1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this, 0); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat. 2591 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2592 int SplatIndex = -1; 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (0 <= SplatIndex && SplatIndex != M) 2603 return false; 2604 SplatIndex = M; 2605 } 2606 return true; 2607 } 2608 case ISD::EXTRACT_SUBVECTOR: { 2609 // Offset the demanded elts by the subvector index. 2610 SDValue Src = V.getOperand(0); 2611 // We don't support scalable vectors at the moment. 2612 if (Src.getValueType().isScalableVector()) 2613 return false; 2614 uint64_t Idx = V.getConstantOperandVal(1); 2615 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2616 APInt UndefSrcElts; 2617 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2618 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2619 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2620 return true; 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 // Widen the demanded elts by the src element count. 2628 SDValue Src = V.getOperand(0); 2629 // We don't support scalable vectors at the moment. 2630 if (Src.getValueType().isScalableVector()) 2631 return false; 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt UndefSrcElts; 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2635 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2636 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2637 return true; 2638 } 2639 break; 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 /// Helper wrapper to main isSplatValue function. 2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2648 EVT VT = V.getValueType(); 2649 assert(VT.isVector() && "Vector type expected"); 2650 2651 APInt UndefElts; 2652 APInt DemandedElts; 2653 2654 // For now we don't support this with scalable vectors. 2655 if (!VT.isScalableVector()) 2656 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2657 return isSplatValue(V, DemandedElts, UndefElts) && 2658 (AllowUndefs || !UndefElts); 2659 } 2660 2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2662 V = peekThroughExtractSubvectors(V); 2663 2664 EVT VT = V.getValueType(); 2665 unsigned Opcode = V.getOpcode(); 2666 switch (Opcode) { 2667 default: { 2668 APInt UndefElts; 2669 APInt DemandedElts; 2670 2671 if (!VT.isScalableVector()) 2672 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2673 2674 if (isSplatValue(V, DemandedElts, UndefElts)) { 2675 if (VT.isScalableVector()) { 2676 // DemandedElts and UndefElts are ignored for scalable vectors, since 2677 // the only supported cases are SPLAT_VECTOR nodes. 2678 SplatIdx = 0; 2679 } else { 2680 // Handle case where all demanded elements are UNDEF. 2681 if (DemandedElts.isSubsetOf(UndefElts)) { 2682 SplatIdx = 0; 2683 return getUNDEF(VT); 2684 } 2685 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2686 } 2687 return V; 2688 } 2689 break; 2690 } 2691 case ISD::SPLAT_VECTOR: 2692 SplatIdx = 0; 2693 return V; 2694 case ISD::VECTOR_SHUFFLE: { 2695 if (VT.isScalableVector()) 2696 return SDValue(); 2697 2698 // Check if this is a shuffle node doing a splat. 2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2700 // getTargetVShiftNode currently struggles without the splat source. 2701 auto *SVN = cast<ShuffleVectorSDNode>(V); 2702 if (!SVN->isSplat()) 2703 break; 2704 int Idx = SVN->getSplatIndex(); 2705 int NumElts = V.getValueType().getVectorNumElements(); 2706 SplatIdx = Idx % NumElts; 2707 return V.getOperand(Idx / NumElts); 2708 } 2709 } 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2715 int SplatIdx; 2716 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2717 EVT SVT = SrcVector.getValueType().getScalarType(); 2718 EVT LegalSVT = SVT; 2719 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2720 if (!SVT.isInteger()) 2721 return SDValue(); 2722 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2723 if (LegalSVT.bitsLT(SVT)) 2724 return SDValue(); 2725 } 2726 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2727 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2728 } 2729 return SDValue(); 2730 } 2731 2732 const APInt * 2733 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2734 const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 unsigned BitWidth = V.getScalarValueSizeInBits(); 2739 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2740 // Shifting more than the bitwidth is not valid. 2741 const APInt &ShAmt = SA->getAPIntValue(); 2742 if (ShAmt.ult(BitWidth)) 2743 return &ShAmt; 2744 } 2745 return nullptr; 2746 } 2747 2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2749 SDValue V, const APInt &DemandedElts) const { 2750 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2751 V.getOpcode() == ISD::SRA) && 2752 "Unknown shift node"); 2753 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2754 return ValidAmt; 2755 unsigned BitWidth = V.getScalarValueSizeInBits(); 2756 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2757 if (!BV) 2758 return nullptr; 2759 const APInt *MinShAmt = nullptr; 2760 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2761 if (!DemandedElts[i]) 2762 continue; 2763 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2764 if (!SA) 2765 return nullptr; 2766 // Shifting more than the bitwidth is not valid. 2767 const APInt &ShAmt = SA->getAPIntValue(); 2768 if (ShAmt.uge(BitWidth)) 2769 return nullptr; 2770 if (MinShAmt && MinShAmt->ule(ShAmt)) 2771 continue; 2772 MinShAmt = &ShAmt; 2773 } 2774 return MinShAmt; 2775 } 2776 2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2778 SDValue V, const APInt &DemandedElts) const { 2779 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2780 V.getOpcode() == ISD::SRA) && 2781 "Unknown shift node"); 2782 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2783 return ValidAmt; 2784 unsigned BitWidth = V.getScalarValueSizeInBits(); 2785 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2786 if (!BV) 2787 return nullptr; 2788 const APInt *MaxShAmt = nullptr; 2789 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2793 if (!SA) 2794 return nullptr; 2795 // Shifting more than the bitwidth is not valid. 2796 const APInt &ShAmt = SA->getAPIntValue(); 2797 if (ShAmt.uge(BitWidth)) 2798 return nullptr; 2799 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2800 continue; 2801 MaxShAmt = &ShAmt; 2802 } 2803 return MaxShAmt; 2804 } 2805 2806 /// Determine which bits of Op are known to be either zero or one and return 2807 /// them in Known. For vectors, the known bits are those that are shared by 2808 /// every vector element. 2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2810 EVT VT = Op.getValueType(); 2811 2812 // TOOD: Until we have a plan for how to represent demanded elements for 2813 // scalable vectors, we can just bail out for now. 2814 if (Op.getValueType().isScalableVector()) { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 return KnownBits(BitWidth); 2817 } 2818 2819 APInt DemandedElts = VT.isVector() 2820 ? APInt::getAllOnes(VT.getVectorNumElements()) 2821 : APInt(1, 1); 2822 return computeKnownBits(Op, DemandedElts, Depth); 2823 } 2824 2825 /// Determine which bits of Op are known to be either zero or one and return 2826 /// them in Known. The DemandedElts argument allows us to only collect the known 2827 /// bits that are shared by the requested vector elements. 2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2829 unsigned Depth) const { 2830 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2831 2832 KnownBits Known(BitWidth); // Don't know anything. 2833 2834 // TOOD: Until we have a plan for how to represent demanded elements for 2835 // scalable vectors, we can just bail out for now. 2836 if (Op.getValueType().isScalableVector()) 2837 return Known; 2838 2839 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2840 // We know all of the bits for a constant! 2841 return KnownBits::makeConstant(C->getAPIntValue()); 2842 } 2843 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2844 // We know all of the bits for a constant fp! 2845 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2846 } 2847 2848 if (Depth >= MaxRecursionDepth) 2849 return Known; // Limit search depth. 2850 2851 KnownBits Known2; 2852 unsigned NumElts = DemandedElts.getBitWidth(); 2853 assert((!Op.getValueType().isVector() || 2854 NumElts == Op.getValueType().getVectorNumElements()) && 2855 "Unexpected vector size"); 2856 2857 if (!DemandedElts) 2858 return Known; // No demanded elts, better to assume we don't know anything. 2859 2860 unsigned Opcode = Op.getOpcode(); 2861 switch (Opcode) { 2862 case ISD::BUILD_VECTOR: 2863 // Collect the known bits that are shared by every demanded vector element. 2864 Known.Zero.setAllBits(); Known.One.setAllBits(); 2865 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2866 if (!DemandedElts[i]) 2867 continue; 2868 2869 SDValue SrcOp = Op.getOperand(i); 2870 Known2 = computeKnownBits(SrcOp, Depth + 1); 2871 2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2873 if (SrcOp.getValueSizeInBits() != BitWidth) { 2874 assert(SrcOp.getValueSizeInBits() > BitWidth && 2875 "Expected BUILD_VECTOR implicit truncation"); 2876 Known2 = Known2.trunc(BitWidth); 2877 } 2878 2879 // Known bits are the values that are shared by every demanded element. 2880 Known = KnownBits::commonBits(Known, Known2); 2881 2882 // If we don't know any bits, early out. 2883 if (Known.isUnknown()) 2884 break; 2885 } 2886 break; 2887 case ISD::VECTOR_SHUFFLE: { 2888 // Collect the known bits that are shared by every vector element referenced 2889 // by the shuffle. 2890 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2893 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i]) 2896 continue; 2897 2898 int M = SVN->getMaskElt(i); 2899 if (M < 0) { 2900 // For UNDEF elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 Known.resetAll(); 2903 DemandedLHS.clearAllBits(); 2904 DemandedRHS.clearAllBits(); 2905 break; 2906 } 2907 2908 if ((unsigned)M < NumElts) 2909 DemandedLHS.setBit((unsigned)M % NumElts); 2910 else 2911 DemandedRHS.setBit((unsigned)M % NumElts); 2912 } 2913 // Known bits are the values that are shared by every demanded element. 2914 if (!!DemandedLHS) { 2915 SDValue LHS = Op.getOperand(0); 2916 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 // If we don't know any bits, early out. 2920 if (Known.isUnknown()) 2921 break; 2922 if (!!DemandedRHS) { 2923 SDValue RHS = Op.getOperand(1); 2924 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2925 Known = KnownBits::commonBits(Known, Known2); 2926 } 2927 break; 2928 } 2929 case ISD::CONCAT_VECTORS: { 2930 // Split DemandedElts and test each of the demanded subvectors. 2931 Known.Zero.setAllBits(); Known.One.setAllBits(); 2932 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2933 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2934 unsigned NumSubVectors = Op.getNumOperands(); 2935 for (unsigned i = 0; i != NumSubVectors; ++i) { 2936 APInt DemandedSub = 2937 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2938 if (!!DemandedSub) { 2939 SDValue Sub = Op.getOperand(i); 2940 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2941 Known = KnownBits::commonBits(Known, Known2); 2942 } 2943 // If we don't know any bits, early out. 2944 if (Known.isUnknown()) 2945 break; 2946 } 2947 break; 2948 } 2949 case ISD::INSERT_SUBVECTOR: { 2950 // Demand any elements from the subvector and the remainder from the src its 2951 // inserted into. 2952 SDValue Src = Op.getOperand(0); 2953 SDValue Sub = Op.getOperand(1); 2954 uint64_t Idx = Op.getConstantOperandVal(2); 2955 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2956 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2957 APInt DemandedSrcElts = DemandedElts; 2958 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2959 2960 Known.One.setAllBits(); 2961 Known.Zero.setAllBits(); 2962 if (!!DemandedSubElts) { 2963 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2964 if (Known.isUnknown()) 2965 break; // early-out. 2966 } 2967 if (!!DemandedSrcElts) { 2968 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 // Bail until we can represent demanded elements for scalable vectors. 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2982 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2983 break; 2984 } 2985 case ISD::SCALAR_TO_VECTOR: { 2986 // We know about scalar_to_vector as much as we know about it source, 2987 // which becomes the first element of otherwise unknown vector. 2988 if (DemandedElts != 1) 2989 break; 2990 2991 SDValue N0 = Op.getOperand(0); 2992 Known = computeKnownBits(N0, Depth + 1); 2993 if (N0.getValueSizeInBits() != BitWidth) 2994 Known = Known.trunc(BitWidth); 2995 2996 break; 2997 } 2998 case ISD::BITCAST: { 2999 SDValue N0 = Op.getOperand(0); 3000 EVT SubVT = N0.getValueType(); 3001 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3002 3003 // Ignore bitcasts from unsupported types. 3004 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3005 break; 3006 3007 // Fast handling of 'identity' bitcasts. 3008 if (BitWidth == SubBitWidth) { 3009 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3010 break; 3011 } 3012 3013 bool IsLE = getDataLayout().isLittleEndian(); 3014 3015 // Bitcast 'small element' vector to 'large element' scalar/vector. 3016 if ((BitWidth % SubBitWidth) == 0) { 3017 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3018 3019 // Collect known bits for the (larger) output by collecting the known 3020 // bits from each set of sub elements and shift these into place. 3021 // We need to separately call computeKnownBits for each set of 3022 // sub elements as the knownbits for each is likely to be different. 3023 unsigned SubScale = BitWidth / SubBitWidth; 3024 APInt SubDemandedElts(NumElts * SubScale, 0); 3025 for (unsigned i = 0; i != NumElts; ++i) 3026 if (DemandedElts[i]) 3027 SubDemandedElts.setBit(i * SubScale); 3028 3029 for (unsigned i = 0; i != SubScale; ++i) { 3030 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3031 Depth + 1); 3032 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3033 Known.insertBits(Known2, SubBitWidth * Shifts); 3034 } 3035 } 3036 3037 // Bitcast 'large element' scalar/vector to 'small element' vector. 3038 if ((SubBitWidth % BitWidth) == 0) { 3039 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3040 3041 // Collect known bits for the (smaller) output by collecting the known 3042 // bits from the overlapping larger input elements and extracting the 3043 // sub sections we actually care about. 3044 unsigned SubScale = SubBitWidth / BitWidth; 3045 APInt SubDemandedElts = 3046 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3047 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3048 3049 Known.Zero.setAllBits(); Known.One.setAllBits(); 3050 for (unsigned i = 0; i != NumElts; ++i) 3051 if (DemandedElts[i]) { 3052 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3053 unsigned Offset = (Shifts % SubScale) * BitWidth; 3054 Known = KnownBits::commonBits(Known, 3055 Known2.extractBits(BitWidth, Offset)); 3056 // If we don't know any bits, early out. 3057 if (Known.isUnknown()) 3058 break; 3059 } 3060 } 3061 break; 3062 } 3063 case ISD::AND: 3064 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3065 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3066 3067 Known &= Known2; 3068 break; 3069 case ISD::OR: 3070 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3071 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 3073 Known |= Known2; 3074 break; 3075 case ISD::XOR: 3076 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3078 3079 Known ^= Known2; 3080 break; 3081 case ISD::MUL: { 3082 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3085 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3086 break; 3087 } 3088 case ISD::MULHU: { 3089 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3090 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::MULHS: { 3095 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3096 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3097 Known = KnownBits::mulhs(Known, Known2); 3098 break; 3099 } 3100 case ISD::UMUL_LOHI: { 3101 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3102 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3103 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3104 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3105 if (Op.getResNo() == 0) 3106 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3107 else 3108 Known = KnownBits::mulhu(Known, Known2); 3109 break; 3110 } 3111 case ISD::SMUL_LOHI: { 3112 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3113 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3114 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3115 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3116 if (Op.getResNo() == 0) 3117 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3118 else 3119 Known = KnownBits::mulhs(Known, Known2); 3120 break; 3121 } 3122 case ISD::UDIV: { 3123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3124 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3125 Known = KnownBits::udiv(Known, Known2); 3126 break; 3127 } 3128 case ISD::SELECT: 3129 case ISD::VSELECT: 3130 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3131 // If we don't know any bits, early out. 3132 if (Known.isUnknown()) 3133 break; 3134 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3135 3136 // Only known if known in both the LHS and RHS. 3137 Known = KnownBits::commonBits(Known, Known2); 3138 break; 3139 case ISD::SELECT_CC: 3140 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3141 // If we don't know any bits, early out. 3142 if (Known.isUnknown()) 3143 break; 3144 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3145 3146 // Only known if known in both the LHS and RHS. 3147 Known = KnownBits::commonBits(Known, Known2); 3148 break; 3149 case ISD::SMULO: 3150 case ISD::UMULO: 3151 if (Op.getResNo() != 1) 3152 break; 3153 // The boolean result conforms to getBooleanContents. 3154 // If we know the result of a setcc has the top bits zero, use this info. 3155 // We know that we have an integer-based boolean since these operations 3156 // are only available for integer. 3157 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3158 TargetLowering::ZeroOrOneBooleanContent && 3159 BitWidth > 1) 3160 Known.Zero.setBitsFrom(1); 3161 break; 3162 case ISD::SETCC: 3163 case ISD::STRICT_FSETCC: 3164 case ISD::STRICT_FSETCCS: { 3165 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3166 // If we know the result of a setcc has the top bits zero, use this info. 3167 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3168 TargetLowering::ZeroOrOneBooleanContent && 3169 BitWidth > 1) 3170 Known.Zero.setBitsFrom(1); 3171 break; 3172 } 3173 case ISD::SHL: 3174 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3175 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3176 Known = KnownBits::shl(Known, Known2); 3177 3178 // Minimum shift low bits are known zero. 3179 if (const APInt *ShMinAmt = 3180 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3181 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3182 break; 3183 case ISD::SRL: 3184 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3185 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3186 Known = KnownBits::lshr(Known, Known2); 3187 3188 // Minimum shift high bits are known zero. 3189 if (const APInt *ShMinAmt = 3190 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3191 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3192 break; 3193 case ISD::SRA: 3194 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known = KnownBits::ashr(Known, Known2); 3197 // TODO: Add minimum shift high known sign bits. 3198 break; 3199 case ISD::FSHL: 3200 case ISD::FSHR: 3201 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3202 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3203 3204 // For fshl, 0-shift returns the 1st arg. 3205 // For fshr, 0-shift returns the 2nd arg. 3206 if (Amt == 0) { 3207 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3208 DemandedElts, Depth + 1); 3209 break; 3210 } 3211 3212 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3213 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3216 if (Opcode == ISD::FSHL) { 3217 Known.One <<= Amt; 3218 Known.Zero <<= Amt; 3219 Known2.One.lshrInPlace(BitWidth - Amt); 3220 Known2.Zero.lshrInPlace(BitWidth - Amt); 3221 } else { 3222 Known.One <<= BitWidth - Amt; 3223 Known.Zero <<= BitWidth - Amt; 3224 Known2.One.lshrInPlace(Amt); 3225 Known2.Zero.lshrInPlace(Amt); 3226 } 3227 Known.One |= Known2.One; 3228 Known.Zero |= Known2.Zero; 3229 } 3230 break; 3231 case ISD::SIGN_EXTEND_INREG: { 3232 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3233 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3234 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3235 break; 3236 } 3237 case ISD::CTTZ: 3238 case ISD::CTTZ_ZERO_UNDEF: { 3239 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3240 // If we have a known 1, its position is our upper bound. 3241 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3242 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3243 Known.Zero.setBitsFrom(LowBits); 3244 break; 3245 } 3246 case ISD::CTLZ: 3247 case ISD::CTLZ_ZERO_UNDEF: { 3248 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3249 // If we have a known 1, its position is our upper bound. 3250 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3251 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3252 Known.Zero.setBitsFrom(LowBits); 3253 break; 3254 } 3255 case ISD::CTPOP: { 3256 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3257 // If we know some of the bits are zero, they can't be one. 3258 unsigned PossibleOnes = Known2.countMaxPopulation(); 3259 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3260 break; 3261 } 3262 case ISD::PARITY: { 3263 // Parity returns 0 everywhere but the LSB. 3264 Known.Zero.setBitsFrom(1); 3265 break; 3266 } 3267 case ISD::LOAD: { 3268 LoadSDNode *LD = cast<LoadSDNode>(Op); 3269 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3270 if (ISD::isNON_EXTLoad(LD) && Cst) { 3271 // Determine any common known bits from the loaded constant pool value. 3272 Type *CstTy = Cst->getType(); 3273 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3274 // If its a vector splat, then we can (quickly) reuse the scalar path. 3275 // NOTE: We assume all elements match and none are UNDEF. 3276 if (CstTy->isVectorTy()) { 3277 if (const Constant *Splat = Cst->getSplatValue()) { 3278 Cst = Splat; 3279 CstTy = Cst->getType(); 3280 } 3281 } 3282 // TODO - do we need to handle different bitwidths? 3283 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3284 // Iterate across all vector elements finding common known bits. 3285 Known.One.setAllBits(); 3286 Known.Zero.setAllBits(); 3287 for (unsigned i = 0; i != NumElts; ++i) { 3288 if (!DemandedElts[i]) 3289 continue; 3290 if (Constant *Elt = Cst->getAggregateElement(i)) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3292 const APInt &Value = CInt->getValue(); 3293 Known.One &= Value; 3294 Known.Zero &= ~Value; 3295 continue; 3296 } 3297 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3298 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3299 Known.One &= Value; 3300 Known.Zero &= ~Value; 3301 continue; 3302 } 3303 } 3304 Known.One.clearAllBits(); 3305 Known.Zero.clearAllBits(); 3306 break; 3307 } 3308 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3309 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3310 Known = KnownBits::makeConstant(CInt->getValue()); 3311 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3312 Known = 3313 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3314 } 3315 } 3316 } 3317 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3318 // If this is a ZEXTLoad and we are looking at the loaded value. 3319 EVT VT = LD->getMemoryVT(); 3320 unsigned MemBits = VT.getScalarSizeInBits(); 3321 Known.Zero.setBitsFrom(MemBits); 3322 } else if (const MDNode *Ranges = LD->getRanges()) { 3323 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3324 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3325 } 3326 break; 3327 } 3328 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3329 EVT InVT = Op.getOperand(0).getValueType(); 3330 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3331 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3332 Known = Known.zext(BitWidth); 3333 break; 3334 } 3335 case ISD::ZERO_EXTEND: { 3336 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known = Known.zext(BitWidth); 3338 break; 3339 } 3340 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3341 EVT InVT = Op.getOperand(0).getValueType(); 3342 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3343 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3344 // If the sign bit is known to be zero or one, then sext will extend 3345 // it to the top bits, else it will just zext. 3346 Known = Known.sext(BitWidth); 3347 break; 3348 } 3349 case ISD::SIGN_EXTEND: { 3350 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If the sign bit is known to be zero or one, then sext will extend 3352 // it to the top bits, else it will just zext. 3353 Known = Known.sext(BitWidth); 3354 break; 3355 } 3356 case ISD::ANY_EXTEND_VECTOR_INREG: { 3357 EVT InVT = Op.getOperand(0).getValueType(); 3358 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3359 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3360 Known = Known.anyext(BitWidth); 3361 break; 3362 } 3363 case ISD::ANY_EXTEND: { 3364 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 Known = Known.anyext(BitWidth); 3366 break; 3367 } 3368 case ISD::TRUNCATE: { 3369 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 Known = Known.trunc(BitWidth); 3371 break; 3372 } 3373 case ISD::AssertZext: { 3374 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3375 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3376 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3377 Known.Zero |= (~InMask); 3378 Known.One &= (~Known.Zero); 3379 break; 3380 } 3381 case ISD::AssertAlign: { 3382 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3383 assert(LogOfAlign != 0); 3384 3385 // TODO: Should use maximum with source 3386 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3387 // well as clearing one bits. 3388 Known.Zero.setLowBits(LogOfAlign); 3389 Known.One.clearLowBits(LogOfAlign); 3390 break; 3391 } 3392 case ISD::FGETSIGN: 3393 // All bits are zero except the low bit. 3394 Known.Zero.setBitsFrom(1); 3395 break; 3396 case ISD::USUBO: 3397 case ISD::SSUBO: 3398 if (Op.getResNo() == 1) { 3399 // If we know the result of a setcc has the top bits zero, use this info. 3400 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3401 TargetLowering::ZeroOrOneBooleanContent && 3402 BitWidth > 1) 3403 Known.Zero.setBitsFrom(1); 3404 break; 3405 } 3406 LLVM_FALLTHROUGH; 3407 case ISD::SUB: 3408 case ISD::SUBC: { 3409 assert(Op.getResNo() == 0 && 3410 "We only compute knownbits for the difference here."); 3411 3412 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3413 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3414 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3415 Known, Known2); 3416 break; 3417 } 3418 case ISD::UADDO: 3419 case ISD::SADDO: 3420 case ISD::ADDCARRY: 3421 if (Op.getResNo() == 1) { 3422 // If we know the result of a setcc has the top bits zero, use this info. 3423 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3424 TargetLowering::ZeroOrOneBooleanContent && 3425 BitWidth > 1) 3426 Known.Zero.setBitsFrom(1); 3427 break; 3428 } 3429 LLVM_FALLTHROUGH; 3430 case ISD::ADD: 3431 case ISD::ADDC: 3432 case ISD::ADDE: { 3433 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3434 3435 // With ADDE and ADDCARRY, a carry bit may be added in. 3436 KnownBits Carry(1); 3437 if (Opcode == ISD::ADDE) 3438 // Can't track carry from glue, set carry to unknown. 3439 Carry.resetAll(); 3440 else if (Opcode == ISD::ADDCARRY) 3441 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3442 // the trouble (how often will we find a known carry bit). And I haven't 3443 // tested this very much yet, but something like this might work: 3444 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3445 // Carry = Carry.zextOrTrunc(1, false); 3446 Carry.resetAll(); 3447 else 3448 Carry.setAllZero(); 3449 3450 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3451 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3452 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3453 break; 3454 } 3455 case ISD::SREM: { 3456 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3457 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3458 Known = KnownBits::srem(Known, Known2); 3459 break; 3460 } 3461 case ISD::UREM: { 3462 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3463 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3464 Known = KnownBits::urem(Known, Known2); 3465 break; 3466 } 3467 case ISD::EXTRACT_ELEMENT: { 3468 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3469 const unsigned Index = Op.getConstantOperandVal(1); 3470 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3471 3472 // Remove low part of known bits mask 3473 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3474 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3475 3476 // Remove high part of known bit mask 3477 Known = Known.trunc(EltBitWidth); 3478 break; 3479 } 3480 case ISD::EXTRACT_VECTOR_ELT: { 3481 SDValue InVec = Op.getOperand(0); 3482 SDValue EltNo = Op.getOperand(1); 3483 EVT VecVT = InVec.getValueType(); 3484 // computeKnownBits not yet implemented for scalable vectors. 3485 if (VecVT.isScalableVector()) 3486 break; 3487 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3488 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3489 3490 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3491 // anything about the extended bits. 3492 if (BitWidth > EltBitWidth) 3493 Known = Known.trunc(EltBitWidth); 3494 3495 // If we know the element index, just demand that vector element, else for 3496 // an unknown element index, ignore DemandedElts and demand them all. 3497 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3498 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3499 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3500 DemandedSrcElts = 3501 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3502 3503 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3504 if (BitWidth > EltBitWidth) 3505 Known = Known.anyext(BitWidth); 3506 break; 3507 } 3508 case ISD::INSERT_VECTOR_ELT: { 3509 // If we know the element index, split the demand between the 3510 // source vector and the inserted element, otherwise assume we need 3511 // the original demanded vector elements and the value. 3512 SDValue InVec = Op.getOperand(0); 3513 SDValue InVal = Op.getOperand(1); 3514 SDValue EltNo = Op.getOperand(2); 3515 bool DemandedVal = true; 3516 APInt DemandedVecElts = DemandedElts; 3517 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3518 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3519 unsigned EltIdx = CEltNo->getZExtValue(); 3520 DemandedVal = !!DemandedElts[EltIdx]; 3521 DemandedVecElts.clearBit(EltIdx); 3522 } 3523 Known.One.setAllBits(); 3524 Known.Zero.setAllBits(); 3525 if (DemandedVal) { 3526 Known2 = computeKnownBits(InVal, Depth + 1); 3527 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3528 } 3529 if (!!DemandedVecElts) { 3530 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3531 Known = KnownBits::commonBits(Known, Known2); 3532 } 3533 break; 3534 } 3535 case ISD::BITREVERSE: { 3536 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3537 Known = Known2.reverseBits(); 3538 break; 3539 } 3540 case ISD::BSWAP: { 3541 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3542 Known = Known2.byteSwap(); 3543 break; 3544 } 3545 case ISD::ABS: { 3546 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3547 Known = Known2.abs(); 3548 break; 3549 } 3550 case ISD::USUBSAT: { 3551 // The result of usubsat will never be larger than the LHS. 3552 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3554 break; 3555 } 3556 case ISD::UMIN: { 3557 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3558 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3559 Known = KnownBits::umin(Known, Known2); 3560 break; 3561 } 3562 case ISD::UMAX: { 3563 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3564 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3565 Known = KnownBits::umax(Known, Known2); 3566 break; 3567 } 3568 case ISD::SMIN: 3569 case ISD::SMAX: { 3570 // If we have a clamp pattern, we know that the number of sign bits will be 3571 // the minimum of the clamp min/max range. 3572 bool IsMax = (Opcode == ISD::SMAX); 3573 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3574 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3575 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3576 CstHigh = 3577 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3578 if (CstLow && CstHigh) { 3579 if (!IsMax) 3580 std::swap(CstLow, CstHigh); 3581 3582 const APInt &ValueLow = CstLow->getAPIntValue(); 3583 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3584 if (ValueLow.sle(ValueHigh)) { 3585 unsigned LowSignBits = ValueLow.getNumSignBits(); 3586 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3587 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3588 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3589 Known.One.setHighBits(MinSignBits); 3590 break; 3591 } 3592 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3593 Known.Zero.setHighBits(MinSignBits); 3594 break; 3595 } 3596 } 3597 } 3598 3599 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3600 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3601 if (IsMax) 3602 Known = KnownBits::smax(Known, Known2); 3603 else 3604 Known = KnownBits::smin(Known, Known2); 3605 break; 3606 } 3607 case ISD::FP_TO_UINT_SAT: { 3608 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3609 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3610 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3611 break; 3612 } 3613 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3614 if (Op.getResNo() == 1) { 3615 // The boolean result conforms to getBooleanContents. 3616 // If we know the result of a setcc has the top bits zero, use this info. 3617 // We know that we have an integer-based boolean since these operations 3618 // are only available for integer. 3619 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3620 TargetLowering::ZeroOrOneBooleanContent && 3621 BitWidth > 1) 3622 Known.Zero.setBitsFrom(1); 3623 break; 3624 } 3625 LLVM_FALLTHROUGH; 3626 case ISD::ATOMIC_CMP_SWAP: 3627 case ISD::ATOMIC_SWAP: 3628 case ISD::ATOMIC_LOAD_ADD: 3629 case ISD::ATOMIC_LOAD_SUB: 3630 case ISD::ATOMIC_LOAD_AND: 3631 case ISD::ATOMIC_LOAD_CLR: 3632 case ISD::ATOMIC_LOAD_OR: 3633 case ISD::ATOMIC_LOAD_XOR: 3634 case ISD::ATOMIC_LOAD_NAND: 3635 case ISD::ATOMIC_LOAD_MIN: 3636 case ISD::ATOMIC_LOAD_MAX: 3637 case ISD::ATOMIC_LOAD_UMIN: 3638 case ISD::ATOMIC_LOAD_UMAX: 3639 case ISD::ATOMIC_LOAD: { 3640 unsigned MemBits = 3641 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3642 // If we are looking at the loaded value. 3643 if (Op.getResNo() == 0) { 3644 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3645 Known.Zero.setBitsFrom(MemBits); 3646 } 3647 break; 3648 } 3649 case ISD::FrameIndex: 3650 case ISD::TargetFrameIndex: 3651 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3652 Known, getMachineFunction()); 3653 break; 3654 3655 default: 3656 if (Opcode < ISD::BUILTIN_OP_END) 3657 break; 3658 LLVM_FALLTHROUGH; 3659 case ISD::INTRINSIC_WO_CHAIN: 3660 case ISD::INTRINSIC_W_CHAIN: 3661 case ISD::INTRINSIC_VOID: 3662 // Allow the target to implement this method for its nodes. 3663 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3664 break; 3665 } 3666 3667 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3668 return Known; 3669 } 3670 3671 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3672 SDValue N1) const { 3673 // X + 0 never overflow 3674 if (isNullConstant(N1)) 3675 return OFK_Never; 3676 3677 KnownBits N1Known = computeKnownBits(N1); 3678 if (N1Known.Zero.getBoolValue()) { 3679 KnownBits N0Known = computeKnownBits(N0); 3680 3681 bool overflow; 3682 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3683 if (!overflow) 3684 return OFK_Never; 3685 } 3686 3687 // mulhi + 1 never overflow 3688 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3689 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3690 return OFK_Never; 3691 3692 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3693 KnownBits N0Known = computeKnownBits(N0); 3694 3695 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3696 return OFK_Never; 3697 } 3698 3699 return OFK_Sometime; 3700 } 3701 3702 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3703 EVT OpVT = Val.getValueType(); 3704 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3705 3706 // Is the constant a known power of 2? 3707 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3708 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3709 3710 // A left-shift of a constant one will have exactly one bit set because 3711 // shifting the bit off the end is undefined. 3712 if (Val.getOpcode() == ISD::SHL) { 3713 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3714 if (C && C->getAPIntValue() == 1) 3715 return true; 3716 } 3717 3718 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3719 // one bit set. 3720 if (Val.getOpcode() == ISD::SRL) { 3721 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3722 if (C && C->getAPIntValue().isSignMask()) 3723 return true; 3724 } 3725 3726 // Are all operands of a build vector constant powers of two? 3727 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3728 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3729 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3730 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3731 return false; 3732 })) 3733 return true; 3734 3735 // Is the operand of a splat vector a constant power of two? 3736 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3737 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3738 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3739 return true; 3740 3741 // More could be done here, though the above checks are enough 3742 // to handle some common cases. 3743 3744 // Fall back to computeKnownBits to catch other known cases. 3745 KnownBits Known = computeKnownBits(Val); 3746 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3747 } 3748 3749 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3750 EVT VT = Op.getValueType(); 3751 3752 // TODO: Assume we don't know anything for now. 3753 if (VT.isScalableVector()) 3754 return 1; 3755 3756 APInt DemandedElts = VT.isVector() 3757 ? APInt::getAllOnes(VT.getVectorNumElements()) 3758 : APInt(1, 1); 3759 return ComputeNumSignBits(Op, DemandedElts, Depth); 3760 } 3761 3762 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3763 unsigned Depth) const { 3764 EVT VT = Op.getValueType(); 3765 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3766 unsigned VTBits = VT.getScalarSizeInBits(); 3767 unsigned NumElts = DemandedElts.getBitWidth(); 3768 unsigned Tmp, Tmp2; 3769 unsigned FirstAnswer = 1; 3770 3771 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3772 const APInt &Val = C->getAPIntValue(); 3773 return Val.getNumSignBits(); 3774 } 3775 3776 if (Depth >= MaxRecursionDepth) 3777 return 1; // Limit search depth. 3778 3779 if (!DemandedElts || VT.isScalableVector()) 3780 return 1; // No demanded elts, better to assume we don't know anything. 3781 3782 unsigned Opcode = Op.getOpcode(); 3783 switch (Opcode) { 3784 default: break; 3785 case ISD::AssertSext: 3786 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3787 return VTBits-Tmp+1; 3788 case ISD::AssertZext: 3789 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3790 return VTBits-Tmp; 3791 3792 case ISD::BUILD_VECTOR: 3793 Tmp = VTBits; 3794 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3795 if (!DemandedElts[i]) 3796 continue; 3797 3798 SDValue SrcOp = Op.getOperand(i); 3799 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3800 3801 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3802 if (SrcOp.getValueSizeInBits() != VTBits) { 3803 assert(SrcOp.getValueSizeInBits() > VTBits && 3804 "Expected BUILD_VECTOR implicit truncation"); 3805 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3806 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3807 } 3808 Tmp = std::min(Tmp, Tmp2); 3809 } 3810 return Tmp; 3811 3812 case ISD::VECTOR_SHUFFLE: { 3813 // Collect the minimum number of sign bits that are shared by every vector 3814 // element referenced by the shuffle. 3815 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3816 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3817 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3818 for (unsigned i = 0; i != NumElts; ++i) { 3819 int M = SVN->getMaskElt(i); 3820 if (!DemandedElts[i]) 3821 continue; 3822 // For UNDEF elements, we don't know anything about the common state of 3823 // the shuffle result. 3824 if (M < 0) 3825 return 1; 3826 if ((unsigned)M < NumElts) 3827 DemandedLHS.setBit((unsigned)M % NumElts); 3828 else 3829 DemandedRHS.setBit((unsigned)M % NumElts); 3830 } 3831 Tmp = std::numeric_limits<unsigned>::max(); 3832 if (!!DemandedLHS) 3833 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3834 if (!!DemandedRHS) { 3835 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3836 Tmp = std::min(Tmp, Tmp2); 3837 } 3838 // If we don't know anything, early out and try computeKnownBits fall-back. 3839 if (Tmp == 1) 3840 break; 3841 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3842 return Tmp; 3843 } 3844 3845 case ISD::BITCAST: { 3846 SDValue N0 = Op.getOperand(0); 3847 EVT SrcVT = N0.getValueType(); 3848 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3849 3850 // Ignore bitcasts from unsupported types.. 3851 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3852 break; 3853 3854 // Fast handling of 'identity' bitcasts. 3855 if (VTBits == SrcBits) 3856 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3857 3858 bool IsLE = getDataLayout().isLittleEndian(); 3859 3860 // Bitcast 'large element' scalar/vector to 'small element' vector. 3861 if ((SrcBits % VTBits) == 0) { 3862 assert(VT.isVector() && "Expected bitcast to vector"); 3863 3864 unsigned Scale = SrcBits / VTBits; 3865 APInt SrcDemandedElts = 3866 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3867 3868 // Fast case - sign splat can be simply split across the small elements. 3869 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3870 if (Tmp == SrcBits) 3871 return VTBits; 3872 3873 // Slow case - determine how far the sign extends into each sub-element. 3874 Tmp2 = VTBits; 3875 for (unsigned i = 0; i != NumElts; ++i) 3876 if (DemandedElts[i]) { 3877 unsigned SubOffset = i % Scale; 3878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3879 SubOffset = SubOffset * VTBits; 3880 if (Tmp <= SubOffset) 3881 return 1; 3882 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3883 } 3884 return Tmp2; 3885 } 3886 break; 3887 } 3888 3889 case ISD::FP_TO_SINT_SAT: 3890 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3892 return VTBits - Tmp + 1; 3893 case ISD::SIGN_EXTEND: 3894 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3895 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3896 case ISD::SIGN_EXTEND_INREG: 3897 // Max of the input and what this extends. 3898 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3899 Tmp = VTBits-Tmp+1; 3900 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3901 return std::max(Tmp, Tmp2); 3902 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3903 SDValue Src = Op.getOperand(0); 3904 EVT SrcVT = Src.getValueType(); 3905 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3906 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3907 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3908 } 3909 case ISD::SRA: 3910 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3911 // SRA X, C -> adds C sign bits. 3912 if (const APInt *ShAmt = 3913 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3914 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3915 return Tmp; 3916 case ISD::SHL: 3917 if (const APInt *ShAmt = 3918 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3919 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3920 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3921 if (ShAmt->ult(Tmp)) 3922 return Tmp - ShAmt->getZExtValue(); 3923 } 3924 break; 3925 case ISD::AND: 3926 case ISD::OR: 3927 case ISD::XOR: // NOT is handled here. 3928 // Logical binary ops preserve the number of sign bits at the worst. 3929 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3930 if (Tmp != 1) { 3931 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3932 FirstAnswer = std::min(Tmp, Tmp2); 3933 // We computed what we know about the sign bits as our first 3934 // answer. Now proceed to the generic code that uses 3935 // computeKnownBits, and pick whichever answer is better. 3936 } 3937 break; 3938 3939 case ISD::SELECT: 3940 case ISD::VSELECT: 3941 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3942 if (Tmp == 1) return 1; // Early out. 3943 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3944 return std::min(Tmp, Tmp2); 3945 case ISD::SELECT_CC: 3946 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3947 if (Tmp == 1) return 1; // Early out. 3948 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3949 return std::min(Tmp, Tmp2); 3950 3951 case ISD::SMIN: 3952 case ISD::SMAX: { 3953 // If we have a clamp pattern, we know that the number of sign bits will be 3954 // the minimum of the clamp min/max range. 3955 bool IsMax = (Opcode == ISD::SMAX); 3956 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3957 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3958 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3959 CstHigh = 3960 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3961 if (CstLow && CstHigh) { 3962 if (!IsMax) 3963 std::swap(CstLow, CstHigh); 3964 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3965 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3966 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3967 return std::min(Tmp, Tmp2); 3968 } 3969 } 3970 3971 // Fallback - just get the minimum number of sign bits of the operands. 3972 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3973 if (Tmp == 1) 3974 return 1; // Early out. 3975 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3976 return std::min(Tmp, Tmp2); 3977 } 3978 case ISD::UMIN: 3979 case ISD::UMAX: 3980 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3981 if (Tmp == 1) 3982 return 1; // Early out. 3983 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3984 return std::min(Tmp, Tmp2); 3985 case ISD::SADDO: 3986 case ISD::UADDO: 3987 case ISD::SSUBO: 3988 case ISD::USUBO: 3989 case ISD::SMULO: 3990 case ISD::UMULO: 3991 if (Op.getResNo() != 1) 3992 break; 3993 // The boolean result conforms to getBooleanContents. Fall through. 3994 // If setcc returns 0/-1, all bits are sign bits. 3995 // We know that we have an integer-based boolean since these operations 3996 // are only available for integer. 3997 if (TLI->getBooleanContents(VT.isVector(), false) == 3998 TargetLowering::ZeroOrNegativeOneBooleanContent) 3999 return VTBits; 4000 break; 4001 case ISD::SETCC: 4002 case ISD::STRICT_FSETCC: 4003 case ISD::STRICT_FSETCCS: { 4004 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4005 // If setcc returns 0/-1, all bits are sign bits. 4006 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4007 TargetLowering::ZeroOrNegativeOneBooleanContent) 4008 return VTBits; 4009 break; 4010 } 4011 case ISD::ROTL: 4012 case ISD::ROTR: 4013 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4014 4015 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4016 if (Tmp == VTBits) 4017 return VTBits; 4018 4019 if (ConstantSDNode *C = 4020 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4021 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4022 4023 // Handle rotate right by N like a rotate left by 32-N. 4024 if (Opcode == ISD::ROTR) 4025 RotAmt = (VTBits - RotAmt) % VTBits; 4026 4027 // If we aren't rotating out all of the known-in sign bits, return the 4028 // number that are left. This handles rotl(sext(x), 1) for example. 4029 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4030 } 4031 break; 4032 case ISD::ADD: 4033 case ISD::ADDC: 4034 // Add can have at most one carry bit. Thus we know that the output 4035 // is, at worst, one more bit than the inputs. 4036 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4037 if (Tmp == 1) return 1; // Early out. 4038 4039 // Special case decrementing a value (ADD X, -1): 4040 if (ConstantSDNode *CRHS = 4041 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4042 if (CRHS->isAllOnes()) { 4043 KnownBits Known = 4044 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4045 4046 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4047 // sign bits set. 4048 if ((Known.Zero | 1).isAllOnes()) 4049 return VTBits; 4050 4051 // If we are subtracting one from a positive number, there is no carry 4052 // out of the result. 4053 if (Known.isNonNegative()) 4054 return Tmp; 4055 } 4056 4057 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4058 if (Tmp2 == 1) return 1; // Early out. 4059 return std::min(Tmp, Tmp2) - 1; 4060 case ISD::SUB: 4061 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4062 if (Tmp2 == 1) return 1; // Early out. 4063 4064 // Handle NEG. 4065 if (ConstantSDNode *CLHS = 4066 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4067 if (CLHS->isZero()) { 4068 KnownBits Known = 4069 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4070 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4071 // sign bits set. 4072 if ((Known.Zero | 1).isAllOnes()) 4073 return VTBits; 4074 4075 // If the input is known to be positive (the sign bit is known clear), 4076 // the output of the NEG has the same number of sign bits as the input. 4077 if (Known.isNonNegative()) 4078 return Tmp2; 4079 4080 // Otherwise, we treat this like a SUB. 4081 } 4082 4083 // Sub can have at most one carry bit. Thus we know that the output 4084 // is, at worst, one more bit than the inputs. 4085 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4086 if (Tmp == 1) return 1; // Early out. 4087 return std::min(Tmp, Tmp2) - 1; 4088 case ISD::MUL: { 4089 // The output of the Mul can be at most twice the valid bits in the inputs. 4090 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4091 if (SignBitsOp0 == 1) 4092 break; 4093 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4094 if (SignBitsOp1 == 1) 4095 break; 4096 unsigned OutValidBits = 4097 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4098 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4099 } 4100 case ISD::SREM: 4101 // The sign bit is the LHS's sign bit, except when the result of the 4102 // remainder is zero. The magnitude of the result should be less than or 4103 // equal to the magnitude of the LHS. Therefore, the result should have 4104 // at least as many sign bits as the left hand side. 4105 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4106 case ISD::TRUNCATE: { 4107 // Check if the sign bits of source go down as far as the truncated value. 4108 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4109 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4110 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4111 return NumSrcSignBits - (NumSrcBits - VTBits); 4112 break; 4113 } 4114 case ISD::EXTRACT_ELEMENT: { 4115 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4116 const int BitWidth = Op.getValueSizeInBits(); 4117 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4118 4119 // Get reverse index (starting from 1), Op1 value indexes elements from 4120 // little end. Sign starts at big end. 4121 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4122 4123 // If the sign portion ends in our element the subtraction gives correct 4124 // result. Otherwise it gives either negative or > bitwidth result 4125 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4126 } 4127 case ISD::INSERT_VECTOR_ELT: { 4128 // If we know the element index, split the demand between the 4129 // source vector and the inserted element, otherwise assume we need 4130 // the original demanded vector elements and the value. 4131 SDValue InVec = Op.getOperand(0); 4132 SDValue InVal = Op.getOperand(1); 4133 SDValue EltNo = Op.getOperand(2); 4134 bool DemandedVal = true; 4135 APInt DemandedVecElts = DemandedElts; 4136 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4137 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4138 unsigned EltIdx = CEltNo->getZExtValue(); 4139 DemandedVal = !!DemandedElts[EltIdx]; 4140 DemandedVecElts.clearBit(EltIdx); 4141 } 4142 Tmp = std::numeric_limits<unsigned>::max(); 4143 if (DemandedVal) { 4144 // TODO - handle implicit truncation of inserted elements. 4145 if (InVal.getScalarValueSizeInBits() != VTBits) 4146 break; 4147 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4148 Tmp = std::min(Tmp, Tmp2); 4149 } 4150 if (!!DemandedVecElts) { 4151 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4152 Tmp = std::min(Tmp, Tmp2); 4153 } 4154 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4155 return Tmp; 4156 } 4157 case ISD::EXTRACT_VECTOR_ELT: { 4158 SDValue InVec = Op.getOperand(0); 4159 SDValue EltNo = Op.getOperand(1); 4160 EVT VecVT = InVec.getValueType(); 4161 // ComputeNumSignBits not yet implemented for scalable vectors. 4162 if (VecVT.isScalableVector()) 4163 break; 4164 const unsigned BitWidth = Op.getValueSizeInBits(); 4165 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4166 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4167 4168 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4169 // anything about sign bits. But if the sizes match we can derive knowledge 4170 // about sign bits from the vector operand. 4171 if (BitWidth != EltBitWidth) 4172 break; 4173 4174 // If we know the element index, just demand that vector element, else for 4175 // an unknown element index, ignore DemandedElts and demand them all. 4176 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4177 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4178 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4179 DemandedSrcElts = 4180 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4181 4182 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4183 } 4184 case ISD::EXTRACT_SUBVECTOR: { 4185 // Offset the demanded elts by the subvector index. 4186 SDValue Src = Op.getOperand(0); 4187 // Bail until we can represent demanded elements for scalable vectors. 4188 if (Src.getValueType().isScalableVector()) 4189 break; 4190 uint64_t Idx = Op.getConstantOperandVal(1); 4191 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4192 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4193 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4194 } 4195 case ISD::CONCAT_VECTORS: { 4196 // Determine the minimum number of sign bits across all demanded 4197 // elts of the input vectors. Early out if the result is already 1. 4198 Tmp = std::numeric_limits<unsigned>::max(); 4199 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4200 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4201 unsigned NumSubVectors = Op.getNumOperands(); 4202 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4203 APInt DemandedSub = 4204 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4205 if (!DemandedSub) 4206 continue; 4207 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4208 Tmp = std::min(Tmp, Tmp2); 4209 } 4210 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4211 return Tmp; 4212 } 4213 case ISD::INSERT_SUBVECTOR: { 4214 // Demand any elements from the subvector and the remainder from the src its 4215 // inserted into. 4216 SDValue Src = Op.getOperand(0); 4217 SDValue Sub = Op.getOperand(1); 4218 uint64_t Idx = Op.getConstantOperandVal(2); 4219 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4220 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4221 APInt DemandedSrcElts = DemandedElts; 4222 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4223 4224 Tmp = std::numeric_limits<unsigned>::max(); 4225 if (!!DemandedSubElts) { 4226 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4227 if (Tmp == 1) 4228 return 1; // early-out 4229 } 4230 if (!!DemandedSrcElts) { 4231 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4232 Tmp = std::min(Tmp, Tmp2); 4233 } 4234 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4235 return Tmp; 4236 } 4237 case ISD::ATOMIC_CMP_SWAP: 4238 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4239 case ISD::ATOMIC_SWAP: 4240 case ISD::ATOMIC_LOAD_ADD: 4241 case ISD::ATOMIC_LOAD_SUB: 4242 case ISD::ATOMIC_LOAD_AND: 4243 case ISD::ATOMIC_LOAD_CLR: 4244 case ISD::ATOMIC_LOAD_OR: 4245 case ISD::ATOMIC_LOAD_XOR: 4246 case ISD::ATOMIC_LOAD_NAND: 4247 case ISD::ATOMIC_LOAD_MIN: 4248 case ISD::ATOMIC_LOAD_MAX: 4249 case ISD::ATOMIC_LOAD_UMIN: 4250 case ISD::ATOMIC_LOAD_UMAX: 4251 case ISD::ATOMIC_LOAD: { 4252 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4253 // If we are looking at the loaded value. 4254 if (Op.getResNo() == 0) { 4255 if (Tmp == VTBits) 4256 return 1; // early-out 4257 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4258 return VTBits - Tmp + 1; 4259 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4260 return VTBits - Tmp; 4261 } 4262 break; 4263 } 4264 } 4265 4266 // If we are looking at the loaded value of the SDNode. 4267 if (Op.getResNo() == 0) { 4268 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4269 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4270 unsigned ExtType = LD->getExtensionType(); 4271 switch (ExtType) { 4272 default: break; 4273 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4274 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4275 return VTBits - Tmp + 1; 4276 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4277 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4278 return VTBits - Tmp; 4279 case ISD::NON_EXTLOAD: 4280 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4281 // We only need to handle vectors - computeKnownBits should handle 4282 // scalar cases. 4283 Type *CstTy = Cst->getType(); 4284 if (CstTy->isVectorTy() && 4285 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4286 Tmp = VTBits; 4287 for (unsigned i = 0; i != NumElts; ++i) { 4288 if (!DemandedElts[i]) 4289 continue; 4290 if (Constant *Elt = Cst->getAggregateElement(i)) { 4291 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4292 const APInt &Value = CInt->getValue(); 4293 Tmp = std::min(Tmp, Value.getNumSignBits()); 4294 continue; 4295 } 4296 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4297 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4298 Tmp = std::min(Tmp, Value.getNumSignBits()); 4299 continue; 4300 } 4301 } 4302 // Unknown type. Conservatively assume no bits match sign bit. 4303 return 1; 4304 } 4305 return Tmp; 4306 } 4307 } 4308 break; 4309 } 4310 } 4311 } 4312 4313 // Allow the target to implement this method for its nodes. 4314 if (Opcode >= ISD::BUILTIN_OP_END || 4315 Opcode == ISD::INTRINSIC_WO_CHAIN || 4316 Opcode == ISD::INTRINSIC_W_CHAIN || 4317 Opcode == ISD::INTRINSIC_VOID) { 4318 unsigned NumBits = 4319 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4320 if (NumBits > 1) 4321 FirstAnswer = std::max(FirstAnswer, NumBits); 4322 } 4323 4324 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4325 // use this information. 4326 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4327 return std::max(FirstAnswer, Known.countMinSignBits()); 4328 } 4329 4330 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4331 unsigned Depth) const { 4332 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4333 return Op.getScalarValueSizeInBits() - SignBits + 1; 4334 } 4335 4336 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4337 const APInt &DemandedElts, 4338 unsigned Depth) const { 4339 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4340 return Op.getScalarValueSizeInBits() - SignBits + 1; 4341 } 4342 4343 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4344 unsigned Depth) const { 4345 // Early out for FREEZE. 4346 if (Op.getOpcode() == ISD::FREEZE) 4347 return true; 4348 4349 // TODO: Assume we don't know anything for now. 4350 EVT VT = Op.getValueType(); 4351 if (VT.isScalableVector()) 4352 return false; 4353 4354 APInt DemandedElts = VT.isVector() 4355 ? APInt::getAllOnes(VT.getVectorNumElements()) 4356 : APInt(1, 1); 4357 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4358 } 4359 4360 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4361 const APInt &DemandedElts, 4362 bool PoisonOnly, 4363 unsigned Depth) const { 4364 unsigned Opcode = Op.getOpcode(); 4365 4366 // Early out for FREEZE. 4367 if (Opcode == ISD::FREEZE) 4368 return true; 4369 4370 if (Depth >= MaxRecursionDepth) 4371 return false; // Limit search depth. 4372 4373 if (isIntOrFPConstant(Op)) 4374 return true; 4375 4376 switch (Opcode) { 4377 case ISD::UNDEF: 4378 return PoisonOnly; 4379 4380 case ISD::BUILD_VECTOR: 4381 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4382 // this shouldn't affect the result. 4383 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4384 if (!DemandedElts[i]) 4385 continue; 4386 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4387 Depth + 1)) 4388 return false; 4389 } 4390 return true; 4391 4392 // TODO: Search for noundef attributes from library functions. 4393 4394 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4395 4396 default: 4397 // Allow the target to implement this method for its nodes. 4398 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4399 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4400 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4401 Op, DemandedElts, *this, PoisonOnly, Depth); 4402 break; 4403 } 4404 4405 return false; 4406 } 4407 4408 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4409 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4410 !isa<ConstantSDNode>(Op.getOperand(1))) 4411 return false; 4412 4413 if (Op.getOpcode() == ISD::OR && 4414 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4415 return false; 4416 4417 return true; 4418 } 4419 4420 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4421 // If we're told that NaNs won't happen, assume they won't. 4422 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4423 return true; 4424 4425 if (Depth >= MaxRecursionDepth) 4426 return false; // Limit search depth. 4427 4428 // TODO: Handle vectors. 4429 // If the value is a constant, we can obviously see if it is a NaN or not. 4430 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4431 return !C->getValueAPF().isNaN() || 4432 (SNaN && !C->getValueAPF().isSignaling()); 4433 } 4434 4435 unsigned Opcode = Op.getOpcode(); 4436 switch (Opcode) { 4437 case ISD::FADD: 4438 case ISD::FSUB: 4439 case ISD::FMUL: 4440 case ISD::FDIV: 4441 case ISD::FREM: 4442 case ISD::FSIN: 4443 case ISD::FCOS: { 4444 if (SNaN) 4445 return true; 4446 // TODO: Need isKnownNeverInfinity 4447 return false; 4448 } 4449 case ISD::FCANONICALIZE: 4450 case ISD::FEXP: 4451 case ISD::FEXP2: 4452 case ISD::FTRUNC: 4453 case ISD::FFLOOR: 4454 case ISD::FCEIL: 4455 case ISD::FROUND: 4456 case ISD::FROUNDEVEN: 4457 case ISD::FRINT: 4458 case ISD::FNEARBYINT: { 4459 if (SNaN) 4460 return true; 4461 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4462 } 4463 case ISD::FABS: 4464 case ISD::FNEG: 4465 case ISD::FCOPYSIGN: { 4466 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4467 } 4468 case ISD::SELECT: 4469 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4470 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4471 case ISD::FP_EXTEND: 4472 case ISD::FP_ROUND: { 4473 if (SNaN) 4474 return true; 4475 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4476 } 4477 case ISD::SINT_TO_FP: 4478 case ISD::UINT_TO_FP: 4479 return true; 4480 case ISD::FMA: 4481 case ISD::FMAD: { 4482 if (SNaN) 4483 return true; 4484 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4485 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4486 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4487 } 4488 case ISD::FSQRT: // Need is known positive 4489 case ISD::FLOG: 4490 case ISD::FLOG2: 4491 case ISD::FLOG10: 4492 case ISD::FPOWI: 4493 case ISD::FPOW: { 4494 if (SNaN) 4495 return true; 4496 // TODO: Refine on operand 4497 return false; 4498 } 4499 case ISD::FMINNUM: 4500 case ISD::FMAXNUM: { 4501 // Only one needs to be known not-nan, since it will be returned if the 4502 // other ends up being one. 4503 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4504 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4505 } 4506 case ISD::FMINNUM_IEEE: 4507 case ISD::FMAXNUM_IEEE: { 4508 if (SNaN) 4509 return true; 4510 // This can return a NaN if either operand is an sNaN, or if both operands 4511 // are NaN. 4512 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4513 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4514 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4515 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4516 } 4517 case ISD::FMINIMUM: 4518 case ISD::FMAXIMUM: { 4519 // TODO: Does this quiet or return the origina NaN as-is? 4520 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4521 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4522 } 4523 case ISD::EXTRACT_VECTOR_ELT: { 4524 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4525 } 4526 default: 4527 if (Opcode >= ISD::BUILTIN_OP_END || 4528 Opcode == ISD::INTRINSIC_WO_CHAIN || 4529 Opcode == ISD::INTRINSIC_W_CHAIN || 4530 Opcode == ISD::INTRINSIC_VOID) { 4531 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4532 } 4533 4534 return false; 4535 } 4536 } 4537 4538 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4539 assert(Op.getValueType().isFloatingPoint() && 4540 "Floating point type expected"); 4541 4542 // If the value is a constant, we can obviously see if it is a zero or not. 4543 // TODO: Add BuildVector support. 4544 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4545 return !C->isZero(); 4546 return false; 4547 } 4548 4549 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4550 assert(!Op.getValueType().isFloatingPoint() && 4551 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4552 4553 // If the value is a constant, we can obviously see if it is a zero or not. 4554 if (ISD::matchUnaryPredicate(Op, 4555 [](ConstantSDNode *C) { return !C->isZero(); })) 4556 return true; 4557 4558 // TODO: Recognize more cases here. 4559 switch (Op.getOpcode()) { 4560 default: break; 4561 case ISD::OR: 4562 if (isKnownNeverZero(Op.getOperand(1)) || 4563 isKnownNeverZero(Op.getOperand(0))) 4564 return true; 4565 break; 4566 } 4567 4568 return false; 4569 } 4570 4571 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4572 // Check the obvious case. 4573 if (A == B) return true; 4574 4575 // For for negative and positive zero. 4576 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4577 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4578 if (CA->isZero() && CB->isZero()) return true; 4579 4580 // Otherwise they may not be equal. 4581 return false; 4582 } 4583 4584 // FIXME: unify with llvm::haveNoCommonBitsSet. 4585 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4586 assert(A.getValueType() == B.getValueType() && 4587 "Values must have the same type"); 4588 // Match masked merge pattern (X & ~M) op (Y & M) 4589 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4590 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4591 if (isBitwiseNot(NotM, true)) { 4592 SDValue NotOperand = NotM->getOperand(0); 4593 return NotOperand == And->getOperand(0) || 4594 NotOperand == And->getOperand(1); 4595 } 4596 return false; 4597 }; 4598 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4599 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4600 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4601 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4602 return true; 4603 } 4604 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4605 computeKnownBits(B)); 4606 } 4607 4608 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4609 SelectionDAG &DAG) { 4610 if (cast<ConstantSDNode>(Step)->isZero()) 4611 return DAG.getConstant(0, DL, VT); 4612 4613 return SDValue(); 4614 } 4615 4616 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4617 ArrayRef<SDValue> Ops, 4618 SelectionDAG &DAG) { 4619 int NumOps = Ops.size(); 4620 assert(NumOps != 0 && "Can't build an empty vector!"); 4621 assert(!VT.isScalableVector() && 4622 "BUILD_VECTOR cannot be used with scalable types"); 4623 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4624 "Incorrect element count in BUILD_VECTOR!"); 4625 4626 // BUILD_VECTOR of UNDEFs is UNDEF. 4627 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4628 return DAG.getUNDEF(VT); 4629 4630 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4631 SDValue IdentitySrc; 4632 bool IsIdentity = true; 4633 for (int i = 0; i != NumOps; ++i) { 4634 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4635 Ops[i].getOperand(0).getValueType() != VT || 4636 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4637 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4638 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4639 IsIdentity = false; 4640 break; 4641 } 4642 IdentitySrc = Ops[i].getOperand(0); 4643 } 4644 if (IsIdentity) 4645 return IdentitySrc; 4646 4647 return SDValue(); 4648 } 4649 4650 /// Try to simplify vector concatenation to an input value, undef, or build 4651 /// vector. 4652 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4653 ArrayRef<SDValue> Ops, 4654 SelectionDAG &DAG) { 4655 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4656 assert(llvm::all_of(Ops, 4657 [Ops](SDValue Op) { 4658 return Ops[0].getValueType() == Op.getValueType(); 4659 }) && 4660 "Concatenation of vectors with inconsistent value types!"); 4661 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4662 VT.getVectorElementCount() && 4663 "Incorrect element count in vector concatenation!"); 4664 4665 if (Ops.size() == 1) 4666 return Ops[0]; 4667 4668 // Concat of UNDEFs is UNDEF. 4669 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4670 return DAG.getUNDEF(VT); 4671 4672 // Scan the operands and look for extract operations from a single source 4673 // that correspond to insertion at the same location via this concatenation: 4674 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4675 SDValue IdentitySrc; 4676 bool IsIdentity = true; 4677 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4678 SDValue Op = Ops[i]; 4679 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4680 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4681 Op.getOperand(0).getValueType() != VT || 4682 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4683 Op.getConstantOperandVal(1) != IdentityIndex) { 4684 IsIdentity = false; 4685 break; 4686 } 4687 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4688 "Unexpected identity source vector for concat of extracts"); 4689 IdentitySrc = Op.getOperand(0); 4690 } 4691 if (IsIdentity) { 4692 assert(IdentitySrc && "Failed to set source vector of extracts"); 4693 return IdentitySrc; 4694 } 4695 4696 // The code below this point is only designed to work for fixed width 4697 // vectors, so we bail out for now. 4698 if (VT.isScalableVector()) 4699 return SDValue(); 4700 4701 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4702 // simplified to one big BUILD_VECTOR. 4703 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4704 EVT SVT = VT.getScalarType(); 4705 SmallVector<SDValue, 16> Elts; 4706 for (SDValue Op : Ops) { 4707 EVT OpVT = Op.getValueType(); 4708 if (Op.isUndef()) 4709 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4710 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4711 Elts.append(Op->op_begin(), Op->op_end()); 4712 else 4713 return SDValue(); 4714 } 4715 4716 // BUILD_VECTOR requires all inputs to be of the same type, find the 4717 // maximum type and extend them all. 4718 for (SDValue Op : Elts) 4719 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4720 4721 if (SVT.bitsGT(VT.getScalarType())) { 4722 for (SDValue &Op : Elts) { 4723 if (Op.isUndef()) 4724 Op = DAG.getUNDEF(SVT); 4725 else 4726 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4727 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4728 : DAG.getSExtOrTrunc(Op, DL, SVT); 4729 } 4730 } 4731 4732 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4733 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4734 return V; 4735 } 4736 4737 /// Gets or creates the specified node. 4738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4739 FoldingSetNodeID ID; 4740 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4741 void *IP = nullptr; 4742 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4743 return SDValue(E, 0); 4744 4745 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4746 getVTList(VT)); 4747 CSEMap.InsertNode(N, IP); 4748 4749 InsertNode(N); 4750 SDValue V = SDValue(N, 0); 4751 NewSDValueDbgMsg(V, "Creating new node: ", this); 4752 return V; 4753 } 4754 4755 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4756 SDValue Operand) { 4757 SDNodeFlags Flags; 4758 if (Inserter) 4759 Flags = Inserter->getFlags(); 4760 return getNode(Opcode, DL, VT, Operand, Flags); 4761 } 4762 4763 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4764 SDValue Operand, const SDNodeFlags Flags) { 4765 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4766 "Operand is DELETED_NODE!"); 4767 // Constant fold unary operations with an integer constant operand. Even 4768 // opaque constant will be folded, because the folding of unary operations 4769 // doesn't create new constants with different values. Nevertheless, the 4770 // opaque flag is preserved during folding to prevent future folding with 4771 // other constants. 4772 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4773 const APInt &Val = C->getAPIntValue(); 4774 switch (Opcode) { 4775 default: break; 4776 case ISD::SIGN_EXTEND: 4777 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4778 C->isTargetOpcode(), C->isOpaque()); 4779 case ISD::TRUNCATE: 4780 if (C->isOpaque()) 4781 break; 4782 LLVM_FALLTHROUGH; 4783 case ISD::ZERO_EXTEND: 4784 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4785 C->isTargetOpcode(), C->isOpaque()); 4786 case ISD::ANY_EXTEND: 4787 // Some targets like RISCV prefer to sign extend some types. 4788 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4789 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4790 C->isTargetOpcode(), C->isOpaque()); 4791 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4792 C->isTargetOpcode(), C->isOpaque()); 4793 case ISD::UINT_TO_FP: 4794 case ISD::SINT_TO_FP: { 4795 APFloat apf(EVTToAPFloatSemantics(VT), 4796 APInt::getZero(VT.getSizeInBits())); 4797 (void)apf.convertFromAPInt(Val, 4798 Opcode==ISD::SINT_TO_FP, 4799 APFloat::rmNearestTiesToEven); 4800 return getConstantFP(apf, DL, VT); 4801 } 4802 case ISD::BITCAST: 4803 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4804 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4805 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4806 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4807 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4808 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4809 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4810 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4811 break; 4812 case ISD::ABS: 4813 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4814 C->isOpaque()); 4815 case ISD::BITREVERSE: 4816 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4817 C->isOpaque()); 4818 case ISD::BSWAP: 4819 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4820 C->isOpaque()); 4821 case ISD::CTPOP: 4822 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4823 C->isOpaque()); 4824 case ISD::CTLZ: 4825 case ISD::CTLZ_ZERO_UNDEF: 4826 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4827 C->isOpaque()); 4828 case ISD::CTTZ: 4829 case ISD::CTTZ_ZERO_UNDEF: 4830 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4831 C->isOpaque()); 4832 case ISD::FP16_TO_FP: { 4833 bool Ignored; 4834 APFloat FPV(APFloat::IEEEhalf(), 4835 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4836 4837 // This can return overflow, underflow, or inexact; we don't care. 4838 // FIXME need to be more flexible about rounding mode. 4839 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4840 APFloat::rmNearestTiesToEven, &Ignored); 4841 return getConstantFP(FPV, DL, VT); 4842 } 4843 case ISD::STEP_VECTOR: { 4844 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4845 return V; 4846 break; 4847 } 4848 } 4849 } 4850 4851 // Constant fold unary operations with a floating point constant operand. 4852 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4853 APFloat V = C->getValueAPF(); // make copy 4854 switch (Opcode) { 4855 case ISD::FNEG: 4856 V.changeSign(); 4857 return getConstantFP(V, DL, VT); 4858 case ISD::FABS: 4859 V.clearSign(); 4860 return getConstantFP(V, DL, VT); 4861 case ISD::FCEIL: { 4862 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4863 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4864 return getConstantFP(V, DL, VT); 4865 break; 4866 } 4867 case ISD::FTRUNC: { 4868 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4869 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4870 return getConstantFP(V, DL, VT); 4871 break; 4872 } 4873 case ISD::FFLOOR: { 4874 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4875 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4876 return getConstantFP(V, DL, VT); 4877 break; 4878 } 4879 case ISD::FP_EXTEND: { 4880 bool ignored; 4881 // This can return overflow, underflow, or inexact; we don't care. 4882 // FIXME need to be more flexible about rounding mode. 4883 (void)V.convert(EVTToAPFloatSemantics(VT), 4884 APFloat::rmNearestTiesToEven, &ignored); 4885 return getConstantFP(V, DL, VT); 4886 } 4887 case ISD::FP_TO_SINT: 4888 case ISD::FP_TO_UINT: { 4889 bool ignored; 4890 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4891 // FIXME need to be more flexible about rounding mode. 4892 APFloat::opStatus s = 4893 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4894 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4895 break; 4896 return getConstant(IntVal, DL, VT); 4897 } 4898 case ISD::BITCAST: 4899 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4900 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4901 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4902 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4903 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4904 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4905 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4906 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4907 break; 4908 case ISD::FP_TO_FP16: { 4909 bool Ignored; 4910 // This can return overflow, underflow, or inexact; we don't care. 4911 // FIXME need to be more flexible about rounding mode. 4912 (void)V.convert(APFloat::IEEEhalf(), 4913 APFloat::rmNearestTiesToEven, &Ignored); 4914 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4915 } 4916 } 4917 } 4918 4919 // Constant fold unary operations with a vector integer or float operand. 4920 switch (Opcode) { 4921 default: 4922 // FIXME: Entirely reasonable to perform folding of other unary 4923 // operations here as the need arises. 4924 break; 4925 case ISD::FNEG: 4926 case ISD::FABS: 4927 case ISD::FCEIL: 4928 case ISD::FTRUNC: 4929 case ISD::FFLOOR: 4930 case ISD::FP_EXTEND: 4931 case ISD::FP_TO_SINT: 4932 case ISD::FP_TO_UINT: 4933 case ISD::TRUNCATE: 4934 case ISD::ANY_EXTEND: 4935 case ISD::ZERO_EXTEND: 4936 case ISD::SIGN_EXTEND: 4937 case ISD::UINT_TO_FP: 4938 case ISD::SINT_TO_FP: 4939 case ISD::ABS: 4940 case ISD::BITREVERSE: 4941 case ISD::BSWAP: 4942 case ISD::CTLZ: 4943 case ISD::CTLZ_ZERO_UNDEF: 4944 case ISD::CTTZ: 4945 case ISD::CTTZ_ZERO_UNDEF: 4946 case ISD::CTPOP: { 4947 SDValue Ops = {Operand}; 4948 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4949 return Fold; 4950 } 4951 } 4952 4953 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4954 switch (Opcode) { 4955 case ISD::STEP_VECTOR: 4956 assert(VT.isScalableVector() && 4957 "STEP_VECTOR can only be used with scalable types"); 4958 assert(OpOpcode == ISD::TargetConstant && 4959 VT.getVectorElementType() == Operand.getValueType() && 4960 "Unexpected step operand"); 4961 break; 4962 case ISD::FREEZE: 4963 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4964 break; 4965 case ISD::TokenFactor: 4966 case ISD::MERGE_VALUES: 4967 case ISD::CONCAT_VECTORS: 4968 return Operand; // Factor, merge or concat of one node? No need. 4969 case ISD::BUILD_VECTOR: { 4970 // Attempt to simplify BUILD_VECTOR. 4971 SDValue Ops[] = {Operand}; 4972 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4973 return V; 4974 break; 4975 } 4976 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4977 case ISD::FP_EXTEND: 4978 assert(VT.isFloatingPoint() && 4979 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4980 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4981 assert((!VT.isVector() || 4982 VT.getVectorElementCount() == 4983 Operand.getValueType().getVectorElementCount()) && 4984 "Vector element count mismatch!"); 4985 assert(Operand.getValueType().bitsLT(VT) && 4986 "Invalid fpext node, dst < src!"); 4987 if (Operand.isUndef()) 4988 return getUNDEF(VT); 4989 break; 4990 case ISD::FP_TO_SINT: 4991 case ISD::FP_TO_UINT: 4992 if (Operand.isUndef()) 4993 return getUNDEF(VT); 4994 break; 4995 case ISD::SINT_TO_FP: 4996 case ISD::UINT_TO_FP: 4997 // [us]itofp(undef) = 0, because the result value is bounded. 4998 if (Operand.isUndef()) 4999 return getConstantFP(0.0, DL, VT); 5000 break; 5001 case ISD::SIGN_EXTEND: 5002 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5003 "Invalid SIGN_EXTEND!"); 5004 assert(VT.isVector() == Operand.getValueType().isVector() && 5005 "SIGN_EXTEND result type type should be vector iff the operand " 5006 "type is vector!"); 5007 if (Operand.getValueType() == VT) return Operand; // noop extension 5008 assert((!VT.isVector() || 5009 VT.getVectorElementCount() == 5010 Operand.getValueType().getVectorElementCount()) && 5011 "Vector element count mismatch!"); 5012 assert(Operand.getValueType().bitsLT(VT) && 5013 "Invalid sext node, dst < src!"); 5014 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5015 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5016 if (OpOpcode == ISD::UNDEF) 5017 // sext(undef) = 0, because the top bits will all be the same. 5018 return getConstant(0, DL, VT); 5019 break; 5020 case ISD::ZERO_EXTEND: 5021 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5022 "Invalid ZERO_EXTEND!"); 5023 assert(VT.isVector() == Operand.getValueType().isVector() && 5024 "ZERO_EXTEND result type type should be vector iff the operand " 5025 "type is vector!"); 5026 if (Operand.getValueType() == VT) return Operand; // noop extension 5027 assert((!VT.isVector() || 5028 VT.getVectorElementCount() == 5029 Operand.getValueType().getVectorElementCount()) && 5030 "Vector element count mismatch!"); 5031 assert(Operand.getValueType().bitsLT(VT) && 5032 "Invalid zext node, dst < src!"); 5033 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5034 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5035 if (OpOpcode == ISD::UNDEF) 5036 // zext(undef) = 0, because the top bits will be zero. 5037 return getConstant(0, DL, VT); 5038 break; 5039 case ISD::ANY_EXTEND: 5040 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5041 "Invalid ANY_EXTEND!"); 5042 assert(VT.isVector() == Operand.getValueType().isVector() && 5043 "ANY_EXTEND result type type should be vector iff the operand " 5044 "type is vector!"); 5045 if (Operand.getValueType() == VT) return Operand; // noop extension 5046 assert((!VT.isVector() || 5047 VT.getVectorElementCount() == 5048 Operand.getValueType().getVectorElementCount()) && 5049 "Vector element count mismatch!"); 5050 assert(Operand.getValueType().bitsLT(VT) && 5051 "Invalid anyext node, dst < src!"); 5052 5053 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5054 OpOpcode == ISD::ANY_EXTEND) 5055 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5056 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5057 if (OpOpcode == ISD::UNDEF) 5058 return getUNDEF(VT); 5059 5060 // (ext (trunc x)) -> x 5061 if (OpOpcode == ISD::TRUNCATE) { 5062 SDValue OpOp = Operand.getOperand(0); 5063 if (OpOp.getValueType() == VT) { 5064 transferDbgValues(Operand, OpOp); 5065 return OpOp; 5066 } 5067 } 5068 break; 5069 case ISD::TRUNCATE: 5070 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5071 "Invalid TRUNCATE!"); 5072 assert(VT.isVector() == Operand.getValueType().isVector() && 5073 "TRUNCATE result type type should be vector iff the operand " 5074 "type is vector!"); 5075 if (Operand.getValueType() == VT) return Operand; // noop truncate 5076 assert((!VT.isVector() || 5077 VT.getVectorElementCount() == 5078 Operand.getValueType().getVectorElementCount()) && 5079 "Vector element count mismatch!"); 5080 assert(Operand.getValueType().bitsGT(VT) && 5081 "Invalid truncate node, src < dst!"); 5082 if (OpOpcode == ISD::TRUNCATE) 5083 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5084 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5085 OpOpcode == ISD::ANY_EXTEND) { 5086 // If the source is smaller than the dest, we still need an extend. 5087 if (Operand.getOperand(0).getValueType().getScalarType() 5088 .bitsLT(VT.getScalarType())) 5089 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5090 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5091 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5092 return Operand.getOperand(0); 5093 } 5094 if (OpOpcode == ISD::UNDEF) 5095 return getUNDEF(VT); 5096 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5097 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5098 break; 5099 case ISD::ANY_EXTEND_VECTOR_INREG: 5100 case ISD::ZERO_EXTEND_VECTOR_INREG: 5101 case ISD::SIGN_EXTEND_VECTOR_INREG: 5102 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5103 assert(Operand.getValueType().bitsLE(VT) && 5104 "The input must be the same size or smaller than the result."); 5105 assert(VT.getVectorMinNumElements() < 5106 Operand.getValueType().getVectorMinNumElements() && 5107 "The destination vector type must have fewer lanes than the input."); 5108 break; 5109 case ISD::ABS: 5110 assert(VT.isInteger() && VT == Operand.getValueType() && 5111 "Invalid ABS!"); 5112 if (OpOpcode == ISD::UNDEF) 5113 return getUNDEF(VT); 5114 break; 5115 case ISD::BSWAP: 5116 assert(VT.isInteger() && VT == Operand.getValueType() && 5117 "Invalid BSWAP!"); 5118 assert((VT.getScalarSizeInBits() % 16 == 0) && 5119 "BSWAP types must be a multiple of 16 bits!"); 5120 if (OpOpcode == ISD::UNDEF) 5121 return getUNDEF(VT); 5122 // bswap(bswap(X)) -> X. 5123 if (OpOpcode == ISD::BSWAP) 5124 return Operand.getOperand(0); 5125 break; 5126 case ISD::BITREVERSE: 5127 assert(VT.isInteger() && VT == Operand.getValueType() && 5128 "Invalid BITREVERSE!"); 5129 if (OpOpcode == ISD::UNDEF) 5130 return getUNDEF(VT); 5131 break; 5132 case ISD::BITCAST: 5133 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5134 "Cannot BITCAST between types of different sizes!"); 5135 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5136 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5137 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5138 if (OpOpcode == ISD::UNDEF) 5139 return getUNDEF(VT); 5140 break; 5141 case ISD::SCALAR_TO_VECTOR: 5142 assert(VT.isVector() && !Operand.getValueType().isVector() && 5143 (VT.getVectorElementType() == Operand.getValueType() || 5144 (VT.getVectorElementType().isInteger() && 5145 Operand.getValueType().isInteger() && 5146 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5147 "Illegal SCALAR_TO_VECTOR node!"); 5148 if (OpOpcode == ISD::UNDEF) 5149 return getUNDEF(VT); 5150 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5151 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5152 isa<ConstantSDNode>(Operand.getOperand(1)) && 5153 Operand.getConstantOperandVal(1) == 0 && 5154 Operand.getOperand(0).getValueType() == VT) 5155 return Operand.getOperand(0); 5156 break; 5157 case ISD::FNEG: 5158 // Negation of an unknown bag of bits is still completely undefined. 5159 if (OpOpcode == ISD::UNDEF) 5160 return getUNDEF(VT); 5161 5162 if (OpOpcode == ISD::FNEG) // --X -> X 5163 return Operand.getOperand(0); 5164 break; 5165 case ISD::FABS: 5166 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5167 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5168 break; 5169 case ISD::VSCALE: 5170 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5171 break; 5172 case ISD::CTPOP: 5173 if (Operand.getValueType().getScalarType() == MVT::i1) 5174 return Operand; 5175 break; 5176 case ISD::CTLZ: 5177 case ISD::CTTZ: 5178 if (Operand.getValueType().getScalarType() == MVT::i1) 5179 return getNOT(DL, Operand, Operand.getValueType()); 5180 break; 5181 case ISD::VECREDUCE_SMIN: 5182 case ISD::VECREDUCE_UMAX: 5183 if (Operand.getValueType().getScalarType() == MVT::i1) 5184 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5185 break; 5186 case ISD::VECREDUCE_SMAX: 5187 case ISD::VECREDUCE_UMIN: 5188 if (Operand.getValueType().getScalarType() == MVT::i1) 5189 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5190 break; 5191 } 5192 5193 SDNode *N; 5194 SDVTList VTs = getVTList(VT); 5195 SDValue Ops[] = {Operand}; 5196 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5197 FoldingSetNodeID ID; 5198 AddNodeIDNode(ID, Opcode, VTs, Ops); 5199 void *IP = nullptr; 5200 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5201 E->intersectFlagsWith(Flags); 5202 return SDValue(E, 0); 5203 } 5204 5205 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5206 N->setFlags(Flags); 5207 createOperands(N, Ops); 5208 CSEMap.InsertNode(N, IP); 5209 } else { 5210 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5211 createOperands(N, Ops); 5212 } 5213 5214 InsertNode(N); 5215 SDValue V = SDValue(N, 0); 5216 NewSDValueDbgMsg(V, "Creating new node: ", this); 5217 return V; 5218 } 5219 5220 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5221 const APInt &C2) { 5222 switch (Opcode) { 5223 case ISD::ADD: return C1 + C2; 5224 case ISD::SUB: return C1 - C2; 5225 case ISD::MUL: return C1 * C2; 5226 case ISD::AND: return C1 & C2; 5227 case ISD::OR: return C1 | C2; 5228 case ISD::XOR: return C1 ^ C2; 5229 case ISD::SHL: return C1 << C2; 5230 case ISD::SRL: return C1.lshr(C2); 5231 case ISD::SRA: return C1.ashr(C2); 5232 case ISD::ROTL: return C1.rotl(C2); 5233 case ISD::ROTR: return C1.rotr(C2); 5234 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5235 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5236 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5237 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5238 case ISD::SADDSAT: return C1.sadd_sat(C2); 5239 case ISD::UADDSAT: return C1.uadd_sat(C2); 5240 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5241 case ISD::USUBSAT: return C1.usub_sat(C2); 5242 case ISD::UDIV: 5243 if (!C2.getBoolValue()) 5244 break; 5245 return C1.udiv(C2); 5246 case ISD::UREM: 5247 if (!C2.getBoolValue()) 5248 break; 5249 return C1.urem(C2); 5250 case ISD::SDIV: 5251 if (!C2.getBoolValue()) 5252 break; 5253 return C1.sdiv(C2); 5254 case ISD::SREM: 5255 if (!C2.getBoolValue()) 5256 break; 5257 return C1.srem(C2); 5258 case ISD::MULHS: { 5259 unsigned FullWidth = C1.getBitWidth() * 2; 5260 APInt C1Ext = C1.sext(FullWidth); 5261 APInt C2Ext = C2.sext(FullWidth); 5262 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5263 } 5264 case ISD::MULHU: { 5265 unsigned FullWidth = C1.getBitWidth() * 2; 5266 APInt C1Ext = C1.zext(FullWidth); 5267 APInt C2Ext = C2.zext(FullWidth); 5268 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5269 } 5270 } 5271 return llvm::None; 5272 } 5273 5274 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5275 const GlobalAddressSDNode *GA, 5276 const SDNode *N2) { 5277 if (GA->getOpcode() != ISD::GlobalAddress) 5278 return SDValue(); 5279 if (!TLI->isOffsetFoldingLegal(GA)) 5280 return SDValue(); 5281 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5282 if (!C2) 5283 return SDValue(); 5284 int64_t Offset = C2->getSExtValue(); 5285 switch (Opcode) { 5286 case ISD::ADD: break; 5287 case ISD::SUB: Offset = -uint64_t(Offset); break; 5288 default: return SDValue(); 5289 } 5290 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5291 GA->getOffset() + uint64_t(Offset)); 5292 } 5293 5294 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5295 switch (Opcode) { 5296 case ISD::SDIV: 5297 case ISD::UDIV: 5298 case ISD::SREM: 5299 case ISD::UREM: { 5300 // If a divisor is zero/undef or any element of a divisor vector is 5301 // zero/undef, the whole op is undef. 5302 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5303 SDValue Divisor = Ops[1]; 5304 if (Divisor.isUndef() || isNullConstant(Divisor)) 5305 return true; 5306 5307 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5308 llvm::any_of(Divisor->op_values(), 5309 [](SDValue V) { return V.isUndef() || 5310 isNullConstant(V); }); 5311 // TODO: Handle signed overflow. 5312 } 5313 // TODO: Handle oversized shifts. 5314 default: 5315 return false; 5316 } 5317 } 5318 5319 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5320 EVT VT, ArrayRef<SDValue> Ops) { 5321 // If the opcode is a target-specific ISD node, there's nothing we can 5322 // do here and the operand rules may not line up with the below, so 5323 // bail early. 5324 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5325 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5326 // foldCONCAT_VECTORS in getNode before this is called. 5327 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5328 return SDValue(); 5329 5330 unsigned NumOps = Ops.size(); 5331 if (NumOps == 0) 5332 return SDValue(); 5333 5334 if (isUndef(Opcode, Ops)) 5335 return getUNDEF(VT); 5336 5337 // Handle binops special cases. 5338 if (NumOps == 2) { 5339 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5340 return CFP; 5341 5342 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5343 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5344 if (C1->isOpaque() || C2->isOpaque()) 5345 return SDValue(); 5346 5347 Optional<APInt> FoldAttempt = 5348 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5349 if (!FoldAttempt) 5350 return SDValue(); 5351 5352 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5353 assert((!Folded || !VT.isVector()) && 5354 "Can't fold vectors ops with scalar operands"); 5355 return Folded; 5356 } 5357 } 5358 5359 // fold (add Sym, c) -> Sym+c 5360 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5361 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5362 if (TLI->isCommutativeBinOp(Opcode)) 5363 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5364 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5365 } 5366 5367 // This is for vector folding only from here on. 5368 if (!VT.isVector()) 5369 return SDValue(); 5370 5371 ElementCount NumElts = VT.getVectorElementCount(); 5372 5373 // See if we can fold through bitcasted integer ops. 5374 // TODO: Can we handle undef elements? 5375 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5376 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5377 Ops[0].getOpcode() == ISD::BITCAST && 5378 Ops[1].getOpcode() == ISD::BITCAST) { 5379 SDValue N1 = peekThroughBitcasts(Ops[0]); 5380 SDValue N2 = peekThroughBitcasts(Ops[1]); 5381 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5382 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5383 EVT BVVT = N1.getValueType(); 5384 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5385 bool IsLE = getDataLayout().isLittleEndian(); 5386 unsigned EltBits = VT.getScalarSizeInBits(); 5387 SmallVector<APInt> RawBits1, RawBits2; 5388 BitVector UndefElts1, UndefElts2; 5389 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5390 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5391 UndefElts1.none() && UndefElts2.none()) { 5392 SmallVector<APInt> RawBits; 5393 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5394 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5395 if (!Fold) 5396 break; 5397 RawBits.push_back(Fold.getValue()); 5398 } 5399 if (RawBits.size() == NumElts.getFixedValue()) { 5400 // We have constant folded, but we need to cast this again back to 5401 // the original (possibly legalized) type. 5402 SmallVector<APInt> DstBits; 5403 BitVector DstUndefs; 5404 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5405 DstBits, RawBits, DstUndefs, 5406 BitVector(RawBits.size(), false)); 5407 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5408 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5409 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5410 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5411 if (DstUndefs[I]) 5412 continue; 5413 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5414 } 5415 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5416 } 5417 } 5418 } 5419 } 5420 5421 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5422 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5423 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5424 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5425 APInt RHSVal; 5426 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5427 APInt NewStep = Opcode == ISD::MUL 5428 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5429 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5430 return getStepVector(DL, VT, NewStep); 5431 } 5432 } 5433 5434 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5435 return !Op.getValueType().isVector() || 5436 Op.getValueType().getVectorElementCount() == NumElts; 5437 }; 5438 5439 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5440 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5441 Op.getOpcode() == ISD::BUILD_VECTOR || 5442 Op.getOpcode() == ISD::SPLAT_VECTOR; 5443 }; 5444 5445 // All operands must be vector types with the same number of elements as 5446 // the result type and must be either UNDEF or a build/splat vector 5447 // or UNDEF scalars. 5448 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5449 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5450 return SDValue(); 5451 5452 // If we are comparing vectors, then the result needs to be a i1 boolean 5453 // that is then sign-extended back to the legal result type. 5454 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5455 5456 // Find legal integer scalar type for constant promotion and 5457 // ensure that its scalar size is at least as large as source. 5458 EVT LegalSVT = VT.getScalarType(); 5459 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5460 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5461 if (LegalSVT.bitsLT(VT.getScalarType())) 5462 return SDValue(); 5463 } 5464 5465 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5466 // only have one operand to check. For fixed-length vector types we may have 5467 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5468 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5469 5470 // Constant fold each scalar lane separately. 5471 SmallVector<SDValue, 4> ScalarResults; 5472 for (unsigned I = 0; I != NumVectorElts; I++) { 5473 SmallVector<SDValue, 4> ScalarOps; 5474 for (SDValue Op : Ops) { 5475 EVT InSVT = Op.getValueType().getScalarType(); 5476 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5477 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5478 if (Op.isUndef()) 5479 ScalarOps.push_back(getUNDEF(InSVT)); 5480 else 5481 ScalarOps.push_back(Op); 5482 continue; 5483 } 5484 5485 SDValue ScalarOp = 5486 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5487 EVT ScalarVT = ScalarOp.getValueType(); 5488 5489 // Build vector (integer) scalar operands may need implicit 5490 // truncation - do this before constant folding. 5491 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5492 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5493 5494 ScalarOps.push_back(ScalarOp); 5495 } 5496 5497 // Constant fold the scalar operands. 5498 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5499 5500 // Legalize the (integer) scalar constant if necessary. 5501 if (LegalSVT != SVT) 5502 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5503 5504 // Scalar folding only succeeded if the result is a constant or UNDEF. 5505 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5506 ScalarResult.getOpcode() != ISD::ConstantFP) 5507 return SDValue(); 5508 ScalarResults.push_back(ScalarResult); 5509 } 5510 5511 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5512 : getBuildVector(VT, DL, ScalarResults); 5513 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5514 return V; 5515 } 5516 5517 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5518 EVT VT, SDValue N1, SDValue N2) { 5519 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5520 // should. That will require dealing with a potentially non-default 5521 // rounding mode, checking the "opStatus" return value from the APFloat 5522 // math calculations, and possibly other variations. 5523 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5524 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5525 if (N1CFP && N2CFP) { 5526 APFloat C1 = N1CFP->getValueAPF(); // make copy 5527 const APFloat &C2 = N2CFP->getValueAPF(); 5528 switch (Opcode) { 5529 case ISD::FADD: 5530 C1.add(C2, APFloat::rmNearestTiesToEven); 5531 return getConstantFP(C1, DL, VT); 5532 case ISD::FSUB: 5533 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5534 return getConstantFP(C1, DL, VT); 5535 case ISD::FMUL: 5536 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5537 return getConstantFP(C1, DL, VT); 5538 case ISD::FDIV: 5539 C1.divide(C2, APFloat::rmNearestTiesToEven); 5540 return getConstantFP(C1, DL, VT); 5541 case ISD::FREM: 5542 C1.mod(C2); 5543 return getConstantFP(C1, DL, VT); 5544 case ISD::FCOPYSIGN: 5545 C1.copySign(C2); 5546 return getConstantFP(C1, DL, VT); 5547 case ISD::FMINNUM: 5548 return getConstantFP(minnum(C1, C2), DL, VT); 5549 case ISD::FMAXNUM: 5550 return getConstantFP(maxnum(C1, C2), DL, VT); 5551 case ISD::FMINIMUM: 5552 return getConstantFP(minimum(C1, C2), DL, VT); 5553 case ISD::FMAXIMUM: 5554 return getConstantFP(maximum(C1, C2), DL, VT); 5555 default: break; 5556 } 5557 } 5558 if (N1CFP && Opcode == ISD::FP_ROUND) { 5559 APFloat C1 = N1CFP->getValueAPF(); // make copy 5560 bool Unused; 5561 // This can return overflow, underflow, or inexact; we don't care. 5562 // FIXME need to be more flexible about rounding mode. 5563 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5564 &Unused); 5565 return getConstantFP(C1, DL, VT); 5566 } 5567 5568 switch (Opcode) { 5569 case ISD::FSUB: 5570 // -0.0 - undef --> undef (consistent with "fneg undef") 5571 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5572 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5573 return getUNDEF(VT); 5574 LLVM_FALLTHROUGH; 5575 5576 case ISD::FADD: 5577 case ISD::FMUL: 5578 case ISD::FDIV: 5579 case ISD::FREM: 5580 // If both operands are undef, the result is undef. If 1 operand is undef, 5581 // the result is NaN. This should match the behavior of the IR optimizer. 5582 if (N1.isUndef() && N2.isUndef()) 5583 return getUNDEF(VT); 5584 if (N1.isUndef() || N2.isUndef()) 5585 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5586 } 5587 return SDValue(); 5588 } 5589 5590 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5591 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5592 5593 // There's no need to assert on a byte-aligned pointer. All pointers are at 5594 // least byte aligned. 5595 if (A == Align(1)) 5596 return Val; 5597 5598 FoldingSetNodeID ID; 5599 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5600 ID.AddInteger(A.value()); 5601 5602 void *IP = nullptr; 5603 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5604 return SDValue(E, 0); 5605 5606 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5607 Val.getValueType(), A); 5608 createOperands(N, {Val}); 5609 5610 CSEMap.InsertNode(N, IP); 5611 InsertNode(N); 5612 5613 SDValue V(N, 0); 5614 NewSDValueDbgMsg(V, "Creating new node: ", this); 5615 return V; 5616 } 5617 5618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5619 SDValue N1, SDValue N2) { 5620 SDNodeFlags Flags; 5621 if (Inserter) 5622 Flags = Inserter->getFlags(); 5623 return getNode(Opcode, DL, VT, N1, N2, Flags); 5624 } 5625 5626 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5627 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5628 assert(N1.getOpcode() != ISD::DELETED_NODE && 5629 N2.getOpcode() != ISD::DELETED_NODE && 5630 "Operand is DELETED_NODE!"); 5631 // Canonicalize constant to RHS if commutative. 5632 if (TLI->isCommutativeBinOp(Opcode)) { 5633 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5634 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5635 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5636 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5637 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5638 std::swap(N1, N2); 5639 } 5640 5641 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5642 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5643 5644 switch (Opcode) { 5645 default: break; 5646 case ISD::TokenFactor: 5647 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5648 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5649 // Fold trivial token factors. 5650 if (N1.getOpcode() == ISD::EntryToken) return N2; 5651 if (N2.getOpcode() == ISD::EntryToken) return N1; 5652 if (N1 == N2) return N1; 5653 break; 5654 case ISD::BUILD_VECTOR: { 5655 // Attempt to simplify BUILD_VECTOR. 5656 SDValue Ops[] = {N1, N2}; 5657 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5658 return V; 5659 break; 5660 } 5661 case ISD::CONCAT_VECTORS: { 5662 SDValue Ops[] = {N1, N2}; 5663 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5664 return V; 5665 break; 5666 } 5667 case ISD::AND: 5668 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5669 assert(N1.getValueType() == N2.getValueType() && 5670 N1.getValueType() == VT && "Binary operator types must match!"); 5671 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5672 // worth handling here. 5673 if (N2C && N2C->isZero()) 5674 return N2; 5675 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5676 return N1; 5677 break; 5678 case ISD::OR: 5679 case ISD::XOR: 5680 case ISD::ADD: 5681 case ISD::SUB: 5682 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5683 assert(N1.getValueType() == N2.getValueType() && 5684 N1.getValueType() == VT && "Binary operator types must match!"); 5685 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5686 // it's worth handling here. 5687 if (N2C && N2C->isZero()) 5688 return N1; 5689 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5690 VT.getVectorElementType() == MVT::i1) 5691 return getNode(ISD::XOR, DL, VT, N1, N2); 5692 break; 5693 case ISD::MUL: 5694 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5695 assert(N1.getValueType() == N2.getValueType() && 5696 N1.getValueType() == VT && "Binary operator types must match!"); 5697 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5698 return getNode(ISD::AND, DL, VT, N1, N2); 5699 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5700 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5701 const APInt &N2CImm = N2C->getAPIntValue(); 5702 return getVScale(DL, VT, MulImm * N2CImm); 5703 } 5704 break; 5705 case ISD::UDIV: 5706 case ISD::UREM: 5707 case ISD::MULHU: 5708 case ISD::MULHS: 5709 case ISD::SDIV: 5710 case ISD::SREM: 5711 case ISD::SADDSAT: 5712 case ISD::SSUBSAT: 5713 case ISD::UADDSAT: 5714 case ISD::USUBSAT: 5715 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5716 assert(N1.getValueType() == N2.getValueType() && 5717 N1.getValueType() == VT && "Binary operator types must match!"); 5718 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5719 // fold (add_sat x, y) -> (or x, y) for bool types. 5720 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5721 return getNode(ISD::OR, DL, VT, N1, N2); 5722 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5723 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5724 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5725 } 5726 break; 5727 case ISD::SMIN: 5728 case ISD::UMAX: 5729 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5730 assert(N1.getValueType() == N2.getValueType() && 5731 N1.getValueType() == VT && "Binary operator types must match!"); 5732 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5733 return getNode(ISD::OR, DL, VT, N1, N2); 5734 break; 5735 case ISD::SMAX: 5736 case ISD::UMIN: 5737 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5738 assert(N1.getValueType() == N2.getValueType() && 5739 N1.getValueType() == VT && "Binary operator types must match!"); 5740 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5741 return getNode(ISD::AND, DL, VT, N1, N2); 5742 break; 5743 case ISD::FADD: 5744 case ISD::FSUB: 5745 case ISD::FMUL: 5746 case ISD::FDIV: 5747 case ISD::FREM: 5748 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5749 assert(N1.getValueType() == N2.getValueType() && 5750 N1.getValueType() == VT && "Binary operator types must match!"); 5751 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5752 return V; 5753 break; 5754 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5755 assert(N1.getValueType() == VT && 5756 N1.getValueType().isFloatingPoint() && 5757 N2.getValueType().isFloatingPoint() && 5758 "Invalid FCOPYSIGN!"); 5759 break; 5760 case ISD::SHL: 5761 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5762 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5763 const APInt &ShiftImm = N2C->getAPIntValue(); 5764 return getVScale(DL, VT, MulImm << ShiftImm); 5765 } 5766 LLVM_FALLTHROUGH; 5767 case ISD::SRA: 5768 case ISD::SRL: 5769 if (SDValue V = simplifyShift(N1, N2)) 5770 return V; 5771 LLVM_FALLTHROUGH; 5772 case ISD::ROTL: 5773 case ISD::ROTR: 5774 assert(VT == N1.getValueType() && 5775 "Shift operators return type must be the same as their first arg"); 5776 assert(VT.isInteger() && N2.getValueType().isInteger() && 5777 "Shifts only work on integers"); 5778 assert((!VT.isVector() || VT == N2.getValueType()) && 5779 "Vector shift amounts must be in the same as their first arg"); 5780 // Verify that the shift amount VT is big enough to hold valid shift 5781 // amounts. This catches things like trying to shift an i1024 value by an 5782 // i8, which is easy to fall into in generic code that uses 5783 // TLI.getShiftAmount(). 5784 assert(N2.getValueType().getScalarSizeInBits() >= 5785 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5786 "Invalid use of small shift amount with oversized value!"); 5787 5788 // Always fold shifts of i1 values so the code generator doesn't need to 5789 // handle them. Since we know the size of the shift has to be less than the 5790 // size of the value, the shift/rotate count is guaranteed to be zero. 5791 if (VT == MVT::i1) 5792 return N1; 5793 if (N2C && N2C->isZero()) 5794 return N1; 5795 break; 5796 case ISD::FP_ROUND: 5797 assert(VT.isFloatingPoint() && 5798 N1.getValueType().isFloatingPoint() && 5799 VT.bitsLE(N1.getValueType()) && 5800 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5801 "Invalid FP_ROUND!"); 5802 if (N1.getValueType() == VT) return N1; // noop conversion. 5803 break; 5804 case ISD::AssertSext: 5805 case ISD::AssertZext: { 5806 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5807 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5808 assert(VT.isInteger() && EVT.isInteger() && 5809 "Cannot *_EXTEND_INREG FP types"); 5810 assert(!EVT.isVector() && 5811 "AssertSExt/AssertZExt type should be the vector element type " 5812 "rather than the vector type!"); 5813 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5814 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5815 break; 5816 } 5817 case ISD::SIGN_EXTEND_INREG: { 5818 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5819 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5820 assert(VT.isInteger() && EVT.isInteger() && 5821 "Cannot *_EXTEND_INREG FP types"); 5822 assert(EVT.isVector() == VT.isVector() && 5823 "SIGN_EXTEND_INREG type should be vector iff the operand " 5824 "type is vector!"); 5825 assert((!EVT.isVector() || 5826 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5827 "Vector element counts must match in SIGN_EXTEND_INREG"); 5828 assert(EVT.bitsLE(VT) && "Not extending!"); 5829 if (EVT == VT) return N1; // Not actually extending 5830 5831 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5832 unsigned FromBits = EVT.getScalarSizeInBits(); 5833 Val <<= Val.getBitWidth() - FromBits; 5834 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5835 return getConstant(Val, DL, ConstantVT); 5836 }; 5837 5838 if (N1C) { 5839 const APInt &Val = N1C->getAPIntValue(); 5840 return SignExtendInReg(Val, VT); 5841 } 5842 5843 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5844 SmallVector<SDValue, 8> Ops; 5845 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5846 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5847 SDValue Op = N1.getOperand(i); 5848 if (Op.isUndef()) { 5849 Ops.push_back(getUNDEF(OpVT)); 5850 continue; 5851 } 5852 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5853 APInt Val = C->getAPIntValue(); 5854 Ops.push_back(SignExtendInReg(Val, OpVT)); 5855 } 5856 return getBuildVector(VT, DL, Ops); 5857 } 5858 break; 5859 } 5860 case ISD::FP_TO_SINT_SAT: 5861 case ISD::FP_TO_UINT_SAT: { 5862 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5863 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5864 assert(N1.getValueType().isVector() == VT.isVector() && 5865 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5866 "vector!"); 5867 assert((!VT.isVector() || VT.getVectorNumElements() == 5868 N1.getValueType().getVectorNumElements()) && 5869 "Vector element counts must match in FP_TO_*INT_SAT"); 5870 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5871 "Type to saturate to must be a scalar."); 5872 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5873 "Not extending!"); 5874 break; 5875 } 5876 case ISD::EXTRACT_VECTOR_ELT: 5877 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5878 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5879 element type of the vector."); 5880 5881 // Extract from an undefined value or using an undefined index is undefined. 5882 if (N1.isUndef() || N2.isUndef()) 5883 return getUNDEF(VT); 5884 5885 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5886 // vectors. For scalable vectors we will provide appropriate support for 5887 // dealing with arbitrary indices. 5888 if (N2C && N1.getValueType().isFixedLengthVector() && 5889 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5890 return getUNDEF(VT); 5891 5892 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5893 // expanding copies of large vectors from registers. This only works for 5894 // fixed length vectors, since we need to know the exact number of 5895 // elements. 5896 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5897 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5898 unsigned Factor = 5899 N1.getOperand(0).getValueType().getVectorNumElements(); 5900 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5901 N1.getOperand(N2C->getZExtValue() / Factor), 5902 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5903 } 5904 5905 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5906 // lowering is expanding large vector constants. 5907 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5908 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5909 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5910 N1.getValueType().isFixedLengthVector()) && 5911 "BUILD_VECTOR used for scalable vectors"); 5912 unsigned Index = 5913 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5914 SDValue Elt = N1.getOperand(Index); 5915 5916 if (VT != Elt.getValueType()) 5917 // If the vector element type is not legal, the BUILD_VECTOR operands 5918 // are promoted and implicitly truncated, and the result implicitly 5919 // extended. Make that explicit here. 5920 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5921 5922 return Elt; 5923 } 5924 5925 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5926 // operations are lowered to scalars. 5927 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5928 // If the indices are the same, return the inserted element else 5929 // if the indices are known different, extract the element from 5930 // the original vector. 5931 SDValue N1Op2 = N1.getOperand(2); 5932 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5933 5934 if (N1Op2C && N2C) { 5935 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5936 if (VT == N1.getOperand(1).getValueType()) 5937 return N1.getOperand(1); 5938 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5939 } 5940 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5941 } 5942 } 5943 5944 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5945 // when vector types are scalarized and v1iX is legal. 5946 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5947 // Here we are completely ignoring the extract element index (N2), 5948 // which is fine for fixed width vectors, since any index other than 0 5949 // is undefined anyway. However, this cannot be ignored for scalable 5950 // vectors - in theory we could support this, but we don't want to do this 5951 // without a profitability check. 5952 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5953 N1.getValueType().isFixedLengthVector() && 5954 N1.getValueType().getVectorNumElements() == 1) { 5955 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5956 N1.getOperand(1)); 5957 } 5958 break; 5959 case ISD::EXTRACT_ELEMENT: 5960 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5961 assert(!N1.getValueType().isVector() && !VT.isVector() && 5962 (N1.getValueType().isInteger() == VT.isInteger()) && 5963 N1.getValueType() != VT && 5964 "Wrong types for EXTRACT_ELEMENT!"); 5965 5966 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5967 // 64-bit integers into 32-bit parts. Instead of building the extract of 5968 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5969 if (N1.getOpcode() == ISD::BUILD_PAIR) 5970 return N1.getOperand(N2C->getZExtValue()); 5971 5972 // EXTRACT_ELEMENT of a constant int is also very common. 5973 if (N1C) { 5974 unsigned ElementSize = VT.getSizeInBits(); 5975 unsigned Shift = ElementSize * N2C->getZExtValue(); 5976 const APInt &Val = N1C->getAPIntValue(); 5977 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5978 } 5979 break; 5980 case ISD::EXTRACT_SUBVECTOR: { 5981 EVT N1VT = N1.getValueType(); 5982 assert(VT.isVector() && N1VT.isVector() && 5983 "Extract subvector VTs must be vectors!"); 5984 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5985 "Extract subvector VTs must have the same element type!"); 5986 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5987 "Cannot extract a scalable vector from a fixed length vector!"); 5988 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5989 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5990 "Extract subvector must be from larger vector to smaller vector!"); 5991 assert(N2C && "Extract subvector index must be a constant"); 5992 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5993 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5994 N1VT.getVectorMinNumElements()) && 5995 "Extract subvector overflow!"); 5996 assert(N2C->getAPIntValue().getBitWidth() == 5997 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5998 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5999 6000 // Trivial extraction. 6001 if (VT == N1VT) 6002 return N1; 6003 6004 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6005 if (N1.isUndef()) 6006 return getUNDEF(VT); 6007 6008 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6009 // the concat have the same type as the extract. 6010 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6011 VT == N1.getOperand(0).getValueType()) { 6012 unsigned Factor = VT.getVectorMinNumElements(); 6013 return N1.getOperand(N2C->getZExtValue() / Factor); 6014 } 6015 6016 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6017 // during shuffle legalization. 6018 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6019 VT == N1.getOperand(1).getValueType()) 6020 return N1.getOperand(1); 6021 break; 6022 } 6023 } 6024 6025 // Perform trivial constant folding. 6026 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6027 return SV; 6028 6029 // Canonicalize an UNDEF to the RHS, even over a constant. 6030 if (N1.isUndef()) { 6031 if (TLI->isCommutativeBinOp(Opcode)) { 6032 std::swap(N1, N2); 6033 } else { 6034 switch (Opcode) { 6035 case ISD::SIGN_EXTEND_INREG: 6036 case ISD::SUB: 6037 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6038 case ISD::UDIV: 6039 case ISD::SDIV: 6040 case ISD::UREM: 6041 case ISD::SREM: 6042 case ISD::SSUBSAT: 6043 case ISD::USUBSAT: 6044 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6045 } 6046 } 6047 } 6048 6049 // Fold a bunch of operators when the RHS is undef. 6050 if (N2.isUndef()) { 6051 switch (Opcode) { 6052 case ISD::XOR: 6053 if (N1.isUndef()) 6054 // Handle undef ^ undef -> 0 special case. This is a common 6055 // idiom (misuse). 6056 return getConstant(0, DL, VT); 6057 LLVM_FALLTHROUGH; 6058 case ISD::ADD: 6059 case ISD::SUB: 6060 case ISD::UDIV: 6061 case ISD::SDIV: 6062 case ISD::UREM: 6063 case ISD::SREM: 6064 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6065 case ISD::MUL: 6066 case ISD::AND: 6067 case ISD::SSUBSAT: 6068 case ISD::USUBSAT: 6069 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6070 case ISD::OR: 6071 case ISD::SADDSAT: 6072 case ISD::UADDSAT: 6073 return getAllOnesConstant(DL, VT); 6074 } 6075 } 6076 6077 // Memoize this node if possible. 6078 SDNode *N; 6079 SDVTList VTs = getVTList(VT); 6080 SDValue Ops[] = {N1, N2}; 6081 if (VT != MVT::Glue) { 6082 FoldingSetNodeID ID; 6083 AddNodeIDNode(ID, Opcode, VTs, Ops); 6084 void *IP = nullptr; 6085 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6086 E->intersectFlagsWith(Flags); 6087 return SDValue(E, 0); 6088 } 6089 6090 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6091 N->setFlags(Flags); 6092 createOperands(N, Ops); 6093 CSEMap.InsertNode(N, IP); 6094 } else { 6095 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6096 createOperands(N, Ops); 6097 } 6098 6099 InsertNode(N); 6100 SDValue V = SDValue(N, 0); 6101 NewSDValueDbgMsg(V, "Creating new node: ", this); 6102 return V; 6103 } 6104 6105 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6106 SDValue N1, SDValue N2, SDValue N3) { 6107 SDNodeFlags Flags; 6108 if (Inserter) 6109 Flags = Inserter->getFlags(); 6110 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6111 } 6112 6113 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6114 SDValue N1, SDValue N2, SDValue N3, 6115 const SDNodeFlags Flags) { 6116 assert(N1.getOpcode() != ISD::DELETED_NODE && 6117 N2.getOpcode() != ISD::DELETED_NODE && 6118 N3.getOpcode() != ISD::DELETED_NODE && 6119 "Operand is DELETED_NODE!"); 6120 // Perform various simplifications. 6121 switch (Opcode) { 6122 case ISD::FMA: { 6123 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6124 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6125 N3.getValueType() == VT && "FMA types must match!"); 6126 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6127 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6128 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6129 if (N1CFP && N2CFP && N3CFP) { 6130 APFloat V1 = N1CFP->getValueAPF(); 6131 const APFloat &V2 = N2CFP->getValueAPF(); 6132 const APFloat &V3 = N3CFP->getValueAPF(); 6133 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6134 return getConstantFP(V1, DL, VT); 6135 } 6136 break; 6137 } 6138 case ISD::BUILD_VECTOR: { 6139 // Attempt to simplify BUILD_VECTOR. 6140 SDValue Ops[] = {N1, N2, N3}; 6141 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6142 return V; 6143 break; 6144 } 6145 case ISD::CONCAT_VECTORS: { 6146 SDValue Ops[] = {N1, N2, N3}; 6147 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6148 return V; 6149 break; 6150 } 6151 case ISD::SETCC: { 6152 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6153 assert(N1.getValueType() == N2.getValueType() && 6154 "SETCC operands must have the same type!"); 6155 assert(VT.isVector() == N1.getValueType().isVector() && 6156 "SETCC type should be vector iff the operand type is vector!"); 6157 assert((!VT.isVector() || VT.getVectorElementCount() == 6158 N1.getValueType().getVectorElementCount()) && 6159 "SETCC vector element counts must match!"); 6160 // Use FoldSetCC to simplify SETCC's. 6161 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6162 return V; 6163 // Vector constant folding. 6164 SDValue Ops[] = {N1, N2, N3}; 6165 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6166 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6167 return V; 6168 } 6169 break; 6170 } 6171 case ISD::SELECT: 6172 case ISD::VSELECT: 6173 if (SDValue V = simplifySelect(N1, N2, N3)) 6174 return V; 6175 break; 6176 case ISD::VECTOR_SHUFFLE: 6177 llvm_unreachable("should use getVectorShuffle constructor!"); 6178 case ISD::VECTOR_SPLICE: { 6179 if (cast<ConstantSDNode>(N3)->isNullValue()) 6180 return N1; 6181 break; 6182 } 6183 case ISD::INSERT_VECTOR_ELT: { 6184 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6185 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6186 // for scalable vectors where we will generate appropriate code to 6187 // deal with out-of-bounds cases correctly. 6188 if (N3C && N1.getValueType().isFixedLengthVector() && 6189 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6190 return getUNDEF(VT); 6191 6192 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6193 if (N3.isUndef()) 6194 return getUNDEF(VT); 6195 6196 // If the inserted element is an UNDEF, just use the input vector. 6197 if (N2.isUndef()) 6198 return N1; 6199 6200 break; 6201 } 6202 case ISD::INSERT_SUBVECTOR: { 6203 // Inserting undef into undef is still undef. 6204 if (N1.isUndef() && N2.isUndef()) 6205 return getUNDEF(VT); 6206 6207 EVT N2VT = N2.getValueType(); 6208 assert(VT == N1.getValueType() && 6209 "Dest and insert subvector source types must match!"); 6210 assert(VT.isVector() && N2VT.isVector() && 6211 "Insert subvector VTs must be vectors!"); 6212 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6213 "Cannot insert a scalable vector into a fixed length vector!"); 6214 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6215 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6216 "Insert subvector must be from smaller vector to larger vector!"); 6217 assert(isa<ConstantSDNode>(N3) && 6218 "Insert subvector index must be constant"); 6219 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6220 (N2VT.getVectorMinNumElements() + 6221 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6222 VT.getVectorMinNumElements()) && 6223 "Insert subvector overflow!"); 6224 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6225 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6226 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6227 6228 // Trivial insertion. 6229 if (VT == N2VT) 6230 return N2; 6231 6232 // If this is an insert of an extracted vector into an undef vector, we 6233 // can just use the input to the extract. 6234 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6235 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6236 return N2.getOperand(0); 6237 break; 6238 } 6239 case ISD::BITCAST: 6240 // Fold bit_convert nodes from a type to themselves. 6241 if (N1.getValueType() == VT) 6242 return N1; 6243 break; 6244 } 6245 6246 // Memoize node if it doesn't produce a flag. 6247 SDNode *N; 6248 SDVTList VTs = getVTList(VT); 6249 SDValue Ops[] = {N1, N2, N3}; 6250 if (VT != MVT::Glue) { 6251 FoldingSetNodeID ID; 6252 AddNodeIDNode(ID, Opcode, VTs, Ops); 6253 void *IP = nullptr; 6254 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6255 E->intersectFlagsWith(Flags); 6256 return SDValue(E, 0); 6257 } 6258 6259 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6260 N->setFlags(Flags); 6261 createOperands(N, Ops); 6262 CSEMap.InsertNode(N, IP); 6263 } else { 6264 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6265 createOperands(N, Ops); 6266 } 6267 6268 InsertNode(N); 6269 SDValue V = SDValue(N, 0); 6270 NewSDValueDbgMsg(V, "Creating new node: ", this); 6271 return V; 6272 } 6273 6274 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6275 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6276 SDValue Ops[] = { N1, N2, N3, N4 }; 6277 return getNode(Opcode, DL, VT, Ops); 6278 } 6279 6280 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6281 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6282 SDValue N5) { 6283 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6284 return getNode(Opcode, DL, VT, Ops); 6285 } 6286 6287 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6288 /// the incoming stack arguments to be loaded from the stack. 6289 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6290 SmallVector<SDValue, 8> ArgChains; 6291 6292 // Include the original chain at the beginning of the list. When this is 6293 // used by target LowerCall hooks, this helps legalize find the 6294 // CALLSEQ_BEGIN node. 6295 ArgChains.push_back(Chain); 6296 6297 // Add a chain value for each stack argument. 6298 for (SDNode *U : getEntryNode().getNode()->uses()) 6299 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6300 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6301 if (FI->getIndex() < 0) 6302 ArgChains.push_back(SDValue(L, 1)); 6303 6304 // Build a tokenfactor for all the chains. 6305 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6306 } 6307 6308 /// getMemsetValue - Vectorized representation of the memset value 6309 /// operand. 6310 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6311 const SDLoc &dl) { 6312 assert(!Value.isUndef()); 6313 6314 unsigned NumBits = VT.getScalarSizeInBits(); 6315 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6316 assert(C->getAPIntValue().getBitWidth() == 8); 6317 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6318 if (VT.isInteger()) { 6319 bool IsOpaque = VT.getSizeInBits() > 64 || 6320 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6321 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6322 } 6323 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6324 VT); 6325 } 6326 6327 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6328 EVT IntVT = VT.getScalarType(); 6329 if (!IntVT.isInteger()) 6330 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6331 6332 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6333 if (NumBits > 8) { 6334 // Use a multiplication with 0x010101... to extend the input to the 6335 // required length. 6336 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6337 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6338 DAG.getConstant(Magic, dl, IntVT)); 6339 } 6340 6341 if (VT != Value.getValueType() && !VT.isInteger()) 6342 Value = DAG.getBitcast(VT.getScalarType(), Value); 6343 if (VT != Value.getValueType()) 6344 Value = DAG.getSplatBuildVector(VT, dl, Value); 6345 6346 return Value; 6347 } 6348 6349 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6350 /// used when a memcpy is turned into a memset when the source is a constant 6351 /// string ptr. 6352 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6353 const TargetLowering &TLI, 6354 const ConstantDataArraySlice &Slice) { 6355 // Handle vector with all elements zero. 6356 if (Slice.Array == nullptr) { 6357 if (VT.isInteger()) 6358 return DAG.getConstant(0, dl, VT); 6359 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6360 return DAG.getConstantFP(0.0, dl, VT); 6361 if (VT.isVector()) { 6362 unsigned NumElts = VT.getVectorNumElements(); 6363 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6364 return DAG.getNode(ISD::BITCAST, dl, VT, 6365 DAG.getConstant(0, dl, 6366 EVT::getVectorVT(*DAG.getContext(), 6367 EltVT, NumElts))); 6368 } 6369 llvm_unreachable("Expected type!"); 6370 } 6371 6372 assert(!VT.isVector() && "Can't handle vector type here!"); 6373 unsigned NumVTBits = VT.getSizeInBits(); 6374 unsigned NumVTBytes = NumVTBits / 8; 6375 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6376 6377 APInt Val(NumVTBits, 0); 6378 if (DAG.getDataLayout().isLittleEndian()) { 6379 for (unsigned i = 0; i != NumBytes; ++i) 6380 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6381 } else { 6382 for (unsigned i = 0; i != NumBytes; ++i) 6383 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6384 } 6385 6386 // If the "cost" of materializing the integer immediate is less than the cost 6387 // of a load, then it is cost effective to turn the load into the immediate. 6388 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6389 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6390 return DAG.getConstant(Val, dl, VT); 6391 return SDValue(); 6392 } 6393 6394 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6395 const SDLoc &DL, 6396 const SDNodeFlags Flags) { 6397 EVT VT = Base.getValueType(); 6398 SDValue Index; 6399 6400 if (Offset.isScalable()) 6401 Index = getVScale(DL, Base.getValueType(), 6402 APInt(Base.getValueSizeInBits().getFixedSize(), 6403 Offset.getKnownMinSize())); 6404 else 6405 Index = getConstant(Offset.getFixedSize(), DL, VT); 6406 6407 return getMemBasePlusOffset(Base, Index, DL, Flags); 6408 } 6409 6410 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6411 const SDLoc &DL, 6412 const SDNodeFlags Flags) { 6413 assert(Offset.getValueType().isInteger()); 6414 EVT BasePtrVT = Ptr.getValueType(); 6415 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6416 } 6417 6418 /// Returns true if memcpy source is constant data. 6419 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6420 uint64_t SrcDelta = 0; 6421 GlobalAddressSDNode *G = nullptr; 6422 if (Src.getOpcode() == ISD::GlobalAddress) 6423 G = cast<GlobalAddressSDNode>(Src); 6424 else if (Src.getOpcode() == ISD::ADD && 6425 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6426 Src.getOperand(1).getOpcode() == ISD::Constant) { 6427 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6428 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6429 } 6430 if (!G) 6431 return false; 6432 6433 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6434 SrcDelta + G->getOffset()); 6435 } 6436 6437 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6438 SelectionDAG &DAG) { 6439 // On Darwin, -Os means optimize for size without hurting performance, so 6440 // only really optimize for size when -Oz (MinSize) is used. 6441 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6442 return MF.getFunction().hasMinSize(); 6443 return DAG.shouldOptForSize(); 6444 } 6445 6446 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6447 SmallVector<SDValue, 32> &OutChains, unsigned From, 6448 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6449 SmallVector<SDValue, 16> &OutStoreChains) { 6450 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6451 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6452 SmallVector<SDValue, 16> GluedLoadChains; 6453 for (unsigned i = From; i < To; ++i) { 6454 OutChains.push_back(OutLoadChains[i]); 6455 GluedLoadChains.push_back(OutLoadChains[i]); 6456 } 6457 6458 // Chain for all loads. 6459 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6460 GluedLoadChains); 6461 6462 for (unsigned i = From; i < To; ++i) { 6463 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6464 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6465 ST->getBasePtr(), ST->getMemoryVT(), 6466 ST->getMemOperand()); 6467 OutChains.push_back(NewStore); 6468 } 6469 } 6470 6471 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6472 SDValue Chain, SDValue Dst, SDValue Src, 6473 uint64_t Size, Align Alignment, 6474 bool isVol, bool AlwaysInline, 6475 MachinePointerInfo DstPtrInfo, 6476 MachinePointerInfo SrcPtrInfo, 6477 const AAMDNodes &AAInfo) { 6478 // Turn a memcpy of undef to nop. 6479 // FIXME: We need to honor volatile even is Src is undef. 6480 if (Src.isUndef()) 6481 return Chain; 6482 6483 // Expand memcpy to a series of load and store ops if the size operand falls 6484 // below a certain threshold. 6485 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6486 // rather than maybe a humongous number of loads and stores. 6487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6488 const DataLayout &DL = DAG.getDataLayout(); 6489 LLVMContext &C = *DAG.getContext(); 6490 std::vector<EVT> MemOps; 6491 bool DstAlignCanChange = false; 6492 MachineFunction &MF = DAG.getMachineFunction(); 6493 MachineFrameInfo &MFI = MF.getFrameInfo(); 6494 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6495 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6496 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6497 DstAlignCanChange = true; 6498 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6499 if (!SrcAlign || Alignment > *SrcAlign) 6500 SrcAlign = Alignment; 6501 assert(SrcAlign && "SrcAlign must be set"); 6502 ConstantDataArraySlice Slice; 6503 // If marked as volatile, perform a copy even when marked as constant. 6504 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6505 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6506 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6507 const MemOp Op = isZeroConstant 6508 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6509 /*IsZeroMemset*/ true, isVol) 6510 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6511 *SrcAlign, isVol, CopyFromConstant); 6512 if (!TLI.findOptimalMemOpLowering( 6513 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6514 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6515 return SDValue(); 6516 6517 if (DstAlignCanChange) { 6518 Type *Ty = MemOps[0].getTypeForEVT(C); 6519 Align NewAlign = DL.getABITypeAlign(Ty); 6520 6521 // Don't promote to an alignment that would require dynamic stack 6522 // realignment. 6523 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6524 if (!TRI->hasStackRealignment(MF)) 6525 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6526 NewAlign = NewAlign / 2; 6527 6528 if (NewAlign > Alignment) { 6529 // Give the stack frame object a larger alignment if needed. 6530 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6531 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6532 Alignment = NewAlign; 6533 } 6534 } 6535 6536 // Prepare AAInfo for loads/stores after lowering this memcpy. 6537 AAMDNodes NewAAInfo = AAInfo; 6538 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6539 6540 MachineMemOperand::Flags MMOFlags = 6541 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6542 SmallVector<SDValue, 16> OutLoadChains; 6543 SmallVector<SDValue, 16> OutStoreChains; 6544 SmallVector<SDValue, 32> OutChains; 6545 unsigned NumMemOps = MemOps.size(); 6546 uint64_t SrcOff = 0, DstOff = 0; 6547 for (unsigned i = 0; i != NumMemOps; ++i) { 6548 EVT VT = MemOps[i]; 6549 unsigned VTSize = VT.getSizeInBits() / 8; 6550 SDValue Value, Store; 6551 6552 if (VTSize > Size) { 6553 // Issuing an unaligned load / store pair that overlaps with the previous 6554 // pair. Adjust the offset accordingly. 6555 assert(i == NumMemOps-1 && i != 0); 6556 SrcOff -= VTSize - Size; 6557 DstOff -= VTSize - Size; 6558 } 6559 6560 if (CopyFromConstant && 6561 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6562 // It's unlikely a store of a vector immediate can be done in a single 6563 // instruction. It would require a load from a constantpool first. 6564 // We only handle zero vectors here. 6565 // FIXME: Handle other cases where store of vector immediate is done in 6566 // a single instruction. 6567 ConstantDataArraySlice SubSlice; 6568 if (SrcOff < Slice.Length) { 6569 SubSlice = Slice; 6570 SubSlice.move(SrcOff); 6571 } else { 6572 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6573 SubSlice.Array = nullptr; 6574 SubSlice.Offset = 0; 6575 SubSlice.Length = VTSize; 6576 } 6577 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6578 if (Value.getNode()) { 6579 Store = DAG.getStore( 6580 Chain, dl, Value, 6581 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6582 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6583 OutChains.push_back(Store); 6584 } 6585 } 6586 6587 if (!Store.getNode()) { 6588 // The type might not be legal for the target. This should only happen 6589 // if the type is smaller than a legal type, as on PPC, so the right 6590 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6591 // to Load/Store if NVT==VT. 6592 // FIXME does the case above also need this? 6593 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6594 assert(NVT.bitsGE(VT)); 6595 6596 bool isDereferenceable = 6597 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6598 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6599 if (isDereferenceable) 6600 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6601 6602 Value = DAG.getExtLoad( 6603 ISD::EXTLOAD, dl, NVT, Chain, 6604 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6605 SrcPtrInfo.getWithOffset(SrcOff), VT, 6606 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6607 OutLoadChains.push_back(Value.getValue(1)); 6608 6609 Store = DAG.getTruncStore( 6610 Chain, dl, Value, 6611 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6612 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6613 OutStoreChains.push_back(Store); 6614 } 6615 SrcOff += VTSize; 6616 DstOff += VTSize; 6617 Size -= VTSize; 6618 } 6619 6620 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6621 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6622 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6623 6624 if (NumLdStInMemcpy) { 6625 // It may be that memcpy might be converted to memset if it's memcpy 6626 // of constants. In such a case, we won't have loads and stores, but 6627 // just stores. In the absence of loads, there is nothing to gang up. 6628 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6629 // If target does not care, just leave as it. 6630 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6631 OutChains.push_back(OutLoadChains[i]); 6632 OutChains.push_back(OutStoreChains[i]); 6633 } 6634 } else { 6635 // Ld/St less than/equal limit set by target. 6636 if (NumLdStInMemcpy <= GluedLdStLimit) { 6637 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6638 NumLdStInMemcpy, OutLoadChains, 6639 OutStoreChains); 6640 } else { 6641 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6642 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6643 unsigned GlueIter = 0; 6644 6645 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6646 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6647 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6648 6649 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6650 OutLoadChains, OutStoreChains); 6651 GlueIter += GluedLdStLimit; 6652 } 6653 6654 // Residual ld/st. 6655 if (RemainingLdStInMemcpy) { 6656 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6657 RemainingLdStInMemcpy, OutLoadChains, 6658 OutStoreChains); 6659 } 6660 } 6661 } 6662 } 6663 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6664 } 6665 6666 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6667 SDValue Chain, SDValue Dst, SDValue Src, 6668 uint64_t Size, Align Alignment, 6669 bool isVol, bool AlwaysInline, 6670 MachinePointerInfo DstPtrInfo, 6671 MachinePointerInfo SrcPtrInfo, 6672 const AAMDNodes &AAInfo) { 6673 // Turn a memmove of undef to nop. 6674 // FIXME: We need to honor volatile even is Src is undef. 6675 if (Src.isUndef()) 6676 return Chain; 6677 6678 // Expand memmove to a series of load and store ops if the size operand falls 6679 // below a certain threshold. 6680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6681 const DataLayout &DL = DAG.getDataLayout(); 6682 LLVMContext &C = *DAG.getContext(); 6683 std::vector<EVT> MemOps; 6684 bool DstAlignCanChange = false; 6685 MachineFunction &MF = DAG.getMachineFunction(); 6686 MachineFrameInfo &MFI = MF.getFrameInfo(); 6687 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6688 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6689 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6690 DstAlignCanChange = true; 6691 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6692 if (!SrcAlign || Alignment > *SrcAlign) 6693 SrcAlign = Alignment; 6694 assert(SrcAlign && "SrcAlign must be set"); 6695 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6696 if (!TLI.findOptimalMemOpLowering( 6697 MemOps, Limit, 6698 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6699 /*IsVolatile*/ true), 6700 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6701 MF.getFunction().getAttributes())) 6702 return SDValue(); 6703 6704 if (DstAlignCanChange) { 6705 Type *Ty = MemOps[0].getTypeForEVT(C); 6706 Align NewAlign = DL.getABITypeAlign(Ty); 6707 if (NewAlign > Alignment) { 6708 // Give the stack frame object a larger alignment if needed. 6709 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6710 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6711 Alignment = NewAlign; 6712 } 6713 } 6714 6715 // Prepare AAInfo for loads/stores after lowering this memmove. 6716 AAMDNodes NewAAInfo = AAInfo; 6717 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6718 6719 MachineMemOperand::Flags MMOFlags = 6720 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6721 uint64_t SrcOff = 0, DstOff = 0; 6722 SmallVector<SDValue, 8> LoadValues; 6723 SmallVector<SDValue, 8> LoadChains; 6724 SmallVector<SDValue, 8> OutChains; 6725 unsigned NumMemOps = MemOps.size(); 6726 for (unsigned i = 0; i < NumMemOps; i++) { 6727 EVT VT = MemOps[i]; 6728 unsigned VTSize = VT.getSizeInBits() / 8; 6729 SDValue Value; 6730 6731 bool isDereferenceable = 6732 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6733 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6734 if (isDereferenceable) 6735 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6736 6737 Value = DAG.getLoad( 6738 VT, dl, Chain, 6739 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6740 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6741 LoadValues.push_back(Value); 6742 LoadChains.push_back(Value.getValue(1)); 6743 SrcOff += VTSize; 6744 } 6745 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6746 OutChains.clear(); 6747 for (unsigned i = 0; i < NumMemOps; i++) { 6748 EVT VT = MemOps[i]; 6749 unsigned VTSize = VT.getSizeInBits() / 8; 6750 SDValue Store; 6751 6752 Store = DAG.getStore( 6753 Chain, dl, LoadValues[i], 6754 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6755 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6756 OutChains.push_back(Store); 6757 DstOff += VTSize; 6758 } 6759 6760 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6761 } 6762 6763 /// Lower the call to 'memset' intrinsic function into a series of store 6764 /// operations. 6765 /// 6766 /// \param DAG Selection DAG where lowered code is placed. 6767 /// \param dl Link to corresponding IR location. 6768 /// \param Chain Control flow dependency. 6769 /// \param Dst Pointer to destination memory location. 6770 /// \param Src Value of byte to write into the memory. 6771 /// \param Size Number of bytes to write. 6772 /// \param Alignment Alignment of the destination in bytes. 6773 /// \param isVol True if destination is volatile. 6774 /// \param DstPtrInfo IR information on the memory pointer. 6775 /// \returns New head in the control flow, if lowering was successful, empty 6776 /// SDValue otherwise. 6777 /// 6778 /// The function tries to replace 'llvm.memset' intrinsic with several store 6779 /// operations and value calculation code. This is usually profitable for small 6780 /// memory size. 6781 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6782 SDValue Chain, SDValue Dst, SDValue Src, 6783 uint64_t Size, Align Alignment, bool isVol, 6784 MachinePointerInfo DstPtrInfo, 6785 const AAMDNodes &AAInfo) { 6786 // Turn a memset of undef to nop. 6787 // FIXME: We need to honor volatile even is Src is undef. 6788 if (Src.isUndef()) 6789 return Chain; 6790 6791 // Expand memset to a series of load/store ops if the size operand 6792 // falls below a certain threshold. 6793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6794 std::vector<EVT> MemOps; 6795 bool DstAlignCanChange = false; 6796 MachineFunction &MF = DAG.getMachineFunction(); 6797 MachineFrameInfo &MFI = MF.getFrameInfo(); 6798 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6799 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6800 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6801 DstAlignCanChange = true; 6802 bool IsZeroVal = 6803 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6804 if (!TLI.findOptimalMemOpLowering( 6805 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6806 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6807 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6808 return SDValue(); 6809 6810 if (DstAlignCanChange) { 6811 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6812 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6813 if (NewAlign > Alignment) { 6814 // Give the stack frame object a larger alignment if needed. 6815 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6816 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6817 Alignment = NewAlign; 6818 } 6819 } 6820 6821 SmallVector<SDValue, 8> OutChains; 6822 uint64_t DstOff = 0; 6823 unsigned NumMemOps = MemOps.size(); 6824 6825 // Find the largest store and generate the bit pattern for it. 6826 EVT LargestVT = MemOps[0]; 6827 for (unsigned i = 1; i < NumMemOps; i++) 6828 if (MemOps[i].bitsGT(LargestVT)) 6829 LargestVT = MemOps[i]; 6830 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6831 6832 // Prepare AAInfo for loads/stores after lowering this memset. 6833 AAMDNodes NewAAInfo = AAInfo; 6834 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6835 6836 for (unsigned i = 0; i < NumMemOps; i++) { 6837 EVT VT = MemOps[i]; 6838 unsigned VTSize = VT.getSizeInBits() / 8; 6839 if (VTSize > Size) { 6840 // Issuing an unaligned load / store pair that overlaps with the previous 6841 // pair. Adjust the offset accordingly. 6842 assert(i == NumMemOps-1 && i != 0); 6843 DstOff -= VTSize - Size; 6844 } 6845 6846 // If this store is smaller than the largest store see whether we can get 6847 // the smaller value for free with a truncate. 6848 SDValue Value = MemSetValue; 6849 if (VT.bitsLT(LargestVT)) { 6850 if (!LargestVT.isVector() && !VT.isVector() && 6851 TLI.isTruncateFree(LargestVT, VT)) 6852 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6853 else 6854 Value = getMemsetValue(Src, VT, DAG, dl); 6855 } 6856 assert(Value.getValueType() == VT && "Value with wrong type."); 6857 SDValue Store = DAG.getStore( 6858 Chain, dl, Value, 6859 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6860 DstPtrInfo.getWithOffset(DstOff), Alignment, 6861 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6862 NewAAInfo); 6863 OutChains.push_back(Store); 6864 DstOff += VT.getSizeInBits() / 8; 6865 Size -= VTSize; 6866 } 6867 6868 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6869 } 6870 6871 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6872 unsigned AS) { 6873 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6874 // pointer operands can be losslessly bitcasted to pointers of address space 0 6875 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6876 report_fatal_error("cannot lower memory intrinsic in address space " + 6877 Twine(AS)); 6878 } 6879 } 6880 6881 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6882 SDValue Src, SDValue Size, Align Alignment, 6883 bool isVol, bool AlwaysInline, bool isTailCall, 6884 MachinePointerInfo DstPtrInfo, 6885 MachinePointerInfo SrcPtrInfo, 6886 const AAMDNodes &AAInfo) { 6887 // Check to see if we should lower the memcpy to loads and stores first. 6888 // For cases within the target-specified limits, this is the best choice. 6889 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6890 if (ConstantSize) { 6891 // Memcpy with size zero? Just return the original chain. 6892 if (ConstantSize->isZero()) 6893 return Chain; 6894 6895 SDValue Result = getMemcpyLoadsAndStores( 6896 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6897 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6898 if (Result.getNode()) 6899 return Result; 6900 } 6901 6902 // Then check to see if we should lower the memcpy with target-specific 6903 // code. If the target chooses to do this, this is the next best. 6904 if (TSI) { 6905 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6906 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6907 DstPtrInfo, SrcPtrInfo); 6908 if (Result.getNode()) 6909 return Result; 6910 } 6911 6912 // If we really need inline code and the target declined to provide it, 6913 // use a (potentially long) sequence of loads and stores. 6914 if (AlwaysInline) { 6915 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6916 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6917 ConstantSize->getZExtValue(), Alignment, 6918 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6919 } 6920 6921 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6922 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6923 6924 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6925 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6926 // respect volatile, so they may do things like read or write memory 6927 // beyond the given memory regions. But fixing this isn't easy, and most 6928 // people don't care. 6929 6930 // Emit a library call. 6931 TargetLowering::ArgListTy Args; 6932 TargetLowering::ArgListEntry Entry; 6933 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6934 Entry.Node = Dst; Args.push_back(Entry); 6935 Entry.Node = Src; Args.push_back(Entry); 6936 6937 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6938 Entry.Node = Size; Args.push_back(Entry); 6939 // FIXME: pass in SDLoc 6940 TargetLowering::CallLoweringInfo CLI(*this); 6941 CLI.setDebugLoc(dl) 6942 .setChain(Chain) 6943 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6944 Dst.getValueType().getTypeForEVT(*getContext()), 6945 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6946 TLI->getPointerTy(getDataLayout())), 6947 std::move(Args)) 6948 .setDiscardResult() 6949 .setTailCall(isTailCall); 6950 6951 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6952 return CallResult.second; 6953 } 6954 6955 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6956 SDValue Dst, unsigned DstAlign, 6957 SDValue Src, unsigned SrcAlign, 6958 SDValue Size, Type *SizeTy, 6959 unsigned ElemSz, bool isTailCall, 6960 MachinePointerInfo DstPtrInfo, 6961 MachinePointerInfo SrcPtrInfo) { 6962 // Emit a library call. 6963 TargetLowering::ArgListTy Args; 6964 TargetLowering::ArgListEntry Entry; 6965 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6966 Entry.Node = Dst; 6967 Args.push_back(Entry); 6968 6969 Entry.Node = Src; 6970 Args.push_back(Entry); 6971 6972 Entry.Ty = SizeTy; 6973 Entry.Node = Size; 6974 Args.push_back(Entry); 6975 6976 RTLIB::Libcall LibraryCall = 6977 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6978 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6979 report_fatal_error("Unsupported element size"); 6980 6981 TargetLowering::CallLoweringInfo CLI(*this); 6982 CLI.setDebugLoc(dl) 6983 .setChain(Chain) 6984 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6985 Type::getVoidTy(*getContext()), 6986 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6987 TLI->getPointerTy(getDataLayout())), 6988 std::move(Args)) 6989 .setDiscardResult() 6990 .setTailCall(isTailCall); 6991 6992 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6993 return CallResult.second; 6994 } 6995 6996 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6997 SDValue Src, SDValue Size, Align Alignment, 6998 bool isVol, bool isTailCall, 6999 MachinePointerInfo DstPtrInfo, 7000 MachinePointerInfo SrcPtrInfo, 7001 const AAMDNodes &AAInfo) { 7002 // Check to see if we should lower the memmove to loads and stores first. 7003 // For cases within the target-specified limits, this is the best choice. 7004 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7005 if (ConstantSize) { 7006 // Memmove with size zero? Just return the original chain. 7007 if (ConstantSize->isZero()) 7008 return Chain; 7009 7010 SDValue Result = getMemmoveLoadsAndStores( 7011 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7012 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7013 if (Result.getNode()) 7014 return Result; 7015 } 7016 7017 // Then check to see if we should lower the memmove with target-specific 7018 // code. If the target chooses to do this, this is the next best. 7019 if (TSI) { 7020 SDValue Result = 7021 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7022 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7023 if (Result.getNode()) 7024 return Result; 7025 } 7026 7027 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7028 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7029 7030 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7031 // not be safe. See memcpy above for more details. 7032 7033 // Emit a library call. 7034 TargetLowering::ArgListTy Args; 7035 TargetLowering::ArgListEntry Entry; 7036 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7037 Entry.Node = Dst; Args.push_back(Entry); 7038 Entry.Node = Src; Args.push_back(Entry); 7039 7040 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7041 Entry.Node = Size; Args.push_back(Entry); 7042 // FIXME: pass in SDLoc 7043 TargetLowering::CallLoweringInfo CLI(*this); 7044 CLI.setDebugLoc(dl) 7045 .setChain(Chain) 7046 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7047 Dst.getValueType().getTypeForEVT(*getContext()), 7048 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7049 TLI->getPointerTy(getDataLayout())), 7050 std::move(Args)) 7051 .setDiscardResult() 7052 .setTailCall(isTailCall); 7053 7054 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7055 return CallResult.second; 7056 } 7057 7058 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7059 SDValue Dst, unsigned DstAlign, 7060 SDValue Src, unsigned SrcAlign, 7061 SDValue Size, Type *SizeTy, 7062 unsigned ElemSz, bool isTailCall, 7063 MachinePointerInfo DstPtrInfo, 7064 MachinePointerInfo SrcPtrInfo) { 7065 // Emit a library call. 7066 TargetLowering::ArgListTy Args; 7067 TargetLowering::ArgListEntry Entry; 7068 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7069 Entry.Node = Dst; 7070 Args.push_back(Entry); 7071 7072 Entry.Node = Src; 7073 Args.push_back(Entry); 7074 7075 Entry.Ty = SizeTy; 7076 Entry.Node = Size; 7077 Args.push_back(Entry); 7078 7079 RTLIB::Libcall LibraryCall = 7080 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7081 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7082 report_fatal_error("Unsupported element size"); 7083 7084 TargetLowering::CallLoweringInfo CLI(*this); 7085 CLI.setDebugLoc(dl) 7086 .setChain(Chain) 7087 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7088 Type::getVoidTy(*getContext()), 7089 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7090 TLI->getPointerTy(getDataLayout())), 7091 std::move(Args)) 7092 .setDiscardResult() 7093 .setTailCall(isTailCall); 7094 7095 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7096 return CallResult.second; 7097 } 7098 7099 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7100 SDValue Src, SDValue Size, Align Alignment, 7101 bool isVol, bool isTailCall, 7102 MachinePointerInfo DstPtrInfo, 7103 const AAMDNodes &AAInfo) { 7104 // Check to see if we should lower the memset to stores first. 7105 // For cases within the target-specified limits, this is the best choice. 7106 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7107 if (ConstantSize) { 7108 // Memset with size zero? Just return the original chain. 7109 if (ConstantSize->isZero()) 7110 return Chain; 7111 7112 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7113 ConstantSize->getZExtValue(), Alignment, 7114 isVol, DstPtrInfo, AAInfo); 7115 7116 if (Result.getNode()) 7117 return Result; 7118 } 7119 7120 // Then check to see if we should lower the memset with target-specific 7121 // code. If the target chooses to do this, this is the next best. 7122 if (TSI) { 7123 SDValue Result = TSI->EmitTargetCodeForMemset( 7124 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7125 if (Result.getNode()) 7126 return Result; 7127 } 7128 7129 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7130 7131 // Emit a library call. 7132 TargetLowering::ArgListTy Args; 7133 TargetLowering::ArgListEntry Entry; 7134 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7135 Args.push_back(Entry); 7136 Entry.Node = Src; 7137 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7138 Args.push_back(Entry); 7139 Entry.Node = Size; 7140 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7141 Args.push_back(Entry); 7142 7143 // FIXME: pass in SDLoc 7144 TargetLowering::CallLoweringInfo CLI(*this); 7145 CLI.setDebugLoc(dl) 7146 .setChain(Chain) 7147 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7148 Dst.getValueType().getTypeForEVT(*getContext()), 7149 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7150 TLI->getPointerTy(getDataLayout())), 7151 std::move(Args)) 7152 .setDiscardResult() 7153 .setTailCall(isTailCall); 7154 7155 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7156 return CallResult.second; 7157 } 7158 7159 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7160 SDValue Dst, unsigned DstAlign, 7161 SDValue Value, SDValue Size, Type *SizeTy, 7162 unsigned ElemSz, bool isTailCall, 7163 MachinePointerInfo DstPtrInfo) { 7164 // Emit a library call. 7165 TargetLowering::ArgListTy Args; 7166 TargetLowering::ArgListEntry Entry; 7167 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7168 Entry.Node = Dst; 7169 Args.push_back(Entry); 7170 7171 Entry.Ty = Type::getInt8Ty(*getContext()); 7172 Entry.Node = Value; 7173 Args.push_back(Entry); 7174 7175 Entry.Ty = SizeTy; 7176 Entry.Node = Size; 7177 Args.push_back(Entry); 7178 7179 RTLIB::Libcall LibraryCall = 7180 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7181 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7182 report_fatal_error("Unsupported element size"); 7183 7184 TargetLowering::CallLoweringInfo CLI(*this); 7185 CLI.setDebugLoc(dl) 7186 .setChain(Chain) 7187 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7188 Type::getVoidTy(*getContext()), 7189 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7190 TLI->getPointerTy(getDataLayout())), 7191 std::move(Args)) 7192 .setDiscardResult() 7193 .setTailCall(isTailCall); 7194 7195 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7196 return CallResult.second; 7197 } 7198 7199 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7200 SDVTList VTList, ArrayRef<SDValue> Ops, 7201 MachineMemOperand *MMO) { 7202 FoldingSetNodeID ID; 7203 ID.AddInteger(MemVT.getRawBits()); 7204 AddNodeIDNode(ID, Opcode, VTList, Ops); 7205 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7206 void* IP = nullptr; 7207 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7208 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7209 return SDValue(E, 0); 7210 } 7211 7212 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7213 VTList, MemVT, MMO); 7214 createOperands(N, Ops); 7215 7216 CSEMap.InsertNode(N, IP); 7217 InsertNode(N); 7218 return SDValue(N, 0); 7219 } 7220 7221 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7222 EVT MemVT, SDVTList VTs, SDValue Chain, 7223 SDValue Ptr, SDValue Cmp, SDValue Swp, 7224 MachineMemOperand *MMO) { 7225 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7226 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7227 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7228 7229 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7230 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7231 } 7232 7233 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7234 SDValue Chain, SDValue Ptr, SDValue Val, 7235 MachineMemOperand *MMO) { 7236 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7237 Opcode == ISD::ATOMIC_LOAD_SUB || 7238 Opcode == ISD::ATOMIC_LOAD_AND || 7239 Opcode == ISD::ATOMIC_LOAD_CLR || 7240 Opcode == ISD::ATOMIC_LOAD_OR || 7241 Opcode == ISD::ATOMIC_LOAD_XOR || 7242 Opcode == ISD::ATOMIC_LOAD_NAND || 7243 Opcode == ISD::ATOMIC_LOAD_MIN || 7244 Opcode == ISD::ATOMIC_LOAD_MAX || 7245 Opcode == ISD::ATOMIC_LOAD_UMIN || 7246 Opcode == ISD::ATOMIC_LOAD_UMAX || 7247 Opcode == ISD::ATOMIC_LOAD_FADD || 7248 Opcode == ISD::ATOMIC_LOAD_FSUB || 7249 Opcode == ISD::ATOMIC_SWAP || 7250 Opcode == ISD::ATOMIC_STORE) && 7251 "Invalid Atomic Op"); 7252 7253 EVT VT = Val.getValueType(); 7254 7255 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7256 getVTList(VT, MVT::Other); 7257 SDValue Ops[] = {Chain, Ptr, Val}; 7258 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7259 } 7260 7261 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7262 EVT VT, SDValue Chain, SDValue Ptr, 7263 MachineMemOperand *MMO) { 7264 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7265 7266 SDVTList VTs = getVTList(VT, MVT::Other); 7267 SDValue Ops[] = {Chain, Ptr}; 7268 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7269 } 7270 7271 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7272 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7273 if (Ops.size() == 1) 7274 return Ops[0]; 7275 7276 SmallVector<EVT, 4> VTs; 7277 VTs.reserve(Ops.size()); 7278 for (const SDValue &Op : Ops) 7279 VTs.push_back(Op.getValueType()); 7280 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7281 } 7282 7283 SDValue SelectionDAG::getMemIntrinsicNode( 7284 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7285 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7286 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7287 if (!Size && MemVT.isScalableVector()) 7288 Size = MemoryLocation::UnknownSize; 7289 else if (!Size) 7290 Size = MemVT.getStoreSize(); 7291 7292 MachineFunction &MF = getMachineFunction(); 7293 MachineMemOperand *MMO = 7294 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7295 7296 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7297 } 7298 7299 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7300 SDVTList VTList, 7301 ArrayRef<SDValue> Ops, EVT MemVT, 7302 MachineMemOperand *MMO) { 7303 assert((Opcode == ISD::INTRINSIC_VOID || 7304 Opcode == ISD::INTRINSIC_W_CHAIN || 7305 Opcode == ISD::PREFETCH || 7306 ((int)Opcode <= std::numeric_limits<int>::max() && 7307 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7308 "Opcode is not a memory-accessing opcode!"); 7309 7310 // Memoize the node unless it returns a flag. 7311 MemIntrinsicSDNode *N; 7312 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7313 FoldingSetNodeID ID; 7314 AddNodeIDNode(ID, Opcode, VTList, Ops); 7315 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7316 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7317 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7318 void *IP = nullptr; 7319 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7320 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7321 return SDValue(E, 0); 7322 } 7323 7324 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7325 VTList, MemVT, MMO); 7326 createOperands(N, Ops); 7327 7328 CSEMap.InsertNode(N, IP); 7329 } else { 7330 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7331 VTList, MemVT, MMO); 7332 createOperands(N, Ops); 7333 } 7334 InsertNode(N); 7335 SDValue V(N, 0); 7336 NewSDValueDbgMsg(V, "Creating new node: ", this); 7337 return V; 7338 } 7339 7340 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7341 SDValue Chain, int FrameIndex, 7342 int64_t Size, int64_t Offset) { 7343 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7344 const auto VTs = getVTList(MVT::Other); 7345 SDValue Ops[2] = { 7346 Chain, 7347 getFrameIndex(FrameIndex, 7348 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7349 true)}; 7350 7351 FoldingSetNodeID ID; 7352 AddNodeIDNode(ID, Opcode, VTs, Ops); 7353 ID.AddInteger(FrameIndex); 7354 ID.AddInteger(Size); 7355 ID.AddInteger(Offset); 7356 void *IP = nullptr; 7357 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7358 return SDValue(E, 0); 7359 7360 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7361 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7362 createOperands(N, Ops); 7363 CSEMap.InsertNode(N, IP); 7364 InsertNode(N); 7365 SDValue V(N, 0); 7366 NewSDValueDbgMsg(V, "Creating new node: ", this); 7367 return V; 7368 } 7369 7370 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7371 uint64_t Guid, uint64_t Index, 7372 uint32_t Attr) { 7373 const unsigned Opcode = ISD::PSEUDO_PROBE; 7374 const auto VTs = getVTList(MVT::Other); 7375 SDValue Ops[] = {Chain}; 7376 FoldingSetNodeID ID; 7377 AddNodeIDNode(ID, Opcode, VTs, Ops); 7378 ID.AddInteger(Guid); 7379 ID.AddInteger(Index); 7380 void *IP = nullptr; 7381 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7382 return SDValue(E, 0); 7383 7384 auto *N = newSDNode<PseudoProbeSDNode>( 7385 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7386 createOperands(N, Ops); 7387 CSEMap.InsertNode(N, IP); 7388 InsertNode(N); 7389 SDValue V(N, 0); 7390 NewSDValueDbgMsg(V, "Creating new node: ", this); 7391 return V; 7392 } 7393 7394 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7395 /// MachinePointerInfo record from it. This is particularly useful because the 7396 /// code generator has many cases where it doesn't bother passing in a 7397 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7398 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7399 SelectionDAG &DAG, SDValue Ptr, 7400 int64_t Offset = 0) { 7401 // If this is FI+Offset, we can model it. 7402 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7403 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7404 FI->getIndex(), Offset); 7405 7406 // If this is (FI+Offset1)+Offset2, we can model it. 7407 if (Ptr.getOpcode() != ISD::ADD || 7408 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7409 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7410 return Info; 7411 7412 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7413 return MachinePointerInfo::getFixedStack( 7414 DAG.getMachineFunction(), FI, 7415 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7416 } 7417 7418 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7419 /// MachinePointerInfo record from it. This is particularly useful because the 7420 /// code generator has many cases where it doesn't bother passing in a 7421 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7422 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7423 SelectionDAG &DAG, SDValue Ptr, 7424 SDValue OffsetOp) { 7425 // If the 'Offset' value isn't a constant, we can't handle this. 7426 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7427 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7428 if (OffsetOp.isUndef()) 7429 return InferPointerInfo(Info, DAG, Ptr); 7430 return Info; 7431 } 7432 7433 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7434 EVT VT, const SDLoc &dl, SDValue Chain, 7435 SDValue Ptr, SDValue Offset, 7436 MachinePointerInfo PtrInfo, EVT MemVT, 7437 Align Alignment, 7438 MachineMemOperand::Flags MMOFlags, 7439 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7440 assert(Chain.getValueType() == MVT::Other && 7441 "Invalid chain type"); 7442 7443 MMOFlags |= MachineMemOperand::MOLoad; 7444 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7445 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7446 // clients. 7447 if (PtrInfo.V.isNull()) 7448 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7449 7450 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7451 MachineFunction &MF = getMachineFunction(); 7452 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7453 Alignment, AAInfo, Ranges); 7454 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7455 } 7456 7457 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7458 EVT VT, const SDLoc &dl, SDValue Chain, 7459 SDValue Ptr, SDValue Offset, EVT MemVT, 7460 MachineMemOperand *MMO) { 7461 if (VT == MemVT) { 7462 ExtType = ISD::NON_EXTLOAD; 7463 } else if (ExtType == ISD::NON_EXTLOAD) { 7464 assert(VT == MemVT && "Non-extending load from different memory type!"); 7465 } else { 7466 // Extending load. 7467 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7468 "Should only be an extending load, not truncating!"); 7469 assert(VT.isInteger() == MemVT.isInteger() && 7470 "Cannot convert from FP to Int or Int -> FP!"); 7471 assert(VT.isVector() == MemVT.isVector() && 7472 "Cannot use an ext load to convert to or from a vector!"); 7473 assert((!VT.isVector() || 7474 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7475 "Cannot use an ext load to change the number of vector elements!"); 7476 } 7477 7478 bool Indexed = AM != ISD::UNINDEXED; 7479 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7480 7481 SDVTList VTs = Indexed ? 7482 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7483 SDValue Ops[] = { Chain, Ptr, Offset }; 7484 FoldingSetNodeID ID; 7485 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7486 ID.AddInteger(MemVT.getRawBits()); 7487 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7488 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7489 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7490 void *IP = nullptr; 7491 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7492 cast<LoadSDNode>(E)->refineAlignment(MMO); 7493 return SDValue(E, 0); 7494 } 7495 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7496 ExtType, MemVT, MMO); 7497 createOperands(N, Ops); 7498 7499 CSEMap.InsertNode(N, IP); 7500 InsertNode(N); 7501 SDValue V(N, 0); 7502 NewSDValueDbgMsg(V, "Creating new node: ", this); 7503 return V; 7504 } 7505 7506 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7507 SDValue Ptr, MachinePointerInfo PtrInfo, 7508 MaybeAlign Alignment, 7509 MachineMemOperand::Flags MMOFlags, 7510 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7511 SDValue Undef = getUNDEF(Ptr.getValueType()); 7512 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7513 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7514 } 7515 7516 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7517 SDValue Ptr, MachineMemOperand *MMO) { 7518 SDValue Undef = getUNDEF(Ptr.getValueType()); 7519 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7520 VT, MMO); 7521 } 7522 7523 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7524 EVT VT, SDValue Chain, SDValue Ptr, 7525 MachinePointerInfo PtrInfo, EVT MemVT, 7526 MaybeAlign Alignment, 7527 MachineMemOperand::Flags MMOFlags, 7528 const AAMDNodes &AAInfo) { 7529 SDValue Undef = getUNDEF(Ptr.getValueType()); 7530 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7531 MemVT, Alignment, MMOFlags, AAInfo); 7532 } 7533 7534 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7535 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7536 MachineMemOperand *MMO) { 7537 SDValue Undef = getUNDEF(Ptr.getValueType()); 7538 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7539 MemVT, MMO); 7540 } 7541 7542 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7543 SDValue Base, SDValue Offset, 7544 ISD::MemIndexedMode AM) { 7545 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7546 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7547 // Don't propagate the invariant or dereferenceable flags. 7548 auto MMOFlags = 7549 LD->getMemOperand()->getFlags() & 7550 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7551 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7552 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7553 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7554 } 7555 7556 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7557 SDValue Ptr, MachinePointerInfo PtrInfo, 7558 Align Alignment, 7559 MachineMemOperand::Flags MMOFlags, 7560 const AAMDNodes &AAInfo) { 7561 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7562 7563 MMOFlags |= MachineMemOperand::MOStore; 7564 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7565 7566 if (PtrInfo.V.isNull()) 7567 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7568 7569 MachineFunction &MF = getMachineFunction(); 7570 uint64_t Size = 7571 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7572 MachineMemOperand *MMO = 7573 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7574 return getStore(Chain, dl, Val, Ptr, MMO); 7575 } 7576 7577 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7578 SDValue Ptr, MachineMemOperand *MMO) { 7579 assert(Chain.getValueType() == MVT::Other && 7580 "Invalid chain type"); 7581 EVT VT = Val.getValueType(); 7582 SDVTList VTs = getVTList(MVT::Other); 7583 SDValue Undef = getUNDEF(Ptr.getValueType()); 7584 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7585 FoldingSetNodeID ID; 7586 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7587 ID.AddInteger(VT.getRawBits()); 7588 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7589 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7591 void *IP = nullptr; 7592 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7593 cast<StoreSDNode>(E)->refineAlignment(MMO); 7594 return SDValue(E, 0); 7595 } 7596 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7597 ISD::UNINDEXED, false, VT, MMO); 7598 createOperands(N, Ops); 7599 7600 CSEMap.InsertNode(N, IP); 7601 InsertNode(N); 7602 SDValue V(N, 0); 7603 NewSDValueDbgMsg(V, "Creating new node: ", this); 7604 return V; 7605 } 7606 7607 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7608 SDValue Ptr, MachinePointerInfo PtrInfo, 7609 EVT SVT, Align Alignment, 7610 MachineMemOperand::Flags MMOFlags, 7611 const AAMDNodes &AAInfo) { 7612 assert(Chain.getValueType() == MVT::Other && 7613 "Invalid chain type"); 7614 7615 MMOFlags |= MachineMemOperand::MOStore; 7616 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7617 7618 if (PtrInfo.V.isNull()) 7619 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7620 7621 MachineFunction &MF = getMachineFunction(); 7622 MachineMemOperand *MMO = MF.getMachineMemOperand( 7623 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7624 Alignment, AAInfo); 7625 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7626 } 7627 7628 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7629 SDValue Ptr, EVT SVT, 7630 MachineMemOperand *MMO) { 7631 EVT VT = Val.getValueType(); 7632 7633 assert(Chain.getValueType() == MVT::Other && 7634 "Invalid chain type"); 7635 if (VT == SVT) 7636 return getStore(Chain, dl, Val, Ptr, MMO); 7637 7638 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7639 "Should only be a truncating store, not extending!"); 7640 assert(VT.isInteger() == SVT.isInteger() && 7641 "Can't do FP-INT conversion!"); 7642 assert(VT.isVector() == SVT.isVector() && 7643 "Cannot use trunc store to convert to or from a vector!"); 7644 assert((!VT.isVector() || 7645 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7646 "Cannot use trunc store to change the number of vector elements!"); 7647 7648 SDVTList VTs = getVTList(MVT::Other); 7649 SDValue Undef = getUNDEF(Ptr.getValueType()); 7650 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7651 FoldingSetNodeID ID; 7652 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7653 ID.AddInteger(SVT.getRawBits()); 7654 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7655 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7656 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7657 void *IP = nullptr; 7658 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7659 cast<StoreSDNode>(E)->refineAlignment(MMO); 7660 return SDValue(E, 0); 7661 } 7662 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7663 ISD::UNINDEXED, true, SVT, MMO); 7664 createOperands(N, Ops); 7665 7666 CSEMap.InsertNode(N, IP); 7667 InsertNode(N); 7668 SDValue V(N, 0); 7669 NewSDValueDbgMsg(V, "Creating new node: ", this); 7670 return V; 7671 } 7672 7673 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7674 SDValue Base, SDValue Offset, 7675 ISD::MemIndexedMode AM) { 7676 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7677 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7678 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7679 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7680 FoldingSetNodeID ID; 7681 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7682 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7683 ID.AddInteger(ST->getRawSubclassData()); 7684 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7685 void *IP = nullptr; 7686 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7687 return SDValue(E, 0); 7688 7689 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7690 ST->isTruncatingStore(), ST->getMemoryVT(), 7691 ST->getMemOperand()); 7692 createOperands(N, Ops); 7693 7694 CSEMap.InsertNode(N, IP); 7695 InsertNode(N); 7696 SDValue V(N, 0); 7697 NewSDValueDbgMsg(V, "Creating new node: ", this); 7698 return V; 7699 } 7700 7701 SDValue SelectionDAG::getLoadVP( 7702 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7703 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7704 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7705 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7706 const MDNode *Ranges, bool IsExpanding) { 7707 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7708 7709 MMOFlags |= MachineMemOperand::MOLoad; 7710 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7711 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7712 // clients. 7713 if (PtrInfo.V.isNull()) 7714 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7715 7716 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7717 MachineFunction &MF = getMachineFunction(); 7718 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7719 Alignment, AAInfo, Ranges); 7720 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7721 MMO, IsExpanding); 7722 } 7723 7724 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7725 ISD::LoadExtType ExtType, EVT VT, 7726 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7727 SDValue Offset, SDValue Mask, SDValue EVL, 7728 EVT MemVT, MachineMemOperand *MMO, 7729 bool IsExpanding) { 7730 bool Indexed = AM != ISD::UNINDEXED; 7731 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7732 7733 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7734 : getVTList(VT, MVT::Other); 7735 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7736 FoldingSetNodeID ID; 7737 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7738 ID.AddInteger(VT.getRawBits()); 7739 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7740 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7741 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7742 void *IP = nullptr; 7743 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7744 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7745 return SDValue(E, 0); 7746 } 7747 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7748 ExtType, IsExpanding, MemVT, MMO); 7749 createOperands(N, Ops); 7750 7751 CSEMap.InsertNode(N, IP); 7752 InsertNode(N); 7753 SDValue V(N, 0); 7754 NewSDValueDbgMsg(V, "Creating new node: ", this); 7755 return V; 7756 } 7757 7758 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7759 SDValue Ptr, SDValue Mask, SDValue EVL, 7760 MachinePointerInfo PtrInfo, 7761 MaybeAlign Alignment, 7762 MachineMemOperand::Flags MMOFlags, 7763 const AAMDNodes &AAInfo, const MDNode *Ranges, 7764 bool IsExpanding) { 7765 SDValue Undef = getUNDEF(Ptr.getValueType()); 7766 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7767 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7768 IsExpanding); 7769 } 7770 7771 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7772 SDValue Ptr, SDValue Mask, SDValue EVL, 7773 MachineMemOperand *MMO, bool IsExpanding) { 7774 SDValue Undef = getUNDEF(Ptr.getValueType()); 7775 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7776 Mask, EVL, VT, MMO, IsExpanding); 7777 } 7778 7779 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7780 EVT VT, SDValue Chain, SDValue Ptr, 7781 SDValue Mask, SDValue EVL, 7782 MachinePointerInfo PtrInfo, EVT MemVT, 7783 MaybeAlign Alignment, 7784 MachineMemOperand::Flags MMOFlags, 7785 const AAMDNodes &AAInfo, bool IsExpanding) { 7786 SDValue Undef = getUNDEF(Ptr.getValueType()); 7787 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7788 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7789 IsExpanding); 7790 } 7791 7792 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7793 EVT VT, SDValue Chain, SDValue Ptr, 7794 SDValue Mask, SDValue EVL, EVT MemVT, 7795 MachineMemOperand *MMO, bool IsExpanding) { 7796 SDValue Undef = getUNDEF(Ptr.getValueType()); 7797 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7798 EVL, MemVT, MMO, IsExpanding); 7799 } 7800 7801 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7802 SDValue Base, SDValue Offset, 7803 ISD::MemIndexedMode AM) { 7804 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7805 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7806 // Don't propagate the invariant or dereferenceable flags. 7807 auto MMOFlags = 7808 LD->getMemOperand()->getFlags() & 7809 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7810 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7811 LD->getChain(), Base, Offset, LD->getMask(), 7812 LD->getVectorLength(), LD->getPointerInfo(), 7813 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7814 nullptr, LD->isExpandingLoad()); 7815 } 7816 7817 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7818 SDValue Ptr, SDValue Offset, SDValue Mask, 7819 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7820 ISD::MemIndexedMode AM, bool IsTruncating, 7821 bool IsCompressing) { 7822 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7823 bool Indexed = AM != ISD::UNINDEXED; 7824 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7825 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7826 : getVTList(MVT::Other); 7827 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7828 FoldingSetNodeID ID; 7829 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7830 ID.AddInteger(MemVT.getRawBits()); 7831 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7832 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7833 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7834 void *IP = nullptr; 7835 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7836 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7837 return SDValue(E, 0); 7838 } 7839 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7840 IsTruncating, IsCompressing, MemVT, MMO); 7841 createOperands(N, Ops); 7842 7843 CSEMap.InsertNode(N, IP); 7844 InsertNode(N); 7845 SDValue V(N, 0); 7846 NewSDValueDbgMsg(V, "Creating new node: ", this); 7847 return V; 7848 } 7849 7850 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7851 SDValue Val, SDValue Ptr, SDValue Mask, 7852 SDValue EVL, MachinePointerInfo PtrInfo, 7853 EVT SVT, Align Alignment, 7854 MachineMemOperand::Flags MMOFlags, 7855 const AAMDNodes &AAInfo, 7856 bool IsCompressing) { 7857 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7858 7859 MMOFlags |= MachineMemOperand::MOStore; 7860 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7861 7862 if (PtrInfo.V.isNull()) 7863 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7864 7865 MachineFunction &MF = getMachineFunction(); 7866 MachineMemOperand *MMO = MF.getMachineMemOperand( 7867 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7868 Alignment, AAInfo); 7869 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7870 IsCompressing); 7871 } 7872 7873 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7874 SDValue Val, SDValue Ptr, SDValue Mask, 7875 SDValue EVL, EVT SVT, 7876 MachineMemOperand *MMO, 7877 bool IsCompressing) { 7878 EVT VT = Val.getValueType(); 7879 7880 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7881 if (VT == SVT) 7882 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7883 EVL, VT, MMO, ISD::UNINDEXED, 7884 /*IsTruncating*/ false, IsCompressing); 7885 7886 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7887 "Should only be a truncating store, not extending!"); 7888 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7889 assert(VT.isVector() == SVT.isVector() && 7890 "Cannot use trunc store to convert to or from a vector!"); 7891 assert((!VT.isVector() || 7892 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7893 "Cannot use trunc store to change the number of vector elements!"); 7894 7895 SDVTList VTs = getVTList(MVT::Other); 7896 SDValue Undef = getUNDEF(Ptr.getValueType()); 7897 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7898 FoldingSetNodeID ID; 7899 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7900 ID.AddInteger(SVT.getRawBits()); 7901 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7902 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7903 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7904 void *IP = nullptr; 7905 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7906 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7907 return SDValue(E, 0); 7908 } 7909 auto *N = 7910 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7911 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7912 createOperands(N, Ops); 7913 7914 CSEMap.InsertNode(N, IP); 7915 InsertNode(N); 7916 SDValue V(N, 0); 7917 NewSDValueDbgMsg(V, "Creating new node: ", this); 7918 return V; 7919 } 7920 7921 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7922 SDValue Base, SDValue Offset, 7923 ISD::MemIndexedMode AM) { 7924 auto *ST = cast<VPStoreSDNode>(OrigStore); 7925 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7926 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7927 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7928 Offset, ST->getMask(), ST->getVectorLength()}; 7929 FoldingSetNodeID ID; 7930 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7931 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7932 ID.AddInteger(ST->getRawSubclassData()); 7933 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7934 void *IP = nullptr; 7935 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7936 return SDValue(E, 0); 7937 7938 auto *N = newSDNode<VPStoreSDNode>( 7939 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7940 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7941 createOperands(N, Ops); 7942 7943 CSEMap.InsertNode(N, IP); 7944 InsertNode(N); 7945 SDValue V(N, 0); 7946 NewSDValueDbgMsg(V, "Creating new node: ", this); 7947 return V; 7948 } 7949 7950 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7951 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7952 ISD::MemIndexType IndexType) { 7953 assert(Ops.size() == 6 && "Incompatible number of operands"); 7954 7955 FoldingSetNodeID ID; 7956 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7957 ID.AddInteger(VT.getRawBits()); 7958 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7959 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7960 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7961 void *IP = nullptr; 7962 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7963 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7964 return SDValue(E, 0); 7965 } 7966 7967 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7968 VT, MMO, IndexType); 7969 createOperands(N, Ops); 7970 7971 assert(N->getMask().getValueType().getVectorElementCount() == 7972 N->getValueType(0).getVectorElementCount() && 7973 "Vector width mismatch between mask and data"); 7974 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7975 N->getValueType(0).getVectorElementCount().isScalable() && 7976 "Scalable flags of index and data do not match"); 7977 assert(ElementCount::isKnownGE( 7978 N->getIndex().getValueType().getVectorElementCount(), 7979 N->getValueType(0).getVectorElementCount()) && 7980 "Vector width mismatch between index and data"); 7981 assert(isa<ConstantSDNode>(N->getScale()) && 7982 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7983 "Scale should be a constant power of 2"); 7984 7985 CSEMap.InsertNode(N, IP); 7986 InsertNode(N); 7987 SDValue V(N, 0); 7988 NewSDValueDbgMsg(V, "Creating new node: ", this); 7989 return V; 7990 } 7991 7992 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7993 ArrayRef<SDValue> Ops, 7994 MachineMemOperand *MMO, 7995 ISD::MemIndexType IndexType) { 7996 assert(Ops.size() == 7 && "Incompatible number of operands"); 7997 7998 FoldingSetNodeID ID; 7999 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8000 ID.AddInteger(VT.getRawBits()); 8001 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8002 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8003 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8004 void *IP = nullptr; 8005 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8006 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8007 return SDValue(E, 0); 8008 } 8009 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8010 VT, MMO, IndexType); 8011 createOperands(N, Ops); 8012 8013 assert(N->getMask().getValueType().getVectorElementCount() == 8014 N->getValue().getValueType().getVectorElementCount() && 8015 "Vector width mismatch between mask and data"); 8016 assert( 8017 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8018 N->getValue().getValueType().getVectorElementCount().isScalable() && 8019 "Scalable flags of index and data do not match"); 8020 assert(ElementCount::isKnownGE( 8021 N->getIndex().getValueType().getVectorElementCount(), 8022 N->getValue().getValueType().getVectorElementCount()) && 8023 "Vector width mismatch between index and data"); 8024 assert(isa<ConstantSDNode>(N->getScale()) && 8025 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8026 "Scale should be a constant power of 2"); 8027 8028 CSEMap.InsertNode(N, IP); 8029 InsertNode(N); 8030 SDValue V(N, 0); 8031 NewSDValueDbgMsg(V, "Creating new node: ", this); 8032 return V; 8033 } 8034 8035 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8036 SDValue Base, SDValue Offset, SDValue Mask, 8037 SDValue PassThru, EVT MemVT, 8038 MachineMemOperand *MMO, 8039 ISD::MemIndexedMode AM, 8040 ISD::LoadExtType ExtTy, bool isExpanding) { 8041 bool Indexed = AM != ISD::UNINDEXED; 8042 assert((Indexed || Offset.isUndef()) && 8043 "Unindexed masked load with an offset!"); 8044 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8045 : getVTList(VT, MVT::Other); 8046 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8047 FoldingSetNodeID ID; 8048 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8049 ID.AddInteger(MemVT.getRawBits()); 8050 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8051 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8053 void *IP = nullptr; 8054 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8055 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8056 return SDValue(E, 0); 8057 } 8058 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8059 AM, ExtTy, isExpanding, MemVT, MMO); 8060 createOperands(N, Ops); 8061 8062 CSEMap.InsertNode(N, IP); 8063 InsertNode(N); 8064 SDValue V(N, 0); 8065 NewSDValueDbgMsg(V, "Creating new node: ", this); 8066 return V; 8067 } 8068 8069 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8070 SDValue Base, SDValue Offset, 8071 ISD::MemIndexedMode AM) { 8072 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8073 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8074 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8075 Offset, LD->getMask(), LD->getPassThru(), 8076 LD->getMemoryVT(), LD->getMemOperand(), AM, 8077 LD->getExtensionType(), LD->isExpandingLoad()); 8078 } 8079 8080 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8081 SDValue Val, SDValue Base, SDValue Offset, 8082 SDValue Mask, EVT MemVT, 8083 MachineMemOperand *MMO, 8084 ISD::MemIndexedMode AM, bool IsTruncating, 8085 bool IsCompressing) { 8086 assert(Chain.getValueType() == MVT::Other && 8087 "Invalid chain type"); 8088 bool Indexed = AM != ISD::UNINDEXED; 8089 assert((Indexed || Offset.isUndef()) && 8090 "Unindexed masked store with an offset!"); 8091 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8092 : getVTList(MVT::Other); 8093 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8094 FoldingSetNodeID ID; 8095 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8096 ID.AddInteger(MemVT.getRawBits()); 8097 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8098 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8099 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8100 void *IP = nullptr; 8101 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8102 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8103 return SDValue(E, 0); 8104 } 8105 auto *N = 8106 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8107 IsTruncating, IsCompressing, MemVT, MMO); 8108 createOperands(N, Ops); 8109 8110 CSEMap.InsertNode(N, IP); 8111 InsertNode(N); 8112 SDValue V(N, 0); 8113 NewSDValueDbgMsg(V, "Creating new node: ", this); 8114 return V; 8115 } 8116 8117 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8118 SDValue Base, SDValue Offset, 8119 ISD::MemIndexedMode AM) { 8120 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8121 assert(ST->getOffset().isUndef() && 8122 "Masked store is already a indexed store!"); 8123 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8124 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8125 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8126 } 8127 8128 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8129 ArrayRef<SDValue> Ops, 8130 MachineMemOperand *MMO, 8131 ISD::MemIndexType IndexType, 8132 ISD::LoadExtType ExtTy) { 8133 assert(Ops.size() == 6 && "Incompatible number of operands"); 8134 8135 FoldingSetNodeID ID; 8136 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8137 ID.AddInteger(MemVT.getRawBits()); 8138 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8139 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8140 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8141 void *IP = nullptr; 8142 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8143 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8144 return SDValue(E, 0); 8145 } 8146 8147 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8148 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8149 VTs, MemVT, MMO, IndexType, ExtTy); 8150 createOperands(N, Ops); 8151 8152 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8153 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8154 assert(N->getMask().getValueType().getVectorElementCount() == 8155 N->getValueType(0).getVectorElementCount() && 8156 "Vector width mismatch between mask and data"); 8157 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8158 N->getValueType(0).getVectorElementCount().isScalable() && 8159 "Scalable flags of index and data do not match"); 8160 assert(ElementCount::isKnownGE( 8161 N->getIndex().getValueType().getVectorElementCount(), 8162 N->getValueType(0).getVectorElementCount()) && 8163 "Vector width mismatch between index and data"); 8164 assert(isa<ConstantSDNode>(N->getScale()) && 8165 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8166 "Scale should be a constant power of 2"); 8167 8168 CSEMap.InsertNode(N, IP); 8169 InsertNode(N); 8170 SDValue V(N, 0); 8171 NewSDValueDbgMsg(V, "Creating new node: ", this); 8172 return V; 8173 } 8174 8175 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8176 ArrayRef<SDValue> Ops, 8177 MachineMemOperand *MMO, 8178 ISD::MemIndexType IndexType, 8179 bool IsTrunc) { 8180 assert(Ops.size() == 6 && "Incompatible number of operands"); 8181 8182 FoldingSetNodeID ID; 8183 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8184 ID.AddInteger(MemVT.getRawBits()); 8185 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8186 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8187 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8188 void *IP = nullptr; 8189 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8190 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8191 return SDValue(E, 0); 8192 } 8193 8194 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8195 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8196 VTs, MemVT, MMO, IndexType, IsTrunc); 8197 createOperands(N, Ops); 8198 8199 assert(N->getMask().getValueType().getVectorElementCount() == 8200 N->getValue().getValueType().getVectorElementCount() && 8201 "Vector width mismatch between mask and data"); 8202 assert( 8203 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8204 N->getValue().getValueType().getVectorElementCount().isScalable() && 8205 "Scalable flags of index and data do not match"); 8206 assert(ElementCount::isKnownGE( 8207 N->getIndex().getValueType().getVectorElementCount(), 8208 N->getValue().getValueType().getVectorElementCount()) && 8209 "Vector width mismatch between index and data"); 8210 assert(isa<ConstantSDNode>(N->getScale()) && 8211 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8212 "Scale should be a constant power of 2"); 8213 8214 CSEMap.InsertNode(N, IP); 8215 InsertNode(N); 8216 SDValue V(N, 0); 8217 NewSDValueDbgMsg(V, "Creating new node: ", this); 8218 return V; 8219 } 8220 8221 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8222 // select undef, T, F --> T (if T is a constant), otherwise F 8223 // select, ?, undef, F --> F 8224 // select, ?, T, undef --> T 8225 if (Cond.isUndef()) 8226 return isConstantValueOfAnyType(T) ? T : F; 8227 if (T.isUndef()) 8228 return F; 8229 if (F.isUndef()) 8230 return T; 8231 8232 // select true, T, F --> T 8233 // select false, T, F --> F 8234 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8235 return CondC->isZero() ? F : T; 8236 8237 // TODO: This should simplify VSELECT with constant condition using something 8238 // like this (but check boolean contents to be complete?): 8239 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8240 // return T; 8241 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8242 // return F; 8243 8244 // select ?, T, T --> T 8245 if (T == F) 8246 return T; 8247 8248 return SDValue(); 8249 } 8250 8251 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8252 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8253 if (X.isUndef()) 8254 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8255 // shift X, undef --> undef (because it may shift by the bitwidth) 8256 if (Y.isUndef()) 8257 return getUNDEF(X.getValueType()); 8258 8259 // shift 0, Y --> 0 8260 // shift X, 0 --> X 8261 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8262 return X; 8263 8264 // shift X, C >= bitwidth(X) --> undef 8265 // All vector elements must be too big (or undef) to avoid partial undefs. 8266 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8267 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8268 }; 8269 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8270 return getUNDEF(X.getValueType()); 8271 8272 return SDValue(); 8273 } 8274 8275 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8276 SDNodeFlags Flags) { 8277 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8278 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8279 // operation is poison. That result can be relaxed to undef. 8280 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8281 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8282 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8283 (YC && YC->getValueAPF().isNaN()); 8284 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8285 (YC && YC->getValueAPF().isInfinity()); 8286 8287 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8288 return getUNDEF(X.getValueType()); 8289 8290 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8291 return getUNDEF(X.getValueType()); 8292 8293 if (!YC) 8294 return SDValue(); 8295 8296 // X + -0.0 --> X 8297 if (Opcode == ISD::FADD) 8298 if (YC->getValueAPF().isNegZero()) 8299 return X; 8300 8301 // X - +0.0 --> X 8302 if (Opcode == ISD::FSUB) 8303 if (YC->getValueAPF().isPosZero()) 8304 return X; 8305 8306 // X * 1.0 --> X 8307 // X / 1.0 --> X 8308 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8309 if (YC->getValueAPF().isExactlyValue(1.0)) 8310 return X; 8311 8312 // X * 0.0 --> 0.0 8313 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8314 if (YC->getValueAPF().isZero()) 8315 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8316 8317 return SDValue(); 8318 } 8319 8320 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8321 SDValue Ptr, SDValue SV, unsigned Align) { 8322 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8323 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8324 } 8325 8326 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8327 ArrayRef<SDUse> Ops) { 8328 switch (Ops.size()) { 8329 case 0: return getNode(Opcode, DL, VT); 8330 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8331 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8332 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8333 default: break; 8334 } 8335 8336 // Copy from an SDUse array into an SDValue array for use with 8337 // the regular getNode logic. 8338 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8339 return getNode(Opcode, DL, VT, NewOps); 8340 } 8341 8342 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8343 ArrayRef<SDValue> Ops) { 8344 SDNodeFlags Flags; 8345 if (Inserter) 8346 Flags = Inserter->getFlags(); 8347 return getNode(Opcode, DL, VT, Ops, Flags); 8348 } 8349 8350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8351 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8352 unsigned NumOps = Ops.size(); 8353 switch (NumOps) { 8354 case 0: return getNode(Opcode, DL, VT); 8355 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8356 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8357 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8358 default: break; 8359 } 8360 8361 #ifndef NDEBUG 8362 for (auto &Op : Ops) 8363 assert(Op.getOpcode() != ISD::DELETED_NODE && 8364 "Operand is DELETED_NODE!"); 8365 #endif 8366 8367 switch (Opcode) { 8368 default: break; 8369 case ISD::BUILD_VECTOR: 8370 // Attempt to simplify BUILD_VECTOR. 8371 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8372 return V; 8373 break; 8374 case ISD::CONCAT_VECTORS: 8375 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8376 return V; 8377 break; 8378 case ISD::SELECT_CC: 8379 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8380 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8381 "LHS and RHS of condition must have same type!"); 8382 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8383 "True and False arms of SelectCC must have same type!"); 8384 assert(Ops[2].getValueType() == VT && 8385 "select_cc node must be of same type as true and false value!"); 8386 break; 8387 case ISD::BR_CC: 8388 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8389 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8390 "LHS/RHS of comparison should match types!"); 8391 break; 8392 } 8393 8394 // Memoize nodes. 8395 SDNode *N; 8396 SDVTList VTs = getVTList(VT); 8397 8398 if (VT != MVT::Glue) { 8399 FoldingSetNodeID ID; 8400 AddNodeIDNode(ID, Opcode, VTs, Ops); 8401 void *IP = nullptr; 8402 8403 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8404 return SDValue(E, 0); 8405 8406 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8407 createOperands(N, Ops); 8408 8409 CSEMap.InsertNode(N, IP); 8410 } else { 8411 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8412 createOperands(N, Ops); 8413 } 8414 8415 N->setFlags(Flags); 8416 InsertNode(N); 8417 SDValue V(N, 0); 8418 NewSDValueDbgMsg(V, "Creating new node: ", this); 8419 return V; 8420 } 8421 8422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8423 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8424 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8425 } 8426 8427 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8428 ArrayRef<SDValue> Ops) { 8429 SDNodeFlags Flags; 8430 if (Inserter) 8431 Flags = Inserter->getFlags(); 8432 return getNode(Opcode, DL, VTList, Ops, Flags); 8433 } 8434 8435 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8436 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8437 if (VTList.NumVTs == 1) 8438 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8439 8440 #ifndef NDEBUG 8441 for (auto &Op : Ops) 8442 assert(Op.getOpcode() != ISD::DELETED_NODE && 8443 "Operand is DELETED_NODE!"); 8444 #endif 8445 8446 switch (Opcode) { 8447 case ISD::STRICT_FP_EXTEND: 8448 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8449 "Invalid STRICT_FP_EXTEND!"); 8450 assert(VTList.VTs[0].isFloatingPoint() && 8451 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8452 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8453 "STRICT_FP_EXTEND result type should be vector iff the operand " 8454 "type is vector!"); 8455 assert((!VTList.VTs[0].isVector() || 8456 VTList.VTs[0].getVectorNumElements() == 8457 Ops[1].getValueType().getVectorNumElements()) && 8458 "Vector element count mismatch!"); 8459 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8460 "Invalid fpext node, dst <= src!"); 8461 break; 8462 case ISD::STRICT_FP_ROUND: 8463 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8464 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8465 "STRICT_FP_ROUND result type should be vector iff the operand " 8466 "type is vector!"); 8467 assert((!VTList.VTs[0].isVector() || 8468 VTList.VTs[0].getVectorNumElements() == 8469 Ops[1].getValueType().getVectorNumElements()) && 8470 "Vector element count mismatch!"); 8471 assert(VTList.VTs[0].isFloatingPoint() && 8472 Ops[1].getValueType().isFloatingPoint() && 8473 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8474 isa<ConstantSDNode>(Ops[2]) && 8475 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8476 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8477 "Invalid STRICT_FP_ROUND!"); 8478 break; 8479 #if 0 8480 // FIXME: figure out how to safely handle things like 8481 // int foo(int x) { return 1 << (x & 255); } 8482 // int bar() { return foo(256); } 8483 case ISD::SRA_PARTS: 8484 case ISD::SRL_PARTS: 8485 case ISD::SHL_PARTS: 8486 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8487 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8488 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8489 else if (N3.getOpcode() == ISD::AND) 8490 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8491 // If the and is only masking out bits that cannot effect the shift, 8492 // eliminate the and. 8493 unsigned NumBits = VT.getScalarSizeInBits()*2; 8494 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8495 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8496 } 8497 break; 8498 #endif 8499 } 8500 8501 // Memoize the node unless it returns a flag. 8502 SDNode *N; 8503 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8504 FoldingSetNodeID ID; 8505 AddNodeIDNode(ID, Opcode, VTList, Ops); 8506 void *IP = nullptr; 8507 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8508 return SDValue(E, 0); 8509 8510 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8511 createOperands(N, Ops); 8512 CSEMap.InsertNode(N, IP); 8513 } else { 8514 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8515 createOperands(N, Ops); 8516 } 8517 8518 N->setFlags(Flags); 8519 InsertNode(N); 8520 SDValue V(N, 0); 8521 NewSDValueDbgMsg(V, "Creating new node: ", this); 8522 return V; 8523 } 8524 8525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8526 SDVTList VTList) { 8527 return getNode(Opcode, DL, VTList, None); 8528 } 8529 8530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8531 SDValue N1) { 8532 SDValue Ops[] = { N1 }; 8533 return getNode(Opcode, DL, VTList, Ops); 8534 } 8535 8536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8537 SDValue N1, SDValue N2) { 8538 SDValue Ops[] = { N1, N2 }; 8539 return getNode(Opcode, DL, VTList, Ops); 8540 } 8541 8542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8543 SDValue N1, SDValue N2, SDValue N3) { 8544 SDValue Ops[] = { N1, N2, N3 }; 8545 return getNode(Opcode, DL, VTList, Ops); 8546 } 8547 8548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8549 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8550 SDValue Ops[] = { N1, N2, N3, N4 }; 8551 return getNode(Opcode, DL, VTList, Ops); 8552 } 8553 8554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8555 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8556 SDValue N5) { 8557 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8558 return getNode(Opcode, DL, VTList, Ops); 8559 } 8560 8561 SDVTList SelectionDAG::getVTList(EVT VT) { 8562 return makeVTList(SDNode::getValueTypeList(VT), 1); 8563 } 8564 8565 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8566 FoldingSetNodeID ID; 8567 ID.AddInteger(2U); 8568 ID.AddInteger(VT1.getRawBits()); 8569 ID.AddInteger(VT2.getRawBits()); 8570 8571 void *IP = nullptr; 8572 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8573 if (!Result) { 8574 EVT *Array = Allocator.Allocate<EVT>(2); 8575 Array[0] = VT1; 8576 Array[1] = VT2; 8577 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8578 VTListMap.InsertNode(Result, IP); 8579 } 8580 return Result->getSDVTList(); 8581 } 8582 8583 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8584 FoldingSetNodeID ID; 8585 ID.AddInteger(3U); 8586 ID.AddInteger(VT1.getRawBits()); 8587 ID.AddInteger(VT2.getRawBits()); 8588 ID.AddInteger(VT3.getRawBits()); 8589 8590 void *IP = nullptr; 8591 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8592 if (!Result) { 8593 EVT *Array = Allocator.Allocate<EVT>(3); 8594 Array[0] = VT1; 8595 Array[1] = VT2; 8596 Array[2] = VT3; 8597 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8598 VTListMap.InsertNode(Result, IP); 8599 } 8600 return Result->getSDVTList(); 8601 } 8602 8603 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8604 FoldingSetNodeID ID; 8605 ID.AddInteger(4U); 8606 ID.AddInteger(VT1.getRawBits()); 8607 ID.AddInteger(VT2.getRawBits()); 8608 ID.AddInteger(VT3.getRawBits()); 8609 ID.AddInteger(VT4.getRawBits()); 8610 8611 void *IP = nullptr; 8612 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8613 if (!Result) { 8614 EVT *Array = Allocator.Allocate<EVT>(4); 8615 Array[0] = VT1; 8616 Array[1] = VT2; 8617 Array[2] = VT3; 8618 Array[3] = VT4; 8619 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8620 VTListMap.InsertNode(Result, IP); 8621 } 8622 return Result->getSDVTList(); 8623 } 8624 8625 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8626 unsigned NumVTs = VTs.size(); 8627 FoldingSetNodeID ID; 8628 ID.AddInteger(NumVTs); 8629 for (unsigned index = 0; index < NumVTs; index++) { 8630 ID.AddInteger(VTs[index].getRawBits()); 8631 } 8632 8633 void *IP = nullptr; 8634 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8635 if (!Result) { 8636 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8637 llvm::copy(VTs, Array); 8638 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8639 VTListMap.InsertNode(Result, IP); 8640 } 8641 return Result->getSDVTList(); 8642 } 8643 8644 8645 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8646 /// specified operands. If the resultant node already exists in the DAG, 8647 /// this does not modify the specified node, instead it returns the node that 8648 /// already exists. If the resultant node does not exist in the DAG, the 8649 /// input node is returned. As a degenerate case, if you specify the same 8650 /// input operands as the node already has, the input node is returned. 8651 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8652 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8653 8654 // Check to see if there is no change. 8655 if (Op == N->getOperand(0)) return N; 8656 8657 // See if the modified node already exists. 8658 void *InsertPos = nullptr; 8659 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8660 return Existing; 8661 8662 // Nope it doesn't. Remove the node from its current place in the maps. 8663 if (InsertPos) 8664 if (!RemoveNodeFromCSEMaps(N)) 8665 InsertPos = nullptr; 8666 8667 // Now we update the operands. 8668 N->OperandList[0].set(Op); 8669 8670 updateDivergence(N); 8671 // If this gets put into a CSE map, add it. 8672 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8673 return N; 8674 } 8675 8676 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8677 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8678 8679 // Check to see if there is no change. 8680 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8681 return N; // No operands changed, just return the input node. 8682 8683 // See if the modified node already exists. 8684 void *InsertPos = nullptr; 8685 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8686 return Existing; 8687 8688 // Nope it doesn't. Remove the node from its current place in the maps. 8689 if (InsertPos) 8690 if (!RemoveNodeFromCSEMaps(N)) 8691 InsertPos = nullptr; 8692 8693 // Now we update the operands. 8694 if (N->OperandList[0] != Op1) 8695 N->OperandList[0].set(Op1); 8696 if (N->OperandList[1] != Op2) 8697 N->OperandList[1].set(Op2); 8698 8699 updateDivergence(N); 8700 // If this gets put into a CSE map, add it. 8701 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8702 return N; 8703 } 8704 8705 SDNode *SelectionDAG:: 8706 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8707 SDValue Ops[] = { Op1, Op2, Op3 }; 8708 return UpdateNodeOperands(N, Ops); 8709 } 8710 8711 SDNode *SelectionDAG:: 8712 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8713 SDValue Op3, SDValue Op4) { 8714 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8715 return UpdateNodeOperands(N, Ops); 8716 } 8717 8718 SDNode *SelectionDAG:: 8719 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8720 SDValue Op3, SDValue Op4, SDValue Op5) { 8721 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8722 return UpdateNodeOperands(N, Ops); 8723 } 8724 8725 SDNode *SelectionDAG:: 8726 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8727 unsigned NumOps = Ops.size(); 8728 assert(N->getNumOperands() == NumOps && 8729 "Update with wrong number of operands"); 8730 8731 // If no operands changed just return the input node. 8732 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8733 return N; 8734 8735 // See if the modified node already exists. 8736 void *InsertPos = nullptr; 8737 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8738 return Existing; 8739 8740 // Nope it doesn't. Remove the node from its current place in the maps. 8741 if (InsertPos) 8742 if (!RemoveNodeFromCSEMaps(N)) 8743 InsertPos = nullptr; 8744 8745 // Now we update the operands. 8746 for (unsigned i = 0; i != NumOps; ++i) 8747 if (N->OperandList[i] != Ops[i]) 8748 N->OperandList[i].set(Ops[i]); 8749 8750 updateDivergence(N); 8751 // If this gets put into a CSE map, add it. 8752 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8753 return N; 8754 } 8755 8756 /// DropOperands - Release the operands and set this node to have 8757 /// zero operands. 8758 void SDNode::DropOperands() { 8759 // Unlike the code in MorphNodeTo that does this, we don't need to 8760 // watch for dead nodes here. 8761 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8762 SDUse &Use = *I++; 8763 Use.set(SDValue()); 8764 } 8765 } 8766 8767 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8768 ArrayRef<MachineMemOperand *> NewMemRefs) { 8769 if (NewMemRefs.empty()) { 8770 N->clearMemRefs(); 8771 return; 8772 } 8773 8774 // Check if we can avoid allocating by storing a single reference directly. 8775 if (NewMemRefs.size() == 1) { 8776 N->MemRefs = NewMemRefs[0]; 8777 N->NumMemRefs = 1; 8778 return; 8779 } 8780 8781 MachineMemOperand **MemRefsBuffer = 8782 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8783 llvm::copy(NewMemRefs, MemRefsBuffer); 8784 N->MemRefs = MemRefsBuffer; 8785 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8786 } 8787 8788 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8789 /// machine opcode. 8790 /// 8791 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8792 EVT VT) { 8793 SDVTList VTs = getVTList(VT); 8794 return SelectNodeTo(N, MachineOpc, VTs, None); 8795 } 8796 8797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8798 EVT VT, SDValue Op1) { 8799 SDVTList VTs = getVTList(VT); 8800 SDValue Ops[] = { Op1 }; 8801 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8802 } 8803 8804 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8805 EVT VT, SDValue Op1, 8806 SDValue Op2) { 8807 SDVTList VTs = getVTList(VT); 8808 SDValue Ops[] = { Op1, Op2 }; 8809 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8810 } 8811 8812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8813 EVT VT, SDValue Op1, 8814 SDValue Op2, SDValue Op3) { 8815 SDVTList VTs = getVTList(VT); 8816 SDValue Ops[] = { Op1, Op2, Op3 }; 8817 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8818 } 8819 8820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8821 EVT VT, ArrayRef<SDValue> Ops) { 8822 SDVTList VTs = getVTList(VT); 8823 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8824 } 8825 8826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8827 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8828 SDVTList VTs = getVTList(VT1, VT2); 8829 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8830 } 8831 8832 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8833 EVT VT1, EVT VT2) { 8834 SDVTList VTs = getVTList(VT1, VT2); 8835 return SelectNodeTo(N, MachineOpc, VTs, None); 8836 } 8837 8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8839 EVT VT1, EVT VT2, EVT VT3, 8840 ArrayRef<SDValue> Ops) { 8841 SDVTList VTs = getVTList(VT1, VT2, VT3); 8842 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8843 } 8844 8845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8846 EVT VT1, EVT VT2, 8847 SDValue Op1, SDValue Op2) { 8848 SDVTList VTs = getVTList(VT1, VT2); 8849 SDValue Ops[] = { Op1, Op2 }; 8850 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8851 } 8852 8853 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8854 SDVTList VTs,ArrayRef<SDValue> Ops) { 8855 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8856 // Reset the NodeID to -1. 8857 New->setNodeId(-1); 8858 if (New != N) { 8859 ReplaceAllUsesWith(N, New); 8860 RemoveDeadNode(N); 8861 } 8862 return New; 8863 } 8864 8865 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8866 /// the line number information on the merged node since it is not possible to 8867 /// preserve the information that operation is associated with multiple lines. 8868 /// This will make the debugger working better at -O0, were there is a higher 8869 /// probability having other instructions associated with that line. 8870 /// 8871 /// For IROrder, we keep the smaller of the two 8872 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8873 DebugLoc NLoc = N->getDebugLoc(); 8874 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8875 N->setDebugLoc(DebugLoc()); 8876 } 8877 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8878 N->setIROrder(Order); 8879 return N; 8880 } 8881 8882 /// MorphNodeTo - This *mutates* the specified node to have the specified 8883 /// return type, opcode, and operands. 8884 /// 8885 /// Note that MorphNodeTo returns the resultant node. If there is already a 8886 /// node of the specified opcode and operands, it returns that node instead of 8887 /// the current one. Note that the SDLoc need not be the same. 8888 /// 8889 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8890 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8891 /// node, and because it doesn't require CSE recalculation for any of 8892 /// the node's users. 8893 /// 8894 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8895 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8896 /// the legalizer which maintain worklists that would need to be updated when 8897 /// deleting things. 8898 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8899 SDVTList VTs, ArrayRef<SDValue> Ops) { 8900 // If an identical node already exists, use it. 8901 void *IP = nullptr; 8902 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8903 FoldingSetNodeID ID; 8904 AddNodeIDNode(ID, Opc, VTs, Ops); 8905 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8906 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8907 } 8908 8909 if (!RemoveNodeFromCSEMaps(N)) 8910 IP = nullptr; 8911 8912 // Start the morphing. 8913 N->NodeType = Opc; 8914 N->ValueList = VTs.VTs; 8915 N->NumValues = VTs.NumVTs; 8916 8917 // Clear the operands list, updating used nodes to remove this from their 8918 // use list. Keep track of any operands that become dead as a result. 8919 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8920 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8921 SDUse &Use = *I++; 8922 SDNode *Used = Use.getNode(); 8923 Use.set(SDValue()); 8924 if (Used->use_empty()) 8925 DeadNodeSet.insert(Used); 8926 } 8927 8928 // For MachineNode, initialize the memory references information. 8929 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8930 MN->clearMemRefs(); 8931 8932 // Swap for an appropriately sized array from the recycler. 8933 removeOperands(N); 8934 createOperands(N, Ops); 8935 8936 // Delete any nodes that are still dead after adding the uses for the 8937 // new operands. 8938 if (!DeadNodeSet.empty()) { 8939 SmallVector<SDNode *, 16> DeadNodes; 8940 for (SDNode *N : DeadNodeSet) 8941 if (N->use_empty()) 8942 DeadNodes.push_back(N); 8943 RemoveDeadNodes(DeadNodes); 8944 } 8945 8946 if (IP) 8947 CSEMap.InsertNode(N, IP); // Memoize the new node. 8948 return N; 8949 } 8950 8951 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8952 unsigned OrigOpc = Node->getOpcode(); 8953 unsigned NewOpc; 8954 switch (OrigOpc) { 8955 default: 8956 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8957 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8958 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8959 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8960 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8961 #include "llvm/IR/ConstrainedOps.def" 8962 } 8963 8964 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8965 8966 // We're taking this node out of the chain, so we need to re-link things. 8967 SDValue InputChain = Node->getOperand(0); 8968 SDValue OutputChain = SDValue(Node, 1); 8969 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8970 8971 SmallVector<SDValue, 3> Ops; 8972 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8973 Ops.push_back(Node->getOperand(i)); 8974 8975 SDVTList VTs = getVTList(Node->getValueType(0)); 8976 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8977 8978 // MorphNodeTo can operate in two ways: if an existing node with the 8979 // specified operands exists, it can just return it. Otherwise, it 8980 // updates the node in place to have the requested operands. 8981 if (Res == Node) { 8982 // If we updated the node in place, reset the node ID. To the isel, 8983 // this should be just like a newly allocated machine node. 8984 Res->setNodeId(-1); 8985 } else { 8986 ReplaceAllUsesWith(Node, Res); 8987 RemoveDeadNode(Node); 8988 } 8989 8990 return Res; 8991 } 8992 8993 /// getMachineNode - These are used for target selectors to create a new node 8994 /// with specified return type(s), MachineInstr opcode, and operands. 8995 /// 8996 /// Note that getMachineNode returns the resultant node. If there is already a 8997 /// node of the specified opcode and operands, it returns that node instead of 8998 /// the current one. 8999 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9000 EVT VT) { 9001 SDVTList VTs = getVTList(VT); 9002 return getMachineNode(Opcode, dl, VTs, None); 9003 } 9004 9005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9006 EVT VT, SDValue Op1) { 9007 SDVTList VTs = getVTList(VT); 9008 SDValue Ops[] = { Op1 }; 9009 return getMachineNode(Opcode, dl, VTs, Ops); 9010 } 9011 9012 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9013 EVT VT, SDValue Op1, SDValue Op2) { 9014 SDVTList VTs = getVTList(VT); 9015 SDValue Ops[] = { Op1, Op2 }; 9016 return getMachineNode(Opcode, dl, VTs, Ops); 9017 } 9018 9019 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9020 EVT VT, SDValue Op1, SDValue Op2, 9021 SDValue Op3) { 9022 SDVTList VTs = getVTList(VT); 9023 SDValue Ops[] = { Op1, Op2, Op3 }; 9024 return getMachineNode(Opcode, dl, VTs, Ops); 9025 } 9026 9027 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9028 EVT VT, ArrayRef<SDValue> Ops) { 9029 SDVTList VTs = getVTList(VT); 9030 return getMachineNode(Opcode, dl, VTs, Ops); 9031 } 9032 9033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9034 EVT VT1, EVT VT2, SDValue Op1, 9035 SDValue Op2) { 9036 SDVTList VTs = getVTList(VT1, VT2); 9037 SDValue Ops[] = { Op1, Op2 }; 9038 return getMachineNode(Opcode, dl, VTs, Ops); 9039 } 9040 9041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9042 EVT VT1, EVT VT2, SDValue Op1, 9043 SDValue Op2, SDValue Op3) { 9044 SDVTList VTs = getVTList(VT1, VT2); 9045 SDValue Ops[] = { Op1, Op2, Op3 }; 9046 return getMachineNode(Opcode, dl, VTs, Ops); 9047 } 9048 9049 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9050 EVT VT1, EVT VT2, 9051 ArrayRef<SDValue> Ops) { 9052 SDVTList VTs = getVTList(VT1, VT2); 9053 return getMachineNode(Opcode, dl, VTs, Ops); 9054 } 9055 9056 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9057 EVT VT1, EVT VT2, EVT VT3, 9058 SDValue Op1, SDValue Op2) { 9059 SDVTList VTs = getVTList(VT1, VT2, VT3); 9060 SDValue Ops[] = { Op1, Op2 }; 9061 return getMachineNode(Opcode, dl, VTs, Ops); 9062 } 9063 9064 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9065 EVT VT1, EVT VT2, EVT VT3, 9066 SDValue Op1, SDValue Op2, 9067 SDValue Op3) { 9068 SDVTList VTs = getVTList(VT1, VT2, VT3); 9069 SDValue Ops[] = { Op1, Op2, Op3 }; 9070 return getMachineNode(Opcode, dl, VTs, Ops); 9071 } 9072 9073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9074 EVT VT1, EVT VT2, EVT VT3, 9075 ArrayRef<SDValue> Ops) { 9076 SDVTList VTs = getVTList(VT1, VT2, VT3); 9077 return getMachineNode(Opcode, dl, VTs, Ops); 9078 } 9079 9080 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9081 ArrayRef<EVT> ResultTys, 9082 ArrayRef<SDValue> Ops) { 9083 SDVTList VTs = getVTList(ResultTys); 9084 return getMachineNode(Opcode, dl, VTs, Ops); 9085 } 9086 9087 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9088 SDVTList VTs, 9089 ArrayRef<SDValue> Ops) { 9090 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9091 MachineSDNode *N; 9092 void *IP = nullptr; 9093 9094 if (DoCSE) { 9095 FoldingSetNodeID ID; 9096 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9097 IP = nullptr; 9098 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9099 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9100 } 9101 } 9102 9103 // Allocate a new MachineSDNode. 9104 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9105 createOperands(N, Ops); 9106 9107 if (DoCSE) 9108 CSEMap.InsertNode(N, IP); 9109 9110 InsertNode(N); 9111 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9112 return N; 9113 } 9114 9115 /// getTargetExtractSubreg - A convenience function for creating 9116 /// TargetOpcode::EXTRACT_SUBREG nodes. 9117 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9118 SDValue Operand) { 9119 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9120 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9121 VT, Operand, SRIdxVal); 9122 return SDValue(Subreg, 0); 9123 } 9124 9125 /// getTargetInsertSubreg - A convenience function for creating 9126 /// TargetOpcode::INSERT_SUBREG nodes. 9127 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9128 SDValue Operand, SDValue Subreg) { 9129 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9130 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9131 VT, Operand, Subreg, SRIdxVal); 9132 return SDValue(Result, 0); 9133 } 9134 9135 /// getNodeIfExists - Get the specified node if it's already available, or 9136 /// else return NULL. 9137 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9138 ArrayRef<SDValue> Ops) { 9139 SDNodeFlags Flags; 9140 if (Inserter) 9141 Flags = Inserter->getFlags(); 9142 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9143 } 9144 9145 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9146 ArrayRef<SDValue> Ops, 9147 const SDNodeFlags Flags) { 9148 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9149 FoldingSetNodeID ID; 9150 AddNodeIDNode(ID, Opcode, VTList, Ops); 9151 void *IP = nullptr; 9152 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9153 E->intersectFlagsWith(Flags); 9154 return E; 9155 } 9156 } 9157 return nullptr; 9158 } 9159 9160 /// doesNodeExist - Check if a node exists without modifying its flags. 9161 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9162 ArrayRef<SDValue> Ops) { 9163 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9164 FoldingSetNodeID ID; 9165 AddNodeIDNode(ID, Opcode, VTList, Ops); 9166 void *IP = nullptr; 9167 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9168 return true; 9169 } 9170 return false; 9171 } 9172 9173 /// getDbgValue - Creates a SDDbgValue node. 9174 /// 9175 /// SDNode 9176 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9177 SDNode *N, unsigned R, bool IsIndirect, 9178 const DebugLoc &DL, unsigned O) { 9179 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9180 "Expected inlined-at fields to agree"); 9181 return new (DbgInfo->getAlloc()) 9182 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9183 {}, IsIndirect, DL, O, 9184 /*IsVariadic=*/false); 9185 } 9186 9187 /// Constant 9188 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9189 DIExpression *Expr, 9190 const Value *C, 9191 const DebugLoc &DL, unsigned O) { 9192 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9193 "Expected inlined-at fields to agree"); 9194 return new (DbgInfo->getAlloc()) 9195 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9196 /*IsIndirect=*/false, DL, O, 9197 /*IsVariadic=*/false); 9198 } 9199 9200 /// FrameIndex 9201 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9202 DIExpression *Expr, unsigned FI, 9203 bool IsIndirect, 9204 const DebugLoc &DL, 9205 unsigned O) { 9206 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9207 "Expected inlined-at fields to agree"); 9208 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9209 } 9210 9211 /// FrameIndex with dependencies 9212 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9213 DIExpression *Expr, unsigned FI, 9214 ArrayRef<SDNode *> Dependencies, 9215 bool IsIndirect, 9216 const DebugLoc &DL, 9217 unsigned O) { 9218 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9219 "Expected inlined-at fields to agree"); 9220 return new (DbgInfo->getAlloc()) 9221 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9222 Dependencies, IsIndirect, DL, O, 9223 /*IsVariadic=*/false); 9224 } 9225 9226 /// VReg 9227 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9228 unsigned VReg, bool IsIndirect, 9229 const DebugLoc &DL, unsigned O) { 9230 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9231 "Expected inlined-at fields to agree"); 9232 return new (DbgInfo->getAlloc()) 9233 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9234 {}, IsIndirect, DL, O, 9235 /*IsVariadic=*/false); 9236 } 9237 9238 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9239 ArrayRef<SDDbgOperand> Locs, 9240 ArrayRef<SDNode *> Dependencies, 9241 bool IsIndirect, const DebugLoc &DL, 9242 unsigned O, bool IsVariadic) { 9243 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9244 "Expected inlined-at fields to agree"); 9245 return new (DbgInfo->getAlloc()) 9246 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9247 DL, O, IsVariadic); 9248 } 9249 9250 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9251 unsigned OffsetInBits, unsigned SizeInBits, 9252 bool InvalidateDbg) { 9253 SDNode *FromNode = From.getNode(); 9254 SDNode *ToNode = To.getNode(); 9255 assert(FromNode && ToNode && "Can't modify dbg values"); 9256 9257 // PR35338 9258 // TODO: assert(From != To && "Redundant dbg value transfer"); 9259 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9260 if (From == To || FromNode == ToNode) 9261 return; 9262 9263 if (!FromNode->getHasDebugValue()) 9264 return; 9265 9266 SDDbgOperand FromLocOp = 9267 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9268 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9269 9270 SmallVector<SDDbgValue *, 2> ClonedDVs; 9271 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9272 if (Dbg->isInvalidated()) 9273 continue; 9274 9275 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9276 9277 // Create a new location ops vector that is equal to the old vector, but 9278 // with each instance of FromLocOp replaced with ToLocOp. 9279 bool Changed = false; 9280 auto NewLocOps = Dbg->copyLocationOps(); 9281 std::replace_if( 9282 NewLocOps.begin(), NewLocOps.end(), 9283 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9284 bool Match = Op == FromLocOp; 9285 Changed |= Match; 9286 return Match; 9287 }, 9288 ToLocOp); 9289 // Ignore this SDDbgValue if we didn't find a matching location. 9290 if (!Changed) 9291 continue; 9292 9293 DIVariable *Var = Dbg->getVariable(); 9294 auto *Expr = Dbg->getExpression(); 9295 // If a fragment is requested, update the expression. 9296 if (SizeInBits) { 9297 // When splitting a larger (e.g., sign-extended) value whose 9298 // lower bits are described with an SDDbgValue, do not attempt 9299 // to transfer the SDDbgValue to the upper bits. 9300 if (auto FI = Expr->getFragmentInfo()) 9301 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9302 continue; 9303 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9304 SizeInBits); 9305 if (!Fragment) 9306 continue; 9307 Expr = *Fragment; 9308 } 9309 9310 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9311 // Clone the SDDbgValue and move it to To. 9312 SDDbgValue *Clone = getDbgValueList( 9313 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9314 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9315 Dbg->isVariadic()); 9316 ClonedDVs.push_back(Clone); 9317 9318 if (InvalidateDbg) { 9319 // Invalidate value and indicate the SDDbgValue should not be emitted. 9320 Dbg->setIsInvalidated(); 9321 Dbg->setIsEmitted(); 9322 } 9323 } 9324 9325 for (SDDbgValue *Dbg : ClonedDVs) { 9326 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9327 "Transferred DbgValues should depend on the new SDNode"); 9328 AddDbgValue(Dbg, false); 9329 } 9330 } 9331 9332 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9333 if (!N.getHasDebugValue()) 9334 return; 9335 9336 SmallVector<SDDbgValue *, 2> ClonedDVs; 9337 for (auto DV : GetDbgValues(&N)) { 9338 if (DV->isInvalidated()) 9339 continue; 9340 switch (N.getOpcode()) { 9341 default: 9342 break; 9343 case ISD::ADD: 9344 SDValue N0 = N.getOperand(0); 9345 SDValue N1 = N.getOperand(1); 9346 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9347 isConstantIntBuildVectorOrConstantInt(N1)) { 9348 uint64_t Offset = N.getConstantOperandVal(1); 9349 9350 // Rewrite an ADD constant node into a DIExpression. Since we are 9351 // performing arithmetic to compute the variable's *value* in the 9352 // DIExpression, we need to mark the expression with a 9353 // DW_OP_stack_value. 9354 auto *DIExpr = DV->getExpression(); 9355 auto NewLocOps = DV->copyLocationOps(); 9356 bool Changed = false; 9357 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9358 // We're not given a ResNo to compare against because the whole 9359 // node is going away. We know that any ISD::ADD only has one 9360 // result, so we can assume any node match is using the result. 9361 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9362 NewLocOps[i].getSDNode() != &N) 9363 continue; 9364 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9365 SmallVector<uint64_t, 3> ExprOps; 9366 DIExpression::appendOffset(ExprOps, Offset); 9367 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9368 Changed = true; 9369 } 9370 (void)Changed; 9371 assert(Changed && "Salvage target doesn't use N"); 9372 9373 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9374 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9375 NewLocOps, AdditionalDependencies, 9376 DV->isIndirect(), DV->getDebugLoc(), 9377 DV->getOrder(), DV->isVariadic()); 9378 ClonedDVs.push_back(Clone); 9379 DV->setIsInvalidated(); 9380 DV->setIsEmitted(); 9381 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9382 N0.getNode()->dumprFull(this); 9383 dbgs() << " into " << *DIExpr << '\n'); 9384 } 9385 } 9386 } 9387 9388 for (SDDbgValue *Dbg : ClonedDVs) { 9389 assert(!Dbg->getSDNodes().empty() && 9390 "Salvaged DbgValue should depend on a new SDNode"); 9391 AddDbgValue(Dbg, false); 9392 } 9393 } 9394 9395 /// Creates a SDDbgLabel node. 9396 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9397 const DebugLoc &DL, unsigned O) { 9398 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9399 "Expected inlined-at fields to agree"); 9400 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9401 } 9402 9403 namespace { 9404 9405 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9406 /// pointed to by a use iterator is deleted, increment the use iterator 9407 /// so that it doesn't dangle. 9408 /// 9409 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9410 SDNode::use_iterator &UI; 9411 SDNode::use_iterator &UE; 9412 9413 void NodeDeleted(SDNode *N, SDNode *E) override { 9414 // Increment the iterator as needed. 9415 while (UI != UE && N == *UI) 9416 ++UI; 9417 } 9418 9419 public: 9420 RAUWUpdateListener(SelectionDAG &d, 9421 SDNode::use_iterator &ui, 9422 SDNode::use_iterator &ue) 9423 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9424 }; 9425 9426 } // end anonymous namespace 9427 9428 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9429 /// This can cause recursive merging of nodes in the DAG. 9430 /// 9431 /// This version assumes From has a single result value. 9432 /// 9433 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9434 SDNode *From = FromN.getNode(); 9435 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9436 "Cannot replace with this method!"); 9437 assert(From != To.getNode() && "Cannot replace uses of with self"); 9438 9439 // Preserve Debug Values 9440 transferDbgValues(FromN, To); 9441 9442 // Iterate over all the existing uses of From. New uses will be added 9443 // to the beginning of the use list, which we avoid visiting. 9444 // This specifically avoids visiting uses of From that arise while the 9445 // replacement is happening, because any such uses would be the result 9446 // of CSE: If an existing node looks like From after one of its operands 9447 // is replaced by To, we don't want to replace of all its users with To 9448 // too. See PR3018 for more info. 9449 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9450 RAUWUpdateListener Listener(*this, UI, UE); 9451 while (UI != UE) { 9452 SDNode *User = *UI; 9453 9454 // This node is about to morph, remove its old self from the CSE maps. 9455 RemoveNodeFromCSEMaps(User); 9456 9457 // A user can appear in a use list multiple times, and when this 9458 // happens the uses are usually next to each other in the list. 9459 // To help reduce the number of CSE recomputations, process all 9460 // the uses of this user that we can find this way. 9461 do { 9462 SDUse &Use = UI.getUse(); 9463 ++UI; 9464 Use.set(To); 9465 if (To->isDivergent() != From->isDivergent()) 9466 updateDivergence(User); 9467 } while (UI != UE && *UI == User); 9468 // Now that we have modified User, add it back to the CSE maps. If it 9469 // already exists there, recursively merge the results together. 9470 AddModifiedNodeToCSEMaps(User); 9471 } 9472 9473 // If we just RAUW'd the root, take note. 9474 if (FromN == getRoot()) 9475 setRoot(To); 9476 } 9477 9478 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9479 /// This can cause recursive merging of nodes in the DAG. 9480 /// 9481 /// This version assumes that for each value of From, there is a 9482 /// corresponding value in To in the same position with the same type. 9483 /// 9484 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9485 #ifndef NDEBUG 9486 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9487 assert((!From->hasAnyUseOfValue(i) || 9488 From->getValueType(i) == To->getValueType(i)) && 9489 "Cannot use this version of ReplaceAllUsesWith!"); 9490 #endif 9491 9492 // Handle the trivial case. 9493 if (From == To) 9494 return; 9495 9496 // Preserve Debug Info. Only do this if there's a use. 9497 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9498 if (From->hasAnyUseOfValue(i)) { 9499 assert((i < To->getNumValues()) && "Invalid To location"); 9500 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9501 } 9502 9503 // Iterate over just the existing users of From. See the comments in 9504 // the ReplaceAllUsesWith above. 9505 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9506 RAUWUpdateListener Listener(*this, UI, UE); 9507 while (UI != UE) { 9508 SDNode *User = *UI; 9509 9510 // This node is about to morph, remove its old self from the CSE maps. 9511 RemoveNodeFromCSEMaps(User); 9512 9513 // A user can appear in a use list multiple times, and when this 9514 // happens the uses are usually next to each other in the list. 9515 // To help reduce the number of CSE recomputations, process all 9516 // the uses of this user that we can find this way. 9517 do { 9518 SDUse &Use = UI.getUse(); 9519 ++UI; 9520 Use.setNode(To); 9521 if (To->isDivergent() != From->isDivergent()) 9522 updateDivergence(User); 9523 } while (UI != UE && *UI == User); 9524 9525 // Now that we have modified User, add it back to the CSE maps. If it 9526 // already exists there, recursively merge the results together. 9527 AddModifiedNodeToCSEMaps(User); 9528 } 9529 9530 // If we just RAUW'd the root, take note. 9531 if (From == getRoot().getNode()) 9532 setRoot(SDValue(To, getRoot().getResNo())); 9533 } 9534 9535 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9536 /// This can cause recursive merging of nodes in the DAG. 9537 /// 9538 /// This version can replace From with any result values. To must match the 9539 /// number and types of values returned by From. 9540 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9541 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9542 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9543 9544 // Preserve Debug Info. 9545 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9546 transferDbgValues(SDValue(From, i), To[i]); 9547 9548 // Iterate over just the existing users of From. See the comments in 9549 // the ReplaceAllUsesWith above. 9550 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9551 RAUWUpdateListener Listener(*this, UI, UE); 9552 while (UI != UE) { 9553 SDNode *User = *UI; 9554 9555 // This node is about to morph, remove its old self from the CSE maps. 9556 RemoveNodeFromCSEMaps(User); 9557 9558 // A user can appear in a use list multiple times, and when this happens the 9559 // uses are usually next to each other in the list. To help reduce the 9560 // number of CSE and divergence recomputations, process all the uses of this 9561 // user that we can find this way. 9562 bool To_IsDivergent = false; 9563 do { 9564 SDUse &Use = UI.getUse(); 9565 const SDValue &ToOp = To[Use.getResNo()]; 9566 ++UI; 9567 Use.set(ToOp); 9568 To_IsDivergent |= ToOp->isDivergent(); 9569 } while (UI != UE && *UI == User); 9570 9571 if (To_IsDivergent != From->isDivergent()) 9572 updateDivergence(User); 9573 9574 // Now that we have modified User, add it back to the CSE maps. If it 9575 // already exists there, recursively merge the results together. 9576 AddModifiedNodeToCSEMaps(User); 9577 } 9578 9579 // If we just RAUW'd the root, take note. 9580 if (From == getRoot().getNode()) 9581 setRoot(SDValue(To[getRoot().getResNo()])); 9582 } 9583 9584 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9585 /// uses of other values produced by From.getNode() alone. The Deleted 9586 /// vector is handled the same way as for ReplaceAllUsesWith. 9587 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9588 // Handle the really simple, really trivial case efficiently. 9589 if (From == To) return; 9590 9591 // Handle the simple, trivial, case efficiently. 9592 if (From.getNode()->getNumValues() == 1) { 9593 ReplaceAllUsesWith(From, To); 9594 return; 9595 } 9596 9597 // Preserve Debug Info. 9598 transferDbgValues(From, To); 9599 9600 // Iterate over just the existing users of From. See the comments in 9601 // the ReplaceAllUsesWith above. 9602 SDNode::use_iterator UI = From.getNode()->use_begin(), 9603 UE = From.getNode()->use_end(); 9604 RAUWUpdateListener Listener(*this, UI, UE); 9605 while (UI != UE) { 9606 SDNode *User = *UI; 9607 bool UserRemovedFromCSEMaps = false; 9608 9609 // A user can appear in a use list multiple times, and when this 9610 // happens the uses are usually next to each other in the list. 9611 // To help reduce the number of CSE recomputations, process all 9612 // the uses of this user that we can find this way. 9613 do { 9614 SDUse &Use = UI.getUse(); 9615 9616 // Skip uses of different values from the same node. 9617 if (Use.getResNo() != From.getResNo()) { 9618 ++UI; 9619 continue; 9620 } 9621 9622 // If this node hasn't been modified yet, it's still in the CSE maps, 9623 // so remove its old self from the CSE maps. 9624 if (!UserRemovedFromCSEMaps) { 9625 RemoveNodeFromCSEMaps(User); 9626 UserRemovedFromCSEMaps = true; 9627 } 9628 9629 ++UI; 9630 Use.set(To); 9631 if (To->isDivergent() != From->isDivergent()) 9632 updateDivergence(User); 9633 } while (UI != UE && *UI == User); 9634 // We are iterating over all uses of the From node, so if a use 9635 // doesn't use the specific value, no changes are made. 9636 if (!UserRemovedFromCSEMaps) 9637 continue; 9638 9639 // Now that we have modified User, add it back to the CSE maps. If it 9640 // already exists there, recursively merge the results together. 9641 AddModifiedNodeToCSEMaps(User); 9642 } 9643 9644 // If we just RAUW'd the root, take note. 9645 if (From == getRoot()) 9646 setRoot(To); 9647 } 9648 9649 namespace { 9650 9651 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9652 /// to record information about a use. 9653 struct UseMemo { 9654 SDNode *User; 9655 unsigned Index; 9656 SDUse *Use; 9657 }; 9658 9659 /// operator< - Sort Memos by User. 9660 bool operator<(const UseMemo &L, const UseMemo &R) { 9661 return (intptr_t)L.User < (intptr_t)R.User; 9662 } 9663 9664 } // end anonymous namespace 9665 9666 bool SelectionDAG::calculateDivergence(SDNode *N) { 9667 if (TLI->isSDNodeAlwaysUniform(N)) { 9668 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9669 "Conflicting divergence information!"); 9670 return false; 9671 } 9672 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9673 return true; 9674 for (auto &Op : N->ops()) { 9675 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9676 return true; 9677 } 9678 return false; 9679 } 9680 9681 void SelectionDAG::updateDivergence(SDNode *N) { 9682 SmallVector<SDNode *, 16> Worklist(1, N); 9683 do { 9684 N = Worklist.pop_back_val(); 9685 bool IsDivergent = calculateDivergence(N); 9686 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9687 N->SDNodeBits.IsDivergent = IsDivergent; 9688 llvm::append_range(Worklist, N->uses()); 9689 } 9690 } while (!Worklist.empty()); 9691 } 9692 9693 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9694 DenseMap<SDNode *, unsigned> Degree; 9695 Order.reserve(AllNodes.size()); 9696 for (auto &N : allnodes()) { 9697 unsigned NOps = N.getNumOperands(); 9698 Degree[&N] = NOps; 9699 if (0 == NOps) 9700 Order.push_back(&N); 9701 } 9702 for (size_t I = 0; I != Order.size(); ++I) { 9703 SDNode *N = Order[I]; 9704 for (auto U : N->uses()) { 9705 unsigned &UnsortedOps = Degree[U]; 9706 if (0 == --UnsortedOps) 9707 Order.push_back(U); 9708 } 9709 } 9710 } 9711 9712 #ifndef NDEBUG 9713 void SelectionDAG::VerifyDAGDivergence() { 9714 std::vector<SDNode *> TopoOrder; 9715 CreateTopologicalOrder(TopoOrder); 9716 for (auto *N : TopoOrder) { 9717 assert(calculateDivergence(N) == N->isDivergent() && 9718 "Divergence bit inconsistency detected"); 9719 } 9720 } 9721 #endif 9722 9723 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9724 /// uses of other values produced by From.getNode() alone. The same value 9725 /// may appear in both the From and To list. The Deleted vector is 9726 /// handled the same way as for ReplaceAllUsesWith. 9727 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9728 const SDValue *To, 9729 unsigned Num){ 9730 // Handle the simple, trivial case efficiently. 9731 if (Num == 1) 9732 return ReplaceAllUsesOfValueWith(*From, *To); 9733 9734 transferDbgValues(*From, *To); 9735 9736 // Read up all the uses and make records of them. This helps 9737 // processing new uses that are introduced during the 9738 // replacement process. 9739 SmallVector<UseMemo, 4> Uses; 9740 for (unsigned i = 0; i != Num; ++i) { 9741 unsigned FromResNo = From[i].getResNo(); 9742 SDNode *FromNode = From[i].getNode(); 9743 for (SDNode::use_iterator UI = FromNode->use_begin(), 9744 E = FromNode->use_end(); UI != E; ++UI) { 9745 SDUse &Use = UI.getUse(); 9746 if (Use.getResNo() == FromResNo) { 9747 UseMemo Memo = { *UI, i, &Use }; 9748 Uses.push_back(Memo); 9749 } 9750 } 9751 } 9752 9753 // Sort the uses, so that all the uses from a given User are together. 9754 llvm::sort(Uses); 9755 9756 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9757 UseIndex != UseIndexEnd; ) { 9758 // We know that this user uses some value of From. If it is the right 9759 // value, update it. 9760 SDNode *User = Uses[UseIndex].User; 9761 9762 // This node is about to morph, remove its old self from the CSE maps. 9763 RemoveNodeFromCSEMaps(User); 9764 9765 // The Uses array is sorted, so all the uses for a given User 9766 // are next to each other in the list. 9767 // To help reduce the number of CSE recomputations, process all 9768 // the uses of this user that we can find this way. 9769 do { 9770 unsigned i = Uses[UseIndex].Index; 9771 SDUse &Use = *Uses[UseIndex].Use; 9772 ++UseIndex; 9773 9774 Use.set(To[i]); 9775 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9776 9777 // Now that we have modified User, add it back to the CSE maps. If it 9778 // already exists there, recursively merge the results together. 9779 AddModifiedNodeToCSEMaps(User); 9780 } 9781 } 9782 9783 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9784 /// based on their topological order. It returns the maximum id and a vector 9785 /// of the SDNodes* in assigned order by reference. 9786 unsigned SelectionDAG::AssignTopologicalOrder() { 9787 unsigned DAGSize = 0; 9788 9789 // SortedPos tracks the progress of the algorithm. Nodes before it are 9790 // sorted, nodes after it are unsorted. When the algorithm completes 9791 // it is at the end of the list. 9792 allnodes_iterator SortedPos = allnodes_begin(); 9793 9794 // Visit all the nodes. Move nodes with no operands to the front of 9795 // the list immediately. Annotate nodes that do have operands with their 9796 // operand count. Before we do this, the Node Id fields of the nodes 9797 // may contain arbitrary values. After, the Node Id fields for nodes 9798 // before SortedPos will contain the topological sort index, and the 9799 // Node Id fields for nodes At SortedPos and after will contain the 9800 // count of outstanding operands. 9801 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9802 checkForCycles(&N, this); 9803 unsigned Degree = N.getNumOperands(); 9804 if (Degree == 0) { 9805 // A node with no uses, add it to the result array immediately. 9806 N.setNodeId(DAGSize++); 9807 allnodes_iterator Q(&N); 9808 if (Q != SortedPos) 9809 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9810 assert(SortedPos != AllNodes.end() && "Overran node list"); 9811 ++SortedPos; 9812 } else { 9813 // Temporarily use the Node Id as scratch space for the degree count. 9814 N.setNodeId(Degree); 9815 } 9816 } 9817 9818 // Visit all the nodes. As we iterate, move nodes into sorted order, 9819 // such that by the time the end is reached all nodes will be sorted. 9820 for (SDNode &Node : allnodes()) { 9821 SDNode *N = &Node; 9822 checkForCycles(N, this); 9823 // N is in sorted position, so all its uses have one less operand 9824 // that needs to be sorted. 9825 for (SDNode *P : N->uses()) { 9826 unsigned Degree = P->getNodeId(); 9827 assert(Degree != 0 && "Invalid node degree"); 9828 --Degree; 9829 if (Degree == 0) { 9830 // All of P's operands are sorted, so P may sorted now. 9831 P->setNodeId(DAGSize++); 9832 if (P->getIterator() != SortedPos) 9833 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9834 assert(SortedPos != AllNodes.end() && "Overran node list"); 9835 ++SortedPos; 9836 } else { 9837 // Update P's outstanding operand count. 9838 P->setNodeId(Degree); 9839 } 9840 } 9841 if (Node.getIterator() == SortedPos) { 9842 #ifndef NDEBUG 9843 allnodes_iterator I(N); 9844 SDNode *S = &*++I; 9845 dbgs() << "Overran sorted position:\n"; 9846 S->dumprFull(this); dbgs() << "\n"; 9847 dbgs() << "Checking if this is due to cycles\n"; 9848 checkForCycles(this, true); 9849 #endif 9850 llvm_unreachable(nullptr); 9851 } 9852 } 9853 9854 assert(SortedPos == AllNodes.end() && 9855 "Topological sort incomplete!"); 9856 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9857 "First node in topological sort is not the entry token!"); 9858 assert(AllNodes.front().getNodeId() == 0 && 9859 "First node in topological sort has non-zero id!"); 9860 assert(AllNodes.front().getNumOperands() == 0 && 9861 "First node in topological sort has operands!"); 9862 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9863 "Last node in topologic sort has unexpected id!"); 9864 assert(AllNodes.back().use_empty() && 9865 "Last node in topologic sort has users!"); 9866 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9867 return DAGSize; 9868 } 9869 9870 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9871 /// value is produced by SD. 9872 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9873 for (SDNode *SD : DB->getSDNodes()) { 9874 if (!SD) 9875 continue; 9876 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9877 SD->setHasDebugValue(true); 9878 } 9879 DbgInfo->add(DB, isParameter); 9880 } 9881 9882 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9883 9884 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9885 SDValue NewMemOpChain) { 9886 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9887 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9888 // The new memory operation must have the same position as the old load in 9889 // terms of memory dependency. Create a TokenFactor for the old load and new 9890 // memory operation and update uses of the old load's output chain to use that 9891 // TokenFactor. 9892 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9893 return NewMemOpChain; 9894 9895 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9896 OldChain, NewMemOpChain); 9897 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9898 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9899 return TokenFactor; 9900 } 9901 9902 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9903 SDValue NewMemOp) { 9904 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9905 SDValue OldChain = SDValue(OldLoad, 1); 9906 SDValue NewMemOpChain = NewMemOp.getValue(1); 9907 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9908 } 9909 9910 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9911 Function **OutFunction) { 9912 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9913 9914 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9915 auto *Module = MF->getFunction().getParent(); 9916 auto *Function = Module->getFunction(Symbol); 9917 9918 if (OutFunction != nullptr) 9919 *OutFunction = Function; 9920 9921 if (Function != nullptr) { 9922 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9923 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9924 } 9925 9926 std::string ErrorStr; 9927 raw_string_ostream ErrorFormatter(ErrorStr); 9928 ErrorFormatter << "Undefined external symbol "; 9929 ErrorFormatter << '"' << Symbol << '"'; 9930 report_fatal_error(Twine(ErrorFormatter.str())); 9931 } 9932 9933 //===----------------------------------------------------------------------===// 9934 // SDNode Class 9935 //===----------------------------------------------------------------------===// 9936 9937 bool llvm::isNullConstant(SDValue V) { 9938 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9939 return Const != nullptr && Const->isZero(); 9940 } 9941 9942 bool llvm::isNullFPConstant(SDValue V) { 9943 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9944 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9945 } 9946 9947 bool llvm::isAllOnesConstant(SDValue V) { 9948 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9949 return Const != nullptr && Const->isAllOnes(); 9950 } 9951 9952 bool llvm::isOneConstant(SDValue V) { 9953 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9954 return Const != nullptr && Const->isOne(); 9955 } 9956 9957 SDValue llvm::peekThroughBitcasts(SDValue V) { 9958 while (V.getOpcode() == ISD::BITCAST) 9959 V = V.getOperand(0); 9960 return V; 9961 } 9962 9963 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9964 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9965 V = V.getOperand(0); 9966 return V; 9967 } 9968 9969 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9970 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9971 V = V.getOperand(0); 9972 return V; 9973 } 9974 9975 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9976 if (V.getOpcode() != ISD::XOR) 9977 return false; 9978 V = peekThroughBitcasts(V.getOperand(1)); 9979 unsigned NumBits = V.getScalarValueSizeInBits(); 9980 ConstantSDNode *C = 9981 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9982 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9983 } 9984 9985 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9986 bool AllowTruncation) { 9987 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9988 return CN; 9989 9990 // SplatVectors can truncate their operands. Ignore that case here unless 9991 // AllowTruncation is set. 9992 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9993 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9994 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9995 EVT CVT = CN->getValueType(0); 9996 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9997 if (AllowTruncation || CVT == VecEltVT) 9998 return CN; 9999 } 10000 } 10001 10002 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10003 BitVector UndefElements; 10004 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10005 10006 // BuildVectors can truncate their operands. Ignore that case here unless 10007 // AllowTruncation is set. 10008 if (CN && (UndefElements.none() || AllowUndefs)) { 10009 EVT CVT = CN->getValueType(0); 10010 EVT NSVT = N.getValueType().getScalarType(); 10011 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10012 if (AllowTruncation || (CVT == NSVT)) 10013 return CN; 10014 } 10015 } 10016 10017 return nullptr; 10018 } 10019 10020 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10021 bool AllowUndefs, 10022 bool AllowTruncation) { 10023 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10024 return CN; 10025 10026 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10027 BitVector UndefElements; 10028 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10029 10030 // BuildVectors can truncate their operands. Ignore that case here unless 10031 // AllowTruncation is set. 10032 if (CN && (UndefElements.none() || AllowUndefs)) { 10033 EVT CVT = CN->getValueType(0); 10034 EVT NSVT = N.getValueType().getScalarType(); 10035 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10036 if (AllowTruncation || (CVT == NSVT)) 10037 return CN; 10038 } 10039 } 10040 10041 return nullptr; 10042 } 10043 10044 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10045 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10046 return CN; 10047 10048 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10049 BitVector UndefElements; 10050 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10051 if (CN && (UndefElements.none() || AllowUndefs)) 10052 return CN; 10053 } 10054 10055 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10056 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10057 return CN; 10058 10059 return nullptr; 10060 } 10061 10062 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10063 const APInt &DemandedElts, 10064 bool AllowUndefs) { 10065 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10066 return CN; 10067 10068 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10069 BitVector UndefElements; 10070 ConstantFPSDNode *CN = 10071 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10072 if (CN && (UndefElements.none() || AllowUndefs)) 10073 return CN; 10074 } 10075 10076 return nullptr; 10077 } 10078 10079 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10080 // TODO: may want to use peekThroughBitcast() here. 10081 ConstantSDNode *C = 10082 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10083 return C && C->isZero(); 10084 } 10085 10086 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10087 // TODO: may want to use peekThroughBitcast() here. 10088 unsigned BitWidth = N.getScalarValueSizeInBits(); 10089 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10090 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10091 } 10092 10093 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10094 N = peekThroughBitcasts(N); 10095 unsigned BitWidth = N.getScalarValueSizeInBits(); 10096 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10097 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10098 } 10099 10100 HandleSDNode::~HandleSDNode() { 10101 DropOperands(); 10102 } 10103 10104 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10105 const DebugLoc &DL, 10106 const GlobalValue *GA, EVT VT, 10107 int64_t o, unsigned TF) 10108 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10109 TheGlobal = GA; 10110 } 10111 10112 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10113 EVT VT, unsigned SrcAS, 10114 unsigned DestAS) 10115 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10116 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10117 10118 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10119 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10120 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10121 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10122 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10123 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10124 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10125 10126 // We check here that the size of the memory operand fits within the size of 10127 // the MMO. This is because the MMO might indicate only a possible address 10128 // range instead of specifying the affected memory addresses precisely. 10129 // TODO: Make MachineMemOperands aware of scalable vectors. 10130 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10131 "Size mismatch!"); 10132 } 10133 10134 /// Profile - Gather unique data for the node. 10135 /// 10136 void SDNode::Profile(FoldingSetNodeID &ID) const { 10137 AddNodeIDNode(ID, this); 10138 } 10139 10140 namespace { 10141 10142 struct EVTArray { 10143 std::vector<EVT> VTs; 10144 10145 EVTArray() { 10146 VTs.reserve(MVT::VALUETYPE_SIZE); 10147 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10148 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10149 } 10150 }; 10151 10152 } // end anonymous namespace 10153 10154 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10155 static ManagedStatic<EVTArray> SimpleVTArray; 10156 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10157 10158 /// getValueTypeList - Return a pointer to the specified value type. 10159 /// 10160 const EVT *SDNode::getValueTypeList(EVT VT) { 10161 if (VT.isExtended()) { 10162 sys::SmartScopedLock<true> Lock(*VTMutex); 10163 return &(*EVTs->insert(VT).first); 10164 } 10165 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10166 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10167 } 10168 10169 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10170 /// indicated value. This method ignores uses of other values defined by this 10171 /// operation. 10172 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10173 assert(Value < getNumValues() && "Bad value!"); 10174 10175 // TODO: Only iterate over uses of a given value of the node 10176 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10177 if (UI.getUse().getResNo() == Value) { 10178 if (NUses == 0) 10179 return false; 10180 --NUses; 10181 } 10182 } 10183 10184 // Found exactly the right number of uses? 10185 return NUses == 0; 10186 } 10187 10188 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10189 /// value. This method ignores uses of other values defined by this operation. 10190 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10191 assert(Value < getNumValues() && "Bad value!"); 10192 10193 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10194 if (UI.getUse().getResNo() == Value) 10195 return true; 10196 10197 return false; 10198 } 10199 10200 /// isOnlyUserOf - Return true if this node is the only use of N. 10201 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10202 bool Seen = false; 10203 for (const SDNode *User : N->uses()) { 10204 if (User == this) 10205 Seen = true; 10206 else 10207 return false; 10208 } 10209 10210 return Seen; 10211 } 10212 10213 /// Return true if the only users of N are contained in Nodes. 10214 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10215 bool Seen = false; 10216 for (const SDNode *User : N->uses()) { 10217 if (llvm::is_contained(Nodes, User)) 10218 Seen = true; 10219 else 10220 return false; 10221 } 10222 10223 return Seen; 10224 } 10225 10226 /// isOperand - Return true if this node is an operand of N. 10227 bool SDValue::isOperandOf(const SDNode *N) const { 10228 return is_contained(N->op_values(), *this); 10229 } 10230 10231 bool SDNode::isOperandOf(const SDNode *N) const { 10232 return any_of(N->op_values(), 10233 [this](SDValue Op) { return this == Op.getNode(); }); 10234 } 10235 10236 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10237 /// be a chain) reaches the specified operand without crossing any 10238 /// side-effecting instructions on any chain path. In practice, this looks 10239 /// through token factors and non-volatile loads. In order to remain efficient, 10240 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10241 /// 10242 /// Note that we only need to examine chains when we're searching for 10243 /// side-effects; SelectionDAG requires that all side-effects are represented 10244 /// by chains, even if another operand would force a specific ordering. This 10245 /// constraint is necessary to allow transformations like splitting loads. 10246 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10247 unsigned Depth) const { 10248 if (*this == Dest) return true; 10249 10250 // Don't search too deeply, we just want to be able to see through 10251 // TokenFactor's etc. 10252 if (Depth == 0) return false; 10253 10254 // If this is a token factor, all inputs to the TF happen in parallel. 10255 if (getOpcode() == ISD::TokenFactor) { 10256 // First, try a shallow search. 10257 if (is_contained((*this)->ops(), Dest)) { 10258 // We found the chain we want as an operand of this TokenFactor. 10259 // Essentially, we reach the chain without side-effects if we could 10260 // serialize the TokenFactor into a simple chain of operations with 10261 // Dest as the last operation. This is automatically true if the 10262 // chain has one use: there are no other ordering constraints. 10263 // If the chain has more than one use, we give up: some other 10264 // use of Dest might force a side-effect between Dest and the current 10265 // node. 10266 if (Dest.hasOneUse()) 10267 return true; 10268 } 10269 // Next, try a deep search: check whether every operand of the TokenFactor 10270 // reaches Dest. 10271 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10272 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10273 }); 10274 } 10275 10276 // Loads don't have side effects, look through them. 10277 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10278 if (Ld->isUnordered()) 10279 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10280 } 10281 return false; 10282 } 10283 10284 bool SDNode::hasPredecessor(const SDNode *N) const { 10285 SmallPtrSet<const SDNode *, 32> Visited; 10286 SmallVector<const SDNode *, 16> Worklist; 10287 Worklist.push_back(this); 10288 return hasPredecessorHelper(N, Visited, Worklist); 10289 } 10290 10291 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10292 this->Flags.intersectWith(Flags); 10293 } 10294 10295 SDValue 10296 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10297 ArrayRef<ISD::NodeType> CandidateBinOps, 10298 bool AllowPartials) { 10299 // The pattern must end in an extract from index 0. 10300 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10301 !isNullConstant(Extract->getOperand(1))) 10302 return SDValue(); 10303 10304 // Match against one of the candidate binary ops. 10305 SDValue Op = Extract->getOperand(0); 10306 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10307 return Op.getOpcode() == unsigned(BinOp); 10308 })) 10309 return SDValue(); 10310 10311 // Floating-point reductions may require relaxed constraints on the final step 10312 // of the reduction because they may reorder intermediate operations. 10313 unsigned CandidateBinOp = Op.getOpcode(); 10314 if (Op.getValueType().isFloatingPoint()) { 10315 SDNodeFlags Flags = Op->getFlags(); 10316 switch (CandidateBinOp) { 10317 case ISD::FADD: 10318 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10319 return SDValue(); 10320 break; 10321 default: 10322 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10323 } 10324 } 10325 10326 // Matching failed - attempt to see if we did enough stages that a partial 10327 // reduction from a subvector is possible. 10328 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10329 if (!AllowPartials || !Op) 10330 return SDValue(); 10331 EVT OpVT = Op.getValueType(); 10332 EVT OpSVT = OpVT.getScalarType(); 10333 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10334 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10335 return SDValue(); 10336 BinOp = (ISD::NodeType)CandidateBinOp; 10337 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10338 getVectorIdxConstant(0, SDLoc(Op))); 10339 }; 10340 10341 // At each stage, we're looking for something that looks like: 10342 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10343 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10344 // i32 undef, i32 undef, i32 undef, i32 undef> 10345 // %a = binop <8 x i32> %op, %s 10346 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10347 // we expect something like: 10348 // <4,5,6,7,u,u,u,u> 10349 // <2,3,u,u,u,u,u,u> 10350 // <1,u,u,u,u,u,u,u> 10351 // While a partial reduction match would be: 10352 // <2,3,u,u,u,u,u,u> 10353 // <1,u,u,u,u,u,u,u> 10354 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10355 SDValue PrevOp; 10356 for (unsigned i = 0; i < Stages; ++i) { 10357 unsigned MaskEnd = (1 << i); 10358 10359 if (Op.getOpcode() != CandidateBinOp) 10360 return PartialReduction(PrevOp, MaskEnd); 10361 10362 SDValue Op0 = Op.getOperand(0); 10363 SDValue Op1 = Op.getOperand(1); 10364 10365 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10366 if (Shuffle) { 10367 Op = Op1; 10368 } else { 10369 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10370 Op = Op0; 10371 } 10372 10373 // The first operand of the shuffle should be the same as the other operand 10374 // of the binop. 10375 if (!Shuffle || Shuffle->getOperand(0) != Op) 10376 return PartialReduction(PrevOp, MaskEnd); 10377 10378 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10379 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10380 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10381 return PartialReduction(PrevOp, MaskEnd); 10382 10383 PrevOp = Op; 10384 } 10385 10386 // Handle subvector reductions, which tend to appear after the shuffle 10387 // reduction stages. 10388 while (Op.getOpcode() == CandidateBinOp) { 10389 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10390 SDValue Op0 = Op.getOperand(0); 10391 SDValue Op1 = Op.getOperand(1); 10392 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10393 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10394 Op0.getOperand(0) != Op1.getOperand(0)) 10395 break; 10396 SDValue Src = Op0.getOperand(0); 10397 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10398 if (NumSrcElts != (2 * NumElts)) 10399 break; 10400 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10401 Op1.getConstantOperandAPInt(1) == NumElts) && 10402 !(Op1.getConstantOperandAPInt(1) == 0 && 10403 Op0.getConstantOperandAPInt(1) == NumElts)) 10404 break; 10405 Op = Src; 10406 } 10407 10408 BinOp = (ISD::NodeType)CandidateBinOp; 10409 return Op; 10410 } 10411 10412 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10413 assert(N->getNumValues() == 1 && 10414 "Can't unroll a vector with multiple results!"); 10415 10416 EVT VT = N->getValueType(0); 10417 unsigned NE = VT.getVectorNumElements(); 10418 EVT EltVT = VT.getVectorElementType(); 10419 SDLoc dl(N); 10420 10421 SmallVector<SDValue, 8> Scalars; 10422 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10423 10424 // If ResNE is 0, fully unroll the vector op. 10425 if (ResNE == 0) 10426 ResNE = NE; 10427 else if (NE > ResNE) 10428 NE = ResNE; 10429 10430 unsigned i; 10431 for (i= 0; i != NE; ++i) { 10432 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10433 SDValue Operand = N->getOperand(j); 10434 EVT OperandVT = Operand.getValueType(); 10435 if (OperandVT.isVector()) { 10436 // A vector operand; extract a single element. 10437 EVT OperandEltVT = OperandVT.getVectorElementType(); 10438 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10439 Operand, getVectorIdxConstant(i, dl)); 10440 } else { 10441 // A scalar operand; just use it as is. 10442 Operands[j] = Operand; 10443 } 10444 } 10445 10446 switch (N->getOpcode()) { 10447 default: { 10448 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10449 N->getFlags())); 10450 break; 10451 } 10452 case ISD::VSELECT: 10453 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10454 break; 10455 case ISD::SHL: 10456 case ISD::SRA: 10457 case ISD::SRL: 10458 case ISD::ROTL: 10459 case ISD::ROTR: 10460 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10461 getShiftAmountOperand(Operands[0].getValueType(), 10462 Operands[1]))); 10463 break; 10464 case ISD::SIGN_EXTEND_INREG: { 10465 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10466 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10467 Operands[0], 10468 getValueType(ExtVT))); 10469 } 10470 } 10471 } 10472 10473 for (; i < ResNE; ++i) 10474 Scalars.push_back(getUNDEF(EltVT)); 10475 10476 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10477 return getBuildVector(VecVT, dl, Scalars); 10478 } 10479 10480 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10481 SDNode *N, unsigned ResNE) { 10482 unsigned Opcode = N->getOpcode(); 10483 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10484 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10485 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10486 "Expected an overflow opcode"); 10487 10488 EVT ResVT = N->getValueType(0); 10489 EVT OvVT = N->getValueType(1); 10490 EVT ResEltVT = ResVT.getVectorElementType(); 10491 EVT OvEltVT = OvVT.getVectorElementType(); 10492 SDLoc dl(N); 10493 10494 // If ResNE is 0, fully unroll the vector op. 10495 unsigned NE = ResVT.getVectorNumElements(); 10496 if (ResNE == 0) 10497 ResNE = NE; 10498 else if (NE > ResNE) 10499 NE = ResNE; 10500 10501 SmallVector<SDValue, 8> LHSScalars; 10502 SmallVector<SDValue, 8> RHSScalars; 10503 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10504 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10505 10506 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10507 SDVTList VTs = getVTList(ResEltVT, SVT); 10508 SmallVector<SDValue, 8> ResScalars; 10509 SmallVector<SDValue, 8> OvScalars; 10510 for (unsigned i = 0; i < NE; ++i) { 10511 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10512 SDValue Ov = 10513 getSelect(dl, OvEltVT, Res.getValue(1), 10514 getBoolConstant(true, dl, OvEltVT, ResVT), 10515 getConstant(0, dl, OvEltVT)); 10516 10517 ResScalars.push_back(Res); 10518 OvScalars.push_back(Ov); 10519 } 10520 10521 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10522 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10523 10524 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10525 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10526 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10527 getBuildVector(NewOvVT, dl, OvScalars)); 10528 } 10529 10530 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10531 LoadSDNode *Base, 10532 unsigned Bytes, 10533 int Dist) const { 10534 if (LD->isVolatile() || Base->isVolatile()) 10535 return false; 10536 // TODO: probably too restrictive for atomics, revisit 10537 if (!LD->isSimple()) 10538 return false; 10539 if (LD->isIndexed() || Base->isIndexed()) 10540 return false; 10541 if (LD->getChain() != Base->getChain()) 10542 return false; 10543 EVT VT = LD->getValueType(0); 10544 if (VT.getSizeInBits() / 8 != Bytes) 10545 return false; 10546 10547 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10548 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10549 10550 int64_t Offset = 0; 10551 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10552 return (Dist * Bytes == Offset); 10553 return false; 10554 } 10555 10556 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10557 /// if it cannot be inferred. 10558 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10559 // If this is a GlobalAddress + cst, return the alignment. 10560 const GlobalValue *GV = nullptr; 10561 int64_t GVOffset = 0; 10562 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10563 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10564 KnownBits Known(PtrWidth); 10565 llvm::computeKnownBits(GV, Known, getDataLayout()); 10566 unsigned AlignBits = Known.countMinTrailingZeros(); 10567 if (AlignBits) 10568 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10569 } 10570 10571 // If this is a direct reference to a stack slot, use information about the 10572 // stack slot's alignment. 10573 int FrameIdx = INT_MIN; 10574 int64_t FrameOffset = 0; 10575 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10576 FrameIdx = FI->getIndex(); 10577 } else if (isBaseWithConstantOffset(Ptr) && 10578 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10579 // Handle FI+Cst 10580 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10581 FrameOffset = Ptr.getConstantOperandVal(1); 10582 } 10583 10584 if (FrameIdx != INT_MIN) { 10585 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10586 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10587 } 10588 10589 return None; 10590 } 10591 10592 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10593 /// which is split (or expanded) into two not necessarily identical pieces. 10594 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10595 // Currently all types are split in half. 10596 EVT LoVT, HiVT; 10597 if (!VT.isVector()) 10598 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10599 else 10600 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10601 10602 return std::make_pair(LoVT, HiVT); 10603 } 10604 10605 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10606 /// type, dependent on an enveloping VT that has been split into two identical 10607 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10608 std::pair<EVT, EVT> 10609 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10610 bool *HiIsEmpty) const { 10611 EVT EltTp = VT.getVectorElementType(); 10612 // Examples: 10613 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10614 // custom VL=9 with enveloping VL=8/8 yields 8/1 10615 // custom VL=10 with enveloping VL=8/8 yields 8/2 10616 // etc. 10617 ElementCount VTNumElts = VT.getVectorElementCount(); 10618 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10619 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10620 "Mixing fixed width and scalable vectors when enveloping a type"); 10621 EVT LoVT, HiVT; 10622 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10623 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10624 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10625 *HiIsEmpty = false; 10626 } else { 10627 // Flag that hi type has zero storage size, but return split envelop type 10628 // (this would be easier if vector types with zero elements were allowed). 10629 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10630 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10631 *HiIsEmpty = true; 10632 } 10633 return std::make_pair(LoVT, HiVT); 10634 } 10635 10636 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10637 /// low/high part. 10638 std::pair<SDValue, SDValue> 10639 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10640 const EVT &HiVT) { 10641 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10642 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10643 "Splitting vector with an invalid mixture of fixed and scalable " 10644 "vector types"); 10645 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10646 N.getValueType().getVectorMinNumElements() && 10647 "More vector elements requested than available!"); 10648 SDValue Lo, Hi; 10649 Lo = 10650 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10651 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10652 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10653 // IDX with the runtime scaling factor of the result vector type. For 10654 // fixed-width result vectors, that runtime scaling factor is 1. 10655 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10656 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10657 return std::make_pair(Lo, Hi); 10658 } 10659 10660 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10661 const SDLoc &DL) { 10662 // Split the vector length parameter. 10663 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10664 EVT VT = N.getValueType(); 10665 assert(VecVT.getVectorElementCount().isKnownEven() && 10666 "Expecting the mask to be an evenly-sized vector"); 10667 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10668 SDValue HalfNumElts = 10669 VecVT.isFixedLengthVector() 10670 ? getConstant(HalfMinNumElts, DL, VT) 10671 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10672 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10673 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10674 return std::make_pair(Lo, Hi); 10675 } 10676 10677 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10678 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10679 EVT VT = N.getValueType(); 10680 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10681 NextPowerOf2(VT.getVectorNumElements())); 10682 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10683 getVectorIdxConstant(0, DL)); 10684 } 10685 10686 void SelectionDAG::ExtractVectorElements(SDValue Op, 10687 SmallVectorImpl<SDValue> &Args, 10688 unsigned Start, unsigned Count, 10689 EVT EltVT) { 10690 EVT VT = Op.getValueType(); 10691 if (Count == 0) 10692 Count = VT.getVectorNumElements(); 10693 if (EltVT == EVT()) 10694 EltVT = VT.getVectorElementType(); 10695 SDLoc SL(Op); 10696 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10697 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10698 getVectorIdxConstant(i, SL))); 10699 } 10700 } 10701 10702 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10703 unsigned GlobalAddressSDNode::getAddressSpace() const { 10704 return getGlobal()->getType()->getAddressSpace(); 10705 } 10706 10707 Type *ConstantPoolSDNode::getType() const { 10708 if (isMachineConstantPoolEntry()) 10709 return Val.MachineCPVal->getType(); 10710 return Val.ConstVal->getType(); 10711 } 10712 10713 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10714 unsigned &SplatBitSize, 10715 bool &HasAnyUndefs, 10716 unsigned MinSplatBits, 10717 bool IsBigEndian) const { 10718 EVT VT = getValueType(0); 10719 assert(VT.isVector() && "Expected a vector type"); 10720 unsigned VecWidth = VT.getSizeInBits(); 10721 if (MinSplatBits > VecWidth) 10722 return false; 10723 10724 // FIXME: The widths are based on this node's type, but build vectors can 10725 // truncate their operands. 10726 SplatValue = APInt(VecWidth, 0); 10727 SplatUndef = APInt(VecWidth, 0); 10728 10729 // Get the bits. Bits with undefined values (when the corresponding element 10730 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10731 // in SplatValue. If any of the values are not constant, give up and return 10732 // false. 10733 unsigned int NumOps = getNumOperands(); 10734 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10735 unsigned EltWidth = VT.getScalarSizeInBits(); 10736 10737 for (unsigned j = 0; j < NumOps; ++j) { 10738 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10739 SDValue OpVal = getOperand(i); 10740 unsigned BitPos = j * EltWidth; 10741 10742 if (OpVal.isUndef()) 10743 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10744 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10745 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10746 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10747 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10748 else 10749 return false; 10750 } 10751 10752 // The build_vector is all constants or undefs. Find the smallest element 10753 // size that splats the vector. 10754 HasAnyUndefs = (SplatUndef != 0); 10755 10756 // FIXME: This does not work for vectors with elements less than 8 bits. 10757 while (VecWidth > 8) { 10758 unsigned HalfSize = VecWidth / 2; 10759 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10760 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10761 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10762 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10763 10764 // If the two halves do not match (ignoring undef bits), stop here. 10765 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10766 MinSplatBits > HalfSize) 10767 break; 10768 10769 SplatValue = HighValue | LowValue; 10770 SplatUndef = HighUndef & LowUndef; 10771 10772 VecWidth = HalfSize; 10773 } 10774 10775 SplatBitSize = VecWidth; 10776 return true; 10777 } 10778 10779 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10780 BitVector *UndefElements) const { 10781 unsigned NumOps = getNumOperands(); 10782 if (UndefElements) { 10783 UndefElements->clear(); 10784 UndefElements->resize(NumOps); 10785 } 10786 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10787 if (!DemandedElts) 10788 return SDValue(); 10789 SDValue Splatted; 10790 for (unsigned i = 0; i != NumOps; ++i) { 10791 if (!DemandedElts[i]) 10792 continue; 10793 SDValue Op = getOperand(i); 10794 if (Op.isUndef()) { 10795 if (UndefElements) 10796 (*UndefElements)[i] = true; 10797 } else if (!Splatted) { 10798 Splatted = Op; 10799 } else if (Splatted != Op) { 10800 return SDValue(); 10801 } 10802 } 10803 10804 if (!Splatted) { 10805 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10806 assert(getOperand(FirstDemandedIdx).isUndef() && 10807 "Can only have a splat without a constant for all undefs."); 10808 return getOperand(FirstDemandedIdx); 10809 } 10810 10811 return Splatted; 10812 } 10813 10814 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10815 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10816 return getSplatValue(DemandedElts, UndefElements); 10817 } 10818 10819 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10820 SmallVectorImpl<SDValue> &Sequence, 10821 BitVector *UndefElements) const { 10822 unsigned NumOps = getNumOperands(); 10823 Sequence.clear(); 10824 if (UndefElements) { 10825 UndefElements->clear(); 10826 UndefElements->resize(NumOps); 10827 } 10828 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10829 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10830 return false; 10831 10832 // Set the undefs even if we don't find a sequence (like getSplatValue). 10833 if (UndefElements) 10834 for (unsigned I = 0; I != NumOps; ++I) 10835 if (DemandedElts[I] && getOperand(I).isUndef()) 10836 (*UndefElements)[I] = true; 10837 10838 // Iteratively widen the sequence length looking for repetitions. 10839 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10840 Sequence.append(SeqLen, SDValue()); 10841 for (unsigned I = 0; I != NumOps; ++I) { 10842 if (!DemandedElts[I]) 10843 continue; 10844 SDValue &SeqOp = Sequence[I % SeqLen]; 10845 SDValue Op = getOperand(I); 10846 if (Op.isUndef()) { 10847 if (!SeqOp) 10848 SeqOp = Op; 10849 continue; 10850 } 10851 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10852 Sequence.clear(); 10853 break; 10854 } 10855 SeqOp = Op; 10856 } 10857 if (!Sequence.empty()) 10858 return true; 10859 } 10860 10861 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10862 return false; 10863 } 10864 10865 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10866 BitVector *UndefElements) const { 10867 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10868 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10869 } 10870 10871 ConstantSDNode * 10872 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10873 BitVector *UndefElements) const { 10874 return dyn_cast_or_null<ConstantSDNode>( 10875 getSplatValue(DemandedElts, UndefElements)); 10876 } 10877 10878 ConstantSDNode * 10879 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10880 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10881 } 10882 10883 ConstantFPSDNode * 10884 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10885 BitVector *UndefElements) const { 10886 return dyn_cast_or_null<ConstantFPSDNode>( 10887 getSplatValue(DemandedElts, UndefElements)); 10888 } 10889 10890 ConstantFPSDNode * 10891 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10892 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10893 } 10894 10895 int32_t 10896 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10897 uint32_t BitWidth) const { 10898 if (ConstantFPSDNode *CN = 10899 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10900 bool IsExact; 10901 APSInt IntVal(BitWidth); 10902 const APFloat &APF = CN->getValueAPF(); 10903 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10904 APFloat::opOK || 10905 !IsExact) 10906 return -1; 10907 10908 return IntVal.exactLogBase2(); 10909 } 10910 return -1; 10911 } 10912 10913 bool BuildVectorSDNode::getConstantRawBits( 10914 bool IsLittleEndian, unsigned DstEltSizeInBits, 10915 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10916 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10917 if (!isConstant()) 10918 return false; 10919 10920 unsigned NumSrcOps = getNumOperands(); 10921 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10922 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10923 "Invalid bitcast scale"); 10924 10925 // Extract raw src bits. 10926 SmallVector<APInt> SrcBitElements(NumSrcOps, 10927 APInt::getNullValue(SrcEltSizeInBits)); 10928 BitVector SrcUndeElements(NumSrcOps, false); 10929 10930 for (unsigned I = 0; I != NumSrcOps; ++I) { 10931 SDValue Op = getOperand(I); 10932 if (Op.isUndef()) { 10933 SrcUndeElements.set(I); 10934 continue; 10935 } 10936 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10937 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10938 assert((CInt || CFP) && "Unknown constant"); 10939 SrcBitElements[I] = 10940 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10941 : CFP->getValueAPF().bitcastToAPInt(); 10942 } 10943 10944 // Recast to dst width. 10945 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10946 SrcBitElements, UndefElements, SrcUndeElements); 10947 return true; 10948 } 10949 10950 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10951 unsigned DstEltSizeInBits, 10952 SmallVectorImpl<APInt> &DstBitElements, 10953 ArrayRef<APInt> SrcBitElements, 10954 BitVector &DstUndefElements, 10955 const BitVector &SrcUndefElements) { 10956 unsigned NumSrcOps = SrcBitElements.size(); 10957 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10958 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10959 "Invalid bitcast scale"); 10960 assert(NumSrcOps == SrcUndefElements.size() && 10961 "Vector size mismatch"); 10962 10963 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10964 DstUndefElements.clear(); 10965 DstUndefElements.resize(NumDstOps, false); 10966 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10967 10968 // Concatenate src elements constant bits together into dst element. 10969 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10970 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10971 for (unsigned I = 0; I != NumDstOps; ++I) { 10972 DstUndefElements.set(I); 10973 APInt &DstBits = DstBitElements[I]; 10974 for (unsigned J = 0; J != Scale; ++J) { 10975 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10976 if (SrcUndefElements[Idx]) 10977 continue; 10978 DstUndefElements.reset(I); 10979 const APInt &SrcBits = SrcBitElements[Idx]; 10980 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10981 "Illegal constant bitwidths"); 10982 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10983 } 10984 } 10985 return; 10986 } 10987 10988 // Split src element constant bits into dst elements. 10989 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10990 for (unsigned I = 0; I != NumSrcOps; ++I) { 10991 if (SrcUndefElements[I]) { 10992 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10993 continue; 10994 } 10995 const APInt &SrcBits = SrcBitElements[I]; 10996 for (unsigned J = 0; J != Scale; ++J) { 10997 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10998 APInt &DstBits = DstBitElements[Idx]; 10999 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11000 } 11001 } 11002 } 11003 11004 bool BuildVectorSDNode::isConstant() const { 11005 for (const SDValue &Op : op_values()) { 11006 unsigned Opc = Op.getOpcode(); 11007 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11008 return false; 11009 } 11010 return true; 11011 } 11012 11013 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11014 // Find the first non-undef value in the shuffle mask. 11015 unsigned i, e; 11016 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11017 /* search */; 11018 11019 // If all elements are undefined, this shuffle can be considered a splat 11020 // (although it should eventually get simplified away completely). 11021 if (i == e) 11022 return true; 11023 11024 // Make sure all remaining elements are either undef or the same as the first 11025 // non-undef value. 11026 for (int Idx = Mask[i]; i != e; ++i) 11027 if (Mask[i] >= 0 && Mask[i] != Idx) 11028 return false; 11029 return true; 11030 } 11031 11032 // Returns the SDNode if it is a constant integer BuildVector 11033 // or constant integer. 11034 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11035 if (isa<ConstantSDNode>(N)) 11036 return N.getNode(); 11037 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11038 return N.getNode(); 11039 // Treat a GlobalAddress supporting constant offset folding as a 11040 // constant integer. 11041 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11042 if (GA->getOpcode() == ISD::GlobalAddress && 11043 TLI->isOffsetFoldingLegal(GA)) 11044 return GA; 11045 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11046 isa<ConstantSDNode>(N.getOperand(0))) 11047 return N.getNode(); 11048 return nullptr; 11049 } 11050 11051 // Returns the SDNode if it is a constant float BuildVector 11052 // or constant float. 11053 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11054 if (isa<ConstantFPSDNode>(N)) 11055 return N.getNode(); 11056 11057 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11058 return N.getNode(); 11059 11060 return nullptr; 11061 } 11062 11063 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11064 assert(!Node->OperandList && "Node already has operands"); 11065 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11066 "too many operands to fit into SDNode"); 11067 SDUse *Ops = OperandRecycler.allocate( 11068 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11069 11070 bool IsDivergent = false; 11071 for (unsigned I = 0; I != Vals.size(); ++I) { 11072 Ops[I].setUser(Node); 11073 Ops[I].setInitial(Vals[I]); 11074 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11075 IsDivergent |= Ops[I].getNode()->isDivergent(); 11076 } 11077 Node->NumOperands = Vals.size(); 11078 Node->OperandList = Ops; 11079 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11080 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11081 Node->SDNodeBits.IsDivergent = IsDivergent; 11082 } 11083 checkForCycles(Node); 11084 } 11085 11086 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11087 SmallVectorImpl<SDValue> &Vals) { 11088 size_t Limit = SDNode::getMaxNumOperands(); 11089 while (Vals.size() > Limit) { 11090 unsigned SliceIdx = Vals.size() - Limit; 11091 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11092 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11093 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11094 Vals.emplace_back(NewTF); 11095 } 11096 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11097 } 11098 11099 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11100 EVT VT, SDNodeFlags Flags) { 11101 switch (Opcode) { 11102 default: 11103 return SDValue(); 11104 case ISD::ADD: 11105 case ISD::OR: 11106 case ISD::XOR: 11107 case ISD::UMAX: 11108 return getConstant(0, DL, VT); 11109 case ISD::MUL: 11110 return getConstant(1, DL, VT); 11111 case ISD::AND: 11112 case ISD::UMIN: 11113 return getAllOnesConstant(DL, VT); 11114 case ISD::SMAX: 11115 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11116 case ISD::SMIN: 11117 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11118 case ISD::FADD: 11119 return getConstantFP(-0.0, DL, VT); 11120 case ISD::FMUL: 11121 return getConstantFP(1.0, DL, VT); 11122 case ISD::FMINNUM: 11123 case ISD::FMAXNUM: { 11124 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11125 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11126 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11127 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11128 APFloat::getLargest(Semantics); 11129 if (Opcode == ISD::FMAXNUM) 11130 NeutralAF.changeSign(); 11131 11132 return getConstantFP(NeutralAF, DL, VT); 11133 } 11134 } 11135 } 11136 11137 #ifndef NDEBUG 11138 static void checkForCyclesHelper(const SDNode *N, 11139 SmallPtrSetImpl<const SDNode*> &Visited, 11140 SmallPtrSetImpl<const SDNode*> &Checked, 11141 const llvm::SelectionDAG *DAG) { 11142 // If this node has already been checked, don't check it again. 11143 if (Checked.count(N)) 11144 return; 11145 11146 // If a node has already been visited on this depth-first walk, reject it as 11147 // a cycle. 11148 if (!Visited.insert(N).second) { 11149 errs() << "Detected cycle in SelectionDAG\n"; 11150 dbgs() << "Offending node:\n"; 11151 N->dumprFull(DAG); dbgs() << "\n"; 11152 abort(); 11153 } 11154 11155 for (const SDValue &Op : N->op_values()) 11156 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11157 11158 Checked.insert(N); 11159 Visited.erase(N); 11160 } 11161 #endif 11162 11163 void llvm::checkForCycles(const llvm::SDNode *N, 11164 const llvm::SelectionDAG *DAG, 11165 bool force) { 11166 #ifndef NDEBUG 11167 bool check = force; 11168 #ifdef EXPENSIVE_CHECKS 11169 check = true; 11170 #endif // EXPENSIVE_CHECKS 11171 if (check) { 11172 assert(N && "Checking nonexistent SDNode"); 11173 SmallPtrSet<const SDNode*, 32> visited; 11174 SmallPtrSet<const SDNode*, 32> checked; 11175 checkForCyclesHelper(N, visited, checked, DAG); 11176 } 11177 #endif // !NDEBUG 11178 } 11179 11180 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11181 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11182 } 11183