1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this, 0);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3086     break;
3087   }
3088   case ISD::MULHU: {
3089     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3090     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known = KnownBits::mulhu(Known, Known2);
3092     break;
3093   }
3094   case ISD::MULHS: {
3095     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3096     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     Known = KnownBits::mulhs(Known, Known2);
3098     break;
3099   }
3100   case ISD::UMUL_LOHI: {
3101     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3102     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3104     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3105     if (Op.getResNo() == 0)
3106       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3107     else
3108       Known = KnownBits::mulhu(Known, Known2);
3109     break;
3110   }
3111   case ISD::SMUL_LOHI: {
3112     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3113     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3114     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3115     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3116     if (Op.getResNo() == 0)
3117       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3118     else
3119       Known = KnownBits::mulhs(Known, Known2);
3120     break;
3121   }
3122   case ISD::UDIV: {
3123     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3124     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3125     Known = KnownBits::udiv(Known, Known2);
3126     break;
3127   }
3128   case ISD::SELECT:
3129   case ISD::VSELECT:
3130     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3131     // If we don't know any bits, early out.
3132     if (Known.isUnknown())
3133       break;
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3135 
3136     // Only known if known in both the LHS and RHS.
3137     Known = KnownBits::commonBits(Known, Known2);
3138     break;
3139   case ISD::SELECT_CC:
3140     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3141     // If we don't know any bits, early out.
3142     if (Known.isUnknown())
3143       break;
3144     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3145 
3146     // Only known if known in both the LHS and RHS.
3147     Known = KnownBits::commonBits(Known, Known2);
3148     break;
3149   case ISD::SMULO:
3150   case ISD::UMULO:
3151     if (Op.getResNo() != 1)
3152       break;
3153     // The boolean result conforms to getBooleanContents.
3154     // If we know the result of a setcc has the top bits zero, use this info.
3155     // We know that we have an integer-based boolean since these operations
3156     // are only available for integer.
3157     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3158             TargetLowering::ZeroOrOneBooleanContent &&
3159         BitWidth > 1)
3160       Known.Zero.setBitsFrom(1);
3161     break;
3162   case ISD::SETCC:
3163   case ISD::STRICT_FSETCC:
3164   case ISD::STRICT_FSETCCS: {
3165     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3166     // If we know the result of a setcc has the top bits zero, use this info.
3167     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3168             TargetLowering::ZeroOrOneBooleanContent &&
3169         BitWidth > 1)
3170       Known.Zero.setBitsFrom(1);
3171     break;
3172   }
3173   case ISD::SHL:
3174     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176     Known = KnownBits::shl(Known, Known2);
3177 
3178     // Minimum shift low bits are known zero.
3179     if (const APInt *ShMinAmt =
3180             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3181       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3182     break;
3183   case ISD::SRL:
3184     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3185     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3186     Known = KnownBits::lshr(Known, Known2);
3187 
3188     // Minimum shift high bits are known zero.
3189     if (const APInt *ShMinAmt =
3190             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3191       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3192     break;
3193   case ISD::SRA:
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3196     Known = KnownBits::ashr(Known, Known2);
3197     // TODO: Add minimum shift high known sign bits.
3198     break;
3199   case ISD::FSHL:
3200   case ISD::FSHR:
3201     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3202       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3203 
3204       // For fshl, 0-shift returns the 1st arg.
3205       // For fshr, 0-shift returns the 2nd arg.
3206       if (Amt == 0) {
3207         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3208                                  DemandedElts, Depth + 1);
3209         break;
3210       }
3211 
3212       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3213       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3214       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3215       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3216       if (Opcode == ISD::FSHL) {
3217         Known.One <<= Amt;
3218         Known.Zero <<= Amt;
3219         Known2.One.lshrInPlace(BitWidth - Amt);
3220         Known2.Zero.lshrInPlace(BitWidth - Amt);
3221       } else {
3222         Known.One <<= BitWidth - Amt;
3223         Known.Zero <<= BitWidth - Amt;
3224         Known2.One.lshrInPlace(Amt);
3225         Known2.Zero.lshrInPlace(Amt);
3226       }
3227       Known.One |= Known2.One;
3228       Known.Zero |= Known2.Zero;
3229     }
3230     break;
3231   case ISD::SIGN_EXTEND_INREG: {
3232     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3233     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3234     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3235     break;
3236   }
3237   case ISD::CTTZ:
3238   case ISD::CTTZ_ZERO_UNDEF: {
3239     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3240     // If we have a known 1, its position is our upper bound.
3241     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3242     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3243     Known.Zero.setBitsFrom(LowBits);
3244     break;
3245   }
3246   case ISD::CTLZ:
3247   case ISD::CTLZ_ZERO_UNDEF: {
3248     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3249     // If we have a known 1, its position is our upper bound.
3250     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3251     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3252     Known.Zero.setBitsFrom(LowBits);
3253     break;
3254   }
3255   case ISD::CTPOP: {
3256     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3257     // If we know some of the bits are zero, they can't be one.
3258     unsigned PossibleOnes = Known2.countMaxPopulation();
3259     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3260     break;
3261   }
3262   case ISD::PARITY: {
3263     // Parity returns 0 everywhere but the LSB.
3264     Known.Zero.setBitsFrom(1);
3265     break;
3266   }
3267   case ISD::LOAD: {
3268     LoadSDNode *LD = cast<LoadSDNode>(Op);
3269     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3270     if (ISD::isNON_EXTLoad(LD) && Cst) {
3271       // Determine any common known bits from the loaded constant pool value.
3272       Type *CstTy = Cst->getType();
3273       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3274         // If its a vector splat, then we can (quickly) reuse the scalar path.
3275         // NOTE: We assume all elements match and none are UNDEF.
3276         if (CstTy->isVectorTy()) {
3277           if (const Constant *Splat = Cst->getSplatValue()) {
3278             Cst = Splat;
3279             CstTy = Cst->getType();
3280           }
3281         }
3282         // TODO - do we need to handle different bitwidths?
3283         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3284           // Iterate across all vector elements finding common known bits.
3285           Known.One.setAllBits();
3286           Known.Zero.setAllBits();
3287           for (unsigned i = 0; i != NumElts; ++i) {
3288             if (!DemandedElts[i])
3289               continue;
3290             if (Constant *Elt = Cst->getAggregateElement(i)) {
3291               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3292                 const APInt &Value = CInt->getValue();
3293                 Known.One &= Value;
3294                 Known.Zero &= ~Value;
3295                 continue;
3296               }
3297               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3298                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3299                 Known.One &= Value;
3300                 Known.Zero &= ~Value;
3301                 continue;
3302               }
3303             }
3304             Known.One.clearAllBits();
3305             Known.Zero.clearAllBits();
3306             break;
3307           }
3308         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3309           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3310             Known = KnownBits::makeConstant(CInt->getValue());
3311           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3312             Known =
3313                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3314           }
3315         }
3316       }
3317     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3318       // If this is a ZEXTLoad and we are looking at the loaded value.
3319       EVT VT = LD->getMemoryVT();
3320       unsigned MemBits = VT.getScalarSizeInBits();
3321       Known.Zero.setBitsFrom(MemBits);
3322     } else if (const MDNode *Ranges = LD->getRanges()) {
3323       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3324         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3325     }
3326     break;
3327   }
3328   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3329     EVT InVT = Op.getOperand(0).getValueType();
3330     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3331     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3332     Known = Known.zext(BitWidth);
3333     break;
3334   }
3335   case ISD::ZERO_EXTEND: {
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known.zext(BitWidth);
3338     break;
3339   }
3340   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3341     EVT InVT = Op.getOperand(0).getValueType();
3342     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3343     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3344     // If the sign bit is known to be zero or one, then sext will extend
3345     // it to the top bits, else it will just zext.
3346     Known = Known.sext(BitWidth);
3347     break;
3348   }
3349   case ISD::SIGN_EXTEND: {
3350     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If the sign bit is known to be zero or one, then sext will extend
3352     // it to the top bits, else it will just zext.
3353     Known = Known.sext(BitWidth);
3354     break;
3355   }
3356   case ISD::ANY_EXTEND_VECTOR_INREG: {
3357     EVT InVT = Op.getOperand(0).getValueType();
3358     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3359     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3360     Known = Known.anyext(BitWidth);
3361     break;
3362   }
3363   case ISD::ANY_EXTEND: {
3364     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known = Known.anyext(BitWidth);
3366     break;
3367   }
3368   case ISD::TRUNCATE: {
3369     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3370     Known = Known.trunc(BitWidth);
3371     break;
3372   }
3373   case ISD::AssertZext: {
3374     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3375     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3376     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3377     Known.Zero |= (~InMask);
3378     Known.One  &= (~Known.Zero);
3379     break;
3380   }
3381   case ISD::AssertAlign: {
3382     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3383     assert(LogOfAlign != 0);
3384 
3385     // TODO: Should use maximum with source
3386     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3387     // well as clearing one bits.
3388     Known.Zero.setLowBits(LogOfAlign);
3389     Known.One.clearLowBits(LogOfAlign);
3390     break;
3391   }
3392   case ISD::FGETSIGN:
3393     // All bits are zero except the low bit.
3394     Known.Zero.setBitsFrom(1);
3395     break;
3396   case ISD::USUBO:
3397   case ISD::SSUBO:
3398     if (Op.getResNo() == 1) {
3399       // If we know the result of a setcc has the top bits zero, use this info.
3400       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3401               TargetLowering::ZeroOrOneBooleanContent &&
3402           BitWidth > 1)
3403         Known.Zero.setBitsFrom(1);
3404       break;
3405     }
3406     LLVM_FALLTHROUGH;
3407   case ISD::SUB:
3408   case ISD::SUBC: {
3409     assert(Op.getResNo() == 0 &&
3410            "We only compute knownbits for the difference here.");
3411 
3412     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3413     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3414     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3415                                         Known, Known2);
3416     break;
3417   }
3418   case ISD::UADDO:
3419   case ISD::SADDO:
3420   case ISD::ADDCARRY:
3421     if (Op.getResNo() == 1) {
3422       // If we know the result of a setcc has the top bits zero, use this info.
3423       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3424               TargetLowering::ZeroOrOneBooleanContent &&
3425           BitWidth > 1)
3426         Known.Zero.setBitsFrom(1);
3427       break;
3428     }
3429     LLVM_FALLTHROUGH;
3430   case ISD::ADD:
3431   case ISD::ADDC:
3432   case ISD::ADDE: {
3433     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3434 
3435     // With ADDE and ADDCARRY, a carry bit may be added in.
3436     KnownBits Carry(1);
3437     if (Opcode == ISD::ADDE)
3438       // Can't track carry from glue, set carry to unknown.
3439       Carry.resetAll();
3440     else if (Opcode == ISD::ADDCARRY)
3441       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3442       // the trouble (how often will we find a known carry bit). And I haven't
3443       // tested this very much yet, but something like this might work:
3444       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3445       //   Carry = Carry.zextOrTrunc(1, false);
3446       Carry.resetAll();
3447     else
3448       Carry.setAllZero();
3449 
3450     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3451     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3452     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3453     break;
3454   }
3455   case ISD::SREM: {
3456     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3457     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3458     Known = KnownBits::srem(Known, Known2);
3459     break;
3460   }
3461   case ISD::UREM: {
3462     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3464     Known = KnownBits::urem(Known, Known2);
3465     break;
3466   }
3467   case ISD::EXTRACT_ELEMENT: {
3468     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3469     const unsigned Index = Op.getConstantOperandVal(1);
3470     const unsigned EltBitWidth = Op.getValueSizeInBits();
3471 
3472     // Remove low part of known bits mask
3473     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3474     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3475 
3476     // Remove high part of known bit mask
3477     Known = Known.trunc(EltBitWidth);
3478     break;
3479   }
3480   case ISD::EXTRACT_VECTOR_ELT: {
3481     SDValue InVec = Op.getOperand(0);
3482     SDValue EltNo = Op.getOperand(1);
3483     EVT VecVT = InVec.getValueType();
3484     // computeKnownBits not yet implemented for scalable vectors.
3485     if (VecVT.isScalableVector())
3486       break;
3487     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3488     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3489 
3490     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3491     // anything about the extended bits.
3492     if (BitWidth > EltBitWidth)
3493       Known = Known.trunc(EltBitWidth);
3494 
3495     // If we know the element index, just demand that vector element, else for
3496     // an unknown element index, ignore DemandedElts and demand them all.
3497     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3498     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3499     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3500       DemandedSrcElts =
3501           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3502 
3503     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3504     if (BitWidth > EltBitWidth)
3505       Known = Known.anyext(BitWidth);
3506     break;
3507   }
3508   case ISD::INSERT_VECTOR_ELT: {
3509     // If we know the element index, split the demand between the
3510     // source vector and the inserted element, otherwise assume we need
3511     // the original demanded vector elements and the value.
3512     SDValue InVec = Op.getOperand(0);
3513     SDValue InVal = Op.getOperand(1);
3514     SDValue EltNo = Op.getOperand(2);
3515     bool DemandedVal = true;
3516     APInt DemandedVecElts = DemandedElts;
3517     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3518     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3519       unsigned EltIdx = CEltNo->getZExtValue();
3520       DemandedVal = !!DemandedElts[EltIdx];
3521       DemandedVecElts.clearBit(EltIdx);
3522     }
3523     Known.One.setAllBits();
3524     Known.Zero.setAllBits();
3525     if (DemandedVal) {
3526       Known2 = computeKnownBits(InVal, Depth + 1);
3527       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3528     }
3529     if (!!DemandedVecElts) {
3530       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3531       Known = KnownBits::commonBits(Known, Known2);
3532     }
3533     break;
3534   }
3535   case ISD::BITREVERSE: {
3536     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3537     Known = Known2.reverseBits();
3538     break;
3539   }
3540   case ISD::BSWAP: {
3541     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3542     Known = Known2.byteSwap();
3543     break;
3544   }
3545   case ISD::ABS: {
3546     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3547     Known = Known2.abs();
3548     break;
3549   }
3550   case ISD::USUBSAT: {
3551     // The result of usubsat will never be larger than the LHS.
3552     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3554     break;
3555   }
3556   case ISD::UMIN: {
3557     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3558     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3559     Known = KnownBits::umin(Known, Known2);
3560     break;
3561   }
3562   case ISD::UMAX: {
3563     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3564     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3565     Known = KnownBits::umax(Known, Known2);
3566     break;
3567   }
3568   case ISD::SMIN:
3569   case ISD::SMAX: {
3570     // If we have a clamp pattern, we know that the number of sign bits will be
3571     // the minimum of the clamp min/max range.
3572     bool IsMax = (Opcode == ISD::SMAX);
3573     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3574     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3575       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3576         CstHigh =
3577             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3578     if (CstLow && CstHigh) {
3579       if (!IsMax)
3580         std::swap(CstLow, CstHigh);
3581 
3582       const APInt &ValueLow = CstLow->getAPIntValue();
3583       const APInt &ValueHigh = CstHigh->getAPIntValue();
3584       if (ValueLow.sle(ValueHigh)) {
3585         unsigned LowSignBits = ValueLow.getNumSignBits();
3586         unsigned HighSignBits = ValueHigh.getNumSignBits();
3587         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3588         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3589           Known.One.setHighBits(MinSignBits);
3590           break;
3591         }
3592         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3593           Known.Zero.setHighBits(MinSignBits);
3594           break;
3595         }
3596       }
3597     }
3598 
3599     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3600     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3601     if (IsMax)
3602       Known = KnownBits::smax(Known, Known2);
3603     else
3604       Known = KnownBits::smin(Known, Known2);
3605     break;
3606   }
3607   case ISD::FP_TO_UINT_SAT: {
3608     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3609     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3610     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3611     break;
3612   }
3613   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3614     if (Op.getResNo() == 1) {
3615       // The boolean result conforms to getBooleanContents.
3616       // If we know the result of a setcc has the top bits zero, use this info.
3617       // We know that we have an integer-based boolean since these operations
3618       // are only available for integer.
3619       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3620               TargetLowering::ZeroOrOneBooleanContent &&
3621           BitWidth > 1)
3622         Known.Zero.setBitsFrom(1);
3623       break;
3624     }
3625     LLVM_FALLTHROUGH;
3626   case ISD::ATOMIC_CMP_SWAP:
3627   case ISD::ATOMIC_SWAP:
3628   case ISD::ATOMIC_LOAD_ADD:
3629   case ISD::ATOMIC_LOAD_SUB:
3630   case ISD::ATOMIC_LOAD_AND:
3631   case ISD::ATOMIC_LOAD_CLR:
3632   case ISD::ATOMIC_LOAD_OR:
3633   case ISD::ATOMIC_LOAD_XOR:
3634   case ISD::ATOMIC_LOAD_NAND:
3635   case ISD::ATOMIC_LOAD_MIN:
3636   case ISD::ATOMIC_LOAD_MAX:
3637   case ISD::ATOMIC_LOAD_UMIN:
3638   case ISD::ATOMIC_LOAD_UMAX:
3639   case ISD::ATOMIC_LOAD: {
3640     unsigned MemBits =
3641         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3642     // If we are looking at the loaded value.
3643     if (Op.getResNo() == 0) {
3644       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3645         Known.Zero.setBitsFrom(MemBits);
3646     }
3647     break;
3648   }
3649   case ISD::FrameIndex:
3650   case ISD::TargetFrameIndex:
3651     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3652                                        Known, getMachineFunction());
3653     break;
3654 
3655   default:
3656     if (Opcode < ISD::BUILTIN_OP_END)
3657       break;
3658     LLVM_FALLTHROUGH;
3659   case ISD::INTRINSIC_WO_CHAIN:
3660   case ISD::INTRINSIC_W_CHAIN:
3661   case ISD::INTRINSIC_VOID:
3662     // Allow the target to implement this method for its nodes.
3663     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3664     break;
3665   }
3666 
3667   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3668   return Known;
3669 }
3670 
3671 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3672                                                              SDValue N1) const {
3673   // X + 0 never overflow
3674   if (isNullConstant(N1))
3675     return OFK_Never;
3676 
3677   KnownBits N1Known = computeKnownBits(N1);
3678   if (N1Known.Zero.getBoolValue()) {
3679     KnownBits N0Known = computeKnownBits(N0);
3680 
3681     bool overflow;
3682     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3683     if (!overflow)
3684       return OFK_Never;
3685   }
3686 
3687   // mulhi + 1 never overflow
3688   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3689       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3690     return OFK_Never;
3691 
3692   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3693     KnownBits N0Known = computeKnownBits(N0);
3694 
3695     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3696       return OFK_Never;
3697   }
3698 
3699   return OFK_Sometime;
3700 }
3701 
3702 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3703   EVT OpVT = Val.getValueType();
3704   unsigned BitWidth = OpVT.getScalarSizeInBits();
3705 
3706   // Is the constant a known power of 2?
3707   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3708     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3709 
3710   // A left-shift of a constant one will have exactly one bit set because
3711   // shifting the bit off the end is undefined.
3712   if (Val.getOpcode() == ISD::SHL) {
3713     auto *C = isConstOrConstSplat(Val.getOperand(0));
3714     if (C && C->getAPIntValue() == 1)
3715       return true;
3716   }
3717 
3718   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3719   // one bit set.
3720   if (Val.getOpcode() == ISD::SRL) {
3721     auto *C = isConstOrConstSplat(Val.getOperand(0));
3722     if (C && C->getAPIntValue().isSignMask())
3723       return true;
3724   }
3725 
3726   // Are all operands of a build vector constant powers of two?
3727   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3728     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3729           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3730             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3731           return false;
3732         }))
3733       return true;
3734 
3735   // Is the operand of a splat vector a constant power of two?
3736   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3738       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3739         return true;
3740 
3741   // More could be done here, though the above checks are enough
3742   // to handle some common cases.
3743 
3744   // Fall back to computeKnownBits to catch other known cases.
3745   KnownBits Known = computeKnownBits(Val);
3746   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3747 }
3748 
3749 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3750   EVT VT = Op.getValueType();
3751 
3752   // TODO: Assume we don't know anything for now.
3753   if (VT.isScalableVector())
3754     return 1;
3755 
3756   APInt DemandedElts = VT.isVector()
3757                            ? APInt::getAllOnes(VT.getVectorNumElements())
3758                            : APInt(1, 1);
3759   return ComputeNumSignBits(Op, DemandedElts, Depth);
3760 }
3761 
3762 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3763                                           unsigned Depth) const {
3764   EVT VT = Op.getValueType();
3765   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3766   unsigned VTBits = VT.getScalarSizeInBits();
3767   unsigned NumElts = DemandedElts.getBitWidth();
3768   unsigned Tmp, Tmp2;
3769   unsigned FirstAnswer = 1;
3770 
3771   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3772     const APInt &Val = C->getAPIntValue();
3773     return Val.getNumSignBits();
3774   }
3775 
3776   if (Depth >= MaxRecursionDepth)
3777     return 1;  // Limit search depth.
3778 
3779   if (!DemandedElts || VT.isScalableVector())
3780     return 1;  // No demanded elts, better to assume we don't know anything.
3781 
3782   unsigned Opcode = Op.getOpcode();
3783   switch (Opcode) {
3784   default: break;
3785   case ISD::AssertSext:
3786     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3787     return VTBits-Tmp+1;
3788   case ISD::AssertZext:
3789     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3790     return VTBits-Tmp;
3791 
3792   case ISD::BUILD_VECTOR:
3793     Tmp = VTBits;
3794     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3795       if (!DemandedElts[i])
3796         continue;
3797 
3798       SDValue SrcOp = Op.getOperand(i);
3799       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3800 
3801       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3802       if (SrcOp.getValueSizeInBits() != VTBits) {
3803         assert(SrcOp.getValueSizeInBits() > VTBits &&
3804                "Expected BUILD_VECTOR implicit truncation");
3805         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3806         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3807       }
3808       Tmp = std::min(Tmp, Tmp2);
3809     }
3810     return Tmp;
3811 
3812   case ISD::VECTOR_SHUFFLE: {
3813     // Collect the minimum number of sign bits that are shared by every vector
3814     // element referenced by the shuffle.
3815     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3816     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3817     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3818     for (unsigned i = 0; i != NumElts; ++i) {
3819       int M = SVN->getMaskElt(i);
3820       if (!DemandedElts[i])
3821         continue;
3822       // For UNDEF elements, we don't know anything about the common state of
3823       // the shuffle result.
3824       if (M < 0)
3825         return 1;
3826       if ((unsigned)M < NumElts)
3827         DemandedLHS.setBit((unsigned)M % NumElts);
3828       else
3829         DemandedRHS.setBit((unsigned)M % NumElts);
3830     }
3831     Tmp = std::numeric_limits<unsigned>::max();
3832     if (!!DemandedLHS)
3833       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3834     if (!!DemandedRHS) {
3835       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3836       Tmp = std::min(Tmp, Tmp2);
3837     }
3838     // If we don't know anything, early out and try computeKnownBits fall-back.
3839     if (Tmp == 1)
3840       break;
3841     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3842     return Tmp;
3843   }
3844 
3845   case ISD::BITCAST: {
3846     SDValue N0 = Op.getOperand(0);
3847     EVT SrcVT = N0.getValueType();
3848     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3849 
3850     // Ignore bitcasts from unsupported types..
3851     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3852       break;
3853 
3854     // Fast handling of 'identity' bitcasts.
3855     if (VTBits == SrcBits)
3856       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3857 
3858     bool IsLE = getDataLayout().isLittleEndian();
3859 
3860     // Bitcast 'large element' scalar/vector to 'small element' vector.
3861     if ((SrcBits % VTBits) == 0) {
3862       assert(VT.isVector() && "Expected bitcast to vector");
3863 
3864       unsigned Scale = SrcBits / VTBits;
3865       APInt SrcDemandedElts =
3866           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3867 
3868       // Fast case - sign splat can be simply split across the small elements.
3869       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3870       if (Tmp == SrcBits)
3871         return VTBits;
3872 
3873       // Slow case - determine how far the sign extends into each sub-element.
3874       Tmp2 = VTBits;
3875       for (unsigned i = 0; i != NumElts; ++i)
3876         if (DemandedElts[i]) {
3877           unsigned SubOffset = i % Scale;
3878           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3879           SubOffset = SubOffset * VTBits;
3880           if (Tmp <= SubOffset)
3881             return 1;
3882           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3883         }
3884       return Tmp2;
3885     }
3886     break;
3887   }
3888 
3889   case ISD::FP_TO_SINT_SAT:
3890     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3891     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3892     return VTBits - Tmp + 1;
3893   case ISD::SIGN_EXTEND:
3894     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3895     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3896   case ISD::SIGN_EXTEND_INREG:
3897     // Max of the input and what this extends.
3898     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3899     Tmp = VTBits-Tmp+1;
3900     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3901     return std::max(Tmp, Tmp2);
3902   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3903     SDValue Src = Op.getOperand(0);
3904     EVT SrcVT = Src.getValueType();
3905     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3906     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3907     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3908   }
3909   case ISD::SRA:
3910     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911     // SRA X, C -> adds C sign bits.
3912     if (const APInt *ShAmt =
3913             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3914       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3915     return Tmp;
3916   case ISD::SHL:
3917     if (const APInt *ShAmt =
3918             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3919       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3920       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3921       if (ShAmt->ult(Tmp))
3922         return Tmp - ShAmt->getZExtValue();
3923     }
3924     break;
3925   case ISD::AND:
3926   case ISD::OR:
3927   case ISD::XOR:    // NOT is handled here.
3928     // Logical binary ops preserve the number of sign bits at the worst.
3929     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3930     if (Tmp != 1) {
3931       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3932       FirstAnswer = std::min(Tmp, Tmp2);
3933       // We computed what we know about the sign bits as our first
3934       // answer. Now proceed to the generic code that uses
3935       // computeKnownBits, and pick whichever answer is better.
3936     }
3937     break;
3938 
3939   case ISD::SELECT:
3940   case ISD::VSELECT:
3941     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3942     if (Tmp == 1) return 1;  // Early out.
3943     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3944     return std::min(Tmp, Tmp2);
3945   case ISD::SELECT_CC:
3946     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3947     if (Tmp == 1) return 1;  // Early out.
3948     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3949     return std::min(Tmp, Tmp2);
3950 
3951   case ISD::SMIN:
3952   case ISD::SMAX: {
3953     // If we have a clamp pattern, we know that the number of sign bits will be
3954     // the minimum of the clamp min/max range.
3955     bool IsMax = (Opcode == ISD::SMAX);
3956     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3957     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3958       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3959         CstHigh =
3960             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3961     if (CstLow && CstHigh) {
3962       if (!IsMax)
3963         std::swap(CstLow, CstHigh);
3964       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3965         Tmp = CstLow->getAPIntValue().getNumSignBits();
3966         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3967         return std::min(Tmp, Tmp2);
3968       }
3969     }
3970 
3971     // Fallback - just get the minimum number of sign bits of the operands.
3972     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3973     if (Tmp == 1)
3974       return 1;  // Early out.
3975     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3976     return std::min(Tmp, Tmp2);
3977   }
3978   case ISD::UMIN:
3979   case ISD::UMAX:
3980     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3981     if (Tmp == 1)
3982       return 1;  // Early out.
3983     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3984     return std::min(Tmp, Tmp2);
3985   case ISD::SADDO:
3986   case ISD::UADDO:
3987   case ISD::SSUBO:
3988   case ISD::USUBO:
3989   case ISD::SMULO:
3990   case ISD::UMULO:
3991     if (Op.getResNo() != 1)
3992       break;
3993     // The boolean result conforms to getBooleanContents.  Fall through.
3994     // If setcc returns 0/-1, all bits are sign bits.
3995     // We know that we have an integer-based boolean since these operations
3996     // are only available for integer.
3997     if (TLI->getBooleanContents(VT.isVector(), false) ==
3998         TargetLowering::ZeroOrNegativeOneBooleanContent)
3999       return VTBits;
4000     break;
4001   case ISD::SETCC:
4002   case ISD::STRICT_FSETCC:
4003   case ISD::STRICT_FSETCCS: {
4004     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4005     // If setcc returns 0/-1, all bits are sign bits.
4006     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4007         TargetLowering::ZeroOrNegativeOneBooleanContent)
4008       return VTBits;
4009     break;
4010   }
4011   case ISD::ROTL:
4012   case ISD::ROTR:
4013     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4014 
4015     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4016     if (Tmp == VTBits)
4017       return VTBits;
4018 
4019     if (ConstantSDNode *C =
4020             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4021       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4022 
4023       // Handle rotate right by N like a rotate left by 32-N.
4024       if (Opcode == ISD::ROTR)
4025         RotAmt = (VTBits - RotAmt) % VTBits;
4026 
4027       // If we aren't rotating out all of the known-in sign bits, return the
4028       // number that are left.  This handles rotl(sext(x), 1) for example.
4029       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4030     }
4031     break;
4032   case ISD::ADD:
4033   case ISD::ADDC:
4034     // Add can have at most one carry bit.  Thus we know that the output
4035     // is, at worst, one more bit than the inputs.
4036     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4037     if (Tmp == 1) return 1; // Early out.
4038 
4039     // Special case decrementing a value (ADD X, -1):
4040     if (ConstantSDNode *CRHS =
4041             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4042       if (CRHS->isAllOnes()) {
4043         KnownBits Known =
4044             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4045 
4046         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4047         // sign bits set.
4048         if ((Known.Zero | 1).isAllOnes())
4049           return VTBits;
4050 
4051         // If we are subtracting one from a positive number, there is no carry
4052         // out of the result.
4053         if (Known.isNonNegative())
4054           return Tmp;
4055       }
4056 
4057     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4058     if (Tmp2 == 1) return 1; // Early out.
4059     return std::min(Tmp, Tmp2) - 1;
4060   case ISD::SUB:
4061     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4062     if (Tmp2 == 1) return 1; // Early out.
4063 
4064     // Handle NEG.
4065     if (ConstantSDNode *CLHS =
4066             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4067       if (CLHS->isZero()) {
4068         KnownBits Known =
4069             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4070         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4071         // sign bits set.
4072         if ((Known.Zero | 1).isAllOnes())
4073           return VTBits;
4074 
4075         // If the input is known to be positive (the sign bit is known clear),
4076         // the output of the NEG has the same number of sign bits as the input.
4077         if (Known.isNonNegative())
4078           return Tmp2;
4079 
4080         // Otherwise, we treat this like a SUB.
4081       }
4082 
4083     // Sub can have at most one carry bit.  Thus we know that the output
4084     // is, at worst, one more bit than the inputs.
4085     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4086     if (Tmp == 1) return 1; // Early out.
4087     return std::min(Tmp, Tmp2) - 1;
4088   case ISD::MUL: {
4089     // The output of the Mul can be at most twice the valid bits in the inputs.
4090     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4091     if (SignBitsOp0 == 1)
4092       break;
4093     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4094     if (SignBitsOp1 == 1)
4095       break;
4096     unsigned OutValidBits =
4097         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4098     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4099   }
4100   case ISD::SREM:
4101     // The sign bit is the LHS's sign bit, except when the result of the
4102     // remainder is zero. The magnitude of the result should be less than or
4103     // equal to the magnitude of the LHS. Therefore, the result should have
4104     // at least as many sign bits as the left hand side.
4105     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4106   case ISD::TRUNCATE: {
4107     // Check if the sign bits of source go down as far as the truncated value.
4108     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4109     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4110     if (NumSrcSignBits > (NumSrcBits - VTBits))
4111       return NumSrcSignBits - (NumSrcBits - VTBits);
4112     break;
4113   }
4114   case ISD::EXTRACT_ELEMENT: {
4115     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4116     const int BitWidth = Op.getValueSizeInBits();
4117     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4118 
4119     // Get reverse index (starting from 1), Op1 value indexes elements from
4120     // little end. Sign starts at big end.
4121     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4122 
4123     // If the sign portion ends in our element the subtraction gives correct
4124     // result. Otherwise it gives either negative or > bitwidth result
4125     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4126   }
4127   case ISD::INSERT_VECTOR_ELT: {
4128     // If we know the element index, split the demand between the
4129     // source vector and the inserted element, otherwise assume we need
4130     // the original demanded vector elements and the value.
4131     SDValue InVec = Op.getOperand(0);
4132     SDValue InVal = Op.getOperand(1);
4133     SDValue EltNo = Op.getOperand(2);
4134     bool DemandedVal = true;
4135     APInt DemandedVecElts = DemandedElts;
4136     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4137     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4138       unsigned EltIdx = CEltNo->getZExtValue();
4139       DemandedVal = !!DemandedElts[EltIdx];
4140       DemandedVecElts.clearBit(EltIdx);
4141     }
4142     Tmp = std::numeric_limits<unsigned>::max();
4143     if (DemandedVal) {
4144       // TODO - handle implicit truncation of inserted elements.
4145       if (InVal.getScalarValueSizeInBits() != VTBits)
4146         break;
4147       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4148       Tmp = std::min(Tmp, Tmp2);
4149     }
4150     if (!!DemandedVecElts) {
4151       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4152       Tmp = std::min(Tmp, Tmp2);
4153     }
4154     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4155     return Tmp;
4156   }
4157   case ISD::EXTRACT_VECTOR_ELT: {
4158     SDValue InVec = Op.getOperand(0);
4159     SDValue EltNo = Op.getOperand(1);
4160     EVT VecVT = InVec.getValueType();
4161     // ComputeNumSignBits not yet implemented for scalable vectors.
4162     if (VecVT.isScalableVector())
4163       break;
4164     const unsigned BitWidth = Op.getValueSizeInBits();
4165     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4166     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4167 
4168     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4169     // anything about sign bits. But if the sizes match we can derive knowledge
4170     // about sign bits from the vector operand.
4171     if (BitWidth != EltBitWidth)
4172       break;
4173 
4174     // If we know the element index, just demand that vector element, else for
4175     // an unknown element index, ignore DemandedElts and demand them all.
4176     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4177     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4178     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4179       DemandedSrcElts =
4180           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4181 
4182     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4183   }
4184   case ISD::EXTRACT_SUBVECTOR: {
4185     // Offset the demanded elts by the subvector index.
4186     SDValue Src = Op.getOperand(0);
4187     // Bail until we can represent demanded elements for scalable vectors.
4188     if (Src.getValueType().isScalableVector())
4189       break;
4190     uint64_t Idx = Op.getConstantOperandVal(1);
4191     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4192     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4193     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4194   }
4195   case ISD::CONCAT_VECTORS: {
4196     // Determine the minimum number of sign bits across all demanded
4197     // elts of the input vectors. Early out if the result is already 1.
4198     Tmp = std::numeric_limits<unsigned>::max();
4199     EVT SubVectorVT = Op.getOperand(0).getValueType();
4200     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4201     unsigned NumSubVectors = Op.getNumOperands();
4202     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4203       APInt DemandedSub =
4204           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4205       if (!DemandedSub)
4206         continue;
4207       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4208       Tmp = std::min(Tmp, Tmp2);
4209     }
4210     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4211     return Tmp;
4212   }
4213   case ISD::INSERT_SUBVECTOR: {
4214     // Demand any elements from the subvector and the remainder from the src its
4215     // inserted into.
4216     SDValue Src = Op.getOperand(0);
4217     SDValue Sub = Op.getOperand(1);
4218     uint64_t Idx = Op.getConstantOperandVal(2);
4219     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4220     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4221     APInt DemandedSrcElts = DemandedElts;
4222     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4223 
4224     Tmp = std::numeric_limits<unsigned>::max();
4225     if (!!DemandedSubElts) {
4226       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4227       if (Tmp == 1)
4228         return 1; // early-out
4229     }
4230     if (!!DemandedSrcElts) {
4231       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4232       Tmp = std::min(Tmp, Tmp2);
4233     }
4234     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4235     return Tmp;
4236   }
4237   case ISD::ATOMIC_CMP_SWAP:
4238   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4239   case ISD::ATOMIC_SWAP:
4240   case ISD::ATOMIC_LOAD_ADD:
4241   case ISD::ATOMIC_LOAD_SUB:
4242   case ISD::ATOMIC_LOAD_AND:
4243   case ISD::ATOMIC_LOAD_CLR:
4244   case ISD::ATOMIC_LOAD_OR:
4245   case ISD::ATOMIC_LOAD_XOR:
4246   case ISD::ATOMIC_LOAD_NAND:
4247   case ISD::ATOMIC_LOAD_MIN:
4248   case ISD::ATOMIC_LOAD_MAX:
4249   case ISD::ATOMIC_LOAD_UMIN:
4250   case ISD::ATOMIC_LOAD_UMAX:
4251   case ISD::ATOMIC_LOAD: {
4252     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4253     // If we are looking at the loaded value.
4254     if (Op.getResNo() == 0) {
4255       if (Tmp == VTBits)
4256         return 1; // early-out
4257       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4258         return VTBits - Tmp + 1;
4259       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4260         return VTBits - Tmp;
4261     }
4262     break;
4263   }
4264   }
4265 
4266   // If we are looking at the loaded value of the SDNode.
4267   if (Op.getResNo() == 0) {
4268     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4269     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4270       unsigned ExtType = LD->getExtensionType();
4271       switch (ExtType) {
4272       default: break;
4273       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4274         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4275         return VTBits - Tmp + 1;
4276       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4277         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4278         return VTBits - Tmp;
4279       case ISD::NON_EXTLOAD:
4280         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4281           // We only need to handle vectors - computeKnownBits should handle
4282           // scalar cases.
4283           Type *CstTy = Cst->getType();
4284           if (CstTy->isVectorTy() &&
4285               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4286             Tmp = VTBits;
4287             for (unsigned i = 0; i != NumElts; ++i) {
4288               if (!DemandedElts[i])
4289                 continue;
4290               if (Constant *Elt = Cst->getAggregateElement(i)) {
4291                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4292                   const APInt &Value = CInt->getValue();
4293                   Tmp = std::min(Tmp, Value.getNumSignBits());
4294                   continue;
4295                 }
4296                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4297                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4298                   Tmp = std::min(Tmp, Value.getNumSignBits());
4299                   continue;
4300                 }
4301               }
4302               // Unknown type. Conservatively assume no bits match sign bit.
4303               return 1;
4304             }
4305             return Tmp;
4306           }
4307         }
4308         break;
4309       }
4310     }
4311   }
4312 
4313   // Allow the target to implement this method for its nodes.
4314   if (Opcode >= ISD::BUILTIN_OP_END ||
4315       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4316       Opcode == ISD::INTRINSIC_W_CHAIN ||
4317       Opcode == ISD::INTRINSIC_VOID) {
4318     unsigned NumBits =
4319         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4320     if (NumBits > 1)
4321       FirstAnswer = std::max(FirstAnswer, NumBits);
4322   }
4323 
4324   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4325   // use this information.
4326   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4327   return std::max(FirstAnswer, Known.countMinSignBits());
4328 }
4329 
4330 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4331                                                  unsigned Depth) const {
4332   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4333   return Op.getScalarValueSizeInBits() - SignBits + 1;
4334 }
4335 
4336 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4337                                                  const APInt &DemandedElts,
4338                                                  unsigned Depth) const {
4339   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4340   return Op.getScalarValueSizeInBits() - SignBits + 1;
4341 }
4342 
4343 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4344                                                     unsigned Depth) const {
4345   // Early out for FREEZE.
4346   if (Op.getOpcode() == ISD::FREEZE)
4347     return true;
4348 
4349   // TODO: Assume we don't know anything for now.
4350   EVT VT = Op.getValueType();
4351   if (VT.isScalableVector())
4352     return false;
4353 
4354   APInt DemandedElts = VT.isVector()
4355                            ? APInt::getAllOnes(VT.getVectorNumElements())
4356                            : APInt(1, 1);
4357   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4358 }
4359 
4360 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4361                                                     const APInt &DemandedElts,
4362                                                     bool PoisonOnly,
4363                                                     unsigned Depth) const {
4364   unsigned Opcode = Op.getOpcode();
4365 
4366   // Early out for FREEZE.
4367   if (Opcode == ISD::FREEZE)
4368     return true;
4369 
4370   if (Depth >= MaxRecursionDepth)
4371     return false; // Limit search depth.
4372 
4373   if (isIntOrFPConstant(Op))
4374     return true;
4375 
4376   switch (Opcode) {
4377   case ISD::UNDEF:
4378     return PoisonOnly;
4379 
4380   case ISD::BUILD_VECTOR:
4381     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4382     // this shouldn't affect the result.
4383     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4384       if (!DemandedElts[i])
4385         continue;
4386       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4387                                             Depth + 1))
4388         return false;
4389     }
4390     return true;
4391 
4392   // TODO: Search for noundef attributes from library functions.
4393 
4394   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4395 
4396   default:
4397     // Allow the target to implement this method for its nodes.
4398     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4399         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4400       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4401           Op, DemandedElts, *this, PoisonOnly, Depth);
4402     break;
4403   }
4404 
4405   return false;
4406 }
4407 
4408 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4409   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4410       !isa<ConstantSDNode>(Op.getOperand(1)))
4411     return false;
4412 
4413   if (Op.getOpcode() == ISD::OR &&
4414       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4415     return false;
4416 
4417   return true;
4418 }
4419 
4420 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4421   // If we're told that NaNs won't happen, assume they won't.
4422   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4423     return true;
4424 
4425   if (Depth >= MaxRecursionDepth)
4426     return false; // Limit search depth.
4427 
4428   // TODO: Handle vectors.
4429   // If the value is a constant, we can obviously see if it is a NaN or not.
4430   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4431     return !C->getValueAPF().isNaN() ||
4432            (SNaN && !C->getValueAPF().isSignaling());
4433   }
4434 
4435   unsigned Opcode = Op.getOpcode();
4436   switch (Opcode) {
4437   case ISD::FADD:
4438   case ISD::FSUB:
4439   case ISD::FMUL:
4440   case ISD::FDIV:
4441   case ISD::FREM:
4442   case ISD::FSIN:
4443   case ISD::FCOS: {
4444     if (SNaN)
4445       return true;
4446     // TODO: Need isKnownNeverInfinity
4447     return false;
4448   }
4449   case ISD::FCANONICALIZE:
4450   case ISD::FEXP:
4451   case ISD::FEXP2:
4452   case ISD::FTRUNC:
4453   case ISD::FFLOOR:
4454   case ISD::FCEIL:
4455   case ISD::FROUND:
4456   case ISD::FROUNDEVEN:
4457   case ISD::FRINT:
4458   case ISD::FNEARBYINT: {
4459     if (SNaN)
4460       return true;
4461     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4462   }
4463   case ISD::FABS:
4464   case ISD::FNEG:
4465   case ISD::FCOPYSIGN: {
4466     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4467   }
4468   case ISD::SELECT:
4469     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4470            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4471   case ISD::FP_EXTEND:
4472   case ISD::FP_ROUND: {
4473     if (SNaN)
4474       return true;
4475     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4476   }
4477   case ISD::SINT_TO_FP:
4478   case ISD::UINT_TO_FP:
4479     return true;
4480   case ISD::FMA:
4481   case ISD::FMAD: {
4482     if (SNaN)
4483       return true;
4484     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4485            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4486            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4487   }
4488   case ISD::FSQRT: // Need is known positive
4489   case ISD::FLOG:
4490   case ISD::FLOG2:
4491   case ISD::FLOG10:
4492   case ISD::FPOWI:
4493   case ISD::FPOW: {
4494     if (SNaN)
4495       return true;
4496     // TODO: Refine on operand
4497     return false;
4498   }
4499   case ISD::FMINNUM:
4500   case ISD::FMAXNUM: {
4501     // Only one needs to be known not-nan, since it will be returned if the
4502     // other ends up being one.
4503     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4504            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4505   }
4506   case ISD::FMINNUM_IEEE:
4507   case ISD::FMAXNUM_IEEE: {
4508     if (SNaN)
4509       return true;
4510     // This can return a NaN if either operand is an sNaN, or if both operands
4511     // are NaN.
4512     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4513             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4514            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4515             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4516   }
4517   case ISD::FMINIMUM:
4518   case ISD::FMAXIMUM: {
4519     // TODO: Does this quiet or return the origina NaN as-is?
4520     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4521            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4522   }
4523   case ISD::EXTRACT_VECTOR_ELT: {
4524     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4525   }
4526   default:
4527     if (Opcode >= ISD::BUILTIN_OP_END ||
4528         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4529         Opcode == ISD::INTRINSIC_W_CHAIN ||
4530         Opcode == ISD::INTRINSIC_VOID) {
4531       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4532     }
4533 
4534     return false;
4535   }
4536 }
4537 
4538 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4539   assert(Op.getValueType().isFloatingPoint() &&
4540          "Floating point type expected");
4541 
4542   // If the value is a constant, we can obviously see if it is a zero or not.
4543   // TODO: Add BuildVector support.
4544   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4545     return !C->isZero();
4546   return false;
4547 }
4548 
4549 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4550   assert(!Op.getValueType().isFloatingPoint() &&
4551          "Floating point types unsupported - use isKnownNeverZeroFloat");
4552 
4553   // If the value is a constant, we can obviously see if it is a zero or not.
4554   if (ISD::matchUnaryPredicate(Op,
4555                                [](ConstantSDNode *C) { return !C->isZero(); }))
4556     return true;
4557 
4558   // TODO: Recognize more cases here.
4559   switch (Op.getOpcode()) {
4560   default: break;
4561   case ISD::OR:
4562     if (isKnownNeverZero(Op.getOperand(1)) ||
4563         isKnownNeverZero(Op.getOperand(0)))
4564       return true;
4565     break;
4566   }
4567 
4568   return false;
4569 }
4570 
4571 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4572   // Check the obvious case.
4573   if (A == B) return true;
4574 
4575   // For for negative and positive zero.
4576   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4577     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4578       if (CA->isZero() && CB->isZero()) return true;
4579 
4580   // Otherwise they may not be equal.
4581   return false;
4582 }
4583 
4584 // FIXME: unify with llvm::haveNoCommonBitsSet.
4585 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4586   assert(A.getValueType() == B.getValueType() &&
4587          "Values must have the same type");
4588   // Match masked merge pattern (X & ~M) op (Y & M)
4589   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4590     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4591       if (isBitwiseNot(NotM, true)) {
4592         SDValue NotOperand = NotM->getOperand(0);
4593         return NotOperand == And->getOperand(0) ||
4594                NotOperand == And->getOperand(1);
4595       }
4596       return false;
4597     };
4598     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4599         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4600         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4601         MatchNoCommonBitsPattern(B->getOperand(1), A))
4602       return true;
4603   }
4604   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4605                                         computeKnownBits(B));
4606 }
4607 
4608 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4609                                SelectionDAG &DAG) {
4610   if (cast<ConstantSDNode>(Step)->isZero())
4611     return DAG.getConstant(0, DL, VT);
4612 
4613   return SDValue();
4614 }
4615 
4616 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4617                                 ArrayRef<SDValue> Ops,
4618                                 SelectionDAG &DAG) {
4619   int NumOps = Ops.size();
4620   assert(NumOps != 0 && "Can't build an empty vector!");
4621   assert(!VT.isScalableVector() &&
4622          "BUILD_VECTOR cannot be used with scalable types");
4623   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4624          "Incorrect element count in BUILD_VECTOR!");
4625 
4626   // BUILD_VECTOR of UNDEFs is UNDEF.
4627   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4628     return DAG.getUNDEF(VT);
4629 
4630   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4631   SDValue IdentitySrc;
4632   bool IsIdentity = true;
4633   for (int i = 0; i != NumOps; ++i) {
4634     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4635         Ops[i].getOperand(0).getValueType() != VT ||
4636         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4637         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4638         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4639       IsIdentity = false;
4640       break;
4641     }
4642     IdentitySrc = Ops[i].getOperand(0);
4643   }
4644   if (IsIdentity)
4645     return IdentitySrc;
4646 
4647   return SDValue();
4648 }
4649 
4650 /// Try to simplify vector concatenation to an input value, undef, or build
4651 /// vector.
4652 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4653                                   ArrayRef<SDValue> Ops,
4654                                   SelectionDAG &DAG) {
4655   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4656   assert(llvm::all_of(Ops,
4657                       [Ops](SDValue Op) {
4658                         return Ops[0].getValueType() == Op.getValueType();
4659                       }) &&
4660          "Concatenation of vectors with inconsistent value types!");
4661   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4662              VT.getVectorElementCount() &&
4663          "Incorrect element count in vector concatenation!");
4664 
4665   if (Ops.size() == 1)
4666     return Ops[0];
4667 
4668   // Concat of UNDEFs is UNDEF.
4669   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4670     return DAG.getUNDEF(VT);
4671 
4672   // Scan the operands and look for extract operations from a single source
4673   // that correspond to insertion at the same location via this concatenation:
4674   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4675   SDValue IdentitySrc;
4676   bool IsIdentity = true;
4677   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4678     SDValue Op = Ops[i];
4679     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4680     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4681         Op.getOperand(0).getValueType() != VT ||
4682         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4683         Op.getConstantOperandVal(1) != IdentityIndex) {
4684       IsIdentity = false;
4685       break;
4686     }
4687     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4688            "Unexpected identity source vector for concat of extracts");
4689     IdentitySrc = Op.getOperand(0);
4690   }
4691   if (IsIdentity) {
4692     assert(IdentitySrc && "Failed to set source vector of extracts");
4693     return IdentitySrc;
4694   }
4695 
4696   // The code below this point is only designed to work for fixed width
4697   // vectors, so we bail out for now.
4698   if (VT.isScalableVector())
4699     return SDValue();
4700 
4701   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4702   // simplified to one big BUILD_VECTOR.
4703   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4704   EVT SVT = VT.getScalarType();
4705   SmallVector<SDValue, 16> Elts;
4706   for (SDValue Op : Ops) {
4707     EVT OpVT = Op.getValueType();
4708     if (Op.isUndef())
4709       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4710     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4711       Elts.append(Op->op_begin(), Op->op_end());
4712     else
4713       return SDValue();
4714   }
4715 
4716   // BUILD_VECTOR requires all inputs to be of the same type, find the
4717   // maximum type and extend them all.
4718   for (SDValue Op : Elts)
4719     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4720 
4721   if (SVT.bitsGT(VT.getScalarType())) {
4722     for (SDValue &Op : Elts) {
4723       if (Op.isUndef())
4724         Op = DAG.getUNDEF(SVT);
4725       else
4726         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4727                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4728                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4729     }
4730   }
4731 
4732   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4733   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4734   return V;
4735 }
4736 
4737 /// Gets or creates the specified node.
4738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4739   FoldingSetNodeID ID;
4740   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4741   void *IP = nullptr;
4742   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4743     return SDValue(E, 0);
4744 
4745   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4746                               getVTList(VT));
4747   CSEMap.InsertNode(N, IP);
4748 
4749   InsertNode(N);
4750   SDValue V = SDValue(N, 0);
4751   NewSDValueDbgMsg(V, "Creating new node: ", this);
4752   return V;
4753 }
4754 
4755 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4756                               SDValue Operand) {
4757   SDNodeFlags Flags;
4758   if (Inserter)
4759     Flags = Inserter->getFlags();
4760   return getNode(Opcode, DL, VT, Operand, Flags);
4761 }
4762 
4763 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4764                               SDValue Operand, const SDNodeFlags Flags) {
4765   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4766          "Operand is DELETED_NODE!");
4767   // Constant fold unary operations with an integer constant operand. Even
4768   // opaque constant will be folded, because the folding of unary operations
4769   // doesn't create new constants with different values. Nevertheless, the
4770   // opaque flag is preserved during folding to prevent future folding with
4771   // other constants.
4772   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4773     const APInt &Val = C->getAPIntValue();
4774     switch (Opcode) {
4775     default: break;
4776     case ISD::SIGN_EXTEND:
4777       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4778                          C->isTargetOpcode(), C->isOpaque());
4779     case ISD::TRUNCATE:
4780       if (C->isOpaque())
4781         break;
4782       LLVM_FALLTHROUGH;
4783     case ISD::ZERO_EXTEND:
4784       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4785                          C->isTargetOpcode(), C->isOpaque());
4786     case ISD::ANY_EXTEND:
4787       // Some targets like RISCV prefer to sign extend some types.
4788       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4789         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4790                            C->isTargetOpcode(), C->isOpaque());
4791       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4792                          C->isTargetOpcode(), C->isOpaque());
4793     case ISD::UINT_TO_FP:
4794     case ISD::SINT_TO_FP: {
4795       APFloat apf(EVTToAPFloatSemantics(VT),
4796                   APInt::getZero(VT.getSizeInBits()));
4797       (void)apf.convertFromAPInt(Val,
4798                                  Opcode==ISD::SINT_TO_FP,
4799                                  APFloat::rmNearestTiesToEven);
4800       return getConstantFP(apf, DL, VT);
4801     }
4802     case ISD::BITCAST:
4803       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4804         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4805       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4806         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4807       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4808         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4809       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4810         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4811       break;
4812     case ISD::ABS:
4813       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4814                          C->isOpaque());
4815     case ISD::BITREVERSE:
4816       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4817                          C->isOpaque());
4818     case ISD::BSWAP:
4819       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4820                          C->isOpaque());
4821     case ISD::CTPOP:
4822       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4823                          C->isOpaque());
4824     case ISD::CTLZ:
4825     case ISD::CTLZ_ZERO_UNDEF:
4826       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4827                          C->isOpaque());
4828     case ISD::CTTZ:
4829     case ISD::CTTZ_ZERO_UNDEF:
4830       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4831                          C->isOpaque());
4832     case ISD::FP16_TO_FP: {
4833       bool Ignored;
4834       APFloat FPV(APFloat::IEEEhalf(),
4835                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4836 
4837       // This can return overflow, underflow, or inexact; we don't care.
4838       // FIXME need to be more flexible about rounding mode.
4839       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4840                         APFloat::rmNearestTiesToEven, &Ignored);
4841       return getConstantFP(FPV, DL, VT);
4842     }
4843     case ISD::STEP_VECTOR: {
4844       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4845         return V;
4846       break;
4847     }
4848     }
4849   }
4850 
4851   // Constant fold unary operations with a floating point constant operand.
4852   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4853     APFloat V = C->getValueAPF();    // make copy
4854     switch (Opcode) {
4855     case ISD::FNEG:
4856       V.changeSign();
4857       return getConstantFP(V, DL, VT);
4858     case ISD::FABS:
4859       V.clearSign();
4860       return getConstantFP(V, DL, VT);
4861     case ISD::FCEIL: {
4862       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4863       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4864         return getConstantFP(V, DL, VT);
4865       break;
4866     }
4867     case ISD::FTRUNC: {
4868       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4869       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4870         return getConstantFP(V, DL, VT);
4871       break;
4872     }
4873     case ISD::FFLOOR: {
4874       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4875       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4876         return getConstantFP(V, DL, VT);
4877       break;
4878     }
4879     case ISD::FP_EXTEND: {
4880       bool ignored;
4881       // This can return overflow, underflow, or inexact; we don't care.
4882       // FIXME need to be more flexible about rounding mode.
4883       (void)V.convert(EVTToAPFloatSemantics(VT),
4884                       APFloat::rmNearestTiesToEven, &ignored);
4885       return getConstantFP(V, DL, VT);
4886     }
4887     case ISD::FP_TO_SINT:
4888     case ISD::FP_TO_UINT: {
4889       bool ignored;
4890       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4891       // FIXME need to be more flexible about rounding mode.
4892       APFloat::opStatus s =
4893           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4894       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4895         break;
4896       return getConstant(IntVal, DL, VT);
4897     }
4898     case ISD::BITCAST:
4899       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4900         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4901       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4902         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4903       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4904         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4905       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4906         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4907       break;
4908     case ISD::FP_TO_FP16: {
4909       bool Ignored;
4910       // This can return overflow, underflow, or inexact; we don't care.
4911       // FIXME need to be more flexible about rounding mode.
4912       (void)V.convert(APFloat::IEEEhalf(),
4913                       APFloat::rmNearestTiesToEven, &Ignored);
4914       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4915     }
4916     }
4917   }
4918 
4919   // Constant fold unary operations with a vector integer or float operand.
4920   switch (Opcode) {
4921   default:
4922     // FIXME: Entirely reasonable to perform folding of other unary
4923     // operations here as the need arises.
4924     break;
4925   case ISD::FNEG:
4926   case ISD::FABS:
4927   case ISD::FCEIL:
4928   case ISD::FTRUNC:
4929   case ISD::FFLOOR:
4930   case ISD::FP_EXTEND:
4931   case ISD::FP_TO_SINT:
4932   case ISD::FP_TO_UINT:
4933   case ISD::TRUNCATE:
4934   case ISD::ANY_EXTEND:
4935   case ISD::ZERO_EXTEND:
4936   case ISD::SIGN_EXTEND:
4937   case ISD::UINT_TO_FP:
4938   case ISD::SINT_TO_FP:
4939   case ISD::ABS:
4940   case ISD::BITREVERSE:
4941   case ISD::BSWAP:
4942   case ISD::CTLZ:
4943   case ISD::CTLZ_ZERO_UNDEF:
4944   case ISD::CTTZ:
4945   case ISD::CTTZ_ZERO_UNDEF:
4946   case ISD::CTPOP: {
4947     SDValue Ops = {Operand};
4948     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4949       return Fold;
4950   }
4951   }
4952 
4953   unsigned OpOpcode = Operand.getNode()->getOpcode();
4954   switch (Opcode) {
4955   case ISD::STEP_VECTOR:
4956     assert(VT.isScalableVector() &&
4957            "STEP_VECTOR can only be used with scalable types");
4958     assert(OpOpcode == ISD::TargetConstant &&
4959            VT.getVectorElementType() == Operand.getValueType() &&
4960            "Unexpected step operand");
4961     break;
4962   case ISD::FREEZE:
4963     assert(VT == Operand.getValueType() && "Unexpected VT!");
4964     break;
4965   case ISD::TokenFactor:
4966   case ISD::MERGE_VALUES:
4967   case ISD::CONCAT_VECTORS:
4968     return Operand;         // Factor, merge or concat of one node?  No need.
4969   case ISD::BUILD_VECTOR: {
4970     // Attempt to simplify BUILD_VECTOR.
4971     SDValue Ops[] = {Operand};
4972     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4973       return V;
4974     break;
4975   }
4976   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4977   case ISD::FP_EXTEND:
4978     assert(VT.isFloatingPoint() &&
4979            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4980     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4981     assert((!VT.isVector() ||
4982             VT.getVectorElementCount() ==
4983             Operand.getValueType().getVectorElementCount()) &&
4984            "Vector element count mismatch!");
4985     assert(Operand.getValueType().bitsLT(VT) &&
4986            "Invalid fpext node, dst < src!");
4987     if (Operand.isUndef())
4988       return getUNDEF(VT);
4989     break;
4990   case ISD::FP_TO_SINT:
4991   case ISD::FP_TO_UINT:
4992     if (Operand.isUndef())
4993       return getUNDEF(VT);
4994     break;
4995   case ISD::SINT_TO_FP:
4996   case ISD::UINT_TO_FP:
4997     // [us]itofp(undef) = 0, because the result value is bounded.
4998     if (Operand.isUndef())
4999       return getConstantFP(0.0, DL, VT);
5000     break;
5001   case ISD::SIGN_EXTEND:
5002     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5003            "Invalid SIGN_EXTEND!");
5004     assert(VT.isVector() == Operand.getValueType().isVector() &&
5005            "SIGN_EXTEND result type type should be vector iff the operand "
5006            "type is vector!");
5007     if (Operand.getValueType() == VT) return Operand;   // noop extension
5008     assert((!VT.isVector() ||
5009             VT.getVectorElementCount() ==
5010                 Operand.getValueType().getVectorElementCount()) &&
5011            "Vector element count mismatch!");
5012     assert(Operand.getValueType().bitsLT(VT) &&
5013            "Invalid sext node, dst < src!");
5014     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5015       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5016     if (OpOpcode == ISD::UNDEF)
5017       // sext(undef) = 0, because the top bits will all be the same.
5018       return getConstant(0, DL, VT);
5019     break;
5020   case ISD::ZERO_EXTEND:
5021     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5022            "Invalid ZERO_EXTEND!");
5023     assert(VT.isVector() == Operand.getValueType().isVector() &&
5024            "ZERO_EXTEND result type type should be vector iff the operand "
5025            "type is vector!");
5026     if (Operand.getValueType() == VT) return Operand;   // noop extension
5027     assert((!VT.isVector() ||
5028             VT.getVectorElementCount() ==
5029                 Operand.getValueType().getVectorElementCount()) &&
5030            "Vector element count mismatch!");
5031     assert(Operand.getValueType().bitsLT(VT) &&
5032            "Invalid zext node, dst < src!");
5033     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5034       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5035     if (OpOpcode == ISD::UNDEF)
5036       // zext(undef) = 0, because the top bits will be zero.
5037       return getConstant(0, DL, VT);
5038     break;
5039   case ISD::ANY_EXTEND:
5040     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5041            "Invalid ANY_EXTEND!");
5042     assert(VT.isVector() == Operand.getValueType().isVector() &&
5043            "ANY_EXTEND result type type should be vector iff the operand "
5044            "type is vector!");
5045     if (Operand.getValueType() == VT) return Operand;   // noop extension
5046     assert((!VT.isVector() ||
5047             VT.getVectorElementCount() ==
5048                 Operand.getValueType().getVectorElementCount()) &&
5049            "Vector element count mismatch!");
5050     assert(Operand.getValueType().bitsLT(VT) &&
5051            "Invalid anyext node, dst < src!");
5052 
5053     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5054         OpOpcode == ISD::ANY_EXTEND)
5055       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5056       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5057     if (OpOpcode == ISD::UNDEF)
5058       return getUNDEF(VT);
5059 
5060     // (ext (trunc x)) -> x
5061     if (OpOpcode == ISD::TRUNCATE) {
5062       SDValue OpOp = Operand.getOperand(0);
5063       if (OpOp.getValueType() == VT) {
5064         transferDbgValues(Operand, OpOp);
5065         return OpOp;
5066       }
5067     }
5068     break;
5069   case ISD::TRUNCATE:
5070     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5071            "Invalid TRUNCATE!");
5072     assert(VT.isVector() == Operand.getValueType().isVector() &&
5073            "TRUNCATE result type type should be vector iff the operand "
5074            "type is vector!");
5075     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5076     assert((!VT.isVector() ||
5077             VT.getVectorElementCount() ==
5078                 Operand.getValueType().getVectorElementCount()) &&
5079            "Vector element count mismatch!");
5080     assert(Operand.getValueType().bitsGT(VT) &&
5081            "Invalid truncate node, src < dst!");
5082     if (OpOpcode == ISD::TRUNCATE)
5083       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5084     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5085         OpOpcode == ISD::ANY_EXTEND) {
5086       // If the source is smaller than the dest, we still need an extend.
5087       if (Operand.getOperand(0).getValueType().getScalarType()
5088             .bitsLT(VT.getScalarType()))
5089         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5090       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5091         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5092       return Operand.getOperand(0);
5093     }
5094     if (OpOpcode == ISD::UNDEF)
5095       return getUNDEF(VT);
5096     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5097       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5098     break;
5099   case ISD::ANY_EXTEND_VECTOR_INREG:
5100   case ISD::ZERO_EXTEND_VECTOR_INREG:
5101   case ISD::SIGN_EXTEND_VECTOR_INREG:
5102     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5103     assert(Operand.getValueType().bitsLE(VT) &&
5104            "The input must be the same size or smaller than the result.");
5105     assert(VT.getVectorMinNumElements() <
5106                Operand.getValueType().getVectorMinNumElements() &&
5107            "The destination vector type must have fewer lanes than the input.");
5108     break;
5109   case ISD::ABS:
5110     assert(VT.isInteger() && VT == Operand.getValueType() &&
5111            "Invalid ABS!");
5112     if (OpOpcode == ISD::UNDEF)
5113       return getUNDEF(VT);
5114     break;
5115   case ISD::BSWAP:
5116     assert(VT.isInteger() && VT == Operand.getValueType() &&
5117            "Invalid BSWAP!");
5118     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5119            "BSWAP types must be a multiple of 16 bits!");
5120     if (OpOpcode == ISD::UNDEF)
5121       return getUNDEF(VT);
5122     // bswap(bswap(X)) -> X.
5123     if (OpOpcode == ISD::BSWAP)
5124       return Operand.getOperand(0);
5125     break;
5126   case ISD::BITREVERSE:
5127     assert(VT.isInteger() && VT == Operand.getValueType() &&
5128            "Invalid BITREVERSE!");
5129     if (OpOpcode == ISD::UNDEF)
5130       return getUNDEF(VT);
5131     break;
5132   case ISD::BITCAST:
5133     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5134            "Cannot BITCAST between types of different sizes!");
5135     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5136     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5137       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5138     if (OpOpcode == ISD::UNDEF)
5139       return getUNDEF(VT);
5140     break;
5141   case ISD::SCALAR_TO_VECTOR:
5142     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5143            (VT.getVectorElementType() == Operand.getValueType() ||
5144             (VT.getVectorElementType().isInteger() &&
5145              Operand.getValueType().isInteger() &&
5146              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5147            "Illegal SCALAR_TO_VECTOR node!");
5148     if (OpOpcode == ISD::UNDEF)
5149       return getUNDEF(VT);
5150     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5151     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5152         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5153         Operand.getConstantOperandVal(1) == 0 &&
5154         Operand.getOperand(0).getValueType() == VT)
5155       return Operand.getOperand(0);
5156     break;
5157   case ISD::FNEG:
5158     // Negation of an unknown bag of bits is still completely undefined.
5159     if (OpOpcode == ISD::UNDEF)
5160       return getUNDEF(VT);
5161 
5162     if (OpOpcode == ISD::FNEG)  // --X -> X
5163       return Operand.getOperand(0);
5164     break;
5165   case ISD::FABS:
5166     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5167       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5168     break;
5169   case ISD::VSCALE:
5170     assert(VT == Operand.getValueType() && "Unexpected VT!");
5171     break;
5172   case ISD::CTPOP:
5173     if (Operand.getValueType().getScalarType() == MVT::i1)
5174       return Operand;
5175     break;
5176   case ISD::CTLZ:
5177   case ISD::CTTZ:
5178     if (Operand.getValueType().getScalarType() == MVT::i1)
5179       return getNOT(DL, Operand, Operand.getValueType());
5180     break;
5181   case ISD::VECREDUCE_SMIN:
5182   case ISD::VECREDUCE_UMAX:
5183     if (Operand.getValueType().getScalarType() == MVT::i1)
5184       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5185     break;
5186   case ISD::VECREDUCE_SMAX:
5187   case ISD::VECREDUCE_UMIN:
5188     if (Operand.getValueType().getScalarType() == MVT::i1)
5189       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5190     break;
5191   }
5192 
5193   SDNode *N;
5194   SDVTList VTs = getVTList(VT);
5195   SDValue Ops[] = {Operand};
5196   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5197     FoldingSetNodeID ID;
5198     AddNodeIDNode(ID, Opcode, VTs, Ops);
5199     void *IP = nullptr;
5200     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5201       E->intersectFlagsWith(Flags);
5202       return SDValue(E, 0);
5203     }
5204 
5205     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5206     N->setFlags(Flags);
5207     createOperands(N, Ops);
5208     CSEMap.InsertNode(N, IP);
5209   } else {
5210     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5211     createOperands(N, Ops);
5212   }
5213 
5214   InsertNode(N);
5215   SDValue V = SDValue(N, 0);
5216   NewSDValueDbgMsg(V, "Creating new node: ", this);
5217   return V;
5218 }
5219 
5220 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5221                                        const APInt &C2) {
5222   switch (Opcode) {
5223   case ISD::ADD:  return C1 + C2;
5224   case ISD::SUB:  return C1 - C2;
5225   case ISD::MUL:  return C1 * C2;
5226   case ISD::AND:  return C1 & C2;
5227   case ISD::OR:   return C1 | C2;
5228   case ISD::XOR:  return C1 ^ C2;
5229   case ISD::SHL:  return C1 << C2;
5230   case ISD::SRL:  return C1.lshr(C2);
5231   case ISD::SRA:  return C1.ashr(C2);
5232   case ISD::ROTL: return C1.rotl(C2);
5233   case ISD::ROTR: return C1.rotr(C2);
5234   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5235   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5236   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5237   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5238   case ISD::SADDSAT: return C1.sadd_sat(C2);
5239   case ISD::UADDSAT: return C1.uadd_sat(C2);
5240   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5241   case ISD::USUBSAT: return C1.usub_sat(C2);
5242   case ISD::UDIV:
5243     if (!C2.getBoolValue())
5244       break;
5245     return C1.udiv(C2);
5246   case ISD::UREM:
5247     if (!C2.getBoolValue())
5248       break;
5249     return C1.urem(C2);
5250   case ISD::SDIV:
5251     if (!C2.getBoolValue())
5252       break;
5253     return C1.sdiv(C2);
5254   case ISD::SREM:
5255     if (!C2.getBoolValue())
5256       break;
5257     return C1.srem(C2);
5258   case ISD::MULHS: {
5259     unsigned FullWidth = C1.getBitWidth() * 2;
5260     APInt C1Ext = C1.sext(FullWidth);
5261     APInt C2Ext = C2.sext(FullWidth);
5262     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5263   }
5264   case ISD::MULHU: {
5265     unsigned FullWidth = C1.getBitWidth() * 2;
5266     APInt C1Ext = C1.zext(FullWidth);
5267     APInt C2Ext = C2.zext(FullWidth);
5268     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5269   }
5270   }
5271   return llvm::None;
5272 }
5273 
5274 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5275                                        const GlobalAddressSDNode *GA,
5276                                        const SDNode *N2) {
5277   if (GA->getOpcode() != ISD::GlobalAddress)
5278     return SDValue();
5279   if (!TLI->isOffsetFoldingLegal(GA))
5280     return SDValue();
5281   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5282   if (!C2)
5283     return SDValue();
5284   int64_t Offset = C2->getSExtValue();
5285   switch (Opcode) {
5286   case ISD::ADD: break;
5287   case ISD::SUB: Offset = -uint64_t(Offset); break;
5288   default: return SDValue();
5289   }
5290   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5291                           GA->getOffset() + uint64_t(Offset));
5292 }
5293 
5294 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5295   switch (Opcode) {
5296   case ISD::SDIV:
5297   case ISD::UDIV:
5298   case ISD::SREM:
5299   case ISD::UREM: {
5300     // If a divisor is zero/undef or any element of a divisor vector is
5301     // zero/undef, the whole op is undef.
5302     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5303     SDValue Divisor = Ops[1];
5304     if (Divisor.isUndef() || isNullConstant(Divisor))
5305       return true;
5306 
5307     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5308            llvm::any_of(Divisor->op_values(),
5309                         [](SDValue V) { return V.isUndef() ||
5310                                         isNullConstant(V); });
5311     // TODO: Handle signed overflow.
5312   }
5313   // TODO: Handle oversized shifts.
5314   default:
5315     return false;
5316   }
5317 }
5318 
5319 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5320                                              EVT VT, ArrayRef<SDValue> Ops) {
5321   // If the opcode is a target-specific ISD node, there's nothing we can
5322   // do here and the operand rules may not line up with the below, so
5323   // bail early.
5324   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5325   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5326   // foldCONCAT_VECTORS in getNode before this is called.
5327   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5328     return SDValue();
5329 
5330   unsigned NumOps = Ops.size();
5331   if (NumOps == 0)
5332     return SDValue();
5333 
5334   if (isUndef(Opcode, Ops))
5335     return getUNDEF(VT);
5336 
5337   // Handle binops special cases.
5338   if (NumOps == 2) {
5339     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5340       return CFP;
5341 
5342     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5343       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5344         if (C1->isOpaque() || C2->isOpaque())
5345           return SDValue();
5346 
5347         Optional<APInt> FoldAttempt =
5348             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5349         if (!FoldAttempt)
5350           return SDValue();
5351 
5352         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5353         assert((!Folded || !VT.isVector()) &&
5354                "Can't fold vectors ops with scalar operands");
5355         return Folded;
5356       }
5357     }
5358 
5359     // fold (add Sym, c) -> Sym+c
5360     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5361       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5362     if (TLI->isCommutativeBinOp(Opcode))
5363       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5364         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5365   }
5366 
5367   // This is for vector folding only from here on.
5368   if (!VT.isVector())
5369     return SDValue();
5370 
5371   ElementCount NumElts = VT.getVectorElementCount();
5372 
5373   // See if we can fold through bitcasted integer ops.
5374   // TODO: Can we handle undef elements?
5375   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5376       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5377       Ops[0].getOpcode() == ISD::BITCAST &&
5378       Ops[1].getOpcode() == ISD::BITCAST) {
5379     SDValue N1 = peekThroughBitcasts(Ops[0]);
5380     SDValue N2 = peekThroughBitcasts(Ops[1]);
5381     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5382     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5383     EVT BVVT = N1.getValueType();
5384     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5385       bool IsLE = getDataLayout().isLittleEndian();
5386       unsigned EltBits = VT.getScalarSizeInBits();
5387       SmallVector<APInt> RawBits1, RawBits2;
5388       BitVector UndefElts1, UndefElts2;
5389       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5390           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5391           UndefElts1.none() && UndefElts2.none()) {
5392         SmallVector<APInt> RawBits;
5393         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5394           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5395           if (!Fold)
5396             break;
5397           RawBits.push_back(Fold.getValue());
5398         }
5399         if (RawBits.size() == NumElts.getFixedValue()) {
5400           // We have constant folded, but we need to cast this again back to
5401           // the original (possibly legalized) type.
5402           SmallVector<APInt> DstBits;
5403           BitVector DstUndefs;
5404           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5405                                            DstBits, RawBits, DstUndefs,
5406                                            BitVector(RawBits.size(), false));
5407           EVT BVEltVT = BV1->getOperand(0).getValueType();
5408           unsigned BVEltBits = BVEltVT.getSizeInBits();
5409           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5410           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5411             if (DstUndefs[I])
5412               continue;
5413             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5414           }
5415           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5416         }
5417       }
5418     }
5419   }
5420 
5421   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5422   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5423   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5424       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5425     APInt RHSVal;
5426     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5427       APInt NewStep = Opcode == ISD::MUL
5428                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5429                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5430       return getStepVector(DL, VT, NewStep);
5431     }
5432   }
5433 
5434   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5435     return !Op.getValueType().isVector() ||
5436            Op.getValueType().getVectorElementCount() == NumElts;
5437   };
5438 
5439   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5440     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5441            Op.getOpcode() == ISD::BUILD_VECTOR ||
5442            Op.getOpcode() == ISD::SPLAT_VECTOR;
5443   };
5444 
5445   // All operands must be vector types with the same number of elements as
5446   // the result type and must be either UNDEF or a build/splat vector
5447   // or UNDEF scalars.
5448   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5449       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5450     return SDValue();
5451 
5452   // If we are comparing vectors, then the result needs to be a i1 boolean
5453   // that is then sign-extended back to the legal result type.
5454   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5455 
5456   // Find legal integer scalar type for constant promotion and
5457   // ensure that its scalar size is at least as large as source.
5458   EVT LegalSVT = VT.getScalarType();
5459   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5460     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5461     if (LegalSVT.bitsLT(VT.getScalarType()))
5462       return SDValue();
5463   }
5464 
5465   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5466   // only have one operand to check. For fixed-length vector types we may have
5467   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5468   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5469 
5470   // Constant fold each scalar lane separately.
5471   SmallVector<SDValue, 4> ScalarResults;
5472   for (unsigned I = 0; I != NumVectorElts; I++) {
5473     SmallVector<SDValue, 4> ScalarOps;
5474     for (SDValue Op : Ops) {
5475       EVT InSVT = Op.getValueType().getScalarType();
5476       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5477           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5478         if (Op.isUndef())
5479           ScalarOps.push_back(getUNDEF(InSVT));
5480         else
5481           ScalarOps.push_back(Op);
5482         continue;
5483       }
5484 
5485       SDValue ScalarOp =
5486           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5487       EVT ScalarVT = ScalarOp.getValueType();
5488 
5489       // Build vector (integer) scalar operands may need implicit
5490       // truncation - do this before constant folding.
5491       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5492         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5493 
5494       ScalarOps.push_back(ScalarOp);
5495     }
5496 
5497     // Constant fold the scalar operands.
5498     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5499 
5500     // Legalize the (integer) scalar constant if necessary.
5501     if (LegalSVT != SVT)
5502       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5503 
5504     // Scalar folding only succeeded if the result is a constant or UNDEF.
5505     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5506         ScalarResult.getOpcode() != ISD::ConstantFP)
5507       return SDValue();
5508     ScalarResults.push_back(ScalarResult);
5509   }
5510 
5511   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5512                                    : getBuildVector(VT, DL, ScalarResults);
5513   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5514   return V;
5515 }
5516 
5517 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5518                                          EVT VT, SDValue N1, SDValue N2) {
5519   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5520   //       should. That will require dealing with a potentially non-default
5521   //       rounding mode, checking the "opStatus" return value from the APFloat
5522   //       math calculations, and possibly other variations.
5523   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5524   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5525   if (N1CFP && N2CFP) {
5526     APFloat C1 = N1CFP->getValueAPF(); // make copy
5527     const APFloat &C2 = N2CFP->getValueAPF();
5528     switch (Opcode) {
5529     case ISD::FADD:
5530       C1.add(C2, APFloat::rmNearestTiesToEven);
5531       return getConstantFP(C1, DL, VT);
5532     case ISD::FSUB:
5533       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5534       return getConstantFP(C1, DL, VT);
5535     case ISD::FMUL:
5536       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5537       return getConstantFP(C1, DL, VT);
5538     case ISD::FDIV:
5539       C1.divide(C2, APFloat::rmNearestTiesToEven);
5540       return getConstantFP(C1, DL, VT);
5541     case ISD::FREM:
5542       C1.mod(C2);
5543       return getConstantFP(C1, DL, VT);
5544     case ISD::FCOPYSIGN:
5545       C1.copySign(C2);
5546       return getConstantFP(C1, DL, VT);
5547     case ISD::FMINNUM:
5548       return getConstantFP(minnum(C1, C2), DL, VT);
5549     case ISD::FMAXNUM:
5550       return getConstantFP(maxnum(C1, C2), DL, VT);
5551     case ISD::FMINIMUM:
5552       return getConstantFP(minimum(C1, C2), DL, VT);
5553     case ISD::FMAXIMUM:
5554       return getConstantFP(maximum(C1, C2), DL, VT);
5555     default: break;
5556     }
5557   }
5558   if (N1CFP && Opcode == ISD::FP_ROUND) {
5559     APFloat C1 = N1CFP->getValueAPF();    // make copy
5560     bool Unused;
5561     // This can return overflow, underflow, or inexact; we don't care.
5562     // FIXME need to be more flexible about rounding mode.
5563     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5564                       &Unused);
5565     return getConstantFP(C1, DL, VT);
5566   }
5567 
5568   switch (Opcode) {
5569   case ISD::FSUB:
5570     // -0.0 - undef --> undef (consistent with "fneg undef")
5571     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5572       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5573         return getUNDEF(VT);
5574     LLVM_FALLTHROUGH;
5575 
5576   case ISD::FADD:
5577   case ISD::FMUL:
5578   case ISD::FDIV:
5579   case ISD::FREM:
5580     // If both operands are undef, the result is undef. If 1 operand is undef,
5581     // the result is NaN. This should match the behavior of the IR optimizer.
5582     if (N1.isUndef() && N2.isUndef())
5583       return getUNDEF(VT);
5584     if (N1.isUndef() || N2.isUndef())
5585       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5586   }
5587   return SDValue();
5588 }
5589 
5590 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5591   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5592 
5593   // There's no need to assert on a byte-aligned pointer. All pointers are at
5594   // least byte aligned.
5595   if (A == Align(1))
5596     return Val;
5597 
5598   FoldingSetNodeID ID;
5599   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5600   ID.AddInteger(A.value());
5601 
5602   void *IP = nullptr;
5603   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5604     return SDValue(E, 0);
5605 
5606   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5607                                          Val.getValueType(), A);
5608   createOperands(N, {Val});
5609 
5610   CSEMap.InsertNode(N, IP);
5611   InsertNode(N);
5612 
5613   SDValue V(N, 0);
5614   NewSDValueDbgMsg(V, "Creating new node: ", this);
5615   return V;
5616 }
5617 
5618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5619                               SDValue N1, SDValue N2) {
5620   SDNodeFlags Flags;
5621   if (Inserter)
5622     Flags = Inserter->getFlags();
5623   return getNode(Opcode, DL, VT, N1, N2, Flags);
5624 }
5625 
5626 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5627                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5628   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5629          N2.getOpcode() != ISD::DELETED_NODE &&
5630          "Operand is DELETED_NODE!");
5631   // Canonicalize constant to RHS if commutative.
5632   if (TLI->isCommutativeBinOp(Opcode)) {
5633     bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5634     bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5635     bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5636     bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5637     if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5638       std::swap(N1, N2);
5639   }
5640 
5641   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5642   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5643 
5644   switch (Opcode) {
5645   default: break;
5646   case ISD::TokenFactor:
5647     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5648            N2.getValueType() == MVT::Other && "Invalid token factor!");
5649     // Fold trivial token factors.
5650     if (N1.getOpcode() == ISD::EntryToken) return N2;
5651     if (N2.getOpcode() == ISD::EntryToken) return N1;
5652     if (N1 == N2) return N1;
5653     break;
5654   case ISD::BUILD_VECTOR: {
5655     // Attempt to simplify BUILD_VECTOR.
5656     SDValue Ops[] = {N1, N2};
5657     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5658       return V;
5659     break;
5660   }
5661   case ISD::CONCAT_VECTORS: {
5662     SDValue Ops[] = {N1, N2};
5663     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5664       return V;
5665     break;
5666   }
5667   case ISD::AND:
5668     assert(VT.isInteger() && "This operator does not apply to FP types!");
5669     assert(N1.getValueType() == N2.getValueType() &&
5670            N1.getValueType() == VT && "Binary operator types must match!");
5671     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5672     // worth handling here.
5673     if (N2C && N2C->isZero())
5674       return N2;
5675     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5676       return N1;
5677     break;
5678   case ISD::OR:
5679   case ISD::XOR:
5680   case ISD::ADD:
5681   case ISD::SUB:
5682     assert(VT.isInteger() && "This operator does not apply to FP types!");
5683     assert(N1.getValueType() == N2.getValueType() &&
5684            N1.getValueType() == VT && "Binary operator types must match!");
5685     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5686     // it's worth handling here.
5687     if (N2C && N2C->isZero())
5688       return N1;
5689     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5690         VT.getVectorElementType() == MVT::i1)
5691       return getNode(ISD::XOR, DL, VT, N1, N2);
5692     break;
5693   case ISD::MUL:
5694     assert(VT.isInteger() && "This operator does not apply to FP types!");
5695     assert(N1.getValueType() == N2.getValueType() &&
5696            N1.getValueType() == VT && "Binary operator types must match!");
5697     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5698       return getNode(ISD::AND, DL, VT, N1, N2);
5699     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5700       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5701       const APInt &N2CImm = N2C->getAPIntValue();
5702       return getVScale(DL, VT, MulImm * N2CImm);
5703     }
5704     break;
5705   case ISD::UDIV:
5706   case ISD::UREM:
5707   case ISD::MULHU:
5708   case ISD::MULHS:
5709   case ISD::SDIV:
5710   case ISD::SREM:
5711   case ISD::SADDSAT:
5712   case ISD::SSUBSAT:
5713   case ISD::UADDSAT:
5714   case ISD::USUBSAT:
5715     assert(VT.isInteger() && "This operator does not apply to FP types!");
5716     assert(N1.getValueType() == N2.getValueType() &&
5717            N1.getValueType() == VT && "Binary operator types must match!");
5718     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5719       // fold (add_sat x, y) -> (or x, y) for bool types.
5720       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5721         return getNode(ISD::OR, DL, VT, N1, N2);
5722       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5723       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5724         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5725     }
5726     break;
5727   case ISD::SMIN:
5728   case ISD::UMAX:
5729     assert(VT.isInteger() && "This operator does not apply to FP types!");
5730     assert(N1.getValueType() == N2.getValueType() &&
5731            N1.getValueType() == VT && "Binary operator types must match!");
5732     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5733       return getNode(ISD::OR, DL, VT, N1, N2);
5734     break;
5735   case ISD::SMAX:
5736   case ISD::UMIN:
5737     assert(VT.isInteger() && "This operator does not apply to FP types!");
5738     assert(N1.getValueType() == N2.getValueType() &&
5739            N1.getValueType() == VT && "Binary operator types must match!");
5740     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5741       return getNode(ISD::AND, DL, VT, N1, N2);
5742     break;
5743   case ISD::FADD:
5744   case ISD::FSUB:
5745   case ISD::FMUL:
5746   case ISD::FDIV:
5747   case ISD::FREM:
5748     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5749     assert(N1.getValueType() == N2.getValueType() &&
5750            N1.getValueType() == VT && "Binary operator types must match!");
5751     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5752       return V;
5753     break;
5754   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5755     assert(N1.getValueType() == VT &&
5756            N1.getValueType().isFloatingPoint() &&
5757            N2.getValueType().isFloatingPoint() &&
5758            "Invalid FCOPYSIGN!");
5759     break;
5760   case ISD::SHL:
5761     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5762       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5763       const APInt &ShiftImm = N2C->getAPIntValue();
5764       return getVScale(DL, VT, MulImm << ShiftImm);
5765     }
5766     LLVM_FALLTHROUGH;
5767   case ISD::SRA:
5768   case ISD::SRL:
5769     if (SDValue V = simplifyShift(N1, N2))
5770       return V;
5771     LLVM_FALLTHROUGH;
5772   case ISD::ROTL:
5773   case ISD::ROTR:
5774     assert(VT == N1.getValueType() &&
5775            "Shift operators return type must be the same as their first arg");
5776     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5777            "Shifts only work on integers");
5778     assert((!VT.isVector() || VT == N2.getValueType()) &&
5779            "Vector shift amounts must be in the same as their first arg");
5780     // Verify that the shift amount VT is big enough to hold valid shift
5781     // amounts.  This catches things like trying to shift an i1024 value by an
5782     // i8, which is easy to fall into in generic code that uses
5783     // TLI.getShiftAmount().
5784     assert(N2.getValueType().getScalarSizeInBits() >=
5785                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5786            "Invalid use of small shift amount with oversized value!");
5787 
5788     // Always fold shifts of i1 values so the code generator doesn't need to
5789     // handle them.  Since we know the size of the shift has to be less than the
5790     // size of the value, the shift/rotate count is guaranteed to be zero.
5791     if (VT == MVT::i1)
5792       return N1;
5793     if (N2C && N2C->isZero())
5794       return N1;
5795     break;
5796   case ISD::FP_ROUND:
5797     assert(VT.isFloatingPoint() &&
5798            N1.getValueType().isFloatingPoint() &&
5799            VT.bitsLE(N1.getValueType()) &&
5800            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5801            "Invalid FP_ROUND!");
5802     if (N1.getValueType() == VT) return N1;  // noop conversion.
5803     break;
5804   case ISD::AssertSext:
5805   case ISD::AssertZext: {
5806     EVT EVT = cast<VTSDNode>(N2)->getVT();
5807     assert(VT == N1.getValueType() && "Not an inreg extend!");
5808     assert(VT.isInteger() && EVT.isInteger() &&
5809            "Cannot *_EXTEND_INREG FP types");
5810     assert(!EVT.isVector() &&
5811            "AssertSExt/AssertZExt type should be the vector element type "
5812            "rather than the vector type!");
5813     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5814     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5815     break;
5816   }
5817   case ISD::SIGN_EXTEND_INREG: {
5818     EVT EVT = cast<VTSDNode>(N2)->getVT();
5819     assert(VT == N1.getValueType() && "Not an inreg extend!");
5820     assert(VT.isInteger() && EVT.isInteger() &&
5821            "Cannot *_EXTEND_INREG FP types");
5822     assert(EVT.isVector() == VT.isVector() &&
5823            "SIGN_EXTEND_INREG type should be vector iff the operand "
5824            "type is vector!");
5825     assert((!EVT.isVector() ||
5826             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5827            "Vector element counts must match in SIGN_EXTEND_INREG");
5828     assert(EVT.bitsLE(VT) && "Not extending!");
5829     if (EVT == VT) return N1;  // Not actually extending
5830 
5831     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5832       unsigned FromBits = EVT.getScalarSizeInBits();
5833       Val <<= Val.getBitWidth() - FromBits;
5834       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5835       return getConstant(Val, DL, ConstantVT);
5836     };
5837 
5838     if (N1C) {
5839       const APInt &Val = N1C->getAPIntValue();
5840       return SignExtendInReg(Val, VT);
5841     }
5842 
5843     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5844       SmallVector<SDValue, 8> Ops;
5845       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5846       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5847         SDValue Op = N1.getOperand(i);
5848         if (Op.isUndef()) {
5849           Ops.push_back(getUNDEF(OpVT));
5850           continue;
5851         }
5852         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5853         APInt Val = C->getAPIntValue();
5854         Ops.push_back(SignExtendInReg(Val, OpVT));
5855       }
5856       return getBuildVector(VT, DL, Ops);
5857     }
5858     break;
5859   }
5860   case ISD::FP_TO_SINT_SAT:
5861   case ISD::FP_TO_UINT_SAT: {
5862     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5863            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5864     assert(N1.getValueType().isVector() == VT.isVector() &&
5865            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5866            "vector!");
5867     assert((!VT.isVector() || VT.getVectorNumElements() ==
5868                                   N1.getValueType().getVectorNumElements()) &&
5869            "Vector element counts must match in FP_TO_*INT_SAT");
5870     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5871            "Type to saturate to must be a scalar.");
5872     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5873            "Not extending!");
5874     break;
5875   }
5876   case ISD::EXTRACT_VECTOR_ELT:
5877     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5878            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5879              element type of the vector.");
5880 
5881     // Extract from an undefined value or using an undefined index is undefined.
5882     if (N1.isUndef() || N2.isUndef())
5883       return getUNDEF(VT);
5884 
5885     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5886     // vectors. For scalable vectors we will provide appropriate support for
5887     // dealing with arbitrary indices.
5888     if (N2C && N1.getValueType().isFixedLengthVector() &&
5889         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5890       return getUNDEF(VT);
5891 
5892     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5893     // expanding copies of large vectors from registers. This only works for
5894     // fixed length vectors, since we need to know the exact number of
5895     // elements.
5896     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5897         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5898       unsigned Factor =
5899         N1.getOperand(0).getValueType().getVectorNumElements();
5900       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5901                      N1.getOperand(N2C->getZExtValue() / Factor),
5902                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5903     }
5904 
5905     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5906     // lowering is expanding large vector constants.
5907     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5908                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5909       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5910               N1.getValueType().isFixedLengthVector()) &&
5911              "BUILD_VECTOR used for scalable vectors");
5912       unsigned Index =
5913           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5914       SDValue Elt = N1.getOperand(Index);
5915 
5916       if (VT != Elt.getValueType())
5917         // If the vector element type is not legal, the BUILD_VECTOR operands
5918         // are promoted and implicitly truncated, and the result implicitly
5919         // extended. Make that explicit here.
5920         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5921 
5922       return Elt;
5923     }
5924 
5925     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5926     // operations are lowered to scalars.
5927     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5928       // If the indices are the same, return the inserted element else
5929       // if the indices are known different, extract the element from
5930       // the original vector.
5931       SDValue N1Op2 = N1.getOperand(2);
5932       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5933 
5934       if (N1Op2C && N2C) {
5935         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5936           if (VT == N1.getOperand(1).getValueType())
5937             return N1.getOperand(1);
5938           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5939         }
5940         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5941       }
5942     }
5943 
5944     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5945     // when vector types are scalarized and v1iX is legal.
5946     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5947     // Here we are completely ignoring the extract element index (N2),
5948     // which is fine for fixed width vectors, since any index other than 0
5949     // is undefined anyway. However, this cannot be ignored for scalable
5950     // vectors - in theory we could support this, but we don't want to do this
5951     // without a profitability check.
5952     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5953         N1.getValueType().isFixedLengthVector() &&
5954         N1.getValueType().getVectorNumElements() == 1) {
5955       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5956                      N1.getOperand(1));
5957     }
5958     break;
5959   case ISD::EXTRACT_ELEMENT:
5960     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5961     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5962            (N1.getValueType().isInteger() == VT.isInteger()) &&
5963            N1.getValueType() != VT &&
5964            "Wrong types for EXTRACT_ELEMENT!");
5965 
5966     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5967     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5968     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5969     if (N1.getOpcode() == ISD::BUILD_PAIR)
5970       return N1.getOperand(N2C->getZExtValue());
5971 
5972     // EXTRACT_ELEMENT of a constant int is also very common.
5973     if (N1C) {
5974       unsigned ElementSize = VT.getSizeInBits();
5975       unsigned Shift = ElementSize * N2C->getZExtValue();
5976       const APInt &Val = N1C->getAPIntValue();
5977       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5978     }
5979     break;
5980   case ISD::EXTRACT_SUBVECTOR: {
5981     EVT N1VT = N1.getValueType();
5982     assert(VT.isVector() && N1VT.isVector() &&
5983            "Extract subvector VTs must be vectors!");
5984     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5985            "Extract subvector VTs must have the same element type!");
5986     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5987            "Cannot extract a scalable vector from a fixed length vector!");
5988     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5989             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5990            "Extract subvector must be from larger vector to smaller vector!");
5991     assert(N2C && "Extract subvector index must be a constant");
5992     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5993             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5994                 N1VT.getVectorMinNumElements()) &&
5995            "Extract subvector overflow!");
5996     assert(N2C->getAPIntValue().getBitWidth() ==
5997                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5998            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5999 
6000     // Trivial extraction.
6001     if (VT == N1VT)
6002       return N1;
6003 
6004     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6005     if (N1.isUndef())
6006       return getUNDEF(VT);
6007 
6008     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6009     // the concat have the same type as the extract.
6010     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6011         VT == N1.getOperand(0).getValueType()) {
6012       unsigned Factor = VT.getVectorMinNumElements();
6013       return N1.getOperand(N2C->getZExtValue() / Factor);
6014     }
6015 
6016     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6017     // during shuffle legalization.
6018     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6019         VT == N1.getOperand(1).getValueType())
6020       return N1.getOperand(1);
6021     break;
6022   }
6023   }
6024 
6025   // Perform trivial constant folding.
6026   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6027     return SV;
6028 
6029   // Canonicalize an UNDEF to the RHS, even over a constant.
6030   if (N1.isUndef()) {
6031     if (TLI->isCommutativeBinOp(Opcode)) {
6032       std::swap(N1, N2);
6033     } else {
6034       switch (Opcode) {
6035       case ISD::SIGN_EXTEND_INREG:
6036       case ISD::SUB:
6037         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6038       case ISD::UDIV:
6039       case ISD::SDIV:
6040       case ISD::UREM:
6041       case ISD::SREM:
6042       case ISD::SSUBSAT:
6043       case ISD::USUBSAT:
6044         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6045       }
6046     }
6047   }
6048 
6049   // Fold a bunch of operators when the RHS is undef.
6050   if (N2.isUndef()) {
6051     switch (Opcode) {
6052     case ISD::XOR:
6053       if (N1.isUndef())
6054         // Handle undef ^ undef -> 0 special case. This is a common
6055         // idiom (misuse).
6056         return getConstant(0, DL, VT);
6057       LLVM_FALLTHROUGH;
6058     case ISD::ADD:
6059     case ISD::SUB:
6060     case ISD::UDIV:
6061     case ISD::SDIV:
6062     case ISD::UREM:
6063     case ISD::SREM:
6064       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6065     case ISD::MUL:
6066     case ISD::AND:
6067     case ISD::SSUBSAT:
6068     case ISD::USUBSAT:
6069       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6070     case ISD::OR:
6071     case ISD::SADDSAT:
6072     case ISD::UADDSAT:
6073       return getAllOnesConstant(DL, VT);
6074     }
6075   }
6076 
6077   // Memoize this node if possible.
6078   SDNode *N;
6079   SDVTList VTs = getVTList(VT);
6080   SDValue Ops[] = {N1, N2};
6081   if (VT != MVT::Glue) {
6082     FoldingSetNodeID ID;
6083     AddNodeIDNode(ID, Opcode, VTs, Ops);
6084     void *IP = nullptr;
6085     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6086       E->intersectFlagsWith(Flags);
6087       return SDValue(E, 0);
6088     }
6089 
6090     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6091     N->setFlags(Flags);
6092     createOperands(N, Ops);
6093     CSEMap.InsertNode(N, IP);
6094   } else {
6095     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6096     createOperands(N, Ops);
6097   }
6098 
6099   InsertNode(N);
6100   SDValue V = SDValue(N, 0);
6101   NewSDValueDbgMsg(V, "Creating new node: ", this);
6102   return V;
6103 }
6104 
6105 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6106                               SDValue N1, SDValue N2, SDValue N3) {
6107   SDNodeFlags Flags;
6108   if (Inserter)
6109     Flags = Inserter->getFlags();
6110   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6111 }
6112 
6113 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6114                               SDValue N1, SDValue N2, SDValue N3,
6115                               const SDNodeFlags Flags) {
6116   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6117          N2.getOpcode() != ISD::DELETED_NODE &&
6118          N3.getOpcode() != ISD::DELETED_NODE &&
6119          "Operand is DELETED_NODE!");
6120   // Perform various simplifications.
6121   switch (Opcode) {
6122   case ISD::FMA: {
6123     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6124     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6125            N3.getValueType() == VT && "FMA types must match!");
6126     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6127     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6128     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6129     if (N1CFP && N2CFP && N3CFP) {
6130       APFloat  V1 = N1CFP->getValueAPF();
6131       const APFloat &V2 = N2CFP->getValueAPF();
6132       const APFloat &V3 = N3CFP->getValueAPF();
6133       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6134       return getConstantFP(V1, DL, VT);
6135     }
6136     break;
6137   }
6138   case ISD::BUILD_VECTOR: {
6139     // Attempt to simplify BUILD_VECTOR.
6140     SDValue Ops[] = {N1, N2, N3};
6141     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6142       return V;
6143     break;
6144   }
6145   case ISD::CONCAT_VECTORS: {
6146     SDValue Ops[] = {N1, N2, N3};
6147     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6148       return V;
6149     break;
6150   }
6151   case ISD::SETCC: {
6152     assert(VT.isInteger() && "SETCC result type must be an integer!");
6153     assert(N1.getValueType() == N2.getValueType() &&
6154            "SETCC operands must have the same type!");
6155     assert(VT.isVector() == N1.getValueType().isVector() &&
6156            "SETCC type should be vector iff the operand type is vector!");
6157     assert((!VT.isVector() || VT.getVectorElementCount() ==
6158                                   N1.getValueType().getVectorElementCount()) &&
6159            "SETCC vector element counts must match!");
6160     // Use FoldSetCC to simplify SETCC's.
6161     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6162       return V;
6163     // Vector constant folding.
6164     SDValue Ops[] = {N1, N2, N3};
6165     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6166       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6167       return V;
6168     }
6169     break;
6170   }
6171   case ISD::SELECT:
6172   case ISD::VSELECT:
6173     if (SDValue V = simplifySelect(N1, N2, N3))
6174       return V;
6175     break;
6176   case ISD::VECTOR_SHUFFLE:
6177     llvm_unreachable("should use getVectorShuffle constructor!");
6178   case ISD::VECTOR_SPLICE: {
6179     if (cast<ConstantSDNode>(N3)->isNullValue())
6180       return N1;
6181     break;
6182   }
6183   case ISD::INSERT_VECTOR_ELT: {
6184     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6185     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6186     // for scalable vectors where we will generate appropriate code to
6187     // deal with out-of-bounds cases correctly.
6188     if (N3C && N1.getValueType().isFixedLengthVector() &&
6189         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6190       return getUNDEF(VT);
6191 
6192     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6193     if (N3.isUndef())
6194       return getUNDEF(VT);
6195 
6196     // If the inserted element is an UNDEF, just use the input vector.
6197     if (N2.isUndef())
6198       return N1;
6199 
6200     break;
6201   }
6202   case ISD::INSERT_SUBVECTOR: {
6203     // Inserting undef into undef is still undef.
6204     if (N1.isUndef() && N2.isUndef())
6205       return getUNDEF(VT);
6206 
6207     EVT N2VT = N2.getValueType();
6208     assert(VT == N1.getValueType() &&
6209            "Dest and insert subvector source types must match!");
6210     assert(VT.isVector() && N2VT.isVector() &&
6211            "Insert subvector VTs must be vectors!");
6212     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6213            "Cannot insert a scalable vector into a fixed length vector!");
6214     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6215             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6216            "Insert subvector must be from smaller vector to larger vector!");
6217     assert(isa<ConstantSDNode>(N3) &&
6218            "Insert subvector index must be constant");
6219     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6220             (N2VT.getVectorMinNumElements() +
6221              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6222                 VT.getVectorMinNumElements()) &&
6223            "Insert subvector overflow!");
6224     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6225                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6226            "Constant index for INSERT_SUBVECTOR has an invalid size");
6227 
6228     // Trivial insertion.
6229     if (VT == N2VT)
6230       return N2;
6231 
6232     // If this is an insert of an extracted vector into an undef vector, we
6233     // can just use the input to the extract.
6234     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6235         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6236       return N2.getOperand(0);
6237     break;
6238   }
6239   case ISD::BITCAST:
6240     // Fold bit_convert nodes from a type to themselves.
6241     if (N1.getValueType() == VT)
6242       return N1;
6243     break;
6244   }
6245 
6246   // Memoize node if it doesn't produce a flag.
6247   SDNode *N;
6248   SDVTList VTs = getVTList(VT);
6249   SDValue Ops[] = {N1, N2, N3};
6250   if (VT != MVT::Glue) {
6251     FoldingSetNodeID ID;
6252     AddNodeIDNode(ID, Opcode, VTs, Ops);
6253     void *IP = nullptr;
6254     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6255       E->intersectFlagsWith(Flags);
6256       return SDValue(E, 0);
6257     }
6258 
6259     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6260     N->setFlags(Flags);
6261     createOperands(N, Ops);
6262     CSEMap.InsertNode(N, IP);
6263   } else {
6264     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6265     createOperands(N, Ops);
6266   }
6267 
6268   InsertNode(N);
6269   SDValue V = SDValue(N, 0);
6270   NewSDValueDbgMsg(V, "Creating new node: ", this);
6271   return V;
6272 }
6273 
6274 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6275                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6276   SDValue Ops[] = { N1, N2, N3, N4 };
6277   return getNode(Opcode, DL, VT, Ops);
6278 }
6279 
6280 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6281                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6282                               SDValue N5) {
6283   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6284   return getNode(Opcode, DL, VT, Ops);
6285 }
6286 
6287 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6288 /// the incoming stack arguments to be loaded from the stack.
6289 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6290   SmallVector<SDValue, 8> ArgChains;
6291 
6292   // Include the original chain at the beginning of the list. When this is
6293   // used by target LowerCall hooks, this helps legalize find the
6294   // CALLSEQ_BEGIN node.
6295   ArgChains.push_back(Chain);
6296 
6297   // Add a chain value for each stack argument.
6298   for (SDNode *U : getEntryNode().getNode()->uses())
6299     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6300       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6301         if (FI->getIndex() < 0)
6302           ArgChains.push_back(SDValue(L, 1));
6303 
6304   // Build a tokenfactor for all the chains.
6305   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6306 }
6307 
6308 /// getMemsetValue - Vectorized representation of the memset value
6309 /// operand.
6310 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6311                               const SDLoc &dl) {
6312   assert(!Value.isUndef());
6313 
6314   unsigned NumBits = VT.getScalarSizeInBits();
6315   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6316     assert(C->getAPIntValue().getBitWidth() == 8);
6317     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6318     if (VT.isInteger()) {
6319       bool IsOpaque = VT.getSizeInBits() > 64 ||
6320           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6321       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6322     }
6323     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6324                              VT);
6325   }
6326 
6327   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6328   EVT IntVT = VT.getScalarType();
6329   if (!IntVT.isInteger())
6330     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6331 
6332   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6333   if (NumBits > 8) {
6334     // Use a multiplication with 0x010101... to extend the input to the
6335     // required length.
6336     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6337     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6338                         DAG.getConstant(Magic, dl, IntVT));
6339   }
6340 
6341   if (VT != Value.getValueType() && !VT.isInteger())
6342     Value = DAG.getBitcast(VT.getScalarType(), Value);
6343   if (VT != Value.getValueType())
6344     Value = DAG.getSplatBuildVector(VT, dl, Value);
6345 
6346   return Value;
6347 }
6348 
6349 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6350 /// used when a memcpy is turned into a memset when the source is a constant
6351 /// string ptr.
6352 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6353                                   const TargetLowering &TLI,
6354                                   const ConstantDataArraySlice &Slice) {
6355   // Handle vector with all elements zero.
6356   if (Slice.Array == nullptr) {
6357     if (VT.isInteger())
6358       return DAG.getConstant(0, dl, VT);
6359     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6360       return DAG.getConstantFP(0.0, dl, VT);
6361     if (VT.isVector()) {
6362       unsigned NumElts = VT.getVectorNumElements();
6363       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6364       return DAG.getNode(ISD::BITCAST, dl, VT,
6365                          DAG.getConstant(0, dl,
6366                                          EVT::getVectorVT(*DAG.getContext(),
6367                                                           EltVT, NumElts)));
6368     }
6369     llvm_unreachable("Expected type!");
6370   }
6371 
6372   assert(!VT.isVector() && "Can't handle vector type here!");
6373   unsigned NumVTBits = VT.getSizeInBits();
6374   unsigned NumVTBytes = NumVTBits / 8;
6375   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6376 
6377   APInt Val(NumVTBits, 0);
6378   if (DAG.getDataLayout().isLittleEndian()) {
6379     for (unsigned i = 0; i != NumBytes; ++i)
6380       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6381   } else {
6382     for (unsigned i = 0; i != NumBytes; ++i)
6383       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6384   }
6385 
6386   // If the "cost" of materializing the integer immediate is less than the cost
6387   // of a load, then it is cost effective to turn the load into the immediate.
6388   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6389   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6390     return DAG.getConstant(Val, dl, VT);
6391   return SDValue();
6392 }
6393 
6394 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6395                                            const SDLoc &DL,
6396                                            const SDNodeFlags Flags) {
6397   EVT VT = Base.getValueType();
6398   SDValue Index;
6399 
6400   if (Offset.isScalable())
6401     Index = getVScale(DL, Base.getValueType(),
6402                       APInt(Base.getValueSizeInBits().getFixedSize(),
6403                             Offset.getKnownMinSize()));
6404   else
6405     Index = getConstant(Offset.getFixedSize(), DL, VT);
6406 
6407   return getMemBasePlusOffset(Base, Index, DL, Flags);
6408 }
6409 
6410 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6411                                            const SDLoc &DL,
6412                                            const SDNodeFlags Flags) {
6413   assert(Offset.getValueType().isInteger());
6414   EVT BasePtrVT = Ptr.getValueType();
6415   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6416 }
6417 
6418 /// Returns true if memcpy source is constant data.
6419 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6420   uint64_t SrcDelta = 0;
6421   GlobalAddressSDNode *G = nullptr;
6422   if (Src.getOpcode() == ISD::GlobalAddress)
6423     G = cast<GlobalAddressSDNode>(Src);
6424   else if (Src.getOpcode() == ISD::ADD &&
6425            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6426            Src.getOperand(1).getOpcode() == ISD::Constant) {
6427     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6428     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6429   }
6430   if (!G)
6431     return false;
6432 
6433   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6434                                   SrcDelta + G->getOffset());
6435 }
6436 
6437 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6438                                       SelectionDAG &DAG) {
6439   // On Darwin, -Os means optimize for size without hurting performance, so
6440   // only really optimize for size when -Oz (MinSize) is used.
6441   if (MF.getTarget().getTargetTriple().isOSDarwin())
6442     return MF.getFunction().hasMinSize();
6443   return DAG.shouldOptForSize();
6444 }
6445 
6446 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6447                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6448                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6449                           SmallVector<SDValue, 16> &OutStoreChains) {
6450   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6451   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6452   SmallVector<SDValue, 16> GluedLoadChains;
6453   for (unsigned i = From; i < To; ++i) {
6454     OutChains.push_back(OutLoadChains[i]);
6455     GluedLoadChains.push_back(OutLoadChains[i]);
6456   }
6457 
6458   // Chain for all loads.
6459   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6460                                   GluedLoadChains);
6461 
6462   for (unsigned i = From; i < To; ++i) {
6463     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6464     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6465                                   ST->getBasePtr(), ST->getMemoryVT(),
6466                                   ST->getMemOperand());
6467     OutChains.push_back(NewStore);
6468   }
6469 }
6470 
6471 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6472                                        SDValue Chain, SDValue Dst, SDValue Src,
6473                                        uint64_t Size, Align Alignment,
6474                                        bool isVol, bool AlwaysInline,
6475                                        MachinePointerInfo DstPtrInfo,
6476                                        MachinePointerInfo SrcPtrInfo,
6477                                        const AAMDNodes &AAInfo) {
6478   // Turn a memcpy of undef to nop.
6479   // FIXME: We need to honor volatile even is Src is undef.
6480   if (Src.isUndef())
6481     return Chain;
6482 
6483   // Expand memcpy to a series of load and store ops if the size operand falls
6484   // below a certain threshold.
6485   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6486   // rather than maybe a humongous number of loads and stores.
6487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6488   const DataLayout &DL = DAG.getDataLayout();
6489   LLVMContext &C = *DAG.getContext();
6490   std::vector<EVT> MemOps;
6491   bool DstAlignCanChange = false;
6492   MachineFunction &MF = DAG.getMachineFunction();
6493   MachineFrameInfo &MFI = MF.getFrameInfo();
6494   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6495   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6496   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6497     DstAlignCanChange = true;
6498   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6499   if (!SrcAlign || Alignment > *SrcAlign)
6500     SrcAlign = Alignment;
6501   assert(SrcAlign && "SrcAlign must be set");
6502   ConstantDataArraySlice Slice;
6503   // If marked as volatile, perform a copy even when marked as constant.
6504   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6505   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6506   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6507   const MemOp Op = isZeroConstant
6508                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6509                                     /*IsZeroMemset*/ true, isVol)
6510                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6511                                      *SrcAlign, isVol, CopyFromConstant);
6512   if (!TLI.findOptimalMemOpLowering(
6513           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6514           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6515     return SDValue();
6516 
6517   if (DstAlignCanChange) {
6518     Type *Ty = MemOps[0].getTypeForEVT(C);
6519     Align NewAlign = DL.getABITypeAlign(Ty);
6520 
6521     // Don't promote to an alignment that would require dynamic stack
6522     // realignment.
6523     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6524     if (!TRI->hasStackRealignment(MF))
6525       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6526         NewAlign = NewAlign / 2;
6527 
6528     if (NewAlign > Alignment) {
6529       // Give the stack frame object a larger alignment if needed.
6530       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6531         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6532       Alignment = NewAlign;
6533     }
6534   }
6535 
6536   // Prepare AAInfo for loads/stores after lowering this memcpy.
6537   AAMDNodes NewAAInfo = AAInfo;
6538   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6539 
6540   MachineMemOperand::Flags MMOFlags =
6541       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6542   SmallVector<SDValue, 16> OutLoadChains;
6543   SmallVector<SDValue, 16> OutStoreChains;
6544   SmallVector<SDValue, 32> OutChains;
6545   unsigned NumMemOps = MemOps.size();
6546   uint64_t SrcOff = 0, DstOff = 0;
6547   for (unsigned i = 0; i != NumMemOps; ++i) {
6548     EVT VT = MemOps[i];
6549     unsigned VTSize = VT.getSizeInBits() / 8;
6550     SDValue Value, Store;
6551 
6552     if (VTSize > Size) {
6553       // Issuing an unaligned load / store pair  that overlaps with the previous
6554       // pair. Adjust the offset accordingly.
6555       assert(i == NumMemOps-1 && i != 0);
6556       SrcOff -= VTSize - Size;
6557       DstOff -= VTSize - Size;
6558     }
6559 
6560     if (CopyFromConstant &&
6561         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6562       // It's unlikely a store of a vector immediate can be done in a single
6563       // instruction. It would require a load from a constantpool first.
6564       // We only handle zero vectors here.
6565       // FIXME: Handle other cases where store of vector immediate is done in
6566       // a single instruction.
6567       ConstantDataArraySlice SubSlice;
6568       if (SrcOff < Slice.Length) {
6569         SubSlice = Slice;
6570         SubSlice.move(SrcOff);
6571       } else {
6572         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6573         SubSlice.Array = nullptr;
6574         SubSlice.Offset = 0;
6575         SubSlice.Length = VTSize;
6576       }
6577       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6578       if (Value.getNode()) {
6579         Store = DAG.getStore(
6580             Chain, dl, Value,
6581             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6582             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6583         OutChains.push_back(Store);
6584       }
6585     }
6586 
6587     if (!Store.getNode()) {
6588       // The type might not be legal for the target.  This should only happen
6589       // if the type is smaller than a legal type, as on PPC, so the right
6590       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6591       // to Load/Store if NVT==VT.
6592       // FIXME does the case above also need this?
6593       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6594       assert(NVT.bitsGE(VT));
6595 
6596       bool isDereferenceable =
6597         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6598       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6599       if (isDereferenceable)
6600         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6601 
6602       Value = DAG.getExtLoad(
6603           ISD::EXTLOAD, dl, NVT, Chain,
6604           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6605           SrcPtrInfo.getWithOffset(SrcOff), VT,
6606           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6607       OutLoadChains.push_back(Value.getValue(1));
6608 
6609       Store = DAG.getTruncStore(
6610           Chain, dl, Value,
6611           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6612           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6613       OutStoreChains.push_back(Store);
6614     }
6615     SrcOff += VTSize;
6616     DstOff += VTSize;
6617     Size -= VTSize;
6618   }
6619 
6620   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6621                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6622   unsigned NumLdStInMemcpy = OutStoreChains.size();
6623 
6624   if (NumLdStInMemcpy) {
6625     // It may be that memcpy might be converted to memset if it's memcpy
6626     // of constants. In such a case, we won't have loads and stores, but
6627     // just stores. In the absence of loads, there is nothing to gang up.
6628     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6629       // If target does not care, just leave as it.
6630       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6631         OutChains.push_back(OutLoadChains[i]);
6632         OutChains.push_back(OutStoreChains[i]);
6633       }
6634     } else {
6635       // Ld/St less than/equal limit set by target.
6636       if (NumLdStInMemcpy <= GluedLdStLimit) {
6637           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6638                                         NumLdStInMemcpy, OutLoadChains,
6639                                         OutStoreChains);
6640       } else {
6641         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6642         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6643         unsigned GlueIter = 0;
6644 
6645         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6646           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6647           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6648 
6649           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6650                                        OutLoadChains, OutStoreChains);
6651           GlueIter += GluedLdStLimit;
6652         }
6653 
6654         // Residual ld/st.
6655         if (RemainingLdStInMemcpy) {
6656           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6657                                         RemainingLdStInMemcpy, OutLoadChains,
6658                                         OutStoreChains);
6659         }
6660       }
6661     }
6662   }
6663   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6664 }
6665 
6666 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6667                                         SDValue Chain, SDValue Dst, SDValue Src,
6668                                         uint64_t Size, Align Alignment,
6669                                         bool isVol, bool AlwaysInline,
6670                                         MachinePointerInfo DstPtrInfo,
6671                                         MachinePointerInfo SrcPtrInfo,
6672                                         const AAMDNodes &AAInfo) {
6673   // Turn a memmove of undef to nop.
6674   // FIXME: We need to honor volatile even is Src is undef.
6675   if (Src.isUndef())
6676     return Chain;
6677 
6678   // Expand memmove to a series of load and store ops if the size operand falls
6679   // below a certain threshold.
6680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6681   const DataLayout &DL = DAG.getDataLayout();
6682   LLVMContext &C = *DAG.getContext();
6683   std::vector<EVT> MemOps;
6684   bool DstAlignCanChange = false;
6685   MachineFunction &MF = DAG.getMachineFunction();
6686   MachineFrameInfo &MFI = MF.getFrameInfo();
6687   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6688   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6689   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6690     DstAlignCanChange = true;
6691   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6692   if (!SrcAlign || Alignment > *SrcAlign)
6693     SrcAlign = Alignment;
6694   assert(SrcAlign && "SrcAlign must be set");
6695   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6696   if (!TLI.findOptimalMemOpLowering(
6697           MemOps, Limit,
6698           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6699                       /*IsVolatile*/ true),
6700           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6701           MF.getFunction().getAttributes()))
6702     return SDValue();
6703 
6704   if (DstAlignCanChange) {
6705     Type *Ty = MemOps[0].getTypeForEVT(C);
6706     Align NewAlign = DL.getABITypeAlign(Ty);
6707     if (NewAlign > Alignment) {
6708       // Give the stack frame object a larger alignment if needed.
6709       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6710         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6711       Alignment = NewAlign;
6712     }
6713   }
6714 
6715   // Prepare AAInfo for loads/stores after lowering this memmove.
6716   AAMDNodes NewAAInfo = AAInfo;
6717   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6718 
6719   MachineMemOperand::Flags MMOFlags =
6720       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6721   uint64_t SrcOff = 0, DstOff = 0;
6722   SmallVector<SDValue, 8> LoadValues;
6723   SmallVector<SDValue, 8> LoadChains;
6724   SmallVector<SDValue, 8> OutChains;
6725   unsigned NumMemOps = MemOps.size();
6726   for (unsigned i = 0; i < NumMemOps; i++) {
6727     EVT VT = MemOps[i];
6728     unsigned VTSize = VT.getSizeInBits() / 8;
6729     SDValue Value;
6730 
6731     bool isDereferenceable =
6732       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6733     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6734     if (isDereferenceable)
6735       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6736 
6737     Value = DAG.getLoad(
6738         VT, dl, Chain,
6739         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6740         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6741     LoadValues.push_back(Value);
6742     LoadChains.push_back(Value.getValue(1));
6743     SrcOff += VTSize;
6744   }
6745   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6746   OutChains.clear();
6747   for (unsigned i = 0; i < NumMemOps; i++) {
6748     EVT VT = MemOps[i];
6749     unsigned VTSize = VT.getSizeInBits() / 8;
6750     SDValue Store;
6751 
6752     Store = DAG.getStore(
6753         Chain, dl, LoadValues[i],
6754         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6755         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6756     OutChains.push_back(Store);
6757     DstOff += VTSize;
6758   }
6759 
6760   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6761 }
6762 
6763 /// Lower the call to 'memset' intrinsic function into a series of store
6764 /// operations.
6765 ///
6766 /// \param DAG Selection DAG where lowered code is placed.
6767 /// \param dl Link to corresponding IR location.
6768 /// \param Chain Control flow dependency.
6769 /// \param Dst Pointer to destination memory location.
6770 /// \param Src Value of byte to write into the memory.
6771 /// \param Size Number of bytes to write.
6772 /// \param Alignment Alignment of the destination in bytes.
6773 /// \param isVol True if destination is volatile.
6774 /// \param DstPtrInfo IR information on the memory pointer.
6775 /// \returns New head in the control flow, if lowering was successful, empty
6776 /// SDValue otherwise.
6777 ///
6778 /// The function tries to replace 'llvm.memset' intrinsic with several store
6779 /// operations and value calculation code. This is usually profitable for small
6780 /// memory size.
6781 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6782                                SDValue Chain, SDValue Dst, SDValue Src,
6783                                uint64_t Size, Align Alignment, bool isVol,
6784                                MachinePointerInfo DstPtrInfo,
6785                                const AAMDNodes &AAInfo) {
6786   // Turn a memset of undef to nop.
6787   // FIXME: We need to honor volatile even is Src is undef.
6788   if (Src.isUndef())
6789     return Chain;
6790 
6791   // Expand memset to a series of load/store ops if the size operand
6792   // falls below a certain threshold.
6793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6794   std::vector<EVT> MemOps;
6795   bool DstAlignCanChange = false;
6796   MachineFunction &MF = DAG.getMachineFunction();
6797   MachineFrameInfo &MFI = MF.getFrameInfo();
6798   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6799   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6800   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6801     DstAlignCanChange = true;
6802   bool IsZeroVal =
6803       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6804   if (!TLI.findOptimalMemOpLowering(
6805           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6806           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6807           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6808     return SDValue();
6809 
6810   if (DstAlignCanChange) {
6811     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6812     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6813     if (NewAlign > Alignment) {
6814       // Give the stack frame object a larger alignment if needed.
6815       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6816         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6817       Alignment = NewAlign;
6818     }
6819   }
6820 
6821   SmallVector<SDValue, 8> OutChains;
6822   uint64_t DstOff = 0;
6823   unsigned NumMemOps = MemOps.size();
6824 
6825   // Find the largest store and generate the bit pattern for it.
6826   EVT LargestVT = MemOps[0];
6827   for (unsigned i = 1; i < NumMemOps; i++)
6828     if (MemOps[i].bitsGT(LargestVT))
6829       LargestVT = MemOps[i];
6830   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6831 
6832   // Prepare AAInfo for loads/stores after lowering this memset.
6833   AAMDNodes NewAAInfo = AAInfo;
6834   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6835 
6836   for (unsigned i = 0; i < NumMemOps; i++) {
6837     EVT VT = MemOps[i];
6838     unsigned VTSize = VT.getSizeInBits() / 8;
6839     if (VTSize > Size) {
6840       // Issuing an unaligned load / store pair  that overlaps with the previous
6841       // pair. Adjust the offset accordingly.
6842       assert(i == NumMemOps-1 && i != 0);
6843       DstOff -= VTSize - Size;
6844     }
6845 
6846     // If this store is smaller than the largest store see whether we can get
6847     // the smaller value for free with a truncate.
6848     SDValue Value = MemSetValue;
6849     if (VT.bitsLT(LargestVT)) {
6850       if (!LargestVT.isVector() && !VT.isVector() &&
6851           TLI.isTruncateFree(LargestVT, VT))
6852         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6853       else
6854         Value = getMemsetValue(Src, VT, DAG, dl);
6855     }
6856     assert(Value.getValueType() == VT && "Value with wrong type.");
6857     SDValue Store = DAG.getStore(
6858         Chain, dl, Value,
6859         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6860         DstPtrInfo.getWithOffset(DstOff), Alignment,
6861         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6862         NewAAInfo);
6863     OutChains.push_back(Store);
6864     DstOff += VT.getSizeInBits() / 8;
6865     Size -= VTSize;
6866   }
6867 
6868   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6869 }
6870 
6871 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6872                                             unsigned AS) {
6873   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6874   // pointer operands can be losslessly bitcasted to pointers of address space 0
6875   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6876     report_fatal_error("cannot lower memory intrinsic in address space " +
6877                        Twine(AS));
6878   }
6879 }
6880 
6881 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6882                                 SDValue Src, SDValue Size, Align Alignment,
6883                                 bool isVol, bool AlwaysInline, bool isTailCall,
6884                                 MachinePointerInfo DstPtrInfo,
6885                                 MachinePointerInfo SrcPtrInfo,
6886                                 const AAMDNodes &AAInfo) {
6887   // Check to see if we should lower the memcpy to loads and stores first.
6888   // For cases within the target-specified limits, this is the best choice.
6889   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6890   if (ConstantSize) {
6891     // Memcpy with size zero? Just return the original chain.
6892     if (ConstantSize->isZero())
6893       return Chain;
6894 
6895     SDValue Result = getMemcpyLoadsAndStores(
6896         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6897         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6898     if (Result.getNode())
6899       return Result;
6900   }
6901 
6902   // Then check to see if we should lower the memcpy with target-specific
6903   // code. If the target chooses to do this, this is the next best.
6904   if (TSI) {
6905     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6906         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6907         DstPtrInfo, SrcPtrInfo);
6908     if (Result.getNode())
6909       return Result;
6910   }
6911 
6912   // If we really need inline code and the target declined to provide it,
6913   // use a (potentially long) sequence of loads and stores.
6914   if (AlwaysInline) {
6915     assert(ConstantSize && "AlwaysInline requires a constant size!");
6916     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6917                                    ConstantSize->getZExtValue(), Alignment,
6918                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6919   }
6920 
6921   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6922   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6923 
6924   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6925   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6926   // respect volatile, so they may do things like read or write memory
6927   // beyond the given memory regions. But fixing this isn't easy, and most
6928   // people don't care.
6929 
6930   // Emit a library call.
6931   TargetLowering::ArgListTy Args;
6932   TargetLowering::ArgListEntry Entry;
6933   Entry.Ty = Type::getInt8PtrTy(*getContext());
6934   Entry.Node = Dst; Args.push_back(Entry);
6935   Entry.Node = Src; Args.push_back(Entry);
6936 
6937   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6938   Entry.Node = Size; Args.push_back(Entry);
6939   // FIXME: pass in SDLoc
6940   TargetLowering::CallLoweringInfo CLI(*this);
6941   CLI.setDebugLoc(dl)
6942       .setChain(Chain)
6943       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6944                     Dst.getValueType().getTypeForEVT(*getContext()),
6945                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6946                                       TLI->getPointerTy(getDataLayout())),
6947                     std::move(Args))
6948       .setDiscardResult()
6949       .setTailCall(isTailCall);
6950 
6951   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6952   return CallResult.second;
6953 }
6954 
6955 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6956                                       SDValue Dst, unsigned DstAlign,
6957                                       SDValue Src, unsigned SrcAlign,
6958                                       SDValue Size, Type *SizeTy,
6959                                       unsigned ElemSz, bool isTailCall,
6960                                       MachinePointerInfo DstPtrInfo,
6961                                       MachinePointerInfo SrcPtrInfo) {
6962   // Emit a library call.
6963   TargetLowering::ArgListTy Args;
6964   TargetLowering::ArgListEntry Entry;
6965   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6966   Entry.Node = Dst;
6967   Args.push_back(Entry);
6968 
6969   Entry.Node = Src;
6970   Args.push_back(Entry);
6971 
6972   Entry.Ty = SizeTy;
6973   Entry.Node = Size;
6974   Args.push_back(Entry);
6975 
6976   RTLIB::Libcall LibraryCall =
6977       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6978   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6979     report_fatal_error("Unsupported element size");
6980 
6981   TargetLowering::CallLoweringInfo CLI(*this);
6982   CLI.setDebugLoc(dl)
6983       .setChain(Chain)
6984       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6985                     Type::getVoidTy(*getContext()),
6986                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6987                                       TLI->getPointerTy(getDataLayout())),
6988                     std::move(Args))
6989       .setDiscardResult()
6990       .setTailCall(isTailCall);
6991 
6992   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6993   return CallResult.second;
6994 }
6995 
6996 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6997                                  SDValue Src, SDValue Size, Align Alignment,
6998                                  bool isVol, bool isTailCall,
6999                                  MachinePointerInfo DstPtrInfo,
7000                                  MachinePointerInfo SrcPtrInfo,
7001                                  const AAMDNodes &AAInfo) {
7002   // Check to see if we should lower the memmove to loads and stores first.
7003   // For cases within the target-specified limits, this is the best choice.
7004   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7005   if (ConstantSize) {
7006     // Memmove with size zero? Just return the original chain.
7007     if (ConstantSize->isZero())
7008       return Chain;
7009 
7010     SDValue Result = getMemmoveLoadsAndStores(
7011         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7012         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7013     if (Result.getNode())
7014       return Result;
7015   }
7016 
7017   // Then check to see if we should lower the memmove with target-specific
7018   // code. If the target chooses to do this, this is the next best.
7019   if (TSI) {
7020     SDValue Result =
7021         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7022                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7023     if (Result.getNode())
7024       return Result;
7025   }
7026 
7027   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7028   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7029 
7030   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7031   // not be safe.  See memcpy above for more details.
7032 
7033   // Emit a library call.
7034   TargetLowering::ArgListTy Args;
7035   TargetLowering::ArgListEntry Entry;
7036   Entry.Ty = Type::getInt8PtrTy(*getContext());
7037   Entry.Node = Dst; Args.push_back(Entry);
7038   Entry.Node = Src; Args.push_back(Entry);
7039 
7040   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7041   Entry.Node = Size; Args.push_back(Entry);
7042   // FIXME:  pass in SDLoc
7043   TargetLowering::CallLoweringInfo CLI(*this);
7044   CLI.setDebugLoc(dl)
7045       .setChain(Chain)
7046       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7047                     Dst.getValueType().getTypeForEVT(*getContext()),
7048                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7049                                       TLI->getPointerTy(getDataLayout())),
7050                     std::move(Args))
7051       .setDiscardResult()
7052       .setTailCall(isTailCall);
7053 
7054   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7055   return CallResult.second;
7056 }
7057 
7058 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7059                                        SDValue Dst, unsigned DstAlign,
7060                                        SDValue Src, unsigned SrcAlign,
7061                                        SDValue Size, Type *SizeTy,
7062                                        unsigned ElemSz, bool isTailCall,
7063                                        MachinePointerInfo DstPtrInfo,
7064                                        MachinePointerInfo SrcPtrInfo) {
7065   // Emit a library call.
7066   TargetLowering::ArgListTy Args;
7067   TargetLowering::ArgListEntry Entry;
7068   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7069   Entry.Node = Dst;
7070   Args.push_back(Entry);
7071 
7072   Entry.Node = Src;
7073   Args.push_back(Entry);
7074 
7075   Entry.Ty = SizeTy;
7076   Entry.Node = Size;
7077   Args.push_back(Entry);
7078 
7079   RTLIB::Libcall LibraryCall =
7080       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7081   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7082     report_fatal_error("Unsupported element size");
7083 
7084   TargetLowering::CallLoweringInfo CLI(*this);
7085   CLI.setDebugLoc(dl)
7086       .setChain(Chain)
7087       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7088                     Type::getVoidTy(*getContext()),
7089                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7090                                       TLI->getPointerTy(getDataLayout())),
7091                     std::move(Args))
7092       .setDiscardResult()
7093       .setTailCall(isTailCall);
7094 
7095   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7096   return CallResult.second;
7097 }
7098 
7099 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7100                                 SDValue Src, SDValue Size, Align Alignment,
7101                                 bool isVol, bool isTailCall,
7102                                 MachinePointerInfo DstPtrInfo,
7103                                 const AAMDNodes &AAInfo) {
7104   // Check to see if we should lower the memset to stores first.
7105   // For cases within the target-specified limits, this is the best choice.
7106   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7107   if (ConstantSize) {
7108     // Memset with size zero? Just return the original chain.
7109     if (ConstantSize->isZero())
7110       return Chain;
7111 
7112     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7113                                      ConstantSize->getZExtValue(), Alignment,
7114                                      isVol, DstPtrInfo, AAInfo);
7115 
7116     if (Result.getNode())
7117       return Result;
7118   }
7119 
7120   // Then check to see if we should lower the memset with target-specific
7121   // code. If the target chooses to do this, this is the next best.
7122   if (TSI) {
7123     SDValue Result = TSI->EmitTargetCodeForMemset(
7124         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7125     if (Result.getNode())
7126       return Result;
7127   }
7128 
7129   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7130 
7131   // Emit a library call.
7132   TargetLowering::ArgListTy Args;
7133   TargetLowering::ArgListEntry Entry;
7134   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7135   Args.push_back(Entry);
7136   Entry.Node = Src;
7137   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7138   Args.push_back(Entry);
7139   Entry.Node = Size;
7140   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7141   Args.push_back(Entry);
7142 
7143   // FIXME: pass in SDLoc
7144   TargetLowering::CallLoweringInfo CLI(*this);
7145   CLI.setDebugLoc(dl)
7146       .setChain(Chain)
7147       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7148                     Dst.getValueType().getTypeForEVT(*getContext()),
7149                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7150                                       TLI->getPointerTy(getDataLayout())),
7151                     std::move(Args))
7152       .setDiscardResult()
7153       .setTailCall(isTailCall);
7154 
7155   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7156   return CallResult.second;
7157 }
7158 
7159 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7160                                       SDValue Dst, unsigned DstAlign,
7161                                       SDValue Value, SDValue Size, Type *SizeTy,
7162                                       unsigned ElemSz, bool isTailCall,
7163                                       MachinePointerInfo DstPtrInfo) {
7164   // Emit a library call.
7165   TargetLowering::ArgListTy Args;
7166   TargetLowering::ArgListEntry Entry;
7167   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7168   Entry.Node = Dst;
7169   Args.push_back(Entry);
7170 
7171   Entry.Ty = Type::getInt8Ty(*getContext());
7172   Entry.Node = Value;
7173   Args.push_back(Entry);
7174 
7175   Entry.Ty = SizeTy;
7176   Entry.Node = Size;
7177   Args.push_back(Entry);
7178 
7179   RTLIB::Libcall LibraryCall =
7180       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7181   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7182     report_fatal_error("Unsupported element size");
7183 
7184   TargetLowering::CallLoweringInfo CLI(*this);
7185   CLI.setDebugLoc(dl)
7186       .setChain(Chain)
7187       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7188                     Type::getVoidTy(*getContext()),
7189                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7190                                       TLI->getPointerTy(getDataLayout())),
7191                     std::move(Args))
7192       .setDiscardResult()
7193       .setTailCall(isTailCall);
7194 
7195   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7196   return CallResult.second;
7197 }
7198 
7199 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7200                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7201                                 MachineMemOperand *MMO) {
7202   FoldingSetNodeID ID;
7203   ID.AddInteger(MemVT.getRawBits());
7204   AddNodeIDNode(ID, Opcode, VTList, Ops);
7205   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7206   void* IP = nullptr;
7207   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7208     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7209     return SDValue(E, 0);
7210   }
7211 
7212   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7213                                     VTList, MemVT, MMO);
7214   createOperands(N, Ops);
7215 
7216   CSEMap.InsertNode(N, IP);
7217   InsertNode(N);
7218   return SDValue(N, 0);
7219 }
7220 
7221 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7222                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7223                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7224                                        MachineMemOperand *MMO) {
7225   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7226          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7227   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7228 
7229   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7230   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7231 }
7232 
7233 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7234                                 SDValue Chain, SDValue Ptr, SDValue Val,
7235                                 MachineMemOperand *MMO) {
7236   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7237           Opcode == ISD::ATOMIC_LOAD_SUB ||
7238           Opcode == ISD::ATOMIC_LOAD_AND ||
7239           Opcode == ISD::ATOMIC_LOAD_CLR ||
7240           Opcode == ISD::ATOMIC_LOAD_OR ||
7241           Opcode == ISD::ATOMIC_LOAD_XOR ||
7242           Opcode == ISD::ATOMIC_LOAD_NAND ||
7243           Opcode == ISD::ATOMIC_LOAD_MIN ||
7244           Opcode == ISD::ATOMIC_LOAD_MAX ||
7245           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7246           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7247           Opcode == ISD::ATOMIC_LOAD_FADD ||
7248           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7249           Opcode == ISD::ATOMIC_SWAP ||
7250           Opcode == ISD::ATOMIC_STORE) &&
7251          "Invalid Atomic Op");
7252 
7253   EVT VT = Val.getValueType();
7254 
7255   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7256                                                getVTList(VT, MVT::Other);
7257   SDValue Ops[] = {Chain, Ptr, Val};
7258   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7259 }
7260 
7261 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7262                                 EVT VT, SDValue Chain, SDValue Ptr,
7263                                 MachineMemOperand *MMO) {
7264   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7265 
7266   SDVTList VTs = getVTList(VT, MVT::Other);
7267   SDValue Ops[] = {Chain, Ptr};
7268   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7269 }
7270 
7271 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7272 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7273   if (Ops.size() == 1)
7274     return Ops[0];
7275 
7276   SmallVector<EVT, 4> VTs;
7277   VTs.reserve(Ops.size());
7278   for (const SDValue &Op : Ops)
7279     VTs.push_back(Op.getValueType());
7280   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7281 }
7282 
7283 SDValue SelectionDAG::getMemIntrinsicNode(
7284     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7285     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7286     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7287   if (!Size && MemVT.isScalableVector())
7288     Size = MemoryLocation::UnknownSize;
7289   else if (!Size)
7290     Size = MemVT.getStoreSize();
7291 
7292   MachineFunction &MF = getMachineFunction();
7293   MachineMemOperand *MMO =
7294       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7295 
7296   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7297 }
7298 
7299 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7300                                           SDVTList VTList,
7301                                           ArrayRef<SDValue> Ops, EVT MemVT,
7302                                           MachineMemOperand *MMO) {
7303   assert((Opcode == ISD::INTRINSIC_VOID ||
7304           Opcode == ISD::INTRINSIC_W_CHAIN ||
7305           Opcode == ISD::PREFETCH ||
7306           ((int)Opcode <= std::numeric_limits<int>::max() &&
7307            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7308          "Opcode is not a memory-accessing opcode!");
7309 
7310   // Memoize the node unless it returns a flag.
7311   MemIntrinsicSDNode *N;
7312   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7313     FoldingSetNodeID ID;
7314     AddNodeIDNode(ID, Opcode, VTList, Ops);
7315     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7316         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7317     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7318     void *IP = nullptr;
7319     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7320       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7321       return SDValue(E, 0);
7322     }
7323 
7324     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7325                                       VTList, MemVT, MMO);
7326     createOperands(N, Ops);
7327 
7328   CSEMap.InsertNode(N, IP);
7329   } else {
7330     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7331                                       VTList, MemVT, MMO);
7332     createOperands(N, Ops);
7333   }
7334   InsertNode(N);
7335   SDValue V(N, 0);
7336   NewSDValueDbgMsg(V, "Creating new node: ", this);
7337   return V;
7338 }
7339 
7340 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7341                                       SDValue Chain, int FrameIndex,
7342                                       int64_t Size, int64_t Offset) {
7343   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7344   const auto VTs = getVTList(MVT::Other);
7345   SDValue Ops[2] = {
7346       Chain,
7347       getFrameIndex(FrameIndex,
7348                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7349                     true)};
7350 
7351   FoldingSetNodeID ID;
7352   AddNodeIDNode(ID, Opcode, VTs, Ops);
7353   ID.AddInteger(FrameIndex);
7354   ID.AddInteger(Size);
7355   ID.AddInteger(Offset);
7356   void *IP = nullptr;
7357   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7358     return SDValue(E, 0);
7359 
7360   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7361       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7362   createOperands(N, Ops);
7363   CSEMap.InsertNode(N, IP);
7364   InsertNode(N);
7365   SDValue V(N, 0);
7366   NewSDValueDbgMsg(V, "Creating new node: ", this);
7367   return V;
7368 }
7369 
7370 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7371                                          uint64_t Guid, uint64_t Index,
7372                                          uint32_t Attr) {
7373   const unsigned Opcode = ISD::PSEUDO_PROBE;
7374   const auto VTs = getVTList(MVT::Other);
7375   SDValue Ops[] = {Chain};
7376   FoldingSetNodeID ID;
7377   AddNodeIDNode(ID, Opcode, VTs, Ops);
7378   ID.AddInteger(Guid);
7379   ID.AddInteger(Index);
7380   void *IP = nullptr;
7381   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7382     return SDValue(E, 0);
7383 
7384   auto *N = newSDNode<PseudoProbeSDNode>(
7385       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7386   createOperands(N, Ops);
7387   CSEMap.InsertNode(N, IP);
7388   InsertNode(N);
7389   SDValue V(N, 0);
7390   NewSDValueDbgMsg(V, "Creating new node: ", this);
7391   return V;
7392 }
7393 
7394 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7395 /// MachinePointerInfo record from it.  This is particularly useful because the
7396 /// code generator has many cases where it doesn't bother passing in a
7397 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7398 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7399                                            SelectionDAG &DAG, SDValue Ptr,
7400                                            int64_t Offset = 0) {
7401   // If this is FI+Offset, we can model it.
7402   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7403     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7404                                              FI->getIndex(), Offset);
7405 
7406   // If this is (FI+Offset1)+Offset2, we can model it.
7407   if (Ptr.getOpcode() != ISD::ADD ||
7408       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7409       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7410     return Info;
7411 
7412   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7413   return MachinePointerInfo::getFixedStack(
7414       DAG.getMachineFunction(), FI,
7415       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7416 }
7417 
7418 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7419 /// MachinePointerInfo record from it.  This is particularly useful because the
7420 /// code generator has many cases where it doesn't bother passing in a
7421 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7422 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7423                                            SelectionDAG &DAG, SDValue Ptr,
7424                                            SDValue OffsetOp) {
7425   // If the 'Offset' value isn't a constant, we can't handle this.
7426   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7427     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7428   if (OffsetOp.isUndef())
7429     return InferPointerInfo(Info, DAG, Ptr);
7430   return Info;
7431 }
7432 
7433 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7434                               EVT VT, const SDLoc &dl, SDValue Chain,
7435                               SDValue Ptr, SDValue Offset,
7436                               MachinePointerInfo PtrInfo, EVT MemVT,
7437                               Align Alignment,
7438                               MachineMemOperand::Flags MMOFlags,
7439                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7440   assert(Chain.getValueType() == MVT::Other &&
7441         "Invalid chain type");
7442 
7443   MMOFlags |= MachineMemOperand::MOLoad;
7444   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7445   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7446   // clients.
7447   if (PtrInfo.V.isNull())
7448     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7449 
7450   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7451   MachineFunction &MF = getMachineFunction();
7452   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7453                                                    Alignment, AAInfo, Ranges);
7454   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7455 }
7456 
7457 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7458                               EVT VT, const SDLoc &dl, SDValue Chain,
7459                               SDValue Ptr, SDValue Offset, EVT MemVT,
7460                               MachineMemOperand *MMO) {
7461   if (VT == MemVT) {
7462     ExtType = ISD::NON_EXTLOAD;
7463   } else if (ExtType == ISD::NON_EXTLOAD) {
7464     assert(VT == MemVT && "Non-extending load from different memory type!");
7465   } else {
7466     // Extending load.
7467     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7468            "Should only be an extending load, not truncating!");
7469     assert(VT.isInteger() == MemVT.isInteger() &&
7470            "Cannot convert from FP to Int or Int -> FP!");
7471     assert(VT.isVector() == MemVT.isVector() &&
7472            "Cannot use an ext load to convert to or from a vector!");
7473     assert((!VT.isVector() ||
7474             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7475            "Cannot use an ext load to change the number of vector elements!");
7476   }
7477 
7478   bool Indexed = AM != ISD::UNINDEXED;
7479   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7480 
7481   SDVTList VTs = Indexed ?
7482     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7483   SDValue Ops[] = { Chain, Ptr, Offset };
7484   FoldingSetNodeID ID;
7485   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7486   ID.AddInteger(MemVT.getRawBits());
7487   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7488       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7489   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7490   void *IP = nullptr;
7491   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7492     cast<LoadSDNode>(E)->refineAlignment(MMO);
7493     return SDValue(E, 0);
7494   }
7495   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7496                                   ExtType, MemVT, MMO);
7497   createOperands(N, Ops);
7498 
7499   CSEMap.InsertNode(N, IP);
7500   InsertNode(N);
7501   SDValue V(N, 0);
7502   NewSDValueDbgMsg(V, "Creating new node: ", this);
7503   return V;
7504 }
7505 
7506 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7507                               SDValue Ptr, MachinePointerInfo PtrInfo,
7508                               MaybeAlign Alignment,
7509                               MachineMemOperand::Flags MMOFlags,
7510                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7511   SDValue Undef = getUNDEF(Ptr.getValueType());
7512   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7513                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7514 }
7515 
7516 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7517                               SDValue Ptr, MachineMemOperand *MMO) {
7518   SDValue Undef = getUNDEF(Ptr.getValueType());
7519   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7520                  VT, MMO);
7521 }
7522 
7523 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7524                                  EVT VT, SDValue Chain, SDValue Ptr,
7525                                  MachinePointerInfo PtrInfo, EVT MemVT,
7526                                  MaybeAlign Alignment,
7527                                  MachineMemOperand::Flags MMOFlags,
7528                                  const AAMDNodes &AAInfo) {
7529   SDValue Undef = getUNDEF(Ptr.getValueType());
7530   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7531                  MemVT, Alignment, MMOFlags, AAInfo);
7532 }
7533 
7534 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7535                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7536                                  MachineMemOperand *MMO) {
7537   SDValue Undef = getUNDEF(Ptr.getValueType());
7538   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7539                  MemVT, MMO);
7540 }
7541 
7542 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7543                                      SDValue Base, SDValue Offset,
7544                                      ISD::MemIndexedMode AM) {
7545   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7546   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7547   // Don't propagate the invariant or dereferenceable flags.
7548   auto MMOFlags =
7549       LD->getMemOperand()->getFlags() &
7550       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7551   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7552                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7553                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7554 }
7555 
7556 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7557                                SDValue Ptr, MachinePointerInfo PtrInfo,
7558                                Align Alignment,
7559                                MachineMemOperand::Flags MMOFlags,
7560                                const AAMDNodes &AAInfo) {
7561   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7562 
7563   MMOFlags |= MachineMemOperand::MOStore;
7564   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7565 
7566   if (PtrInfo.V.isNull())
7567     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7568 
7569   MachineFunction &MF = getMachineFunction();
7570   uint64_t Size =
7571       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7572   MachineMemOperand *MMO =
7573       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7574   return getStore(Chain, dl, Val, Ptr, MMO);
7575 }
7576 
7577 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7578                                SDValue Ptr, MachineMemOperand *MMO) {
7579   assert(Chain.getValueType() == MVT::Other &&
7580         "Invalid chain type");
7581   EVT VT = Val.getValueType();
7582   SDVTList VTs = getVTList(MVT::Other);
7583   SDValue Undef = getUNDEF(Ptr.getValueType());
7584   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7585   FoldingSetNodeID ID;
7586   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7587   ID.AddInteger(VT.getRawBits());
7588   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7589       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7590   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7591   void *IP = nullptr;
7592   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7593     cast<StoreSDNode>(E)->refineAlignment(MMO);
7594     return SDValue(E, 0);
7595   }
7596   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7597                                    ISD::UNINDEXED, false, VT, MMO);
7598   createOperands(N, Ops);
7599 
7600   CSEMap.InsertNode(N, IP);
7601   InsertNode(N);
7602   SDValue V(N, 0);
7603   NewSDValueDbgMsg(V, "Creating new node: ", this);
7604   return V;
7605 }
7606 
7607 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7608                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7609                                     EVT SVT, Align Alignment,
7610                                     MachineMemOperand::Flags MMOFlags,
7611                                     const AAMDNodes &AAInfo) {
7612   assert(Chain.getValueType() == MVT::Other &&
7613         "Invalid chain type");
7614 
7615   MMOFlags |= MachineMemOperand::MOStore;
7616   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7617 
7618   if (PtrInfo.V.isNull())
7619     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7620 
7621   MachineFunction &MF = getMachineFunction();
7622   MachineMemOperand *MMO = MF.getMachineMemOperand(
7623       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7624       Alignment, AAInfo);
7625   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7626 }
7627 
7628 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7629                                     SDValue Ptr, EVT SVT,
7630                                     MachineMemOperand *MMO) {
7631   EVT VT = Val.getValueType();
7632 
7633   assert(Chain.getValueType() == MVT::Other &&
7634         "Invalid chain type");
7635   if (VT == SVT)
7636     return getStore(Chain, dl, Val, Ptr, MMO);
7637 
7638   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7639          "Should only be a truncating store, not extending!");
7640   assert(VT.isInteger() == SVT.isInteger() &&
7641          "Can't do FP-INT conversion!");
7642   assert(VT.isVector() == SVT.isVector() &&
7643          "Cannot use trunc store to convert to or from a vector!");
7644   assert((!VT.isVector() ||
7645           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7646          "Cannot use trunc store to change the number of vector elements!");
7647 
7648   SDVTList VTs = getVTList(MVT::Other);
7649   SDValue Undef = getUNDEF(Ptr.getValueType());
7650   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7651   FoldingSetNodeID ID;
7652   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7653   ID.AddInteger(SVT.getRawBits());
7654   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7655       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7656   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7657   void *IP = nullptr;
7658   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7659     cast<StoreSDNode>(E)->refineAlignment(MMO);
7660     return SDValue(E, 0);
7661   }
7662   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7663                                    ISD::UNINDEXED, true, SVT, MMO);
7664   createOperands(N, Ops);
7665 
7666   CSEMap.InsertNode(N, IP);
7667   InsertNode(N);
7668   SDValue V(N, 0);
7669   NewSDValueDbgMsg(V, "Creating new node: ", this);
7670   return V;
7671 }
7672 
7673 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7674                                       SDValue Base, SDValue Offset,
7675                                       ISD::MemIndexedMode AM) {
7676   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7677   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7678   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7679   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7680   FoldingSetNodeID ID;
7681   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7682   ID.AddInteger(ST->getMemoryVT().getRawBits());
7683   ID.AddInteger(ST->getRawSubclassData());
7684   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7685   void *IP = nullptr;
7686   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7687     return SDValue(E, 0);
7688 
7689   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7690                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7691                                    ST->getMemOperand());
7692   createOperands(N, Ops);
7693 
7694   CSEMap.InsertNode(N, IP);
7695   InsertNode(N);
7696   SDValue V(N, 0);
7697   NewSDValueDbgMsg(V, "Creating new node: ", this);
7698   return V;
7699 }
7700 
7701 SDValue SelectionDAG::getLoadVP(
7702     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7703     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7704     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7705     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7706     const MDNode *Ranges, bool IsExpanding) {
7707   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7708 
7709   MMOFlags |= MachineMemOperand::MOLoad;
7710   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7711   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7712   // clients.
7713   if (PtrInfo.V.isNull())
7714     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7715 
7716   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7717   MachineFunction &MF = getMachineFunction();
7718   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7719                                                    Alignment, AAInfo, Ranges);
7720   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7721                    MMO, IsExpanding);
7722 }
7723 
7724 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7725                                 ISD::LoadExtType ExtType, EVT VT,
7726                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7727                                 SDValue Offset, SDValue Mask, SDValue EVL,
7728                                 EVT MemVT, MachineMemOperand *MMO,
7729                                 bool IsExpanding) {
7730   bool Indexed = AM != ISD::UNINDEXED;
7731   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7732 
7733   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7734                          : getVTList(VT, MVT::Other);
7735   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7736   FoldingSetNodeID ID;
7737   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7738   ID.AddInteger(VT.getRawBits());
7739   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7740       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7741   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7742   void *IP = nullptr;
7743   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7744     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7745     return SDValue(E, 0);
7746   }
7747   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7748                                     ExtType, IsExpanding, MemVT, MMO);
7749   createOperands(N, Ops);
7750 
7751   CSEMap.InsertNode(N, IP);
7752   InsertNode(N);
7753   SDValue V(N, 0);
7754   NewSDValueDbgMsg(V, "Creating new node: ", this);
7755   return V;
7756 }
7757 
7758 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7759                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7760                                 MachinePointerInfo PtrInfo,
7761                                 MaybeAlign Alignment,
7762                                 MachineMemOperand::Flags MMOFlags,
7763                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7764                                 bool IsExpanding) {
7765   SDValue Undef = getUNDEF(Ptr.getValueType());
7766   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7767                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7768                    IsExpanding);
7769 }
7770 
7771 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7772                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7773                                 MachineMemOperand *MMO, bool IsExpanding) {
7774   SDValue Undef = getUNDEF(Ptr.getValueType());
7775   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7776                    Mask, EVL, VT, MMO, IsExpanding);
7777 }
7778 
7779 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7780                                    EVT VT, SDValue Chain, SDValue Ptr,
7781                                    SDValue Mask, SDValue EVL,
7782                                    MachinePointerInfo PtrInfo, EVT MemVT,
7783                                    MaybeAlign Alignment,
7784                                    MachineMemOperand::Flags MMOFlags,
7785                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7786   SDValue Undef = getUNDEF(Ptr.getValueType());
7787   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7788                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7789                    IsExpanding);
7790 }
7791 
7792 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7793                                    EVT VT, SDValue Chain, SDValue Ptr,
7794                                    SDValue Mask, SDValue EVL, EVT MemVT,
7795                                    MachineMemOperand *MMO, bool IsExpanding) {
7796   SDValue Undef = getUNDEF(Ptr.getValueType());
7797   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7798                    EVL, MemVT, MMO, IsExpanding);
7799 }
7800 
7801 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7802                                        SDValue Base, SDValue Offset,
7803                                        ISD::MemIndexedMode AM) {
7804   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7805   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7806   // Don't propagate the invariant or dereferenceable flags.
7807   auto MMOFlags =
7808       LD->getMemOperand()->getFlags() &
7809       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7810   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7811                    LD->getChain(), Base, Offset, LD->getMask(),
7812                    LD->getVectorLength(), LD->getPointerInfo(),
7813                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7814                    nullptr, LD->isExpandingLoad());
7815 }
7816 
7817 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7818                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7819                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7820                                  ISD::MemIndexedMode AM, bool IsTruncating,
7821                                  bool IsCompressing) {
7822   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7823   bool Indexed = AM != ISD::UNINDEXED;
7824   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7825   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7826                          : getVTList(MVT::Other);
7827   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7828   FoldingSetNodeID ID;
7829   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7830   ID.AddInteger(MemVT.getRawBits());
7831   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7832       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7833   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7834   void *IP = nullptr;
7835   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7836     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7837     return SDValue(E, 0);
7838   }
7839   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7840                                      IsTruncating, IsCompressing, MemVT, MMO);
7841   createOperands(N, Ops);
7842 
7843   CSEMap.InsertNode(N, IP);
7844   InsertNode(N);
7845   SDValue V(N, 0);
7846   NewSDValueDbgMsg(V, "Creating new node: ", this);
7847   return V;
7848 }
7849 
7850 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7851                                       SDValue Val, SDValue Ptr, SDValue Mask,
7852                                       SDValue EVL, MachinePointerInfo PtrInfo,
7853                                       EVT SVT, Align Alignment,
7854                                       MachineMemOperand::Flags MMOFlags,
7855                                       const AAMDNodes &AAInfo,
7856                                       bool IsCompressing) {
7857   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7858 
7859   MMOFlags |= MachineMemOperand::MOStore;
7860   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7861 
7862   if (PtrInfo.V.isNull())
7863     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7864 
7865   MachineFunction &MF = getMachineFunction();
7866   MachineMemOperand *MMO = MF.getMachineMemOperand(
7867       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7868       Alignment, AAInfo);
7869   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7870                          IsCompressing);
7871 }
7872 
7873 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7874                                       SDValue Val, SDValue Ptr, SDValue Mask,
7875                                       SDValue EVL, EVT SVT,
7876                                       MachineMemOperand *MMO,
7877                                       bool IsCompressing) {
7878   EVT VT = Val.getValueType();
7879 
7880   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7881   if (VT == SVT)
7882     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7883                       EVL, VT, MMO, ISD::UNINDEXED,
7884                       /*IsTruncating*/ false, IsCompressing);
7885 
7886   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7887          "Should only be a truncating store, not extending!");
7888   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7889   assert(VT.isVector() == SVT.isVector() &&
7890          "Cannot use trunc store to convert to or from a vector!");
7891   assert((!VT.isVector() ||
7892           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7893          "Cannot use trunc store to change the number of vector elements!");
7894 
7895   SDVTList VTs = getVTList(MVT::Other);
7896   SDValue Undef = getUNDEF(Ptr.getValueType());
7897   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7898   FoldingSetNodeID ID;
7899   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7900   ID.AddInteger(SVT.getRawBits());
7901   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7902       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7903   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7904   void *IP = nullptr;
7905   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7906     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7907     return SDValue(E, 0);
7908   }
7909   auto *N =
7910       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7911                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7912   createOperands(N, Ops);
7913 
7914   CSEMap.InsertNode(N, IP);
7915   InsertNode(N);
7916   SDValue V(N, 0);
7917   NewSDValueDbgMsg(V, "Creating new node: ", this);
7918   return V;
7919 }
7920 
7921 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7922                                         SDValue Base, SDValue Offset,
7923                                         ISD::MemIndexedMode AM) {
7924   auto *ST = cast<VPStoreSDNode>(OrigStore);
7925   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7926   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7927   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7928                    Offset,         ST->getMask(),  ST->getVectorLength()};
7929   FoldingSetNodeID ID;
7930   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7931   ID.AddInteger(ST->getMemoryVT().getRawBits());
7932   ID.AddInteger(ST->getRawSubclassData());
7933   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7934   void *IP = nullptr;
7935   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7936     return SDValue(E, 0);
7937 
7938   auto *N = newSDNode<VPStoreSDNode>(
7939       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7940       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7941   createOperands(N, Ops);
7942 
7943   CSEMap.InsertNode(N, IP);
7944   InsertNode(N);
7945   SDValue V(N, 0);
7946   NewSDValueDbgMsg(V, "Creating new node: ", this);
7947   return V;
7948 }
7949 
7950 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7951                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7952                                   ISD::MemIndexType IndexType) {
7953   assert(Ops.size() == 6 && "Incompatible number of operands");
7954 
7955   FoldingSetNodeID ID;
7956   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7957   ID.AddInteger(VT.getRawBits());
7958   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7959       dl.getIROrder(), VTs, VT, MMO, IndexType));
7960   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7961   void *IP = nullptr;
7962   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7963     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7964     return SDValue(E, 0);
7965   }
7966 
7967   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7968                                       VT, MMO, IndexType);
7969   createOperands(N, Ops);
7970 
7971   assert(N->getMask().getValueType().getVectorElementCount() ==
7972              N->getValueType(0).getVectorElementCount() &&
7973          "Vector width mismatch between mask and data");
7974   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7975              N->getValueType(0).getVectorElementCount().isScalable() &&
7976          "Scalable flags of index and data do not match");
7977   assert(ElementCount::isKnownGE(
7978              N->getIndex().getValueType().getVectorElementCount(),
7979              N->getValueType(0).getVectorElementCount()) &&
7980          "Vector width mismatch between index and data");
7981   assert(isa<ConstantSDNode>(N->getScale()) &&
7982          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7983          "Scale should be a constant power of 2");
7984 
7985   CSEMap.InsertNode(N, IP);
7986   InsertNode(N);
7987   SDValue V(N, 0);
7988   NewSDValueDbgMsg(V, "Creating new node: ", this);
7989   return V;
7990 }
7991 
7992 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7993                                    ArrayRef<SDValue> Ops,
7994                                    MachineMemOperand *MMO,
7995                                    ISD::MemIndexType IndexType) {
7996   assert(Ops.size() == 7 && "Incompatible number of operands");
7997 
7998   FoldingSetNodeID ID;
7999   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8000   ID.AddInteger(VT.getRawBits());
8001   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8002       dl.getIROrder(), VTs, VT, MMO, IndexType));
8003   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8004   void *IP = nullptr;
8005   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8006     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8007     return SDValue(E, 0);
8008   }
8009   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8010                                        VT, MMO, IndexType);
8011   createOperands(N, Ops);
8012 
8013   assert(N->getMask().getValueType().getVectorElementCount() ==
8014              N->getValue().getValueType().getVectorElementCount() &&
8015          "Vector width mismatch between mask and data");
8016   assert(
8017       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8018           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8019       "Scalable flags of index and data do not match");
8020   assert(ElementCount::isKnownGE(
8021              N->getIndex().getValueType().getVectorElementCount(),
8022              N->getValue().getValueType().getVectorElementCount()) &&
8023          "Vector width mismatch between index and data");
8024   assert(isa<ConstantSDNode>(N->getScale()) &&
8025          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8026          "Scale should be a constant power of 2");
8027 
8028   CSEMap.InsertNode(N, IP);
8029   InsertNode(N);
8030   SDValue V(N, 0);
8031   NewSDValueDbgMsg(V, "Creating new node: ", this);
8032   return V;
8033 }
8034 
8035 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8036                                     SDValue Base, SDValue Offset, SDValue Mask,
8037                                     SDValue PassThru, EVT MemVT,
8038                                     MachineMemOperand *MMO,
8039                                     ISD::MemIndexedMode AM,
8040                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8041   bool Indexed = AM != ISD::UNINDEXED;
8042   assert((Indexed || Offset.isUndef()) &&
8043          "Unindexed masked load with an offset!");
8044   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8045                          : getVTList(VT, MVT::Other);
8046   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8047   FoldingSetNodeID ID;
8048   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8049   ID.AddInteger(MemVT.getRawBits());
8050   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8051       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8052   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8053   void *IP = nullptr;
8054   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8055     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8056     return SDValue(E, 0);
8057   }
8058   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8059                                         AM, ExtTy, isExpanding, MemVT, MMO);
8060   createOperands(N, Ops);
8061 
8062   CSEMap.InsertNode(N, IP);
8063   InsertNode(N);
8064   SDValue V(N, 0);
8065   NewSDValueDbgMsg(V, "Creating new node: ", this);
8066   return V;
8067 }
8068 
8069 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8070                                            SDValue Base, SDValue Offset,
8071                                            ISD::MemIndexedMode AM) {
8072   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8073   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8074   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8075                        Offset, LD->getMask(), LD->getPassThru(),
8076                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8077                        LD->getExtensionType(), LD->isExpandingLoad());
8078 }
8079 
8080 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8081                                      SDValue Val, SDValue Base, SDValue Offset,
8082                                      SDValue Mask, EVT MemVT,
8083                                      MachineMemOperand *MMO,
8084                                      ISD::MemIndexedMode AM, bool IsTruncating,
8085                                      bool IsCompressing) {
8086   assert(Chain.getValueType() == MVT::Other &&
8087         "Invalid chain type");
8088   bool Indexed = AM != ISD::UNINDEXED;
8089   assert((Indexed || Offset.isUndef()) &&
8090          "Unindexed masked store with an offset!");
8091   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8092                          : getVTList(MVT::Other);
8093   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8094   FoldingSetNodeID ID;
8095   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8096   ID.AddInteger(MemVT.getRawBits());
8097   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8098       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8099   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8100   void *IP = nullptr;
8101   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8102     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8103     return SDValue(E, 0);
8104   }
8105   auto *N =
8106       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8107                                    IsTruncating, IsCompressing, MemVT, MMO);
8108   createOperands(N, Ops);
8109 
8110   CSEMap.InsertNode(N, IP);
8111   InsertNode(N);
8112   SDValue V(N, 0);
8113   NewSDValueDbgMsg(V, "Creating new node: ", this);
8114   return V;
8115 }
8116 
8117 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8118                                             SDValue Base, SDValue Offset,
8119                                             ISD::MemIndexedMode AM) {
8120   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8121   assert(ST->getOffset().isUndef() &&
8122          "Masked store is already a indexed store!");
8123   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8124                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8125                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8126 }
8127 
8128 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8129                                       ArrayRef<SDValue> Ops,
8130                                       MachineMemOperand *MMO,
8131                                       ISD::MemIndexType IndexType,
8132                                       ISD::LoadExtType ExtTy) {
8133   assert(Ops.size() == 6 && "Incompatible number of operands");
8134 
8135   FoldingSetNodeID ID;
8136   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8137   ID.AddInteger(MemVT.getRawBits());
8138   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8139       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8140   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8141   void *IP = nullptr;
8142   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8143     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8144     return SDValue(E, 0);
8145   }
8146 
8147   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8148   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8149                                           VTs, MemVT, MMO, IndexType, ExtTy);
8150   createOperands(N, Ops);
8151 
8152   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8153          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8154   assert(N->getMask().getValueType().getVectorElementCount() ==
8155              N->getValueType(0).getVectorElementCount() &&
8156          "Vector width mismatch between mask and data");
8157   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8158              N->getValueType(0).getVectorElementCount().isScalable() &&
8159          "Scalable flags of index and data do not match");
8160   assert(ElementCount::isKnownGE(
8161              N->getIndex().getValueType().getVectorElementCount(),
8162              N->getValueType(0).getVectorElementCount()) &&
8163          "Vector width mismatch between index and data");
8164   assert(isa<ConstantSDNode>(N->getScale()) &&
8165          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8166          "Scale should be a constant power of 2");
8167 
8168   CSEMap.InsertNode(N, IP);
8169   InsertNode(N);
8170   SDValue V(N, 0);
8171   NewSDValueDbgMsg(V, "Creating new node: ", this);
8172   return V;
8173 }
8174 
8175 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8176                                        ArrayRef<SDValue> Ops,
8177                                        MachineMemOperand *MMO,
8178                                        ISD::MemIndexType IndexType,
8179                                        bool IsTrunc) {
8180   assert(Ops.size() == 6 && "Incompatible number of operands");
8181 
8182   FoldingSetNodeID ID;
8183   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8184   ID.AddInteger(MemVT.getRawBits());
8185   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8186       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8187   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8188   void *IP = nullptr;
8189   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8190     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8191     return SDValue(E, 0);
8192   }
8193 
8194   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8195   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8196                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8197   createOperands(N, Ops);
8198 
8199   assert(N->getMask().getValueType().getVectorElementCount() ==
8200              N->getValue().getValueType().getVectorElementCount() &&
8201          "Vector width mismatch between mask and data");
8202   assert(
8203       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8204           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8205       "Scalable flags of index and data do not match");
8206   assert(ElementCount::isKnownGE(
8207              N->getIndex().getValueType().getVectorElementCount(),
8208              N->getValue().getValueType().getVectorElementCount()) &&
8209          "Vector width mismatch between index and data");
8210   assert(isa<ConstantSDNode>(N->getScale()) &&
8211          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8212          "Scale should be a constant power of 2");
8213 
8214   CSEMap.InsertNode(N, IP);
8215   InsertNode(N);
8216   SDValue V(N, 0);
8217   NewSDValueDbgMsg(V, "Creating new node: ", this);
8218   return V;
8219 }
8220 
8221 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8222   // select undef, T, F --> T (if T is a constant), otherwise F
8223   // select, ?, undef, F --> F
8224   // select, ?, T, undef --> T
8225   if (Cond.isUndef())
8226     return isConstantValueOfAnyType(T) ? T : F;
8227   if (T.isUndef())
8228     return F;
8229   if (F.isUndef())
8230     return T;
8231 
8232   // select true, T, F --> T
8233   // select false, T, F --> F
8234   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8235     return CondC->isZero() ? F : T;
8236 
8237   // TODO: This should simplify VSELECT with constant condition using something
8238   // like this (but check boolean contents to be complete?):
8239   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8240   //    return T;
8241   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8242   //    return F;
8243 
8244   // select ?, T, T --> T
8245   if (T == F)
8246     return T;
8247 
8248   return SDValue();
8249 }
8250 
8251 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8252   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8253   if (X.isUndef())
8254     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8255   // shift X, undef --> undef (because it may shift by the bitwidth)
8256   if (Y.isUndef())
8257     return getUNDEF(X.getValueType());
8258 
8259   // shift 0, Y --> 0
8260   // shift X, 0 --> X
8261   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8262     return X;
8263 
8264   // shift X, C >= bitwidth(X) --> undef
8265   // All vector elements must be too big (or undef) to avoid partial undefs.
8266   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8267     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8268   };
8269   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8270     return getUNDEF(X.getValueType());
8271 
8272   return SDValue();
8273 }
8274 
8275 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8276                                       SDNodeFlags Flags) {
8277   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8278   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8279   // operation is poison. That result can be relaxed to undef.
8280   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8281   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8282   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8283                 (YC && YC->getValueAPF().isNaN());
8284   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8285                 (YC && YC->getValueAPF().isInfinity());
8286 
8287   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8288     return getUNDEF(X.getValueType());
8289 
8290   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8291     return getUNDEF(X.getValueType());
8292 
8293   if (!YC)
8294     return SDValue();
8295 
8296   // X + -0.0 --> X
8297   if (Opcode == ISD::FADD)
8298     if (YC->getValueAPF().isNegZero())
8299       return X;
8300 
8301   // X - +0.0 --> X
8302   if (Opcode == ISD::FSUB)
8303     if (YC->getValueAPF().isPosZero())
8304       return X;
8305 
8306   // X * 1.0 --> X
8307   // X / 1.0 --> X
8308   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8309     if (YC->getValueAPF().isExactlyValue(1.0))
8310       return X;
8311 
8312   // X * 0.0 --> 0.0
8313   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8314     if (YC->getValueAPF().isZero())
8315       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8316 
8317   return SDValue();
8318 }
8319 
8320 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8321                                SDValue Ptr, SDValue SV, unsigned Align) {
8322   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8323   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8324 }
8325 
8326 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8327                               ArrayRef<SDUse> Ops) {
8328   switch (Ops.size()) {
8329   case 0: return getNode(Opcode, DL, VT);
8330   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8331   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8332   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8333   default: break;
8334   }
8335 
8336   // Copy from an SDUse array into an SDValue array for use with
8337   // the regular getNode logic.
8338   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8339   return getNode(Opcode, DL, VT, NewOps);
8340 }
8341 
8342 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8343                               ArrayRef<SDValue> Ops) {
8344   SDNodeFlags Flags;
8345   if (Inserter)
8346     Flags = Inserter->getFlags();
8347   return getNode(Opcode, DL, VT, Ops, Flags);
8348 }
8349 
8350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8351                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8352   unsigned NumOps = Ops.size();
8353   switch (NumOps) {
8354   case 0: return getNode(Opcode, DL, VT);
8355   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8356   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8357   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8358   default: break;
8359   }
8360 
8361 #ifndef NDEBUG
8362   for (auto &Op : Ops)
8363     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8364            "Operand is DELETED_NODE!");
8365 #endif
8366 
8367   switch (Opcode) {
8368   default: break;
8369   case ISD::BUILD_VECTOR:
8370     // Attempt to simplify BUILD_VECTOR.
8371     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8372       return V;
8373     break;
8374   case ISD::CONCAT_VECTORS:
8375     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8376       return V;
8377     break;
8378   case ISD::SELECT_CC:
8379     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8380     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8381            "LHS and RHS of condition must have same type!");
8382     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8383            "True and False arms of SelectCC must have same type!");
8384     assert(Ops[2].getValueType() == VT &&
8385            "select_cc node must be of same type as true and false value!");
8386     break;
8387   case ISD::BR_CC:
8388     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8389     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8390            "LHS/RHS of comparison should match types!");
8391     break;
8392   }
8393 
8394   // Memoize nodes.
8395   SDNode *N;
8396   SDVTList VTs = getVTList(VT);
8397 
8398   if (VT != MVT::Glue) {
8399     FoldingSetNodeID ID;
8400     AddNodeIDNode(ID, Opcode, VTs, Ops);
8401     void *IP = nullptr;
8402 
8403     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8404       return SDValue(E, 0);
8405 
8406     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8407     createOperands(N, Ops);
8408 
8409     CSEMap.InsertNode(N, IP);
8410   } else {
8411     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8412     createOperands(N, Ops);
8413   }
8414 
8415   N->setFlags(Flags);
8416   InsertNode(N);
8417   SDValue V(N, 0);
8418   NewSDValueDbgMsg(V, "Creating new node: ", this);
8419   return V;
8420 }
8421 
8422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8423                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8424   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8425 }
8426 
8427 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8428                               ArrayRef<SDValue> Ops) {
8429   SDNodeFlags Flags;
8430   if (Inserter)
8431     Flags = Inserter->getFlags();
8432   return getNode(Opcode, DL, VTList, Ops, Flags);
8433 }
8434 
8435 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8436                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8437   if (VTList.NumVTs == 1)
8438     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8439 
8440 #ifndef NDEBUG
8441   for (auto &Op : Ops)
8442     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8443            "Operand is DELETED_NODE!");
8444 #endif
8445 
8446   switch (Opcode) {
8447   case ISD::STRICT_FP_EXTEND:
8448     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8449            "Invalid STRICT_FP_EXTEND!");
8450     assert(VTList.VTs[0].isFloatingPoint() &&
8451            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8452     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8453            "STRICT_FP_EXTEND result type should be vector iff the operand "
8454            "type is vector!");
8455     assert((!VTList.VTs[0].isVector() ||
8456             VTList.VTs[0].getVectorNumElements() ==
8457             Ops[1].getValueType().getVectorNumElements()) &&
8458            "Vector element count mismatch!");
8459     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8460            "Invalid fpext node, dst <= src!");
8461     break;
8462   case ISD::STRICT_FP_ROUND:
8463     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8464     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8465            "STRICT_FP_ROUND result type should be vector iff the operand "
8466            "type is vector!");
8467     assert((!VTList.VTs[0].isVector() ||
8468             VTList.VTs[0].getVectorNumElements() ==
8469             Ops[1].getValueType().getVectorNumElements()) &&
8470            "Vector element count mismatch!");
8471     assert(VTList.VTs[0].isFloatingPoint() &&
8472            Ops[1].getValueType().isFloatingPoint() &&
8473            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8474            isa<ConstantSDNode>(Ops[2]) &&
8475            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8476             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8477            "Invalid STRICT_FP_ROUND!");
8478     break;
8479 #if 0
8480   // FIXME: figure out how to safely handle things like
8481   // int foo(int x) { return 1 << (x & 255); }
8482   // int bar() { return foo(256); }
8483   case ISD::SRA_PARTS:
8484   case ISD::SRL_PARTS:
8485   case ISD::SHL_PARTS:
8486     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8487         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8488       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8489     else if (N3.getOpcode() == ISD::AND)
8490       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8491         // If the and is only masking out bits that cannot effect the shift,
8492         // eliminate the and.
8493         unsigned NumBits = VT.getScalarSizeInBits()*2;
8494         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8495           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8496       }
8497     break;
8498 #endif
8499   }
8500 
8501   // Memoize the node unless it returns a flag.
8502   SDNode *N;
8503   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8504     FoldingSetNodeID ID;
8505     AddNodeIDNode(ID, Opcode, VTList, Ops);
8506     void *IP = nullptr;
8507     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8508       return SDValue(E, 0);
8509 
8510     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8511     createOperands(N, Ops);
8512     CSEMap.InsertNode(N, IP);
8513   } else {
8514     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8515     createOperands(N, Ops);
8516   }
8517 
8518   N->setFlags(Flags);
8519   InsertNode(N);
8520   SDValue V(N, 0);
8521   NewSDValueDbgMsg(V, "Creating new node: ", this);
8522   return V;
8523 }
8524 
8525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8526                               SDVTList VTList) {
8527   return getNode(Opcode, DL, VTList, None);
8528 }
8529 
8530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8531                               SDValue N1) {
8532   SDValue Ops[] = { N1 };
8533   return getNode(Opcode, DL, VTList, Ops);
8534 }
8535 
8536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8537                               SDValue N1, SDValue N2) {
8538   SDValue Ops[] = { N1, N2 };
8539   return getNode(Opcode, DL, VTList, Ops);
8540 }
8541 
8542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8543                               SDValue N1, SDValue N2, SDValue N3) {
8544   SDValue Ops[] = { N1, N2, N3 };
8545   return getNode(Opcode, DL, VTList, Ops);
8546 }
8547 
8548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8549                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8550   SDValue Ops[] = { N1, N2, N3, N4 };
8551   return getNode(Opcode, DL, VTList, Ops);
8552 }
8553 
8554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8555                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8556                               SDValue N5) {
8557   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8558   return getNode(Opcode, DL, VTList, Ops);
8559 }
8560 
8561 SDVTList SelectionDAG::getVTList(EVT VT) {
8562   return makeVTList(SDNode::getValueTypeList(VT), 1);
8563 }
8564 
8565 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8566   FoldingSetNodeID ID;
8567   ID.AddInteger(2U);
8568   ID.AddInteger(VT1.getRawBits());
8569   ID.AddInteger(VT2.getRawBits());
8570 
8571   void *IP = nullptr;
8572   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8573   if (!Result) {
8574     EVT *Array = Allocator.Allocate<EVT>(2);
8575     Array[0] = VT1;
8576     Array[1] = VT2;
8577     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8578     VTListMap.InsertNode(Result, IP);
8579   }
8580   return Result->getSDVTList();
8581 }
8582 
8583 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8584   FoldingSetNodeID ID;
8585   ID.AddInteger(3U);
8586   ID.AddInteger(VT1.getRawBits());
8587   ID.AddInteger(VT2.getRawBits());
8588   ID.AddInteger(VT3.getRawBits());
8589 
8590   void *IP = nullptr;
8591   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8592   if (!Result) {
8593     EVT *Array = Allocator.Allocate<EVT>(3);
8594     Array[0] = VT1;
8595     Array[1] = VT2;
8596     Array[2] = VT3;
8597     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8598     VTListMap.InsertNode(Result, IP);
8599   }
8600   return Result->getSDVTList();
8601 }
8602 
8603 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8604   FoldingSetNodeID ID;
8605   ID.AddInteger(4U);
8606   ID.AddInteger(VT1.getRawBits());
8607   ID.AddInteger(VT2.getRawBits());
8608   ID.AddInteger(VT3.getRawBits());
8609   ID.AddInteger(VT4.getRawBits());
8610 
8611   void *IP = nullptr;
8612   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8613   if (!Result) {
8614     EVT *Array = Allocator.Allocate<EVT>(4);
8615     Array[0] = VT1;
8616     Array[1] = VT2;
8617     Array[2] = VT3;
8618     Array[3] = VT4;
8619     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8620     VTListMap.InsertNode(Result, IP);
8621   }
8622   return Result->getSDVTList();
8623 }
8624 
8625 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8626   unsigned NumVTs = VTs.size();
8627   FoldingSetNodeID ID;
8628   ID.AddInteger(NumVTs);
8629   for (unsigned index = 0; index < NumVTs; index++) {
8630     ID.AddInteger(VTs[index].getRawBits());
8631   }
8632 
8633   void *IP = nullptr;
8634   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8635   if (!Result) {
8636     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8637     llvm::copy(VTs, Array);
8638     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8639     VTListMap.InsertNode(Result, IP);
8640   }
8641   return Result->getSDVTList();
8642 }
8643 
8644 
8645 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8646 /// specified operands.  If the resultant node already exists in the DAG,
8647 /// this does not modify the specified node, instead it returns the node that
8648 /// already exists.  If the resultant node does not exist in the DAG, the
8649 /// input node is returned.  As a degenerate case, if you specify the same
8650 /// input operands as the node already has, the input node is returned.
8651 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8652   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8653 
8654   // Check to see if there is no change.
8655   if (Op == N->getOperand(0)) return N;
8656 
8657   // See if the modified node already exists.
8658   void *InsertPos = nullptr;
8659   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8660     return Existing;
8661 
8662   // Nope it doesn't.  Remove the node from its current place in the maps.
8663   if (InsertPos)
8664     if (!RemoveNodeFromCSEMaps(N))
8665       InsertPos = nullptr;
8666 
8667   // Now we update the operands.
8668   N->OperandList[0].set(Op);
8669 
8670   updateDivergence(N);
8671   // If this gets put into a CSE map, add it.
8672   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8673   return N;
8674 }
8675 
8676 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8677   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8678 
8679   // Check to see if there is no change.
8680   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8681     return N;   // No operands changed, just return the input node.
8682 
8683   // See if the modified node already exists.
8684   void *InsertPos = nullptr;
8685   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8686     return Existing;
8687 
8688   // Nope it doesn't.  Remove the node from its current place in the maps.
8689   if (InsertPos)
8690     if (!RemoveNodeFromCSEMaps(N))
8691       InsertPos = nullptr;
8692 
8693   // Now we update the operands.
8694   if (N->OperandList[0] != Op1)
8695     N->OperandList[0].set(Op1);
8696   if (N->OperandList[1] != Op2)
8697     N->OperandList[1].set(Op2);
8698 
8699   updateDivergence(N);
8700   // If this gets put into a CSE map, add it.
8701   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8702   return N;
8703 }
8704 
8705 SDNode *SelectionDAG::
8706 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8707   SDValue Ops[] = { Op1, Op2, Op3 };
8708   return UpdateNodeOperands(N, Ops);
8709 }
8710 
8711 SDNode *SelectionDAG::
8712 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8713                    SDValue Op3, SDValue Op4) {
8714   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8715   return UpdateNodeOperands(N, Ops);
8716 }
8717 
8718 SDNode *SelectionDAG::
8719 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8720                    SDValue Op3, SDValue Op4, SDValue Op5) {
8721   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8722   return UpdateNodeOperands(N, Ops);
8723 }
8724 
8725 SDNode *SelectionDAG::
8726 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8727   unsigned NumOps = Ops.size();
8728   assert(N->getNumOperands() == NumOps &&
8729          "Update with wrong number of operands");
8730 
8731   // If no operands changed just return the input node.
8732   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8733     return N;
8734 
8735   // See if the modified node already exists.
8736   void *InsertPos = nullptr;
8737   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8738     return Existing;
8739 
8740   // Nope it doesn't.  Remove the node from its current place in the maps.
8741   if (InsertPos)
8742     if (!RemoveNodeFromCSEMaps(N))
8743       InsertPos = nullptr;
8744 
8745   // Now we update the operands.
8746   for (unsigned i = 0; i != NumOps; ++i)
8747     if (N->OperandList[i] != Ops[i])
8748       N->OperandList[i].set(Ops[i]);
8749 
8750   updateDivergence(N);
8751   // If this gets put into a CSE map, add it.
8752   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8753   return N;
8754 }
8755 
8756 /// DropOperands - Release the operands and set this node to have
8757 /// zero operands.
8758 void SDNode::DropOperands() {
8759   // Unlike the code in MorphNodeTo that does this, we don't need to
8760   // watch for dead nodes here.
8761   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8762     SDUse &Use = *I++;
8763     Use.set(SDValue());
8764   }
8765 }
8766 
8767 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8768                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8769   if (NewMemRefs.empty()) {
8770     N->clearMemRefs();
8771     return;
8772   }
8773 
8774   // Check if we can avoid allocating by storing a single reference directly.
8775   if (NewMemRefs.size() == 1) {
8776     N->MemRefs = NewMemRefs[0];
8777     N->NumMemRefs = 1;
8778     return;
8779   }
8780 
8781   MachineMemOperand **MemRefsBuffer =
8782       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8783   llvm::copy(NewMemRefs, MemRefsBuffer);
8784   N->MemRefs = MemRefsBuffer;
8785   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8786 }
8787 
8788 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8789 /// machine opcode.
8790 ///
8791 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8792                                    EVT VT) {
8793   SDVTList VTs = getVTList(VT);
8794   return SelectNodeTo(N, MachineOpc, VTs, None);
8795 }
8796 
8797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8798                                    EVT VT, SDValue Op1) {
8799   SDVTList VTs = getVTList(VT);
8800   SDValue Ops[] = { Op1 };
8801   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8802 }
8803 
8804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8805                                    EVT VT, SDValue Op1,
8806                                    SDValue Op2) {
8807   SDVTList VTs = getVTList(VT);
8808   SDValue Ops[] = { Op1, Op2 };
8809   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8810 }
8811 
8812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8813                                    EVT VT, SDValue Op1,
8814                                    SDValue Op2, SDValue Op3) {
8815   SDVTList VTs = getVTList(VT);
8816   SDValue Ops[] = { Op1, Op2, Op3 };
8817   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8818 }
8819 
8820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8821                                    EVT VT, ArrayRef<SDValue> Ops) {
8822   SDVTList VTs = getVTList(VT);
8823   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8824 }
8825 
8826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8827                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8828   SDVTList VTs = getVTList(VT1, VT2);
8829   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8830 }
8831 
8832 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8833                                    EVT VT1, EVT VT2) {
8834   SDVTList VTs = getVTList(VT1, VT2);
8835   return SelectNodeTo(N, MachineOpc, VTs, None);
8836 }
8837 
8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8839                                    EVT VT1, EVT VT2, EVT VT3,
8840                                    ArrayRef<SDValue> Ops) {
8841   SDVTList VTs = getVTList(VT1, VT2, VT3);
8842   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8843 }
8844 
8845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8846                                    EVT VT1, EVT VT2,
8847                                    SDValue Op1, SDValue Op2) {
8848   SDVTList VTs = getVTList(VT1, VT2);
8849   SDValue Ops[] = { Op1, Op2 };
8850   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8851 }
8852 
8853 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8854                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8855   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8856   // Reset the NodeID to -1.
8857   New->setNodeId(-1);
8858   if (New != N) {
8859     ReplaceAllUsesWith(N, New);
8860     RemoveDeadNode(N);
8861   }
8862   return New;
8863 }
8864 
8865 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8866 /// the line number information on the merged node since it is not possible to
8867 /// preserve the information that operation is associated with multiple lines.
8868 /// This will make the debugger working better at -O0, were there is a higher
8869 /// probability having other instructions associated with that line.
8870 ///
8871 /// For IROrder, we keep the smaller of the two
8872 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8873   DebugLoc NLoc = N->getDebugLoc();
8874   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8875     N->setDebugLoc(DebugLoc());
8876   }
8877   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8878   N->setIROrder(Order);
8879   return N;
8880 }
8881 
8882 /// MorphNodeTo - This *mutates* the specified node to have the specified
8883 /// return type, opcode, and operands.
8884 ///
8885 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8886 /// node of the specified opcode and operands, it returns that node instead of
8887 /// the current one.  Note that the SDLoc need not be the same.
8888 ///
8889 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8890 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8891 /// node, and because it doesn't require CSE recalculation for any of
8892 /// the node's users.
8893 ///
8894 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8895 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8896 /// the legalizer which maintain worklists that would need to be updated when
8897 /// deleting things.
8898 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8899                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8900   // If an identical node already exists, use it.
8901   void *IP = nullptr;
8902   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8903     FoldingSetNodeID ID;
8904     AddNodeIDNode(ID, Opc, VTs, Ops);
8905     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8906       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8907   }
8908 
8909   if (!RemoveNodeFromCSEMaps(N))
8910     IP = nullptr;
8911 
8912   // Start the morphing.
8913   N->NodeType = Opc;
8914   N->ValueList = VTs.VTs;
8915   N->NumValues = VTs.NumVTs;
8916 
8917   // Clear the operands list, updating used nodes to remove this from their
8918   // use list.  Keep track of any operands that become dead as a result.
8919   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8920   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8921     SDUse &Use = *I++;
8922     SDNode *Used = Use.getNode();
8923     Use.set(SDValue());
8924     if (Used->use_empty())
8925       DeadNodeSet.insert(Used);
8926   }
8927 
8928   // For MachineNode, initialize the memory references information.
8929   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8930     MN->clearMemRefs();
8931 
8932   // Swap for an appropriately sized array from the recycler.
8933   removeOperands(N);
8934   createOperands(N, Ops);
8935 
8936   // Delete any nodes that are still dead after adding the uses for the
8937   // new operands.
8938   if (!DeadNodeSet.empty()) {
8939     SmallVector<SDNode *, 16> DeadNodes;
8940     for (SDNode *N : DeadNodeSet)
8941       if (N->use_empty())
8942         DeadNodes.push_back(N);
8943     RemoveDeadNodes(DeadNodes);
8944   }
8945 
8946   if (IP)
8947     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8948   return N;
8949 }
8950 
8951 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8952   unsigned OrigOpc = Node->getOpcode();
8953   unsigned NewOpc;
8954   switch (OrigOpc) {
8955   default:
8956     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8957 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8958   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8959 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8960   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8961 #include "llvm/IR/ConstrainedOps.def"
8962   }
8963 
8964   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8965 
8966   // We're taking this node out of the chain, so we need to re-link things.
8967   SDValue InputChain = Node->getOperand(0);
8968   SDValue OutputChain = SDValue(Node, 1);
8969   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8970 
8971   SmallVector<SDValue, 3> Ops;
8972   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8973     Ops.push_back(Node->getOperand(i));
8974 
8975   SDVTList VTs = getVTList(Node->getValueType(0));
8976   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8977 
8978   // MorphNodeTo can operate in two ways: if an existing node with the
8979   // specified operands exists, it can just return it.  Otherwise, it
8980   // updates the node in place to have the requested operands.
8981   if (Res == Node) {
8982     // If we updated the node in place, reset the node ID.  To the isel,
8983     // this should be just like a newly allocated machine node.
8984     Res->setNodeId(-1);
8985   } else {
8986     ReplaceAllUsesWith(Node, Res);
8987     RemoveDeadNode(Node);
8988   }
8989 
8990   return Res;
8991 }
8992 
8993 /// getMachineNode - These are used for target selectors to create a new node
8994 /// with specified return type(s), MachineInstr opcode, and operands.
8995 ///
8996 /// Note that getMachineNode returns the resultant node.  If there is already a
8997 /// node of the specified opcode and operands, it returns that node instead of
8998 /// the current one.
8999 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9000                                             EVT VT) {
9001   SDVTList VTs = getVTList(VT);
9002   return getMachineNode(Opcode, dl, VTs, None);
9003 }
9004 
9005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9006                                             EVT VT, SDValue Op1) {
9007   SDVTList VTs = getVTList(VT);
9008   SDValue Ops[] = { Op1 };
9009   return getMachineNode(Opcode, dl, VTs, Ops);
9010 }
9011 
9012 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9013                                             EVT VT, SDValue Op1, SDValue Op2) {
9014   SDVTList VTs = getVTList(VT);
9015   SDValue Ops[] = { Op1, Op2 };
9016   return getMachineNode(Opcode, dl, VTs, Ops);
9017 }
9018 
9019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9020                                             EVT VT, SDValue Op1, SDValue Op2,
9021                                             SDValue Op3) {
9022   SDVTList VTs = getVTList(VT);
9023   SDValue Ops[] = { Op1, Op2, Op3 };
9024   return getMachineNode(Opcode, dl, VTs, Ops);
9025 }
9026 
9027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9028                                             EVT VT, ArrayRef<SDValue> Ops) {
9029   SDVTList VTs = getVTList(VT);
9030   return getMachineNode(Opcode, dl, VTs, Ops);
9031 }
9032 
9033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9034                                             EVT VT1, EVT VT2, SDValue Op1,
9035                                             SDValue Op2) {
9036   SDVTList VTs = getVTList(VT1, VT2);
9037   SDValue Ops[] = { Op1, Op2 };
9038   return getMachineNode(Opcode, dl, VTs, Ops);
9039 }
9040 
9041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9042                                             EVT VT1, EVT VT2, SDValue Op1,
9043                                             SDValue Op2, SDValue Op3) {
9044   SDVTList VTs = getVTList(VT1, VT2);
9045   SDValue Ops[] = { Op1, Op2, Op3 };
9046   return getMachineNode(Opcode, dl, VTs, Ops);
9047 }
9048 
9049 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9050                                             EVT VT1, EVT VT2,
9051                                             ArrayRef<SDValue> Ops) {
9052   SDVTList VTs = getVTList(VT1, VT2);
9053   return getMachineNode(Opcode, dl, VTs, Ops);
9054 }
9055 
9056 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9057                                             EVT VT1, EVT VT2, EVT VT3,
9058                                             SDValue Op1, SDValue Op2) {
9059   SDVTList VTs = getVTList(VT1, VT2, VT3);
9060   SDValue Ops[] = { Op1, Op2 };
9061   return getMachineNode(Opcode, dl, VTs, Ops);
9062 }
9063 
9064 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9065                                             EVT VT1, EVT VT2, EVT VT3,
9066                                             SDValue Op1, SDValue Op2,
9067                                             SDValue Op3) {
9068   SDVTList VTs = getVTList(VT1, VT2, VT3);
9069   SDValue Ops[] = { Op1, Op2, Op3 };
9070   return getMachineNode(Opcode, dl, VTs, Ops);
9071 }
9072 
9073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9074                                             EVT VT1, EVT VT2, EVT VT3,
9075                                             ArrayRef<SDValue> Ops) {
9076   SDVTList VTs = getVTList(VT1, VT2, VT3);
9077   return getMachineNode(Opcode, dl, VTs, Ops);
9078 }
9079 
9080 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9081                                             ArrayRef<EVT> ResultTys,
9082                                             ArrayRef<SDValue> Ops) {
9083   SDVTList VTs = getVTList(ResultTys);
9084   return getMachineNode(Opcode, dl, VTs, Ops);
9085 }
9086 
9087 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9088                                             SDVTList VTs,
9089                                             ArrayRef<SDValue> Ops) {
9090   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9091   MachineSDNode *N;
9092   void *IP = nullptr;
9093 
9094   if (DoCSE) {
9095     FoldingSetNodeID ID;
9096     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9097     IP = nullptr;
9098     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9099       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9100     }
9101   }
9102 
9103   // Allocate a new MachineSDNode.
9104   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9105   createOperands(N, Ops);
9106 
9107   if (DoCSE)
9108     CSEMap.InsertNode(N, IP);
9109 
9110   InsertNode(N);
9111   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9112   return N;
9113 }
9114 
9115 /// getTargetExtractSubreg - A convenience function for creating
9116 /// TargetOpcode::EXTRACT_SUBREG nodes.
9117 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9118                                              SDValue Operand) {
9119   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9120   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9121                                   VT, Operand, SRIdxVal);
9122   return SDValue(Subreg, 0);
9123 }
9124 
9125 /// getTargetInsertSubreg - A convenience function for creating
9126 /// TargetOpcode::INSERT_SUBREG nodes.
9127 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9128                                             SDValue Operand, SDValue Subreg) {
9129   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9130   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9131                                   VT, Operand, Subreg, SRIdxVal);
9132   return SDValue(Result, 0);
9133 }
9134 
9135 /// getNodeIfExists - Get the specified node if it's already available, or
9136 /// else return NULL.
9137 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9138                                       ArrayRef<SDValue> Ops) {
9139   SDNodeFlags Flags;
9140   if (Inserter)
9141     Flags = Inserter->getFlags();
9142   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9143 }
9144 
9145 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9146                                       ArrayRef<SDValue> Ops,
9147                                       const SDNodeFlags Flags) {
9148   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9149     FoldingSetNodeID ID;
9150     AddNodeIDNode(ID, Opcode, VTList, Ops);
9151     void *IP = nullptr;
9152     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9153       E->intersectFlagsWith(Flags);
9154       return E;
9155     }
9156   }
9157   return nullptr;
9158 }
9159 
9160 /// doesNodeExist - Check if a node exists without modifying its flags.
9161 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9162                                  ArrayRef<SDValue> Ops) {
9163   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9164     FoldingSetNodeID ID;
9165     AddNodeIDNode(ID, Opcode, VTList, Ops);
9166     void *IP = nullptr;
9167     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9168       return true;
9169   }
9170   return false;
9171 }
9172 
9173 /// getDbgValue - Creates a SDDbgValue node.
9174 ///
9175 /// SDNode
9176 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9177                                       SDNode *N, unsigned R, bool IsIndirect,
9178                                       const DebugLoc &DL, unsigned O) {
9179   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9180          "Expected inlined-at fields to agree");
9181   return new (DbgInfo->getAlloc())
9182       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9183                  {}, IsIndirect, DL, O,
9184                  /*IsVariadic=*/false);
9185 }
9186 
9187 /// Constant
9188 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9189                                               DIExpression *Expr,
9190                                               const Value *C,
9191                                               const DebugLoc &DL, unsigned O) {
9192   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9193          "Expected inlined-at fields to agree");
9194   return new (DbgInfo->getAlloc())
9195       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9196                  /*IsIndirect=*/false, DL, O,
9197                  /*IsVariadic=*/false);
9198 }
9199 
9200 /// FrameIndex
9201 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9202                                                 DIExpression *Expr, unsigned FI,
9203                                                 bool IsIndirect,
9204                                                 const DebugLoc &DL,
9205                                                 unsigned O) {
9206   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9207          "Expected inlined-at fields to agree");
9208   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9209 }
9210 
9211 /// FrameIndex with dependencies
9212 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9213                                                 DIExpression *Expr, unsigned FI,
9214                                                 ArrayRef<SDNode *> Dependencies,
9215                                                 bool IsIndirect,
9216                                                 const DebugLoc &DL,
9217                                                 unsigned O) {
9218   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9219          "Expected inlined-at fields to agree");
9220   return new (DbgInfo->getAlloc())
9221       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9222                  Dependencies, IsIndirect, DL, O,
9223                  /*IsVariadic=*/false);
9224 }
9225 
9226 /// VReg
9227 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9228                                           unsigned VReg, bool IsIndirect,
9229                                           const DebugLoc &DL, unsigned O) {
9230   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9231          "Expected inlined-at fields to agree");
9232   return new (DbgInfo->getAlloc())
9233       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9234                  {}, IsIndirect, DL, O,
9235                  /*IsVariadic=*/false);
9236 }
9237 
9238 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9239                                           ArrayRef<SDDbgOperand> Locs,
9240                                           ArrayRef<SDNode *> Dependencies,
9241                                           bool IsIndirect, const DebugLoc &DL,
9242                                           unsigned O, bool IsVariadic) {
9243   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9244          "Expected inlined-at fields to agree");
9245   return new (DbgInfo->getAlloc())
9246       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9247                  DL, O, IsVariadic);
9248 }
9249 
9250 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9251                                      unsigned OffsetInBits, unsigned SizeInBits,
9252                                      bool InvalidateDbg) {
9253   SDNode *FromNode = From.getNode();
9254   SDNode *ToNode = To.getNode();
9255   assert(FromNode && ToNode && "Can't modify dbg values");
9256 
9257   // PR35338
9258   // TODO: assert(From != To && "Redundant dbg value transfer");
9259   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9260   if (From == To || FromNode == ToNode)
9261     return;
9262 
9263   if (!FromNode->getHasDebugValue())
9264     return;
9265 
9266   SDDbgOperand FromLocOp =
9267       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9268   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9269 
9270   SmallVector<SDDbgValue *, 2> ClonedDVs;
9271   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9272     if (Dbg->isInvalidated())
9273       continue;
9274 
9275     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9276 
9277     // Create a new location ops vector that is equal to the old vector, but
9278     // with each instance of FromLocOp replaced with ToLocOp.
9279     bool Changed = false;
9280     auto NewLocOps = Dbg->copyLocationOps();
9281     std::replace_if(
9282         NewLocOps.begin(), NewLocOps.end(),
9283         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9284           bool Match = Op == FromLocOp;
9285           Changed |= Match;
9286           return Match;
9287         },
9288         ToLocOp);
9289     // Ignore this SDDbgValue if we didn't find a matching location.
9290     if (!Changed)
9291       continue;
9292 
9293     DIVariable *Var = Dbg->getVariable();
9294     auto *Expr = Dbg->getExpression();
9295     // If a fragment is requested, update the expression.
9296     if (SizeInBits) {
9297       // When splitting a larger (e.g., sign-extended) value whose
9298       // lower bits are described with an SDDbgValue, do not attempt
9299       // to transfer the SDDbgValue to the upper bits.
9300       if (auto FI = Expr->getFragmentInfo())
9301         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9302           continue;
9303       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9304                                                              SizeInBits);
9305       if (!Fragment)
9306         continue;
9307       Expr = *Fragment;
9308     }
9309 
9310     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9311     // Clone the SDDbgValue and move it to To.
9312     SDDbgValue *Clone = getDbgValueList(
9313         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9314         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9315         Dbg->isVariadic());
9316     ClonedDVs.push_back(Clone);
9317 
9318     if (InvalidateDbg) {
9319       // Invalidate value and indicate the SDDbgValue should not be emitted.
9320       Dbg->setIsInvalidated();
9321       Dbg->setIsEmitted();
9322     }
9323   }
9324 
9325   for (SDDbgValue *Dbg : ClonedDVs) {
9326     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9327            "Transferred DbgValues should depend on the new SDNode");
9328     AddDbgValue(Dbg, false);
9329   }
9330 }
9331 
9332 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9333   if (!N.getHasDebugValue())
9334     return;
9335 
9336   SmallVector<SDDbgValue *, 2> ClonedDVs;
9337   for (auto DV : GetDbgValues(&N)) {
9338     if (DV->isInvalidated())
9339       continue;
9340     switch (N.getOpcode()) {
9341     default:
9342       break;
9343     case ISD::ADD:
9344       SDValue N0 = N.getOperand(0);
9345       SDValue N1 = N.getOperand(1);
9346       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9347           isConstantIntBuildVectorOrConstantInt(N1)) {
9348         uint64_t Offset = N.getConstantOperandVal(1);
9349 
9350         // Rewrite an ADD constant node into a DIExpression. Since we are
9351         // performing arithmetic to compute the variable's *value* in the
9352         // DIExpression, we need to mark the expression with a
9353         // DW_OP_stack_value.
9354         auto *DIExpr = DV->getExpression();
9355         auto NewLocOps = DV->copyLocationOps();
9356         bool Changed = false;
9357         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9358           // We're not given a ResNo to compare against because the whole
9359           // node is going away. We know that any ISD::ADD only has one
9360           // result, so we can assume any node match is using the result.
9361           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9362               NewLocOps[i].getSDNode() != &N)
9363             continue;
9364           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9365           SmallVector<uint64_t, 3> ExprOps;
9366           DIExpression::appendOffset(ExprOps, Offset);
9367           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9368           Changed = true;
9369         }
9370         (void)Changed;
9371         assert(Changed && "Salvage target doesn't use N");
9372 
9373         auto AdditionalDependencies = DV->getAdditionalDependencies();
9374         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9375                                             NewLocOps, AdditionalDependencies,
9376                                             DV->isIndirect(), DV->getDebugLoc(),
9377                                             DV->getOrder(), DV->isVariadic());
9378         ClonedDVs.push_back(Clone);
9379         DV->setIsInvalidated();
9380         DV->setIsEmitted();
9381         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9382                    N0.getNode()->dumprFull(this);
9383                    dbgs() << " into " << *DIExpr << '\n');
9384       }
9385     }
9386   }
9387 
9388   for (SDDbgValue *Dbg : ClonedDVs) {
9389     assert(!Dbg->getSDNodes().empty() &&
9390            "Salvaged DbgValue should depend on a new SDNode");
9391     AddDbgValue(Dbg, false);
9392   }
9393 }
9394 
9395 /// Creates a SDDbgLabel node.
9396 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9397                                       const DebugLoc &DL, unsigned O) {
9398   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9399          "Expected inlined-at fields to agree");
9400   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9401 }
9402 
9403 namespace {
9404 
9405 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9406 /// pointed to by a use iterator is deleted, increment the use iterator
9407 /// so that it doesn't dangle.
9408 ///
9409 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9410   SDNode::use_iterator &UI;
9411   SDNode::use_iterator &UE;
9412 
9413   void NodeDeleted(SDNode *N, SDNode *E) override {
9414     // Increment the iterator as needed.
9415     while (UI != UE && N == *UI)
9416       ++UI;
9417   }
9418 
9419 public:
9420   RAUWUpdateListener(SelectionDAG &d,
9421                      SDNode::use_iterator &ui,
9422                      SDNode::use_iterator &ue)
9423     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9424 };
9425 
9426 } // end anonymous namespace
9427 
9428 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9429 /// This can cause recursive merging of nodes in the DAG.
9430 ///
9431 /// This version assumes From has a single result value.
9432 ///
9433 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9434   SDNode *From = FromN.getNode();
9435   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9436          "Cannot replace with this method!");
9437   assert(From != To.getNode() && "Cannot replace uses of with self");
9438 
9439   // Preserve Debug Values
9440   transferDbgValues(FromN, To);
9441 
9442   // Iterate over all the existing uses of From. New uses will be added
9443   // to the beginning of the use list, which we avoid visiting.
9444   // This specifically avoids visiting uses of From that arise while the
9445   // replacement is happening, because any such uses would be the result
9446   // of CSE: If an existing node looks like From after one of its operands
9447   // is replaced by To, we don't want to replace of all its users with To
9448   // too. See PR3018 for more info.
9449   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9450   RAUWUpdateListener Listener(*this, UI, UE);
9451   while (UI != UE) {
9452     SDNode *User = *UI;
9453 
9454     // This node is about to morph, remove its old self from the CSE maps.
9455     RemoveNodeFromCSEMaps(User);
9456 
9457     // A user can appear in a use list multiple times, and when this
9458     // happens the uses are usually next to each other in the list.
9459     // To help reduce the number of CSE recomputations, process all
9460     // the uses of this user that we can find this way.
9461     do {
9462       SDUse &Use = UI.getUse();
9463       ++UI;
9464       Use.set(To);
9465       if (To->isDivergent() != From->isDivergent())
9466         updateDivergence(User);
9467     } while (UI != UE && *UI == User);
9468     // Now that we have modified User, add it back to the CSE maps.  If it
9469     // already exists there, recursively merge the results together.
9470     AddModifiedNodeToCSEMaps(User);
9471   }
9472 
9473   // If we just RAUW'd the root, take note.
9474   if (FromN == getRoot())
9475     setRoot(To);
9476 }
9477 
9478 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9479 /// This can cause recursive merging of nodes in the DAG.
9480 ///
9481 /// This version assumes that for each value of From, there is a
9482 /// corresponding value in To in the same position with the same type.
9483 ///
9484 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9485 #ifndef NDEBUG
9486   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9487     assert((!From->hasAnyUseOfValue(i) ||
9488             From->getValueType(i) == To->getValueType(i)) &&
9489            "Cannot use this version of ReplaceAllUsesWith!");
9490 #endif
9491 
9492   // Handle the trivial case.
9493   if (From == To)
9494     return;
9495 
9496   // Preserve Debug Info. Only do this if there's a use.
9497   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9498     if (From->hasAnyUseOfValue(i)) {
9499       assert((i < To->getNumValues()) && "Invalid To location");
9500       transferDbgValues(SDValue(From, i), SDValue(To, i));
9501     }
9502 
9503   // Iterate over just the existing users of From. See the comments in
9504   // the ReplaceAllUsesWith above.
9505   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9506   RAUWUpdateListener Listener(*this, UI, UE);
9507   while (UI != UE) {
9508     SDNode *User = *UI;
9509 
9510     // This node is about to morph, remove its old self from the CSE maps.
9511     RemoveNodeFromCSEMaps(User);
9512 
9513     // A user can appear in a use list multiple times, and when this
9514     // happens the uses are usually next to each other in the list.
9515     // To help reduce the number of CSE recomputations, process all
9516     // the uses of this user that we can find this way.
9517     do {
9518       SDUse &Use = UI.getUse();
9519       ++UI;
9520       Use.setNode(To);
9521       if (To->isDivergent() != From->isDivergent())
9522         updateDivergence(User);
9523     } while (UI != UE && *UI == User);
9524 
9525     // Now that we have modified User, add it back to the CSE maps.  If it
9526     // already exists there, recursively merge the results together.
9527     AddModifiedNodeToCSEMaps(User);
9528   }
9529 
9530   // If we just RAUW'd the root, take note.
9531   if (From == getRoot().getNode())
9532     setRoot(SDValue(To, getRoot().getResNo()));
9533 }
9534 
9535 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9536 /// This can cause recursive merging of nodes in the DAG.
9537 ///
9538 /// This version can replace From with any result values.  To must match the
9539 /// number and types of values returned by From.
9540 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9541   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9542     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9543 
9544   // Preserve Debug Info.
9545   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9546     transferDbgValues(SDValue(From, i), To[i]);
9547 
9548   // Iterate over just the existing users of From. See the comments in
9549   // the ReplaceAllUsesWith above.
9550   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9551   RAUWUpdateListener Listener(*this, UI, UE);
9552   while (UI != UE) {
9553     SDNode *User = *UI;
9554 
9555     // This node is about to morph, remove its old self from the CSE maps.
9556     RemoveNodeFromCSEMaps(User);
9557 
9558     // A user can appear in a use list multiple times, and when this happens the
9559     // uses are usually next to each other in the list.  To help reduce the
9560     // number of CSE and divergence recomputations, process all the uses of this
9561     // user that we can find this way.
9562     bool To_IsDivergent = false;
9563     do {
9564       SDUse &Use = UI.getUse();
9565       const SDValue &ToOp = To[Use.getResNo()];
9566       ++UI;
9567       Use.set(ToOp);
9568       To_IsDivergent |= ToOp->isDivergent();
9569     } while (UI != UE && *UI == User);
9570 
9571     if (To_IsDivergent != From->isDivergent())
9572       updateDivergence(User);
9573 
9574     // Now that we have modified User, add it back to the CSE maps.  If it
9575     // already exists there, recursively merge the results together.
9576     AddModifiedNodeToCSEMaps(User);
9577   }
9578 
9579   // If we just RAUW'd the root, take note.
9580   if (From == getRoot().getNode())
9581     setRoot(SDValue(To[getRoot().getResNo()]));
9582 }
9583 
9584 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9585 /// uses of other values produced by From.getNode() alone.  The Deleted
9586 /// vector is handled the same way as for ReplaceAllUsesWith.
9587 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9588   // Handle the really simple, really trivial case efficiently.
9589   if (From == To) return;
9590 
9591   // Handle the simple, trivial, case efficiently.
9592   if (From.getNode()->getNumValues() == 1) {
9593     ReplaceAllUsesWith(From, To);
9594     return;
9595   }
9596 
9597   // Preserve Debug Info.
9598   transferDbgValues(From, To);
9599 
9600   // Iterate over just the existing users of From. See the comments in
9601   // the ReplaceAllUsesWith above.
9602   SDNode::use_iterator UI = From.getNode()->use_begin(),
9603                        UE = From.getNode()->use_end();
9604   RAUWUpdateListener Listener(*this, UI, UE);
9605   while (UI != UE) {
9606     SDNode *User = *UI;
9607     bool UserRemovedFromCSEMaps = false;
9608 
9609     // A user can appear in a use list multiple times, and when this
9610     // happens the uses are usually next to each other in the list.
9611     // To help reduce the number of CSE recomputations, process all
9612     // the uses of this user that we can find this way.
9613     do {
9614       SDUse &Use = UI.getUse();
9615 
9616       // Skip uses of different values from the same node.
9617       if (Use.getResNo() != From.getResNo()) {
9618         ++UI;
9619         continue;
9620       }
9621 
9622       // If this node hasn't been modified yet, it's still in the CSE maps,
9623       // so remove its old self from the CSE maps.
9624       if (!UserRemovedFromCSEMaps) {
9625         RemoveNodeFromCSEMaps(User);
9626         UserRemovedFromCSEMaps = true;
9627       }
9628 
9629       ++UI;
9630       Use.set(To);
9631       if (To->isDivergent() != From->isDivergent())
9632         updateDivergence(User);
9633     } while (UI != UE && *UI == User);
9634     // We are iterating over all uses of the From node, so if a use
9635     // doesn't use the specific value, no changes are made.
9636     if (!UserRemovedFromCSEMaps)
9637       continue;
9638 
9639     // Now that we have modified User, add it back to the CSE maps.  If it
9640     // already exists there, recursively merge the results together.
9641     AddModifiedNodeToCSEMaps(User);
9642   }
9643 
9644   // If we just RAUW'd the root, take note.
9645   if (From == getRoot())
9646     setRoot(To);
9647 }
9648 
9649 namespace {
9650 
9651   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9652   /// to record information about a use.
9653   struct UseMemo {
9654     SDNode *User;
9655     unsigned Index;
9656     SDUse *Use;
9657   };
9658 
9659   /// operator< - Sort Memos by User.
9660   bool operator<(const UseMemo &L, const UseMemo &R) {
9661     return (intptr_t)L.User < (intptr_t)R.User;
9662   }
9663 
9664 } // end anonymous namespace
9665 
9666 bool SelectionDAG::calculateDivergence(SDNode *N) {
9667   if (TLI->isSDNodeAlwaysUniform(N)) {
9668     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9669            "Conflicting divergence information!");
9670     return false;
9671   }
9672   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9673     return true;
9674   for (auto &Op : N->ops()) {
9675     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9676       return true;
9677   }
9678   return false;
9679 }
9680 
9681 void SelectionDAG::updateDivergence(SDNode *N) {
9682   SmallVector<SDNode *, 16> Worklist(1, N);
9683   do {
9684     N = Worklist.pop_back_val();
9685     bool IsDivergent = calculateDivergence(N);
9686     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9687       N->SDNodeBits.IsDivergent = IsDivergent;
9688       llvm::append_range(Worklist, N->uses());
9689     }
9690   } while (!Worklist.empty());
9691 }
9692 
9693 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9694   DenseMap<SDNode *, unsigned> Degree;
9695   Order.reserve(AllNodes.size());
9696   for (auto &N : allnodes()) {
9697     unsigned NOps = N.getNumOperands();
9698     Degree[&N] = NOps;
9699     if (0 == NOps)
9700       Order.push_back(&N);
9701   }
9702   for (size_t I = 0; I != Order.size(); ++I) {
9703     SDNode *N = Order[I];
9704     for (auto U : N->uses()) {
9705       unsigned &UnsortedOps = Degree[U];
9706       if (0 == --UnsortedOps)
9707         Order.push_back(U);
9708     }
9709   }
9710 }
9711 
9712 #ifndef NDEBUG
9713 void SelectionDAG::VerifyDAGDivergence() {
9714   std::vector<SDNode *> TopoOrder;
9715   CreateTopologicalOrder(TopoOrder);
9716   for (auto *N : TopoOrder) {
9717     assert(calculateDivergence(N) == N->isDivergent() &&
9718            "Divergence bit inconsistency detected");
9719   }
9720 }
9721 #endif
9722 
9723 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9724 /// uses of other values produced by From.getNode() alone.  The same value
9725 /// may appear in both the From and To list.  The Deleted vector is
9726 /// handled the same way as for ReplaceAllUsesWith.
9727 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9728                                               const SDValue *To,
9729                                               unsigned Num){
9730   // Handle the simple, trivial case efficiently.
9731   if (Num == 1)
9732     return ReplaceAllUsesOfValueWith(*From, *To);
9733 
9734   transferDbgValues(*From, *To);
9735 
9736   // Read up all the uses and make records of them. This helps
9737   // processing new uses that are introduced during the
9738   // replacement process.
9739   SmallVector<UseMemo, 4> Uses;
9740   for (unsigned i = 0; i != Num; ++i) {
9741     unsigned FromResNo = From[i].getResNo();
9742     SDNode *FromNode = From[i].getNode();
9743     for (SDNode::use_iterator UI = FromNode->use_begin(),
9744          E = FromNode->use_end(); UI != E; ++UI) {
9745       SDUse &Use = UI.getUse();
9746       if (Use.getResNo() == FromResNo) {
9747         UseMemo Memo = { *UI, i, &Use };
9748         Uses.push_back(Memo);
9749       }
9750     }
9751   }
9752 
9753   // Sort the uses, so that all the uses from a given User are together.
9754   llvm::sort(Uses);
9755 
9756   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9757        UseIndex != UseIndexEnd; ) {
9758     // We know that this user uses some value of From.  If it is the right
9759     // value, update it.
9760     SDNode *User = Uses[UseIndex].User;
9761 
9762     // This node is about to morph, remove its old self from the CSE maps.
9763     RemoveNodeFromCSEMaps(User);
9764 
9765     // The Uses array is sorted, so all the uses for a given User
9766     // are next to each other in the list.
9767     // To help reduce the number of CSE recomputations, process all
9768     // the uses of this user that we can find this way.
9769     do {
9770       unsigned i = Uses[UseIndex].Index;
9771       SDUse &Use = *Uses[UseIndex].Use;
9772       ++UseIndex;
9773 
9774       Use.set(To[i]);
9775     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9776 
9777     // Now that we have modified User, add it back to the CSE maps.  If it
9778     // already exists there, recursively merge the results together.
9779     AddModifiedNodeToCSEMaps(User);
9780   }
9781 }
9782 
9783 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9784 /// based on their topological order. It returns the maximum id and a vector
9785 /// of the SDNodes* in assigned order by reference.
9786 unsigned SelectionDAG::AssignTopologicalOrder() {
9787   unsigned DAGSize = 0;
9788 
9789   // SortedPos tracks the progress of the algorithm. Nodes before it are
9790   // sorted, nodes after it are unsorted. When the algorithm completes
9791   // it is at the end of the list.
9792   allnodes_iterator SortedPos = allnodes_begin();
9793 
9794   // Visit all the nodes. Move nodes with no operands to the front of
9795   // the list immediately. Annotate nodes that do have operands with their
9796   // operand count. Before we do this, the Node Id fields of the nodes
9797   // may contain arbitrary values. After, the Node Id fields for nodes
9798   // before SortedPos will contain the topological sort index, and the
9799   // Node Id fields for nodes At SortedPos and after will contain the
9800   // count of outstanding operands.
9801   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9802     checkForCycles(&N, this);
9803     unsigned Degree = N.getNumOperands();
9804     if (Degree == 0) {
9805       // A node with no uses, add it to the result array immediately.
9806       N.setNodeId(DAGSize++);
9807       allnodes_iterator Q(&N);
9808       if (Q != SortedPos)
9809         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9810       assert(SortedPos != AllNodes.end() && "Overran node list");
9811       ++SortedPos;
9812     } else {
9813       // Temporarily use the Node Id as scratch space for the degree count.
9814       N.setNodeId(Degree);
9815     }
9816   }
9817 
9818   // Visit all the nodes. As we iterate, move nodes into sorted order,
9819   // such that by the time the end is reached all nodes will be sorted.
9820   for (SDNode &Node : allnodes()) {
9821     SDNode *N = &Node;
9822     checkForCycles(N, this);
9823     // N is in sorted position, so all its uses have one less operand
9824     // that needs to be sorted.
9825     for (SDNode *P : N->uses()) {
9826       unsigned Degree = P->getNodeId();
9827       assert(Degree != 0 && "Invalid node degree");
9828       --Degree;
9829       if (Degree == 0) {
9830         // All of P's operands are sorted, so P may sorted now.
9831         P->setNodeId(DAGSize++);
9832         if (P->getIterator() != SortedPos)
9833           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9834         assert(SortedPos != AllNodes.end() && "Overran node list");
9835         ++SortedPos;
9836       } else {
9837         // Update P's outstanding operand count.
9838         P->setNodeId(Degree);
9839       }
9840     }
9841     if (Node.getIterator() == SortedPos) {
9842 #ifndef NDEBUG
9843       allnodes_iterator I(N);
9844       SDNode *S = &*++I;
9845       dbgs() << "Overran sorted position:\n";
9846       S->dumprFull(this); dbgs() << "\n";
9847       dbgs() << "Checking if this is due to cycles\n";
9848       checkForCycles(this, true);
9849 #endif
9850       llvm_unreachable(nullptr);
9851     }
9852   }
9853 
9854   assert(SortedPos == AllNodes.end() &&
9855          "Topological sort incomplete!");
9856   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9857          "First node in topological sort is not the entry token!");
9858   assert(AllNodes.front().getNodeId() == 0 &&
9859          "First node in topological sort has non-zero id!");
9860   assert(AllNodes.front().getNumOperands() == 0 &&
9861          "First node in topological sort has operands!");
9862   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9863          "Last node in topologic sort has unexpected id!");
9864   assert(AllNodes.back().use_empty() &&
9865          "Last node in topologic sort has users!");
9866   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9867   return DAGSize;
9868 }
9869 
9870 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9871 /// value is produced by SD.
9872 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9873   for (SDNode *SD : DB->getSDNodes()) {
9874     if (!SD)
9875       continue;
9876     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9877     SD->setHasDebugValue(true);
9878   }
9879   DbgInfo->add(DB, isParameter);
9880 }
9881 
9882 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9883 
9884 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9885                                                    SDValue NewMemOpChain) {
9886   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9887   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9888   // The new memory operation must have the same position as the old load in
9889   // terms of memory dependency. Create a TokenFactor for the old load and new
9890   // memory operation and update uses of the old load's output chain to use that
9891   // TokenFactor.
9892   if (OldChain == NewMemOpChain || OldChain.use_empty())
9893     return NewMemOpChain;
9894 
9895   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9896                                 OldChain, NewMemOpChain);
9897   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9898   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9899   return TokenFactor;
9900 }
9901 
9902 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9903                                                    SDValue NewMemOp) {
9904   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9905   SDValue OldChain = SDValue(OldLoad, 1);
9906   SDValue NewMemOpChain = NewMemOp.getValue(1);
9907   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9908 }
9909 
9910 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9911                                                      Function **OutFunction) {
9912   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9913 
9914   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9915   auto *Module = MF->getFunction().getParent();
9916   auto *Function = Module->getFunction(Symbol);
9917 
9918   if (OutFunction != nullptr)
9919       *OutFunction = Function;
9920 
9921   if (Function != nullptr) {
9922     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9923     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9924   }
9925 
9926   std::string ErrorStr;
9927   raw_string_ostream ErrorFormatter(ErrorStr);
9928   ErrorFormatter << "Undefined external symbol ";
9929   ErrorFormatter << '"' << Symbol << '"';
9930   report_fatal_error(Twine(ErrorFormatter.str()));
9931 }
9932 
9933 //===----------------------------------------------------------------------===//
9934 //                              SDNode Class
9935 //===----------------------------------------------------------------------===//
9936 
9937 bool llvm::isNullConstant(SDValue V) {
9938   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9939   return Const != nullptr && Const->isZero();
9940 }
9941 
9942 bool llvm::isNullFPConstant(SDValue V) {
9943   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9944   return Const != nullptr && Const->isZero() && !Const->isNegative();
9945 }
9946 
9947 bool llvm::isAllOnesConstant(SDValue V) {
9948   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9949   return Const != nullptr && Const->isAllOnes();
9950 }
9951 
9952 bool llvm::isOneConstant(SDValue V) {
9953   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9954   return Const != nullptr && Const->isOne();
9955 }
9956 
9957 SDValue llvm::peekThroughBitcasts(SDValue V) {
9958   while (V.getOpcode() == ISD::BITCAST)
9959     V = V.getOperand(0);
9960   return V;
9961 }
9962 
9963 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9964   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9965     V = V.getOperand(0);
9966   return V;
9967 }
9968 
9969 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9970   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9971     V = V.getOperand(0);
9972   return V;
9973 }
9974 
9975 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9976   if (V.getOpcode() != ISD::XOR)
9977     return false;
9978   V = peekThroughBitcasts(V.getOperand(1));
9979   unsigned NumBits = V.getScalarValueSizeInBits();
9980   ConstantSDNode *C =
9981       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9982   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9983 }
9984 
9985 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9986                                           bool AllowTruncation) {
9987   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9988     return CN;
9989 
9990   // SplatVectors can truncate their operands. Ignore that case here unless
9991   // AllowTruncation is set.
9992   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9993     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9994     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9995       EVT CVT = CN->getValueType(0);
9996       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9997       if (AllowTruncation || CVT == VecEltVT)
9998         return CN;
9999     }
10000   }
10001 
10002   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10003     BitVector UndefElements;
10004     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10005 
10006     // BuildVectors can truncate their operands. Ignore that case here unless
10007     // AllowTruncation is set.
10008     if (CN && (UndefElements.none() || AllowUndefs)) {
10009       EVT CVT = CN->getValueType(0);
10010       EVT NSVT = N.getValueType().getScalarType();
10011       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10012       if (AllowTruncation || (CVT == NSVT))
10013         return CN;
10014     }
10015   }
10016 
10017   return nullptr;
10018 }
10019 
10020 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10021                                           bool AllowUndefs,
10022                                           bool AllowTruncation) {
10023   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10024     return CN;
10025 
10026   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10027     BitVector UndefElements;
10028     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10029 
10030     // BuildVectors can truncate their operands. Ignore that case here unless
10031     // AllowTruncation is set.
10032     if (CN && (UndefElements.none() || AllowUndefs)) {
10033       EVT CVT = CN->getValueType(0);
10034       EVT NSVT = N.getValueType().getScalarType();
10035       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10036       if (AllowTruncation || (CVT == NSVT))
10037         return CN;
10038     }
10039   }
10040 
10041   return nullptr;
10042 }
10043 
10044 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10045   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10046     return CN;
10047 
10048   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10049     BitVector UndefElements;
10050     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10051     if (CN && (UndefElements.none() || AllowUndefs))
10052       return CN;
10053   }
10054 
10055   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10056     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10057       return CN;
10058 
10059   return nullptr;
10060 }
10061 
10062 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10063                                               const APInt &DemandedElts,
10064                                               bool AllowUndefs) {
10065   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10066     return CN;
10067 
10068   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10069     BitVector UndefElements;
10070     ConstantFPSDNode *CN =
10071         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10072     if (CN && (UndefElements.none() || AllowUndefs))
10073       return CN;
10074   }
10075 
10076   return nullptr;
10077 }
10078 
10079 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10080   // TODO: may want to use peekThroughBitcast() here.
10081   ConstantSDNode *C =
10082       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10083   return C && C->isZero();
10084 }
10085 
10086 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10087   // TODO: may want to use peekThroughBitcast() here.
10088   unsigned BitWidth = N.getScalarValueSizeInBits();
10089   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10090   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10091 }
10092 
10093 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10094   N = peekThroughBitcasts(N);
10095   unsigned BitWidth = N.getScalarValueSizeInBits();
10096   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10097   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10098 }
10099 
10100 HandleSDNode::~HandleSDNode() {
10101   DropOperands();
10102 }
10103 
10104 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10105                                          const DebugLoc &DL,
10106                                          const GlobalValue *GA, EVT VT,
10107                                          int64_t o, unsigned TF)
10108     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10109   TheGlobal = GA;
10110 }
10111 
10112 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10113                                          EVT VT, unsigned SrcAS,
10114                                          unsigned DestAS)
10115     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10116       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10117 
10118 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10119                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10120     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10121   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10122   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10123   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10124   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10125 
10126   // We check here that the size of the memory operand fits within the size of
10127   // the MMO. This is because the MMO might indicate only a possible address
10128   // range instead of specifying the affected memory addresses precisely.
10129   // TODO: Make MachineMemOperands aware of scalable vectors.
10130   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10131          "Size mismatch!");
10132 }
10133 
10134 /// Profile - Gather unique data for the node.
10135 ///
10136 void SDNode::Profile(FoldingSetNodeID &ID) const {
10137   AddNodeIDNode(ID, this);
10138 }
10139 
10140 namespace {
10141 
10142   struct EVTArray {
10143     std::vector<EVT> VTs;
10144 
10145     EVTArray() {
10146       VTs.reserve(MVT::VALUETYPE_SIZE);
10147       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10148         VTs.push_back(MVT((MVT::SimpleValueType)i));
10149     }
10150   };
10151 
10152 } // end anonymous namespace
10153 
10154 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10155 static ManagedStatic<EVTArray> SimpleVTArray;
10156 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10157 
10158 /// getValueTypeList - Return a pointer to the specified value type.
10159 ///
10160 const EVT *SDNode::getValueTypeList(EVT VT) {
10161   if (VT.isExtended()) {
10162     sys::SmartScopedLock<true> Lock(*VTMutex);
10163     return &(*EVTs->insert(VT).first);
10164   }
10165   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10166   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10167 }
10168 
10169 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10170 /// indicated value.  This method ignores uses of other values defined by this
10171 /// operation.
10172 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10173   assert(Value < getNumValues() && "Bad value!");
10174 
10175   // TODO: Only iterate over uses of a given value of the node
10176   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10177     if (UI.getUse().getResNo() == Value) {
10178       if (NUses == 0)
10179         return false;
10180       --NUses;
10181     }
10182   }
10183 
10184   // Found exactly the right number of uses?
10185   return NUses == 0;
10186 }
10187 
10188 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10189 /// value. This method ignores uses of other values defined by this operation.
10190 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10191   assert(Value < getNumValues() && "Bad value!");
10192 
10193   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10194     if (UI.getUse().getResNo() == Value)
10195       return true;
10196 
10197   return false;
10198 }
10199 
10200 /// isOnlyUserOf - Return true if this node is the only use of N.
10201 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10202   bool Seen = false;
10203   for (const SDNode *User : N->uses()) {
10204     if (User == this)
10205       Seen = true;
10206     else
10207       return false;
10208   }
10209 
10210   return Seen;
10211 }
10212 
10213 /// Return true if the only users of N are contained in Nodes.
10214 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10215   bool Seen = false;
10216   for (const SDNode *User : N->uses()) {
10217     if (llvm::is_contained(Nodes, User))
10218       Seen = true;
10219     else
10220       return false;
10221   }
10222 
10223   return Seen;
10224 }
10225 
10226 /// isOperand - Return true if this node is an operand of N.
10227 bool SDValue::isOperandOf(const SDNode *N) const {
10228   return is_contained(N->op_values(), *this);
10229 }
10230 
10231 bool SDNode::isOperandOf(const SDNode *N) const {
10232   return any_of(N->op_values(),
10233                 [this](SDValue Op) { return this == Op.getNode(); });
10234 }
10235 
10236 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10237 /// be a chain) reaches the specified operand without crossing any
10238 /// side-effecting instructions on any chain path.  In practice, this looks
10239 /// through token factors and non-volatile loads.  In order to remain efficient,
10240 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10241 ///
10242 /// Note that we only need to examine chains when we're searching for
10243 /// side-effects; SelectionDAG requires that all side-effects are represented
10244 /// by chains, even if another operand would force a specific ordering. This
10245 /// constraint is necessary to allow transformations like splitting loads.
10246 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10247                                              unsigned Depth) const {
10248   if (*this == Dest) return true;
10249 
10250   // Don't search too deeply, we just want to be able to see through
10251   // TokenFactor's etc.
10252   if (Depth == 0) return false;
10253 
10254   // If this is a token factor, all inputs to the TF happen in parallel.
10255   if (getOpcode() == ISD::TokenFactor) {
10256     // First, try a shallow search.
10257     if (is_contained((*this)->ops(), Dest)) {
10258       // We found the chain we want as an operand of this TokenFactor.
10259       // Essentially, we reach the chain without side-effects if we could
10260       // serialize the TokenFactor into a simple chain of operations with
10261       // Dest as the last operation. This is automatically true if the
10262       // chain has one use: there are no other ordering constraints.
10263       // If the chain has more than one use, we give up: some other
10264       // use of Dest might force a side-effect between Dest and the current
10265       // node.
10266       if (Dest.hasOneUse())
10267         return true;
10268     }
10269     // Next, try a deep search: check whether every operand of the TokenFactor
10270     // reaches Dest.
10271     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10272       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10273     });
10274   }
10275 
10276   // Loads don't have side effects, look through them.
10277   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10278     if (Ld->isUnordered())
10279       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10280   }
10281   return false;
10282 }
10283 
10284 bool SDNode::hasPredecessor(const SDNode *N) const {
10285   SmallPtrSet<const SDNode *, 32> Visited;
10286   SmallVector<const SDNode *, 16> Worklist;
10287   Worklist.push_back(this);
10288   return hasPredecessorHelper(N, Visited, Worklist);
10289 }
10290 
10291 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10292   this->Flags.intersectWith(Flags);
10293 }
10294 
10295 SDValue
10296 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10297                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10298                                   bool AllowPartials) {
10299   // The pattern must end in an extract from index 0.
10300   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10301       !isNullConstant(Extract->getOperand(1)))
10302     return SDValue();
10303 
10304   // Match against one of the candidate binary ops.
10305   SDValue Op = Extract->getOperand(0);
10306   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10307         return Op.getOpcode() == unsigned(BinOp);
10308       }))
10309     return SDValue();
10310 
10311   // Floating-point reductions may require relaxed constraints on the final step
10312   // of the reduction because they may reorder intermediate operations.
10313   unsigned CandidateBinOp = Op.getOpcode();
10314   if (Op.getValueType().isFloatingPoint()) {
10315     SDNodeFlags Flags = Op->getFlags();
10316     switch (CandidateBinOp) {
10317     case ISD::FADD:
10318       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10319         return SDValue();
10320       break;
10321     default:
10322       llvm_unreachable("Unhandled FP opcode for binop reduction");
10323     }
10324   }
10325 
10326   // Matching failed - attempt to see if we did enough stages that a partial
10327   // reduction from a subvector is possible.
10328   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10329     if (!AllowPartials || !Op)
10330       return SDValue();
10331     EVT OpVT = Op.getValueType();
10332     EVT OpSVT = OpVT.getScalarType();
10333     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10334     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10335       return SDValue();
10336     BinOp = (ISD::NodeType)CandidateBinOp;
10337     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10338                    getVectorIdxConstant(0, SDLoc(Op)));
10339   };
10340 
10341   // At each stage, we're looking for something that looks like:
10342   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10343   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10344   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10345   // %a = binop <8 x i32> %op, %s
10346   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10347   // we expect something like:
10348   // <4,5,6,7,u,u,u,u>
10349   // <2,3,u,u,u,u,u,u>
10350   // <1,u,u,u,u,u,u,u>
10351   // While a partial reduction match would be:
10352   // <2,3,u,u,u,u,u,u>
10353   // <1,u,u,u,u,u,u,u>
10354   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10355   SDValue PrevOp;
10356   for (unsigned i = 0; i < Stages; ++i) {
10357     unsigned MaskEnd = (1 << i);
10358 
10359     if (Op.getOpcode() != CandidateBinOp)
10360       return PartialReduction(PrevOp, MaskEnd);
10361 
10362     SDValue Op0 = Op.getOperand(0);
10363     SDValue Op1 = Op.getOperand(1);
10364 
10365     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10366     if (Shuffle) {
10367       Op = Op1;
10368     } else {
10369       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10370       Op = Op0;
10371     }
10372 
10373     // The first operand of the shuffle should be the same as the other operand
10374     // of the binop.
10375     if (!Shuffle || Shuffle->getOperand(0) != Op)
10376       return PartialReduction(PrevOp, MaskEnd);
10377 
10378     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10379     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10380       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10381         return PartialReduction(PrevOp, MaskEnd);
10382 
10383     PrevOp = Op;
10384   }
10385 
10386   // Handle subvector reductions, which tend to appear after the shuffle
10387   // reduction stages.
10388   while (Op.getOpcode() == CandidateBinOp) {
10389     unsigned NumElts = Op.getValueType().getVectorNumElements();
10390     SDValue Op0 = Op.getOperand(0);
10391     SDValue Op1 = Op.getOperand(1);
10392     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10393         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10394         Op0.getOperand(0) != Op1.getOperand(0))
10395       break;
10396     SDValue Src = Op0.getOperand(0);
10397     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10398     if (NumSrcElts != (2 * NumElts))
10399       break;
10400     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10401           Op1.getConstantOperandAPInt(1) == NumElts) &&
10402         !(Op1.getConstantOperandAPInt(1) == 0 &&
10403           Op0.getConstantOperandAPInt(1) == NumElts))
10404       break;
10405     Op = Src;
10406   }
10407 
10408   BinOp = (ISD::NodeType)CandidateBinOp;
10409   return Op;
10410 }
10411 
10412 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10413   assert(N->getNumValues() == 1 &&
10414          "Can't unroll a vector with multiple results!");
10415 
10416   EVT VT = N->getValueType(0);
10417   unsigned NE = VT.getVectorNumElements();
10418   EVT EltVT = VT.getVectorElementType();
10419   SDLoc dl(N);
10420 
10421   SmallVector<SDValue, 8> Scalars;
10422   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10423 
10424   // If ResNE is 0, fully unroll the vector op.
10425   if (ResNE == 0)
10426     ResNE = NE;
10427   else if (NE > ResNE)
10428     NE = ResNE;
10429 
10430   unsigned i;
10431   for (i= 0; i != NE; ++i) {
10432     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10433       SDValue Operand = N->getOperand(j);
10434       EVT OperandVT = Operand.getValueType();
10435       if (OperandVT.isVector()) {
10436         // A vector operand; extract a single element.
10437         EVT OperandEltVT = OperandVT.getVectorElementType();
10438         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10439                               Operand, getVectorIdxConstant(i, dl));
10440       } else {
10441         // A scalar operand; just use it as is.
10442         Operands[j] = Operand;
10443       }
10444     }
10445 
10446     switch (N->getOpcode()) {
10447     default: {
10448       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10449                                 N->getFlags()));
10450       break;
10451     }
10452     case ISD::VSELECT:
10453       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10454       break;
10455     case ISD::SHL:
10456     case ISD::SRA:
10457     case ISD::SRL:
10458     case ISD::ROTL:
10459     case ISD::ROTR:
10460       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10461                                getShiftAmountOperand(Operands[0].getValueType(),
10462                                                      Operands[1])));
10463       break;
10464     case ISD::SIGN_EXTEND_INREG: {
10465       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10466       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10467                                 Operands[0],
10468                                 getValueType(ExtVT)));
10469     }
10470     }
10471   }
10472 
10473   for (; i < ResNE; ++i)
10474     Scalars.push_back(getUNDEF(EltVT));
10475 
10476   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10477   return getBuildVector(VecVT, dl, Scalars);
10478 }
10479 
10480 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10481     SDNode *N, unsigned ResNE) {
10482   unsigned Opcode = N->getOpcode();
10483   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10484           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10485           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10486          "Expected an overflow opcode");
10487 
10488   EVT ResVT = N->getValueType(0);
10489   EVT OvVT = N->getValueType(1);
10490   EVT ResEltVT = ResVT.getVectorElementType();
10491   EVT OvEltVT = OvVT.getVectorElementType();
10492   SDLoc dl(N);
10493 
10494   // If ResNE is 0, fully unroll the vector op.
10495   unsigned NE = ResVT.getVectorNumElements();
10496   if (ResNE == 0)
10497     ResNE = NE;
10498   else if (NE > ResNE)
10499     NE = ResNE;
10500 
10501   SmallVector<SDValue, 8> LHSScalars;
10502   SmallVector<SDValue, 8> RHSScalars;
10503   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10504   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10505 
10506   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10507   SDVTList VTs = getVTList(ResEltVT, SVT);
10508   SmallVector<SDValue, 8> ResScalars;
10509   SmallVector<SDValue, 8> OvScalars;
10510   for (unsigned i = 0; i < NE; ++i) {
10511     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10512     SDValue Ov =
10513         getSelect(dl, OvEltVT, Res.getValue(1),
10514                   getBoolConstant(true, dl, OvEltVT, ResVT),
10515                   getConstant(0, dl, OvEltVT));
10516 
10517     ResScalars.push_back(Res);
10518     OvScalars.push_back(Ov);
10519   }
10520 
10521   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10522   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10523 
10524   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10525   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10526   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10527                         getBuildVector(NewOvVT, dl, OvScalars));
10528 }
10529 
10530 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10531                                                   LoadSDNode *Base,
10532                                                   unsigned Bytes,
10533                                                   int Dist) const {
10534   if (LD->isVolatile() || Base->isVolatile())
10535     return false;
10536   // TODO: probably too restrictive for atomics, revisit
10537   if (!LD->isSimple())
10538     return false;
10539   if (LD->isIndexed() || Base->isIndexed())
10540     return false;
10541   if (LD->getChain() != Base->getChain())
10542     return false;
10543   EVT VT = LD->getValueType(0);
10544   if (VT.getSizeInBits() / 8 != Bytes)
10545     return false;
10546 
10547   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10548   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10549 
10550   int64_t Offset = 0;
10551   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10552     return (Dist * Bytes == Offset);
10553   return false;
10554 }
10555 
10556 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10557 /// if it cannot be inferred.
10558 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10559   // If this is a GlobalAddress + cst, return the alignment.
10560   const GlobalValue *GV = nullptr;
10561   int64_t GVOffset = 0;
10562   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10563     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10564     KnownBits Known(PtrWidth);
10565     llvm::computeKnownBits(GV, Known, getDataLayout());
10566     unsigned AlignBits = Known.countMinTrailingZeros();
10567     if (AlignBits)
10568       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10569   }
10570 
10571   // If this is a direct reference to a stack slot, use information about the
10572   // stack slot's alignment.
10573   int FrameIdx = INT_MIN;
10574   int64_t FrameOffset = 0;
10575   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10576     FrameIdx = FI->getIndex();
10577   } else if (isBaseWithConstantOffset(Ptr) &&
10578              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10579     // Handle FI+Cst
10580     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10581     FrameOffset = Ptr.getConstantOperandVal(1);
10582   }
10583 
10584   if (FrameIdx != INT_MIN) {
10585     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10586     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10587   }
10588 
10589   return None;
10590 }
10591 
10592 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10593 /// which is split (or expanded) into two not necessarily identical pieces.
10594 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10595   // Currently all types are split in half.
10596   EVT LoVT, HiVT;
10597   if (!VT.isVector())
10598     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10599   else
10600     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10601 
10602   return std::make_pair(LoVT, HiVT);
10603 }
10604 
10605 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10606 /// type, dependent on an enveloping VT that has been split into two identical
10607 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10608 std::pair<EVT, EVT>
10609 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10610                                        bool *HiIsEmpty) const {
10611   EVT EltTp = VT.getVectorElementType();
10612   // Examples:
10613   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10614   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10615   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10616   //   etc.
10617   ElementCount VTNumElts = VT.getVectorElementCount();
10618   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10619   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10620          "Mixing fixed width and scalable vectors when enveloping a type");
10621   EVT LoVT, HiVT;
10622   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10623     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10624     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10625     *HiIsEmpty = false;
10626   } else {
10627     // Flag that hi type has zero storage size, but return split envelop type
10628     // (this would be easier if vector types with zero elements were allowed).
10629     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10630     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10631     *HiIsEmpty = true;
10632   }
10633   return std::make_pair(LoVT, HiVT);
10634 }
10635 
10636 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10637 /// low/high part.
10638 std::pair<SDValue, SDValue>
10639 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10640                           const EVT &HiVT) {
10641   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10642          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10643          "Splitting vector with an invalid mixture of fixed and scalable "
10644          "vector types");
10645   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10646              N.getValueType().getVectorMinNumElements() &&
10647          "More vector elements requested than available!");
10648   SDValue Lo, Hi;
10649   Lo =
10650       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10651   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10652   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10653   // IDX with the runtime scaling factor of the result vector type. For
10654   // fixed-width result vectors, that runtime scaling factor is 1.
10655   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10656                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10657   return std::make_pair(Lo, Hi);
10658 }
10659 
10660 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10661                                                    const SDLoc &DL) {
10662   // Split the vector length parameter.
10663   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10664   EVT VT = N.getValueType();
10665   assert(VecVT.getVectorElementCount().isKnownEven() &&
10666          "Expecting the mask to be an evenly-sized vector");
10667   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10668   SDValue HalfNumElts =
10669       VecVT.isFixedLengthVector()
10670           ? getConstant(HalfMinNumElts, DL, VT)
10671           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10672   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10673   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10674   return std::make_pair(Lo, Hi);
10675 }
10676 
10677 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10678 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10679   EVT VT = N.getValueType();
10680   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10681                                 NextPowerOf2(VT.getVectorNumElements()));
10682   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10683                  getVectorIdxConstant(0, DL));
10684 }
10685 
10686 void SelectionDAG::ExtractVectorElements(SDValue Op,
10687                                          SmallVectorImpl<SDValue> &Args,
10688                                          unsigned Start, unsigned Count,
10689                                          EVT EltVT) {
10690   EVT VT = Op.getValueType();
10691   if (Count == 0)
10692     Count = VT.getVectorNumElements();
10693   if (EltVT == EVT())
10694     EltVT = VT.getVectorElementType();
10695   SDLoc SL(Op);
10696   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10697     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10698                            getVectorIdxConstant(i, SL)));
10699   }
10700 }
10701 
10702 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10703 unsigned GlobalAddressSDNode::getAddressSpace() const {
10704   return getGlobal()->getType()->getAddressSpace();
10705 }
10706 
10707 Type *ConstantPoolSDNode::getType() const {
10708   if (isMachineConstantPoolEntry())
10709     return Val.MachineCPVal->getType();
10710   return Val.ConstVal->getType();
10711 }
10712 
10713 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10714                                         unsigned &SplatBitSize,
10715                                         bool &HasAnyUndefs,
10716                                         unsigned MinSplatBits,
10717                                         bool IsBigEndian) const {
10718   EVT VT = getValueType(0);
10719   assert(VT.isVector() && "Expected a vector type");
10720   unsigned VecWidth = VT.getSizeInBits();
10721   if (MinSplatBits > VecWidth)
10722     return false;
10723 
10724   // FIXME: The widths are based on this node's type, but build vectors can
10725   // truncate their operands.
10726   SplatValue = APInt(VecWidth, 0);
10727   SplatUndef = APInt(VecWidth, 0);
10728 
10729   // Get the bits. Bits with undefined values (when the corresponding element
10730   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10731   // in SplatValue. If any of the values are not constant, give up and return
10732   // false.
10733   unsigned int NumOps = getNumOperands();
10734   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10735   unsigned EltWidth = VT.getScalarSizeInBits();
10736 
10737   for (unsigned j = 0; j < NumOps; ++j) {
10738     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10739     SDValue OpVal = getOperand(i);
10740     unsigned BitPos = j * EltWidth;
10741 
10742     if (OpVal.isUndef())
10743       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10744     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10745       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10746     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10747       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10748     else
10749       return false;
10750   }
10751 
10752   // The build_vector is all constants or undefs. Find the smallest element
10753   // size that splats the vector.
10754   HasAnyUndefs = (SplatUndef != 0);
10755 
10756   // FIXME: This does not work for vectors with elements less than 8 bits.
10757   while (VecWidth > 8) {
10758     unsigned HalfSize = VecWidth / 2;
10759     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10760     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10761     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10762     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10763 
10764     // If the two halves do not match (ignoring undef bits), stop here.
10765     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10766         MinSplatBits > HalfSize)
10767       break;
10768 
10769     SplatValue = HighValue | LowValue;
10770     SplatUndef = HighUndef & LowUndef;
10771 
10772     VecWidth = HalfSize;
10773   }
10774 
10775   SplatBitSize = VecWidth;
10776   return true;
10777 }
10778 
10779 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10780                                          BitVector *UndefElements) const {
10781   unsigned NumOps = getNumOperands();
10782   if (UndefElements) {
10783     UndefElements->clear();
10784     UndefElements->resize(NumOps);
10785   }
10786   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10787   if (!DemandedElts)
10788     return SDValue();
10789   SDValue Splatted;
10790   for (unsigned i = 0; i != NumOps; ++i) {
10791     if (!DemandedElts[i])
10792       continue;
10793     SDValue Op = getOperand(i);
10794     if (Op.isUndef()) {
10795       if (UndefElements)
10796         (*UndefElements)[i] = true;
10797     } else if (!Splatted) {
10798       Splatted = Op;
10799     } else if (Splatted != Op) {
10800       return SDValue();
10801     }
10802   }
10803 
10804   if (!Splatted) {
10805     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10806     assert(getOperand(FirstDemandedIdx).isUndef() &&
10807            "Can only have a splat without a constant for all undefs.");
10808     return getOperand(FirstDemandedIdx);
10809   }
10810 
10811   return Splatted;
10812 }
10813 
10814 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10815   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10816   return getSplatValue(DemandedElts, UndefElements);
10817 }
10818 
10819 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10820                                             SmallVectorImpl<SDValue> &Sequence,
10821                                             BitVector *UndefElements) const {
10822   unsigned NumOps = getNumOperands();
10823   Sequence.clear();
10824   if (UndefElements) {
10825     UndefElements->clear();
10826     UndefElements->resize(NumOps);
10827   }
10828   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10829   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10830     return false;
10831 
10832   // Set the undefs even if we don't find a sequence (like getSplatValue).
10833   if (UndefElements)
10834     for (unsigned I = 0; I != NumOps; ++I)
10835       if (DemandedElts[I] && getOperand(I).isUndef())
10836         (*UndefElements)[I] = true;
10837 
10838   // Iteratively widen the sequence length looking for repetitions.
10839   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10840     Sequence.append(SeqLen, SDValue());
10841     for (unsigned I = 0; I != NumOps; ++I) {
10842       if (!DemandedElts[I])
10843         continue;
10844       SDValue &SeqOp = Sequence[I % SeqLen];
10845       SDValue Op = getOperand(I);
10846       if (Op.isUndef()) {
10847         if (!SeqOp)
10848           SeqOp = Op;
10849         continue;
10850       }
10851       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10852         Sequence.clear();
10853         break;
10854       }
10855       SeqOp = Op;
10856     }
10857     if (!Sequence.empty())
10858       return true;
10859   }
10860 
10861   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10862   return false;
10863 }
10864 
10865 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10866                                             BitVector *UndefElements) const {
10867   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10868   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10869 }
10870 
10871 ConstantSDNode *
10872 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10873                                         BitVector *UndefElements) const {
10874   return dyn_cast_or_null<ConstantSDNode>(
10875       getSplatValue(DemandedElts, UndefElements));
10876 }
10877 
10878 ConstantSDNode *
10879 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10880   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10881 }
10882 
10883 ConstantFPSDNode *
10884 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10885                                           BitVector *UndefElements) const {
10886   return dyn_cast_or_null<ConstantFPSDNode>(
10887       getSplatValue(DemandedElts, UndefElements));
10888 }
10889 
10890 ConstantFPSDNode *
10891 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10892   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10893 }
10894 
10895 int32_t
10896 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10897                                                    uint32_t BitWidth) const {
10898   if (ConstantFPSDNode *CN =
10899           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10900     bool IsExact;
10901     APSInt IntVal(BitWidth);
10902     const APFloat &APF = CN->getValueAPF();
10903     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10904             APFloat::opOK ||
10905         !IsExact)
10906       return -1;
10907 
10908     return IntVal.exactLogBase2();
10909   }
10910   return -1;
10911 }
10912 
10913 bool BuildVectorSDNode::getConstantRawBits(
10914     bool IsLittleEndian, unsigned DstEltSizeInBits,
10915     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10916   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10917   if (!isConstant())
10918     return false;
10919 
10920   unsigned NumSrcOps = getNumOperands();
10921   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10922   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10923          "Invalid bitcast scale");
10924 
10925   // Extract raw src bits.
10926   SmallVector<APInt> SrcBitElements(NumSrcOps,
10927                                     APInt::getNullValue(SrcEltSizeInBits));
10928   BitVector SrcUndeElements(NumSrcOps, false);
10929 
10930   for (unsigned I = 0; I != NumSrcOps; ++I) {
10931     SDValue Op = getOperand(I);
10932     if (Op.isUndef()) {
10933       SrcUndeElements.set(I);
10934       continue;
10935     }
10936     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10937     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10938     assert((CInt || CFP) && "Unknown constant");
10939     SrcBitElements[I] =
10940         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10941              : CFP->getValueAPF().bitcastToAPInt();
10942   }
10943 
10944   // Recast to dst width.
10945   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10946                 SrcBitElements, UndefElements, SrcUndeElements);
10947   return true;
10948 }
10949 
10950 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10951                                       unsigned DstEltSizeInBits,
10952                                       SmallVectorImpl<APInt> &DstBitElements,
10953                                       ArrayRef<APInt> SrcBitElements,
10954                                       BitVector &DstUndefElements,
10955                                       const BitVector &SrcUndefElements) {
10956   unsigned NumSrcOps = SrcBitElements.size();
10957   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10958   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10959          "Invalid bitcast scale");
10960   assert(NumSrcOps == SrcUndefElements.size() &&
10961          "Vector size mismatch");
10962 
10963   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10964   DstUndefElements.clear();
10965   DstUndefElements.resize(NumDstOps, false);
10966   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10967 
10968   // Concatenate src elements constant bits together into dst element.
10969   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10970     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10971     for (unsigned I = 0; I != NumDstOps; ++I) {
10972       DstUndefElements.set(I);
10973       APInt &DstBits = DstBitElements[I];
10974       for (unsigned J = 0; J != Scale; ++J) {
10975         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10976         if (SrcUndefElements[Idx])
10977           continue;
10978         DstUndefElements.reset(I);
10979         const APInt &SrcBits = SrcBitElements[Idx];
10980         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
10981                "Illegal constant bitwidths");
10982         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
10983       }
10984     }
10985     return;
10986   }
10987 
10988   // Split src element constant bits into dst elements.
10989   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
10990   for (unsigned I = 0; I != NumSrcOps; ++I) {
10991     if (SrcUndefElements[I]) {
10992       DstUndefElements.set(I * Scale, (I + 1) * Scale);
10993       continue;
10994     }
10995     const APInt &SrcBits = SrcBitElements[I];
10996     for (unsigned J = 0; J != Scale; ++J) {
10997       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10998       APInt &DstBits = DstBitElements[Idx];
10999       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11000     }
11001   }
11002 }
11003 
11004 bool BuildVectorSDNode::isConstant() const {
11005   for (const SDValue &Op : op_values()) {
11006     unsigned Opc = Op.getOpcode();
11007     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11008       return false;
11009   }
11010   return true;
11011 }
11012 
11013 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11014   // Find the first non-undef value in the shuffle mask.
11015   unsigned i, e;
11016   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11017     /* search */;
11018 
11019   // If all elements are undefined, this shuffle can be considered a splat
11020   // (although it should eventually get simplified away completely).
11021   if (i == e)
11022     return true;
11023 
11024   // Make sure all remaining elements are either undef or the same as the first
11025   // non-undef value.
11026   for (int Idx = Mask[i]; i != e; ++i)
11027     if (Mask[i] >= 0 && Mask[i] != Idx)
11028       return false;
11029   return true;
11030 }
11031 
11032 // Returns the SDNode if it is a constant integer BuildVector
11033 // or constant integer.
11034 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11035   if (isa<ConstantSDNode>(N))
11036     return N.getNode();
11037   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11038     return N.getNode();
11039   // Treat a GlobalAddress supporting constant offset folding as a
11040   // constant integer.
11041   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11042     if (GA->getOpcode() == ISD::GlobalAddress &&
11043         TLI->isOffsetFoldingLegal(GA))
11044       return GA;
11045   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11046       isa<ConstantSDNode>(N.getOperand(0)))
11047     return N.getNode();
11048   return nullptr;
11049 }
11050 
11051 // Returns the SDNode if it is a constant float BuildVector
11052 // or constant float.
11053 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11054   if (isa<ConstantFPSDNode>(N))
11055     return N.getNode();
11056 
11057   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11058     return N.getNode();
11059 
11060   return nullptr;
11061 }
11062 
11063 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11064   assert(!Node->OperandList && "Node already has operands");
11065   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11066          "too many operands to fit into SDNode");
11067   SDUse *Ops = OperandRecycler.allocate(
11068       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11069 
11070   bool IsDivergent = false;
11071   for (unsigned I = 0; I != Vals.size(); ++I) {
11072     Ops[I].setUser(Node);
11073     Ops[I].setInitial(Vals[I]);
11074     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11075       IsDivergent |= Ops[I].getNode()->isDivergent();
11076   }
11077   Node->NumOperands = Vals.size();
11078   Node->OperandList = Ops;
11079   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11080     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11081     Node->SDNodeBits.IsDivergent = IsDivergent;
11082   }
11083   checkForCycles(Node);
11084 }
11085 
11086 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11087                                      SmallVectorImpl<SDValue> &Vals) {
11088   size_t Limit = SDNode::getMaxNumOperands();
11089   while (Vals.size() > Limit) {
11090     unsigned SliceIdx = Vals.size() - Limit;
11091     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11092     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11093     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11094     Vals.emplace_back(NewTF);
11095   }
11096   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11097 }
11098 
11099 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11100                                         EVT VT, SDNodeFlags Flags) {
11101   switch (Opcode) {
11102   default:
11103     return SDValue();
11104   case ISD::ADD:
11105   case ISD::OR:
11106   case ISD::XOR:
11107   case ISD::UMAX:
11108     return getConstant(0, DL, VT);
11109   case ISD::MUL:
11110     return getConstant(1, DL, VT);
11111   case ISD::AND:
11112   case ISD::UMIN:
11113     return getAllOnesConstant(DL, VT);
11114   case ISD::SMAX:
11115     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11116   case ISD::SMIN:
11117     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11118   case ISD::FADD:
11119     return getConstantFP(-0.0, DL, VT);
11120   case ISD::FMUL:
11121     return getConstantFP(1.0, DL, VT);
11122   case ISD::FMINNUM:
11123   case ISD::FMAXNUM: {
11124     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11125     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11126     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11127                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11128                         APFloat::getLargest(Semantics);
11129     if (Opcode == ISD::FMAXNUM)
11130       NeutralAF.changeSign();
11131 
11132     return getConstantFP(NeutralAF, DL, VT);
11133   }
11134   }
11135 }
11136 
11137 #ifndef NDEBUG
11138 static void checkForCyclesHelper(const SDNode *N,
11139                                  SmallPtrSetImpl<const SDNode*> &Visited,
11140                                  SmallPtrSetImpl<const SDNode*> &Checked,
11141                                  const llvm::SelectionDAG *DAG) {
11142   // If this node has already been checked, don't check it again.
11143   if (Checked.count(N))
11144     return;
11145 
11146   // If a node has already been visited on this depth-first walk, reject it as
11147   // a cycle.
11148   if (!Visited.insert(N).second) {
11149     errs() << "Detected cycle in SelectionDAG\n";
11150     dbgs() << "Offending node:\n";
11151     N->dumprFull(DAG); dbgs() << "\n";
11152     abort();
11153   }
11154 
11155   for (const SDValue &Op : N->op_values())
11156     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11157 
11158   Checked.insert(N);
11159   Visited.erase(N);
11160 }
11161 #endif
11162 
11163 void llvm::checkForCycles(const llvm::SDNode *N,
11164                           const llvm::SelectionDAG *DAG,
11165                           bool force) {
11166 #ifndef NDEBUG
11167   bool check = force;
11168 #ifdef EXPENSIVE_CHECKS
11169   check = true;
11170 #endif  // EXPENSIVE_CHECKS
11171   if (check) {
11172     assert(N && "Checking nonexistent SDNode");
11173     SmallPtrSet<const SDNode*, 32> visited;
11174     SmallPtrSet<const SDNode*, 32> checked;
11175     checkForCyclesHelper(N, visited, checked, DAG);
11176   }
11177 #endif  // !NDEBUG
11178 }
11179 
11180 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11181   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11182 }
11183