1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/ManagedStatic.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Mutex.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include "llvm/Transforms/Utils/SizeOpts.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <cstdlib>
75 #include <limits>
76 #include <set>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 
83 /// makeVTList - Return an instance of the SDVTList struct initialized with the
84 /// specified members.
85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
86   SDVTList Res = {VTs, NumVTs};
87   return Res;
88 }
89 
90 // Default null implementations of the callbacks.
91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
94 
95 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
96 
97 #define DEBUG_TYPE "selectiondag"
98 
99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
100        cl::Hidden, cl::init(true),
101        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
102 
103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
104        cl::desc("Number limit for gluing ld/st of memcpy."),
105        cl::Hidden, cl::init(0));
106 
107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
108   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
109 }
110 
111 //===----------------------------------------------------------------------===//
112 //                              ConstantFPSDNode Class
113 //===----------------------------------------------------------------------===//
114 
115 /// isExactlyValue - We don't rely on operator== working on double values, as
116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
117 /// As such, this method can be used to do an exact bit-for-bit comparison of
118 /// two floating point values.
119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
120   return getValueAPF().bitwiseIsEqual(V);
121 }
122 
123 bool ConstantFPSDNode::isValueValidForType(EVT VT,
124                                            const APFloat& Val) {
125   assert(VT.isFloatingPoint() && "Can only convert between FP types");
126 
127   // convert modifies in place, so make a copy.
128   APFloat Val2 = APFloat(Val);
129   bool losesInfo;
130   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
131                       APFloat::rmNearestTiesToEven,
132                       &losesInfo);
133   return !losesInfo;
134 }
135 
136 //===----------------------------------------------------------------------===//
137 //                              ISD Namespace
138 //===----------------------------------------------------------------------===//
139 
140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
141   auto *BV = dyn_cast<BuildVectorSDNode>(N);
142   if (!BV)
143     return false;
144 
145   APInt SplatUndef;
146   unsigned SplatBitSize;
147   bool HasUndefs;
148   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
149   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
150                              EltSize) &&
151          EltSize == SplatBitSize;
152 }
153 
154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
155 // specializations of the more general isConstantSplatVector()?
156 
157 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
158   // Look through a bit convert.
159   while (N->getOpcode() == ISD::BITCAST)
160     N = N->getOperand(0).getNode();
161 
162   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
163 
164   unsigned i = 0, e = N->getNumOperands();
165 
166   // Skip over all of the undef values.
167   while (i != e && N->getOperand(i).isUndef())
168     ++i;
169 
170   // Do not accept an all-undef vector.
171   if (i == e) return false;
172 
173   // Do not accept build_vectors that aren't all constants or which have non-~0
174   // elements. We have to be a bit careful here, as the type of the constant
175   // may not be the same as the type of the vector elements due to type
176   // legalization (the elements are promoted to a legal type for the target and
177   // a vector of a type may be legal when the base element type is not).
178   // We only want to check enough bits to cover the vector elements, because
179   // we care if the resultant vector is all ones, not whether the individual
180   // constants are.
181   SDValue NotZero = N->getOperand(i);
182   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
183   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
184     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
185       return false;
186   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
187     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
188       return false;
189   } else
190     return false;
191 
192   // Okay, we have at least one ~0 value, check to see if the rest match or are
193   // undefs. Even with the above element type twiddling, this should be OK, as
194   // the same type legalization should have applied to all the elements.
195   for (++i; i != e; ++i)
196     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
197       return false;
198   return true;
199 }
200 
201 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
202   // Look through a bit convert.
203   while (N->getOpcode() == ISD::BITCAST)
204     N = N->getOperand(0).getNode();
205 
206   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
207 
208   bool IsAllUndef = true;
209   for (const SDValue &Op : N->op_values()) {
210     if (Op.isUndef())
211       continue;
212     IsAllUndef = false;
213     // Do not accept build_vectors that aren't all constants or which have non-0
214     // elements. We have to be a bit careful here, as the type of the constant
215     // may not be the same as the type of the vector elements due to type
216     // legalization (the elements are promoted to a legal type for the target
217     // and a vector of a type may be legal when the base element type is not).
218     // We only want to check enough bits to cover the vector elements, because
219     // we care if the resultant vector is all zeros, not whether the individual
220     // constants are.
221     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
222     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
223       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
224         return false;
225     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
226       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
227         return false;
228     } else
229       return false;
230   }
231 
232   // Do not accept an all-undef vector.
233   if (IsAllUndef)
234     return false;
235   return true;
236 }
237 
238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
239   if (N->getOpcode() != ISD::BUILD_VECTOR)
240     return false;
241 
242   for (const SDValue &Op : N->op_values()) {
243     if (Op.isUndef())
244       continue;
245     if (!isa<ConstantSDNode>(Op))
246       return false;
247   }
248   return true;
249 }
250 
251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
252   if (N->getOpcode() != ISD::BUILD_VECTOR)
253     return false;
254 
255   for (const SDValue &Op : N->op_values()) {
256     if (Op.isUndef())
257       continue;
258     if (!isa<ConstantFPSDNode>(Op))
259       return false;
260   }
261   return true;
262 }
263 
264 bool ISD::allOperandsUndef(const SDNode *N) {
265   // Return false if the node has no operands.
266   // This is "logically inconsistent" with the definition of "all" but
267   // is probably the desired behavior.
268   if (N->getNumOperands() == 0)
269     return false;
270   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
271 }
272 
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279 
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283 
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291 
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298 
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs, bool AllowTypeMismatch) {
303   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
304     return false;
305 
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310 
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315 
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
327                                LHSOp.getValueType() != RHSOp.getValueType()))
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334 
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346 
347   llvm_unreachable("Invalid LoadExtType");
348 }
349 
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359 
360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
361   unsigned Operation = Op;
362   if (isIntegerLike)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366 
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369 
370   return ISD::CondCode(Operation);
371 }
372 
373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
374   return getSetCCInverseImpl(Op, Type.isInteger());
375 }
376 
377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
378                                                bool isIntegerLike) {
379   return getSetCCInverseImpl(Op, isIntegerLike);
380 }
381 
382 /// For an integer comparison, return 1 if the comparison is a signed operation
383 /// and 2 if the result is an unsigned comparison. Return zero if the operation
384 /// does not depend on the sign of the input (setne and seteq).
385 static int isSignedOp(ISD::CondCode Opcode) {
386   switch (Opcode) {
387   default: llvm_unreachable("Illegal integer setcc operation!");
388   case ISD::SETEQ:
389   case ISD::SETNE: return 0;
390   case ISD::SETLT:
391   case ISD::SETLE:
392   case ISD::SETGT:
393   case ISD::SETGE: return 1;
394   case ISD::SETULT:
395   case ISD::SETULE:
396   case ISD::SETUGT:
397   case ISD::SETUGE: return 2;
398   }
399 }
400 
401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
402                                        EVT Type) {
403   bool IsInteger = Type.isInteger();
404   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
405     // Cannot fold a signed integer setcc with an unsigned integer setcc.
406     return ISD::SETCC_INVALID;
407 
408   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
409 
410   // If the N and U bits get set, then the resultant comparison DOES suddenly
411   // care about orderedness, and it is true when ordered.
412   if (Op > ISD::SETTRUE2)
413     Op &= ~16;     // Clear the U bit if the N bit is set.
414 
415   // Canonicalize illegal integer setcc's.
416   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
417     Op = ISD::SETNE;
418 
419   return ISD::CondCode(Op);
420 }
421 
422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
423                                         EVT Type) {
424   bool IsInteger = Type.isInteger();
425   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
426     // Cannot fold a signed setcc with an unsigned setcc.
427     return ISD::SETCC_INVALID;
428 
429   // Combine all of the condition bits.
430   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
431 
432   // Canonicalize illegal integer setcc's.
433   if (IsInteger) {
434     switch (Result) {
435     default: break;
436     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
437     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
438     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
439     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
440     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
441     }
442   }
443 
444   return Result;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //                           SDNode Profile Support
449 //===----------------------------------------------------------------------===//
450 
451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
453   ID.AddInteger(OpC);
454 }
455 
456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
457 /// solely with their pointer.
458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
459   ID.AddPointer(VTList.VTs);
460 }
461 
462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
463 static void AddNodeIDOperands(FoldingSetNodeID &ID,
464                               ArrayRef<SDValue> Ops) {
465   for (auto& Op : Ops) {
466     ID.AddPointer(Op.getNode());
467     ID.AddInteger(Op.getResNo());
468   }
469 }
470 
471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
472 static void AddNodeIDOperands(FoldingSetNodeID &ID,
473                               ArrayRef<SDUse> Ops) {
474   for (auto& Op : Ops) {
475     ID.AddPointer(Op.getNode());
476     ID.AddInteger(Op.getResNo());
477   }
478 }
479 
480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
481                           SDVTList VTList, ArrayRef<SDValue> OpList) {
482   AddNodeIDOpcode(ID, OpC);
483   AddNodeIDValueTypes(ID, VTList);
484   AddNodeIDOperands(ID, OpList);
485 }
486 
487 /// If this is an SDNode with special info, add this info to the NodeID data.
488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
489   switch (N->getOpcode()) {
490   case ISD::TargetExternalSymbol:
491   case ISD::ExternalSymbol:
492   case ISD::MCSymbol:
493     llvm_unreachable("Should only be used on nodes with operands");
494   default: break;  // Normal nodes don't need extra info.
495   case ISD::TargetConstant:
496   case ISD::Constant: {
497     const ConstantSDNode *C = cast<ConstantSDNode>(N);
498     ID.AddPointer(C->getConstantIntValue());
499     ID.AddBoolean(C->isOpaque());
500     break;
501   }
502   case ISD::TargetConstantFP:
503   case ISD::ConstantFP:
504     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
505     break;
506   case ISD::TargetGlobalAddress:
507   case ISD::GlobalAddress:
508   case ISD::TargetGlobalTLSAddress:
509   case ISD::GlobalTLSAddress: {
510     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
511     ID.AddPointer(GA->getGlobal());
512     ID.AddInteger(GA->getOffset());
513     ID.AddInteger(GA->getTargetFlags());
514     break;
515   }
516   case ISD::BasicBlock:
517     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
518     break;
519   case ISD::Register:
520     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
521     break;
522   case ISD::RegisterMask:
523     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
524     break;
525   case ISD::SRCVALUE:
526     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
527     break;
528   case ISD::FrameIndex:
529   case ISD::TargetFrameIndex:
530     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
531     break;
532   case ISD::LIFETIME_START:
533   case ISD::LIFETIME_END:
534     if (cast<LifetimeSDNode>(N)->hasOffset()) {
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
537     }
538     break;
539   case ISD::JumpTable:
540   case ISD::TargetJumpTable:
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
543     break;
544   case ISD::ConstantPool:
545   case ISD::TargetConstantPool: {
546     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
547     ID.AddInteger(CP->getAlign().value());
548     ID.AddInteger(CP->getOffset());
549     if (CP->isMachineConstantPoolEntry())
550       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
551     else
552       ID.AddPointer(CP->getConstVal());
553     ID.AddInteger(CP->getTargetFlags());
554     break;
555   }
556   case ISD::TargetIndex: {
557     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
558     ID.AddInteger(TI->getIndex());
559     ID.AddInteger(TI->getOffset());
560     ID.AddInteger(TI->getTargetFlags());
561     break;
562   }
563   case ISD::LOAD: {
564     const LoadSDNode *LD = cast<LoadSDNode>(N);
565     ID.AddInteger(LD->getMemoryVT().getRawBits());
566     ID.AddInteger(LD->getRawSubclassData());
567     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
568     break;
569   }
570   case ISD::STORE: {
571     const StoreSDNode *ST = cast<StoreSDNode>(N);
572     ID.AddInteger(ST->getMemoryVT().getRawBits());
573     ID.AddInteger(ST->getRawSubclassData());
574     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
575     break;
576   }
577   case ISD::MLOAD: {
578     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
579     ID.AddInteger(MLD->getMemoryVT().getRawBits());
580     ID.AddInteger(MLD->getRawSubclassData());
581     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
582     break;
583   }
584   case ISD::MSTORE: {
585     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
586     ID.AddInteger(MST->getMemoryVT().getRawBits());
587     ID.AddInteger(MST->getRawSubclassData());
588     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::MGATHER: {
592     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
593     ID.AddInteger(MG->getMemoryVT().getRawBits());
594     ID.AddInteger(MG->getRawSubclassData());
595     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
596     break;
597   }
598   case ISD::MSCATTER: {
599     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
600     ID.AddInteger(MS->getMemoryVT().getRawBits());
601     ID.AddInteger(MS->getRawSubclassData());
602     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
603     break;
604   }
605   case ISD::ATOMIC_CMP_SWAP:
606   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
607   case ISD::ATOMIC_SWAP:
608   case ISD::ATOMIC_LOAD_ADD:
609   case ISD::ATOMIC_LOAD_SUB:
610   case ISD::ATOMIC_LOAD_AND:
611   case ISD::ATOMIC_LOAD_CLR:
612   case ISD::ATOMIC_LOAD_OR:
613   case ISD::ATOMIC_LOAD_XOR:
614   case ISD::ATOMIC_LOAD_NAND:
615   case ISD::ATOMIC_LOAD_MIN:
616   case ISD::ATOMIC_LOAD_MAX:
617   case ISD::ATOMIC_LOAD_UMIN:
618   case ISD::ATOMIC_LOAD_UMAX:
619   case ISD::ATOMIC_LOAD:
620   case ISD::ATOMIC_STORE: {
621     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
622     ID.AddInteger(AT->getMemoryVT().getRawBits());
623     ID.AddInteger(AT->getRawSubclassData());
624     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::PREFETCH: {
628     const MemSDNode *PF = cast<MemSDNode>(N);
629     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
630     break;
631   }
632   case ISD::VECTOR_SHUFFLE: {
633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
634     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
635          i != e; ++i)
636       ID.AddInteger(SVN->getMaskElt(i));
637     break;
638   }
639   case ISD::TargetBlockAddress:
640   case ISD::BlockAddress: {
641     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
642     ID.AddPointer(BA->getBlockAddress());
643     ID.AddInteger(BA->getOffset());
644     ID.AddInteger(BA->getTargetFlags());
645     break;
646   }
647   } // end switch (N->getOpcode())
648 
649   // Target specific memory nodes could also have address spaces to check.
650   if (N->isTargetMemoryOpcode())
651     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
652 }
653 
654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
655 /// data.
656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
657   AddNodeIDOpcode(ID, N->getOpcode());
658   // Add the return value info.
659   AddNodeIDValueTypes(ID, N->getVTList());
660   // Add the operand info.
661   AddNodeIDOperands(ID, N->ops());
662 
663   // Handle SDNode leafs with special info.
664   AddNodeIDCustom(ID, N);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                              SelectionDAG Class
669 //===----------------------------------------------------------------------===//
670 
671 /// doNotCSE - Return true if CSE should not be performed for this node.
672 static bool doNotCSE(SDNode *N) {
673   if (N->getValueType(0) == MVT::Glue)
674     return true; // Never CSE anything that produces a flag.
675 
676   switch (N->getOpcode()) {
677   default: break;
678   case ISD::HANDLENODE:
679   case ISD::EH_LABEL:
680     return true;   // Never CSE these nodes.
681   }
682 
683   // Check that remaining values produced are not flags.
684   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
685     if (N->getValueType(i) == MVT::Glue)
686       return true; // Never CSE anything that produces a flag.
687 
688   return false;
689 }
690 
691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
692 /// SelectionDAG.
693 void SelectionDAG::RemoveDeadNodes() {
694   // Create a dummy node (which is not added to allnodes), that adds a reference
695   // to the root node, preventing it from being deleted.
696   HandleSDNode Dummy(getRoot());
697 
698   SmallVector<SDNode*, 128> DeadNodes;
699 
700   // Add all obviously-dead nodes to the DeadNodes worklist.
701   for (SDNode &Node : allnodes())
702     if (Node.use_empty())
703       DeadNodes.push_back(&Node);
704 
705   RemoveDeadNodes(DeadNodes);
706 
707   // If the root changed (e.g. it was a dead load, update the root).
708   setRoot(Dummy.getValue());
709 }
710 
711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
712 /// given list, and any nodes that become unreachable as a result.
713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
714 
715   // Process the worklist, deleting the nodes and adding their uses to the
716   // worklist.
717   while (!DeadNodes.empty()) {
718     SDNode *N = DeadNodes.pop_back_val();
719     // Skip to next node if we've already managed to delete the node. This could
720     // happen if replacing a node causes a node previously added to the node to
721     // be deleted.
722     if (N->getOpcode() == ISD::DELETED_NODE)
723       continue;
724 
725     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
726       DUL->NodeDeleted(N, nullptr);
727 
728     // Take the node out of the appropriate CSE map.
729     RemoveNodeFromCSEMaps(N);
730 
731     // Next, brutally remove the operand list.  This is safe to do, as there are
732     // no cycles in the graph.
733     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
734       SDUse &Use = *I++;
735       SDNode *Operand = Use.getNode();
736       Use.set(SDValue());
737 
738       // Now that we removed this operand, see if there are no uses of it left.
739       if (Operand->use_empty())
740         DeadNodes.push_back(Operand);
741     }
742 
743     DeallocateNode(N);
744   }
745 }
746 
747 void SelectionDAG::RemoveDeadNode(SDNode *N){
748   SmallVector<SDNode*, 16> DeadNodes(1, N);
749 
750   // Create a dummy node that adds a reference to the root node, preventing
751   // it from being deleted.  (This matters if the root is an operand of the
752   // dead node.)
753   HandleSDNode Dummy(getRoot());
754 
755   RemoveDeadNodes(DeadNodes);
756 }
757 
758 void SelectionDAG::DeleteNode(SDNode *N) {
759   // First take this out of the appropriate CSE map.
760   RemoveNodeFromCSEMaps(N);
761 
762   // Finally, remove uses due to operands of this node, remove from the
763   // AllNodes list, and delete the node.
764   DeleteNodeNotInCSEMaps(N);
765 }
766 
767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
768   assert(N->getIterator() != AllNodes.begin() &&
769          "Cannot delete the entry node!");
770   assert(N->use_empty() && "Cannot delete a node that is not dead!");
771 
772   // Drop all of the operands and decrement used node's use counts.
773   N->DropOperands();
774 
775   DeallocateNode(N);
776 }
777 
778 void SDDbgInfo::erase(const SDNode *Node) {
779   DbgValMapType::iterator I = DbgValMap.find(Node);
780   if (I == DbgValMap.end())
781     return;
782   for (auto &Val: I->second)
783     Val->setIsInvalidated();
784   DbgValMap.erase(I);
785 }
786 
787 void SelectionDAG::DeallocateNode(SDNode *N) {
788   // If we have operands, deallocate them.
789   removeOperands(N);
790 
791   NodeAllocator.Deallocate(AllNodes.remove(N));
792 
793   // Set the opcode to DELETED_NODE to help catch bugs when node
794   // memory is reallocated.
795   // FIXME: There are places in SDag that have grown a dependency on the opcode
796   // value in the released node.
797   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
798   N->NodeType = ISD::DELETED_NODE;
799 
800   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
801   // them and forget about that node.
802   DbgInfo->erase(N);
803 }
804 
805 #ifndef NDEBUG
806 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
807 static void VerifySDNode(SDNode *N) {
808   switch (N->getOpcode()) {
809   default:
810     break;
811   case ISD::BUILD_PAIR: {
812     EVT VT = N->getValueType(0);
813     assert(N->getNumValues() == 1 && "Too many results!");
814     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
815            "Wrong return type!");
816     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
817     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
818            "Mismatched operand types!");
819     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
820            "Wrong operand type!");
821     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
822            "Wrong return type size");
823     break;
824   }
825   case ISD::BUILD_VECTOR: {
826     assert(N->getNumValues() == 1 && "Too many results!");
827     assert(N->getValueType(0).isVector() && "Wrong return type!");
828     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
829            "Wrong number of operands!");
830     EVT EltVT = N->getValueType(0).getVectorElementType();
831     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
832       assert((I->getValueType() == EltVT ||
833              (EltVT.isInteger() && I->getValueType().isInteger() &&
834               EltVT.bitsLE(I->getValueType()))) &&
835             "Wrong operand type!");
836       assert(I->getValueType() == N->getOperand(0).getValueType() &&
837              "Operands must all have the same type");
838     }
839     break;
840   }
841   }
842 }
843 #endif // NDEBUG
844 
845 /// Insert a newly allocated node into the DAG.
846 ///
847 /// Handles insertion into the all nodes list and CSE map, as well as
848 /// verification and other common operations when a new node is allocated.
849 void SelectionDAG::InsertNode(SDNode *N) {
850   AllNodes.push_back(N);
851 #ifndef NDEBUG
852   N->PersistentId = NextPersistentId++;
853   VerifySDNode(N);
854 #endif
855   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
856     DUL->NodeInserted(N);
857 }
858 
859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
860 /// correspond to it.  This is useful when we're about to delete or repurpose
861 /// the node.  We don't want future request for structurally identical nodes
862 /// to return N anymore.
863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
864   bool Erased = false;
865   switch (N->getOpcode()) {
866   case ISD::HANDLENODE: return false;  // noop.
867   case ISD::CONDCODE:
868     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
869            "Cond code doesn't exist!");
870     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
871     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
872     break;
873   case ISD::ExternalSymbol:
874     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
875     break;
876   case ISD::TargetExternalSymbol: {
877     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
878     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
879         ESN->getSymbol(), ESN->getTargetFlags()));
880     break;
881   }
882   case ISD::MCSymbol: {
883     auto *MCSN = cast<MCSymbolSDNode>(N);
884     Erased = MCSymbols.erase(MCSN->getMCSymbol());
885     break;
886   }
887   case ISD::VALUETYPE: {
888     EVT VT = cast<VTSDNode>(N)->getVT();
889     if (VT.isExtended()) {
890       Erased = ExtendedValueTypeNodes.erase(VT);
891     } else {
892       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
893       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
894     }
895     break;
896   }
897   default:
898     // Remove it from the CSE Map.
899     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
900     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
901     Erased = CSEMap.RemoveNode(N);
902     break;
903   }
904 #ifndef NDEBUG
905   // Verify that the node was actually in one of the CSE maps, unless it has a
906   // flag result (which cannot be CSE'd) or is one of the special cases that are
907   // not subject to CSE.
908   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
909       !N->isMachineOpcode() && !doNotCSE(N)) {
910     N->dump(this);
911     dbgs() << "\n";
912     llvm_unreachable("Node is not in map!");
913   }
914 #endif
915   return Erased;
916 }
917 
918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
919 /// maps and modified in place. Add it back to the CSE maps, unless an identical
920 /// node already exists, in which case transfer all its users to the existing
921 /// node. This transfer can potentially trigger recursive merging.
922 void
923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
924   // For node types that aren't CSE'd, just act as if no identical node
925   // already exists.
926   if (!doNotCSE(N)) {
927     SDNode *Existing = CSEMap.GetOrInsertNode(N);
928     if (Existing != N) {
929       // If there was already an existing matching node, use ReplaceAllUsesWith
930       // to replace the dead one with the existing one.  This can cause
931       // recursive merging of other unrelated nodes down the line.
932       ReplaceAllUsesWith(N, Existing);
933 
934       // N is now dead. Inform the listeners and delete it.
935       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
936         DUL->NodeDeleted(N, Existing);
937       DeleteNodeNotInCSEMaps(N);
938       return;
939     }
940   }
941 
942   // If the node doesn't already exist, we updated it.  Inform listeners.
943   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
944     DUL->NodeUpdated(N);
945 }
946 
947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
948 /// were replaced with those specified.  If this node is never memoized,
949 /// return null, otherwise return a pointer to the slot it would take.  If a
950 /// node already exists with these operands, the slot will be non-null.
951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
971                                            SDValue Op1, SDValue Op2,
972                                            void *&InsertPos) {
973   if (doNotCSE(N))
974     return nullptr;
975 
976   SDValue Ops[] = { Op1, Op2 };
977   FoldingSetNodeID ID;
978   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
979   AddNodeIDCustom(ID, N);
980   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
981   if (Node)
982     Node->intersectFlagsWith(N->getFlags());
983   return Node;
984 }
985 
986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
987 /// were replaced with those specified.  If this node is never memoized,
988 /// return null, otherwise return a pointer to the slot it would take.  If a
989 /// node already exists with these operands, the slot will be non-null.
990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
991                                            void *&InsertPos) {
992   if (doNotCSE(N))
993     return nullptr;
994 
995   FoldingSetNodeID ID;
996   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
997   AddNodeIDCustom(ID, N);
998   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
999   if (Node)
1000     Node->intersectFlagsWith(N->getFlags());
1001   return Node;
1002 }
1003 
1004 Align SelectionDAG::getEVTAlign(EVT VT) const {
1005   Type *Ty = VT == MVT::iPTR ?
1006                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1007                    VT.getTypeForEVT(*getContext());
1008 
1009   return getDataLayout().getABITypeAlign(Ty);
1010 }
1011 
1012 // EntryNode could meaningfully have debug info if we can find it...
1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1014     : TM(tm), OptLevel(OL),
1015       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1016       Root(getEntryNode()) {
1017   InsertNode(&EntryNode);
1018   DbgInfo = new SDDbgInfo();
1019 }
1020 
1021 void SelectionDAG::init(MachineFunction &NewMF,
1022                         OptimizationRemarkEmitter &NewORE,
1023                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1024                         LegacyDivergenceAnalysis * Divergence,
1025                         ProfileSummaryInfo *PSIin,
1026                         BlockFrequencyInfo *BFIin) {
1027   MF = &NewMF;
1028   SDAGISelPass = PassPtr;
1029   ORE = &NewORE;
1030   TLI = getSubtarget().getTargetLowering();
1031   TSI = getSubtarget().getSelectionDAGInfo();
1032   LibInfo = LibraryInfo;
1033   Context = &MF->getFunction().getContext();
1034   DA = Divergence;
1035   PSI = PSIin;
1036   BFI = BFIin;
1037 }
1038 
1039 SelectionDAG::~SelectionDAG() {
1040   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1041   allnodes_clear();
1042   OperandRecycler.clear(OperandAllocator);
1043   delete DbgInfo;
1044 }
1045 
1046 bool SelectionDAG::shouldOptForSize() const {
1047   return MF->getFunction().hasOptSize() ||
1048       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1049 }
1050 
1051 void SelectionDAG::allnodes_clear() {
1052   assert(&*AllNodes.begin() == &EntryNode);
1053   AllNodes.remove(AllNodes.begin());
1054   while (!AllNodes.empty())
1055     DeallocateNode(&AllNodes.front());
1056 #ifndef NDEBUG
1057   NextPersistentId = 0;
1058 #endif
1059 }
1060 
1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1062                                           void *&InsertPos) {
1063   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1064   if (N) {
1065     switch (N->getOpcode()) {
1066     default: break;
1067     case ISD::Constant:
1068     case ISD::ConstantFP:
1069       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1070                        "debug location.  Use another overload.");
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1077                                           const SDLoc &DL, void *&InsertPos) {
1078   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1079   if (N) {
1080     switch (N->getOpcode()) {
1081     case ISD::Constant:
1082     case ISD::ConstantFP:
1083       // Erase debug location from the node if the node is used at several
1084       // different places. Do not propagate one location to all uses as it
1085       // will cause a worse single stepping debugging experience.
1086       if (N->getDebugLoc() != DL.getDebugLoc())
1087         N->setDebugLoc(DebugLoc());
1088       break;
1089     default:
1090       // When the node's point of use is located earlier in the instruction
1091       // sequence than its prior point of use, update its debug info to the
1092       // earlier location.
1093       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1094         N->setDebugLoc(DL.getDebugLoc());
1095       break;
1096     }
1097   }
1098   return N;
1099 }
1100 
1101 void SelectionDAG::clear() {
1102   allnodes_clear();
1103   OperandRecycler.clear(OperandAllocator);
1104   OperandAllocator.Reset();
1105   CSEMap.clear();
1106 
1107   ExtendedValueTypeNodes.clear();
1108   ExternalSymbols.clear();
1109   TargetExternalSymbols.clear();
1110   MCSymbols.clear();
1111   SDCallSiteDbgInfo.clear();
1112   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1113             static_cast<CondCodeSDNode*>(nullptr));
1114   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1115             static_cast<SDNode*>(nullptr));
1116 
1117   EntryNode.UseList = nullptr;
1118   InsertNode(&EntryNode);
1119   Root = getEntryNode();
1120   DbgInfo->clear();
1121 }
1122 
1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1124   return VT.bitsGT(Op.getValueType())
1125              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1126              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1127 }
1128 
1129 std::pair<SDValue, SDValue>
1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1131                                        const SDLoc &DL, EVT VT) {
1132   assert(!VT.bitsEq(Op.getValueType()) &&
1133          "Strict no-op FP extend/round not allowed.");
1134   SDValue Res =
1135       VT.bitsGT(Op.getValueType())
1136           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1137           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1138                     {Chain, Op, getIntPtrConstant(0, DL)});
1139 
1140   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1141 }
1142 
1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   return VT.bitsGT(Op.getValueType()) ?
1145     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1146     getNode(ISD::TRUNCATE, DL, VT, Op);
1147 }
1148 
1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1150   return VT.bitsGT(Op.getValueType()) ?
1151     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1152     getNode(ISD::TRUNCATE, DL, VT, Op);
1153 }
1154 
1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1156   return VT.bitsGT(Op.getValueType()) ?
1157     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1158     getNode(ISD::TRUNCATE, DL, VT, Op);
1159 }
1160 
1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1162                                         EVT OpVT) {
1163   if (VT.bitsLE(Op.getValueType()))
1164     return getNode(ISD::TRUNCATE, SL, VT, Op);
1165 
1166   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1167   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1168 }
1169 
1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1171   EVT OpVT = Op.getValueType();
1172   assert(VT.isInteger() && OpVT.isInteger() &&
1173          "Cannot getZeroExtendInReg FP types");
1174   assert(VT.isVector() == OpVT.isVector() &&
1175          "getZeroExtendInReg type should be vector iff the operand "
1176          "type is vector!");
1177   assert((!VT.isVector() ||
1178           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1179          "Vector element counts must match in getZeroExtendInReg");
1180   assert(VT.bitsLE(OpVT) && "Not extending!");
1181   if (OpVT == VT)
1182     return Op;
1183   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1184                                    VT.getScalarSizeInBits());
1185   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1186 }
1187 
1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1189   // Only unsigned pointer semantics are supported right now. In the future this
1190   // might delegate to TLI to check pointer signedness.
1191   return getZExtOrTrunc(Op, DL, VT);
1192 }
1193 
1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1195   // Only unsigned pointer semantics are supported right now. In the future this
1196   // might delegate to TLI to check pointer signedness.
1197   return getZeroExtendInReg(Op, DL, VT);
1198 }
1199 
1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   EVT EltVT = VT.getScalarType();
1203   SDValue NegOne =
1204     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1205   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1206 }
1207 
1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1209   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1210   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1211 }
1212 
1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1214                                       EVT OpVT) {
1215   if (!V)
1216     return getConstant(0, DL, VT);
1217 
1218   switch (TLI->getBooleanContents(OpVT)) {
1219   case TargetLowering::ZeroOrOneBooleanContent:
1220   case TargetLowering::UndefinedBooleanContent:
1221     return getConstant(1, DL, VT);
1222   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1223     return getAllOnesConstant(DL, VT);
1224   }
1225   llvm_unreachable("Unexpected boolean content enum!");
1226 }
1227 
1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1229                                   bool isT, bool isO) {
1230   EVT EltVT = VT.getScalarType();
1231   assert((EltVT.getSizeInBits() >= 64 ||
1232          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1233          "getConstant with a uint64_t value that doesn't fit in the type!");
1234   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1235 }
1236 
1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1238                                   bool isT, bool isO) {
1239   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1240 }
1241 
1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1243                                   EVT VT, bool isT, bool isO) {
1244   assert(VT.isInteger() && "Cannot create FP integer constant!");
1245 
1246   EVT EltVT = VT.getScalarType();
1247   const ConstantInt *Elt = &Val;
1248 
1249   // In some cases the vector type is legal but the element type is illegal and
1250   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1251   // inserted value (the type does not need to match the vector element type).
1252   // Any extra bits introduced will be truncated away.
1253   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1254       TargetLowering::TypePromoteInteger) {
1255    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1256    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1257    Elt = ConstantInt::get(*getContext(), NewVal);
1258   }
1259   // In other cases the element type is illegal and needs to be expanded, for
1260   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1261   // the value into n parts and use a vector type with n-times the elements.
1262   // Then bitcast to the type requested.
1263   // Legalizing constants too early makes the DAGCombiner's job harder so we
1264   // only legalize if the DAG tells us we must produce legal types.
1265   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1266            TLI->getTypeAction(*getContext(), EltVT) ==
1267            TargetLowering::TypeExpandInteger) {
1268     const APInt &NewVal = Elt->getValue();
1269     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1270     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1271     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1272     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1273 
1274     // Check the temporary vector is the correct size. If this fails then
1275     // getTypeToTransformTo() probably returned a type whose size (in bits)
1276     // isn't a power-of-2 factor of the requested type size.
1277     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1278 
1279     SmallVector<SDValue, 2> EltParts;
1280     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1281       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1282                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1283                                      ViaEltVT, isT, isO));
1284     }
1285 
1286     // EltParts is currently in little endian order. If we actually want
1287     // big-endian order then reverse it now.
1288     if (getDataLayout().isBigEndian())
1289       std::reverse(EltParts.begin(), EltParts.end());
1290 
1291     // The elements must be reversed when the element order is different
1292     // to the endianness of the elements (because the BITCAST is itself a
1293     // vector shuffle in this situation). However, we do not need any code to
1294     // perform this reversal because getConstant() is producing a vector
1295     // splat.
1296     // This situation occurs in MIPS MSA.
1297 
1298     SmallVector<SDValue, 8> Ops;
1299     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1300       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1301 
1302     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1303     return V;
1304   }
1305 
1306   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1307          "APInt size does not match type size!");
1308   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1309   FoldingSetNodeID ID;
1310   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1311   ID.AddPointer(Elt);
1312   ID.AddBoolean(isO);
1313   void *IP = nullptr;
1314   SDNode *N = nullptr;
1315   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1316     if (!VT.isVector())
1317       return SDValue(N, 0);
1318 
1319   if (!N) {
1320     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1321     CSEMap.InsertNode(N, IP);
1322     InsertNode(N);
1323     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1324   }
1325 
1326   SDValue Result(N, 0);
1327   if (VT.isScalableVector())
1328     Result = getSplatVector(VT, DL, Result);
1329   else if (VT.isVector())
1330     Result = getSplatBuildVector(VT, DL, Result);
1331 
1332   return Result;
1333 }
1334 
1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1336                                         bool isTarget) {
1337   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1338 }
1339 
1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1341                                              const SDLoc &DL, bool LegalTypes) {
1342   assert(VT.isInteger() && "Shift amount is not an integer type!");
1343   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1344   return getConstant(Val, DL, ShiftVT);
1345 }
1346 
1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1348                                            bool isTarget) {
1349   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1350 }
1351 
1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1353                                     bool isTarget) {
1354   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1355 }
1356 
1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1358                                     EVT VT, bool isTarget) {
1359   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362 
1363   // Do the map lookup using the actual bit pattern for the floating point
1364   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1365   // we don't have issues with SNANs.
1366   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1369   ID.AddPointer(&V);
1370   void *IP = nullptr;
1371   SDNode *N = nullptr;
1372   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1373     if (!VT.isVector())
1374       return SDValue(N, 0);
1375 
1376   if (!N) {
1377     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1378     CSEMap.InsertNode(N, IP);
1379     InsertNode(N);
1380   }
1381 
1382   SDValue Result(N, 0);
1383   if (VT.isVector())
1384     Result = getSplatBuildVector(VT, DL, Result);
1385   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1386   return Result;
1387 }
1388 
1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1390                                     bool isTarget) {
1391   EVT EltVT = VT.getScalarType();
1392   if (EltVT == MVT::f32)
1393     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1394   else if (EltVT == MVT::f64)
1395     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1396   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1397            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1398     bool Ignored;
1399     APFloat APF = APFloat(Val);
1400     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1401                 &Ignored);
1402     return getConstantFP(APF, DL, VT, isTarget);
1403   } else
1404     llvm_unreachable("Unsupported type in getConstantFP");
1405 }
1406 
1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1408                                        EVT VT, int64_t Offset, bool isTargetGA,
1409                                        unsigned TargetFlags) {
1410   assert((TargetFlags == 0 || isTargetGA) &&
1411          "Cannot set target flags on target-independent globals");
1412 
1413   // Truncate (with sign-extension) the offset value to the pointer size.
1414   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1415   if (BitWidth < 64)
1416     Offset = SignExtend64(Offset, BitWidth);
1417 
1418   unsigned Opc;
1419   if (GV->isThreadLocal())
1420     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1421   else
1422     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1423 
1424   FoldingSetNodeID ID;
1425   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1426   ID.AddPointer(GV);
1427   ID.AddInteger(Offset);
1428   ID.AddInteger(TargetFlags);
1429   void *IP = nullptr;
1430   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1431     return SDValue(E, 0);
1432 
1433   auto *N = newSDNode<GlobalAddressSDNode>(
1434       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1435   CSEMap.InsertNode(N, IP);
1436     InsertNode(N);
1437   return SDValue(N, 0);
1438 }
1439 
1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1441   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1442   FoldingSetNodeID ID;
1443   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1444   ID.AddInteger(FI);
1445   void *IP = nullptr;
1446   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1447     return SDValue(E, 0);
1448 
1449   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1450   CSEMap.InsertNode(N, IP);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1456                                    unsigned TargetFlags) {
1457   assert((TargetFlags == 0 || isTarget) &&
1458          "Cannot set target flags on target-independent jump tables");
1459   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddInteger(JTI);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1469   CSEMap.InsertNode(N, IP);
1470   InsertNode(N);
1471   return SDValue(N, 0);
1472 }
1473 
1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1475                                       MaybeAlign Alignment, int Offset,
1476                                       bool isTarget, unsigned TargetFlags) {
1477   assert((TargetFlags == 0 || isTarget) &&
1478          "Cannot set target flags on target-independent globals");
1479   if (!Alignment)
1480     Alignment = shouldOptForSize()
1481                     ? getDataLayout().getABITypeAlign(C->getType())
1482                     : getDataLayout().getPrefTypeAlign(C->getType());
1483   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1484   FoldingSetNodeID ID;
1485   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1486   ID.AddInteger(Alignment->value());
1487   ID.AddInteger(Offset);
1488   ID.AddPointer(C);
1489   ID.AddInteger(TargetFlags);
1490   void *IP = nullptr;
1491   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1492     return SDValue(E, 0);
1493 
1494   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1495                                           TargetFlags);
1496   CSEMap.InsertNode(N, IP);
1497   InsertNode(N);
1498   SDValue V = SDValue(N, 0);
1499   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1500   return V;
1501 }
1502 
1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1504                                       MaybeAlign Alignment, int Offset,
1505                                       bool isTarget, unsigned TargetFlags) {
1506   assert((TargetFlags == 0 || isTarget) &&
1507          "Cannot set target flags on target-independent globals");
1508   if (!Alignment)
1509     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1510   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1511   FoldingSetNodeID ID;
1512   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1513   ID.AddInteger(Alignment->value());
1514   ID.AddInteger(Offset);
1515   C->addSelectionDAGCSEId(ID);
1516   ID.AddInteger(TargetFlags);
1517   void *IP = nullptr;
1518   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1519     return SDValue(E, 0);
1520 
1521   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1522                                           TargetFlags);
1523   CSEMap.InsertNode(N, IP);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1529                                      unsigned TargetFlags) {
1530   FoldingSetNodeID ID;
1531   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1532   ID.AddInteger(Index);
1533   ID.AddInteger(Offset);
1534   ID.AddInteger(TargetFlags);
1535   void *IP = nullptr;
1536   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1537     return SDValue(E, 0);
1538 
1539   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1540   CSEMap.InsertNode(N, IP);
1541   InsertNode(N);
1542   return SDValue(N, 0);
1543 }
1544 
1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1548   ID.AddPointer(MBB);
1549   void *IP = nullptr;
1550   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1551     return SDValue(E, 0);
1552 
1553   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1554   CSEMap.InsertNode(N, IP);
1555   InsertNode(N);
1556   return SDValue(N, 0);
1557 }
1558 
1559 SDValue SelectionDAG::getValueType(EVT VT) {
1560   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1561       ValueTypeNodes.size())
1562     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1563 
1564   SDNode *&N = VT.isExtended() ?
1565     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1566 
1567   if (N) return SDValue(N, 0);
1568   N = newSDNode<VTSDNode>(VT);
1569   InsertNode(N);
1570   return SDValue(N, 0);
1571 }
1572 
1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1574   SDNode *&N = ExternalSymbols[Sym];
1575   if (N) return SDValue(N, 0);
1576   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1582   SDNode *&N = MCSymbols[Sym];
1583   if (N)
1584     return SDValue(N, 0);
1585   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1586   InsertNode(N);
1587   return SDValue(N, 0);
1588 }
1589 
1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1591                                               unsigned TargetFlags) {
1592   SDNode *&N =
1593       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1594   if (N) return SDValue(N, 0);
1595   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1596   InsertNode(N);
1597   return SDValue(N, 0);
1598 }
1599 
1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1601   if ((unsigned)Cond >= CondCodeNodes.size())
1602     CondCodeNodes.resize(Cond+1);
1603 
1604   if (!CondCodeNodes[Cond]) {
1605     auto *N = newSDNode<CondCodeSDNode>(Cond);
1606     CondCodeNodes[Cond] = N;
1607     InsertNode(N);
1608   }
1609 
1610   return SDValue(CondCodeNodes[Cond], 0);
1611 }
1612 
1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1616   std::swap(N1, N2);
1617   ShuffleVectorSDNode::commuteMask(M);
1618 }
1619 
1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1621                                        SDValue N2, ArrayRef<int> Mask) {
1622   assert(VT.getVectorNumElements() == Mask.size() &&
1623            "Must have the same number of vector elements as mask elements!");
1624   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1625          "Invalid VECTOR_SHUFFLE");
1626 
1627   // Canonicalize shuffle undef, undef -> undef
1628   if (N1.isUndef() && N2.isUndef())
1629     return getUNDEF(VT);
1630 
1631   // Validate that all indices in Mask are within the range of the elements
1632   // input to the shuffle.
1633   int NElts = Mask.size();
1634   assert(llvm::all_of(Mask,
1635                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1636          "Index out of range");
1637 
1638   // Copy the mask so we can do any needed cleanup.
1639   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1640 
1641   // Canonicalize shuffle v, v -> v, undef
1642   if (N1 == N2) {
1643     N2 = getUNDEF(VT);
1644     for (int i = 0; i != NElts; ++i)
1645       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1646   }
1647 
1648   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1649   if (N1.isUndef())
1650     commuteShuffle(N1, N2, MaskVec);
1651 
1652   if (TLI->hasVectorBlend()) {
1653     // If shuffling a splat, try to blend the splat instead. We do this here so
1654     // that even when this arises during lowering we don't have to re-handle it.
1655     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1656       BitVector UndefElements;
1657       SDValue Splat = BV->getSplatValue(&UndefElements);
1658       if (!Splat)
1659         return;
1660 
1661       for (int i = 0; i < NElts; ++i) {
1662         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1663           continue;
1664 
1665         // If this input comes from undef, mark it as such.
1666         if (UndefElements[MaskVec[i] - Offset]) {
1667           MaskVec[i] = -1;
1668           continue;
1669         }
1670 
1671         // If we can blend a non-undef lane, use that instead.
1672         if (!UndefElements[i])
1673           MaskVec[i] = i + Offset;
1674       }
1675     };
1676     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1677       BlendSplat(N1BV, 0);
1678     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1679       BlendSplat(N2BV, NElts);
1680   }
1681 
1682   // Canonicalize all index into lhs, -> shuffle lhs, undef
1683   // Canonicalize all index into rhs, -> shuffle rhs, undef
1684   bool AllLHS = true, AllRHS = true;
1685   bool N2Undef = N2.isUndef();
1686   for (int i = 0; i != NElts; ++i) {
1687     if (MaskVec[i] >= NElts) {
1688       if (N2Undef)
1689         MaskVec[i] = -1;
1690       else
1691         AllLHS = false;
1692     } else if (MaskVec[i] >= 0) {
1693       AllRHS = false;
1694     }
1695   }
1696   if (AllLHS && AllRHS)
1697     return getUNDEF(VT);
1698   if (AllLHS && !N2Undef)
1699     N2 = getUNDEF(VT);
1700   if (AllRHS) {
1701     N1 = getUNDEF(VT);
1702     commuteShuffle(N1, N2, MaskVec);
1703   }
1704   // Reset our undef status after accounting for the mask.
1705   N2Undef = N2.isUndef();
1706   // Re-check whether both sides ended up undef.
1707   if (N1.isUndef() && N2Undef)
1708     return getUNDEF(VT);
1709 
1710   // If Identity shuffle return that node.
1711   bool Identity = true, AllSame = true;
1712   for (int i = 0; i != NElts; ++i) {
1713     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1714     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1715   }
1716   if (Identity && NElts)
1717     return N1;
1718 
1719   // Shuffling a constant splat doesn't change the result.
1720   if (N2Undef) {
1721     SDValue V = N1;
1722 
1723     // Look through any bitcasts. We check that these don't change the number
1724     // (and size) of elements and just changes their types.
1725     while (V.getOpcode() == ISD::BITCAST)
1726       V = V->getOperand(0);
1727 
1728     // A splat should always show up as a build vector node.
1729     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1730       BitVector UndefElements;
1731       SDValue Splat = BV->getSplatValue(&UndefElements);
1732       // If this is a splat of an undef, shuffling it is also undef.
1733       if (Splat && Splat.isUndef())
1734         return getUNDEF(VT);
1735 
1736       bool SameNumElts =
1737           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1738 
1739       // We only have a splat which can skip shuffles if there is a splatted
1740       // value and no undef lanes rearranged by the shuffle.
1741       if (Splat && UndefElements.none()) {
1742         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1743         // number of elements match or the value splatted is a zero constant.
1744         if (SameNumElts)
1745           return N1;
1746         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1747           if (C->isNullValue())
1748             return N1;
1749       }
1750 
1751       // If the shuffle itself creates a splat, build the vector directly.
1752       if (AllSame && SameNumElts) {
1753         EVT BuildVT = BV->getValueType(0);
1754         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1755         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1756 
1757         // We may have jumped through bitcasts, so the type of the
1758         // BUILD_VECTOR may not match the type of the shuffle.
1759         if (BuildVT != VT)
1760           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1761         return NewBV;
1762       }
1763     }
1764   }
1765 
1766   FoldingSetNodeID ID;
1767   SDValue Ops[2] = { N1, N2 };
1768   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1769   for (int i = 0; i != NElts; ++i)
1770     ID.AddInteger(MaskVec[i]);
1771 
1772   void* IP = nullptr;
1773   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1774     return SDValue(E, 0);
1775 
1776   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1777   // SDNode doesn't have access to it.  This memory will be "leaked" when
1778   // the node is deallocated, but recovered when the NodeAllocator is released.
1779   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1780   llvm::copy(MaskVec, MaskAlloc);
1781 
1782   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1783                                            dl.getDebugLoc(), MaskAlloc);
1784   createOperands(N, Ops);
1785 
1786   CSEMap.InsertNode(N, IP);
1787   InsertNode(N);
1788   SDValue V = SDValue(N, 0);
1789   NewSDValueDbgMsg(V, "Creating new node: ", this);
1790   return V;
1791 }
1792 
1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1794   EVT VT = SV.getValueType(0);
1795   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1796   ShuffleVectorSDNode::commuteMask(MaskVec);
1797 
1798   SDValue Op0 = SV.getOperand(0);
1799   SDValue Op1 = SV.getOperand(1);
1800   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1801 }
1802 
1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1804   FoldingSetNodeID ID;
1805   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1806   ID.AddInteger(RegNo);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1812   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1813   CSEMap.InsertNode(N, IP);
1814   InsertNode(N);
1815   return SDValue(N, 0);
1816 }
1817 
1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1819   FoldingSetNodeID ID;
1820   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1821   ID.AddPointer(RegMask);
1822   void *IP = nullptr;
1823   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1824     return SDValue(E, 0);
1825 
1826   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1827   CSEMap.InsertNode(N, IP);
1828   InsertNode(N);
1829   return SDValue(N, 0);
1830 }
1831 
1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1833                                  MCSymbol *Label) {
1834   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1835 }
1836 
1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1838                                    SDValue Root, MCSymbol *Label) {
1839   FoldingSetNodeID ID;
1840   SDValue Ops[] = { Root };
1841   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1842   ID.AddPointer(Label);
1843   void *IP = nullptr;
1844   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1845     return SDValue(E, 0);
1846 
1847   auto *N =
1848       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1849   createOperands(N, Ops);
1850 
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1857                                       int64_t Offset, bool isTarget,
1858                                       unsigned TargetFlags) {
1859   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1860 
1861   FoldingSetNodeID ID;
1862   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1863   ID.AddPointer(BA);
1864   ID.AddInteger(Offset);
1865   ID.AddInteger(TargetFlags);
1866   void *IP = nullptr;
1867   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1868     return SDValue(E, 0);
1869 
1870   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1871   CSEMap.InsertNode(N, IP);
1872   InsertNode(N);
1873   return SDValue(N, 0);
1874 }
1875 
1876 SDValue SelectionDAG::getSrcValue(const Value *V) {
1877   FoldingSetNodeID ID;
1878   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1879   ID.AddPointer(V);
1880 
1881   void *IP = nullptr;
1882   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1883     return SDValue(E, 0);
1884 
1885   auto *N = newSDNode<SrcValueSDNode>(V);
1886   CSEMap.InsertNode(N, IP);
1887   InsertNode(N);
1888   return SDValue(N, 0);
1889 }
1890 
1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1892   FoldingSetNodeID ID;
1893   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1894   ID.AddPointer(MD);
1895 
1896   void *IP = nullptr;
1897   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1898     return SDValue(E, 0);
1899 
1900   auto *N = newSDNode<MDNodeSDNode>(MD);
1901   CSEMap.InsertNode(N, IP);
1902   InsertNode(N);
1903   return SDValue(N, 0);
1904 }
1905 
1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1907   if (VT == V.getValueType())
1908     return V;
1909 
1910   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1911 }
1912 
1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1914                                        unsigned SrcAS, unsigned DestAS) {
1915   SDValue Ops[] = {Ptr};
1916   FoldingSetNodeID ID;
1917   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1918   ID.AddInteger(SrcAS);
1919   ID.AddInteger(DestAS);
1920 
1921   void *IP = nullptr;
1922   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1923     return SDValue(E, 0);
1924 
1925   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1926                                            VT, SrcAS, DestAS);
1927   createOperands(N, Ops);
1928 
1929   CSEMap.InsertNode(N, IP);
1930   InsertNode(N);
1931   return SDValue(N, 0);
1932 }
1933 
1934 SDValue SelectionDAG::getFreeze(SDValue V) {
1935   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1936 }
1937 
1938 /// getShiftAmountOperand - Return the specified value casted to
1939 /// the target's desired shift amount type.
1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1941   EVT OpTy = Op.getValueType();
1942   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1943   if (OpTy == ShTy || OpTy.isVector()) return Op;
1944 
1945   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1946 }
1947 
1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1949   SDLoc dl(Node);
1950   const TargetLowering &TLI = getTargetLoweringInfo();
1951   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1952   EVT VT = Node->getValueType(0);
1953   SDValue Tmp1 = Node->getOperand(0);
1954   SDValue Tmp2 = Node->getOperand(1);
1955   const MaybeAlign MA(Node->getConstantOperandVal(3));
1956 
1957   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1958                                Tmp2, MachinePointerInfo(V));
1959   SDValue VAList = VAListLoad;
1960 
1961   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1962     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1963                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1964 
1965     VAList =
1966         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1967                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1968   }
1969 
1970   // Increment the pointer, VAList, to the next vaarg
1971   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1972                  getConstant(getDataLayout().getTypeAllocSize(
1973                                                VT.getTypeForEVT(*getContext())),
1974                              dl, VAList.getValueType()));
1975   // Store the incremented VAList to the legalized pointer
1976   Tmp1 =
1977       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1978   // Load the actual argument out of the pointer VAList
1979   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1980 }
1981 
1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1983   SDLoc dl(Node);
1984   const TargetLowering &TLI = getTargetLoweringInfo();
1985   // This defaults to loading a pointer from the input and storing it to the
1986   // output, returning the chain.
1987   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1988   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1989   SDValue Tmp1 =
1990       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1991               Node->getOperand(2), MachinePointerInfo(VS));
1992   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1993                   MachinePointerInfo(VD));
1994 }
1995 
1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
1997   const DataLayout &DL = getDataLayout();
1998   Type *Ty = VT.getTypeForEVT(*getContext());
1999   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2000 
2001   if (TLI->isTypeLegal(VT) || !VT.isVector())
2002     return RedAlign;
2003 
2004   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2005   const Align StackAlign = TFI->getStackAlign();
2006 
2007   // See if we can choose a smaller ABI alignment in cases where it's an
2008   // illegal vector type that will get broken down.
2009   if (RedAlign > StackAlign) {
2010     EVT IntermediateVT;
2011     MVT RegisterVT;
2012     unsigned NumIntermediates;
2013     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2014                                 NumIntermediates, RegisterVT);
2015     Ty = IntermediateVT.getTypeForEVT(*getContext());
2016     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2017     if (RedAlign2 < RedAlign)
2018       RedAlign = RedAlign2;
2019   }
2020 
2021   return RedAlign;
2022 }
2023 
2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2025   MachineFrameInfo &MFI = MF->getFrameInfo();
2026   int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2027   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2028 }
2029 
2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2031   Type *Ty = VT.getTypeForEVT(*getContext());
2032   Align StackAlign =
2033       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2034   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2035 }
2036 
2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2038   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2039   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2040   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2041   const DataLayout &DL = getDataLayout();
2042   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2043   return CreateStackTemporary(Bytes, Align);
2044 }
2045 
2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2047                                 ISD::CondCode Cond, const SDLoc &dl) {
2048   EVT OpVT = N1.getValueType();
2049 
2050   // These setcc operations always fold.
2051   switch (Cond) {
2052   default: break;
2053   case ISD::SETFALSE:
2054   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2055   case ISD::SETTRUE:
2056   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2057 
2058   case ISD::SETOEQ:
2059   case ISD::SETOGT:
2060   case ISD::SETOGE:
2061   case ISD::SETOLT:
2062   case ISD::SETOLE:
2063   case ISD::SETONE:
2064   case ISD::SETO:
2065   case ISD::SETUO:
2066   case ISD::SETUEQ:
2067   case ISD::SETUNE:
2068     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2069     break;
2070   }
2071 
2072   if (OpVT.isInteger()) {
2073     // For EQ and NE, we can always pick a value for the undef to make the
2074     // predicate pass or fail, so we can return undef.
2075     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2076     // icmp eq/ne X, undef -> undef.
2077     if ((N1.isUndef() || N2.isUndef()) &&
2078         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2079       return getUNDEF(VT);
2080 
2081     // If both operands are undef, we can return undef for int comparison.
2082     // icmp undef, undef -> undef.
2083     if (N1.isUndef() && N2.isUndef())
2084       return getUNDEF(VT);
2085 
2086     // icmp X, X -> true/false
2087     // icmp X, undef -> true/false because undef could be X.
2088     if (N1 == N2)
2089       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2090   }
2091 
2092   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2093     const APInt &C2 = N2C->getAPIntValue();
2094     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2095       const APInt &C1 = N1C->getAPIntValue();
2096 
2097       switch (Cond) {
2098       default: llvm_unreachable("Unknown integer setcc!");
2099       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2100       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2101       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2102       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2103       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2104       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2105       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2106       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2107       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2108       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2109       }
2110     }
2111   }
2112 
2113   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2114   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2115 
2116   if (N1CFP && N2CFP) {
2117     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2118     switch (Cond) {
2119     default: break;
2120     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2121                         return getUNDEF(VT);
2122                       LLVM_FALLTHROUGH;
2123     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2126                         return getUNDEF(VT);
2127                       LLVM_FALLTHROUGH;
2128     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2129                                              R==APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2132                         return getUNDEF(VT);
2133                       LLVM_FALLTHROUGH;
2134     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2135                                              OpVT);
2136     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2137                         return getUNDEF(VT);
2138                       LLVM_FALLTHROUGH;
2139     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2140                                              VT, OpVT);
2141     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2142                         return getUNDEF(VT);
2143                       LLVM_FALLTHROUGH;
2144     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2145                                              R==APFloat::cmpEqual, dl, VT,
2146                                              OpVT);
2147     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2148                         return getUNDEF(VT);
2149                       LLVM_FALLTHROUGH;
2150     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2151                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2152     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2153                                              OpVT);
2154     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2155                                              OpVT);
2156     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2157                                              R==APFloat::cmpEqual, dl, VT,
2158                                              OpVT);
2159     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2160                                              OpVT);
2161     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2162                                              R==APFloat::cmpLessThan, dl, VT,
2163                                              OpVT);
2164     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2165                                              R==APFloat::cmpUnordered, dl, VT,
2166                                              OpVT);
2167     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2168                                              VT, OpVT);
2169     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2170                                              OpVT);
2171     }
2172   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2173     // Ensure that the constant occurs on the RHS.
2174     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2175     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2176       return SDValue();
2177     return getSetCC(dl, VT, N2, N1, SwappedCond);
2178   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2179              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2180     // If an operand is known to be a nan (or undef that could be a nan), we can
2181     // fold it.
2182     // Choosing NaN for the undef will always make unordered comparison succeed
2183     // and ordered comparison fails.
2184     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2185     switch (ISD::getUnorderedFlavor(Cond)) {
2186     default:
2187       llvm_unreachable("Unknown flavor!");
2188     case 0: // Known false.
2189       return getBoolConstant(false, dl, VT, OpVT);
2190     case 1: // Known true.
2191       return getBoolConstant(true, dl, VT, OpVT);
2192     case 2: // Undefined.
2193       return getUNDEF(VT);
2194     }
2195   }
2196 
2197   // Could not fold it.
2198   return SDValue();
2199 }
2200 
2201 /// See if the specified operand can be simplified with the knowledge that only
2202 /// the bits specified by DemandedBits are used.
2203 /// TODO: really we should be making this into the DAG equivalent of
2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2206   EVT VT = V.getValueType();
2207   APInt DemandedElts = VT.isVector()
2208                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2209                            : APInt(1, 1);
2210   return GetDemandedBits(V, DemandedBits, DemandedElts);
2211 }
2212 
2213 /// See if the specified operand can be simplified with the knowledge that only
2214 /// the bits specified by DemandedBits are used in the elements specified by
2215 /// DemandedElts.
2216 /// TODO: really we should be making this into the DAG equivalent of
2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2219                                       const APInt &DemandedElts) {
2220   switch (V.getOpcode()) {
2221   default:
2222     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2223                                                 *this, 0);
2224     break;
2225   case ISD::Constant: {
2226     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2227     APInt NewVal = CVal & DemandedBits;
2228     if (NewVal != CVal)
2229       return getConstant(NewVal, SDLoc(V), V.getValueType());
2230     break;
2231   }
2232   case ISD::SRL:
2233     // Only look at single-use SRLs.
2234     if (!V.getNode()->hasOneUse())
2235       break;
2236     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2237       // See if we can recursively simplify the LHS.
2238       unsigned Amt = RHSC->getZExtValue();
2239 
2240       // Watch out for shift count overflow though.
2241       if (Amt >= DemandedBits.getBitWidth())
2242         break;
2243       APInt SrcDemandedBits = DemandedBits << Amt;
2244       if (SDValue SimplifyLHS =
2245               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2246         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2247                        V.getOperand(1));
2248     }
2249     break;
2250   case ISD::AND: {
2251     // X & -1 -> X (ignoring bits which aren't demanded).
2252     // Also handle the case where masked out bits in X are known to be zero.
2253     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2254       const APInt &AndVal = RHSC->getAPIntValue();
2255       if (DemandedBits.isSubsetOf(AndVal) ||
2256           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2257                                   AndVal))
2258         return V.getOperand(0);
2259     }
2260     break;
2261   }
2262   }
2263   return SDValue();
2264 }
2265 
2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2267 /// use this predicate to simplify operations downstream.
2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2269   unsigned BitWidth = Op.getScalarValueSizeInBits();
2270   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2271 }
2272 
2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2274 /// this predicate to simplify operations downstream.  Mask is known to be zero
2275 /// for bits that V cannot have.
2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2277                                      unsigned Depth) const {
2278   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2279 }
2280 
2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2282 /// DemandedElts.  We use this predicate to simplify operations downstream.
2283 /// Mask is known to be zero for bits that V cannot have.
2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2285                                      const APInt &DemandedElts,
2286                                      unsigned Depth) const {
2287   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2288 }
2289 
2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2292                                         unsigned Depth) const {
2293   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2294 }
2295 
2296 /// isSplatValue - Return true if the vector V has the same value
2297 /// across all DemandedElts. For scalable vectors it does not make
2298 /// sense to specify which elements are demanded or undefined, therefore
2299 /// they are simply ignored.
2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2301                                 APInt &UndefElts) {
2302   EVT VT = V.getValueType();
2303   assert(VT.isVector() && "Vector type expected");
2304 
2305   if (!VT.isScalableVector() && !DemandedElts)
2306     return false; // No demanded elts, better to assume we don't know anything.
2307 
2308   // Deal with some common cases here that work for both fixed and scalable
2309   // vector types.
2310   switch (V.getOpcode()) {
2311   case ISD::SPLAT_VECTOR:
2312     return true;
2313   case ISD::ADD:
2314   case ISD::SUB:
2315   case ISD::AND: {
2316     APInt UndefLHS, UndefRHS;
2317     SDValue LHS = V.getOperand(0);
2318     SDValue RHS = V.getOperand(1);
2319     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2320         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2321       UndefElts = UndefLHS | UndefRHS;
2322       return true;
2323     }
2324     break;
2325   }
2326   case ISD::TRUNCATE:
2327   case ISD::SIGN_EXTEND:
2328   case ISD::ZERO_EXTEND:
2329     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2330   }
2331 
2332   // We don't support other cases than those above for scalable vectors at
2333   // the moment.
2334   if (VT.isScalableVector())
2335     return false;
2336 
2337   unsigned NumElts = VT.getVectorNumElements();
2338   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2339   UndefElts = APInt::getNullValue(NumElts);
2340 
2341   switch (V.getOpcode()) {
2342   case ISD::BUILD_VECTOR: {
2343     SDValue Scl;
2344     for (unsigned i = 0; i != NumElts; ++i) {
2345       SDValue Op = V.getOperand(i);
2346       if (Op.isUndef()) {
2347         UndefElts.setBit(i);
2348         continue;
2349       }
2350       if (!DemandedElts[i])
2351         continue;
2352       if (Scl && Scl != Op)
2353         return false;
2354       Scl = Op;
2355     }
2356     return true;
2357   }
2358   case ISD::VECTOR_SHUFFLE: {
2359     // Check if this is a shuffle node doing a splat.
2360     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2361     int SplatIndex = -1;
2362     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2363     for (int i = 0; i != (int)NumElts; ++i) {
2364       int M = Mask[i];
2365       if (M < 0) {
2366         UndefElts.setBit(i);
2367         continue;
2368       }
2369       if (!DemandedElts[i])
2370         continue;
2371       if (0 <= SplatIndex && SplatIndex != M)
2372         return false;
2373       SplatIndex = M;
2374     }
2375     return true;
2376   }
2377   case ISD::EXTRACT_SUBVECTOR: {
2378     // Offset the demanded elts by the subvector index.
2379     SDValue Src = V.getOperand(0);
2380     uint64_t Idx = V.getConstantOperandVal(1);
2381     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2382     APInt UndefSrcElts;
2383     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2384     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2385       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2386       return true;
2387     }
2388     break;
2389   }
2390   }
2391 
2392   return false;
2393 }
2394 
2395 /// Helper wrapper to main isSplatValue function.
2396 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2397   EVT VT = V.getValueType();
2398   assert(VT.isVector() && "Vector type expected");
2399 
2400   APInt UndefElts;
2401   APInt DemandedElts;
2402 
2403   // For now we don't support this with scalable vectors.
2404   if (!VT.isScalableVector())
2405     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2406   return isSplatValue(V, DemandedElts, UndefElts) &&
2407          (AllowUndefs || !UndefElts);
2408 }
2409 
2410 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2411   V = peekThroughExtractSubvectors(V);
2412 
2413   EVT VT = V.getValueType();
2414   unsigned Opcode = V.getOpcode();
2415   switch (Opcode) {
2416   default: {
2417     APInt UndefElts;
2418     APInt DemandedElts;
2419 
2420     if (!VT.isScalableVector())
2421       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2422 
2423     if (isSplatValue(V, DemandedElts, UndefElts)) {
2424       if (VT.isScalableVector()) {
2425         // DemandedElts and UndefElts are ignored for scalable vectors, since
2426         // the only supported cases are SPLAT_VECTOR nodes.
2427         SplatIdx = 0;
2428       } else {
2429         // Handle case where all demanded elements are UNDEF.
2430         if (DemandedElts.isSubsetOf(UndefElts)) {
2431           SplatIdx = 0;
2432           return getUNDEF(VT);
2433         }
2434         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2435       }
2436       return V;
2437     }
2438     break;
2439   }
2440   case ISD::SPLAT_VECTOR:
2441     SplatIdx = 0;
2442     return V;
2443   case ISD::VECTOR_SHUFFLE: {
2444     if (VT.isScalableVector())
2445       return SDValue();
2446 
2447     // Check if this is a shuffle node doing a splat.
2448     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2449     // getTargetVShiftNode currently struggles without the splat source.
2450     auto *SVN = cast<ShuffleVectorSDNode>(V);
2451     if (!SVN->isSplat())
2452       break;
2453     int Idx = SVN->getSplatIndex();
2454     int NumElts = V.getValueType().getVectorNumElements();
2455     SplatIdx = Idx % NumElts;
2456     return V.getOperand(Idx / NumElts);
2457   }
2458   }
2459 
2460   return SDValue();
2461 }
2462 
2463 SDValue SelectionDAG::getSplatValue(SDValue V) {
2464   int SplatIdx;
2465   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2466     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2467                    SrcVector.getValueType().getScalarType(), SrcVector,
2468                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2469   return SDValue();
2470 }
2471 
2472 const APInt *
2473 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2474                                           const APInt &DemandedElts) const {
2475   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2476           V.getOpcode() == ISD::SRA) &&
2477          "Unknown shift node");
2478   unsigned BitWidth = V.getScalarValueSizeInBits();
2479   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2480     // Shifting more than the bitwidth is not valid.
2481     const APInt &ShAmt = SA->getAPIntValue();
2482     if (ShAmt.ult(BitWidth))
2483       return &ShAmt;
2484   }
2485   return nullptr;
2486 }
2487 
2488 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2489     SDValue V, const APInt &DemandedElts) const {
2490   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2491           V.getOpcode() == ISD::SRA) &&
2492          "Unknown shift node");
2493   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2494     return ValidAmt;
2495   unsigned BitWidth = V.getScalarValueSizeInBits();
2496   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2497   if (!BV)
2498     return nullptr;
2499   const APInt *MinShAmt = nullptr;
2500   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2501     if (!DemandedElts[i])
2502       continue;
2503     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2504     if (!SA)
2505       return nullptr;
2506     // Shifting more than the bitwidth is not valid.
2507     const APInt &ShAmt = SA->getAPIntValue();
2508     if (ShAmt.uge(BitWidth))
2509       return nullptr;
2510     if (MinShAmt && MinShAmt->ule(ShAmt))
2511       continue;
2512     MinShAmt = &ShAmt;
2513   }
2514   return MinShAmt;
2515 }
2516 
2517 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2518     SDValue V, const APInt &DemandedElts) const {
2519   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2520           V.getOpcode() == ISD::SRA) &&
2521          "Unknown shift node");
2522   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2523     return ValidAmt;
2524   unsigned BitWidth = V.getScalarValueSizeInBits();
2525   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2526   if (!BV)
2527     return nullptr;
2528   const APInt *MaxShAmt = nullptr;
2529   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2530     if (!DemandedElts[i])
2531       continue;
2532     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2533     if (!SA)
2534       return nullptr;
2535     // Shifting more than the bitwidth is not valid.
2536     const APInt &ShAmt = SA->getAPIntValue();
2537     if (ShAmt.uge(BitWidth))
2538       return nullptr;
2539     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2540       continue;
2541     MaxShAmt = &ShAmt;
2542   }
2543   return MaxShAmt;
2544 }
2545 
2546 /// Determine which bits of Op are known to be either zero or one and return
2547 /// them in Known. For vectors, the known bits are those that are shared by
2548 /// every vector element.
2549 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2550   EVT VT = Op.getValueType();
2551 
2552   // TOOD: Until we have a plan for how to represent demanded elements for
2553   // scalable vectors, we can just bail out for now.
2554   if (Op.getValueType().isScalableVector()) {
2555     unsigned BitWidth = Op.getScalarValueSizeInBits();
2556     return KnownBits(BitWidth);
2557   }
2558 
2559   APInt DemandedElts = VT.isVector()
2560                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2561                            : APInt(1, 1);
2562   return computeKnownBits(Op, DemandedElts, Depth);
2563 }
2564 
2565 /// Determine which bits of Op are known to be either zero or one and return
2566 /// them in Known. The DemandedElts argument allows us to only collect the known
2567 /// bits that are shared by the requested vector elements.
2568 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2569                                          unsigned Depth) const {
2570   unsigned BitWidth = Op.getScalarValueSizeInBits();
2571 
2572   KnownBits Known(BitWidth);   // Don't know anything.
2573 
2574   // TOOD: Until we have a plan for how to represent demanded elements for
2575   // scalable vectors, we can just bail out for now.
2576   if (Op.getValueType().isScalableVector())
2577     return Known;
2578 
2579   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2580     // We know all of the bits for a constant!
2581     Known.One = C->getAPIntValue();
2582     Known.Zero = ~Known.One;
2583     return Known;
2584   }
2585   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2586     // We know all of the bits for a constant fp!
2587     Known.One = C->getValueAPF().bitcastToAPInt();
2588     Known.Zero = ~Known.One;
2589     return Known;
2590   }
2591 
2592   if (Depth >= MaxRecursionDepth)
2593     return Known;  // Limit search depth.
2594 
2595   KnownBits Known2;
2596   unsigned NumElts = DemandedElts.getBitWidth();
2597   assert((!Op.getValueType().isVector() ||
2598           NumElts == Op.getValueType().getVectorNumElements()) &&
2599          "Unexpected vector size");
2600 
2601   if (!DemandedElts)
2602     return Known;  // No demanded elts, better to assume we don't know anything.
2603 
2604   unsigned Opcode = Op.getOpcode();
2605   switch (Opcode) {
2606   case ISD::BUILD_VECTOR:
2607     // Collect the known bits that are shared by every demanded vector element.
2608     Known.Zero.setAllBits(); Known.One.setAllBits();
2609     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2610       if (!DemandedElts[i])
2611         continue;
2612 
2613       SDValue SrcOp = Op.getOperand(i);
2614       Known2 = computeKnownBits(SrcOp, Depth + 1);
2615 
2616       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2617       if (SrcOp.getValueSizeInBits() != BitWidth) {
2618         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2619                "Expected BUILD_VECTOR implicit truncation");
2620         Known2 = Known2.trunc(BitWidth);
2621       }
2622 
2623       // Known bits are the values that are shared by every demanded element.
2624       Known.One &= Known2.One;
2625       Known.Zero &= Known2.Zero;
2626 
2627       // If we don't know any bits, early out.
2628       if (Known.isUnknown())
2629         break;
2630     }
2631     break;
2632   case ISD::VECTOR_SHUFFLE: {
2633     // Collect the known bits that are shared by every vector element referenced
2634     // by the shuffle.
2635     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2636     Known.Zero.setAllBits(); Known.One.setAllBits();
2637     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2638     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2639     for (unsigned i = 0; i != NumElts; ++i) {
2640       if (!DemandedElts[i])
2641         continue;
2642 
2643       int M = SVN->getMaskElt(i);
2644       if (M < 0) {
2645         // For UNDEF elements, we don't know anything about the common state of
2646         // the shuffle result.
2647         Known.resetAll();
2648         DemandedLHS.clearAllBits();
2649         DemandedRHS.clearAllBits();
2650         break;
2651       }
2652 
2653       if ((unsigned)M < NumElts)
2654         DemandedLHS.setBit((unsigned)M % NumElts);
2655       else
2656         DemandedRHS.setBit((unsigned)M % NumElts);
2657     }
2658     // Known bits are the values that are shared by every demanded element.
2659     if (!!DemandedLHS) {
2660       SDValue LHS = Op.getOperand(0);
2661       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2662       Known.One &= Known2.One;
2663       Known.Zero &= Known2.Zero;
2664     }
2665     // If we don't know any bits, early out.
2666     if (Known.isUnknown())
2667       break;
2668     if (!!DemandedRHS) {
2669       SDValue RHS = Op.getOperand(1);
2670       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2671       Known.One &= Known2.One;
2672       Known.Zero &= Known2.Zero;
2673     }
2674     break;
2675   }
2676   case ISD::CONCAT_VECTORS: {
2677     // Split DemandedElts and test each of the demanded subvectors.
2678     Known.Zero.setAllBits(); Known.One.setAllBits();
2679     EVT SubVectorVT = Op.getOperand(0).getValueType();
2680     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2681     unsigned NumSubVectors = Op.getNumOperands();
2682     for (unsigned i = 0; i != NumSubVectors; ++i) {
2683       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2684       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2685       if (!!DemandedSub) {
2686         SDValue Sub = Op.getOperand(i);
2687         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2688         Known.One &= Known2.One;
2689         Known.Zero &= Known2.Zero;
2690       }
2691       // If we don't know any bits, early out.
2692       if (Known.isUnknown())
2693         break;
2694     }
2695     break;
2696   }
2697   case ISD::INSERT_SUBVECTOR: {
2698     // Demand any elements from the subvector and the remainder from the src its
2699     // inserted into.
2700     SDValue Src = Op.getOperand(0);
2701     SDValue Sub = Op.getOperand(1);
2702     uint64_t Idx = Op.getConstantOperandVal(2);
2703     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2704     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2705     APInt DemandedSrcElts = DemandedElts;
2706     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2707 
2708     Known.One.setAllBits();
2709     Known.Zero.setAllBits();
2710     if (!!DemandedSubElts) {
2711       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2712       if (Known.isUnknown())
2713         break; // early-out.
2714     }
2715     if (!!DemandedSrcElts) {
2716       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2717       Known.One &= Known2.One;
2718       Known.Zero &= Known2.Zero;
2719     }
2720     break;
2721   }
2722   case ISD::EXTRACT_SUBVECTOR: {
2723     // Offset the demanded elts by the subvector index.
2724     SDValue Src = Op.getOperand(0);
2725     // Bail until we can represent demanded elements for scalable vectors.
2726     if (Src.getValueType().isScalableVector())
2727       break;
2728     uint64_t Idx = Op.getConstantOperandVal(1);
2729     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2730     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2731     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2732     break;
2733   }
2734   case ISD::SCALAR_TO_VECTOR: {
2735     // We know about scalar_to_vector as much as we know about it source,
2736     // which becomes the first element of otherwise unknown vector.
2737     if (DemandedElts != 1)
2738       break;
2739 
2740     SDValue N0 = Op.getOperand(0);
2741     Known = computeKnownBits(N0, Depth + 1);
2742     if (N0.getValueSizeInBits() != BitWidth)
2743       Known = Known.trunc(BitWidth);
2744 
2745     break;
2746   }
2747   case ISD::BITCAST: {
2748     SDValue N0 = Op.getOperand(0);
2749     EVT SubVT = N0.getValueType();
2750     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2751 
2752     // Ignore bitcasts from unsupported types.
2753     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2754       break;
2755 
2756     // Fast handling of 'identity' bitcasts.
2757     if (BitWidth == SubBitWidth) {
2758       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2759       break;
2760     }
2761 
2762     bool IsLE = getDataLayout().isLittleEndian();
2763 
2764     // Bitcast 'small element' vector to 'large element' scalar/vector.
2765     if ((BitWidth % SubBitWidth) == 0) {
2766       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2767 
2768       // Collect known bits for the (larger) output by collecting the known
2769       // bits from each set of sub elements and shift these into place.
2770       // We need to separately call computeKnownBits for each set of
2771       // sub elements as the knownbits for each is likely to be different.
2772       unsigned SubScale = BitWidth / SubBitWidth;
2773       APInt SubDemandedElts(NumElts * SubScale, 0);
2774       for (unsigned i = 0; i != NumElts; ++i)
2775         if (DemandedElts[i])
2776           SubDemandedElts.setBit(i * SubScale);
2777 
2778       for (unsigned i = 0; i != SubScale; ++i) {
2779         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2780                          Depth + 1);
2781         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2782         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2783         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2784       }
2785     }
2786 
2787     // Bitcast 'large element' scalar/vector to 'small element' vector.
2788     if ((SubBitWidth % BitWidth) == 0) {
2789       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2790 
2791       // Collect known bits for the (smaller) output by collecting the known
2792       // bits from the overlapping larger input elements and extracting the
2793       // sub sections we actually care about.
2794       unsigned SubScale = SubBitWidth / BitWidth;
2795       APInt SubDemandedElts(NumElts / SubScale, 0);
2796       for (unsigned i = 0; i != NumElts; ++i)
2797         if (DemandedElts[i])
2798           SubDemandedElts.setBit(i / SubScale);
2799 
2800       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2801 
2802       Known.Zero.setAllBits(); Known.One.setAllBits();
2803       for (unsigned i = 0; i != NumElts; ++i)
2804         if (DemandedElts[i]) {
2805           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2806           unsigned Offset = (Shifts % SubScale) * BitWidth;
2807           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2808           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2809           // If we don't know any bits, early out.
2810           if (Known.isUnknown())
2811             break;
2812         }
2813     }
2814     break;
2815   }
2816   case ISD::AND:
2817     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2818     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2819 
2820     Known &= Known2;
2821     break;
2822   case ISD::OR:
2823     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2824     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2825 
2826     Known |= Known2;
2827     break;
2828   case ISD::XOR:
2829     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2830     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2831 
2832     Known ^= Known2;
2833     break;
2834   case ISD::MUL: {
2835     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2836     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2837 
2838     // If low bits are zero in either operand, output low known-0 bits.
2839     // Also compute a conservative estimate for high known-0 bits.
2840     // More trickiness is possible, but this is sufficient for the
2841     // interesting case of alignment computation.
2842     unsigned TrailZ = Known.countMinTrailingZeros() +
2843                       Known2.countMinTrailingZeros();
2844     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2845                                Known2.countMinLeadingZeros(),
2846                                BitWidth) - BitWidth;
2847 
2848     Known.resetAll();
2849     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2850     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2851     break;
2852   }
2853   case ISD::UDIV: {
2854     // For the purposes of computing leading zeros we can conservatively
2855     // treat a udiv as a logical right shift by the power of 2 known to
2856     // be less than the denominator.
2857     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2858     unsigned LeadZ = Known2.countMinLeadingZeros();
2859 
2860     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2861     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2862     if (RHSMaxLeadingZeros != BitWidth)
2863       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2864 
2865     Known.Zero.setHighBits(LeadZ);
2866     break;
2867   }
2868   case ISD::SELECT:
2869   case ISD::VSELECT:
2870     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2871     // If we don't know any bits, early out.
2872     if (Known.isUnknown())
2873       break;
2874     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2875 
2876     // Only known if known in both the LHS and RHS.
2877     Known.One &= Known2.One;
2878     Known.Zero &= Known2.Zero;
2879     break;
2880   case ISD::SELECT_CC:
2881     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2882     // If we don't know any bits, early out.
2883     if (Known.isUnknown())
2884       break;
2885     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2886 
2887     // Only known if known in both the LHS and RHS.
2888     Known.One &= Known2.One;
2889     Known.Zero &= Known2.Zero;
2890     break;
2891   case ISD::SMULO:
2892   case ISD::UMULO:
2893   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2894     if (Op.getResNo() != 1)
2895       break;
2896     // The boolean result conforms to getBooleanContents.
2897     // If we know the result of a setcc has the top bits zero, use this info.
2898     // We know that we have an integer-based boolean since these operations
2899     // are only available for integer.
2900     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2901             TargetLowering::ZeroOrOneBooleanContent &&
2902         BitWidth > 1)
2903       Known.Zero.setBitsFrom(1);
2904     break;
2905   case ISD::SETCC:
2906   case ISD::STRICT_FSETCC:
2907   case ISD::STRICT_FSETCCS: {
2908     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2909     // If we know the result of a setcc has the top bits zero, use this info.
2910     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2911             TargetLowering::ZeroOrOneBooleanContent &&
2912         BitWidth > 1)
2913       Known.Zero.setBitsFrom(1);
2914     break;
2915   }
2916   case ISD::SHL:
2917     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2918 
2919     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2920       unsigned Shift = ShAmt->getZExtValue();
2921       Known.Zero <<= Shift;
2922       Known.One <<= Shift;
2923       // Low bits are known zero.
2924       Known.Zero.setLowBits(Shift);
2925       break;
2926     }
2927 
2928     // No matter the shift amount, the trailing zeros will stay zero.
2929     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2930     Known.One.clearAllBits();
2931 
2932     // Minimum shift low bits are known zero.
2933     if (const APInt *ShMinAmt =
2934             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2935       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2936     break;
2937   case ISD::SRL:
2938     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2939 
2940     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2941       unsigned Shift = ShAmt->getZExtValue();
2942       Known.Zero.lshrInPlace(Shift);
2943       Known.One.lshrInPlace(Shift);
2944       // High bits are known zero.
2945       Known.Zero.setHighBits(Shift);
2946       break;
2947     }
2948 
2949     // No matter the shift amount, the leading zeros will stay zero.
2950     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2951     Known.One.clearAllBits();
2952 
2953     // Minimum shift high bits are known zero.
2954     if (const APInt *ShMinAmt =
2955             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2956       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2957     break;
2958   case ISD::SRA:
2959     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2960       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2961       unsigned Shift = ShAmt->getZExtValue();
2962       // Sign extend known zero/one bit (else is unknown).
2963       Known.Zero.ashrInPlace(Shift);
2964       Known.One.ashrInPlace(Shift);
2965     }
2966     break;
2967   case ISD::FSHL:
2968   case ISD::FSHR:
2969     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2970       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2971 
2972       // For fshl, 0-shift returns the 1st arg.
2973       // For fshr, 0-shift returns the 2nd arg.
2974       if (Amt == 0) {
2975         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2976                                  DemandedElts, Depth + 1);
2977         break;
2978       }
2979 
2980       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2981       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2982       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2984       if (Opcode == ISD::FSHL) {
2985         Known.One <<= Amt;
2986         Known.Zero <<= Amt;
2987         Known2.One.lshrInPlace(BitWidth - Amt);
2988         Known2.Zero.lshrInPlace(BitWidth - Amt);
2989       } else {
2990         Known.One <<= BitWidth - Amt;
2991         Known.Zero <<= BitWidth - Amt;
2992         Known2.One.lshrInPlace(Amt);
2993         Known2.Zero.lshrInPlace(Amt);
2994       }
2995       Known.One |= Known2.One;
2996       Known.Zero |= Known2.Zero;
2997     }
2998     break;
2999   case ISD::SIGN_EXTEND_INREG: {
3000     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3001     unsigned EBits = EVT.getScalarSizeInBits();
3002 
3003     // Sign extension.  Compute the demanded bits in the result that are not
3004     // present in the input.
3005     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3006 
3007     APInt InSignMask = APInt::getSignMask(EBits);
3008     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3009 
3010     // If the sign extended bits are demanded, we know that the sign
3011     // bit is demanded.
3012     InSignMask = InSignMask.zext(BitWidth);
3013     if (NewBits.getBoolValue())
3014       InputDemandedBits |= InSignMask;
3015 
3016     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3017     Known.One &= InputDemandedBits;
3018     Known.Zero &= InputDemandedBits;
3019 
3020     // If the sign bit of the input is known set or clear, then we know the
3021     // top bits of the result.
3022     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3023       Known.Zero |= NewBits;
3024       Known.One  &= ~NewBits;
3025     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3026       Known.One  |= NewBits;
3027       Known.Zero &= ~NewBits;
3028     } else {                              // Input sign bit unknown
3029       Known.Zero &= ~NewBits;
3030       Known.One  &= ~NewBits;
3031     }
3032     break;
3033   }
3034   case ISD::CTTZ:
3035   case ISD::CTTZ_ZERO_UNDEF: {
3036     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3037     // If we have a known 1, its position is our upper bound.
3038     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3039     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3040     Known.Zero.setBitsFrom(LowBits);
3041     break;
3042   }
3043   case ISD::CTLZ:
3044   case ISD::CTLZ_ZERO_UNDEF: {
3045     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3046     // If we have a known 1, its position is our upper bound.
3047     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3048     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3049     Known.Zero.setBitsFrom(LowBits);
3050     break;
3051   }
3052   case ISD::CTPOP: {
3053     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3054     // If we know some of the bits are zero, they can't be one.
3055     unsigned PossibleOnes = Known2.countMaxPopulation();
3056     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3057     break;
3058   }
3059   case ISD::LOAD: {
3060     LoadSDNode *LD = cast<LoadSDNode>(Op);
3061     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3062     if (ISD::isNON_EXTLoad(LD) && Cst) {
3063       // Determine any common known bits from the loaded constant pool value.
3064       Type *CstTy = Cst->getType();
3065       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3066         // If its a vector splat, then we can (quickly) reuse the scalar path.
3067         // NOTE: We assume all elements match and none are UNDEF.
3068         if (CstTy->isVectorTy()) {
3069           if (const Constant *Splat = Cst->getSplatValue()) {
3070             Cst = Splat;
3071             CstTy = Cst->getType();
3072           }
3073         }
3074         // TODO - do we need to handle different bitwidths?
3075         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3076           // Iterate across all vector elements finding common known bits.
3077           Known.One.setAllBits();
3078           Known.Zero.setAllBits();
3079           for (unsigned i = 0; i != NumElts; ++i) {
3080             if (!DemandedElts[i])
3081               continue;
3082             if (Constant *Elt = Cst->getAggregateElement(i)) {
3083               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3084                 const APInt &Value = CInt->getValue();
3085                 Known.One &= Value;
3086                 Known.Zero &= ~Value;
3087                 continue;
3088               }
3089               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3090                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3091                 Known.One &= Value;
3092                 Known.Zero &= ~Value;
3093                 continue;
3094               }
3095             }
3096             Known.One.clearAllBits();
3097             Known.Zero.clearAllBits();
3098             break;
3099           }
3100         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3101           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3102             const APInt &Value = CInt->getValue();
3103             Known.One = Value;
3104             Known.Zero = ~Value;
3105           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3106             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3107             Known.One = Value;
3108             Known.Zero = ~Value;
3109           }
3110         }
3111       }
3112     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3113       // If this is a ZEXTLoad and we are looking at the loaded value.
3114       EVT VT = LD->getMemoryVT();
3115       unsigned MemBits = VT.getScalarSizeInBits();
3116       Known.Zero.setBitsFrom(MemBits);
3117     } else if (const MDNode *Ranges = LD->getRanges()) {
3118       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3119         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3120     }
3121     break;
3122   }
3123   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3124     EVT InVT = Op.getOperand(0).getValueType();
3125     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3126     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3127     Known = Known.zext(BitWidth);
3128     break;
3129   }
3130   case ISD::ZERO_EXTEND: {
3131     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3132     Known = Known.zext(BitWidth);
3133     break;
3134   }
3135   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3136     EVT InVT = Op.getOperand(0).getValueType();
3137     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3138     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3139     // If the sign bit is known to be zero or one, then sext will extend
3140     // it to the top bits, else it will just zext.
3141     Known = Known.sext(BitWidth);
3142     break;
3143   }
3144   case ISD::SIGN_EXTEND: {
3145     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3146     // If the sign bit is known to be zero or one, then sext will extend
3147     // it to the top bits, else it will just zext.
3148     Known = Known.sext(BitWidth);
3149     break;
3150   }
3151   case ISD::ANY_EXTEND_VECTOR_INREG: {
3152     EVT InVT = Op.getOperand(0).getValueType();
3153     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3154     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3155     Known = Known.anyext(BitWidth);
3156     break;
3157   }
3158   case ISD::ANY_EXTEND: {
3159     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160     Known = Known.anyext(BitWidth);
3161     break;
3162   }
3163   case ISD::TRUNCATE: {
3164     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3165     Known = Known.trunc(BitWidth);
3166     break;
3167   }
3168   case ISD::AssertZext: {
3169     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3170     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3171     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3172     Known.Zero |= (~InMask);
3173     Known.One  &= (~Known.Zero);
3174     break;
3175   }
3176   case ISD::AssertAlign: {
3177     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3178     assert(LogOfAlign != 0);
3179     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3180     // well as clearing one bits.
3181     Known.Zero.setLowBits(LogOfAlign);
3182     Known.One.clearLowBits(LogOfAlign);
3183     break;
3184   }
3185   case ISD::FGETSIGN:
3186     // All bits are zero except the low bit.
3187     Known.Zero.setBitsFrom(1);
3188     break;
3189   case ISD::USUBO:
3190   case ISD::SSUBO:
3191     if (Op.getResNo() == 1) {
3192       // If we know the result of a setcc has the top bits zero, use this info.
3193       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3194               TargetLowering::ZeroOrOneBooleanContent &&
3195           BitWidth > 1)
3196         Known.Zero.setBitsFrom(1);
3197       break;
3198     }
3199     LLVM_FALLTHROUGH;
3200   case ISD::SUB:
3201   case ISD::SUBC: {
3202     assert(Op.getResNo() == 0 &&
3203            "We only compute knownbits for the difference here.");
3204 
3205     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3206     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3207     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3208                                         Known, Known2);
3209     break;
3210   }
3211   case ISD::UADDO:
3212   case ISD::SADDO:
3213   case ISD::ADDCARRY:
3214     if (Op.getResNo() == 1) {
3215       // If we know the result of a setcc has the top bits zero, use this info.
3216       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3217               TargetLowering::ZeroOrOneBooleanContent &&
3218           BitWidth > 1)
3219         Known.Zero.setBitsFrom(1);
3220       break;
3221     }
3222     LLVM_FALLTHROUGH;
3223   case ISD::ADD:
3224   case ISD::ADDC:
3225   case ISD::ADDE: {
3226     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3227 
3228     // With ADDE and ADDCARRY, a carry bit may be added in.
3229     KnownBits Carry(1);
3230     if (Opcode == ISD::ADDE)
3231       // Can't track carry from glue, set carry to unknown.
3232       Carry.resetAll();
3233     else if (Opcode == ISD::ADDCARRY)
3234       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3235       // the trouble (how often will we find a known carry bit). And I haven't
3236       // tested this very much yet, but something like this might work:
3237       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3238       //   Carry = Carry.zextOrTrunc(1, false);
3239       Carry.resetAll();
3240     else
3241       Carry.setAllZero();
3242 
3243     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3244     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3245     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3246     break;
3247   }
3248   case ISD::SREM:
3249     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3250       const APInt &RA = Rem->getAPIntValue().abs();
3251       if (RA.isPowerOf2()) {
3252         APInt LowBits = RA - 1;
3253         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3254 
3255         // The low bits of the first operand are unchanged by the srem.
3256         Known.Zero = Known2.Zero & LowBits;
3257         Known.One = Known2.One & LowBits;
3258 
3259         // If the first operand is non-negative or has all low bits zero, then
3260         // the upper bits are all zero.
3261         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3262           Known.Zero |= ~LowBits;
3263 
3264         // If the first operand is negative and not all low bits are zero, then
3265         // the upper bits are all one.
3266         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3267           Known.One |= ~LowBits;
3268         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3269       }
3270     }
3271     break;
3272   case ISD::UREM: {
3273     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3274       const APInt &RA = Rem->getAPIntValue();
3275       if (RA.isPowerOf2()) {
3276         APInt LowBits = (RA - 1);
3277         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3278 
3279         // The upper bits are all zero, the lower ones are unchanged.
3280         Known.Zero = Known2.Zero | ~LowBits;
3281         Known.One = Known2.One & LowBits;
3282         break;
3283       }
3284     }
3285 
3286     // Since the result is less than or equal to either operand, any leading
3287     // zero bits in either operand must also exist in the result.
3288     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3289     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3290 
3291     uint32_t Leaders =
3292         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3293     Known.resetAll();
3294     Known.Zero.setHighBits(Leaders);
3295     break;
3296   }
3297   case ISD::EXTRACT_ELEMENT: {
3298     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3299     const unsigned Index = Op.getConstantOperandVal(1);
3300     const unsigned EltBitWidth = Op.getValueSizeInBits();
3301 
3302     // Remove low part of known bits mask
3303     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3304     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3305 
3306     // Remove high part of known bit mask
3307     Known = Known.trunc(EltBitWidth);
3308     break;
3309   }
3310   case ISD::EXTRACT_VECTOR_ELT: {
3311     SDValue InVec = Op.getOperand(0);
3312     SDValue EltNo = Op.getOperand(1);
3313     EVT VecVT = InVec.getValueType();
3314     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3315     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3316 
3317     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3318     // anything about the extended bits.
3319     if (BitWidth > EltBitWidth)
3320       Known = Known.trunc(EltBitWidth);
3321 
3322     // If we know the element index, just demand that vector element, else for
3323     // an unknown element index, ignore DemandedElts and demand them all.
3324     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3325     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3326     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3327       DemandedSrcElts =
3328           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3329 
3330     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3331     if (BitWidth > EltBitWidth)
3332       Known = Known.anyext(BitWidth);
3333     break;
3334   }
3335   case ISD::INSERT_VECTOR_ELT: {
3336     // If we know the element index, split the demand between the
3337     // source vector and the inserted element, otherwise assume we need
3338     // the original demanded vector elements and the value.
3339     SDValue InVec = Op.getOperand(0);
3340     SDValue InVal = Op.getOperand(1);
3341     SDValue EltNo = Op.getOperand(2);
3342     bool DemandedVal = true;
3343     APInt DemandedVecElts = DemandedElts;
3344     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3345     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3346       unsigned EltIdx = CEltNo->getZExtValue();
3347       DemandedVal = !!DemandedElts[EltIdx];
3348       DemandedVecElts.clearBit(EltIdx);
3349     }
3350     Known.One.setAllBits();
3351     Known.Zero.setAllBits();
3352     if (DemandedVal) {
3353       Known2 = computeKnownBits(InVal, Depth + 1);
3354       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3355       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3356     }
3357     if (!!DemandedVecElts) {
3358       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3359       Known.One &= Known2.One;
3360       Known.Zero &= Known2.Zero;
3361     }
3362     break;
3363   }
3364   case ISD::BITREVERSE: {
3365     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3366     Known.Zero = Known2.Zero.reverseBits();
3367     Known.One = Known2.One.reverseBits();
3368     break;
3369   }
3370   case ISD::BSWAP: {
3371     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3372     Known.Zero = Known2.Zero.byteSwap();
3373     Known.One = Known2.One.byteSwap();
3374     break;
3375   }
3376   case ISD::ABS: {
3377     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378 
3379     // If the source's MSB is zero then we know the rest of the bits already.
3380     if (Known2.isNonNegative()) {
3381       Known.Zero = Known2.Zero;
3382       Known.One = Known2.One;
3383       break;
3384     }
3385 
3386     // We only know that the absolute values's MSB will be zero iff there is
3387     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3388     Known2.One.clearSignBit();
3389     if (Known2.One.getBoolValue()) {
3390       Known.Zero = APInt::getSignMask(BitWidth);
3391       break;
3392     }
3393     break;
3394   }
3395   case ISD::UMIN: {
3396     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3397     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3398 
3399     // UMIN - we know that the result will have the maximum of the
3400     // known zero leading bits of the inputs.
3401     unsigned LeadZero = Known.countMinLeadingZeros();
3402     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3403 
3404     Known.Zero &= Known2.Zero;
3405     Known.One &= Known2.One;
3406     Known.Zero.setHighBits(LeadZero);
3407     break;
3408   }
3409   case ISD::UMAX: {
3410     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3411     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3412 
3413     // UMAX - we know that the result will have the maximum of the
3414     // known one leading bits of the inputs.
3415     unsigned LeadOne = Known.countMinLeadingOnes();
3416     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3417 
3418     Known.Zero &= Known2.Zero;
3419     Known.One &= Known2.One;
3420     Known.One.setHighBits(LeadOne);
3421     break;
3422   }
3423   case ISD::SMIN:
3424   case ISD::SMAX: {
3425     // If we have a clamp pattern, we know that the number of sign bits will be
3426     // the minimum of the clamp min/max range.
3427     bool IsMax = (Opcode == ISD::SMAX);
3428     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3429     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3430       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3431         CstHigh =
3432             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3433     if (CstLow && CstHigh) {
3434       if (!IsMax)
3435         std::swap(CstLow, CstHigh);
3436 
3437       const APInt &ValueLow = CstLow->getAPIntValue();
3438       const APInt &ValueHigh = CstHigh->getAPIntValue();
3439       if (ValueLow.sle(ValueHigh)) {
3440         unsigned LowSignBits = ValueLow.getNumSignBits();
3441         unsigned HighSignBits = ValueHigh.getNumSignBits();
3442         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3443         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3444           Known.One.setHighBits(MinSignBits);
3445           break;
3446         }
3447         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3448           Known.Zero.setHighBits(MinSignBits);
3449           break;
3450         }
3451       }
3452     }
3453 
3454     // Fallback - just get the shared known bits of the operands.
3455     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3456     if (Known.isUnknown()) break; // Early-out
3457     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3458     Known.Zero &= Known2.Zero;
3459     Known.One &= Known2.One;
3460     break;
3461   }
3462   case ISD::FrameIndex:
3463   case ISD::TargetFrameIndex:
3464     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3465                                        Known, getMachineFunction());
3466     break;
3467 
3468   default:
3469     if (Opcode < ISD::BUILTIN_OP_END)
3470       break;
3471     LLVM_FALLTHROUGH;
3472   case ISD::INTRINSIC_WO_CHAIN:
3473   case ISD::INTRINSIC_W_CHAIN:
3474   case ISD::INTRINSIC_VOID:
3475     // Allow the target to implement this method for its nodes.
3476     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3477     break;
3478   }
3479 
3480   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3481   return Known;
3482 }
3483 
3484 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3485                                                              SDValue N1) const {
3486   // X + 0 never overflow
3487   if (isNullConstant(N1))
3488     return OFK_Never;
3489 
3490   KnownBits N1Known = computeKnownBits(N1);
3491   if (N1Known.Zero.getBoolValue()) {
3492     KnownBits N0Known = computeKnownBits(N0);
3493 
3494     bool overflow;
3495     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3496     if (!overflow)
3497       return OFK_Never;
3498   }
3499 
3500   // mulhi + 1 never overflow
3501   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3502       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3503     return OFK_Never;
3504 
3505   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3506     KnownBits N0Known = computeKnownBits(N0);
3507 
3508     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3509       return OFK_Never;
3510   }
3511 
3512   return OFK_Sometime;
3513 }
3514 
3515 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3516   EVT OpVT = Val.getValueType();
3517   unsigned BitWidth = OpVT.getScalarSizeInBits();
3518 
3519   // Is the constant a known power of 2?
3520   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3521     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3522 
3523   // A left-shift of a constant one will have exactly one bit set because
3524   // shifting the bit off the end is undefined.
3525   if (Val.getOpcode() == ISD::SHL) {
3526     auto *C = isConstOrConstSplat(Val.getOperand(0));
3527     if (C && C->getAPIntValue() == 1)
3528       return true;
3529   }
3530 
3531   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3532   // one bit set.
3533   if (Val.getOpcode() == ISD::SRL) {
3534     auto *C = isConstOrConstSplat(Val.getOperand(0));
3535     if (C && C->getAPIntValue().isSignMask())
3536       return true;
3537   }
3538 
3539   // Are all operands of a build vector constant powers of two?
3540   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3541     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3542           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3543             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3544           return false;
3545         }))
3546       return true;
3547 
3548   // More could be done here, though the above checks are enough
3549   // to handle some common cases.
3550 
3551   // Fall back to computeKnownBits to catch other known cases.
3552   KnownBits Known = computeKnownBits(Val);
3553   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3554 }
3555 
3556 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3557   EVT VT = Op.getValueType();
3558 
3559   // TODO: Assume we don't know anything for now.
3560   if (VT.isScalableVector())
3561     return 1;
3562 
3563   APInt DemandedElts = VT.isVector()
3564                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3565                            : APInt(1, 1);
3566   return ComputeNumSignBits(Op, DemandedElts, Depth);
3567 }
3568 
3569 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3570                                           unsigned Depth) const {
3571   EVT VT = Op.getValueType();
3572   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3573   unsigned VTBits = VT.getScalarSizeInBits();
3574   unsigned NumElts = DemandedElts.getBitWidth();
3575   unsigned Tmp, Tmp2;
3576   unsigned FirstAnswer = 1;
3577 
3578   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3579     const APInt &Val = C->getAPIntValue();
3580     return Val.getNumSignBits();
3581   }
3582 
3583   if (Depth >= MaxRecursionDepth)
3584     return 1;  // Limit search depth.
3585 
3586   if (!DemandedElts || VT.isScalableVector())
3587     return 1;  // No demanded elts, better to assume we don't know anything.
3588 
3589   unsigned Opcode = Op.getOpcode();
3590   switch (Opcode) {
3591   default: break;
3592   case ISD::AssertSext:
3593     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3594     return VTBits-Tmp+1;
3595   case ISD::AssertZext:
3596     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3597     return VTBits-Tmp;
3598 
3599   case ISD::BUILD_VECTOR:
3600     Tmp = VTBits;
3601     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3602       if (!DemandedElts[i])
3603         continue;
3604 
3605       SDValue SrcOp = Op.getOperand(i);
3606       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3607 
3608       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3609       if (SrcOp.getValueSizeInBits() != VTBits) {
3610         assert(SrcOp.getValueSizeInBits() > VTBits &&
3611                "Expected BUILD_VECTOR implicit truncation");
3612         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3613         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3614       }
3615       Tmp = std::min(Tmp, Tmp2);
3616     }
3617     return Tmp;
3618 
3619   case ISD::VECTOR_SHUFFLE: {
3620     // Collect the minimum number of sign bits that are shared by every vector
3621     // element referenced by the shuffle.
3622     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3623     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3624     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3625     for (unsigned i = 0; i != NumElts; ++i) {
3626       int M = SVN->getMaskElt(i);
3627       if (!DemandedElts[i])
3628         continue;
3629       // For UNDEF elements, we don't know anything about the common state of
3630       // the shuffle result.
3631       if (M < 0)
3632         return 1;
3633       if ((unsigned)M < NumElts)
3634         DemandedLHS.setBit((unsigned)M % NumElts);
3635       else
3636         DemandedRHS.setBit((unsigned)M % NumElts);
3637     }
3638     Tmp = std::numeric_limits<unsigned>::max();
3639     if (!!DemandedLHS)
3640       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3641     if (!!DemandedRHS) {
3642       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3643       Tmp = std::min(Tmp, Tmp2);
3644     }
3645     // If we don't know anything, early out and try computeKnownBits fall-back.
3646     if (Tmp == 1)
3647       break;
3648     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3649     return Tmp;
3650   }
3651 
3652   case ISD::BITCAST: {
3653     SDValue N0 = Op.getOperand(0);
3654     EVT SrcVT = N0.getValueType();
3655     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3656 
3657     // Ignore bitcasts from unsupported types..
3658     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3659       break;
3660 
3661     // Fast handling of 'identity' bitcasts.
3662     if (VTBits == SrcBits)
3663       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3664 
3665     bool IsLE = getDataLayout().isLittleEndian();
3666 
3667     // Bitcast 'large element' scalar/vector to 'small element' vector.
3668     if ((SrcBits % VTBits) == 0) {
3669       assert(VT.isVector() && "Expected bitcast to vector");
3670 
3671       unsigned Scale = SrcBits / VTBits;
3672       APInt SrcDemandedElts(NumElts / Scale, 0);
3673       for (unsigned i = 0; i != NumElts; ++i)
3674         if (DemandedElts[i])
3675           SrcDemandedElts.setBit(i / Scale);
3676 
3677       // Fast case - sign splat can be simply split across the small elements.
3678       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3679       if (Tmp == SrcBits)
3680         return VTBits;
3681 
3682       // Slow case - determine how far the sign extends into each sub-element.
3683       Tmp2 = VTBits;
3684       for (unsigned i = 0; i != NumElts; ++i)
3685         if (DemandedElts[i]) {
3686           unsigned SubOffset = i % Scale;
3687           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3688           SubOffset = SubOffset * VTBits;
3689           if (Tmp <= SubOffset)
3690             return 1;
3691           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3692         }
3693       return Tmp2;
3694     }
3695     break;
3696   }
3697 
3698   case ISD::SIGN_EXTEND:
3699     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3700     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3701   case ISD::SIGN_EXTEND_INREG:
3702     // Max of the input and what this extends.
3703     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3704     Tmp = VTBits-Tmp+1;
3705     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3706     return std::max(Tmp, Tmp2);
3707   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3708     SDValue Src = Op.getOperand(0);
3709     EVT SrcVT = Src.getValueType();
3710     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3711     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3712     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3713   }
3714   case ISD::SRA:
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3716     // SRA X, C -> adds C sign bits.
3717     if (const APInt *ShAmt =
3718             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3719       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3720     return Tmp;
3721   case ISD::SHL:
3722     if (const APInt *ShAmt =
3723             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3724       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3725       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3726       if (ShAmt->ult(Tmp))
3727         return Tmp - ShAmt->getZExtValue();
3728     }
3729     break;
3730   case ISD::AND:
3731   case ISD::OR:
3732   case ISD::XOR:    // NOT is handled here.
3733     // Logical binary ops preserve the number of sign bits at the worst.
3734     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3735     if (Tmp != 1) {
3736       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3737       FirstAnswer = std::min(Tmp, Tmp2);
3738       // We computed what we know about the sign bits as our first
3739       // answer. Now proceed to the generic code that uses
3740       // computeKnownBits, and pick whichever answer is better.
3741     }
3742     break;
3743 
3744   case ISD::SELECT:
3745   case ISD::VSELECT:
3746     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3747     if (Tmp == 1) return 1;  // Early out.
3748     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3749     return std::min(Tmp, Tmp2);
3750   case ISD::SELECT_CC:
3751     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3752     if (Tmp == 1) return 1;  // Early out.
3753     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3754     return std::min(Tmp, Tmp2);
3755 
3756   case ISD::SMIN:
3757   case ISD::SMAX: {
3758     // If we have a clamp pattern, we know that the number of sign bits will be
3759     // the minimum of the clamp min/max range.
3760     bool IsMax = (Opcode == ISD::SMAX);
3761     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3762     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3763       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3764         CstHigh =
3765             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3766     if (CstLow && CstHigh) {
3767       if (!IsMax)
3768         std::swap(CstLow, CstHigh);
3769       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3770         Tmp = CstLow->getAPIntValue().getNumSignBits();
3771         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3772         return std::min(Tmp, Tmp2);
3773       }
3774     }
3775 
3776     // Fallback - just get the minimum number of sign bits of the operands.
3777     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778     if (Tmp == 1)
3779       return 1;  // Early out.
3780     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3781     return std::min(Tmp, Tmp2);
3782   }
3783   case ISD::UMIN:
3784   case ISD::UMAX:
3785     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786     if (Tmp == 1)
3787       return 1;  // Early out.
3788     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3789     return std::min(Tmp, Tmp2);
3790   case ISD::SADDO:
3791   case ISD::UADDO:
3792   case ISD::SSUBO:
3793   case ISD::USUBO:
3794   case ISD::SMULO:
3795   case ISD::UMULO:
3796     if (Op.getResNo() != 1)
3797       break;
3798     // The boolean result conforms to getBooleanContents.  Fall through.
3799     // If setcc returns 0/-1, all bits are sign bits.
3800     // We know that we have an integer-based boolean since these operations
3801     // are only available for integer.
3802     if (TLI->getBooleanContents(VT.isVector(), false) ==
3803         TargetLowering::ZeroOrNegativeOneBooleanContent)
3804       return VTBits;
3805     break;
3806   case ISD::SETCC:
3807   case ISD::STRICT_FSETCC:
3808   case ISD::STRICT_FSETCCS: {
3809     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3810     // If setcc returns 0/-1, all bits are sign bits.
3811     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3812         TargetLowering::ZeroOrNegativeOneBooleanContent)
3813       return VTBits;
3814     break;
3815   }
3816   case ISD::ROTL:
3817   case ISD::ROTR:
3818     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3819 
3820     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3821     if (Tmp == VTBits)
3822       return VTBits;
3823 
3824     if (ConstantSDNode *C =
3825             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3826       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3827 
3828       // Handle rotate right by N like a rotate left by 32-N.
3829       if (Opcode == ISD::ROTR)
3830         RotAmt = (VTBits - RotAmt) % VTBits;
3831 
3832       // If we aren't rotating out all of the known-in sign bits, return the
3833       // number that are left.  This handles rotl(sext(x), 1) for example.
3834       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3835     }
3836     break;
3837   case ISD::ADD:
3838   case ISD::ADDC:
3839     // Add can have at most one carry bit.  Thus we know that the output
3840     // is, at worst, one more bit than the inputs.
3841     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3842     if (Tmp == 1) return 1; // Early out.
3843 
3844     // Special case decrementing a value (ADD X, -1):
3845     if (ConstantSDNode *CRHS =
3846             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3847       if (CRHS->isAllOnesValue()) {
3848         KnownBits Known =
3849             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3850 
3851         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3852         // sign bits set.
3853         if ((Known.Zero | 1).isAllOnesValue())
3854           return VTBits;
3855 
3856         // If we are subtracting one from a positive number, there is no carry
3857         // out of the result.
3858         if (Known.isNonNegative())
3859           return Tmp;
3860       }
3861 
3862     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3863     if (Tmp2 == 1) return 1; // Early out.
3864     return std::min(Tmp, Tmp2) - 1;
3865   case ISD::SUB:
3866     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3867     if (Tmp2 == 1) return 1; // Early out.
3868 
3869     // Handle NEG.
3870     if (ConstantSDNode *CLHS =
3871             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3872       if (CLHS->isNullValue()) {
3873         KnownBits Known =
3874             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3875         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3876         // sign bits set.
3877         if ((Known.Zero | 1).isAllOnesValue())
3878           return VTBits;
3879 
3880         // If the input is known to be positive (the sign bit is known clear),
3881         // the output of the NEG has the same number of sign bits as the input.
3882         if (Known.isNonNegative())
3883           return Tmp2;
3884 
3885         // Otherwise, we treat this like a SUB.
3886       }
3887 
3888     // Sub can have at most one carry bit.  Thus we know that the output
3889     // is, at worst, one more bit than the inputs.
3890     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3891     if (Tmp == 1) return 1; // Early out.
3892     return std::min(Tmp, Tmp2) - 1;
3893   case ISD::MUL: {
3894     // The output of the Mul can be at most twice the valid bits in the inputs.
3895     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3896     if (SignBitsOp0 == 1)
3897       break;
3898     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3899     if (SignBitsOp1 == 1)
3900       break;
3901     unsigned OutValidBits =
3902         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3903     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3904   }
3905   case ISD::TRUNCATE: {
3906     // Check if the sign bits of source go down as far as the truncated value.
3907     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3908     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3909     if (NumSrcSignBits > (NumSrcBits - VTBits))
3910       return NumSrcSignBits - (NumSrcBits - VTBits);
3911     break;
3912   }
3913   case ISD::EXTRACT_ELEMENT: {
3914     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3915     const int BitWidth = Op.getValueSizeInBits();
3916     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3917 
3918     // Get reverse index (starting from 1), Op1 value indexes elements from
3919     // little end. Sign starts at big end.
3920     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3921 
3922     // If the sign portion ends in our element the subtraction gives correct
3923     // result. Otherwise it gives either negative or > bitwidth result
3924     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3925   }
3926   case ISD::INSERT_VECTOR_ELT: {
3927     // If we know the element index, split the demand between the
3928     // source vector and the inserted element, otherwise assume we need
3929     // the original demanded vector elements and the value.
3930     SDValue InVec = Op.getOperand(0);
3931     SDValue InVal = Op.getOperand(1);
3932     SDValue EltNo = Op.getOperand(2);
3933     bool DemandedVal = true;
3934     APInt DemandedVecElts = DemandedElts;
3935     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3936     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3937       unsigned EltIdx = CEltNo->getZExtValue();
3938       DemandedVal = !!DemandedElts[EltIdx];
3939       DemandedVecElts.clearBit(EltIdx);
3940     }
3941     Tmp = std::numeric_limits<unsigned>::max();
3942     if (DemandedVal) {
3943       // TODO - handle implicit truncation of inserted elements.
3944       if (InVal.getScalarValueSizeInBits() != VTBits)
3945         break;
3946       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3947       Tmp = std::min(Tmp, Tmp2);
3948     }
3949     if (!!DemandedVecElts) {
3950       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3951       Tmp = std::min(Tmp, Tmp2);
3952     }
3953     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3954     return Tmp;
3955   }
3956   case ISD::EXTRACT_VECTOR_ELT: {
3957     SDValue InVec = Op.getOperand(0);
3958     SDValue EltNo = Op.getOperand(1);
3959     EVT VecVT = InVec.getValueType();
3960     const unsigned BitWidth = Op.getValueSizeInBits();
3961     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3962     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3963 
3964     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3965     // anything about sign bits. But if the sizes match we can derive knowledge
3966     // about sign bits from the vector operand.
3967     if (BitWidth != EltBitWidth)
3968       break;
3969 
3970     // If we know the element index, just demand that vector element, else for
3971     // an unknown element index, ignore DemandedElts and demand them all.
3972     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3973     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3974     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3975       DemandedSrcElts =
3976           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3977 
3978     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3979   }
3980   case ISD::EXTRACT_SUBVECTOR: {
3981     // Offset the demanded elts by the subvector index.
3982     SDValue Src = Op.getOperand(0);
3983     // Bail until we can represent demanded elements for scalable vectors.
3984     if (Src.getValueType().isScalableVector())
3985       break;
3986     uint64_t Idx = Op.getConstantOperandVal(1);
3987     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3988     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3989     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3990   }
3991   case ISD::CONCAT_VECTORS: {
3992     // Determine the minimum number of sign bits across all demanded
3993     // elts of the input vectors. Early out if the result is already 1.
3994     Tmp = std::numeric_limits<unsigned>::max();
3995     EVT SubVectorVT = Op.getOperand(0).getValueType();
3996     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3997     unsigned NumSubVectors = Op.getNumOperands();
3998     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3999       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4000       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4001       if (!DemandedSub)
4002         continue;
4003       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4004       Tmp = std::min(Tmp, Tmp2);
4005     }
4006     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4007     return Tmp;
4008   }
4009   case ISD::INSERT_SUBVECTOR: {
4010     // Demand any elements from the subvector and the remainder from the src its
4011     // inserted into.
4012     SDValue Src = Op.getOperand(0);
4013     SDValue Sub = Op.getOperand(1);
4014     uint64_t Idx = Op.getConstantOperandVal(2);
4015     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4016     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4017     APInt DemandedSrcElts = DemandedElts;
4018     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4019 
4020     Tmp = std::numeric_limits<unsigned>::max();
4021     if (!!DemandedSubElts) {
4022       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4023       if (Tmp == 1)
4024         return 1; // early-out
4025     }
4026     if (!!DemandedSrcElts) {
4027       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4028       Tmp = std::min(Tmp, Tmp2);
4029     }
4030     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4031     return Tmp;
4032   }
4033   }
4034 
4035   // If we are looking at the loaded value of the SDNode.
4036   if (Op.getResNo() == 0) {
4037     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4038     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4039       unsigned ExtType = LD->getExtensionType();
4040       switch (ExtType) {
4041       default: break;
4042       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4043         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4044         return VTBits - Tmp + 1;
4045       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4046         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4047         return VTBits - Tmp;
4048       case ISD::NON_EXTLOAD:
4049         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4050           // We only need to handle vectors - computeKnownBits should handle
4051           // scalar cases.
4052           Type *CstTy = Cst->getType();
4053           if (CstTy->isVectorTy() &&
4054               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4055             Tmp = VTBits;
4056             for (unsigned i = 0; i != NumElts; ++i) {
4057               if (!DemandedElts[i])
4058                 continue;
4059               if (Constant *Elt = Cst->getAggregateElement(i)) {
4060                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4061                   const APInt &Value = CInt->getValue();
4062                   Tmp = std::min(Tmp, Value.getNumSignBits());
4063                   continue;
4064                 }
4065                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4066                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4067                   Tmp = std::min(Tmp, Value.getNumSignBits());
4068                   continue;
4069                 }
4070               }
4071               // Unknown type. Conservatively assume no bits match sign bit.
4072               return 1;
4073             }
4074             return Tmp;
4075           }
4076         }
4077         break;
4078       }
4079     }
4080   }
4081 
4082   // Allow the target to implement this method for its nodes.
4083   if (Opcode >= ISD::BUILTIN_OP_END ||
4084       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4085       Opcode == ISD::INTRINSIC_W_CHAIN ||
4086       Opcode == ISD::INTRINSIC_VOID) {
4087     unsigned NumBits =
4088         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4089     if (NumBits > 1)
4090       FirstAnswer = std::max(FirstAnswer, NumBits);
4091   }
4092 
4093   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4094   // use this information.
4095   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4096 
4097   APInt Mask;
4098   if (Known.isNonNegative()) {        // sign bit is 0
4099     Mask = Known.Zero;
4100   } else if (Known.isNegative()) {  // sign bit is 1;
4101     Mask = Known.One;
4102   } else {
4103     // Nothing known.
4104     return FirstAnswer;
4105   }
4106 
4107   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4108   // the number of identical bits in the top of the input value.
4109   Mask <<= Mask.getBitWidth()-VTBits;
4110   return std::max(FirstAnswer, Mask.countLeadingOnes());
4111 }
4112 
4113 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4114   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4115       !isa<ConstantSDNode>(Op.getOperand(1)))
4116     return false;
4117 
4118   if (Op.getOpcode() == ISD::OR &&
4119       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4120     return false;
4121 
4122   return true;
4123 }
4124 
4125 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4126   // If we're told that NaNs won't happen, assume they won't.
4127   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4128     return true;
4129 
4130   if (Depth >= MaxRecursionDepth)
4131     return false; // Limit search depth.
4132 
4133   // TODO: Handle vectors.
4134   // If the value is a constant, we can obviously see if it is a NaN or not.
4135   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4136     return !C->getValueAPF().isNaN() ||
4137            (SNaN && !C->getValueAPF().isSignaling());
4138   }
4139 
4140   unsigned Opcode = Op.getOpcode();
4141   switch (Opcode) {
4142   case ISD::FADD:
4143   case ISD::FSUB:
4144   case ISD::FMUL:
4145   case ISD::FDIV:
4146   case ISD::FREM:
4147   case ISD::FSIN:
4148   case ISD::FCOS: {
4149     if (SNaN)
4150       return true;
4151     // TODO: Need isKnownNeverInfinity
4152     return false;
4153   }
4154   case ISD::FCANONICALIZE:
4155   case ISD::FEXP:
4156   case ISD::FEXP2:
4157   case ISD::FTRUNC:
4158   case ISD::FFLOOR:
4159   case ISD::FCEIL:
4160   case ISD::FROUND:
4161   case ISD::FROUNDEVEN:
4162   case ISD::FRINT:
4163   case ISD::FNEARBYINT: {
4164     if (SNaN)
4165       return true;
4166     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4167   }
4168   case ISD::FABS:
4169   case ISD::FNEG:
4170   case ISD::FCOPYSIGN: {
4171     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4172   }
4173   case ISD::SELECT:
4174     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4175            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4176   case ISD::FP_EXTEND:
4177   case ISD::FP_ROUND: {
4178     if (SNaN)
4179       return true;
4180     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4181   }
4182   case ISD::SINT_TO_FP:
4183   case ISD::UINT_TO_FP:
4184     return true;
4185   case ISD::FMA:
4186   case ISD::FMAD: {
4187     if (SNaN)
4188       return true;
4189     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4190            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4191            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4192   }
4193   case ISD::FSQRT: // Need is known positive
4194   case ISD::FLOG:
4195   case ISD::FLOG2:
4196   case ISD::FLOG10:
4197   case ISD::FPOWI:
4198   case ISD::FPOW: {
4199     if (SNaN)
4200       return true;
4201     // TODO: Refine on operand
4202     return false;
4203   }
4204   case ISD::FMINNUM:
4205   case ISD::FMAXNUM: {
4206     // Only one needs to be known not-nan, since it will be returned if the
4207     // other ends up being one.
4208     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4209            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4210   }
4211   case ISD::FMINNUM_IEEE:
4212   case ISD::FMAXNUM_IEEE: {
4213     if (SNaN)
4214       return true;
4215     // This can return a NaN if either operand is an sNaN, or if both operands
4216     // are NaN.
4217     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4218             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4219            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4220             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4221   }
4222   case ISD::FMINIMUM:
4223   case ISD::FMAXIMUM: {
4224     // TODO: Does this quiet or return the origina NaN as-is?
4225     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4226            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4227   }
4228   case ISD::EXTRACT_VECTOR_ELT: {
4229     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4230   }
4231   default:
4232     if (Opcode >= ISD::BUILTIN_OP_END ||
4233         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4234         Opcode == ISD::INTRINSIC_W_CHAIN ||
4235         Opcode == ISD::INTRINSIC_VOID) {
4236       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4237     }
4238 
4239     return false;
4240   }
4241 }
4242 
4243 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4244   assert(Op.getValueType().isFloatingPoint() &&
4245          "Floating point type expected");
4246 
4247   // If the value is a constant, we can obviously see if it is a zero or not.
4248   // TODO: Add BuildVector support.
4249   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4250     return !C->isZero();
4251   return false;
4252 }
4253 
4254 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4255   assert(!Op.getValueType().isFloatingPoint() &&
4256          "Floating point types unsupported - use isKnownNeverZeroFloat");
4257 
4258   // If the value is a constant, we can obviously see if it is a zero or not.
4259   if (ISD::matchUnaryPredicate(
4260           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4261     return true;
4262 
4263   // TODO: Recognize more cases here.
4264   switch (Op.getOpcode()) {
4265   default: break;
4266   case ISD::OR:
4267     if (isKnownNeverZero(Op.getOperand(1)) ||
4268         isKnownNeverZero(Op.getOperand(0)))
4269       return true;
4270     break;
4271   }
4272 
4273   return false;
4274 }
4275 
4276 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4277   // Check the obvious case.
4278   if (A == B) return true;
4279 
4280   // For for negative and positive zero.
4281   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4282     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4283       if (CA->isZero() && CB->isZero()) return true;
4284 
4285   // Otherwise they may not be equal.
4286   return false;
4287 }
4288 
4289 // FIXME: unify with llvm::haveNoCommonBitsSet.
4290 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4291 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4292   assert(A.getValueType() == B.getValueType() &&
4293          "Values must have the same type");
4294   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4295 }
4296 
4297 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4298                                 ArrayRef<SDValue> Ops,
4299                                 SelectionDAG &DAG) {
4300   int NumOps = Ops.size();
4301   assert(NumOps != 0 && "Can't build an empty vector!");
4302   assert(!VT.isScalableVector() &&
4303          "BUILD_VECTOR cannot be used with scalable types");
4304   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4305          "Incorrect element count in BUILD_VECTOR!");
4306 
4307   // BUILD_VECTOR of UNDEFs is UNDEF.
4308   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4309     return DAG.getUNDEF(VT);
4310 
4311   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4312   SDValue IdentitySrc;
4313   bool IsIdentity = true;
4314   for (int i = 0; i != NumOps; ++i) {
4315     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4316         Ops[i].getOperand(0).getValueType() != VT ||
4317         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4318         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4319         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4320       IsIdentity = false;
4321       break;
4322     }
4323     IdentitySrc = Ops[i].getOperand(0);
4324   }
4325   if (IsIdentity)
4326     return IdentitySrc;
4327 
4328   return SDValue();
4329 }
4330 
4331 /// Try to simplify vector concatenation to an input value, undef, or build
4332 /// vector.
4333 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4334                                   ArrayRef<SDValue> Ops,
4335                                   SelectionDAG &DAG) {
4336   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4337   assert(llvm::all_of(Ops,
4338                       [Ops](SDValue Op) {
4339                         return Ops[0].getValueType() == Op.getValueType();
4340                       }) &&
4341          "Concatenation of vectors with inconsistent value types!");
4342   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4343              VT.getVectorElementCount() &&
4344          "Incorrect element count in vector concatenation!");
4345 
4346   if (Ops.size() == 1)
4347     return Ops[0];
4348 
4349   // Concat of UNDEFs is UNDEF.
4350   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4351     return DAG.getUNDEF(VT);
4352 
4353   // Scan the operands and look for extract operations from a single source
4354   // that correspond to insertion at the same location via this concatenation:
4355   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4356   SDValue IdentitySrc;
4357   bool IsIdentity = true;
4358   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4359     SDValue Op = Ops[i];
4360     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4361     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4362         Op.getOperand(0).getValueType() != VT ||
4363         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4364         Op.getConstantOperandVal(1) != IdentityIndex) {
4365       IsIdentity = false;
4366       break;
4367     }
4368     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4369            "Unexpected identity source vector for concat of extracts");
4370     IdentitySrc = Op.getOperand(0);
4371   }
4372   if (IsIdentity) {
4373     assert(IdentitySrc && "Failed to set source vector of extracts");
4374     return IdentitySrc;
4375   }
4376 
4377   // The code below this point is only designed to work for fixed width
4378   // vectors, so we bail out for now.
4379   if (VT.isScalableVector())
4380     return SDValue();
4381 
4382   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4383   // simplified to one big BUILD_VECTOR.
4384   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4385   EVT SVT = VT.getScalarType();
4386   SmallVector<SDValue, 16> Elts;
4387   for (SDValue Op : Ops) {
4388     EVT OpVT = Op.getValueType();
4389     if (Op.isUndef())
4390       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4391     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4392       Elts.append(Op->op_begin(), Op->op_end());
4393     else
4394       return SDValue();
4395   }
4396 
4397   // BUILD_VECTOR requires all inputs to be of the same type, find the
4398   // maximum type and extend them all.
4399   for (SDValue Op : Elts)
4400     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4401 
4402   if (SVT.bitsGT(VT.getScalarType()))
4403     for (SDValue &Op : Elts)
4404       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4405                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4406                : DAG.getSExtOrTrunc(Op, DL, SVT);
4407 
4408   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4409   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4410   return V;
4411 }
4412 
4413 /// Gets or creates the specified node.
4414 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4415   FoldingSetNodeID ID;
4416   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4417   void *IP = nullptr;
4418   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4419     return SDValue(E, 0);
4420 
4421   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4422                               getVTList(VT));
4423   CSEMap.InsertNode(N, IP);
4424 
4425   InsertNode(N);
4426   SDValue V = SDValue(N, 0);
4427   NewSDValueDbgMsg(V, "Creating new node: ", this);
4428   return V;
4429 }
4430 
4431 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4432                               SDValue Operand, const SDNodeFlags Flags) {
4433   // Constant fold unary operations with an integer constant operand. Even
4434   // opaque constant will be folded, because the folding of unary operations
4435   // doesn't create new constants with different values. Nevertheless, the
4436   // opaque flag is preserved during folding to prevent future folding with
4437   // other constants.
4438   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4439     const APInt &Val = C->getAPIntValue();
4440     switch (Opcode) {
4441     default: break;
4442     case ISD::SIGN_EXTEND:
4443       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4444                          C->isTargetOpcode(), C->isOpaque());
4445     case ISD::TRUNCATE:
4446       if (C->isOpaque())
4447         break;
4448       LLVM_FALLTHROUGH;
4449     case ISD::ANY_EXTEND:
4450     case ISD::ZERO_EXTEND:
4451       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4452                          C->isTargetOpcode(), C->isOpaque());
4453     case ISD::UINT_TO_FP:
4454     case ISD::SINT_TO_FP: {
4455       APFloat apf(EVTToAPFloatSemantics(VT),
4456                   APInt::getNullValue(VT.getSizeInBits()));
4457       (void)apf.convertFromAPInt(Val,
4458                                  Opcode==ISD::SINT_TO_FP,
4459                                  APFloat::rmNearestTiesToEven);
4460       return getConstantFP(apf, DL, VT);
4461     }
4462     case ISD::BITCAST:
4463       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4464         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4465       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4466         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4467       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4468         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4469       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4470         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4471       break;
4472     case ISD::ABS:
4473       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4474                          C->isOpaque());
4475     case ISD::BITREVERSE:
4476       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4477                          C->isOpaque());
4478     case ISD::BSWAP:
4479       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4480                          C->isOpaque());
4481     case ISD::CTPOP:
4482       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4483                          C->isOpaque());
4484     case ISD::CTLZ:
4485     case ISD::CTLZ_ZERO_UNDEF:
4486       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4487                          C->isOpaque());
4488     case ISD::CTTZ:
4489     case ISD::CTTZ_ZERO_UNDEF:
4490       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4491                          C->isOpaque());
4492     case ISD::FP16_TO_FP: {
4493       bool Ignored;
4494       APFloat FPV(APFloat::IEEEhalf(),
4495                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4496 
4497       // This can return overflow, underflow, or inexact; we don't care.
4498       // FIXME need to be more flexible about rounding mode.
4499       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4500                         APFloat::rmNearestTiesToEven, &Ignored);
4501       return getConstantFP(FPV, DL, VT);
4502     }
4503     }
4504   }
4505 
4506   // Constant fold unary operations with a floating point constant operand.
4507   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4508     APFloat V = C->getValueAPF();    // make copy
4509     switch (Opcode) {
4510     case ISD::FNEG:
4511       V.changeSign();
4512       return getConstantFP(V, DL, VT);
4513     case ISD::FABS:
4514       V.clearSign();
4515       return getConstantFP(V, DL, VT);
4516     case ISD::FCEIL: {
4517       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4518       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4519         return getConstantFP(V, DL, VT);
4520       break;
4521     }
4522     case ISD::FTRUNC: {
4523       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4524       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4525         return getConstantFP(V, DL, VT);
4526       break;
4527     }
4528     case ISD::FFLOOR: {
4529       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4530       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4531         return getConstantFP(V, DL, VT);
4532       break;
4533     }
4534     case ISD::FP_EXTEND: {
4535       bool ignored;
4536       // This can return overflow, underflow, or inexact; we don't care.
4537       // FIXME need to be more flexible about rounding mode.
4538       (void)V.convert(EVTToAPFloatSemantics(VT),
4539                       APFloat::rmNearestTiesToEven, &ignored);
4540       return getConstantFP(V, DL, VT);
4541     }
4542     case ISD::FP_TO_SINT:
4543     case ISD::FP_TO_UINT: {
4544       bool ignored;
4545       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4546       // FIXME need to be more flexible about rounding mode.
4547       APFloat::opStatus s =
4548           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4549       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4550         break;
4551       return getConstant(IntVal, DL, VT);
4552     }
4553     case ISD::BITCAST:
4554       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4555         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4556       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4557         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4558       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4559         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4560       break;
4561     case ISD::FP_TO_FP16: {
4562       bool Ignored;
4563       // This can return overflow, underflow, or inexact; we don't care.
4564       // FIXME need to be more flexible about rounding mode.
4565       (void)V.convert(APFloat::IEEEhalf(),
4566                       APFloat::rmNearestTiesToEven, &Ignored);
4567       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4568     }
4569     }
4570   }
4571 
4572   // Constant fold unary operations with a vector integer or float operand.
4573   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4574     if (BV->isConstant()) {
4575       switch (Opcode) {
4576       default:
4577         // FIXME: Entirely reasonable to perform folding of other unary
4578         // operations here as the need arises.
4579         break;
4580       case ISD::FNEG:
4581       case ISD::FABS:
4582       case ISD::FCEIL:
4583       case ISD::FTRUNC:
4584       case ISD::FFLOOR:
4585       case ISD::FP_EXTEND:
4586       case ISD::FP_TO_SINT:
4587       case ISD::FP_TO_UINT:
4588       case ISD::TRUNCATE:
4589       case ISD::ANY_EXTEND:
4590       case ISD::ZERO_EXTEND:
4591       case ISD::SIGN_EXTEND:
4592       case ISD::UINT_TO_FP:
4593       case ISD::SINT_TO_FP:
4594       case ISD::ABS:
4595       case ISD::BITREVERSE:
4596       case ISD::BSWAP:
4597       case ISD::CTLZ:
4598       case ISD::CTLZ_ZERO_UNDEF:
4599       case ISD::CTTZ:
4600       case ISD::CTTZ_ZERO_UNDEF:
4601       case ISD::CTPOP: {
4602         SDValue Ops = { Operand };
4603         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4604           return Fold;
4605       }
4606       }
4607     }
4608   }
4609 
4610   unsigned OpOpcode = Operand.getNode()->getOpcode();
4611   switch (Opcode) {
4612   case ISD::FREEZE:
4613     assert(VT == Operand.getValueType() && "Unexpected VT!");
4614     break;
4615   case ISD::TokenFactor:
4616   case ISD::MERGE_VALUES:
4617   case ISD::CONCAT_VECTORS:
4618     return Operand;         // Factor, merge or concat of one node?  No need.
4619   case ISD::BUILD_VECTOR: {
4620     // Attempt to simplify BUILD_VECTOR.
4621     SDValue Ops[] = {Operand};
4622     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4623       return V;
4624     break;
4625   }
4626   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4627   case ISD::FP_EXTEND:
4628     assert(VT.isFloatingPoint() &&
4629            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4630     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4631     assert((!VT.isVector() ||
4632             VT.getVectorNumElements() ==
4633             Operand.getValueType().getVectorNumElements()) &&
4634            "Vector element count mismatch!");
4635     assert(Operand.getValueType().bitsLT(VT) &&
4636            "Invalid fpext node, dst < src!");
4637     if (Operand.isUndef())
4638       return getUNDEF(VT);
4639     break;
4640   case ISD::FP_TO_SINT:
4641   case ISD::FP_TO_UINT:
4642     if (Operand.isUndef())
4643       return getUNDEF(VT);
4644     break;
4645   case ISD::SINT_TO_FP:
4646   case ISD::UINT_TO_FP:
4647     // [us]itofp(undef) = 0, because the result value is bounded.
4648     if (Operand.isUndef())
4649       return getConstantFP(0.0, DL, VT);
4650     break;
4651   case ISD::SIGN_EXTEND:
4652     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4653            "Invalid SIGN_EXTEND!");
4654     assert(VT.isVector() == Operand.getValueType().isVector() &&
4655            "SIGN_EXTEND result type type should be vector iff the operand "
4656            "type is vector!");
4657     if (Operand.getValueType() == VT) return Operand;   // noop extension
4658     assert((!VT.isVector() ||
4659             VT.getVectorElementCount() ==
4660                 Operand.getValueType().getVectorElementCount()) &&
4661            "Vector element count mismatch!");
4662     assert(Operand.getValueType().bitsLT(VT) &&
4663            "Invalid sext node, dst < src!");
4664     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4665       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4666     else if (OpOpcode == ISD::UNDEF)
4667       // sext(undef) = 0, because the top bits will all be the same.
4668       return getConstant(0, DL, VT);
4669     break;
4670   case ISD::ZERO_EXTEND:
4671     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4672            "Invalid ZERO_EXTEND!");
4673     assert(VT.isVector() == Operand.getValueType().isVector() &&
4674            "ZERO_EXTEND result type type should be vector iff the operand "
4675            "type is vector!");
4676     if (Operand.getValueType() == VT) return Operand;   // noop extension
4677     assert((!VT.isVector() ||
4678             VT.getVectorElementCount() ==
4679                 Operand.getValueType().getVectorElementCount()) &&
4680            "Vector element count mismatch!");
4681     assert(Operand.getValueType().bitsLT(VT) &&
4682            "Invalid zext node, dst < src!");
4683     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4684       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4685     else if (OpOpcode == ISD::UNDEF)
4686       // zext(undef) = 0, because the top bits will be zero.
4687       return getConstant(0, DL, VT);
4688     break;
4689   case ISD::ANY_EXTEND:
4690     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4691            "Invalid ANY_EXTEND!");
4692     assert(VT.isVector() == Operand.getValueType().isVector() &&
4693            "ANY_EXTEND result type type should be vector iff the operand "
4694            "type is vector!");
4695     if (Operand.getValueType() == VT) return Operand;   // noop extension
4696     assert((!VT.isVector() ||
4697             VT.getVectorElementCount() ==
4698                 Operand.getValueType().getVectorElementCount()) &&
4699            "Vector element count mismatch!");
4700     assert(Operand.getValueType().bitsLT(VT) &&
4701            "Invalid anyext node, dst < src!");
4702 
4703     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4704         OpOpcode == ISD::ANY_EXTEND)
4705       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4706       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4707     else if (OpOpcode == ISD::UNDEF)
4708       return getUNDEF(VT);
4709 
4710     // (ext (trunc x)) -> x
4711     if (OpOpcode == ISD::TRUNCATE) {
4712       SDValue OpOp = Operand.getOperand(0);
4713       if (OpOp.getValueType() == VT) {
4714         transferDbgValues(Operand, OpOp);
4715         return OpOp;
4716       }
4717     }
4718     break;
4719   case ISD::TRUNCATE:
4720     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4721            "Invalid TRUNCATE!");
4722     assert(VT.isVector() == Operand.getValueType().isVector() &&
4723            "TRUNCATE result type type should be vector iff the operand "
4724            "type is vector!");
4725     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4726     assert((!VT.isVector() ||
4727             VT.getVectorElementCount() ==
4728                 Operand.getValueType().getVectorElementCount()) &&
4729            "Vector element count mismatch!");
4730     assert(Operand.getValueType().bitsGT(VT) &&
4731            "Invalid truncate node, src < dst!");
4732     if (OpOpcode == ISD::TRUNCATE)
4733       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4734     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4735         OpOpcode == ISD::ANY_EXTEND) {
4736       // If the source is smaller than the dest, we still need an extend.
4737       if (Operand.getOperand(0).getValueType().getScalarType()
4738             .bitsLT(VT.getScalarType()))
4739         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4740       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4741         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4742       return Operand.getOperand(0);
4743     }
4744     if (OpOpcode == ISD::UNDEF)
4745       return getUNDEF(VT);
4746     break;
4747   case ISD::ANY_EXTEND_VECTOR_INREG:
4748   case ISD::ZERO_EXTEND_VECTOR_INREG:
4749   case ISD::SIGN_EXTEND_VECTOR_INREG:
4750     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4751     assert(Operand.getValueType().bitsLE(VT) &&
4752            "The input must be the same size or smaller than the result.");
4753     assert(VT.getVectorNumElements() <
4754              Operand.getValueType().getVectorNumElements() &&
4755            "The destination vector type must have fewer lanes than the input.");
4756     break;
4757   case ISD::ABS:
4758     assert(VT.isInteger() && VT == Operand.getValueType() &&
4759            "Invalid ABS!");
4760     if (OpOpcode == ISD::UNDEF)
4761       return getUNDEF(VT);
4762     break;
4763   case ISD::BSWAP:
4764     assert(VT.isInteger() && VT == Operand.getValueType() &&
4765            "Invalid BSWAP!");
4766     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4767            "BSWAP types must be a multiple of 16 bits!");
4768     if (OpOpcode == ISD::UNDEF)
4769       return getUNDEF(VT);
4770     break;
4771   case ISD::BITREVERSE:
4772     assert(VT.isInteger() && VT == Operand.getValueType() &&
4773            "Invalid BITREVERSE!");
4774     if (OpOpcode == ISD::UNDEF)
4775       return getUNDEF(VT);
4776     break;
4777   case ISD::BITCAST:
4778     // Basic sanity checking.
4779     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4780            "Cannot BITCAST between types of different sizes!");
4781     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4782     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4783       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4784     if (OpOpcode == ISD::UNDEF)
4785       return getUNDEF(VT);
4786     break;
4787   case ISD::SCALAR_TO_VECTOR:
4788     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4789            (VT.getVectorElementType() == Operand.getValueType() ||
4790             (VT.getVectorElementType().isInteger() &&
4791              Operand.getValueType().isInteger() &&
4792              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4793            "Illegal SCALAR_TO_VECTOR node!");
4794     if (OpOpcode == ISD::UNDEF)
4795       return getUNDEF(VT);
4796     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4797     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4798         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4799         Operand.getConstantOperandVal(1) == 0 &&
4800         Operand.getOperand(0).getValueType() == VT)
4801       return Operand.getOperand(0);
4802     break;
4803   case ISD::FNEG:
4804     // Negation of an unknown bag of bits is still completely undefined.
4805     if (OpOpcode == ISD::UNDEF)
4806       return getUNDEF(VT);
4807 
4808     if (OpOpcode == ISD::FNEG)  // --X -> X
4809       return Operand.getOperand(0);
4810     break;
4811   case ISD::FABS:
4812     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4813       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4814     break;
4815   case ISD::VSCALE:
4816     assert(VT == Operand.getValueType() && "Unexpected VT!");
4817     break;
4818   }
4819 
4820   SDNode *N;
4821   SDVTList VTs = getVTList(VT);
4822   SDValue Ops[] = {Operand};
4823   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4824     FoldingSetNodeID ID;
4825     AddNodeIDNode(ID, Opcode, VTs, Ops);
4826     void *IP = nullptr;
4827     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4828       E->intersectFlagsWith(Flags);
4829       return SDValue(E, 0);
4830     }
4831 
4832     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4833     N->setFlags(Flags);
4834     createOperands(N, Ops);
4835     CSEMap.InsertNode(N, IP);
4836   } else {
4837     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4838     createOperands(N, Ops);
4839   }
4840 
4841   InsertNode(N);
4842   SDValue V = SDValue(N, 0);
4843   NewSDValueDbgMsg(V, "Creating new node: ", this);
4844   return V;
4845 }
4846 
4847 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4848                                        const APInt &C2) {
4849   switch (Opcode) {
4850   case ISD::ADD:  return C1 + C2;
4851   case ISD::SUB:  return C1 - C2;
4852   case ISD::MUL:  return C1 * C2;
4853   case ISD::AND:  return C1 & C2;
4854   case ISD::OR:   return C1 | C2;
4855   case ISD::XOR:  return C1 ^ C2;
4856   case ISD::SHL:  return C1 << C2;
4857   case ISD::SRL:  return C1.lshr(C2);
4858   case ISD::SRA:  return C1.ashr(C2);
4859   case ISD::ROTL: return C1.rotl(C2);
4860   case ISD::ROTR: return C1.rotr(C2);
4861   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4862   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4863   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4864   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4865   case ISD::SADDSAT: return C1.sadd_sat(C2);
4866   case ISD::UADDSAT: return C1.uadd_sat(C2);
4867   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4868   case ISD::USUBSAT: return C1.usub_sat(C2);
4869   case ISD::UDIV:
4870     if (!C2.getBoolValue())
4871       break;
4872     return C1.udiv(C2);
4873   case ISD::UREM:
4874     if (!C2.getBoolValue())
4875       break;
4876     return C1.urem(C2);
4877   case ISD::SDIV:
4878     if (!C2.getBoolValue())
4879       break;
4880     return C1.sdiv(C2);
4881   case ISD::SREM:
4882     if (!C2.getBoolValue())
4883       break;
4884     return C1.srem(C2);
4885   }
4886   return llvm::None;
4887 }
4888 
4889 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4890                                        const GlobalAddressSDNode *GA,
4891                                        const SDNode *N2) {
4892   if (GA->getOpcode() != ISD::GlobalAddress)
4893     return SDValue();
4894   if (!TLI->isOffsetFoldingLegal(GA))
4895     return SDValue();
4896   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4897   if (!C2)
4898     return SDValue();
4899   int64_t Offset = C2->getSExtValue();
4900   switch (Opcode) {
4901   case ISD::ADD: break;
4902   case ISD::SUB: Offset = -uint64_t(Offset); break;
4903   default: return SDValue();
4904   }
4905   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4906                           GA->getOffset() + uint64_t(Offset));
4907 }
4908 
4909 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4910   switch (Opcode) {
4911   case ISD::SDIV:
4912   case ISD::UDIV:
4913   case ISD::SREM:
4914   case ISD::UREM: {
4915     // If a divisor is zero/undef or any element of a divisor vector is
4916     // zero/undef, the whole op is undef.
4917     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4918     SDValue Divisor = Ops[1];
4919     if (Divisor.isUndef() || isNullConstant(Divisor))
4920       return true;
4921 
4922     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4923            llvm::any_of(Divisor->op_values(),
4924                         [](SDValue V) { return V.isUndef() ||
4925                                         isNullConstant(V); });
4926     // TODO: Handle signed overflow.
4927   }
4928   // TODO: Handle oversized shifts.
4929   default:
4930     return false;
4931   }
4932 }
4933 
4934 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4935                                              EVT VT, ArrayRef<SDValue> Ops) {
4936   // If the opcode is a target-specific ISD node, there's nothing we can
4937   // do here and the operand rules may not line up with the below, so
4938   // bail early.
4939   if (Opcode >= ISD::BUILTIN_OP_END)
4940     return SDValue();
4941 
4942   // For now, the array Ops should only contain two values.
4943   // This enforcement will be removed once this function is merged with
4944   // FoldConstantVectorArithmetic
4945   if (Ops.size() != 2)
4946     return SDValue();
4947 
4948   if (isUndef(Opcode, Ops))
4949     return getUNDEF(VT);
4950 
4951   SDNode *N1 = Ops[0].getNode();
4952   SDNode *N2 = Ops[1].getNode();
4953 
4954   // Handle the case of two scalars.
4955   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4956     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4957       if (C1->isOpaque() || C2->isOpaque())
4958         return SDValue();
4959 
4960       Optional<APInt> FoldAttempt =
4961           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4962       if (!FoldAttempt)
4963         return SDValue();
4964 
4965       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4966       assert((!Folded || !VT.isVector()) &&
4967              "Can't fold vectors ops with scalar operands");
4968       return Folded;
4969     }
4970   }
4971 
4972   // fold (add Sym, c) -> Sym+c
4973   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4974     return FoldSymbolOffset(Opcode, VT, GA, N2);
4975   if (TLI->isCommutativeBinOp(Opcode))
4976     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4977       return FoldSymbolOffset(Opcode, VT, GA, N1);
4978 
4979   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4980   // vector width, however we should be able to do constant folds involving
4981   // splat vector nodes too.
4982   if (VT.isScalableVector())
4983     return SDValue();
4984 
4985   // For fixed width vectors, extract each constant element and fold them
4986   // individually. Either input may be an undef value.
4987   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4988   if (!BV1 && !N1->isUndef())
4989     return SDValue();
4990   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4991   if (!BV2 && !N2->isUndef())
4992     return SDValue();
4993   // If both operands are undef, that's handled the same way as scalars.
4994   if (!BV1 && !BV2)
4995     return SDValue();
4996 
4997   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4998          "Vector binop with different number of elements in operands?");
4999 
5000   EVT SVT = VT.getScalarType();
5001   EVT LegalSVT = SVT;
5002   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5003     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5004     if (LegalSVT.bitsLT(SVT))
5005       return SDValue();
5006   }
5007   SmallVector<SDValue, 4> Outputs;
5008   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5009   for (unsigned I = 0; I != NumOps; ++I) {
5010     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5011     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5012     if (SVT.isInteger()) {
5013       if (V1->getValueType(0).bitsGT(SVT))
5014         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5015       if (V2->getValueType(0).bitsGT(SVT))
5016         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5017     }
5018 
5019     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5020       return SDValue();
5021 
5022     // Fold one vector element.
5023     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5024     if (LegalSVT != SVT)
5025       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5026 
5027     // Scalar folding only succeeded if the result is a constant or UNDEF.
5028     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5029         ScalarResult.getOpcode() != ISD::ConstantFP)
5030       return SDValue();
5031     Outputs.push_back(ScalarResult);
5032   }
5033 
5034   assert(VT.getVectorNumElements() == Outputs.size() &&
5035          "Vector size mismatch!");
5036 
5037   // We may have a vector type but a scalar result. Create a splat.
5038   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5039 
5040   // Build a big vector out of the scalar elements we generated.
5041   return getBuildVector(VT, SDLoc(), Outputs);
5042 }
5043 
5044 // TODO: Merge with FoldConstantArithmetic
5045 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5046                                                    const SDLoc &DL, EVT VT,
5047                                                    ArrayRef<SDValue> Ops,
5048                                                    const SDNodeFlags Flags) {
5049   // If the opcode is a target-specific ISD node, there's nothing we can
5050   // do here and the operand rules may not line up with the below, so
5051   // bail early.
5052   if (Opcode >= ISD::BUILTIN_OP_END)
5053     return SDValue();
5054 
5055   if (isUndef(Opcode, Ops))
5056     return getUNDEF(VT);
5057 
5058   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5059   if (!VT.isVector())
5060     return SDValue();
5061 
5062   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5063   // vector width, however we should be able to do constant folds involving
5064   // splat vector nodes too.
5065   if (VT.isScalableVector())
5066     return SDValue();
5067 
5068   // From this point onwards all vectors are assumed to be fixed width.
5069   unsigned NumElts = VT.getVectorNumElements();
5070 
5071   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5072     return !Op.getValueType().isVector() ||
5073            Op.getValueType().getVectorNumElements() == NumElts;
5074   };
5075 
5076   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5077     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5078     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5079            (BV && BV->isConstant());
5080   };
5081 
5082   // All operands must be vector types with the same number of elements as
5083   // the result type and must be either UNDEF or a build vector of constant
5084   // or UNDEF scalars.
5085   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5086       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5087     return SDValue();
5088 
5089   // If we are comparing vectors, then the result needs to be a i1 boolean
5090   // that is then sign-extended back to the legal result type.
5091   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5092 
5093   // Find legal integer scalar type for constant promotion and
5094   // ensure that its scalar size is at least as large as source.
5095   EVT LegalSVT = VT.getScalarType();
5096   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5097     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5098     if (LegalSVT.bitsLT(VT.getScalarType()))
5099       return SDValue();
5100   }
5101 
5102   // Constant fold each scalar lane separately.
5103   SmallVector<SDValue, 4> ScalarResults;
5104   for (unsigned i = 0; i != NumElts; i++) {
5105     SmallVector<SDValue, 4> ScalarOps;
5106     for (SDValue Op : Ops) {
5107       EVT InSVT = Op.getValueType().getScalarType();
5108       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5109       if (!InBV) {
5110         // We've checked that this is UNDEF or a constant of some kind.
5111         if (Op.isUndef())
5112           ScalarOps.push_back(getUNDEF(InSVT));
5113         else
5114           ScalarOps.push_back(Op);
5115         continue;
5116       }
5117 
5118       SDValue ScalarOp = InBV->getOperand(i);
5119       EVT ScalarVT = ScalarOp.getValueType();
5120 
5121       // Build vector (integer) scalar operands may need implicit
5122       // truncation - do this before constant folding.
5123       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5124         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5125 
5126       ScalarOps.push_back(ScalarOp);
5127     }
5128 
5129     // Constant fold the scalar operands.
5130     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5131 
5132     // Legalize the (integer) scalar constant if necessary.
5133     if (LegalSVT != SVT)
5134       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5135 
5136     // Scalar folding only succeeded if the result is a constant or UNDEF.
5137     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5138         ScalarResult.getOpcode() != ISD::ConstantFP)
5139       return SDValue();
5140     ScalarResults.push_back(ScalarResult);
5141   }
5142 
5143   SDValue V = getBuildVector(VT, DL, ScalarResults);
5144   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5145   return V;
5146 }
5147 
5148 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5149                                          EVT VT, SDValue N1, SDValue N2) {
5150   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5151   //       should. That will require dealing with a potentially non-default
5152   //       rounding mode, checking the "opStatus" return value from the APFloat
5153   //       math calculations, and possibly other variations.
5154   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5155   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5156   if (N1CFP && N2CFP) {
5157     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5158     switch (Opcode) {
5159     case ISD::FADD:
5160       C1.add(C2, APFloat::rmNearestTiesToEven);
5161       return getConstantFP(C1, DL, VT);
5162     case ISD::FSUB:
5163       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5164       return getConstantFP(C1, DL, VT);
5165     case ISD::FMUL:
5166       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5167       return getConstantFP(C1, DL, VT);
5168     case ISD::FDIV:
5169       C1.divide(C2, APFloat::rmNearestTiesToEven);
5170       return getConstantFP(C1, DL, VT);
5171     case ISD::FREM:
5172       C1.mod(C2);
5173       return getConstantFP(C1, DL, VT);
5174     case ISD::FCOPYSIGN:
5175       C1.copySign(C2);
5176       return getConstantFP(C1, DL, VT);
5177     default: break;
5178     }
5179   }
5180   if (N1CFP && Opcode == ISD::FP_ROUND) {
5181     APFloat C1 = N1CFP->getValueAPF();    // make copy
5182     bool Unused;
5183     // This can return overflow, underflow, or inexact; we don't care.
5184     // FIXME need to be more flexible about rounding mode.
5185     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5186                       &Unused);
5187     return getConstantFP(C1, DL, VT);
5188   }
5189 
5190   switch (Opcode) {
5191   case ISD::FSUB:
5192     // -0.0 - undef --> undef (consistent with "fneg undef")
5193     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5194       return getUNDEF(VT);
5195     LLVM_FALLTHROUGH;
5196 
5197   case ISD::FADD:
5198   case ISD::FMUL:
5199   case ISD::FDIV:
5200   case ISD::FREM:
5201     // If both operands are undef, the result is undef. If 1 operand is undef,
5202     // the result is NaN. This should match the behavior of the IR optimizer.
5203     if (N1.isUndef() && N2.isUndef())
5204       return getUNDEF(VT);
5205     if (N1.isUndef() || N2.isUndef())
5206       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5207   }
5208   return SDValue();
5209 }
5210 
5211 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5212   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5213 
5214   // There's no need to assert on a byte-aligned pointer. All pointers are at
5215   // least byte aligned.
5216   if (A == Align(1))
5217     return Val;
5218 
5219   FoldingSetNodeID ID;
5220   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5221   ID.AddInteger(A.value());
5222 
5223   void *IP = nullptr;
5224   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5225     return SDValue(E, 0);
5226 
5227   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5228                                          Val.getValueType(), A);
5229   createOperands(N, {Val});
5230 
5231   CSEMap.InsertNode(N, IP);
5232   InsertNode(N);
5233 
5234   SDValue V(N, 0);
5235   NewSDValueDbgMsg(V, "Creating new node: ", this);
5236   return V;
5237 }
5238 
5239 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5240                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5241   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5242   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5243   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5244   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5245 
5246   // Canonicalize constant to RHS if commutative.
5247   if (TLI->isCommutativeBinOp(Opcode)) {
5248     if (N1C && !N2C) {
5249       std::swap(N1C, N2C);
5250       std::swap(N1, N2);
5251     } else if (N1CFP && !N2CFP) {
5252       std::swap(N1CFP, N2CFP);
5253       std::swap(N1, N2);
5254     }
5255   }
5256 
5257   switch (Opcode) {
5258   default: break;
5259   case ISD::TokenFactor:
5260     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5261            N2.getValueType() == MVT::Other && "Invalid token factor!");
5262     // Fold trivial token factors.
5263     if (N1.getOpcode() == ISD::EntryToken) return N2;
5264     if (N2.getOpcode() == ISD::EntryToken) return N1;
5265     if (N1 == N2) return N1;
5266     break;
5267   case ISD::BUILD_VECTOR: {
5268     // Attempt to simplify BUILD_VECTOR.
5269     SDValue Ops[] = {N1, N2};
5270     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5271       return V;
5272     break;
5273   }
5274   case ISD::CONCAT_VECTORS: {
5275     SDValue Ops[] = {N1, N2};
5276     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5277       return V;
5278     break;
5279   }
5280   case ISD::AND:
5281     assert(VT.isInteger() && "This operator does not apply to FP types!");
5282     assert(N1.getValueType() == N2.getValueType() &&
5283            N1.getValueType() == VT && "Binary operator types must match!");
5284     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5285     // worth handling here.
5286     if (N2C && N2C->isNullValue())
5287       return N2;
5288     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5289       return N1;
5290     break;
5291   case ISD::OR:
5292   case ISD::XOR:
5293   case ISD::ADD:
5294   case ISD::SUB:
5295     assert(VT.isInteger() && "This operator does not apply to FP types!");
5296     assert(N1.getValueType() == N2.getValueType() &&
5297            N1.getValueType() == VT && "Binary operator types must match!");
5298     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5299     // it's worth handling here.
5300     if (N2C && N2C->isNullValue())
5301       return N1;
5302     break;
5303   case ISD::MUL:
5304     assert(VT.isInteger() && "This operator does not apply to FP types!");
5305     assert(N1.getValueType() == N2.getValueType() &&
5306            N1.getValueType() == VT && "Binary operator types must match!");
5307     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5308       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5309       APInt N2CImm = N2C->getAPIntValue();
5310       return getVScale(DL, VT, MulImm * N2CImm);
5311     }
5312     break;
5313   case ISD::UDIV:
5314   case ISD::UREM:
5315   case ISD::MULHU:
5316   case ISD::MULHS:
5317   case ISD::SDIV:
5318   case ISD::SREM:
5319   case ISD::SMIN:
5320   case ISD::SMAX:
5321   case ISD::UMIN:
5322   case ISD::UMAX:
5323   case ISD::SADDSAT:
5324   case ISD::SSUBSAT:
5325   case ISD::UADDSAT:
5326   case ISD::USUBSAT:
5327     assert(VT.isInteger() && "This operator does not apply to FP types!");
5328     assert(N1.getValueType() == N2.getValueType() &&
5329            N1.getValueType() == VT && "Binary operator types must match!");
5330     break;
5331   case ISD::FADD:
5332   case ISD::FSUB:
5333   case ISD::FMUL:
5334   case ISD::FDIV:
5335   case ISD::FREM:
5336     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5337     assert(N1.getValueType() == N2.getValueType() &&
5338            N1.getValueType() == VT && "Binary operator types must match!");
5339     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5340       return V;
5341     break;
5342   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5343     assert(N1.getValueType() == VT &&
5344            N1.getValueType().isFloatingPoint() &&
5345            N2.getValueType().isFloatingPoint() &&
5346            "Invalid FCOPYSIGN!");
5347     break;
5348   case ISD::SHL:
5349     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5350       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5351       APInt ShiftImm = N2C->getAPIntValue();
5352       return getVScale(DL, VT, MulImm << ShiftImm);
5353     }
5354     LLVM_FALLTHROUGH;
5355   case ISD::SRA:
5356   case ISD::SRL:
5357     if (SDValue V = simplifyShift(N1, N2))
5358       return V;
5359     LLVM_FALLTHROUGH;
5360   case ISD::ROTL:
5361   case ISD::ROTR:
5362     assert(VT == N1.getValueType() &&
5363            "Shift operators return type must be the same as their first arg");
5364     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5365            "Shifts only work on integers");
5366     assert((!VT.isVector() || VT == N2.getValueType()) &&
5367            "Vector shift amounts must be in the same as their first arg");
5368     // Verify that the shift amount VT is big enough to hold valid shift
5369     // amounts.  This catches things like trying to shift an i1024 value by an
5370     // i8, which is easy to fall into in generic code that uses
5371     // TLI.getShiftAmount().
5372     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5373                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5374            "Invalid use of small shift amount with oversized value!");
5375 
5376     // Always fold shifts of i1 values so the code generator doesn't need to
5377     // handle them.  Since we know the size of the shift has to be less than the
5378     // size of the value, the shift/rotate count is guaranteed to be zero.
5379     if (VT == MVT::i1)
5380       return N1;
5381     if (N2C && N2C->isNullValue())
5382       return N1;
5383     break;
5384   case ISD::FP_ROUND:
5385     assert(VT.isFloatingPoint() &&
5386            N1.getValueType().isFloatingPoint() &&
5387            VT.bitsLE(N1.getValueType()) &&
5388            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5389            "Invalid FP_ROUND!");
5390     if (N1.getValueType() == VT) return N1;  // noop conversion.
5391     break;
5392   case ISD::AssertSext:
5393   case ISD::AssertZext: {
5394     EVT EVT = cast<VTSDNode>(N2)->getVT();
5395     assert(VT == N1.getValueType() && "Not an inreg extend!");
5396     assert(VT.isInteger() && EVT.isInteger() &&
5397            "Cannot *_EXTEND_INREG FP types");
5398     assert(!EVT.isVector() &&
5399            "AssertSExt/AssertZExt type should be the vector element type "
5400            "rather than the vector type!");
5401     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5402     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5403     break;
5404   }
5405   case ISD::SIGN_EXTEND_INREG: {
5406     EVT EVT = cast<VTSDNode>(N2)->getVT();
5407     assert(VT == N1.getValueType() && "Not an inreg extend!");
5408     assert(VT.isInteger() && EVT.isInteger() &&
5409            "Cannot *_EXTEND_INREG FP types");
5410     assert(EVT.isVector() == VT.isVector() &&
5411            "SIGN_EXTEND_INREG type should be vector iff the operand "
5412            "type is vector!");
5413     assert((!EVT.isVector() ||
5414             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5415            "Vector element counts must match in SIGN_EXTEND_INREG");
5416     assert(EVT.bitsLE(VT) && "Not extending!");
5417     if (EVT == VT) return N1;  // Not actually extending
5418 
5419     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5420       unsigned FromBits = EVT.getScalarSizeInBits();
5421       Val <<= Val.getBitWidth() - FromBits;
5422       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5423       return getConstant(Val, DL, ConstantVT);
5424     };
5425 
5426     if (N1C) {
5427       const APInt &Val = N1C->getAPIntValue();
5428       return SignExtendInReg(Val, VT);
5429     }
5430     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5431       SmallVector<SDValue, 8> Ops;
5432       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5433       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5434         SDValue Op = N1.getOperand(i);
5435         if (Op.isUndef()) {
5436           Ops.push_back(getUNDEF(OpVT));
5437           continue;
5438         }
5439         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5440         APInt Val = C->getAPIntValue();
5441         Ops.push_back(SignExtendInReg(Val, OpVT));
5442       }
5443       return getBuildVector(VT, DL, Ops);
5444     }
5445     break;
5446   }
5447   case ISD::EXTRACT_VECTOR_ELT:
5448     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5449            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5450              element type of the vector.");
5451 
5452     // Extract from an undefined value or using an undefined index is undefined.
5453     if (N1.isUndef() || N2.isUndef())
5454       return getUNDEF(VT);
5455 
5456     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5457     // vectors. For scalable vectors we will provide appropriate support for
5458     // dealing with arbitrary indices.
5459     if (N2C && N1.getValueType().isFixedLengthVector() &&
5460         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5461       return getUNDEF(VT);
5462 
5463     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5464     // expanding copies of large vectors from registers. This only works for
5465     // fixed length vectors, since we need to know the exact number of
5466     // elements.
5467     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5468         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5469       unsigned Factor =
5470         N1.getOperand(0).getValueType().getVectorNumElements();
5471       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5472                      N1.getOperand(N2C->getZExtValue() / Factor),
5473                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5474     }
5475 
5476     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5477     // lowering is expanding large vector constants.
5478     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5479                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5480       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5481               N1.getValueType().isFixedLengthVector()) &&
5482              "BUILD_VECTOR used for scalable vectors");
5483       unsigned Index =
5484           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5485       SDValue Elt = N1.getOperand(Index);
5486 
5487       if (VT != Elt.getValueType())
5488         // If the vector element type is not legal, the BUILD_VECTOR operands
5489         // are promoted and implicitly truncated, and the result implicitly
5490         // extended. Make that explicit here.
5491         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5492 
5493       return Elt;
5494     }
5495 
5496     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5497     // operations are lowered to scalars.
5498     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5499       // If the indices are the same, return the inserted element else
5500       // if the indices are known different, extract the element from
5501       // the original vector.
5502       SDValue N1Op2 = N1.getOperand(2);
5503       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5504 
5505       if (N1Op2C && N2C) {
5506         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5507           if (VT == N1.getOperand(1).getValueType())
5508             return N1.getOperand(1);
5509           else
5510             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5511         }
5512 
5513         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5514       }
5515     }
5516 
5517     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5518     // when vector types are scalarized and v1iX is legal.
5519     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5520     // Here we are completely ignoring the extract element index (N2),
5521     // which is fine for fixed width vectors, since any index other than 0
5522     // is undefined anyway. However, this cannot be ignored for scalable
5523     // vectors - in theory we could support this, but we don't want to do this
5524     // without a profitability check.
5525     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5526         N1.getValueType().isFixedLengthVector() &&
5527         N1.getValueType().getVectorNumElements() == 1) {
5528       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5529                      N1.getOperand(1));
5530     }
5531     break;
5532   case ISD::EXTRACT_ELEMENT:
5533     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5534     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5535            (N1.getValueType().isInteger() == VT.isInteger()) &&
5536            N1.getValueType() != VT &&
5537            "Wrong types for EXTRACT_ELEMENT!");
5538 
5539     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5540     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5541     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5542     if (N1.getOpcode() == ISD::BUILD_PAIR)
5543       return N1.getOperand(N2C->getZExtValue());
5544 
5545     // EXTRACT_ELEMENT of a constant int is also very common.
5546     if (N1C) {
5547       unsigned ElementSize = VT.getSizeInBits();
5548       unsigned Shift = ElementSize * N2C->getZExtValue();
5549       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5550       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5551     }
5552     break;
5553   case ISD::EXTRACT_SUBVECTOR:
5554     EVT N1VT = N1.getValueType();
5555     assert(VT.isVector() && N1VT.isVector() &&
5556            "Extract subvector VTs must be vectors!");
5557     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5558            "Extract subvector VTs must have the same element type!");
5559     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5560            "Cannot extract a scalable vector from a fixed length vector!");
5561     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5562             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5563            "Extract subvector must be from larger vector to smaller vector!");
5564     assert(N2C && "Extract subvector index must be a constant");
5565     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5566             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5567                 N1VT.getVectorMinNumElements()) &&
5568            "Extract subvector overflow!");
5569 
5570     // Trivial extraction.
5571     if (VT == N1VT)
5572       return N1;
5573 
5574     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5575     if (N1.isUndef())
5576       return getUNDEF(VT);
5577 
5578     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5579     // the concat have the same type as the extract.
5580     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5581         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5582       unsigned Factor = VT.getVectorMinNumElements();
5583       return N1.getOperand(N2C->getZExtValue() / Factor);
5584     }
5585 
5586     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5587     // during shuffle legalization.
5588     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5589         VT == N1.getOperand(1).getValueType())
5590       return N1.getOperand(1);
5591     break;
5592   }
5593 
5594   // Perform trivial constant folding.
5595   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5596     return SV;
5597 
5598   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5599     return V;
5600 
5601   // Canonicalize an UNDEF to the RHS, even over a constant.
5602   if (N1.isUndef()) {
5603     if (TLI->isCommutativeBinOp(Opcode)) {
5604       std::swap(N1, N2);
5605     } else {
5606       switch (Opcode) {
5607       case ISD::SIGN_EXTEND_INREG:
5608       case ISD::SUB:
5609         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5610       case ISD::UDIV:
5611       case ISD::SDIV:
5612       case ISD::UREM:
5613       case ISD::SREM:
5614       case ISD::SSUBSAT:
5615       case ISD::USUBSAT:
5616         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5617       }
5618     }
5619   }
5620 
5621   // Fold a bunch of operators when the RHS is undef.
5622   if (N2.isUndef()) {
5623     switch (Opcode) {
5624     case ISD::XOR:
5625       if (N1.isUndef())
5626         // Handle undef ^ undef -> 0 special case. This is a common
5627         // idiom (misuse).
5628         return getConstant(0, DL, VT);
5629       LLVM_FALLTHROUGH;
5630     case ISD::ADD:
5631     case ISD::SUB:
5632     case ISD::UDIV:
5633     case ISD::SDIV:
5634     case ISD::UREM:
5635     case ISD::SREM:
5636       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5637     case ISD::MUL:
5638     case ISD::AND:
5639     case ISD::SSUBSAT:
5640     case ISD::USUBSAT:
5641       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5642     case ISD::OR:
5643     case ISD::SADDSAT:
5644     case ISD::UADDSAT:
5645       return getAllOnesConstant(DL, VT);
5646     }
5647   }
5648 
5649   // Memoize this node if possible.
5650   SDNode *N;
5651   SDVTList VTs = getVTList(VT);
5652   SDValue Ops[] = {N1, N2};
5653   if (VT != MVT::Glue) {
5654     FoldingSetNodeID ID;
5655     AddNodeIDNode(ID, Opcode, VTs, Ops);
5656     void *IP = nullptr;
5657     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5658       E->intersectFlagsWith(Flags);
5659       return SDValue(E, 0);
5660     }
5661 
5662     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5663     N->setFlags(Flags);
5664     createOperands(N, Ops);
5665     CSEMap.InsertNode(N, IP);
5666   } else {
5667     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5668     createOperands(N, Ops);
5669   }
5670 
5671   InsertNode(N);
5672   SDValue V = SDValue(N, 0);
5673   NewSDValueDbgMsg(V, "Creating new node: ", this);
5674   return V;
5675 }
5676 
5677 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5678                               SDValue N1, SDValue N2, SDValue N3,
5679                               const SDNodeFlags Flags) {
5680   // Perform various simplifications.
5681   switch (Opcode) {
5682   case ISD::FMA: {
5683     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5684     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5685            N3.getValueType() == VT && "FMA types must match!");
5686     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5687     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5688     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5689     if (N1CFP && N2CFP && N3CFP) {
5690       APFloat  V1 = N1CFP->getValueAPF();
5691       const APFloat &V2 = N2CFP->getValueAPF();
5692       const APFloat &V3 = N3CFP->getValueAPF();
5693       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5694       return getConstantFP(V1, DL, VT);
5695     }
5696     break;
5697   }
5698   case ISD::BUILD_VECTOR: {
5699     // Attempt to simplify BUILD_VECTOR.
5700     SDValue Ops[] = {N1, N2, N3};
5701     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5702       return V;
5703     break;
5704   }
5705   case ISD::CONCAT_VECTORS: {
5706     SDValue Ops[] = {N1, N2, N3};
5707     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5708       return V;
5709     break;
5710   }
5711   case ISD::SETCC: {
5712     assert(VT.isInteger() && "SETCC result type must be an integer!");
5713     assert(N1.getValueType() == N2.getValueType() &&
5714            "SETCC operands must have the same type!");
5715     assert(VT.isVector() == N1.getValueType().isVector() &&
5716            "SETCC type should be vector iff the operand type is vector!");
5717     assert((!VT.isVector() || VT.getVectorElementCount() ==
5718                                   N1.getValueType().getVectorElementCount()) &&
5719            "SETCC vector element counts must match!");
5720     // Use FoldSetCC to simplify SETCC's.
5721     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5722       return V;
5723     // Vector constant folding.
5724     SDValue Ops[] = {N1, N2, N3};
5725     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5726       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5727       return V;
5728     }
5729     break;
5730   }
5731   case ISD::SELECT:
5732   case ISD::VSELECT:
5733     if (SDValue V = simplifySelect(N1, N2, N3))
5734       return V;
5735     break;
5736   case ISD::VECTOR_SHUFFLE:
5737     llvm_unreachable("should use getVectorShuffle constructor!");
5738   case ISD::INSERT_VECTOR_ELT: {
5739     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5740     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5741     // for scalable vectors where we will generate appropriate code to
5742     // deal with out-of-bounds cases correctly.
5743     if (N3C && N1.getValueType().isFixedLengthVector() &&
5744         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5745       return getUNDEF(VT);
5746 
5747     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5748     if (N3.isUndef())
5749       return getUNDEF(VT);
5750 
5751     // If the inserted element is an UNDEF, just use the input vector.
5752     if (N2.isUndef())
5753       return N1;
5754 
5755     break;
5756   }
5757   case ISD::INSERT_SUBVECTOR: {
5758     // Inserting undef into undef is still undef.
5759     if (N1.isUndef() && N2.isUndef())
5760       return getUNDEF(VT);
5761 
5762     EVT N2VT = N2.getValueType();
5763     assert(VT == N1.getValueType() &&
5764            "Dest and insert subvector source types must match!");
5765     assert(VT.isVector() && N2VT.isVector() &&
5766            "Insert subvector VTs must be vectors!");
5767     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5768            "Cannot insert a scalable vector into a fixed length vector!");
5769     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5770             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5771            "Insert subvector must be from smaller vector to larger vector!");
5772     assert(isa<ConstantSDNode>(N3) &&
5773            "Insert subvector index must be constant");
5774     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5775             (N2VT.getVectorMinNumElements() +
5776              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5777                 VT.getVectorMinNumElements()) &&
5778            "Insert subvector overflow!");
5779 
5780     // Trivial insertion.
5781     if (VT == N2VT)
5782       return N2;
5783 
5784     // If this is an insert of an extracted vector into an undef vector, we
5785     // can just use the input to the extract.
5786     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5787         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5788       return N2.getOperand(0);
5789     break;
5790   }
5791   case ISD::BITCAST:
5792     // Fold bit_convert nodes from a type to themselves.
5793     if (N1.getValueType() == VT)
5794       return N1;
5795     break;
5796   }
5797 
5798   // Memoize node if it doesn't produce a flag.
5799   SDNode *N;
5800   SDVTList VTs = getVTList(VT);
5801   SDValue Ops[] = {N1, N2, N3};
5802   if (VT != MVT::Glue) {
5803     FoldingSetNodeID ID;
5804     AddNodeIDNode(ID, Opcode, VTs, Ops);
5805     void *IP = nullptr;
5806     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5807       E->intersectFlagsWith(Flags);
5808       return SDValue(E, 0);
5809     }
5810 
5811     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5812     N->setFlags(Flags);
5813     createOperands(N, Ops);
5814     CSEMap.InsertNode(N, IP);
5815   } else {
5816     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5817     createOperands(N, Ops);
5818   }
5819 
5820   InsertNode(N);
5821   SDValue V = SDValue(N, 0);
5822   NewSDValueDbgMsg(V, "Creating new node: ", this);
5823   return V;
5824 }
5825 
5826 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5827                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5828   SDValue Ops[] = { N1, N2, N3, N4 };
5829   return getNode(Opcode, DL, VT, Ops);
5830 }
5831 
5832 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5833                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5834                               SDValue N5) {
5835   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5836   return getNode(Opcode, DL, VT, Ops);
5837 }
5838 
5839 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5840 /// the incoming stack arguments to be loaded from the stack.
5841 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5842   SmallVector<SDValue, 8> ArgChains;
5843 
5844   // Include the original chain at the beginning of the list. When this is
5845   // used by target LowerCall hooks, this helps legalize find the
5846   // CALLSEQ_BEGIN node.
5847   ArgChains.push_back(Chain);
5848 
5849   // Add a chain value for each stack argument.
5850   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5851        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5852     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5853       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5854         if (FI->getIndex() < 0)
5855           ArgChains.push_back(SDValue(L, 1));
5856 
5857   // Build a tokenfactor for all the chains.
5858   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5859 }
5860 
5861 /// getMemsetValue - Vectorized representation of the memset value
5862 /// operand.
5863 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5864                               const SDLoc &dl) {
5865   assert(!Value.isUndef());
5866 
5867   unsigned NumBits = VT.getScalarSizeInBits();
5868   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5869     assert(C->getAPIntValue().getBitWidth() == 8);
5870     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5871     if (VT.isInteger()) {
5872       bool IsOpaque = VT.getSizeInBits() > 64 ||
5873           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5874       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5875     }
5876     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5877                              VT);
5878   }
5879 
5880   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5881   EVT IntVT = VT.getScalarType();
5882   if (!IntVT.isInteger())
5883     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5884 
5885   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5886   if (NumBits > 8) {
5887     // Use a multiplication with 0x010101... to extend the input to the
5888     // required length.
5889     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5890     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5891                         DAG.getConstant(Magic, dl, IntVT));
5892   }
5893 
5894   if (VT != Value.getValueType() && !VT.isInteger())
5895     Value = DAG.getBitcast(VT.getScalarType(), Value);
5896   if (VT != Value.getValueType())
5897     Value = DAG.getSplatBuildVector(VT, dl, Value);
5898 
5899   return Value;
5900 }
5901 
5902 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5903 /// used when a memcpy is turned into a memset when the source is a constant
5904 /// string ptr.
5905 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5906                                   const TargetLowering &TLI,
5907                                   const ConstantDataArraySlice &Slice) {
5908   // Handle vector with all elements zero.
5909   if (Slice.Array == nullptr) {
5910     if (VT.isInteger())
5911       return DAG.getConstant(0, dl, VT);
5912     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5913       return DAG.getConstantFP(0.0, dl, VT);
5914     else if (VT.isVector()) {
5915       unsigned NumElts = VT.getVectorNumElements();
5916       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5917       return DAG.getNode(ISD::BITCAST, dl, VT,
5918                          DAG.getConstant(0, dl,
5919                                          EVT::getVectorVT(*DAG.getContext(),
5920                                                           EltVT, NumElts)));
5921     } else
5922       llvm_unreachable("Expected type!");
5923   }
5924 
5925   assert(!VT.isVector() && "Can't handle vector type here!");
5926   unsigned NumVTBits = VT.getSizeInBits();
5927   unsigned NumVTBytes = NumVTBits / 8;
5928   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5929 
5930   APInt Val(NumVTBits, 0);
5931   if (DAG.getDataLayout().isLittleEndian()) {
5932     for (unsigned i = 0; i != NumBytes; ++i)
5933       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5934   } else {
5935     for (unsigned i = 0; i != NumBytes; ++i)
5936       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5937   }
5938 
5939   // If the "cost" of materializing the integer immediate is less than the cost
5940   // of a load, then it is cost effective to turn the load into the immediate.
5941   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5942   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5943     return DAG.getConstant(Val, dl, VT);
5944   return SDValue(nullptr, 0);
5945 }
5946 
5947 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5948                                            const SDLoc &DL,
5949                                            const SDNodeFlags Flags) {
5950   EVT VT = Base.getValueType();
5951   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5952 }
5953 
5954 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5955                                            const SDLoc &DL,
5956                                            const SDNodeFlags Flags) {
5957   assert(Offset.getValueType().isInteger());
5958   EVT BasePtrVT = Ptr.getValueType();
5959   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5960 }
5961 
5962 /// Returns true if memcpy source is constant data.
5963 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5964   uint64_t SrcDelta = 0;
5965   GlobalAddressSDNode *G = nullptr;
5966   if (Src.getOpcode() == ISD::GlobalAddress)
5967     G = cast<GlobalAddressSDNode>(Src);
5968   else if (Src.getOpcode() == ISD::ADD &&
5969            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5970            Src.getOperand(1).getOpcode() == ISD::Constant) {
5971     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5972     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5973   }
5974   if (!G)
5975     return false;
5976 
5977   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5978                                   SrcDelta + G->getOffset());
5979 }
5980 
5981 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5982                                       SelectionDAG &DAG) {
5983   // On Darwin, -Os means optimize for size without hurting performance, so
5984   // only really optimize for size when -Oz (MinSize) is used.
5985   if (MF.getTarget().getTargetTriple().isOSDarwin())
5986     return MF.getFunction().hasMinSize();
5987   return DAG.shouldOptForSize();
5988 }
5989 
5990 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5991                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5992                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5993                           SmallVector<SDValue, 16> &OutStoreChains) {
5994   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5995   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5996   SmallVector<SDValue, 16> GluedLoadChains;
5997   for (unsigned i = From; i < To; ++i) {
5998     OutChains.push_back(OutLoadChains[i]);
5999     GluedLoadChains.push_back(OutLoadChains[i]);
6000   }
6001 
6002   // Chain for all loads.
6003   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6004                                   GluedLoadChains);
6005 
6006   for (unsigned i = From; i < To; ++i) {
6007     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6008     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6009                                   ST->getBasePtr(), ST->getMemoryVT(),
6010                                   ST->getMemOperand());
6011     OutChains.push_back(NewStore);
6012   }
6013 }
6014 
6015 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6016                                        SDValue Chain, SDValue Dst, SDValue Src,
6017                                        uint64_t Size, Align Alignment,
6018                                        bool isVol, bool AlwaysInline,
6019                                        MachinePointerInfo DstPtrInfo,
6020                                        MachinePointerInfo SrcPtrInfo) {
6021   // Turn a memcpy of undef to nop.
6022   // FIXME: We need to honor volatile even is Src is undef.
6023   if (Src.isUndef())
6024     return Chain;
6025 
6026   // Expand memcpy to a series of load and store ops if the size operand falls
6027   // below a certain threshold.
6028   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6029   // rather than maybe a humongous number of loads and stores.
6030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6031   const DataLayout &DL = DAG.getDataLayout();
6032   LLVMContext &C = *DAG.getContext();
6033   std::vector<EVT> MemOps;
6034   bool DstAlignCanChange = false;
6035   MachineFunction &MF = DAG.getMachineFunction();
6036   MachineFrameInfo &MFI = MF.getFrameInfo();
6037   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6038   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6039   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6040     DstAlignCanChange = true;
6041   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6042   if (!SrcAlign || Alignment > *SrcAlign)
6043     SrcAlign = Alignment;
6044   assert(SrcAlign && "SrcAlign must be set");
6045   ConstantDataArraySlice Slice;
6046   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
6047   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6048   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6049   const MemOp Op = isZeroConstant
6050                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6051                                     /*IsZeroMemset*/ true, isVol)
6052                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6053                                      *SrcAlign, isVol, CopyFromConstant);
6054   if (!TLI.findOptimalMemOpLowering(
6055           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6056           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6057     return SDValue();
6058 
6059   if (DstAlignCanChange) {
6060     Type *Ty = MemOps[0].getTypeForEVT(C);
6061     Align NewAlign = DL.getABITypeAlign(Ty);
6062 
6063     // Don't promote to an alignment that would require dynamic stack
6064     // realignment.
6065     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6066     if (!TRI->needsStackRealignment(MF))
6067       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6068         NewAlign = NewAlign / 2;
6069 
6070     if (NewAlign > Alignment) {
6071       // Give the stack frame object a larger alignment if needed.
6072       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6073         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6074       Alignment = NewAlign;
6075     }
6076   }
6077 
6078   MachineMemOperand::Flags MMOFlags =
6079       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6080   SmallVector<SDValue, 16> OutLoadChains;
6081   SmallVector<SDValue, 16> OutStoreChains;
6082   SmallVector<SDValue, 32> OutChains;
6083   unsigned NumMemOps = MemOps.size();
6084   uint64_t SrcOff = 0, DstOff = 0;
6085   for (unsigned i = 0; i != NumMemOps; ++i) {
6086     EVT VT = MemOps[i];
6087     unsigned VTSize = VT.getSizeInBits() / 8;
6088     SDValue Value, Store;
6089 
6090     if (VTSize > Size) {
6091       // Issuing an unaligned load / store pair  that overlaps with the previous
6092       // pair. Adjust the offset accordingly.
6093       assert(i == NumMemOps-1 && i != 0);
6094       SrcOff -= VTSize - Size;
6095       DstOff -= VTSize - Size;
6096     }
6097 
6098     if (CopyFromConstant &&
6099         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6100       // It's unlikely a store of a vector immediate can be done in a single
6101       // instruction. It would require a load from a constantpool first.
6102       // We only handle zero vectors here.
6103       // FIXME: Handle other cases where store of vector immediate is done in
6104       // a single instruction.
6105       ConstantDataArraySlice SubSlice;
6106       if (SrcOff < Slice.Length) {
6107         SubSlice = Slice;
6108         SubSlice.move(SrcOff);
6109       } else {
6110         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6111         SubSlice.Array = nullptr;
6112         SubSlice.Offset = 0;
6113         SubSlice.Length = VTSize;
6114       }
6115       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6116       if (Value.getNode()) {
6117         Store = DAG.getStore(
6118             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6119             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6120         OutChains.push_back(Store);
6121       }
6122     }
6123 
6124     if (!Store.getNode()) {
6125       // The type might not be legal for the target.  This should only happen
6126       // if the type is smaller than a legal type, as on PPC, so the right
6127       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6128       // to Load/Store if NVT==VT.
6129       // FIXME does the case above also need this?
6130       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6131       assert(NVT.bitsGE(VT));
6132 
6133       bool isDereferenceable =
6134         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6135       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6136       if (isDereferenceable)
6137         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6138 
6139       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6140                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6141                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6142                              commonAlignment(*SrcAlign, SrcOff).value(),
6143                              SrcMMOFlags);
6144       OutLoadChains.push_back(Value.getValue(1));
6145 
6146       Store = DAG.getTruncStore(
6147           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6148           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6149       OutStoreChains.push_back(Store);
6150     }
6151     SrcOff += VTSize;
6152     DstOff += VTSize;
6153     Size -= VTSize;
6154   }
6155 
6156   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6157                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6158   unsigned NumLdStInMemcpy = OutStoreChains.size();
6159 
6160   if (NumLdStInMemcpy) {
6161     // It may be that memcpy might be converted to memset if it's memcpy
6162     // of constants. In such a case, we won't have loads and stores, but
6163     // just stores. In the absence of loads, there is nothing to gang up.
6164     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6165       // If target does not care, just leave as it.
6166       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6167         OutChains.push_back(OutLoadChains[i]);
6168         OutChains.push_back(OutStoreChains[i]);
6169       }
6170     } else {
6171       // Ld/St less than/equal limit set by target.
6172       if (NumLdStInMemcpy <= GluedLdStLimit) {
6173           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6174                                         NumLdStInMemcpy, OutLoadChains,
6175                                         OutStoreChains);
6176       } else {
6177         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6178         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6179         unsigned GlueIter = 0;
6180 
6181         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6182           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6183           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6184 
6185           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6186                                        OutLoadChains, OutStoreChains);
6187           GlueIter += GluedLdStLimit;
6188         }
6189 
6190         // Residual ld/st.
6191         if (RemainingLdStInMemcpy) {
6192           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6193                                         RemainingLdStInMemcpy, OutLoadChains,
6194                                         OutStoreChains);
6195         }
6196       }
6197     }
6198   }
6199   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6200 }
6201 
6202 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6203                                         SDValue Chain, SDValue Dst, SDValue Src,
6204                                         uint64_t Size, Align Alignment,
6205                                         bool isVol, bool AlwaysInline,
6206                                         MachinePointerInfo DstPtrInfo,
6207                                         MachinePointerInfo SrcPtrInfo) {
6208   // Turn a memmove of undef to nop.
6209   // FIXME: We need to honor volatile even is Src is undef.
6210   if (Src.isUndef())
6211     return Chain;
6212 
6213   // Expand memmove to a series of load and store ops if the size operand falls
6214   // below a certain threshold.
6215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6216   const DataLayout &DL = DAG.getDataLayout();
6217   LLVMContext &C = *DAG.getContext();
6218   std::vector<EVT> MemOps;
6219   bool DstAlignCanChange = false;
6220   MachineFunction &MF = DAG.getMachineFunction();
6221   MachineFrameInfo &MFI = MF.getFrameInfo();
6222   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6223   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6224   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6225     DstAlignCanChange = true;
6226   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6227   if (!SrcAlign || Alignment > *SrcAlign)
6228     SrcAlign = Alignment;
6229   assert(SrcAlign && "SrcAlign must be set");
6230   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6231   if (!TLI.findOptimalMemOpLowering(
6232           MemOps, Limit,
6233           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6234                       /*IsVolatile*/ true),
6235           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6236           MF.getFunction().getAttributes()))
6237     return SDValue();
6238 
6239   if (DstAlignCanChange) {
6240     Type *Ty = MemOps[0].getTypeForEVT(C);
6241     Align NewAlign = DL.getABITypeAlign(Ty);
6242     if (NewAlign > Alignment) {
6243       // Give the stack frame object a larger alignment if needed.
6244       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6245         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6246       Alignment = NewAlign;
6247     }
6248   }
6249 
6250   MachineMemOperand::Flags MMOFlags =
6251       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6252   uint64_t SrcOff = 0, DstOff = 0;
6253   SmallVector<SDValue, 8> LoadValues;
6254   SmallVector<SDValue, 8> LoadChains;
6255   SmallVector<SDValue, 8> OutChains;
6256   unsigned NumMemOps = MemOps.size();
6257   for (unsigned i = 0; i < NumMemOps; i++) {
6258     EVT VT = MemOps[i];
6259     unsigned VTSize = VT.getSizeInBits() / 8;
6260     SDValue Value;
6261 
6262     bool isDereferenceable =
6263       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6264     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6265     if (isDereferenceable)
6266       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6267 
6268     Value = DAG.getLoad(
6269         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6270         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6271     LoadValues.push_back(Value);
6272     LoadChains.push_back(Value.getValue(1));
6273     SrcOff += VTSize;
6274   }
6275   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6276   OutChains.clear();
6277   for (unsigned i = 0; i < NumMemOps; i++) {
6278     EVT VT = MemOps[i];
6279     unsigned VTSize = VT.getSizeInBits() / 8;
6280     SDValue Store;
6281 
6282     Store = DAG.getStore(
6283         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6284         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6285     OutChains.push_back(Store);
6286     DstOff += VTSize;
6287   }
6288 
6289   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6290 }
6291 
6292 /// Lower the call to 'memset' intrinsic function into a series of store
6293 /// operations.
6294 ///
6295 /// \param DAG Selection DAG where lowered code is placed.
6296 /// \param dl Link to corresponding IR location.
6297 /// \param Chain Control flow dependency.
6298 /// \param Dst Pointer to destination memory location.
6299 /// \param Src Value of byte to write into the memory.
6300 /// \param Size Number of bytes to write.
6301 /// \param Alignment Alignment of the destination in bytes.
6302 /// \param isVol True if destination is volatile.
6303 /// \param DstPtrInfo IR information on the memory pointer.
6304 /// \returns New head in the control flow, if lowering was successful, empty
6305 /// SDValue otherwise.
6306 ///
6307 /// The function tries to replace 'llvm.memset' intrinsic with several store
6308 /// operations and value calculation code. This is usually profitable for small
6309 /// memory size.
6310 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6311                                SDValue Chain, SDValue Dst, SDValue Src,
6312                                uint64_t Size, Align Alignment, bool isVol,
6313                                MachinePointerInfo DstPtrInfo) {
6314   // Turn a memset of undef to nop.
6315   // FIXME: We need to honor volatile even is Src is undef.
6316   if (Src.isUndef())
6317     return Chain;
6318 
6319   // Expand memset to a series of load/store ops if the size operand
6320   // falls below a certain threshold.
6321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6322   std::vector<EVT> MemOps;
6323   bool DstAlignCanChange = false;
6324   MachineFunction &MF = DAG.getMachineFunction();
6325   MachineFrameInfo &MFI = MF.getFrameInfo();
6326   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6327   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6328   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6329     DstAlignCanChange = true;
6330   bool IsZeroVal =
6331     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6332   if (!TLI.findOptimalMemOpLowering(
6333           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6334           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6335           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6336     return SDValue();
6337 
6338   if (DstAlignCanChange) {
6339     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6340     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6341     if (NewAlign > Alignment) {
6342       // Give the stack frame object a larger alignment if needed.
6343       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6344         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6345       Alignment = NewAlign;
6346     }
6347   }
6348 
6349   SmallVector<SDValue, 8> OutChains;
6350   uint64_t DstOff = 0;
6351   unsigned NumMemOps = MemOps.size();
6352 
6353   // Find the largest store and generate the bit pattern for it.
6354   EVT LargestVT = MemOps[0];
6355   for (unsigned i = 1; i < NumMemOps; i++)
6356     if (MemOps[i].bitsGT(LargestVT))
6357       LargestVT = MemOps[i];
6358   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6359 
6360   for (unsigned i = 0; i < NumMemOps; i++) {
6361     EVT VT = MemOps[i];
6362     unsigned VTSize = VT.getSizeInBits() / 8;
6363     if (VTSize > Size) {
6364       // Issuing an unaligned load / store pair  that overlaps with the previous
6365       // pair. Adjust the offset accordingly.
6366       assert(i == NumMemOps-1 && i != 0);
6367       DstOff -= VTSize - Size;
6368     }
6369 
6370     // If this store is smaller than the largest store see whether we can get
6371     // the smaller value for free with a truncate.
6372     SDValue Value = MemSetValue;
6373     if (VT.bitsLT(LargestVT)) {
6374       if (!LargestVT.isVector() && !VT.isVector() &&
6375           TLI.isTruncateFree(LargestVT, VT))
6376         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6377       else
6378         Value = getMemsetValue(Src, VT, DAG, dl);
6379     }
6380     assert(Value.getValueType() == VT && "Value with wrong type.");
6381     SDValue Store = DAG.getStore(
6382         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6383         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6384         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6385     OutChains.push_back(Store);
6386     DstOff += VT.getSizeInBits() / 8;
6387     Size -= VTSize;
6388   }
6389 
6390   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6391 }
6392 
6393 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6394                                             unsigned AS) {
6395   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6396   // pointer operands can be losslessly bitcasted to pointers of address space 0
6397   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6398     report_fatal_error("cannot lower memory intrinsic in address space " +
6399                        Twine(AS));
6400   }
6401 }
6402 
6403 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6404                                 SDValue Src, SDValue Size, Align Alignment,
6405                                 bool isVol, bool AlwaysInline, bool isTailCall,
6406                                 MachinePointerInfo DstPtrInfo,
6407                                 MachinePointerInfo SrcPtrInfo) {
6408   // Check to see if we should lower the memcpy to loads and stores first.
6409   // For cases within the target-specified limits, this is the best choice.
6410   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6411   if (ConstantSize) {
6412     // Memcpy with size zero? Just return the original chain.
6413     if (ConstantSize->isNullValue())
6414       return Chain;
6415 
6416     SDValue Result = getMemcpyLoadsAndStores(
6417         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6418         isVol, false, DstPtrInfo, SrcPtrInfo);
6419     if (Result.getNode())
6420       return Result;
6421   }
6422 
6423   // Then check to see if we should lower the memcpy with target-specific
6424   // code. If the target chooses to do this, this is the next best.
6425   if (TSI) {
6426     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6427         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6428         DstPtrInfo, SrcPtrInfo);
6429     if (Result.getNode())
6430       return Result;
6431   }
6432 
6433   // If we really need inline code and the target declined to provide it,
6434   // use a (potentially long) sequence of loads and stores.
6435   if (AlwaysInline) {
6436     assert(ConstantSize && "AlwaysInline requires a constant size!");
6437     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6438                                    ConstantSize->getZExtValue(), Alignment,
6439                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6440   }
6441 
6442   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6443   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6444 
6445   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6446   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6447   // respect volatile, so they may do things like read or write memory
6448   // beyond the given memory regions. But fixing this isn't easy, and most
6449   // people don't care.
6450 
6451   // Emit a library call.
6452   TargetLowering::ArgListTy Args;
6453   TargetLowering::ArgListEntry Entry;
6454   Entry.Ty = Type::getInt8PtrTy(*getContext());
6455   Entry.Node = Dst; Args.push_back(Entry);
6456   Entry.Node = Src; Args.push_back(Entry);
6457 
6458   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6459   Entry.Node = Size; Args.push_back(Entry);
6460   // FIXME: pass in SDLoc
6461   TargetLowering::CallLoweringInfo CLI(*this);
6462   CLI.setDebugLoc(dl)
6463       .setChain(Chain)
6464       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6465                     Dst.getValueType().getTypeForEVT(*getContext()),
6466                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6467                                       TLI->getPointerTy(getDataLayout())),
6468                     std::move(Args))
6469       .setDiscardResult()
6470       .setTailCall(isTailCall);
6471 
6472   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6473   return CallResult.second;
6474 }
6475 
6476 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6477                                       SDValue Dst, unsigned DstAlign,
6478                                       SDValue Src, unsigned SrcAlign,
6479                                       SDValue Size, Type *SizeTy,
6480                                       unsigned ElemSz, bool isTailCall,
6481                                       MachinePointerInfo DstPtrInfo,
6482                                       MachinePointerInfo SrcPtrInfo) {
6483   // Emit a library call.
6484   TargetLowering::ArgListTy Args;
6485   TargetLowering::ArgListEntry Entry;
6486   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6487   Entry.Node = Dst;
6488   Args.push_back(Entry);
6489 
6490   Entry.Node = Src;
6491   Args.push_back(Entry);
6492 
6493   Entry.Ty = SizeTy;
6494   Entry.Node = Size;
6495   Args.push_back(Entry);
6496 
6497   RTLIB::Libcall LibraryCall =
6498       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6499   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6500     report_fatal_error("Unsupported element size");
6501 
6502   TargetLowering::CallLoweringInfo CLI(*this);
6503   CLI.setDebugLoc(dl)
6504       .setChain(Chain)
6505       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6506                     Type::getVoidTy(*getContext()),
6507                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6508                                       TLI->getPointerTy(getDataLayout())),
6509                     std::move(Args))
6510       .setDiscardResult()
6511       .setTailCall(isTailCall);
6512 
6513   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6514   return CallResult.second;
6515 }
6516 
6517 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6518                                  SDValue Src, SDValue Size, Align Alignment,
6519                                  bool isVol, bool isTailCall,
6520                                  MachinePointerInfo DstPtrInfo,
6521                                  MachinePointerInfo SrcPtrInfo) {
6522   // Check to see if we should lower the memmove to loads and stores first.
6523   // For cases within the target-specified limits, this is the best choice.
6524   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6525   if (ConstantSize) {
6526     // Memmove with size zero? Just return the original chain.
6527     if (ConstantSize->isNullValue())
6528       return Chain;
6529 
6530     SDValue Result = getMemmoveLoadsAndStores(
6531         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6532         isVol, false, DstPtrInfo, SrcPtrInfo);
6533     if (Result.getNode())
6534       return Result;
6535   }
6536 
6537   // Then check to see if we should lower the memmove with target-specific
6538   // code. If the target chooses to do this, this is the next best.
6539   if (TSI) {
6540     SDValue Result =
6541         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6542                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6543     if (Result.getNode())
6544       return Result;
6545   }
6546 
6547   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6548   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6549 
6550   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6551   // not be safe.  See memcpy above for more details.
6552 
6553   // Emit a library call.
6554   TargetLowering::ArgListTy Args;
6555   TargetLowering::ArgListEntry Entry;
6556   Entry.Ty = Type::getInt8PtrTy(*getContext());
6557   Entry.Node = Dst; Args.push_back(Entry);
6558   Entry.Node = Src; Args.push_back(Entry);
6559 
6560   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6561   Entry.Node = Size; Args.push_back(Entry);
6562   // FIXME:  pass in SDLoc
6563   TargetLowering::CallLoweringInfo CLI(*this);
6564   CLI.setDebugLoc(dl)
6565       .setChain(Chain)
6566       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6567                     Dst.getValueType().getTypeForEVT(*getContext()),
6568                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6569                                       TLI->getPointerTy(getDataLayout())),
6570                     std::move(Args))
6571       .setDiscardResult()
6572       .setTailCall(isTailCall);
6573 
6574   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6575   return CallResult.second;
6576 }
6577 
6578 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6579                                        SDValue Dst, unsigned DstAlign,
6580                                        SDValue Src, unsigned SrcAlign,
6581                                        SDValue Size, Type *SizeTy,
6582                                        unsigned ElemSz, bool isTailCall,
6583                                        MachinePointerInfo DstPtrInfo,
6584                                        MachinePointerInfo SrcPtrInfo) {
6585   // Emit a library call.
6586   TargetLowering::ArgListTy Args;
6587   TargetLowering::ArgListEntry Entry;
6588   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6589   Entry.Node = Dst;
6590   Args.push_back(Entry);
6591 
6592   Entry.Node = Src;
6593   Args.push_back(Entry);
6594 
6595   Entry.Ty = SizeTy;
6596   Entry.Node = Size;
6597   Args.push_back(Entry);
6598 
6599   RTLIB::Libcall LibraryCall =
6600       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6601   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6602     report_fatal_error("Unsupported element size");
6603 
6604   TargetLowering::CallLoweringInfo CLI(*this);
6605   CLI.setDebugLoc(dl)
6606       .setChain(Chain)
6607       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6608                     Type::getVoidTy(*getContext()),
6609                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6610                                       TLI->getPointerTy(getDataLayout())),
6611                     std::move(Args))
6612       .setDiscardResult()
6613       .setTailCall(isTailCall);
6614 
6615   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6616   return CallResult.second;
6617 }
6618 
6619 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6620                                 SDValue Src, SDValue Size, Align Alignment,
6621                                 bool isVol, bool isTailCall,
6622                                 MachinePointerInfo DstPtrInfo) {
6623   // Check to see if we should lower the memset to stores first.
6624   // For cases within the target-specified limits, this is the best choice.
6625   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6626   if (ConstantSize) {
6627     // Memset with size zero? Just return the original chain.
6628     if (ConstantSize->isNullValue())
6629       return Chain;
6630 
6631     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6632                                      ConstantSize->getZExtValue(), Alignment,
6633                                      isVol, DstPtrInfo);
6634 
6635     if (Result.getNode())
6636       return Result;
6637   }
6638 
6639   // Then check to see if we should lower the memset with target-specific
6640   // code. If the target chooses to do this, this is the next best.
6641   if (TSI) {
6642     SDValue Result = TSI->EmitTargetCodeForMemset(
6643         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6644     if (Result.getNode())
6645       return Result;
6646   }
6647 
6648   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6649 
6650   // Emit a library call.
6651   TargetLowering::ArgListTy Args;
6652   TargetLowering::ArgListEntry Entry;
6653   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6654   Args.push_back(Entry);
6655   Entry.Node = Src;
6656   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6657   Args.push_back(Entry);
6658   Entry.Node = Size;
6659   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6660   Args.push_back(Entry);
6661 
6662   // FIXME: pass in SDLoc
6663   TargetLowering::CallLoweringInfo CLI(*this);
6664   CLI.setDebugLoc(dl)
6665       .setChain(Chain)
6666       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6667                     Dst.getValueType().getTypeForEVT(*getContext()),
6668                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6669                                       TLI->getPointerTy(getDataLayout())),
6670                     std::move(Args))
6671       .setDiscardResult()
6672       .setTailCall(isTailCall);
6673 
6674   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6675   return CallResult.second;
6676 }
6677 
6678 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6679                                       SDValue Dst, unsigned DstAlign,
6680                                       SDValue Value, SDValue Size, Type *SizeTy,
6681                                       unsigned ElemSz, bool isTailCall,
6682                                       MachinePointerInfo DstPtrInfo) {
6683   // Emit a library call.
6684   TargetLowering::ArgListTy Args;
6685   TargetLowering::ArgListEntry Entry;
6686   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6687   Entry.Node = Dst;
6688   Args.push_back(Entry);
6689 
6690   Entry.Ty = Type::getInt8Ty(*getContext());
6691   Entry.Node = Value;
6692   Args.push_back(Entry);
6693 
6694   Entry.Ty = SizeTy;
6695   Entry.Node = Size;
6696   Args.push_back(Entry);
6697 
6698   RTLIB::Libcall LibraryCall =
6699       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6700   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6701     report_fatal_error("Unsupported element size");
6702 
6703   TargetLowering::CallLoweringInfo CLI(*this);
6704   CLI.setDebugLoc(dl)
6705       .setChain(Chain)
6706       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6707                     Type::getVoidTy(*getContext()),
6708                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6709                                       TLI->getPointerTy(getDataLayout())),
6710                     std::move(Args))
6711       .setDiscardResult()
6712       .setTailCall(isTailCall);
6713 
6714   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6715   return CallResult.second;
6716 }
6717 
6718 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6719                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6720                                 MachineMemOperand *MMO) {
6721   FoldingSetNodeID ID;
6722   ID.AddInteger(MemVT.getRawBits());
6723   AddNodeIDNode(ID, Opcode, VTList, Ops);
6724   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6725   void* IP = nullptr;
6726   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6727     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6728     return SDValue(E, 0);
6729   }
6730 
6731   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6732                                     VTList, MemVT, MMO);
6733   createOperands(N, Ops);
6734 
6735   CSEMap.InsertNode(N, IP);
6736   InsertNode(N);
6737   return SDValue(N, 0);
6738 }
6739 
6740 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6741                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6742                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6743                                        MachineMemOperand *MMO) {
6744   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6745          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6746   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6747 
6748   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6749   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6750 }
6751 
6752 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6753                                 SDValue Chain, SDValue Ptr, SDValue Val,
6754                                 MachineMemOperand *MMO) {
6755   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6756           Opcode == ISD::ATOMIC_LOAD_SUB ||
6757           Opcode == ISD::ATOMIC_LOAD_AND ||
6758           Opcode == ISD::ATOMIC_LOAD_CLR ||
6759           Opcode == ISD::ATOMIC_LOAD_OR ||
6760           Opcode == ISD::ATOMIC_LOAD_XOR ||
6761           Opcode == ISD::ATOMIC_LOAD_NAND ||
6762           Opcode == ISD::ATOMIC_LOAD_MIN ||
6763           Opcode == ISD::ATOMIC_LOAD_MAX ||
6764           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6765           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6766           Opcode == ISD::ATOMIC_LOAD_FADD ||
6767           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6768           Opcode == ISD::ATOMIC_SWAP ||
6769           Opcode == ISD::ATOMIC_STORE) &&
6770          "Invalid Atomic Op");
6771 
6772   EVT VT = Val.getValueType();
6773 
6774   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6775                                                getVTList(VT, MVT::Other);
6776   SDValue Ops[] = {Chain, Ptr, Val};
6777   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6778 }
6779 
6780 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6781                                 EVT VT, SDValue Chain, SDValue Ptr,
6782                                 MachineMemOperand *MMO) {
6783   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6784 
6785   SDVTList VTs = getVTList(VT, MVT::Other);
6786   SDValue Ops[] = {Chain, Ptr};
6787   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6788 }
6789 
6790 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6791 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6792   if (Ops.size() == 1)
6793     return Ops[0];
6794 
6795   SmallVector<EVT, 4> VTs;
6796   VTs.reserve(Ops.size());
6797   for (unsigned i = 0; i < Ops.size(); ++i)
6798     VTs.push_back(Ops[i].getValueType());
6799   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6800 }
6801 
6802 SDValue SelectionDAG::getMemIntrinsicNode(
6803     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6804     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6805     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6806   if (!Size && MemVT.isScalableVector())
6807     Size = MemoryLocation::UnknownSize;
6808   else if (!Size)
6809     Size = MemVT.getStoreSize();
6810 
6811   MachineFunction &MF = getMachineFunction();
6812   MachineMemOperand *MMO =
6813       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6814 
6815   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6816 }
6817 
6818 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6819                                           SDVTList VTList,
6820                                           ArrayRef<SDValue> Ops, EVT MemVT,
6821                                           MachineMemOperand *MMO) {
6822   assert((Opcode == ISD::INTRINSIC_VOID ||
6823           Opcode == ISD::INTRINSIC_W_CHAIN ||
6824           Opcode == ISD::PREFETCH ||
6825           ((int)Opcode <= std::numeric_limits<int>::max() &&
6826            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6827          "Opcode is not a memory-accessing opcode!");
6828 
6829   // Memoize the node unless it returns a flag.
6830   MemIntrinsicSDNode *N;
6831   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6832     FoldingSetNodeID ID;
6833     AddNodeIDNode(ID, Opcode, VTList, Ops);
6834     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6835         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6836     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6837     void *IP = nullptr;
6838     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6839       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6840       return SDValue(E, 0);
6841     }
6842 
6843     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6844                                       VTList, MemVT, MMO);
6845     createOperands(N, Ops);
6846 
6847   CSEMap.InsertNode(N, IP);
6848   } else {
6849     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6850                                       VTList, MemVT, MMO);
6851     createOperands(N, Ops);
6852   }
6853   InsertNode(N);
6854   SDValue V(N, 0);
6855   NewSDValueDbgMsg(V, "Creating new node: ", this);
6856   return V;
6857 }
6858 
6859 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6860                                       SDValue Chain, int FrameIndex,
6861                                       int64_t Size, int64_t Offset) {
6862   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6863   const auto VTs = getVTList(MVT::Other);
6864   SDValue Ops[2] = {
6865       Chain,
6866       getFrameIndex(FrameIndex,
6867                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6868                     true)};
6869 
6870   FoldingSetNodeID ID;
6871   AddNodeIDNode(ID, Opcode, VTs, Ops);
6872   ID.AddInteger(FrameIndex);
6873   ID.AddInteger(Size);
6874   ID.AddInteger(Offset);
6875   void *IP = nullptr;
6876   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6877     return SDValue(E, 0);
6878 
6879   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6880       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6881   createOperands(N, Ops);
6882   CSEMap.InsertNode(N, IP);
6883   InsertNode(N);
6884   SDValue V(N, 0);
6885   NewSDValueDbgMsg(V, "Creating new node: ", this);
6886   return V;
6887 }
6888 
6889 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6890 /// MachinePointerInfo record from it.  This is particularly useful because the
6891 /// code generator has many cases where it doesn't bother passing in a
6892 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6893 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6894                                            SelectionDAG &DAG, SDValue Ptr,
6895                                            int64_t Offset = 0) {
6896   // If this is FI+Offset, we can model it.
6897   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6898     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6899                                              FI->getIndex(), Offset);
6900 
6901   // If this is (FI+Offset1)+Offset2, we can model it.
6902   if (Ptr.getOpcode() != ISD::ADD ||
6903       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6904       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6905     return Info;
6906 
6907   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6908   return MachinePointerInfo::getFixedStack(
6909       DAG.getMachineFunction(), FI,
6910       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6911 }
6912 
6913 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6914 /// MachinePointerInfo record from it.  This is particularly useful because the
6915 /// code generator has many cases where it doesn't bother passing in a
6916 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6917 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6918                                            SelectionDAG &DAG, SDValue Ptr,
6919                                            SDValue OffsetOp) {
6920   // If the 'Offset' value isn't a constant, we can't handle this.
6921   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6922     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6923   if (OffsetOp.isUndef())
6924     return InferPointerInfo(Info, DAG, Ptr);
6925   return Info;
6926 }
6927 
6928 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6929                               EVT VT, const SDLoc &dl, SDValue Chain,
6930                               SDValue Ptr, SDValue Offset,
6931                               MachinePointerInfo PtrInfo, EVT MemVT,
6932                               Align Alignment,
6933                               MachineMemOperand::Flags MMOFlags,
6934                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6935   assert(Chain.getValueType() == MVT::Other &&
6936         "Invalid chain type");
6937 
6938   MMOFlags |= MachineMemOperand::MOLoad;
6939   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6940   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6941   // clients.
6942   if (PtrInfo.V.isNull())
6943     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6944 
6945   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6946   MachineFunction &MF = getMachineFunction();
6947   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6948                                                    Alignment, AAInfo, Ranges);
6949   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6950 }
6951 
6952 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6953                               EVT VT, const SDLoc &dl, SDValue Chain,
6954                               SDValue Ptr, SDValue Offset, EVT MemVT,
6955                               MachineMemOperand *MMO) {
6956   if (VT == MemVT) {
6957     ExtType = ISD::NON_EXTLOAD;
6958   } else if (ExtType == ISD::NON_EXTLOAD) {
6959     assert(VT == MemVT && "Non-extending load from different memory type!");
6960   } else {
6961     // Extending load.
6962     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6963            "Should only be an extending load, not truncating!");
6964     assert(VT.isInteger() == MemVT.isInteger() &&
6965            "Cannot convert from FP to Int or Int -> FP!");
6966     assert(VT.isVector() == MemVT.isVector() &&
6967            "Cannot use an ext load to convert to or from a vector!");
6968     assert((!VT.isVector() ||
6969             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6970            "Cannot use an ext load to change the number of vector elements!");
6971   }
6972 
6973   bool Indexed = AM != ISD::UNINDEXED;
6974   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6975 
6976   SDVTList VTs = Indexed ?
6977     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6978   SDValue Ops[] = { Chain, Ptr, Offset };
6979   FoldingSetNodeID ID;
6980   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6981   ID.AddInteger(MemVT.getRawBits());
6982   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6983       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6984   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6985   void *IP = nullptr;
6986   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6987     cast<LoadSDNode>(E)->refineAlignment(MMO);
6988     return SDValue(E, 0);
6989   }
6990   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6991                                   ExtType, MemVT, MMO);
6992   createOperands(N, Ops);
6993 
6994   CSEMap.InsertNode(N, IP);
6995   InsertNode(N);
6996   SDValue V(N, 0);
6997   NewSDValueDbgMsg(V, "Creating new node: ", this);
6998   return V;
6999 }
7000 
7001 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7002                               SDValue Ptr, MachinePointerInfo PtrInfo,
7003                               MaybeAlign Alignment,
7004                               MachineMemOperand::Flags MMOFlags,
7005                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7006   SDValue Undef = getUNDEF(Ptr.getValueType());
7007   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7008                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7009 }
7010 
7011 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7012                               SDValue Ptr, MachineMemOperand *MMO) {
7013   SDValue Undef = getUNDEF(Ptr.getValueType());
7014   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7015                  VT, MMO);
7016 }
7017 
7018 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7019                                  EVT VT, SDValue Chain, SDValue Ptr,
7020                                  MachinePointerInfo PtrInfo, EVT MemVT,
7021                                  MaybeAlign Alignment,
7022                                  MachineMemOperand::Flags MMOFlags,
7023                                  const AAMDNodes &AAInfo) {
7024   SDValue Undef = getUNDEF(Ptr.getValueType());
7025   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7026                  MemVT, Alignment, MMOFlags, AAInfo);
7027 }
7028 
7029 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7030                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7031                                  MachineMemOperand *MMO) {
7032   SDValue Undef = getUNDEF(Ptr.getValueType());
7033   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7034                  MemVT, MMO);
7035 }
7036 
7037 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7038                                      SDValue Base, SDValue Offset,
7039                                      ISD::MemIndexedMode AM) {
7040   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7041   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7042   // Don't propagate the invariant or dereferenceable flags.
7043   auto MMOFlags =
7044       LD->getMemOperand()->getFlags() &
7045       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7046   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7047                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7048                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
7049                  LD->getAAInfo());
7050 }
7051 
7052 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7053                                SDValue Ptr, MachinePointerInfo PtrInfo,
7054                                Align Alignment,
7055                                MachineMemOperand::Flags MMOFlags,
7056                                const AAMDNodes &AAInfo) {
7057   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7058 
7059   MMOFlags |= MachineMemOperand::MOStore;
7060   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7061 
7062   if (PtrInfo.V.isNull())
7063     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7064 
7065   MachineFunction &MF = getMachineFunction();
7066   uint64_t Size =
7067       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7068   MachineMemOperand *MMO =
7069       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7070   return getStore(Chain, dl, Val, Ptr, MMO);
7071 }
7072 
7073 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7074                                SDValue Ptr, MachineMemOperand *MMO) {
7075   assert(Chain.getValueType() == MVT::Other &&
7076         "Invalid chain type");
7077   EVT VT = Val.getValueType();
7078   SDVTList VTs = getVTList(MVT::Other);
7079   SDValue Undef = getUNDEF(Ptr.getValueType());
7080   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7081   FoldingSetNodeID ID;
7082   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7083   ID.AddInteger(VT.getRawBits());
7084   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7085       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7086   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7087   void *IP = nullptr;
7088   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7089     cast<StoreSDNode>(E)->refineAlignment(MMO);
7090     return SDValue(E, 0);
7091   }
7092   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7093                                    ISD::UNINDEXED, false, VT, MMO);
7094   createOperands(N, Ops);
7095 
7096   CSEMap.InsertNode(N, IP);
7097   InsertNode(N);
7098   SDValue V(N, 0);
7099   NewSDValueDbgMsg(V, "Creating new node: ", this);
7100   return V;
7101 }
7102 
7103 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7104                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7105                                     EVT SVT, Align Alignment,
7106                                     MachineMemOperand::Flags MMOFlags,
7107                                     const AAMDNodes &AAInfo) {
7108   assert(Chain.getValueType() == MVT::Other &&
7109         "Invalid chain type");
7110 
7111   MMOFlags |= MachineMemOperand::MOStore;
7112   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7113 
7114   if (PtrInfo.V.isNull())
7115     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7116 
7117   MachineFunction &MF = getMachineFunction();
7118   MachineMemOperand *MMO = MF.getMachineMemOperand(
7119       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7120   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7121 }
7122 
7123 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7124                                     SDValue Ptr, EVT SVT,
7125                                     MachineMemOperand *MMO) {
7126   EVT VT = Val.getValueType();
7127 
7128   assert(Chain.getValueType() == MVT::Other &&
7129         "Invalid chain type");
7130   if (VT == SVT)
7131     return getStore(Chain, dl, Val, Ptr, MMO);
7132 
7133   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7134          "Should only be a truncating store, not extending!");
7135   assert(VT.isInteger() == SVT.isInteger() &&
7136          "Can't do FP-INT conversion!");
7137   assert(VT.isVector() == SVT.isVector() &&
7138          "Cannot use trunc store to convert to or from a vector!");
7139   assert((!VT.isVector() ||
7140           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7141          "Cannot use trunc store to change the number of vector elements!");
7142 
7143   SDVTList VTs = getVTList(MVT::Other);
7144   SDValue Undef = getUNDEF(Ptr.getValueType());
7145   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7146   FoldingSetNodeID ID;
7147   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7148   ID.AddInteger(SVT.getRawBits());
7149   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7150       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7151   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7152   void *IP = nullptr;
7153   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7154     cast<StoreSDNode>(E)->refineAlignment(MMO);
7155     return SDValue(E, 0);
7156   }
7157   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7158                                    ISD::UNINDEXED, true, SVT, MMO);
7159   createOperands(N, Ops);
7160 
7161   CSEMap.InsertNode(N, IP);
7162   InsertNode(N);
7163   SDValue V(N, 0);
7164   NewSDValueDbgMsg(V, "Creating new node: ", this);
7165   return V;
7166 }
7167 
7168 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7169                                       SDValue Base, SDValue Offset,
7170                                       ISD::MemIndexedMode AM) {
7171   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7172   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7173   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7174   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7175   FoldingSetNodeID ID;
7176   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7177   ID.AddInteger(ST->getMemoryVT().getRawBits());
7178   ID.AddInteger(ST->getRawSubclassData());
7179   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7180   void *IP = nullptr;
7181   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7182     return SDValue(E, 0);
7183 
7184   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7185                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7186                                    ST->getMemOperand());
7187   createOperands(N, Ops);
7188 
7189   CSEMap.InsertNode(N, IP);
7190   InsertNode(N);
7191   SDValue V(N, 0);
7192   NewSDValueDbgMsg(V, "Creating new node: ", this);
7193   return V;
7194 }
7195 
7196 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7197                                     SDValue Base, SDValue Offset, SDValue Mask,
7198                                     SDValue PassThru, EVT MemVT,
7199                                     MachineMemOperand *MMO,
7200                                     ISD::MemIndexedMode AM,
7201                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7202   bool Indexed = AM != ISD::UNINDEXED;
7203   assert((Indexed || Offset.isUndef()) &&
7204          "Unindexed masked load with an offset!");
7205   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7206                          : getVTList(VT, MVT::Other);
7207   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7208   FoldingSetNodeID ID;
7209   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7210   ID.AddInteger(MemVT.getRawBits());
7211   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7212       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7213   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7214   void *IP = nullptr;
7215   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7216     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7217     return SDValue(E, 0);
7218   }
7219   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7220                                         AM, ExtTy, isExpanding, MemVT, MMO);
7221   createOperands(N, Ops);
7222 
7223   CSEMap.InsertNode(N, IP);
7224   InsertNode(N);
7225   SDValue V(N, 0);
7226   NewSDValueDbgMsg(V, "Creating new node: ", this);
7227   return V;
7228 }
7229 
7230 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7231                                            SDValue Base, SDValue Offset,
7232                                            ISD::MemIndexedMode AM) {
7233   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7234   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7235   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7236                        Offset, LD->getMask(), LD->getPassThru(),
7237                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7238                        LD->getExtensionType(), LD->isExpandingLoad());
7239 }
7240 
7241 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7242                                      SDValue Val, SDValue Base, SDValue Offset,
7243                                      SDValue Mask, EVT MemVT,
7244                                      MachineMemOperand *MMO,
7245                                      ISD::MemIndexedMode AM, bool IsTruncating,
7246                                      bool IsCompressing) {
7247   assert(Chain.getValueType() == MVT::Other &&
7248         "Invalid chain type");
7249   bool Indexed = AM != ISD::UNINDEXED;
7250   assert((Indexed || Offset.isUndef()) &&
7251          "Unindexed masked store with an offset!");
7252   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7253                          : getVTList(MVT::Other);
7254   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7255   FoldingSetNodeID ID;
7256   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7257   ID.AddInteger(MemVT.getRawBits());
7258   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7259       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7260   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7261   void *IP = nullptr;
7262   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7263     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7264     return SDValue(E, 0);
7265   }
7266   auto *N =
7267       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7268                                    IsTruncating, IsCompressing, MemVT, MMO);
7269   createOperands(N, Ops);
7270 
7271   CSEMap.InsertNode(N, IP);
7272   InsertNode(N);
7273   SDValue V(N, 0);
7274   NewSDValueDbgMsg(V, "Creating new node: ", this);
7275   return V;
7276 }
7277 
7278 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7279                                             SDValue Base, SDValue Offset,
7280                                             ISD::MemIndexedMode AM) {
7281   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7282   assert(ST->getOffset().isUndef() &&
7283          "Masked store is already a indexed store!");
7284   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7285                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7286                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7287 }
7288 
7289 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7290                                       ArrayRef<SDValue> Ops,
7291                                       MachineMemOperand *MMO,
7292                                       ISD::MemIndexType IndexType) {
7293   assert(Ops.size() == 6 && "Incompatible number of operands");
7294 
7295   FoldingSetNodeID ID;
7296   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7297   ID.AddInteger(VT.getRawBits());
7298   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7299       dl.getIROrder(), VTs, VT, MMO, IndexType));
7300   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7301   void *IP = nullptr;
7302   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7303     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7304     return SDValue(E, 0);
7305   }
7306 
7307   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7308                                           VTs, VT, MMO, IndexType);
7309   createOperands(N, Ops);
7310 
7311   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7312          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7313   assert(N->getMask().getValueType().getVectorNumElements() ==
7314              N->getValueType(0).getVectorNumElements() &&
7315          "Vector width mismatch between mask and data");
7316   assert(N->getIndex().getValueType().getVectorNumElements() >=
7317              N->getValueType(0).getVectorNumElements() &&
7318          "Vector width mismatch between index and data");
7319   assert(isa<ConstantSDNode>(N->getScale()) &&
7320          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7321          "Scale should be a constant power of 2");
7322 
7323   CSEMap.InsertNode(N, IP);
7324   InsertNode(N);
7325   SDValue V(N, 0);
7326   NewSDValueDbgMsg(V, "Creating new node: ", this);
7327   return V;
7328 }
7329 
7330 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7331                                        ArrayRef<SDValue> Ops,
7332                                        MachineMemOperand *MMO,
7333                                        ISD::MemIndexType IndexType) {
7334   assert(Ops.size() == 6 && "Incompatible number of operands");
7335 
7336   FoldingSetNodeID ID;
7337   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7338   ID.AddInteger(VT.getRawBits());
7339   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7340       dl.getIROrder(), VTs, VT, MMO, IndexType));
7341   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7342   void *IP = nullptr;
7343   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7344     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7345     return SDValue(E, 0);
7346   }
7347   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7348                                            VTs, VT, MMO, IndexType);
7349   createOperands(N, Ops);
7350 
7351   assert(N->getMask().getValueType().getVectorNumElements() ==
7352              N->getValue().getValueType().getVectorNumElements() &&
7353          "Vector width mismatch between mask and data");
7354   assert(N->getIndex().getValueType().getVectorNumElements() >=
7355              N->getValue().getValueType().getVectorNumElements() &&
7356          "Vector width mismatch between index and data");
7357   assert(isa<ConstantSDNode>(N->getScale()) &&
7358          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7359          "Scale should be a constant power of 2");
7360 
7361   CSEMap.InsertNode(N, IP);
7362   InsertNode(N);
7363   SDValue V(N, 0);
7364   NewSDValueDbgMsg(V, "Creating new node: ", this);
7365   return V;
7366 }
7367 
7368 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7369   // select undef, T, F --> T (if T is a constant), otherwise F
7370   // select, ?, undef, F --> F
7371   // select, ?, T, undef --> T
7372   if (Cond.isUndef())
7373     return isConstantValueOfAnyType(T) ? T : F;
7374   if (T.isUndef())
7375     return F;
7376   if (F.isUndef())
7377     return T;
7378 
7379   // select true, T, F --> T
7380   // select false, T, F --> F
7381   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7382     return CondC->isNullValue() ? F : T;
7383 
7384   // TODO: This should simplify VSELECT with constant condition using something
7385   // like this (but check boolean contents to be complete?):
7386   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7387   //    return T;
7388   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7389   //    return F;
7390 
7391   // select ?, T, T --> T
7392   if (T == F)
7393     return T;
7394 
7395   return SDValue();
7396 }
7397 
7398 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7399   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7400   if (X.isUndef())
7401     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7402   // shift X, undef --> undef (because it may shift by the bitwidth)
7403   if (Y.isUndef())
7404     return getUNDEF(X.getValueType());
7405 
7406   // shift 0, Y --> 0
7407   // shift X, 0 --> X
7408   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7409     return X;
7410 
7411   // shift X, C >= bitwidth(X) --> undef
7412   // All vector elements must be too big (or undef) to avoid partial undefs.
7413   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7414     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7415   };
7416   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7417     return getUNDEF(X.getValueType());
7418 
7419   return SDValue();
7420 }
7421 
7422 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7423                                       SDNodeFlags Flags) {
7424   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7425   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7426   // operation is poison. That result can be relaxed to undef.
7427   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7428   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7429   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7430                 (YC && YC->getValueAPF().isNaN());
7431   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7432                 (YC && YC->getValueAPF().isInfinity());
7433 
7434   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7435     return getUNDEF(X.getValueType());
7436 
7437   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7438     return getUNDEF(X.getValueType());
7439 
7440   if (!YC)
7441     return SDValue();
7442 
7443   // X + -0.0 --> X
7444   if (Opcode == ISD::FADD)
7445     if (YC->getValueAPF().isNegZero())
7446       return X;
7447 
7448   // X - +0.0 --> X
7449   if (Opcode == ISD::FSUB)
7450     if (YC->getValueAPF().isPosZero())
7451       return X;
7452 
7453   // X * 1.0 --> X
7454   // X / 1.0 --> X
7455   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7456     if (YC->getValueAPF().isExactlyValue(1.0))
7457       return X;
7458 
7459   return SDValue();
7460 }
7461 
7462 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7463                                SDValue Ptr, SDValue SV, unsigned Align) {
7464   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7465   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7466 }
7467 
7468 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7469                               ArrayRef<SDUse> Ops) {
7470   switch (Ops.size()) {
7471   case 0: return getNode(Opcode, DL, VT);
7472   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7473   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7474   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7475   default: break;
7476   }
7477 
7478   // Copy from an SDUse array into an SDValue array for use with
7479   // the regular getNode logic.
7480   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7481   return getNode(Opcode, DL, VT, NewOps);
7482 }
7483 
7484 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7485                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7486   unsigned NumOps = Ops.size();
7487   switch (NumOps) {
7488   case 0: return getNode(Opcode, DL, VT);
7489   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7490   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7491   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7492   default: break;
7493   }
7494 
7495   switch (Opcode) {
7496   default: break;
7497   case ISD::BUILD_VECTOR:
7498     // Attempt to simplify BUILD_VECTOR.
7499     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7500       return V;
7501     break;
7502   case ISD::CONCAT_VECTORS:
7503     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7504       return V;
7505     break;
7506   case ISD::SELECT_CC:
7507     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7508     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7509            "LHS and RHS of condition must have same type!");
7510     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7511            "True and False arms of SelectCC must have same type!");
7512     assert(Ops[2].getValueType() == VT &&
7513            "select_cc node must be of same type as true and false value!");
7514     break;
7515   case ISD::BR_CC:
7516     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7517     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7518            "LHS/RHS of comparison should match types!");
7519     break;
7520   }
7521 
7522   // Memoize nodes.
7523   SDNode *N;
7524   SDVTList VTs = getVTList(VT);
7525 
7526   if (VT != MVT::Glue) {
7527     FoldingSetNodeID ID;
7528     AddNodeIDNode(ID, Opcode, VTs, Ops);
7529     void *IP = nullptr;
7530 
7531     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7532       return SDValue(E, 0);
7533 
7534     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7535     createOperands(N, Ops);
7536 
7537     CSEMap.InsertNode(N, IP);
7538   } else {
7539     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7540     createOperands(N, Ops);
7541   }
7542 
7543   N->setFlags(Flags);
7544   InsertNode(N);
7545   SDValue V(N, 0);
7546   NewSDValueDbgMsg(V, "Creating new node: ", this);
7547   return V;
7548 }
7549 
7550 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7551                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7552   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7553 }
7554 
7555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7556                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7557   if (VTList.NumVTs == 1)
7558     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7559 
7560   switch (Opcode) {
7561   case ISD::STRICT_FP_EXTEND:
7562     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7563            "Invalid STRICT_FP_EXTEND!");
7564     assert(VTList.VTs[0].isFloatingPoint() &&
7565            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7566     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7567            "STRICT_FP_EXTEND result type should be vector iff the operand "
7568            "type is vector!");
7569     assert((!VTList.VTs[0].isVector() ||
7570             VTList.VTs[0].getVectorNumElements() ==
7571             Ops[1].getValueType().getVectorNumElements()) &&
7572            "Vector element count mismatch!");
7573     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7574            "Invalid fpext node, dst <= src!");
7575     break;
7576   case ISD::STRICT_FP_ROUND:
7577     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7578     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7579            "STRICT_FP_ROUND result type should be vector iff the operand "
7580            "type is vector!");
7581     assert((!VTList.VTs[0].isVector() ||
7582             VTList.VTs[0].getVectorNumElements() ==
7583             Ops[1].getValueType().getVectorNumElements()) &&
7584            "Vector element count mismatch!");
7585     assert(VTList.VTs[0].isFloatingPoint() &&
7586            Ops[1].getValueType().isFloatingPoint() &&
7587            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7588            isa<ConstantSDNode>(Ops[2]) &&
7589            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7590             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7591            "Invalid STRICT_FP_ROUND!");
7592     break;
7593 #if 0
7594   // FIXME: figure out how to safely handle things like
7595   // int foo(int x) { return 1 << (x & 255); }
7596   // int bar() { return foo(256); }
7597   case ISD::SRA_PARTS:
7598   case ISD::SRL_PARTS:
7599   case ISD::SHL_PARTS:
7600     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7601         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7602       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7603     else if (N3.getOpcode() == ISD::AND)
7604       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7605         // If the and is only masking out bits that cannot effect the shift,
7606         // eliminate the and.
7607         unsigned NumBits = VT.getScalarSizeInBits()*2;
7608         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7609           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7610       }
7611     break;
7612 #endif
7613   }
7614 
7615   // Memoize the node unless it returns a flag.
7616   SDNode *N;
7617   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7618     FoldingSetNodeID ID;
7619     AddNodeIDNode(ID, Opcode, VTList, Ops);
7620     void *IP = nullptr;
7621     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7622       return SDValue(E, 0);
7623 
7624     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7625     createOperands(N, Ops);
7626     CSEMap.InsertNode(N, IP);
7627   } else {
7628     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7629     createOperands(N, Ops);
7630   }
7631 
7632   N->setFlags(Flags);
7633   InsertNode(N);
7634   SDValue V(N, 0);
7635   NewSDValueDbgMsg(V, "Creating new node: ", this);
7636   return V;
7637 }
7638 
7639 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7640                               SDVTList VTList) {
7641   return getNode(Opcode, DL, VTList, None);
7642 }
7643 
7644 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7645                               SDValue N1) {
7646   SDValue Ops[] = { N1 };
7647   return getNode(Opcode, DL, VTList, Ops);
7648 }
7649 
7650 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7651                               SDValue N1, SDValue N2) {
7652   SDValue Ops[] = { N1, N2 };
7653   return getNode(Opcode, DL, VTList, Ops);
7654 }
7655 
7656 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7657                               SDValue N1, SDValue N2, SDValue N3) {
7658   SDValue Ops[] = { N1, N2, N3 };
7659   return getNode(Opcode, DL, VTList, Ops);
7660 }
7661 
7662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7663                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7664   SDValue Ops[] = { N1, N2, N3, N4 };
7665   return getNode(Opcode, DL, VTList, Ops);
7666 }
7667 
7668 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7669                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7670                               SDValue N5) {
7671   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7672   return getNode(Opcode, DL, VTList, Ops);
7673 }
7674 
7675 SDVTList SelectionDAG::getVTList(EVT VT) {
7676   return makeVTList(SDNode::getValueTypeList(VT), 1);
7677 }
7678 
7679 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7680   FoldingSetNodeID ID;
7681   ID.AddInteger(2U);
7682   ID.AddInteger(VT1.getRawBits());
7683   ID.AddInteger(VT2.getRawBits());
7684 
7685   void *IP = nullptr;
7686   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7687   if (!Result) {
7688     EVT *Array = Allocator.Allocate<EVT>(2);
7689     Array[0] = VT1;
7690     Array[1] = VT2;
7691     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7692     VTListMap.InsertNode(Result, IP);
7693   }
7694   return Result->getSDVTList();
7695 }
7696 
7697 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7698   FoldingSetNodeID ID;
7699   ID.AddInteger(3U);
7700   ID.AddInteger(VT1.getRawBits());
7701   ID.AddInteger(VT2.getRawBits());
7702   ID.AddInteger(VT3.getRawBits());
7703 
7704   void *IP = nullptr;
7705   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7706   if (!Result) {
7707     EVT *Array = Allocator.Allocate<EVT>(3);
7708     Array[0] = VT1;
7709     Array[1] = VT2;
7710     Array[2] = VT3;
7711     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7712     VTListMap.InsertNode(Result, IP);
7713   }
7714   return Result->getSDVTList();
7715 }
7716 
7717 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7718   FoldingSetNodeID ID;
7719   ID.AddInteger(4U);
7720   ID.AddInteger(VT1.getRawBits());
7721   ID.AddInteger(VT2.getRawBits());
7722   ID.AddInteger(VT3.getRawBits());
7723   ID.AddInteger(VT4.getRawBits());
7724 
7725   void *IP = nullptr;
7726   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7727   if (!Result) {
7728     EVT *Array = Allocator.Allocate<EVT>(4);
7729     Array[0] = VT1;
7730     Array[1] = VT2;
7731     Array[2] = VT3;
7732     Array[3] = VT4;
7733     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7734     VTListMap.InsertNode(Result, IP);
7735   }
7736   return Result->getSDVTList();
7737 }
7738 
7739 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7740   unsigned NumVTs = VTs.size();
7741   FoldingSetNodeID ID;
7742   ID.AddInteger(NumVTs);
7743   for (unsigned index = 0; index < NumVTs; index++) {
7744     ID.AddInteger(VTs[index].getRawBits());
7745   }
7746 
7747   void *IP = nullptr;
7748   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7749   if (!Result) {
7750     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7751     llvm::copy(VTs, Array);
7752     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7753     VTListMap.InsertNode(Result, IP);
7754   }
7755   return Result->getSDVTList();
7756 }
7757 
7758 
7759 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7760 /// specified operands.  If the resultant node already exists in the DAG,
7761 /// this does not modify the specified node, instead it returns the node that
7762 /// already exists.  If the resultant node does not exist in the DAG, the
7763 /// input node is returned.  As a degenerate case, if you specify the same
7764 /// input operands as the node already has, the input node is returned.
7765 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7766   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7767 
7768   // Check to see if there is no change.
7769   if (Op == N->getOperand(0)) return N;
7770 
7771   // See if the modified node already exists.
7772   void *InsertPos = nullptr;
7773   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7774     return Existing;
7775 
7776   // Nope it doesn't.  Remove the node from its current place in the maps.
7777   if (InsertPos)
7778     if (!RemoveNodeFromCSEMaps(N))
7779       InsertPos = nullptr;
7780 
7781   // Now we update the operands.
7782   N->OperandList[0].set(Op);
7783 
7784   updateDivergence(N);
7785   // If this gets put into a CSE map, add it.
7786   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7787   return N;
7788 }
7789 
7790 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7791   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7792 
7793   // Check to see if there is no change.
7794   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7795     return N;   // No operands changed, just return the input node.
7796 
7797   // See if the modified node already exists.
7798   void *InsertPos = nullptr;
7799   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7800     return Existing;
7801 
7802   // Nope it doesn't.  Remove the node from its current place in the maps.
7803   if (InsertPos)
7804     if (!RemoveNodeFromCSEMaps(N))
7805       InsertPos = nullptr;
7806 
7807   // Now we update the operands.
7808   if (N->OperandList[0] != Op1)
7809     N->OperandList[0].set(Op1);
7810   if (N->OperandList[1] != Op2)
7811     N->OperandList[1].set(Op2);
7812 
7813   updateDivergence(N);
7814   // If this gets put into a CSE map, add it.
7815   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7816   return N;
7817 }
7818 
7819 SDNode *SelectionDAG::
7820 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7821   SDValue Ops[] = { Op1, Op2, Op3 };
7822   return UpdateNodeOperands(N, Ops);
7823 }
7824 
7825 SDNode *SelectionDAG::
7826 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7827                    SDValue Op3, SDValue Op4) {
7828   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7829   return UpdateNodeOperands(N, Ops);
7830 }
7831 
7832 SDNode *SelectionDAG::
7833 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7834                    SDValue Op3, SDValue Op4, SDValue Op5) {
7835   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7836   return UpdateNodeOperands(N, Ops);
7837 }
7838 
7839 SDNode *SelectionDAG::
7840 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7841   unsigned NumOps = Ops.size();
7842   assert(N->getNumOperands() == NumOps &&
7843          "Update with wrong number of operands");
7844 
7845   // If no operands changed just return the input node.
7846   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7847     return N;
7848 
7849   // See if the modified node already exists.
7850   void *InsertPos = nullptr;
7851   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7852     return Existing;
7853 
7854   // Nope it doesn't.  Remove the node from its current place in the maps.
7855   if (InsertPos)
7856     if (!RemoveNodeFromCSEMaps(N))
7857       InsertPos = nullptr;
7858 
7859   // Now we update the operands.
7860   for (unsigned i = 0; i != NumOps; ++i)
7861     if (N->OperandList[i] != Ops[i])
7862       N->OperandList[i].set(Ops[i]);
7863 
7864   updateDivergence(N);
7865   // If this gets put into a CSE map, add it.
7866   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7867   return N;
7868 }
7869 
7870 /// DropOperands - Release the operands and set this node to have
7871 /// zero operands.
7872 void SDNode::DropOperands() {
7873   // Unlike the code in MorphNodeTo that does this, we don't need to
7874   // watch for dead nodes here.
7875   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7876     SDUse &Use = *I++;
7877     Use.set(SDValue());
7878   }
7879 }
7880 
7881 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7882                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7883   if (NewMemRefs.empty()) {
7884     N->clearMemRefs();
7885     return;
7886   }
7887 
7888   // Check if we can avoid allocating by storing a single reference directly.
7889   if (NewMemRefs.size() == 1) {
7890     N->MemRefs = NewMemRefs[0];
7891     N->NumMemRefs = 1;
7892     return;
7893   }
7894 
7895   MachineMemOperand **MemRefsBuffer =
7896       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7897   llvm::copy(NewMemRefs, MemRefsBuffer);
7898   N->MemRefs = MemRefsBuffer;
7899   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7900 }
7901 
7902 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7903 /// machine opcode.
7904 ///
7905 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7906                                    EVT VT) {
7907   SDVTList VTs = getVTList(VT);
7908   return SelectNodeTo(N, MachineOpc, VTs, None);
7909 }
7910 
7911 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7912                                    EVT VT, SDValue Op1) {
7913   SDVTList VTs = getVTList(VT);
7914   SDValue Ops[] = { Op1 };
7915   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7916 }
7917 
7918 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7919                                    EVT VT, SDValue Op1,
7920                                    SDValue Op2) {
7921   SDVTList VTs = getVTList(VT);
7922   SDValue Ops[] = { Op1, Op2 };
7923   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7924 }
7925 
7926 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7927                                    EVT VT, SDValue Op1,
7928                                    SDValue Op2, SDValue Op3) {
7929   SDVTList VTs = getVTList(VT);
7930   SDValue Ops[] = { Op1, Op2, Op3 };
7931   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7932 }
7933 
7934 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7935                                    EVT VT, ArrayRef<SDValue> Ops) {
7936   SDVTList VTs = getVTList(VT);
7937   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7938 }
7939 
7940 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7941                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7942   SDVTList VTs = getVTList(VT1, VT2);
7943   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7944 }
7945 
7946 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7947                                    EVT VT1, EVT VT2) {
7948   SDVTList VTs = getVTList(VT1, VT2);
7949   return SelectNodeTo(N, MachineOpc, VTs, None);
7950 }
7951 
7952 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7953                                    EVT VT1, EVT VT2, EVT VT3,
7954                                    ArrayRef<SDValue> Ops) {
7955   SDVTList VTs = getVTList(VT1, VT2, VT3);
7956   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7957 }
7958 
7959 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7960                                    EVT VT1, EVT VT2,
7961                                    SDValue Op1, SDValue Op2) {
7962   SDVTList VTs = getVTList(VT1, VT2);
7963   SDValue Ops[] = { Op1, Op2 };
7964   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7965 }
7966 
7967 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7968                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7969   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7970   // Reset the NodeID to -1.
7971   New->setNodeId(-1);
7972   if (New != N) {
7973     ReplaceAllUsesWith(N, New);
7974     RemoveDeadNode(N);
7975   }
7976   return New;
7977 }
7978 
7979 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7980 /// the line number information on the merged node since it is not possible to
7981 /// preserve the information that operation is associated with multiple lines.
7982 /// This will make the debugger working better at -O0, were there is a higher
7983 /// probability having other instructions associated with that line.
7984 ///
7985 /// For IROrder, we keep the smaller of the two
7986 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7987   DebugLoc NLoc = N->getDebugLoc();
7988   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7989     N->setDebugLoc(DebugLoc());
7990   }
7991   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7992   N->setIROrder(Order);
7993   return N;
7994 }
7995 
7996 /// MorphNodeTo - This *mutates* the specified node to have the specified
7997 /// return type, opcode, and operands.
7998 ///
7999 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8000 /// node of the specified opcode and operands, it returns that node instead of
8001 /// the current one.  Note that the SDLoc need not be the same.
8002 ///
8003 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8004 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8005 /// node, and because it doesn't require CSE recalculation for any of
8006 /// the node's users.
8007 ///
8008 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8009 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8010 /// the legalizer which maintain worklists that would need to be updated when
8011 /// deleting things.
8012 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8013                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8014   // If an identical node already exists, use it.
8015   void *IP = nullptr;
8016   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8017     FoldingSetNodeID ID;
8018     AddNodeIDNode(ID, Opc, VTs, Ops);
8019     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8020       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8021   }
8022 
8023   if (!RemoveNodeFromCSEMaps(N))
8024     IP = nullptr;
8025 
8026   // Start the morphing.
8027   N->NodeType = Opc;
8028   N->ValueList = VTs.VTs;
8029   N->NumValues = VTs.NumVTs;
8030 
8031   // Clear the operands list, updating used nodes to remove this from their
8032   // use list.  Keep track of any operands that become dead as a result.
8033   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8034   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8035     SDUse &Use = *I++;
8036     SDNode *Used = Use.getNode();
8037     Use.set(SDValue());
8038     if (Used->use_empty())
8039       DeadNodeSet.insert(Used);
8040   }
8041 
8042   // For MachineNode, initialize the memory references information.
8043   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8044     MN->clearMemRefs();
8045 
8046   // Swap for an appropriately sized array from the recycler.
8047   removeOperands(N);
8048   createOperands(N, Ops);
8049 
8050   // Delete any nodes that are still dead after adding the uses for the
8051   // new operands.
8052   if (!DeadNodeSet.empty()) {
8053     SmallVector<SDNode *, 16> DeadNodes;
8054     for (SDNode *N : DeadNodeSet)
8055       if (N->use_empty())
8056         DeadNodes.push_back(N);
8057     RemoveDeadNodes(DeadNodes);
8058   }
8059 
8060   if (IP)
8061     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8062   return N;
8063 }
8064 
8065 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8066   unsigned OrigOpc = Node->getOpcode();
8067   unsigned NewOpc;
8068   switch (OrigOpc) {
8069   default:
8070     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8071 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8072   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8073 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8074   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8075 #include "llvm/IR/ConstrainedOps.def"
8076   }
8077 
8078   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8079 
8080   // We're taking this node out of the chain, so we need to re-link things.
8081   SDValue InputChain = Node->getOperand(0);
8082   SDValue OutputChain = SDValue(Node, 1);
8083   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8084 
8085   SmallVector<SDValue, 3> Ops;
8086   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8087     Ops.push_back(Node->getOperand(i));
8088 
8089   SDVTList VTs = getVTList(Node->getValueType(0));
8090   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8091 
8092   // MorphNodeTo can operate in two ways: if an existing node with the
8093   // specified operands exists, it can just return it.  Otherwise, it
8094   // updates the node in place to have the requested operands.
8095   if (Res == Node) {
8096     // If we updated the node in place, reset the node ID.  To the isel,
8097     // this should be just like a newly allocated machine node.
8098     Res->setNodeId(-1);
8099   } else {
8100     ReplaceAllUsesWith(Node, Res);
8101     RemoveDeadNode(Node);
8102   }
8103 
8104   return Res;
8105 }
8106 
8107 /// getMachineNode - These are used for target selectors to create a new node
8108 /// with specified return type(s), MachineInstr opcode, and operands.
8109 ///
8110 /// Note that getMachineNode returns the resultant node.  If there is already a
8111 /// node of the specified opcode and operands, it returns that node instead of
8112 /// the current one.
8113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8114                                             EVT VT) {
8115   SDVTList VTs = getVTList(VT);
8116   return getMachineNode(Opcode, dl, VTs, None);
8117 }
8118 
8119 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8120                                             EVT VT, SDValue Op1) {
8121   SDVTList VTs = getVTList(VT);
8122   SDValue Ops[] = { Op1 };
8123   return getMachineNode(Opcode, dl, VTs, Ops);
8124 }
8125 
8126 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8127                                             EVT VT, SDValue Op1, SDValue Op2) {
8128   SDVTList VTs = getVTList(VT);
8129   SDValue Ops[] = { Op1, Op2 };
8130   return getMachineNode(Opcode, dl, VTs, Ops);
8131 }
8132 
8133 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8134                                             EVT VT, SDValue Op1, SDValue Op2,
8135                                             SDValue Op3) {
8136   SDVTList VTs = getVTList(VT);
8137   SDValue Ops[] = { Op1, Op2, Op3 };
8138   return getMachineNode(Opcode, dl, VTs, Ops);
8139 }
8140 
8141 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8142                                             EVT VT, ArrayRef<SDValue> Ops) {
8143   SDVTList VTs = getVTList(VT);
8144   return getMachineNode(Opcode, dl, VTs, Ops);
8145 }
8146 
8147 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8148                                             EVT VT1, EVT VT2, SDValue Op1,
8149                                             SDValue Op2) {
8150   SDVTList VTs = getVTList(VT1, VT2);
8151   SDValue Ops[] = { Op1, Op2 };
8152   return getMachineNode(Opcode, dl, VTs, Ops);
8153 }
8154 
8155 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8156                                             EVT VT1, EVT VT2, SDValue Op1,
8157                                             SDValue Op2, SDValue Op3) {
8158   SDVTList VTs = getVTList(VT1, VT2);
8159   SDValue Ops[] = { Op1, Op2, Op3 };
8160   return getMachineNode(Opcode, dl, VTs, Ops);
8161 }
8162 
8163 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8164                                             EVT VT1, EVT VT2,
8165                                             ArrayRef<SDValue> Ops) {
8166   SDVTList VTs = getVTList(VT1, VT2);
8167   return getMachineNode(Opcode, dl, VTs, Ops);
8168 }
8169 
8170 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8171                                             EVT VT1, EVT VT2, EVT VT3,
8172                                             SDValue Op1, SDValue Op2) {
8173   SDVTList VTs = getVTList(VT1, VT2, VT3);
8174   SDValue Ops[] = { Op1, Op2 };
8175   return getMachineNode(Opcode, dl, VTs, Ops);
8176 }
8177 
8178 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8179                                             EVT VT1, EVT VT2, EVT VT3,
8180                                             SDValue Op1, SDValue Op2,
8181                                             SDValue Op3) {
8182   SDVTList VTs = getVTList(VT1, VT2, VT3);
8183   SDValue Ops[] = { Op1, Op2, Op3 };
8184   return getMachineNode(Opcode, dl, VTs, Ops);
8185 }
8186 
8187 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8188                                             EVT VT1, EVT VT2, EVT VT3,
8189                                             ArrayRef<SDValue> Ops) {
8190   SDVTList VTs = getVTList(VT1, VT2, VT3);
8191   return getMachineNode(Opcode, dl, VTs, Ops);
8192 }
8193 
8194 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8195                                             ArrayRef<EVT> ResultTys,
8196                                             ArrayRef<SDValue> Ops) {
8197   SDVTList VTs = getVTList(ResultTys);
8198   return getMachineNode(Opcode, dl, VTs, Ops);
8199 }
8200 
8201 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8202                                             SDVTList VTs,
8203                                             ArrayRef<SDValue> Ops) {
8204   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8205   MachineSDNode *N;
8206   void *IP = nullptr;
8207 
8208   if (DoCSE) {
8209     FoldingSetNodeID ID;
8210     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8211     IP = nullptr;
8212     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8213       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8214     }
8215   }
8216 
8217   // Allocate a new MachineSDNode.
8218   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8219   createOperands(N, Ops);
8220 
8221   if (DoCSE)
8222     CSEMap.InsertNode(N, IP);
8223 
8224   InsertNode(N);
8225   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8226   return N;
8227 }
8228 
8229 /// getTargetExtractSubreg - A convenience function for creating
8230 /// TargetOpcode::EXTRACT_SUBREG nodes.
8231 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8232                                              SDValue Operand) {
8233   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8234   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8235                                   VT, Operand, SRIdxVal);
8236   return SDValue(Subreg, 0);
8237 }
8238 
8239 /// getTargetInsertSubreg - A convenience function for creating
8240 /// TargetOpcode::INSERT_SUBREG nodes.
8241 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8242                                             SDValue Operand, SDValue Subreg) {
8243   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8244   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8245                                   VT, Operand, Subreg, SRIdxVal);
8246   return SDValue(Result, 0);
8247 }
8248 
8249 /// getNodeIfExists - Get the specified node if it's already available, or
8250 /// else return NULL.
8251 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8252                                       ArrayRef<SDValue> Ops,
8253                                       const SDNodeFlags Flags) {
8254   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8255     FoldingSetNodeID ID;
8256     AddNodeIDNode(ID, Opcode, VTList, Ops);
8257     void *IP = nullptr;
8258     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8259       E->intersectFlagsWith(Flags);
8260       return E;
8261     }
8262   }
8263   return nullptr;
8264 }
8265 
8266 /// getDbgValue - Creates a SDDbgValue node.
8267 ///
8268 /// SDNode
8269 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8270                                       SDNode *N, unsigned R, bool IsIndirect,
8271                                       const DebugLoc &DL, unsigned O) {
8272   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8273          "Expected inlined-at fields to agree");
8274   return new (DbgInfo->getAlloc())
8275       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8276 }
8277 
8278 /// Constant
8279 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8280                                               DIExpression *Expr,
8281                                               const Value *C,
8282                                               const DebugLoc &DL, unsigned O) {
8283   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8284          "Expected inlined-at fields to agree");
8285   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8286 }
8287 
8288 /// FrameIndex
8289 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8290                                                 DIExpression *Expr, unsigned FI,
8291                                                 bool IsIndirect,
8292                                                 const DebugLoc &DL,
8293                                                 unsigned O) {
8294   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8295          "Expected inlined-at fields to agree");
8296   return new (DbgInfo->getAlloc())
8297       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8298 }
8299 
8300 /// VReg
8301 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8302                                           DIExpression *Expr,
8303                                           unsigned VReg, bool IsIndirect,
8304                                           const DebugLoc &DL, unsigned O) {
8305   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8306          "Expected inlined-at fields to agree");
8307   return new (DbgInfo->getAlloc())
8308       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8309 }
8310 
8311 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8312                                      unsigned OffsetInBits, unsigned SizeInBits,
8313                                      bool InvalidateDbg) {
8314   SDNode *FromNode = From.getNode();
8315   SDNode *ToNode = To.getNode();
8316   assert(FromNode && ToNode && "Can't modify dbg values");
8317 
8318   // PR35338
8319   // TODO: assert(From != To && "Redundant dbg value transfer");
8320   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8321   if (From == To || FromNode == ToNode)
8322     return;
8323 
8324   if (!FromNode->getHasDebugValue())
8325     return;
8326 
8327   SmallVector<SDDbgValue *, 2> ClonedDVs;
8328   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8329     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8330       continue;
8331 
8332     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8333 
8334     // Just transfer the dbg value attached to From.
8335     if (Dbg->getResNo() != From.getResNo())
8336       continue;
8337 
8338     DIVariable *Var = Dbg->getVariable();
8339     auto *Expr = Dbg->getExpression();
8340     // If a fragment is requested, update the expression.
8341     if (SizeInBits) {
8342       // When splitting a larger (e.g., sign-extended) value whose
8343       // lower bits are described with an SDDbgValue, do not attempt
8344       // to transfer the SDDbgValue to the upper bits.
8345       if (auto FI = Expr->getFragmentInfo())
8346         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8347           continue;
8348       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8349                                                              SizeInBits);
8350       if (!Fragment)
8351         continue;
8352       Expr = *Fragment;
8353     }
8354     // Clone the SDDbgValue and move it to To.
8355     SDDbgValue *Clone = getDbgValue(
8356         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8357         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8358     ClonedDVs.push_back(Clone);
8359 
8360     if (InvalidateDbg) {
8361       // Invalidate value and indicate the SDDbgValue should not be emitted.
8362       Dbg->setIsInvalidated();
8363       Dbg->setIsEmitted();
8364     }
8365   }
8366 
8367   for (SDDbgValue *Dbg : ClonedDVs)
8368     AddDbgValue(Dbg, ToNode, false);
8369 }
8370 
8371 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8372   if (!N.getHasDebugValue())
8373     return;
8374 
8375   SmallVector<SDDbgValue *, 2> ClonedDVs;
8376   for (auto DV : GetDbgValues(&N)) {
8377     if (DV->isInvalidated())
8378       continue;
8379     switch (N.getOpcode()) {
8380     default:
8381       break;
8382     case ISD::ADD:
8383       SDValue N0 = N.getOperand(0);
8384       SDValue N1 = N.getOperand(1);
8385       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8386           isConstantIntBuildVectorOrConstantInt(N1)) {
8387         uint64_t Offset = N.getConstantOperandVal(1);
8388         // Rewrite an ADD constant node into a DIExpression. Since we are
8389         // performing arithmetic to compute the variable's *value* in the
8390         // DIExpression, we need to mark the expression with a
8391         // DW_OP_stack_value.
8392         auto *DIExpr = DV->getExpression();
8393         DIExpr =
8394             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8395         SDDbgValue *Clone =
8396             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8397                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8398         ClonedDVs.push_back(Clone);
8399         DV->setIsInvalidated();
8400         DV->setIsEmitted();
8401         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8402                    N0.getNode()->dumprFull(this);
8403                    dbgs() << " into " << *DIExpr << '\n');
8404       }
8405     }
8406   }
8407 
8408   for (SDDbgValue *Dbg : ClonedDVs)
8409     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8410 }
8411 
8412 /// Creates a SDDbgLabel node.
8413 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8414                                       const DebugLoc &DL, unsigned O) {
8415   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8416          "Expected inlined-at fields to agree");
8417   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8418 }
8419 
8420 namespace {
8421 
8422 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8423 /// pointed to by a use iterator is deleted, increment the use iterator
8424 /// so that it doesn't dangle.
8425 ///
8426 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8427   SDNode::use_iterator &UI;
8428   SDNode::use_iterator &UE;
8429 
8430   void NodeDeleted(SDNode *N, SDNode *E) override {
8431     // Increment the iterator as needed.
8432     while (UI != UE && N == *UI)
8433       ++UI;
8434   }
8435 
8436 public:
8437   RAUWUpdateListener(SelectionDAG &d,
8438                      SDNode::use_iterator &ui,
8439                      SDNode::use_iterator &ue)
8440     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8441 };
8442 
8443 } // end anonymous namespace
8444 
8445 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8446 /// This can cause recursive merging of nodes in the DAG.
8447 ///
8448 /// This version assumes From has a single result value.
8449 ///
8450 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8451   SDNode *From = FromN.getNode();
8452   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8453          "Cannot replace with this method!");
8454   assert(From != To.getNode() && "Cannot replace uses of with self");
8455 
8456   // Preserve Debug Values
8457   transferDbgValues(FromN, To);
8458 
8459   // Iterate over all the existing uses of From. New uses will be added
8460   // to the beginning of the use list, which we avoid visiting.
8461   // This specifically avoids visiting uses of From that arise while the
8462   // replacement is happening, because any such uses would be the result
8463   // of CSE: If an existing node looks like From after one of its operands
8464   // is replaced by To, we don't want to replace of all its users with To
8465   // too. See PR3018 for more info.
8466   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8467   RAUWUpdateListener Listener(*this, UI, UE);
8468   while (UI != UE) {
8469     SDNode *User = *UI;
8470 
8471     // This node is about to morph, remove its old self from the CSE maps.
8472     RemoveNodeFromCSEMaps(User);
8473 
8474     // A user can appear in a use list multiple times, and when this
8475     // happens the uses are usually next to each other in the list.
8476     // To help reduce the number of CSE recomputations, process all
8477     // the uses of this user that we can find this way.
8478     do {
8479       SDUse &Use = UI.getUse();
8480       ++UI;
8481       Use.set(To);
8482       if (To->isDivergent() != From->isDivergent())
8483         updateDivergence(User);
8484     } while (UI != UE && *UI == User);
8485     // Now that we have modified User, add it back to the CSE maps.  If it
8486     // already exists there, recursively merge the results together.
8487     AddModifiedNodeToCSEMaps(User);
8488   }
8489 
8490   // If we just RAUW'd the root, take note.
8491   if (FromN == getRoot())
8492     setRoot(To);
8493 }
8494 
8495 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8496 /// This can cause recursive merging of nodes in the DAG.
8497 ///
8498 /// This version assumes that for each value of From, there is a
8499 /// corresponding value in To in the same position with the same type.
8500 ///
8501 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8502 #ifndef NDEBUG
8503   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8504     assert((!From->hasAnyUseOfValue(i) ||
8505             From->getValueType(i) == To->getValueType(i)) &&
8506            "Cannot use this version of ReplaceAllUsesWith!");
8507 #endif
8508 
8509   // Handle the trivial case.
8510   if (From == To)
8511     return;
8512 
8513   // Preserve Debug Info. Only do this if there's a use.
8514   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8515     if (From->hasAnyUseOfValue(i)) {
8516       assert((i < To->getNumValues()) && "Invalid To location");
8517       transferDbgValues(SDValue(From, i), SDValue(To, i));
8518     }
8519 
8520   // Iterate over just the existing users of From. See the comments in
8521   // the ReplaceAllUsesWith above.
8522   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8523   RAUWUpdateListener Listener(*this, UI, UE);
8524   while (UI != UE) {
8525     SDNode *User = *UI;
8526 
8527     // This node is about to morph, remove its old self from the CSE maps.
8528     RemoveNodeFromCSEMaps(User);
8529 
8530     // A user can appear in a use list multiple times, and when this
8531     // happens the uses are usually next to each other in the list.
8532     // To help reduce the number of CSE recomputations, process all
8533     // the uses of this user that we can find this way.
8534     do {
8535       SDUse &Use = UI.getUse();
8536       ++UI;
8537       Use.setNode(To);
8538       if (To->isDivergent() != From->isDivergent())
8539         updateDivergence(User);
8540     } while (UI != UE && *UI == User);
8541 
8542     // Now that we have modified User, add it back to the CSE maps.  If it
8543     // already exists there, recursively merge the results together.
8544     AddModifiedNodeToCSEMaps(User);
8545   }
8546 
8547   // If we just RAUW'd the root, take note.
8548   if (From == getRoot().getNode())
8549     setRoot(SDValue(To, getRoot().getResNo()));
8550 }
8551 
8552 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8553 /// This can cause recursive merging of nodes in the DAG.
8554 ///
8555 /// This version can replace From with any result values.  To must match the
8556 /// number and types of values returned by From.
8557 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8558   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8559     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8560 
8561   // Preserve Debug Info.
8562   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8563     transferDbgValues(SDValue(From, i), To[i]);
8564 
8565   // Iterate over just the existing users of From. See the comments in
8566   // the ReplaceAllUsesWith above.
8567   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8568   RAUWUpdateListener Listener(*this, UI, UE);
8569   while (UI != UE) {
8570     SDNode *User = *UI;
8571 
8572     // This node is about to morph, remove its old self from the CSE maps.
8573     RemoveNodeFromCSEMaps(User);
8574 
8575     // A user can appear in a use list multiple times, and when this happens the
8576     // uses are usually next to each other in the list.  To help reduce the
8577     // number of CSE and divergence recomputations, process all the uses of this
8578     // user that we can find this way.
8579     bool To_IsDivergent = false;
8580     do {
8581       SDUse &Use = UI.getUse();
8582       const SDValue &ToOp = To[Use.getResNo()];
8583       ++UI;
8584       Use.set(ToOp);
8585       To_IsDivergent |= ToOp->isDivergent();
8586     } while (UI != UE && *UI == User);
8587 
8588     if (To_IsDivergent != From->isDivergent())
8589       updateDivergence(User);
8590 
8591     // Now that we have modified User, add it back to the CSE maps.  If it
8592     // already exists there, recursively merge the results together.
8593     AddModifiedNodeToCSEMaps(User);
8594   }
8595 
8596   // If we just RAUW'd the root, take note.
8597   if (From == getRoot().getNode())
8598     setRoot(SDValue(To[getRoot().getResNo()]));
8599 }
8600 
8601 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8602 /// uses of other values produced by From.getNode() alone.  The Deleted
8603 /// vector is handled the same way as for ReplaceAllUsesWith.
8604 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8605   // Handle the really simple, really trivial case efficiently.
8606   if (From == To) return;
8607 
8608   // Handle the simple, trivial, case efficiently.
8609   if (From.getNode()->getNumValues() == 1) {
8610     ReplaceAllUsesWith(From, To);
8611     return;
8612   }
8613 
8614   // Preserve Debug Info.
8615   transferDbgValues(From, To);
8616 
8617   // Iterate over just the existing users of From. See the comments in
8618   // the ReplaceAllUsesWith above.
8619   SDNode::use_iterator UI = From.getNode()->use_begin(),
8620                        UE = From.getNode()->use_end();
8621   RAUWUpdateListener Listener(*this, UI, UE);
8622   while (UI != UE) {
8623     SDNode *User = *UI;
8624     bool UserRemovedFromCSEMaps = false;
8625 
8626     // A user can appear in a use list multiple times, and when this
8627     // happens the uses are usually next to each other in the list.
8628     // To help reduce the number of CSE recomputations, process all
8629     // the uses of this user that we can find this way.
8630     do {
8631       SDUse &Use = UI.getUse();
8632 
8633       // Skip uses of different values from the same node.
8634       if (Use.getResNo() != From.getResNo()) {
8635         ++UI;
8636         continue;
8637       }
8638 
8639       // If this node hasn't been modified yet, it's still in the CSE maps,
8640       // so remove its old self from the CSE maps.
8641       if (!UserRemovedFromCSEMaps) {
8642         RemoveNodeFromCSEMaps(User);
8643         UserRemovedFromCSEMaps = true;
8644       }
8645 
8646       ++UI;
8647       Use.set(To);
8648       if (To->isDivergent() != From->isDivergent())
8649         updateDivergence(User);
8650     } while (UI != UE && *UI == User);
8651     // We are iterating over all uses of the From node, so if a use
8652     // doesn't use the specific value, no changes are made.
8653     if (!UserRemovedFromCSEMaps)
8654       continue;
8655 
8656     // Now that we have modified User, add it back to the CSE maps.  If it
8657     // already exists there, recursively merge the results together.
8658     AddModifiedNodeToCSEMaps(User);
8659   }
8660 
8661   // If we just RAUW'd the root, take note.
8662   if (From == getRoot())
8663     setRoot(To);
8664 }
8665 
8666 namespace {
8667 
8668   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8669   /// to record information about a use.
8670   struct UseMemo {
8671     SDNode *User;
8672     unsigned Index;
8673     SDUse *Use;
8674   };
8675 
8676   /// operator< - Sort Memos by User.
8677   bool operator<(const UseMemo &L, const UseMemo &R) {
8678     return (intptr_t)L.User < (intptr_t)R.User;
8679   }
8680 
8681 } // end anonymous namespace
8682 
8683 void SelectionDAG::updateDivergence(SDNode * N)
8684 {
8685   if (TLI->isSDNodeAlwaysUniform(N))
8686     return;
8687   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8688   for (auto &Op : N->ops()) {
8689     if (Op.Val.getValueType() != MVT::Other)
8690       IsDivergent |= Op.getNode()->isDivergent();
8691   }
8692   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8693     N->SDNodeBits.IsDivergent = IsDivergent;
8694     for (auto U : N->uses()) {
8695       updateDivergence(U);
8696     }
8697   }
8698 }
8699 
8700 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8701   DenseMap<SDNode *, unsigned> Degree;
8702   Order.reserve(AllNodes.size());
8703   for (auto &N : allnodes()) {
8704     unsigned NOps = N.getNumOperands();
8705     Degree[&N] = NOps;
8706     if (0 == NOps)
8707       Order.push_back(&N);
8708   }
8709   for (size_t I = 0; I != Order.size(); ++I) {
8710     SDNode *N = Order[I];
8711     for (auto U : N->uses()) {
8712       unsigned &UnsortedOps = Degree[U];
8713       if (0 == --UnsortedOps)
8714         Order.push_back(U);
8715     }
8716   }
8717 }
8718 
8719 #ifndef NDEBUG
8720 void SelectionDAG::VerifyDAGDiverence() {
8721   std::vector<SDNode *> TopoOrder;
8722   CreateTopologicalOrder(TopoOrder);
8723   const TargetLowering &TLI = getTargetLoweringInfo();
8724   DenseMap<const SDNode *, bool> DivergenceMap;
8725   for (auto &N : allnodes()) {
8726     DivergenceMap[&N] = false;
8727   }
8728   for (auto N : TopoOrder) {
8729     bool IsDivergent = DivergenceMap[N];
8730     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8731     for (auto &Op : N->ops()) {
8732       if (Op.Val.getValueType() != MVT::Other)
8733         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8734     }
8735     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8736       DivergenceMap[N] = true;
8737     }
8738   }
8739   for (auto &N : allnodes()) {
8740     (void)N;
8741     assert(DivergenceMap[&N] == N.isDivergent() &&
8742            "Divergence bit inconsistency detected\n");
8743   }
8744 }
8745 #endif
8746 
8747 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8748 /// uses of other values produced by From.getNode() alone.  The same value
8749 /// may appear in both the From and To list.  The Deleted vector is
8750 /// handled the same way as for ReplaceAllUsesWith.
8751 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8752                                               const SDValue *To,
8753                                               unsigned Num){
8754   // Handle the simple, trivial case efficiently.
8755   if (Num == 1)
8756     return ReplaceAllUsesOfValueWith(*From, *To);
8757 
8758   transferDbgValues(*From, *To);
8759 
8760   // Read up all the uses and make records of them. This helps
8761   // processing new uses that are introduced during the
8762   // replacement process.
8763   SmallVector<UseMemo, 4> Uses;
8764   for (unsigned i = 0; i != Num; ++i) {
8765     unsigned FromResNo = From[i].getResNo();
8766     SDNode *FromNode = From[i].getNode();
8767     for (SDNode::use_iterator UI = FromNode->use_begin(),
8768          E = FromNode->use_end(); UI != E; ++UI) {
8769       SDUse &Use = UI.getUse();
8770       if (Use.getResNo() == FromResNo) {
8771         UseMemo Memo = { *UI, i, &Use };
8772         Uses.push_back(Memo);
8773       }
8774     }
8775   }
8776 
8777   // Sort the uses, so that all the uses from a given User are together.
8778   llvm::sort(Uses);
8779 
8780   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8781        UseIndex != UseIndexEnd; ) {
8782     // We know that this user uses some value of From.  If it is the right
8783     // value, update it.
8784     SDNode *User = Uses[UseIndex].User;
8785 
8786     // This node is about to morph, remove its old self from the CSE maps.
8787     RemoveNodeFromCSEMaps(User);
8788 
8789     // The Uses array is sorted, so all the uses for a given User
8790     // are next to each other in the list.
8791     // To help reduce the number of CSE recomputations, process all
8792     // the uses of this user that we can find this way.
8793     do {
8794       unsigned i = Uses[UseIndex].Index;
8795       SDUse &Use = *Uses[UseIndex].Use;
8796       ++UseIndex;
8797 
8798       Use.set(To[i]);
8799     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8800 
8801     // Now that we have modified User, add it back to the CSE maps.  If it
8802     // already exists there, recursively merge the results together.
8803     AddModifiedNodeToCSEMaps(User);
8804   }
8805 }
8806 
8807 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8808 /// based on their topological order. It returns the maximum id and a vector
8809 /// of the SDNodes* in assigned order by reference.
8810 unsigned SelectionDAG::AssignTopologicalOrder() {
8811   unsigned DAGSize = 0;
8812 
8813   // SortedPos tracks the progress of the algorithm. Nodes before it are
8814   // sorted, nodes after it are unsorted. When the algorithm completes
8815   // it is at the end of the list.
8816   allnodes_iterator SortedPos = allnodes_begin();
8817 
8818   // Visit all the nodes. Move nodes with no operands to the front of
8819   // the list immediately. Annotate nodes that do have operands with their
8820   // operand count. Before we do this, the Node Id fields of the nodes
8821   // may contain arbitrary values. After, the Node Id fields for nodes
8822   // before SortedPos will contain the topological sort index, and the
8823   // Node Id fields for nodes At SortedPos and after will contain the
8824   // count of outstanding operands.
8825   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8826     SDNode *N = &*I++;
8827     checkForCycles(N, this);
8828     unsigned Degree = N->getNumOperands();
8829     if (Degree == 0) {
8830       // A node with no uses, add it to the result array immediately.
8831       N->setNodeId(DAGSize++);
8832       allnodes_iterator Q(N);
8833       if (Q != SortedPos)
8834         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8835       assert(SortedPos != AllNodes.end() && "Overran node list");
8836       ++SortedPos;
8837     } else {
8838       // Temporarily use the Node Id as scratch space for the degree count.
8839       N->setNodeId(Degree);
8840     }
8841   }
8842 
8843   // Visit all the nodes. As we iterate, move nodes into sorted order,
8844   // such that by the time the end is reached all nodes will be sorted.
8845   for (SDNode &Node : allnodes()) {
8846     SDNode *N = &Node;
8847     checkForCycles(N, this);
8848     // N is in sorted position, so all its uses have one less operand
8849     // that needs to be sorted.
8850     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8851          UI != UE; ++UI) {
8852       SDNode *P = *UI;
8853       unsigned Degree = P->getNodeId();
8854       assert(Degree != 0 && "Invalid node degree");
8855       --Degree;
8856       if (Degree == 0) {
8857         // All of P's operands are sorted, so P may sorted now.
8858         P->setNodeId(DAGSize++);
8859         if (P->getIterator() != SortedPos)
8860           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8861         assert(SortedPos != AllNodes.end() && "Overran node list");
8862         ++SortedPos;
8863       } else {
8864         // Update P's outstanding operand count.
8865         P->setNodeId(Degree);
8866       }
8867     }
8868     if (Node.getIterator() == SortedPos) {
8869 #ifndef NDEBUG
8870       allnodes_iterator I(N);
8871       SDNode *S = &*++I;
8872       dbgs() << "Overran sorted position:\n";
8873       S->dumprFull(this); dbgs() << "\n";
8874       dbgs() << "Checking if this is due to cycles\n";
8875       checkForCycles(this, true);
8876 #endif
8877       llvm_unreachable(nullptr);
8878     }
8879   }
8880 
8881   assert(SortedPos == AllNodes.end() &&
8882          "Topological sort incomplete!");
8883   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8884          "First node in topological sort is not the entry token!");
8885   assert(AllNodes.front().getNodeId() == 0 &&
8886          "First node in topological sort has non-zero id!");
8887   assert(AllNodes.front().getNumOperands() == 0 &&
8888          "First node in topological sort has operands!");
8889   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8890          "Last node in topologic sort has unexpected id!");
8891   assert(AllNodes.back().use_empty() &&
8892          "Last node in topologic sort has users!");
8893   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8894   return DAGSize;
8895 }
8896 
8897 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8898 /// value is produced by SD.
8899 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8900   if (SD) {
8901     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8902     SD->setHasDebugValue(true);
8903   }
8904   DbgInfo->add(DB, SD, isParameter);
8905 }
8906 
8907 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8908   DbgInfo->add(DB);
8909 }
8910 
8911 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8912                                                    SDValue NewMemOp) {
8913   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8914   // The new memory operation must have the same position as the old load in
8915   // terms of memory dependency. Create a TokenFactor for the old load and new
8916   // memory operation and update uses of the old load's output chain to use that
8917   // TokenFactor.
8918   SDValue OldChain = SDValue(OldLoad, 1);
8919   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8920   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8921     return NewChain;
8922 
8923   SDValue TokenFactor =
8924       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8925   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8926   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8927   return TokenFactor;
8928 }
8929 
8930 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8931                                                      Function **OutFunction) {
8932   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8933 
8934   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8935   auto *Module = MF->getFunction().getParent();
8936   auto *Function = Module->getFunction(Symbol);
8937 
8938   if (OutFunction != nullptr)
8939       *OutFunction = Function;
8940 
8941   if (Function != nullptr) {
8942     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8943     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8944   }
8945 
8946   std::string ErrorStr;
8947   raw_string_ostream ErrorFormatter(ErrorStr);
8948 
8949   ErrorFormatter << "Undefined external symbol ";
8950   ErrorFormatter << '"' << Symbol << '"';
8951   ErrorFormatter.flush();
8952 
8953   report_fatal_error(ErrorStr);
8954 }
8955 
8956 //===----------------------------------------------------------------------===//
8957 //                              SDNode Class
8958 //===----------------------------------------------------------------------===//
8959 
8960 bool llvm::isNullConstant(SDValue V) {
8961   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8962   return Const != nullptr && Const->isNullValue();
8963 }
8964 
8965 bool llvm::isNullFPConstant(SDValue V) {
8966   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8967   return Const != nullptr && Const->isZero() && !Const->isNegative();
8968 }
8969 
8970 bool llvm::isAllOnesConstant(SDValue V) {
8971   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8972   return Const != nullptr && Const->isAllOnesValue();
8973 }
8974 
8975 bool llvm::isOneConstant(SDValue V) {
8976   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8977   return Const != nullptr && Const->isOne();
8978 }
8979 
8980 SDValue llvm::peekThroughBitcasts(SDValue V) {
8981   while (V.getOpcode() == ISD::BITCAST)
8982     V = V.getOperand(0);
8983   return V;
8984 }
8985 
8986 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8987   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8988     V = V.getOperand(0);
8989   return V;
8990 }
8991 
8992 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8993   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8994     V = V.getOperand(0);
8995   return V;
8996 }
8997 
8998 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8999   if (V.getOpcode() != ISD::XOR)
9000     return false;
9001   V = peekThroughBitcasts(V.getOperand(1));
9002   unsigned NumBits = V.getScalarValueSizeInBits();
9003   ConstantSDNode *C =
9004       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9005   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9006 }
9007 
9008 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9009                                           bool AllowTruncation) {
9010   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9011     return CN;
9012 
9013   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9014     BitVector UndefElements;
9015     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9016 
9017     // BuildVectors can truncate their operands. Ignore that case here unless
9018     // AllowTruncation is set.
9019     if (CN && (UndefElements.none() || AllowUndefs)) {
9020       EVT CVT = CN->getValueType(0);
9021       EVT NSVT = N.getValueType().getScalarType();
9022       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9023       if (AllowTruncation || (CVT == NSVT))
9024         return CN;
9025     }
9026   }
9027 
9028   return nullptr;
9029 }
9030 
9031 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9032                                           bool AllowUndefs,
9033                                           bool AllowTruncation) {
9034   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9035     return CN;
9036 
9037   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9038     BitVector UndefElements;
9039     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9040 
9041     // BuildVectors can truncate their operands. Ignore that case here unless
9042     // AllowTruncation is set.
9043     if (CN && (UndefElements.none() || AllowUndefs)) {
9044       EVT CVT = CN->getValueType(0);
9045       EVT NSVT = N.getValueType().getScalarType();
9046       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9047       if (AllowTruncation || (CVT == NSVT))
9048         return CN;
9049     }
9050   }
9051 
9052   return nullptr;
9053 }
9054 
9055 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9056   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9057     return CN;
9058 
9059   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9060     BitVector UndefElements;
9061     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9062     if (CN && (UndefElements.none() || AllowUndefs))
9063       return CN;
9064   }
9065 
9066   return nullptr;
9067 }
9068 
9069 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9070                                               const APInt &DemandedElts,
9071                                               bool AllowUndefs) {
9072   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9073     return CN;
9074 
9075   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9076     BitVector UndefElements;
9077     ConstantFPSDNode *CN =
9078         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9079     if (CN && (UndefElements.none() || AllowUndefs))
9080       return CN;
9081   }
9082 
9083   return nullptr;
9084 }
9085 
9086 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9087   // TODO: may want to use peekThroughBitcast() here.
9088   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9089   return C && C->isNullValue();
9090 }
9091 
9092 bool llvm::isOneOrOneSplat(SDValue N) {
9093   // TODO: may want to use peekThroughBitcast() here.
9094   unsigned BitWidth = N.getScalarValueSizeInBits();
9095   ConstantSDNode *C = isConstOrConstSplat(N);
9096   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9097 }
9098 
9099 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9100   N = peekThroughBitcasts(N);
9101   unsigned BitWidth = N.getScalarValueSizeInBits();
9102   ConstantSDNode *C = isConstOrConstSplat(N);
9103   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9104 }
9105 
9106 HandleSDNode::~HandleSDNode() {
9107   DropOperands();
9108 }
9109 
9110 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9111                                          const DebugLoc &DL,
9112                                          const GlobalValue *GA, EVT VT,
9113                                          int64_t o, unsigned TF)
9114     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9115   TheGlobal = GA;
9116 }
9117 
9118 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9119                                          EVT VT, unsigned SrcAS,
9120                                          unsigned DestAS)
9121     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9122       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9123 
9124 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9125                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9126     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9127   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9128   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9129   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9130   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9131 
9132   // We check here that the size of the memory operand fits within the size of
9133   // the MMO. This is because the MMO might indicate only a possible address
9134   // range instead of specifying the affected memory addresses precisely.
9135   // TODO: Make MachineMemOperands aware of scalable vectors.
9136   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9137          "Size mismatch!");
9138 }
9139 
9140 /// Profile - Gather unique data for the node.
9141 ///
9142 void SDNode::Profile(FoldingSetNodeID &ID) const {
9143   AddNodeIDNode(ID, this);
9144 }
9145 
9146 namespace {
9147 
9148   struct EVTArray {
9149     std::vector<EVT> VTs;
9150 
9151     EVTArray() {
9152       VTs.reserve(MVT::LAST_VALUETYPE);
9153       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9154         VTs.push_back(MVT((MVT::SimpleValueType)i));
9155     }
9156   };
9157 
9158 } // end anonymous namespace
9159 
9160 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9161 static ManagedStatic<EVTArray> SimpleVTArray;
9162 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9163 
9164 /// getValueTypeList - Return a pointer to the specified value type.
9165 ///
9166 const EVT *SDNode::getValueTypeList(EVT VT) {
9167   if (VT.isExtended()) {
9168     sys::SmartScopedLock<true> Lock(*VTMutex);
9169     return &(*EVTs->insert(VT).first);
9170   } else {
9171     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9172            "Value type out of range!");
9173     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9174   }
9175 }
9176 
9177 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9178 /// indicated value.  This method ignores uses of other values defined by this
9179 /// operation.
9180 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9181   assert(Value < getNumValues() && "Bad value!");
9182 
9183   // TODO: Only iterate over uses of a given value of the node
9184   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9185     if (UI.getUse().getResNo() == Value) {
9186       if (NUses == 0)
9187         return false;
9188       --NUses;
9189     }
9190   }
9191 
9192   // Found exactly the right number of uses?
9193   return NUses == 0;
9194 }
9195 
9196 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9197 /// value. This method ignores uses of other values defined by this operation.
9198 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9199   assert(Value < getNumValues() && "Bad value!");
9200 
9201   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9202     if (UI.getUse().getResNo() == Value)
9203       return true;
9204 
9205   return false;
9206 }
9207 
9208 /// isOnlyUserOf - Return true if this node is the only use of N.
9209 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9210   bool Seen = false;
9211   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9212     SDNode *User = *I;
9213     if (User == this)
9214       Seen = true;
9215     else
9216       return false;
9217   }
9218 
9219   return Seen;
9220 }
9221 
9222 /// Return true if the only users of N are contained in Nodes.
9223 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9224   bool Seen = false;
9225   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9226     SDNode *User = *I;
9227     if (llvm::any_of(Nodes,
9228                      [&User](const SDNode *Node) { return User == Node; }))
9229       Seen = true;
9230     else
9231       return false;
9232   }
9233 
9234   return Seen;
9235 }
9236 
9237 /// isOperand - Return true if this node is an operand of N.
9238 bool SDValue::isOperandOf(const SDNode *N) const {
9239   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9240 }
9241 
9242 bool SDNode::isOperandOf(const SDNode *N) const {
9243   return any_of(N->op_values(),
9244                 [this](SDValue Op) { return this == Op.getNode(); });
9245 }
9246 
9247 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9248 /// be a chain) reaches the specified operand without crossing any
9249 /// side-effecting instructions on any chain path.  In practice, this looks
9250 /// through token factors and non-volatile loads.  In order to remain efficient,
9251 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9252 ///
9253 /// Note that we only need to examine chains when we're searching for
9254 /// side-effects; SelectionDAG requires that all side-effects are represented
9255 /// by chains, even if another operand would force a specific ordering. This
9256 /// constraint is necessary to allow transformations like splitting loads.
9257 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9258                                              unsigned Depth) const {
9259   if (*this == Dest) return true;
9260 
9261   // Don't search too deeply, we just want to be able to see through
9262   // TokenFactor's etc.
9263   if (Depth == 0) return false;
9264 
9265   // If this is a token factor, all inputs to the TF happen in parallel.
9266   if (getOpcode() == ISD::TokenFactor) {
9267     // First, try a shallow search.
9268     if (is_contained((*this)->ops(), Dest)) {
9269       // We found the chain we want as an operand of this TokenFactor.
9270       // Essentially, we reach the chain without side-effects if we could
9271       // serialize the TokenFactor into a simple chain of operations with
9272       // Dest as the last operation. This is automatically true if the
9273       // chain has one use: there are no other ordering constraints.
9274       // If the chain has more than one use, we give up: some other
9275       // use of Dest might force a side-effect between Dest and the current
9276       // node.
9277       if (Dest.hasOneUse())
9278         return true;
9279     }
9280     // Next, try a deep search: check whether every operand of the TokenFactor
9281     // reaches Dest.
9282     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9283       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9284     });
9285   }
9286 
9287   // Loads don't have side effects, look through them.
9288   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9289     if (Ld->isUnordered())
9290       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9291   }
9292   return false;
9293 }
9294 
9295 bool SDNode::hasPredecessor(const SDNode *N) const {
9296   SmallPtrSet<const SDNode *, 32> Visited;
9297   SmallVector<const SDNode *, 16> Worklist;
9298   Worklist.push_back(this);
9299   return hasPredecessorHelper(N, Visited, Worklist);
9300 }
9301 
9302 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9303   this->Flags.intersectWith(Flags);
9304 }
9305 
9306 SDValue
9307 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9308                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9309                                   bool AllowPartials) {
9310   // The pattern must end in an extract from index 0.
9311   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9312       !isNullConstant(Extract->getOperand(1)))
9313     return SDValue();
9314 
9315   // Match against one of the candidate binary ops.
9316   SDValue Op = Extract->getOperand(0);
9317   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9318         return Op.getOpcode() == unsigned(BinOp);
9319       }))
9320     return SDValue();
9321 
9322   // Floating-point reductions may require relaxed constraints on the final step
9323   // of the reduction because they may reorder intermediate operations.
9324   unsigned CandidateBinOp = Op.getOpcode();
9325   if (Op.getValueType().isFloatingPoint()) {
9326     SDNodeFlags Flags = Op->getFlags();
9327     switch (CandidateBinOp) {
9328     case ISD::FADD:
9329       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9330         return SDValue();
9331       break;
9332     default:
9333       llvm_unreachable("Unhandled FP opcode for binop reduction");
9334     }
9335   }
9336 
9337   // Matching failed - attempt to see if we did enough stages that a partial
9338   // reduction from a subvector is possible.
9339   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9340     if (!AllowPartials || !Op)
9341       return SDValue();
9342     EVT OpVT = Op.getValueType();
9343     EVT OpSVT = OpVT.getScalarType();
9344     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9345     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9346       return SDValue();
9347     BinOp = (ISD::NodeType)CandidateBinOp;
9348     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9349                    getVectorIdxConstant(0, SDLoc(Op)));
9350   };
9351 
9352   // At each stage, we're looking for something that looks like:
9353   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9354   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9355   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9356   // %a = binop <8 x i32> %op, %s
9357   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9358   // we expect something like:
9359   // <4,5,6,7,u,u,u,u>
9360   // <2,3,u,u,u,u,u,u>
9361   // <1,u,u,u,u,u,u,u>
9362   // While a partial reduction match would be:
9363   // <2,3,u,u,u,u,u,u>
9364   // <1,u,u,u,u,u,u,u>
9365   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9366   SDValue PrevOp;
9367   for (unsigned i = 0; i < Stages; ++i) {
9368     unsigned MaskEnd = (1 << i);
9369 
9370     if (Op.getOpcode() != CandidateBinOp)
9371       return PartialReduction(PrevOp, MaskEnd);
9372 
9373     SDValue Op0 = Op.getOperand(0);
9374     SDValue Op1 = Op.getOperand(1);
9375 
9376     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9377     if (Shuffle) {
9378       Op = Op1;
9379     } else {
9380       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9381       Op = Op0;
9382     }
9383 
9384     // The first operand of the shuffle should be the same as the other operand
9385     // of the binop.
9386     if (!Shuffle || Shuffle->getOperand(0) != Op)
9387       return PartialReduction(PrevOp, MaskEnd);
9388 
9389     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9390     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9391       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9392         return PartialReduction(PrevOp, MaskEnd);
9393 
9394     PrevOp = Op;
9395   }
9396 
9397   // Handle subvector reductions, which tend to appear after the shuffle
9398   // reduction stages.
9399   while (Op.getOpcode() == CandidateBinOp) {
9400     unsigned NumElts = Op.getValueType().getVectorNumElements();
9401     SDValue Op0 = Op.getOperand(0);
9402     SDValue Op1 = Op.getOperand(1);
9403     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9404         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9405         Op0.getOperand(0) != Op1.getOperand(0))
9406       break;
9407     SDValue Src = Op0.getOperand(0);
9408     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9409     if (NumSrcElts != (2 * NumElts))
9410       break;
9411     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9412           Op1.getConstantOperandAPInt(1) == NumElts) &&
9413         !(Op1.getConstantOperandAPInt(1) == 0 &&
9414           Op0.getConstantOperandAPInt(1) == NumElts))
9415       break;
9416     Op = Src;
9417   }
9418 
9419   BinOp = (ISD::NodeType)CandidateBinOp;
9420   return Op;
9421 }
9422 
9423 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9424   assert(N->getNumValues() == 1 &&
9425          "Can't unroll a vector with multiple results!");
9426 
9427   EVT VT = N->getValueType(0);
9428   unsigned NE = VT.getVectorNumElements();
9429   EVT EltVT = VT.getVectorElementType();
9430   SDLoc dl(N);
9431 
9432   SmallVector<SDValue, 8> Scalars;
9433   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9434 
9435   // If ResNE is 0, fully unroll the vector op.
9436   if (ResNE == 0)
9437     ResNE = NE;
9438   else if (NE > ResNE)
9439     NE = ResNE;
9440 
9441   unsigned i;
9442   for (i= 0; i != NE; ++i) {
9443     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9444       SDValue Operand = N->getOperand(j);
9445       EVT OperandVT = Operand.getValueType();
9446       if (OperandVT.isVector()) {
9447         // A vector operand; extract a single element.
9448         EVT OperandEltVT = OperandVT.getVectorElementType();
9449         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9450                               Operand, getVectorIdxConstant(i, dl));
9451       } else {
9452         // A scalar operand; just use it as is.
9453         Operands[j] = Operand;
9454       }
9455     }
9456 
9457     switch (N->getOpcode()) {
9458     default: {
9459       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9460                                 N->getFlags()));
9461       break;
9462     }
9463     case ISD::VSELECT:
9464       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9465       break;
9466     case ISD::SHL:
9467     case ISD::SRA:
9468     case ISD::SRL:
9469     case ISD::ROTL:
9470     case ISD::ROTR:
9471       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9472                                getShiftAmountOperand(Operands[0].getValueType(),
9473                                                      Operands[1])));
9474       break;
9475     case ISD::SIGN_EXTEND_INREG: {
9476       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9477       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9478                                 Operands[0],
9479                                 getValueType(ExtVT)));
9480     }
9481     }
9482   }
9483 
9484   for (; i < ResNE; ++i)
9485     Scalars.push_back(getUNDEF(EltVT));
9486 
9487   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9488   return getBuildVector(VecVT, dl, Scalars);
9489 }
9490 
9491 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9492     SDNode *N, unsigned ResNE) {
9493   unsigned Opcode = N->getOpcode();
9494   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9495           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9496           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9497          "Expected an overflow opcode");
9498 
9499   EVT ResVT = N->getValueType(0);
9500   EVT OvVT = N->getValueType(1);
9501   EVT ResEltVT = ResVT.getVectorElementType();
9502   EVT OvEltVT = OvVT.getVectorElementType();
9503   SDLoc dl(N);
9504 
9505   // If ResNE is 0, fully unroll the vector op.
9506   unsigned NE = ResVT.getVectorNumElements();
9507   if (ResNE == 0)
9508     ResNE = NE;
9509   else if (NE > ResNE)
9510     NE = ResNE;
9511 
9512   SmallVector<SDValue, 8> LHSScalars;
9513   SmallVector<SDValue, 8> RHSScalars;
9514   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9515   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9516 
9517   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9518   SDVTList VTs = getVTList(ResEltVT, SVT);
9519   SmallVector<SDValue, 8> ResScalars;
9520   SmallVector<SDValue, 8> OvScalars;
9521   for (unsigned i = 0; i < NE; ++i) {
9522     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9523     SDValue Ov =
9524         getSelect(dl, OvEltVT, Res.getValue(1),
9525                   getBoolConstant(true, dl, OvEltVT, ResVT),
9526                   getConstant(0, dl, OvEltVT));
9527 
9528     ResScalars.push_back(Res);
9529     OvScalars.push_back(Ov);
9530   }
9531 
9532   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9533   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9534 
9535   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9536   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9537   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9538                         getBuildVector(NewOvVT, dl, OvScalars));
9539 }
9540 
9541 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9542                                                   LoadSDNode *Base,
9543                                                   unsigned Bytes,
9544                                                   int Dist) const {
9545   if (LD->isVolatile() || Base->isVolatile())
9546     return false;
9547   // TODO: probably too restrictive for atomics, revisit
9548   if (!LD->isSimple())
9549     return false;
9550   if (LD->isIndexed() || Base->isIndexed())
9551     return false;
9552   if (LD->getChain() != Base->getChain())
9553     return false;
9554   EVT VT = LD->getValueType(0);
9555   if (VT.getSizeInBits() / 8 != Bytes)
9556     return false;
9557 
9558   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9559   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9560 
9561   int64_t Offset = 0;
9562   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9563     return (Dist * Bytes == Offset);
9564   return false;
9565 }
9566 
9567 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9568 /// if it cannot be inferred.
9569 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9570   // If this is a GlobalAddress + cst, return the alignment.
9571   const GlobalValue *GV = nullptr;
9572   int64_t GVOffset = 0;
9573   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9574     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9575     KnownBits Known(PtrWidth);
9576     llvm::computeKnownBits(GV, Known, getDataLayout());
9577     unsigned AlignBits = Known.countMinTrailingZeros();
9578     if (AlignBits)
9579       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9580   }
9581 
9582   // If this is a direct reference to a stack slot, use information about the
9583   // stack slot's alignment.
9584   int FrameIdx = INT_MIN;
9585   int64_t FrameOffset = 0;
9586   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9587     FrameIdx = FI->getIndex();
9588   } else if (isBaseWithConstantOffset(Ptr) &&
9589              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9590     // Handle FI+Cst
9591     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9592     FrameOffset = Ptr.getConstantOperandVal(1);
9593   }
9594 
9595   if (FrameIdx != INT_MIN) {
9596     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9597     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9598   }
9599 
9600   return None;
9601 }
9602 
9603 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9604 /// which is split (or expanded) into two not necessarily identical pieces.
9605 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9606   // Currently all types are split in half.
9607   EVT LoVT, HiVT;
9608   if (!VT.isVector())
9609     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9610   else
9611     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9612 
9613   return std::make_pair(LoVT, HiVT);
9614 }
9615 
9616 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9617 /// type, dependent on an enveloping VT that has been split into two identical
9618 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9619 std::pair<EVT, EVT>
9620 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9621                                        bool *HiIsEmpty) const {
9622   EVT EltTp = VT.getVectorElementType();
9623   bool IsScalable = VT.isScalableVector();
9624   // Examples:
9625   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9626   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9627   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9628   //   etc.
9629   unsigned VTNumElts = VT.getVectorNumElements();
9630   unsigned EnvNumElts = EnvVT.getVectorNumElements();
9631   EVT LoVT, HiVT;
9632   if (VTNumElts > EnvNumElts) {
9633     LoVT = EnvVT;
9634     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9635                             IsScalable);
9636     *HiIsEmpty = false;
9637   } else {
9638     // Flag that hi type has zero storage size, but return split envelop type
9639     // (this would be easier if vector types with zero elements were allowed).
9640     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9641     HiVT = EnvVT;
9642     *HiIsEmpty = true;
9643   }
9644   return std::make_pair(LoVT, HiVT);
9645 }
9646 
9647 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9648 /// low/high part.
9649 std::pair<SDValue, SDValue>
9650 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9651                           const EVT &HiVT) {
9652   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9653          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9654          "Splitting vector with an invalid mixture of fixed and scalable "
9655          "vector types");
9656   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9657              N.getValueType().getVectorMinNumElements() &&
9658          "More vector elements requested than available!");
9659   SDValue Lo, Hi;
9660   Lo =
9661       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9662   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9663   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9664   // IDX with the runtime scaling factor of the result vector type. For
9665   // fixed-width result vectors, that runtime scaling factor is 1.
9666   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9667                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9668   return std::make_pair(Lo, Hi);
9669 }
9670 
9671 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9672 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9673   EVT VT = N.getValueType();
9674   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9675                                 NextPowerOf2(VT.getVectorNumElements()));
9676   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9677                  getVectorIdxConstant(0, DL));
9678 }
9679 
9680 void SelectionDAG::ExtractVectorElements(SDValue Op,
9681                                          SmallVectorImpl<SDValue> &Args,
9682                                          unsigned Start, unsigned Count,
9683                                          EVT EltVT) {
9684   EVT VT = Op.getValueType();
9685   if (Count == 0)
9686     Count = VT.getVectorNumElements();
9687   if (EltVT == EVT())
9688     EltVT = VT.getVectorElementType();
9689   SDLoc SL(Op);
9690   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9691     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9692                            getVectorIdxConstant(i, SL)));
9693   }
9694 }
9695 
9696 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9697 unsigned GlobalAddressSDNode::getAddressSpace() const {
9698   return getGlobal()->getType()->getAddressSpace();
9699 }
9700 
9701 Type *ConstantPoolSDNode::getType() const {
9702   if (isMachineConstantPoolEntry())
9703     return Val.MachineCPVal->getType();
9704   return Val.ConstVal->getType();
9705 }
9706 
9707 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9708                                         unsigned &SplatBitSize,
9709                                         bool &HasAnyUndefs,
9710                                         unsigned MinSplatBits,
9711                                         bool IsBigEndian) const {
9712   EVT VT = getValueType(0);
9713   assert(VT.isVector() && "Expected a vector type");
9714   unsigned VecWidth = VT.getSizeInBits();
9715   if (MinSplatBits > VecWidth)
9716     return false;
9717 
9718   // FIXME: The widths are based on this node's type, but build vectors can
9719   // truncate their operands.
9720   SplatValue = APInt(VecWidth, 0);
9721   SplatUndef = APInt(VecWidth, 0);
9722 
9723   // Get the bits. Bits with undefined values (when the corresponding element
9724   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9725   // in SplatValue. If any of the values are not constant, give up and return
9726   // false.
9727   unsigned int NumOps = getNumOperands();
9728   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9729   unsigned EltWidth = VT.getScalarSizeInBits();
9730 
9731   for (unsigned j = 0; j < NumOps; ++j) {
9732     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9733     SDValue OpVal = getOperand(i);
9734     unsigned BitPos = j * EltWidth;
9735 
9736     if (OpVal.isUndef())
9737       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9738     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9739       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9740     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9741       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9742     else
9743       return false;
9744   }
9745 
9746   // The build_vector is all constants or undefs. Find the smallest element
9747   // size that splats the vector.
9748   HasAnyUndefs = (SplatUndef != 0);
9749 
9750   // FIXME: This does not work for vectors with elements less than 8 bits.
9751   while (VecWidth > 8) {
9752     unsigned HalfSize = VecWidth / 2;
9753     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9754     APInt LowValue = SplatValue.trunc(HalfSize);
9755     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9756     APInt LowUndef = SplatUndef.trunc(HalfSize);
9757 
9758     // If the two halves do not match (ignoring undef bits), stop here.
9759     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9760         MinSplatBits > HalfSize)
9761       break;
9762 
9763     SplatValue = HighValue | LowValue;
9764     SplatUndef = HighUndef & LowUndef;
9765 
9766     VecWidth = HalfSize;
9767   }
9768 
9769   SplatBitSize = VecWidth;
9770   return true;
9771 }
9772 
9773 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9774                                          BitVector *UndefElements) const {
9775   if (UndefElements) {
9776     UndefElements->clear();
9777     UndefElements->resize(getNumOperands());
9778   }
9779   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9780          "Unexpected vector size");
9781   if (!DemandedElts)
9782     return SDValue();
9783   SDValue Splatted;
9784   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9785     if (!DemandedElts[i])
9786       continue;
9787     SDValue Op = getOperand(i);
9788     if (Op.isUndef()) {
9789       if (UndefElements)
9790         (*UndefElements)[i] = true;
9791     } else if (!Splatted) {
9792       Splatted = Op;
9793     } else if (Splatted != Op) {
9794       return SDValue();
9795     }
9796   }
9797 
9798   if (!Splatted) {
9799     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9800     assert(getOperand(FirstDemandedIdx).isUndef() &&
9801            "Can only have a splat without a constant for all undefs.");
9802     return getOperand(FirstDemandedIdx);
9803   }
9804 
9805   return Splatted;
9806 }
9807 
9808 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9809   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9810   return getSplatValue(DemandedElts, UndefElements);
9811 }
9812 
9813 ConstantSDNode *
9814 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9815                                         BitVector *UndefElements) const {
9816   return dyn_cast_or_null<ConstantSDNode>(
9817       getSplatValue(DemandedElts, UndefElements));
9818 }
9819 
9820 ConstantSDNode *
9821 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9822   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9823 }
9824 
9825 ConstantFPSDNode *
9826 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9827                                           BitVector *UndefElements) const {
9828   return dyn_cast_or_null<ConstantFPSDNode>(
9829       getSplatValue(DemandedElts, UndefElements));
9830 }
9831 
9832 ConstantFPSDNode *
9833 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9834   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9835 }
9836 
9837 int32_t
9838 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9839                                                    uint32_t BitWidth) const {
9840   if (ConstantFPSDNode *CN =
9841           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9842     bool IsExact;
9843     APSInt IntVal(BitWidth);
9844     const APFloat &APF = CN->getValueAPF();
9845     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9846             APFloat::opOK ||
9847         !IsExact)
9848       return -1;
9849 
9850     return IntVal.exactLogBase2();
9851   }
9852   return -1;
9853 }
9854 
9855 bool BuildVectorSDNode::isConstant() const {
9856   for (const SDValue &Op : op_values()) {
9857     unsigned Opc = Op.getOpcode();
9858     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9859       return false;
9860   }
9861   return true;
9862 }
9863 
9864 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9865   // Find the first non-undef value in the shuffle mask.
9866   unsigned i, e;
9867   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9868     /* search */;
9869 
9870   // If all elements are undefined, this shuffle can be considered a splat
9871   // (although it should eventually get simplified away completely).
9872   if (i == e)
9873     return true;
9874 
9875   // Make sure all remaining elements are either undef or the same as the first
9876   // non-undef value.
9877   for (int Idx = Mask[i]; i != e; ++i)
9878     if (Mask[i] >= 0 && Mask[i] != Idx)
9879       return false;
9880   return true;
9881 }
9882 
9883 // Returns the SDNode if it is a constant integer BuildVector
9884 // or constant integer.
9885 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9886   if (isa<ConstantSDNode>(N))
9887     return N.getNode();
9888   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9889     return N.getNode();
9890   // Treat a GlobalAddress supporting constant offset folding as a
9891   // constant integer.
9892   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9893     if (GA->getOpcode() == ISD::GlobalAddress &&
9894         TLI->isOffsetFoldingLegal(GA))
9895       return GA;
9896   return nullptr;
9897 }
9898 
9899 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9900   if (isa<ConstantFPSDNode>(N))
9901     return N.getNode();
9902 
9903   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9904     return N.getNode();
9905 
9906   return nullptr;
9907 }
9908 
9909 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9910   assert(!Node->OperandList && "Node already has operands");
9911   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9912          "too many operands to fit into SDNode");
9913   SDUse *Ops = OperandRecycler.allocate(
9914       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9915 
9916   bool IsDivergent = false;
9917   for (unsigned I = 0; I != Vals.size(); ++I) {
9918     Ops[I].setUser(Node);
9919     Ops[I].setInitial(Vals[I]);
9920     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9921       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9922   }
9923   Node->NumOperands = Vals.size();
9924   Node->OperandList = Ops;
9925   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9926   if (!TLI->isSDNodeAlwaysUniform(Node))
9927     Node->SDNodeBits.IsDivergent = IsDivergent;
9928   checkForCycles(Node);
9929 }
9930 
9931 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9932                                      SmallVectorImpl<SDValue> &Vals) {
9933   size_t Limit = SDNode::getMaxNumOperands();
9934   while (Vals.size() > Limit) {
9935     unsigned SliceIdx = Vals.size() - Limit;
9936     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9937     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9938     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9939     Vals.emplace_back(NewTF);
9940   }
9941   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9942 }
9943 
9944 #ifndef NDEBUG
9945 static void checkForCyclesHelper(const SDNode *N,
9946                                  SmallPtrSetImpl<const SDNode*> &Visited,
9947                                  SmallPtrSetImpl<const SDNode*> &Checked,
9948                                  const llvm::SelectionDAG *DAG) {
9949   // If this node has already been checked, don't check it again.
9950   if (Checked.count(N))
9951     return;
9952 
9953   // If a node has already been visited on this depth-first walk, reject it as
9954   // a cycle.
9955   if (!Visited.insert(N).second) {
9956     errs() << "Detected cycle in SelectionDAG\n";
9957     dbgs() << "Offending node:\n";
9958     N->dumprFull(DAG); dbgs() << "\n";
9959     abort();
9960   }
9961 
9962   for (const SDValue &Op : N->op_values())
9963     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9964 
9965   Checked.insert(N);
9966   Visited.erase(N);
9967 }
9968 #endif
9969 
9970 void llvm::checkForCycles(const llvm::SDNode *N,
9971                           const llvm::SelectionDAG *DAG,
9972                           bool force) {
9973 #ifndef NDEBUG
9974   bool check = force;
9975 #ifdef EXPENSIVE_CHECKS
9976   check = true;
9977 #endif  // EXPENSIVE_CHECKS
9978   if (check) {
9979     assert(N && "Checking nonexistent SDNode");
9980     SmallPtrSet<const SDNode*, 32> visited;
9981     SmallPtrSet<const SDNode*, 32> checked;
9982     checkForCyclesHelper(N, visited, checked, DAG);
9983   }
9984 #endif  // !NDEBUG
9985 }
9986 
9987 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9988   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9989 }
9990