 8925 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8926 "Last node in topologic sort has unexpected id!"); 8927 assert(AllNodes.back().use_empty() && 8928 "Last node in topologic sort has users!"); 8929 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8930 return DAGSize; 8931 } 8932 8933 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8934 /// value is produced by SD. 8935 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8936 if (SD) { 8937 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8938 SD->setHasDebugValue(true); 8939 } 8940 DbgInfo->add(DB, SD, isParameter); 8941 } 8942 8943 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8944 DbgInfo->add(DB); 8945 } 8946 8947 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8948 SDValue NewMemOp) { 8949 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8950 // The new memory operation must have the same position as the old load in 8951 // terms of memory dependency. Create a TokenFactor for the old load and new 8952 // memory operation and update uses of the old load's output chain to use that 8953 // TokenFactor. 8954 SDValue OldChain = SDValue(OldLoad, 1); 8955 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8956 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8957 return NewChain; 8958 8959 SDValue TokenFactor = 8960 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8961 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8962 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8963 return TokenFactor; 8964 } 8965 8966 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8967 Function **OutFunction) { 8968 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8969 8970 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8971 auto *Module = MF->getFunction().getParent(); 8972 auto *Function = Module->getFunction(Symbol); 8973 8974 if (OutFunction != nullptr) 8975 *OutFunction = Function; 8976 8977 if (Function != nullptr) { 8978 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8979 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8980 } 8981 8982 std::string ErrorStr; 8983 raw_string_ostream ErrorFormatter(ErrorStr); 8984 8985 ErrorFormatter << "Undefined external symbol "; 8986 ErrorFormatter << '"' << Symbol << '"'; 8987 ErrorFormatter.flush(); 8988 8989 report_fatal_error(ErrorStr); 8990 } 8991 8992 //===----------------------------------------------------------------------===// 8993 // SDNode Class 8994 //===----------------------------------------------------------------------===// 8995 8996 bool llvm::isNullConstant(SDValue V) { 8997 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8998 return Const != nullptr && Const->isNullValue(); 8999 } 9000 9001 bool llvm::isNullFPConstant(SDValue V) { 9002 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9003 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9004 } 9005 9006 bool llvm::isAllOnesConstant(SDValue V) { 9007 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9008 return Const != nullptr && Const->isAllOnesValue(); 9009 } 9010 9011 bool llvm::isOneConstant(SDValue V) { 9012 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9013 return Const != nullptr && Const->isOne(); 9014 } 9015 9016 SDValue llvm::peekThroughBitcasts(SDValue V) { 9017 while (V.getOpcode() == ISD::BITCAST) 9018 V = V.getOperand(0); 9019 return V; 9020 } 9021 9022 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9023 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9024 V = V.getOperand(0); 9025 return V; 9026 } 9027 9028 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9029 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9030 V = V.getOperand(0); 9031 return V; 9032 } 9033 9034 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9035 if (V.getOpcode() != ISD::XOR) 9036 return false; 9037 V = peekThroughBitcasts(V.getOperand(1)); 9038 unsigned NumBits = V.getScalarValueSizeInBits(); 9039 ConstantSDNode *C = 9040 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9041 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9042 } 9043 9044 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9045 bool AllowTruncation) { 9046 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9047 return CN; 9048 9049 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9050 BitVector UndefElements; 9051 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9052 9053 // BuildVectors can truncate their operands. Ignore that case here unless 9054 // AllowTruncation is set. 9055 if (CN && (UndefElements.none() || AllowUndefs)) { 9056 EVT CVT = CN->getValueType(0); 9057 EVT NSVT = N.getValueType().getScalarType(); 9058 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9059 if (AllowTruncation || (CVT == NSVT)) 9060 return CN; 9061 } 9062 } 9063 9064 return nullptr; 9065 } 9066 9067 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9068 bool AllowUndefs, 9069 bool AllowTruncation) { 9070 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9071 return CN; 9072 9073 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9074 BitVector UndefElements; 9075 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9076 9077 // BuildVectors can truncate their operands. Ignore that case here unless 9078 // AllowTruncation is set. 9079 if (CN && (UndefElements.none() || AllowUndefs)) { 9080 EVT CVT = CN->getValueType(0); 9081 EVT NSVT = N.getValueType().getScalarType(); 9082 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9083 if (AllowTruncation || (CVT == NSVT)) 9084 return CN; 9085 } 9086 } 9087 9088 return nullptr; 9089 } 9090 9091 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9092 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9093 return CN; 9094 9095 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9096 BitVector UndefElements; 9097 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9098 if (CN && (UndefElements.none() || AllowUndefs)) 9099 return CN; 9100 } 9101 9102 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9103 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9104 return CN; 9105 9106 return nullptr; 9107 } 9108 9109 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9110 const APInt &DemandedElts, 9111 bool AllowUndefs) { 9112 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9113 return CN; 9114 9115 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9116 BitVector UndefElements; 9117 ConstantFPSDNode *CN = 9118 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9119 if (CN && (UndefElements.none() || AllowUndefs)) 9120 return CN; 9121 } 9122 9123 return nullptr; 9124 } 9125 9126 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9127 // TODO: may want to use peekThroughBitcast() here. 9128 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9129 return C && C->isNullValue(); 9130 } 9131 9132 bool llvm::isOneOrOneSplat(SDValue N) { 9133 // TODO: may want to use peekThroughBitcast() here. 9134 unsigned BitWidth = N.getScalarValueSizeInBits(); 9135 ConstantSDNode *C = isConstOrConstSplat(N); 9136 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9137 } 9138 9139 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9140 N = peekThroughBitcasts(N); 9141 unsigned BitWidth = N.getScalarValueSizeInBits(); 9142 ConstantSDNode *C = isConstOrConstSplat(N); 9143 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9144 } 9145 9146 HandleSDNode::~HandleSDNode() { 9147 DropOperands(); 9148 } 9149 9150 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9151 const DebugLoc &DL, 9152 const GlobalValue *GA, EVT VT, 9153 int64_t o, unsigned TF) 9154 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9155 TheGlobal = GA; 9156 } 9157 9158 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9159 EVT VT, unsigned SrcAS, 9160 unsigned DestAS) 9161 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9162 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9163 9164 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9165 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9166 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9167 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9168 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9169 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9170 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9171 9172 // We check here that the size of the memory operand fits within the size of 9173 // the MMO. This is because the MMO might indicate only a possible address 9174 // range instead of specifying the affected memory addresses precisely. 9175 // TODO: Make MachineMemOperands aware of scalable vectors. 9176 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9177 "Size mismatch!"); 9178 } 9179 9180 /// Profile - Gather unique data for the node. 9181 /// 9182 void SDNode::Profile(FoldingSetNodeID &ID) const { 9183 AddNodeIDNode(ID, this); 9184 } 9185 9186 namespace { 9187 9188 struct EVTArray { 9189 std::vector<EVT> VTs; 9190 9191 EVTArray() { 9192 VTs.reserve(MVT::LAST_VALUETYPE); 9193 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9194 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9195 } 9196 }; 9197 9198 } // end anonymous namespace 9199 9200 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9201 static ManagedStatic<EVTArray> SimpleVTArray; 9202 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9203 9204 /// getValueTypeList - Return a pointer to the specified value type. 9205 /// 9206 const EVT *SDNode::getValueTypeList(EVT VT) { 9207 if (VT.isExtended()) { 9208 sys::SmartScopedLock<true> Lock(*VTMutex); 9209 return &(*EVTs->insert(VT).first); 9210 } else { 9211 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9212 "Value type out of range!"); 9213 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9214 } 9215 } 9216 9217 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9218 /// indicated value. This method ignores uses of other values defined by this 9219 /// operation. 9220 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9221 assert(Value < getNumValues() && "Bad value!"); 9222 9223 // TODO: Only iterate over uses of a given value of the node 9224 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9225 if (UI.getUse().getResNo() == Value) { 9226 if (NUses == 0) 9227 return false; 9228 --NUses; 9229 } 9230 } 9231 9232 // Found exactly the right number of uses? 9233 return NUses == 0; 9234 } 9235 9236 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9237 /// value. This method ignores uses of other values defined by this operation. 9238 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9239 assert(Value < getNumValues() && "Bad value!"); 9240 9241 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9242 if (UI.getUse().getResNo() == Value) 9243 return true; 9244 9245 return false; 9246 } 9247 9248 /// isOnlyUserOf - Return true if this node is the only use of N. 9249 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9250 bool Seen = false; 9251 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9252 SDNode *User = *I; 9253 if (User == this) 9254 Seen = true; 9255 else 9256 return false; 9257 } 9258 9259 return Seen; 9260 } 9261 9262 /// Return true if the only users of N are contained in Nodes. 9263 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9264 bool Seen = false; 9265 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9266 SDNode *User = *I; 9267 if (llvm::any_of(Nodes, 9268 [&User](const SDNode *Node) { return User == Node; })) 9269 Seen = true; 9270 else 9271 return false; 9272 } 9273 9274 return Seen; 9275 } 9276 9277 /// isOperand - Return true if this node is an operand of N. 9278 bool SDValue::isOperandOf(const SDNode *N) const { 9279 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9280 } 9281 9282 bool SDNode::isOperandOf(const SDNode *N) const { 9283 return any_of(N->op_values(), 9284 [this](SDValue Op) { return this == Op.getNode(); }); 9285 } 9286 9287 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9288 /// be a chain) reaches the specified operand without crossing any 9289 /// side-effecting instructions on any chain path. In practice, this looks 9290 /// through token factors and non-volatile loads. In order to remain efficient, 9291 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9292 /// 9293 /// Note that we only need to examine chains when we're searching for 9294 /// side-effects; SelectionDAG requires that all side-effects are represented 9295 /// by chains, even if another operand would force a specific ordering. This 9296 /// constraint is necessary to allow transformations like splitting loads. 9297 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9298 unsigned Depth) const { 9299 if (*this == Dest) return true; 9300 9301 // Don't search too deeply, we just want to be able to see through 9302 // TokenFactor's etc. 9303 if (Depth == 0) return false; 9304 9305 // If this is a token factor, all inputs to the TF happen in parallel. 9306 if (getOpcode() == ISD::TokenFactor) { 9307 // First, try a shallow search. 9308 if (is_contained((*this)->ops(), Dest)) { 9309 // We found the chain we want as an operand of this TokenFactor. 9310 // Essentially, we reach the chain without side-effects if we could 9311 // serialize the TokenFactor into a simple chain of operations with 9312 // Dest as the last operation. This is automatically true if the 9313 // chain has one use: there are no other ordering constraints. 9314 // If the chain has more than one use, we give up: some other 9315 // use of Dest might force a side-effect between Dest and the current 9316 // node. 9317 if (Dest.hasOneUse()) 9318 return true; 9319 } 9320 // Next, try a deep search: check whether every operand of the TokenFactor 9321 // reaches Dest. 9322 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9323 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9324 }); 9325 } 9326 9327 // Loads don't have side effects, look through them. 9328 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9329 if (Ld->isUnordered()) 9330 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9331 } 9332 return false; 9333 } 9334 9335 bool SDNode::hasPredecessor(const SDNode *N) const { 9336 SmallPtrSet<const SDNode *, 32> Visited; 9337 SmallVector<const SDNode *, 16> Worklist; 9338 Worklist.push_back(this); 9339 return hasPredecessorHelper(N, Visited, Worklist); 9340 } 9341 9342 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9343 this->Flags.intersectWith(Flags); 9344 } 9345 9346 SDValue 9347 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9348 ArrayRef<ISD::NodeType> CandidateBinOps, 9349 bool AllowPartials) { 9350 // The pattern must end in an extract from index 0. 9351 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9352 !isNullConstant(Extract->getOperand(1))) 9353 return SDValue(); 9354 9355 // Match against one of the candidate binary ops. 9356 SDValue Op = Extract->getOperand(0); 9357 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9358 return Op.getOpcode() == unsigned(BinOp); 9359 })) 9360 return SDValue(); 9361 9362 // Floating-point reductions may require relaxed constraints on the final step 9363 // of the reduction because they may reorder intermediate operations. 9364 unsigned CandidateBinOp = Op.getOpcode(); 9365 if (Op.getValueType().isFloatingPoint()) { 9366 SDNodeFlags Flags = Op->getFlags(); 9367 switch (CandidateBinOp) { 9368 case ISD::FADD: 9369 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9370 return SDValue(); 9371 break; 9372 default: 9373 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9374 } 9375 } 9376 9377 // Matching failed - attempt to see if we did enough stages that a partial 9378 // reduction from a subvector is possible. 9379 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9380 if (!AllowPartials || !Op) 9381 return SDValue(); 9382 EVT OpVT = Op.getValueType(); 9383 EVT OpSVT = OpVT.getScalarType(); 9384 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9385 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9386 return SDValue(); 9387 BinOp = (ISD::NodeType)CandidateBinOp; 9388 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9389 getVectorIdxConstant(0, SDLoc(Op))); 9390 }; 9391 9392 // At each stage, we're looking for something that looks like: 9393 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9394 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9395 // i32 undef, i32 undef, i32 undef, i32 undef> 9396 // %a = binop <8 x i32> %op, %s 9397 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9398 // we expect something like: 9399 // <4,5,6,7,u,u,u,u> 9400 // <2,3,u,u,u,u,u,u> 9401 // <1,u,u,u,u,u,u,u> 9402 // While a partial reduction match would be: 9403 // <2,3,u,u,u,u,u,u> 9404 // <1,u,u,u,u,u,u,u> 9405 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9406 SDValue PrevOp; 9407 for (unsigned i = 0; i < Stages; ++i) { 9408 unsigned MaskEnd = (1 << i); 9409 9410 if (Op.getOpcode() != CandidateBinOp) 9411 return PartialReduction(PrevOp, MaskEnd); 9412 9413 SDValue Op0 = Op.getOperand(0); 9414 SDValue Op1 = Op.getOperand(1); 9415 9416 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9417 if (Shuffle) { 9418 Op = Op1; 9419 } else { 9420 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9421 Op = Op0; 9422 } 9423 9424 // The first operand of the shuffle should be the same as the other operand 9425 // of the binop. 9426 if (!Shuffle || Shuffle->getOperand(0) != Op) 9427 return PartialReduction(PrevOp, MaskEnd); 9428 9429 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9430 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9431 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9432 return PartialReduction(PrevOp, MaskEnd); 9433 9434 PrevOp = Op; 9435 } 9436 9437 // Handle subvector reductions, which tend to appear after the shuffle 9438 // reduction stages. 9439 while (Op.getOpcode() == CandidateBinOp) { 9440 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9441 SDValue Op0 = Op.getOperand(0); 9442 SDValue Op1 = Op.getOperand(1); 9443 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9444 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9445 Op0.getOperand(0) != Op1.getOperand(0)) 9446 break; 9447 SDValue Src = Op0.getOperand(0); 9448 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9449 if (NumSrcElts != (2 * NumElts)) 9450 break; 9451 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9452 Op1.getConstantOperandAPInt(1) == NumElts) && 9453 !(Op1.getConstantOperandAPInt(1) == 0 && 9454 Op0.getConstantOperandAPInt(1) == NumElts)) 9455 break; 9456 Op = Src; 9457 } 9458 9459 BinOp = (ISD::NodeType)CandidateBinOp; 9460 return Op; 9461 } 9462 9463 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9464 assert(N->getNumValues() == 1 && 9465 "Can't unroll a vector with multiple results!"); 9466 9467 EVT VT = N->getValueType(0); 9468 unsigned NE = VT.getVectorNumElements(); 9469 EVT EltVT = VT.getVectorElementType(); 9470 SDLoc dl(N); 9471 9472 SmallVector<SDValue, 8> Scalars; 9473 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9474 9475 // If ResNE is 0, fully unroll the vector op. 9476 if (ResNE == 0) 9477 ResNE = NE; 9478 else if (NE > ResNE) 9479 NE = ResNE; 9480 9481 unsigned i; 9482 for (i= 0; i != NE; ++i) { 9483 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9484 SDValue Operand = N->getOperand(j); 9485 EVT OperandVT = Operand.getValueType(); 9486 if (OperandVT.isVector()) { 9487 // A vector operand; extract a single element. 9488 EVT OperandEltVT = OperandVT.getVectorElementType(); 9489 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9490 Operand, getVectorIdxConstant(i, dl)); 9491 } else { 9492 // A scalar operand; just use it as is. 9493 Operands[j] = Operand; 9494 } 9495 } 9496 9497 switch (N->getOpcode()) { 9498 default: { 9499 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9500 N->getFlags())); 9501 break; 9502 } 9503 case ISD::VSELECT: 9504 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9505 break; 9506 case ISD::SHL: 9507 case ISD::SRA: 9508 case ISD::SRL: 9509 case ISD::ROTL: 9510 case ISD::ROTR: 9511 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9512 getShiftAmountOperand(Operands[0].getValueType(), 9513 Operands[1]))); 9514 break; 9515 case ISD::SIGN_EXTEND_INREG: { 9516 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9517 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9518 Operands[0], 9519 getValueType(ExtVT))); 9520 } 9521 } 9522 } 9523 9524 for (; i < ResNE; ++i) 9525 Scalars.push_back(getUNDEF(EltVT)); 9526 9527 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9528 return getBuildVector(VecVT, dl, Scalars); 9529 } 9530 9531 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9532 SDNode *N, unsigned ResNE) { 9533 unsigned Opcode = N->getOpcode(); 9534 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9535 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9536 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9537 "Expected an overflow opcode"); 9538 9539 EVT ResVT = N->getValueType(0); 9540 EVT OvVT = N->getValueType(1); 9541 EVT ResEltVT = ResVT.getVectorElementType(); 9542 EVT OvEltVT = OvVT.getVectorElementType(); 9543 SDLoc dl(N); 9544 9545 // If ResNE is 0, fully unroll the vector op. 9546 unsigned NE = ResVT.getVectorNumElements(); 9547 if (ResNE == 0) 9548 ResNE = NE; 9549 else if (NE > ResNE) 9550 NE = ResNE; 9551 9552 SmallVector<SDValue, 8> LHSScalars; 9553 SmallVector<SDValue, 8> RHSScalars; 9554 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9555 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9556 9557 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9558 SDVTList VTs = getVTList(ResEltVT, SVT); 9559 SmallVector<SDValue, 8> ResScalars; 9560 SmallVector<SDValue, 8> OvScalars; 9561 for (unsigned i = 0; i < NE; ++i) { 9562 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9563 SDValue Ov = 9564 getSelect(dl, OvEltVT, Res.getValue(1), 9565 getBoolConstant(true, dl, OvEltVT, ResVT), 9566 getConstant(0, dl, OvEltVT)); 9567 9568 ResScalars.push_back(Res); 9569 OvScalars.push_back(Ov); 9570 } 9571 9572 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9573 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9574 9575 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9576 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9577 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9578 getBuildVector(NewOvVT, dl, OvScalars)); 9579 } 9580 9581 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9582 LoadSDNode *Base, 9583 unsigned Bytes, 9584 int Dist) const { 9585 if (LD->isVolatile() || Base->isVolatile()) 9586 return false; 9587 // TODO: probably too restrictive for atomics, revisit 9588 if (!LD->isSimple()) 9589 return false; 9590 if (LD->isIndexed() || Base->isIndexed()) 9591 return false; 9592 if (LD->getChain() != Base->getChain()) 9593 return false; 9594 EVT VT = LD->getValueType(0); 9595 if (VT.getSizeInBits() / 8 != Bytes) 9596 return false; 9597 9598 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9599 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9600 9601 int64_t Offset = 0; 9602 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9603 return (Dist * Bytes == Offset); 9604 return false; 9605 } 9606 9607 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9608 /// if it cannot be inferred. 9609 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9610 // If this is a GlobalAddress + cst, return the alignment. 9611 const GlobalValue *GV = nullptr; 9612 int64_t GVOffset = 0; 9613 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9614 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9615 KnownBits Known(PtrWidth); 9616 llvm::computeKnownBits(GV, Known, getDataLayout()); 9617 unsigned AlignBits = Known.countMinTrailingZeros(); 9618 if (AlignBits) 9619 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9620 } 9621 9622 // If this is a direct reference to a stack slot, use information about the 9623 // stack slot's alignment. 9624 int FrameIdx = INT_MIN; 9625 int64_t FrameOffset = 0; 9626 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9627 FrameIdx = FI->getIndex(); 9628 } else if (isBaseWithConstantOffset(Ptr) && 9629 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9630 // Handle FI+Cst 9631 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9632 FrameOffset = Ptr.getConstantOperandVal(1); 9633 } 9634 9635 if (FrameIdx != INT_MIN) { 9636 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9637 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9638 } 9639 9640 return None; 9641 } 9642 9643 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9644 /// which is split (or expanded) into two not necessarily identical pieces. 9645 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9646 // Currently all types are split in half. 9647 EVT LoVT, HiVT; 9648 if (!VT.isVector()) 9649 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9650 else 9651 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9652 9653 return std::make_pair(LoVT, HiVT); 9654 } 9655 9656 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9657 /// type, dependent on an enveloping VT that has been split into two identical 9658 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9659 std::pair<EVT, EVT> 9660 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9661 bool *HiIsEmpty) const { 9662 EVT EltTp = VT.getVectorElementType(); 9663 // Examples: 9664 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9665 // custom VL=9 with enveloping VL=8/8 yields 8/1 9666 // custom VL=10 with enveloping VL=8/8 yields 8/2 9667 // etc. 9668 ElementCount VTNumElts = VT.getVectorElementCount(); 9669 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9670 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9671 "Mixing fixed width and scalable vectors when enveloping a type"); 9672 EVT LoVT, HiVT; 9673 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9674 LoVT = EnvVT; 9675 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9676 *HiIsEmpty = false; 9677 } else { 9678 // Flag that hi type has zero storage size, but return split envelop type 9679 // (this would be easier if vector types with zero elements were allowed). 9680 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9681 HiVT = EnvVT; 9682 *HiIsEmpty = true; 9683 } 9684 return std::make_pair(LoVT, HiVT); 9685 } 9686 9687 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9688 /// low/high part. 9689 std::pair<SDValue, SDValue> 9690 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9691 const EVT &HiVT) { 9692 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9693 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9694 "Splitting vector with an invalid mixture of fixed and scalable " 9695 "vector types"); 9696 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9697 N.getValueType().getVectorMinNumElements() && 9698 "More vector elements requested than available!"); 9699 SDValue Lo, Hi; 9700 Lo = 9701 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9702 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9703 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9704 // IDX with the runtime scaling factor of the result vector type. For 9705 // fixed-width result vectors, that runtime scaling factor is 1. 9706 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9707 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9708 return std::make_pair(Lo, Hi); 9709 } 9710 9711 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9712 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9713 EVT VT = N.getValueType(); 9714 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9715 NextPowerOf2(VT.getVectorNumElements())); 9716 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9717 getVectorIdxConstant(0, DL)); 9718 } 9719 9720 void SelectionDAG::ExtractVectorElements(SDValue Op, 9721 SmallVectorImpl<SDValue> &Args, 9722 unsigned Start, unsigned Count, 9723 EVT EltVT) { 9724 EVT VT = Op.getValueType(); 9725 if (Count == 0) 9726 Count = VT.getVectorNumElements(); 9727 if (EltVT == EVT()) 9728 EltVT = VT.getVectorElementType(); 9729 SDLoc SL(Op); 9730 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9731 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9732 getVectorIdxConstant(i, SL))); 9733 } 9734 } 9735 9736 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9737 unsigned GlobalAddressSDNode::getAddressSpace() const { 9738 return getGlobal()->getType()->getAddressSpace(); 9739 } 9740 9741 Type *ConstantPoolSDNode::getType() const { 9742 if (isMachineConstantPoolEntry()) 9743 return Val.MachineCPVal->getType(); 9744 return Val.ConstVal->getType(); 9745 } 9746 9747 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9748 unsigned &SplatBitSize, 9749 bool &HasAnyUndefs, 9750 unsigned MinSplatBits, 9751 bool IsBigEndian) const { 9752 EVT VT = getValueType(0); 9753 assert(VT.isVector() && "Expected a vector type"); 9754 unsigned VecWidth = VT.getSizeInBits(); 9755 if (MinSplatBits > VecWidth) 9756 return false; 9757 9758 // FIXME: The widths are based on this node's type, but build vectors can 9759 // truncate their operands. 9760 SplatValue = APInt(VecWidth, 0); 9761 SplatUndef = APInt(VecWidth, 0); 9762 9763 // Get the bits. Bits with undefined values (when the corresponding element 9764 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9765 // in SplatValue. If any of the values are not constant, give up and return 9766 // false. 9767 unsigned int NumOps = getNumOperands(); 9768 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9769 unsigned EltWidth = VT.getScalarSizeInBits(); 9770 9771 for (unsigned j = 0; j < NumOps; ++j) { 9772 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9773 SDValue OpVal = getOperand(i); 9774 unsigned BitPos = j * EltWidth; 9775 9776 if (OpVal.isUndef()) 9777 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9778 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9779 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9780 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9781 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9782 else 9783 return false; 9784 } 9785 9786 // The build_vector is all constants or undefs. Find the smallest element 9787 // size that splats the vector. 9788 HasAnyUndefs = (SplatUndef != 0); 9789 9790 // FIXME: This does not work for vectors with elements less than 8 bits. 9791 while (VecWidth > 8) { 9792 unsigned HalfSize = VecWidth / 2; 9793 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9794 APInt LowValue = SplatValue.trunc(HalfSize); 9795 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9796 APInt LowUndef = SplatUndef.trunc(HalfSize); 9797 9798 // If the two halves do not match (ignoring undef bits), stop here. 9799 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9800 MinSplatBits > HalfSize) 9801 break; 9802 9803 SplatValue = HighValue | LowValue; 9804 SplatUndef = HighUndef & LowUndef; 9805 9806 VecWidth = HalfSize; 9807 } 9808 9809 SplatBitSize = VecWidth; 9810 return true; 9811 } 9812 9813 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9814 BitVector *UndefElements) const { 9815 unsigned NumOps = getNumOperands(); 9816 if (UndefElements) { 9817 UndefElements->clear(); 9818 UndefElements->resize(NumOps); 9819 } 9820 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9821 if (!DemandedElts) 9822 return SDValue(); 9823 SDValue Splatted; 9824 for (unsigned i = 0; i != NumOps; ++i) { 9825 if (!DemandedElts[i]) 9826 continue; 9827 SDValue Op = getOperand(i); 9828 if (Op.isUndef()) { 9829 if (UndefElements) 9830 (*UndefElements)[i] = true; 9831 } else if (!Splatted) { 9832 Splatted = Op; 9833 } else if (Splatted != Op) { 9834 return SDValue(); 9835 } 9836 } 9837 9838 if (!Splatted) { 9839 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9840 assert(getOperand(FirstDemandedIdx).isUndef() && 9841 "Can only have a splat without a constant for all undefs."); 9842 return getOperand(FirstDemandedIdx); 9843 } 9844 9845 return Splatted; 9846 } 9847 9848 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9849 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9850 return getSplatValue(DemandedElts, UndefElements); 9851 } 9852 9853 ConstantSDNode * 9854 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9855 BitVector *UndefElements) const { 9856 return dyn_cast_or_null<ConstantSDNode>( 9857 getSplatValue(DemandedElts, UndefElements)); 9858 } 9859 9860 ConstantSDNode * 9861 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9862 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9863 } 9864 9865 ConstantFPSDNode * 9866 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9867 BitVector *UndefElements) const { 9868 return dyn_cast_or_null<ConstantFPSDNode>( 9869 getSplatValue(DemandedElts, UndefElements)); 9870 } 9871 9872 ConstantFPSDNode * 9873 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9874 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9875 } 9876 9877 int32_t 9878 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9879 uint32_t BitWidth) const { 9880 if (ConstantFPSDNode *CN = 9881 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9882 bool IsExact; 9883 APSInt IntVal(BitWidth); 9884 const APFloat &APF = CN->getValueAPF(); 9885 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9886 APFloat::opOK || 9887 !IsExact) 9888 return -1; 9889 9890 return IntVal.exactLogBase2(); 9891 } 9892 return -1; 9893 } 9894 9895 bool BuildVectorSDNode::isConstant() const { 9896 for (const SDValue &Op : op_values()) { 9897 unsigned Opc = Op.getOpcode(); 9898 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9899 return false; 9900 } 9901 return true; 9902 } 9903 9904 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9905 // Find the first non-undef value in the shuffle mask. 9906 unsigned i, e; 9907 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9908 /* search */; 9909 9910 // If all elements are undefined, this shuffle can be considered a splat 9911 // (although it should eventually get simplified away completely). 9912 if (i == e) 9913 return true; 9914 9915 // Make sure all remaining elements are either undef or the same as the first 9916 // non-undef value. 9917 for (int Idx = Mask[i]; i != e; ++i) 9918 if (Mask[i] >= 0 && Mask[i] != Idx) 9919 return false; 9920 return true; 9921 } 9922 9923 // Returns the SDNode if it is a constant integer BuildVector 9924 // or constant integer. 9925 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9926 if (isa<ConstantSDNode>(N)) 9927 return N.getNode(); 9928 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9929 return N.getNode(); 9930 // Treat a GlobalAddress supporting constant offset folding as a 9931 // constant integer. 9932 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9933 if (GA->getOpcode() == ISD::GlobalAddress && 9934 TLI->isOffsetFoldingLegal(GA)) 9935 return GA; 9936 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9937 isa<ConstantSDNode>(N.getOperand(0))) 9938 return N.getNode(); 9939 return nullptr; 9940 } 9941 9942 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9943 if (isa<ConstantFPSDNode>(N)) 9944 return N.getNode(); 9945 9946 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9947 return N.getNode(); 9948 9949 return nullptr; 9950 } 9951 9952 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9953 assert(!Node->OperandList && "Node already has operands"); 9954 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9955 "too many operands to fit into SDNode"); 9956 SDUse *Ops = OperandRecycler.allocate( 9957 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9958 9959 bool IsDivergent = false; 9960 for (unsigned I = 0; I != Vals.size(); ++I) { 9961 Ops[I].setUser(Node); 9962 Ops[I].setInitial(Vals[I]); 9963 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9964 IsDivergent |= Ops[I].getNode()->isDivergent(); 9965 } 9966 Node->NumOperands = Vals.size(); 9967 Node->OperandList = Ops; 9968 if (!TLI->isSDNodeAlwaysUniform(Node)) { 9969 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9970 Node->SDNodeBits.IsDivergent = IsDivergent; 9971 } 9972 checkForCycles(Node); 9973 } 9974 9975 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9976 SmallVectorImpl<SDValue> &Vals) { 9977 size_t Limit = SDNode::getMaxNumOperands(); 9978 while (Vals.size() > Limit) { 9979 unsigned SliceIdx = Vals.size() - Limit; 9980 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9981 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9982 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9983 Vals.emplace_back(NewTF); 9984 } 9985 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9986 } 9987 9988 #ifndef NDEBUG 9989 static void checkForCyclesHelper(const SDNode *N, 9990 SmallPtrSetImpl<const SDNode*> &Visited, 9991 SmallPtrSetImpl<const SDNode*> &Checked, 9992 const llvm::SelectionDAG *DAG) { 9993 // If this node has already been checked, don't check it again. 9994 if (Checked.count(N)) 9995 return; 9996 9997 // If a node has already been visited on this depth-first walk, reject it as 9998 // a cycle. 9999 if (!Visited.insert(N).second) { 10000 errs() << "Detected cycle in SelectionDAG\n"; 10001 dbgs() << "Offending node:\n"; 10002 N->dumprFull(DAG); dbgs() << "\n"; 10003 abort(); 10004 } 10005 10006 for (const SDValue &Op : N->op_values()) 10007 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10008 10009 Checked.insert(N); 10010 Visited.erase(N); 10011 } 10012 #endif 10013 10014 void llvm::checkForCycles(const llvm::SDNode *N, 10015 const llvm::SelectionDAG *DAG, 10016 bool force) { 10017 #ifndef NDEBUG 10018 bool check = force; 10019 #ifdef EXPENSIVE_CHECKS 10020 check = true; 10021 #endif // EXPENSIVE_CHECKS 10022 if (check) { 10023 assert(N && "Checking nonexistent SDNode"); 10024 SmallPtrSet<const SDNode*, 32> visited; 10025 SmallPtrSet<const SDNode*, 32> checked; 10026 checkForCyclesHelper(N, visited, checked, DAG); 10027 } 10028 #endif // !NDEBUG 10029 } 10030 10031 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10032 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10033 } 10034