1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 173 174 unsigned i = 0, e = N->getNumOperands(); 175 176 // Skip over all of the undef values. 177 while (i != e && N->getOperand(i).isUndef()) 178 ++i; 179 180 // Do not accept an all-undef vector. 181 if (i == e) return false; 182 183 // Do not accept build_vectors that aren't all constants or which have non-~0 184 // elements. We have to be a bit careful here, as the type of the constant 185 // may not be the same as the type of the vector elements due to type 186 // legalization (the elements are promoted to a legal type for the target and 187 // a vector of a type may be legal when the base element type is not). 188 // We only want to check enough bits to cover the vector elements, because 189 // we care if the resultant vector is all ones, not whether the individual 190 // constants are. 191 SDValue NotZero = N->getOperand(i); 192 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 193 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 194 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 195 return false; 196 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 197 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 198 return false; 199 } else 200 return false; 201 202 // Okay, we have at least one ~0 value, check to see if the rest match or are 203 // undefs. Even with the above element type twiddling, this should be OK, as 204 // the same type legalization should have applied to all the elements. 205 for (++i; i != e; ++i) 206 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 207 return false; 208 return true; 209 } 210 211 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 212 // Look through a bit convert. 213 while (N->getOpcode() == ISD::BITCAST) 214 N = N->getOperand(0).getNode(); 215 216 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 217 218 bool IsAllUndef = true; 219 for (const SDValue &Op : N->op_values()) { 220 if (Op.isUndef()) 221 continue; 222 IsAllUndef = false; 223 // Do not accept build_vectors that aren't all constants or which have non-0 224 // elements. We have to be a bit careful here, as the type of the constant 225 // may not be the same as the type of the vector elements due to type 226 // legalization (the elements are promoted to a legal type for the target 227 // and a vector of a type may be legal when the base element type is not). 228 // We only want to check enough bits to cover the vector elements, because 229 // we care if the resultant vector is all zeros, not whether the individual 230 // constants are. 231 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 232 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 233 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 234 return false; 235 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 236 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 237 return false; 238 } else 239 return false; 240 } 241 242 // Do not accept an all-undef vector. 243 if (IsAllUndef) 244 return false; 245 return true; 246 } 247 248 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 249 if (N->getOpcode() != ISD::BUILD_VECTOR) 250 return false; 251 252 for (const SDValue &Op : N->op_values()) { 253 if (Op.isUndef()) 254 continue; 255 if (!isa<ConstantSDNode>(Op)) 256 return false; 257 } 258 return true; 259 } 260 261 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 262 if (N->getOpcode() != ISD::BUILD_VECTOR) 263 return false; 264 265 for (const SDValue &Op : N->op_values()) { 266 if (Op.isUndef()) 267 continue; 268 if (!isa<ConstantFPSDNode>(Op)) 269 return false; 270 } 271 return true; 272 } 273 274 bool ISD::allOperandsUndef(const SDNode *N) { 275 // Return false if the node has no operands. 276 // This is "logically inconsistent" with the definition of "all" but 277 // is probably the desired behavior. 278 if (N->getNumOperands() == 0) 279 return false; 280 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 281 } 282 283 bool ISD::matchUnaryPredicate(SDValue Op, 284 std::function<bool(ConstantSDNode *)> Match, 285 bool AllowUndefs) { 286 // FIXME: Add support for scalar UNDEF cases? 287 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 288 return Match(Cst); 289 290 // FIXME: Add support for vector UNDEF cases? 291 if (ISD::BUILD_VECTOR != Op.getOpcode()) 292 return false; 293 294 EVT SVT = Op.getValueType().getScalarType(); 295 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 296 if (AllowUndefs && Op.getOperand(i).isUndef()) { 297 if (!Match(nullptr)) 298 return false; 299 continue; 300 } 301 302 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 303 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 304 return false; 305 } 306 return true; 307 } 308 309 bool ISD::matchBinaryPredicate( 310 SDValue LHS, SDValue RHS, 311 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 312 bool AllowUndefs, bool AllowTypeMismatch) { 313 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 314 return false; 315 316 // TODO: Add support for scalar UNDEF cases? 317 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 318 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 319 return Match(LHSCst, RHSCst); 320 321 // TODO: Add support for vector UNDEF cases? 322 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 323 ISD::BUILD_VECTOR != RHS.getOpcode()) 324 return false; 325 326 EVT SVT = LHS.getValueType().getScalarType(); 327 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 328 SDValue LHSOp = LHS.getOperand(i); 329 SDValue RHSOp = RHS.getOperand(i); 330 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 331 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 332 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 333 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 334 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 335 return false; 336 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 337 LHSOp.getValueType() != RHSOp.getValueType())) 338 return false; 339 if (!Match(LHSCst, RHSCst)) 340 return false; 341 } 342 return true; 343 } 344 345 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 346 switch (VecReduceOpcode) { 347 default: 348 llvm_unreachable("Expected VECREDUCE opcode"); 349 case ISD::VECREDUCE_FADD: 350 case ISD::VECREDUCE_SEQ_FADD: 351 return ISD::FADD; 352 case ISD::VECREDUCE_FMUL: 353 case ISD::VECREDUCE_SEQ_FMUL: 354 return ISD::FMUL; 355 case ISD::VECREDUCE_ADD: 356 return ISD::ADD; 357 case ISD::VECREDUCE_MUL: 358 return ISD::MUL; 359 case ISD::VECREDUCE_AND: 360 return ISD::AND; 361 case ISD::VECREDUCE_OR: 362 return ISD::OR; 363 case ISD::VECREDUCE_XOR: 364 return ISD::XOR; 365 case ISD::VECREDUCE_SMAX: 366 return ISD::SMAX; 367 case ISD::VECREDUCE_SMIN: 368 return ISD::SMIN; 369 case ISD::VECREDUCE_UMAX: 370 return ISD::UMAX; 371 case ISD::VECREDUCE_UMIN: 372 return ISD::UMIN; 373 case ISD::VECREDUCE_FMAX: 374 return ISD::FMAXNUM; 375 case ISD::VECREDUCE_FMIN: 376 return ISD::FMINNUM; 377 } 378 } 379 380 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 381 switch (ExtType) { 382 case ISD::EXTLOAD: 383 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 384 case ISD::SEXTLOAD: 385 return ISD::SIGN_EXTEND; 386 case ISD::ZEXTLOAD: 387 return ISD::ZERO_EXTEND; 388 default: 389 break; 390 } 391 392 llvm_unreachable("Invalid LoadExtType"); 393 } 394 395 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 396 // To perform this operation, we just need to swap the L and G bits of the 397 // operation. 398 unsigned OldL = (Operation >> 2) & 1; 399 unsigned OldG = (Operation >> 1) & 1; 400 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 401 (OldL << 1) | // New G bit 402 (OldG << 2)); // New L bit. 403 } 404 405 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 406 unsigned Operation = Op; 407 if (isIntegerLike) 408 Operation ^= 7; // Flip L, G, E bits, but not U. 409 else 410 Operation ^= 15; // Flip all of the condition bits. 411 412 if (Operation > ISD::SETTRUE2) 413 Operation &= ~8; // Don't let N and U bits get set. 414 415 return ISD::CondCode(Operation); 416 } 417 418 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 419 return getSetCCInverseImpl(Op, Type.isInteger()); 420 } 421 422 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 423 bool isIntegerLike) { 424 return getSetCCInverseImpl(Op, isIntegerLike); 425 } 426 427 /// For an integer comparison, return 1 if the comparison is a signed operation 428 /// and 2 if the result is an unsigned comparison. Return zero if the operation 429 /// does not depend on the sign of the input (setne and seteq). 430 static int isSignedOp(ISD::CondCode Opcode) { 431 switch (Opcode) { 432 default: llvm_unreachable("Illegal integer setcc operation!"); 433 case ISD::SETEQ: 434 case ISD::SETNE: return 0; 435 case ISD::SETLT: 436 case ISD::SETLE: 437 case ISD::SETGT: 438 case ISD::SETGE: return 1; 439 case ISD::SETULT: 440 case ISD::SETULE: 441 case ISD::SETUGT: 442 case ISD::SETUGE: return 2; 443 } 444 } 445 446 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 447 EVT Type) { 448 bool IsInteger = Type.isInteger(); 449 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 450 // Cannot fold a signed integer setcc with an unsigned integer setcc. 451 return ISD::SETCC_INVALID; 452 453 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 454 455 // If the N and U bits get set, then the resultant comparison DOES suddenly 456 // care about orderedness, and it is true when ordered. 457 if (Op > ISD::SETTRUE2) 458 Op &= ~16; // Clear the U bit if the N bit is set. 459 460 // Canonicalize illegal integer setcc's. 461 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 462 Op = ISD::SETNE; 463 464 return ISD::CondCode(Op); 465 } 466 467 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 468 EVT Type) { 469 bool IsInteger = Type.isInteger(); 470 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 471 // Cannot fold a signed setcc with an unsigned setcc. 472 return ISD::SETCC_INVALID; 473 474 // Combine all of the condition bits. 475 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 476 477 // Canonicalize illegal integer setcc's. 478 if (IsInteger) { 479 switch (Result) { 480 default: break; 481 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 482 case ISD::SETOEQ: // SETEQ & SETU[LG]E 483 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 484 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 485 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 486 } 487 } 488 489 return Result; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // SDNode Profile Support 494 //===----------------------------------------------------------------------===// 495 496 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 497 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 498 ID.AddInteger(OpC); 499 } 500 501 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 502 /// solely with their pointer. 503 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 504 ID.AddPointer(VTList.VTs); 505 } 506 507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 508 static void AddNodeIDOperands(FoldingSetNodeID &ID, 509 ArrayRef<SDValue> Ops) { 510 for (auto& Op : Ops) { 511 ID.AddPointer(Op.getNode()); 512 ID.AddInteger(Op.getResNo()); 513 } 514 } 515 516 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 517 static void AddNodeIDOperands(FoldingSetNodeID &ID, 518 ArrayRef<SDUse> Ops) { 519 for (auto& Op : Ops) { 520 ID.AddPointer(Op.getNode()); 521 ID.AddInteger(Op.getResNo()); 522 } 523 } 524 525 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 526 SDVTList VTList, ArrayRef<SDValue> OpList) { 527 AddNodeIDOpcode(ID, OpC); 528 AddNodeIDValueTypes(ID, VTList); 529 AddNodeIDOperands(ID, OpList); 530 } 531 532 /// If this is an SDNode with special info, add this info to the NodeID data. 533 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 534 switch (N->getOpcode()) { 535 case ISD::TargetExternalSymbol: 536 case ISD::ExternalSymbol: 537 case ISD::MCSymbol: 538 llvm_unreachable("Should only be used on nodes with operands"); 539 default: break; // Normal nodes don't need extra info. 540 case ISD::TargetConstant: 541 case ISD::Constant: { 542 const ConstantSDNode *C = cast<ConstantSDNode>(N); 543 ID.AddPointer(C->getConstantIntValue()); 544 ID.AddBoolean(C->isOpaque()); 545 break; 546 } 547 case ISD::TargetConstantFP: 548 case ISD::ConstantFP: 549 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 550 break; 551 case ISD::TargetGlobalAddress: 552 case ISD::GlobalAddress: 553 case ISD::TargetGlobalTLSAddress: 554 case ISD::GlobalTLSAddress: { 555 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 556 ID.AddPointer(GA->getGlobal()); 557 ID.AddInteger(GA->getOffset()); 558 ID.AddInteger(GA->getTargetFlags()); 559 break; 560 } 561 case ISD::BasicBlock: 562 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 563 break; 564 case ISD::Register: 565 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 566 break; 567 case ISD::RegisterMask: 568 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 569 break; 570 case ISD::SRCVALUE: 571 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 572 break; 573 case ISD::FrameIndex: 574 case ISD::TargetFrameIndex: 575 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 576 break; 577 case ISD::LIFETIME_START: 578 case ISD::LIFETIME_END: 579 if (cast<LifetimeSDNode>(N)->hasOffset()) { 580 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 581 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 582 } 583 break; 584 case ISD::PSEUDO_PROBE: 585 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 586 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 587 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 588 break; 589 case ISD::JumpTable: 590 case ISD::TargetJumpTable: 591 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 592 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 593 break; 594 case ISD::ConstantPool: 595 case ISD::TargetConstantPool: { 596 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 597 ID.AddInteger(CP->getAlign().value()); 598 ID.AddInteger(CP->getOffset()); 599 if (CP->isMachineConstantPoolEntry()) 600 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 601 else 602 ID.AddPointer(CP->getConstVal()); 603 ID.AddInteger(CP->getTargetFlags()); 604 break; 605 } 606 case ISD::TargetIndex: { 607 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 608 ID.AddInteger(TI->getIndex()); 609 ID.AddInteger(TI->getOffset()); 610 ID.AddInteger(TI->getTargetFlags()); 611 break; 612 } 613 case ISD::LOAD: { 614 const LoadSDNode *LD = cast<LoadSDNode>(N); 615 ID.AddInteger(LD->getMemoryVT().getRawBits()); 616 ID.AddInteger(LD->getRawSubclassData()); 617 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 618 break; 619 } 620 case ISD::STORE: { 621 const StoreSDNode *ST = cast<StoreSDNode>(N); 622 ID.AddInteger(ST->getMemoryVT().getRawBits()); 623 ID.AddInteger(ST->getRawSubclassData()); 624 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::MLOAD: { 628 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 629 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 630 ID.AddInteger(MLD->getRawSubclassData()); 631 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 632 break; 633 } 634 case ISD::MSTORE: { 635 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 636 ID.AddInteger(MST->getMemoryVT().getRawBits()); 637 ID.AddInteger(MST->getRawSubclassData()); 638 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 639 break; 640 } 641 case ISD::MGATHER: { 642 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 643 ID.AddInteger(MG->getMemoryVT().getRawBits()); 644 ID.AddInteger(MG->getRawSubclassData()); 645 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 646 break; 647 } 648 case ISD::MSCATTER: { 649 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 650 ID.AddInteger(MS->getMemoryVT().getRawBits()); 651 ID.AddInteger(MS->getRawSubclassData()); 652 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 653 break; 654 } 655 case ISD::ATOMIC_CMP_SWAP: 656 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 657 case ISD::ATOMIC_SWAP: 658 case ISD::ATOMIC_LOAD_ADD: 659 case ISD::ATOMIC_LOAD_SUB: 660 case ISD::ATOMIC_LOAD_AND: 661 case ISD::ATOMIC_LOAD_CLR: 662 case ISD::ATOMIC_LOAD_OR: 663 case ISD::ATOMIC_LOAD_XOR: 664 case ISD::ATOMIC_LOAD_NAND: 665 case ISD::ATOMIC_LOAD_MIN: 666 case ISD::ATOMIC_LOAD_MAX: 667 case ISD::ATOMIC_LOAD_UMIN: 668 case ISD::ATOMIC_LOAD_UMAX: 669 case ISD::ATOMIC_LOAD: 670 case ISD::ATOMIC_STORE: { 671 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 672 ID.AddInteger(AT->getMemoryVT().getRawBits()); 673 ID.AddInteger(AT->getRawSubclassData()); 674 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 675 break; 676 } 677 case ISD::PREFETCH: { 678 const MemSDNode *PF = cast<MemSDNode>(N); 679 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 680 break; 681 } 682 case ISD::VECTOR_SHUFFLE: { 683 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 684 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 685 i != e; ++i) 686 ID.AddInteger(SVN->getMaskElt(i)); 687 break; 688 } 689 case ISD::TargetBlockAddress: 690 case ISD::BlockAddress: { 691 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 692 ID.AddPointer(BA->getBlockAddress()); 693 ID.AddInteger(BA->getOffset()); 694 ID.AddInteger(BA->getTargetFlags()); 695 break; 696 } 697 } // end switch (N->getOpcode()) 698 699 // Target specific memory nodes could also have address spaces to check. 700 if (N->isTargetMemoryOpcode()) 701 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 702 } 703 704 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 705 /// data. 706 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 707 AddNodeIDOpcode(ID, N->getOpcode()); 708 // Add the return value info. 709 AddNodeIDValueTypes(ID, N->getVTList()); 710 // Add the operand info. 711 AddNodeIDOperands(ID, N->ops()); 712 713 // Handle SDNode leafs with special info. 714 AddNodeIDCustom(ID, N); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // SelectionDAG Class 719 //===----------------------------------------------------------------------===// 720 721 /// doNotCSE - Return true if CSE should not be performed for this node. 722 static bool doNotCSE(SDNode *N) { 723 if (N->getValueType(0) == MVT::Glue) 724 return true; // Never CSE anything that produces a flag. 725 726 switch (N->getOpcode()) { 727 default: break; 728 case ISD::HANDLENODE: 729 case ISD::EH_LABEL: 730 return true; // Never CSE these nodes. 731 } 732 733 // Check that remaining values produced are not flags. 734 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 735 if (N->getValueType(i) == MVT::Glue) 736 return true; // Never CSE anything that produces a flag. 737 738 return false; 739 } 740 741 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 742 /// SelectionDAG. 743 void SelectionDAG::RemoveDeadNodes() { 744 // Create a dummy node (which is not added to allnodes), that adds a reference 745 // to the root node, preventing it from being deleted. 746 HandleSDNode Dummy(getRoot()); 747 748 SmallVector<SDNode*, 128> DeadNodes; 749 750 // Add all obviously-dead nodes to the DeadNodes worklist. 751 for (SDNode &Node : allnodes()) 752 if (Node.use_empty()) 753 DeadNodes.push_back(&Node); 754 755 RemoveDeadNodes(DeadNodes); 756 757 // If the root changed (e.g. it was a dead load, update the root). 758 setRoot(Dummy.getValue()); 759 } 760 761 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 762 /// given list, and any nodes that become unreachable as a result. 763 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 764 765 // Process the worklist, deleting the nodes and adding their uses to the 766 // worklist. 767 while (!DeadNodes.empty()) { 768 SDNode *N = DeadNodes.pop_back_val(); 769 // Skip to next node if we've already managed to delete the node. This could 770 // happen if replacing a node causes a node previously added to the node to 771 // be deleted. 772 if (N->getOpcode() == ISD::DELETED_NODE) 773 continue; 774 775 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 776 DUL->NodeDeleted(N, nullptr); 777 778 // Take the node out of the appropriate CSE map. 779 RemoveNodeFromCSEMaps(N); 780 781 // Next, brutally remove the operand list. This is safe to do, as there are 782 // no cycles in the graph. 783 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 784 SDUse &Use = *I++; 785 SDNode *Operand = Use.getNode(); 786 Use.set(SDValue()); 787 788 // Now that we removed this operand, see if there are no uses of it left. 789 if (Operand->use_empty()) 790 DeadNodes.push_back(Operand); 791 } 792 793 DeallocateNode(N); 794 } 795 } 796 797 void SelectionDAG::RemoveDeadNode(SDNode *N){ 798 SmallVector<SDNode*, 16> DeadNodes(1, N); 799 800 // Create a dummy node that adds a reference to the root node, preventing 801 // it from being deleted. (This matters if the root is an operand of the 802 // dead node.) 803 HandleSDNode Dummy(getRoot()); 804 805 RemoveDeadNodes(DeadNodes); 806 } 807 808 void SelectionDAG::DeleteNode(SDNode *N) { 809 // First take this out of the appropriate CSE map. 810 RemoveNodeFromCSEMaps(N); 811 812 // Finally, remove uses due to operands of this node, remove from the 813 // AllNodes list, and delete the node. 814 DeleteNodeNotInCSEMaps(N); 815 } 816 817 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 818 assert(N->getIterator() != AllNodes.begin() && 819 "Cannot delete the entry node!"); 820 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 821 822 // Drop all of the operands and decrement used node's use counts. 823 N->DropOperands(); 824 825 DeallocateNode(N); 826 } 827 828 void SDDbgInfo::erase(const SDNode *Node) { 829 DbgValMapType::iterator I = DbgValMap.find(Node); 830 if (I == DbgValMap.end()) 831 return; 832 for (auto &Val: I->second) 833 Val->setIsInvalidated(); 834 DbgValMap.erase(I); 835 } 836 837 void SelectionDAG::DeallocateNode(SDNode *N) { 838 // If we have operands, deallocate them. 839 removeOperands(N); 840 841 NodeAllocator.Deallocate(AllNodes.remove(N)); 842 843 // Set the opcode to DELETED_NODE to help catch bugs when node 844 // memory is reallocated. 845 // FIXME: There are places in SDag that have grown a dependency on the opcode 846 // value in the released node. 847 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 848 N->NodeType = ISD::DELETED_NODE; 849 850 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 851 // them and forget about that node. 852 DbgInfo->erase(N); 853 } 854 855 #ifndef NDEBUG 856 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 857 static void VerifySDNode(SDNode *N) { 858 switch (N->getOpcode()) { 859 default: 860 break; 861 case ISD::BUILD_PAIR: { 862 EVT VT = N->getValueType(0); 863 assert(N->getNumValues() == 1 && "Too many results!"); 864 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 865 "Wrong return type!"); 866 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 867 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 868 "Mismatched operand types!"); 869 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 870 "Wrong operand type!"); 871 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 872 "Wrong return type size"); 873 break; 874 } 875 case ISD::BUILD_VECTOR: { 876 assert(N->getNumValues() == 1 && "Too many results!"); 877 assert(N->getValueType(0).isVector() && "Wrong return type!"); 878 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 879 "Wrong number of operands!"); 880 EVT EltVT = N->getValueType(0).getVectorElementType(); 881 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 882 assert((I->getValueType() == EltVT || 883 (EltVT.isInteger() && I->getValueType().isInteger() && 884 EltVT.bitsLE(I->getValueType()))) && 885 "Wrong operand type!"); 886 assert(I->getValueType() == N->getOperand(0).getValueType() && 887 "Operands must all have the same type"); 888 } 889 break; 890 } 891 } 892 } 893 #endif // NDEBUG 894 895 /// Insert a newly allocated node into the DAG. 896 /// 897 /// Handles insertion into the all nodes list and CSE map, as well as 898 /// verification and other common operations when a new node is allocated. 899 void SelectionDAG::InsertNode(SDNode *N) { 900 AllNodes.push_back(N); 901 #ifndef NDEBUG 902 N->PersistentId = NextPersistentId++; 903 VerifySDNode(N); 904 #endif 905 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 906 DUL->NodeInserted(N); 907 } 908 909 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 910 /// correspond to it. This is useful when we're about to delete or repurpose 911 /// the node. We don't want future request for structurally identical nodes 912 /// to return N anymore. 913 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 914 bool Erased = false; 915 switch (N->getOpcode()) { 916 case ISD::HANDLENODE: return false; // noop. 917 case ISD::CONDCODE: 918 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 919 "Cond code doesn't exist!"); 920 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 921 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 922 break; 923 case ISD::ExternalSymbol: 924 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 925 break; 926 case ISD::TargetExternalSymbol: { 927 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 928 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 929 ESN->getSymbol(), ESN->getTargetFlags())); 930 break; 931 } 932 case ISD::MCSymbol: { 933 auto *MCSN = cast<MCSymbolSDNode>(N); 934 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 935 break; 936 } 937 case ISD::VALUETYPE: { 938 EVT VT = cast<VTSDNode>(N)->getVT(); 939 if (VT.isExtended()) { 940 Erased = ExtendedValueTypeNodes.erase(VT); 941 } else { 942 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 943 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 944 } 945 break; 946 } 947 default: 948 // Remove it from the CSE Map. 949 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 950 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 951 Erased = CSEMap.RemoveNode(N); 952 break; 953 } 954 #ifndef NDEBUG 955 // Verify that the node was actually in one of the CSE maps, unless it has a 956 // flag result (which cannot be CSE'd) or is one of the special cases that are 957 // not subject to CSE. 958 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 959 !N->isMachineOpcode() && !doNotCSE(N)) { 960 N->dump(this); 961 dbgs() << "\n"; 962 llvm_unreachable("Node is not in map!"); 963 } 964 #endif 965 return Erased; 966 } 967 968 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 969 /// maps and modified in place. Add it back to the CSE maps, unless an identical 970 /// node already exists, in which case transfer all its users to the existing 971 /// node. This transfer can potentially trigger recursive merging. 972 void 973 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 974 // For node types that aren't CSE'd, just act as if no identical node 975 // already exists. 976 if (!doNotCSE(N)) { 977 SDNode *Existing = CSEMap.GetOrInsertNode(N); 978 if (Existing != N) { 979 // If there was already an existing matching node, use ReplaceAllUsesWith 980 // to replace the dead one with the existing one. This can cause 981 // recursive merging of other unrelated nodes down the line. 982 ReplaceAllUsesWith(N, Existing); 983 984 // N is now dead. Inform the listeners and delete it. 985 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 986 DUL->NodeDeleted(N, Existing); 987 DeleteNodeNotInCSEMaps(N); 988 return; 989 } 990 } 991 992 // If the node doesn't already exist, we updated it. Inform listeners. 993 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 994 DUL->NodeUpdated(N); 995 } 996 997 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 998 /// were replaced with those specified. If this node is never memoized, 999 /// return null, otherwise return a pointer to the slot it would take. If a 1000 /// node already exists with these operands, the slot will be non-null. 1001 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1002 void *&InsertPos) { 1003 if (doNotCSE(N)) 1004 return nullptr; 1005 1006 SDValue Ops[] = { Op }; 1007 FoldingSetNodeID ID; 1008 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1009 AddNodeIDCustom(ID, N); 1010 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1011 if (Node) 1012 Node->intersectFlagsWith(N->getFlags()); 1013 return Node; 1014 } 1015 1016 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1017 /// were replaced with those specified. If this node is never memoized, 1018 /// return null, otherwise return a pointer to the slot it would take. If a 1019 /// node already exists with these operands, the slot will be non-null. 1020 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1021 SDValue Op1, SDValue Op2, 1022 void *&InsertPos) { 1023 if (doNotCSE(N)) 1024 return nullptr; 1025 1026 SDValue Ops[] = { Op1, Op2 }; 1027 FoldingSetNodeID ID; 1028 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1029 AddNodeIDCustom(ID, N); 1030 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1031 if (Node) 1032 Node->intersectFlagsWith(N->getFlags()); 1033 return Node; 1034 } 1035 1036 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1037 /// were replaced with those specified. If this node is never memoized, 1038 /// return null, otherwise return a pointer to the slot it would take. If a 1039 /// node already exists with these operands, the slot will be non-null. 1040 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1041 void *&InsertPos) { 1042 if (doNotCSE(N)) 1043 return nullptr; 1044 1045 FoldingSetNodeID ID; 1046 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1047 AddNodeIDCustom(ID, N); 1048 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1049 if (Node) 1050 Node->intersectFlagsWith(N->getFlags()); 1051 return Node; 1052 } 1053 1054 Align SelectionDAG::getEVTAlign(EVT VT) const { 1055 Type *Ty = VT == MVT::iPTR ? 1056 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1057 VT.getTypeForEVT(*getContext()); 1058 1059 return getDataLayout().getABITypeAlign(Ty); 1060 } 1061 1062 // EntryNode could meaningfully have debug info if we can find it... 1063 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1064 : TM(tm), OptLevel(OL), 1065 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1066 Root(getEntryNode()) { 1067 InsertNode(&EntryNode); 1068 DbgInfo = new SDDbgInfo(); 1069 } 1070 1071 void SelectionDAG::init(MachineFunction &NewMF, 1072 OptimizationRemarkEmitter &NewORE, 1073 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1074 LegacyDivergenceAnalysis * Divergence, 1075 ProfileSummaryInfo *PSIin, 1076 BlockFrequencyInfo *BFIin) { 1077 MF = &NewMF; 1078 SDAGISelPass = PassPtr; 1079 ORE = &NewORE; 1080 TLI = getSubtarget().getTargetLowering(); 1081 TSI = getSubtarget().getSelectionDAGInfo(); 1082 LibInfo = LibraryInfo; 1083 Context = &MF->getFunction().getContext(); 1084 DA = Divergence; 1085 PSI = PSIin; 1086 BFI = BFIin; 1087 } 1088 1089 SelectionDAG::~SelectionDAG() { 1090 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1091 allnodes_clear(); 1092 OperandRecycler.clear(OperandAllocator); 1093 delete DbgInfo; 1094 } 1095 1096 bool SelectionDAG::shouldOptForSize() const { 1097 return MF->getFunction().hasOptSize() || 1098 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1099 } 1100 1101 void SelectionDAG::allnodes_clear() { 1102 assert(&*AllNodes.begin() == &EntryNode); 1103 AllNodes.remove(AllNodes.begin()); 1104 while (!AllNodes.empty()) 1105 DeallocateNode(&AllNodes.front()); 1106 #ifndef NDEBUG 1107 NextPersistentId = 0; 1108 #endif 1109 } 1110 1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1112 void *&InsertPos) { 1113 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1114 if (N) { 1115 switch (N->getOpcode()) { 1116 default: break; 1117 case ISD::Constant: 1118 case ISD::ConstantFP: 1119 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1120 "debug location. Use another overload."); 1121 } 1122 } 1123 return N; 1124 } 1125 1126 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1127 const SDLoc &DL, void *&InsertPos) { 1128 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1129 if (N) { 1130 switch (N->getOpcode()) { 1131 case ISD::Constant: 1132 case ISD::ConstantFP: 1133 // Erase debug location from the node if the node is used at several 1134 // different places. Do not propagate one location to all uses as it 1135 // will cause a worse single stepping debugging experience. 1136 if (N->getDebugLoc() != DL.getDebugLoc()) 1137 N->setDebugLoc(DebugLoc()); 1138 break; 1139 default: 1140 // When the node's point of use is located earlier in the instruction 1141 // sequence than its prior point of use, update its debug info to the 1142 // earlier location. 1143 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1144 N->setDebugLoc(DL.getDebugLoc()); 1145 break; 1146 } 1147 } 1148 return N; 1149 } 1150 1151 void SelectionDAG::clear() { 1152 allnodes_clear(); 1153 OperandRecycler.clear(OperandAllocator); 1154 OperandAllocator.Reset(); 1155 CSEMap.clear(); 1156 1157 ExtendedValueTypeNodes.clear(); 1158 ExternalSymbols.clear(); 1159 TargetExternalSymbols.clear(); 1160 MCSymbols.clear(); 1161 SDCallSiteDbgInfo.clear(); 1162 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1163 static_cast<CondCodeSDNode*>(nullptr)); 1164 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1165 static_cast<SDNode*>(nullptr)); 1166 1167 EntryNode.UseList = nullptr; 1168 InsertNode(&EntryNode); 1169 Root = getEntryNode(); 1170 DbgInfo->clear(); 1171 } 1172 1173 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1174 return VT.bitsGT(Op.getValueType()) 1175 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1176 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1177 } 1178 1179 std::pair<SDValue, SDValue> 1180 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1181 const SDLoc &DL, EVT VT) { 1182 assert(!VT.bitsEq(Op.getValueType()) && 1183 "Strict no-op FP extend/round not allowed."); 1184 SDValue Res = 1185 VT.bitsGT(Op.getValueType()) 1186 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1187 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1188 {Chain, Op, getIntPtrConstant(0, DL)}); 1189 1190 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1191 } 1192 1193 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1194 return VT.bitsGT(Op.getValueType()) ? 1195 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1196 getNode(ISD::TRUNCATE, DL, VT, Op); 1197 } 1198 1199 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1200 return VT.bitsGT(Op.getValueType()) ? 1201 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1202 getNode(ISD::TRUNCATE, DL, VT, Op); 1203 } 1204 1205 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1206 return VT.bitsGT(Op.getValueType()) ? 1207 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1208 getNode(ISD::TRUNCATE, DL, VT, Op); 1209 } 1210 1211 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1212 EVT OpVT) { 1213 if (VT.bitsLE(Op.getValueType())) 1214 return getNode(ISD::TRUNCATE, SL, VT, Op); 1215 1216 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1217 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1218 } 1219 1220 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1221 EVT OpVT = Op.getValueType(); 1222 assert(VT.isInteger() && OpVT.isInteger() && 1223 "Cannot getZeroExtendInReg FP types"); 1224 assert(VT.isVector() == OpVT.isVector() && 1225 "getZeroExtendInReg type should be vector iff the operand " 1226 "type is vector!"); 1227 assert((!VT.isVector() || 1228 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1229 "Vector element counts must match in getZeroExtendInReg"); 1230 assert(VT.bitsLE(OpVT) && "Not extending!"); 1231 if (OpVT == VT) 1232 return Op; 1233 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1234 VT.getScalarSizeInBits()); 1235 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1236 } 1237 1238 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1239 // Only unsigned pointer semantics are supported right now. In the future this 1240 // might delegate to TLI to check pointer signedness. 1241 return getZExtOrTrunc(Op, DL, VT); 1242 } 1243 1244 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1245 // Only unsigned pointer semantics are supported right now. In the future this 1246 // might delegate to TLI to check pointer signedness. 1247 return getZeroExtendInReg(Op, DL, VT); 1248 } 1249 1250 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1251 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1252 EVT EltVT = VT.getScalarType(); 1253 SDValue NegOne = 1254 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1255 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1256 } 1257 1258 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1259 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1260 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1261 } 1262 1263 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1264 EVT OpVT) { 1265 if (!V) 1266 return getConstant(0, DL, VT); 1267 1268 switch (TLI->getBooleanContents(OpVT)) { 1269 case TargetLowering::ZeroOrOneBooleanContent: 1270 case TargetLowering::UndefinedBooleanContent: 1271 return getConstant(1, DL, VT); 1272 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1273 return getAllOnesConstant(DL, VT); 1274 } 1275 llvm_unreachable("Unexpected boolean content enum!"); 1276 } 1277 1278 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1279 bool isT, bool isO) { 1280 EVT EltVT = VT.getScalarType(); 1281 assert((EltVT.getSizeInBits() >= 64 || 1282 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1283 "getConstant with a uint64_t value that doesn't fit in the type!"); 1284 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1285 } 1286 1287 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1288 bool isT, bool isO) { 1289 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1290 } 1291 1292 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1293 EVT VT, bool isT, bool isO) { 1294 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1295 1296 EVT EltVT = VT.getScalarType(); 1297 const ConstantInt *Elt = &Val; 1298 1299 // In some cases the vector type is legal but the element type is illegal and 1300 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1301 // inserted value (the type does not need to match the vector element type). 1302 // Any extra bits introduced will be truncated away. 1303 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1304 TargetLowering::TypePromoteInteger) { 1305 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1306 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1307 Elt = ConstantInt::get(*getContext(), NewVal); 1308 } 1309 // In other cases the element type is illegal and needs to be expanded, for 1310 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1311 // the value into n parts and use a vector type with n-times the elements. 1312 // Then bitcast to the type requested. 1313 // Legalizing constants too early makes the DAGCombiner's job harder so we 1314 // only legalize if the DAG tells us we must produce legal types. 1315 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1316 TLI->getTypeAction(*getContext(), EltVT) == 1317 TargetLowering::TypeExpandInteger) { 1318 const APInt &NewVal = Elt->getValue(); 1319 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1320 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1321 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1322 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1323 1324 // Check the temporary vector is the correct size. If this fails then 1325 // getTypeToTransformTo() probably returned a type whose size (in bits) 1326 // isn't a power-of-2 factor of the requested type size. 1327 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1328 1329 SmallVector<SDValue, 2> EltParts; 1330 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1331 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1332 .zextOrTrunc(ViaEltSizeInBits), DL, 1333 ViaEltVT, isT, isO)); 1334 } 1335 1336 // EltParts is currently in little endian order. If we actually want 1337 // big-endian order then reverse it now. 1338 if (getDataLayout().isBigEndian()) 1339 std::reverse(EltParts.begin(), EltParts.end()); 1340 1341 // The elements must be reversed when the element order is different 1342 // to the endianness of the elements (because the BITCAST is itself a 1343 // vector shuffle in this situation). However, we do not need any code to 1344 // perform this reversal because getConstant() is producing a vector 1345 // splat. 1346 // This situation occurs in MIPS MSA. 1347 1348 SmallVector<SDValue, 8> Ops; 1349 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1350 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1351 1352 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1353 return V; 1354 } 1355 1356 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1357 "APInt size does not match type size!"); 1358 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1359 FoldingSetNodeID ID; 1360 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1361 ID.AddPointer(Elt); 1362 ID.AddBoolean(isO); 1363 void *IP = nullptr; 1364 SDNode *N = nullptr; 1365 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1366 if (!VT.isVector()) 1367 return SDValue(N, 0); 1368 1369 if (!N) { 1370 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1371 CSEMap.InsertNode(N, IP); 1372 InsertNode(N); 1373 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1374 } 1375 1376 SDValue Result(N, 0); 1377 if (VT.isScalableVector()) 1378 Result = getSplatVector(VT, DL, Result); 1379 else if (VT.isVector()) 1380 Result = getSplatBuildVector(VT, DL, Result); 1381 1382 return Result; 1383 } 1384 1385 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1386 bool isTarget) { 1387 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1388 } 1389 1390 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1391 const SDLoc &DL, bool LegalTypes) { 1392 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1393 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1394 return getConstant(Val, DL, ShiftVT); 1395 } 1396 1397 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1398 bool isTarget) { 1399 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1400 } 1401 1402 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1403 bool isTarget) { 1404 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1405 } 1406 1407 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1408 EVT VT, bool isTarget) { 1409 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1410 1411 EVT EltVT = VT.getScalarType(); 1412 1413 // Do the map lookup using the actual bit pattern for the floating point 1414 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1415 // we don't have issues with SNANs. 1416 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1417 FoldingSetNodeID ID; 1418 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1419 ID.AddPointer(&V); 1420 void *IP = nullptr; 1421 SDNode *N = nullptr; 1422 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1423 if (!VT.isVector()) 1424 return SDValue(N, 0); 1425 1426 if (!N) { 1427 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1428 CSEMap.InsertNode(N, IP); 1429 InsertNode(N); 1430 } 1431 1432 SDValue Result(N, 0); 1433 if (VT.isScalableVector()) 1434 Result = getSplatVector(VT, DL, Result); 1435 else if (VT.isVector()) 1436 Result = getSplatBuildVector(VT, DL, Result); 1437 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1438 return Result; 1439 } 1440 1441 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1442 bool isTarget) { 1443 EVT EltVT = VT.getScalarType(); 1444 if (EltVT == MVT::f32) 1445 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1446 else if (EltVT == MVT::f64) 1447 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1448 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1449 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1450 bool Ignored; 1451 APFloat APF = APFloat(Val); 1452 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1453 &Ignored); 1454 return getConstantFP(APF, DL, VT, isTarget); 1455 } else 1456 llvm_unreachable("Unsupported type in getConstantFP"); 1457 } 1458 1459 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1460 EVT VT, int64_t Offset, bool isTargetGA, 1461 unsigned TargetFlags) { 1462 assert((TargetFlags == 0 || isTargetGA) && 1463 "Cannot set target flags on target-independent globals"); 1464 1465 // Truncate (with sign-extension) the offset value to the pointer size. 1466 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1467 if (BitWidth < 64) 1468 Offset = SignExtend64(Offset, BitWidth); 1469 1470 unsigned Opc; 1471 if (GV->isThreadLocal()) 1472 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1473 else 1474 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1475 1476 FoldingSetNodeID ID; 1477 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1478 ID.AddPointer(GV); 1479 ID.AddInteger(Offset); 1480 ID.AddInteger(TargetFlags); 1481 void *IP = nullptr; 1482 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1483 return SDValue(E, 0); 1484 1485 auto *N = newSDNode<GlobalAddressSDNode>( 1486 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1493 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1494 FoldingSetNodeID ID; 1495 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1496 ID.AddInteger(FI); 1497 void *IP = nullptr; 1498 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1499 return SDValue(E, 0); 1500 1501 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1502 CSEMap.InsertNode(N, IP); 1503 InsertNode(N); 1504 return SDValue(N, 0); 1505 } 1506 1507 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1508 unsigned TargetFlags) { 1509 assert((TargetFlags == 0 || isTarget) && 1510 "Cannot set target flags on target-independent jump tables"); 1511 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1512 FoldingSetNodeID ID; 1513 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1514 ID.AddInteger(JTI); 1515 ID.AddInteger(TargetFlags); 1516 void *IP = nullptr; 1517 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1518 return SDValue(E, 0); 1519 1520 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1521 CSEMap.InsertNode(N, IP); 1522 InsertNode(N); 1523 return SDValue(N, 0); 1524 } 1525 1526 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1527 MaybeAlign Alignment, int Offset, 1528 bool isTarget, unsigned TargetFlags) { 1529 assert((TargetFlags == 0 || isTarget) && 1530 "Cannot set target flags on target-independent globals"); 1531 if (!Alignment) 1532 Alignment = shouldOptForSize() 1533 ? getDataLayout().getABITypeAlign(C->getType()) 1534 : getDataLayout().getPrefTypeAlign(C->getType()); 1535 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1536 FoldingSetNodeID ID; 1537 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1538 ID.AddInteger(Alignment->value()); 1539 ID.AddInteger(Offset); 1540 ID.AddPointer(C); 1541 ID.AddInteger(TargetFlags); 1542 void *IP = nullptr; 1543 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1544 return SDValue(E, 0); 1545 1546 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1547 TargetFlags); 1548 CSEMap.InsertNode(N, IP); 1549 InsertNode(N); 1550 SDValue V = SDValue(N, 0); 1551 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1552 return V; 1553 } 1554 1555 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1556 MaybeAlign Alignment, int Offset, 1557 bool isTarget, unsigned TargetFlags) { 1558 assert((TargetFlags == 0 || isTarget) && 1559 "Cannot set target flags on target-independent globals"); 1560 if (!Alignment) 1561 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1562 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1563 FoldingSetNodeID ID; 1564 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1565 ID.AddInteger(Alignment->value()); 1566 ID.AddInteger(Offset); 1567 C->addSelectionDAGCSEId(ID); 1568 ID.AddInteger(TargetFlags); 1569 void *IP = nullptr; 1570 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1571 return SDValue(E, 0); 1572 1573 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1574 TargetFlags); 1575 CSEMap.InsertNode(N, IP); 1576 InsertNode(N); 1577 return SDValue(N, 0); 1578 } 1579 1580 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1581 unsigned TargetFlags) { 1582 FoldingSetNodeID ID; 1583 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1584 ID.AddInteger(Index); 1585 ID.AddInteger(Offset); 1586 ID.AddInteger(TargetFlags); 1587 void *IP = nullptr; 1588 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1589 return SDValue(E, 0); 1590 1591 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1592 CSEMap.InsertNode(N, IP); 1593 InsertNode(N); 1594 return SDValue(N, 0); 1595 } 1596 1597 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1598 FoldingSetNodeID ID; 1599 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1600 ID.AddPointer(MBB); 1601 void *IP = nullptr; 1602 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1603 return SDValue(E, 0); 1604 1605 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1606 CSEMap.InsertNode(N, IP); 1607 InsertNode(N); 1608 return SDValue(N, 0); 1609 } 1610 1611 SDValue SelectionDAG::getValueType(EVT VT) { 1612 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1613 ValueTypeNodes.size()) 1614 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1615 1616 SDNode *&N = VT.isExtended() ? 1617 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1618 1619 if (N) return SDValue(N, 0); 1620 N = newSDNode<VTSDNode>(VT); 1621 InsertNode(N); 1622 return SDValue(N, 0); 1623 } 1624 1625 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1626 SDNode *&N = ExternalSymbols[Sym]; 1627 if (N) return SDValue(N, 0); 1628 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1629 InsertNode(N); 1630 return SDValue(N, 0); 1631 } 1632 1633 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1634 SDNode *&N = MCSymbols[Sym]; 1635 if (N) 1636 return SDValue(N, 0); 1637 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1638 InsertNode(N); 1639 return SDValue(N, 0); 1640 } 1641 1642 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1643 unsigned TargetFlags) { 1644 SDNode *&N = 1645 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1646 if (N) return SDValue(N, 0); 1647 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1648 InsertNode(N); 1649 return SDValue(N, 0); 1650 } 1651 1652 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1653 if ((unsigned)Cond >= CondCodeNodes.size()) 1654 CondCodeNodes.resize(Cond+1); 1655 1656 if (!CondCodeNodes[Cond]) { 1657 auto *N = newSDNode<CondCodeSDNode>(Cond); 1658 CondCodeNodes[Cond] = N; 1659 InsertNode(N); 1660 } 1661 1662 return SDValue(CondCodeNodes[Cond], 0); 1663 } 1664 1665 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1666 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1667 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1668 std::swap(N1, N2); 1669 ShuffleVectorSDNode::commuteMask(M); 1670 } 1671 1672 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1673 SDValue N2, ArrayRef<int> Mask) { 1674 assert(VT.getVectorNumElements() == Mask.size() && 1675 "Must have the same number of vector elements as mask elements!"); 1676 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1677 "Invalid VECTOR_SHUFFLE"); 1678 1679 // Canonicalize shuffle undef, undef -> undef 1680 if (N1.isUndef() && N2.isUndef()) 1681 return getUNDEF(VT); 1682 1683 // Validate that all indices in Mask are within the range of the elements 1684 // input to the shuffle. 1685 int NElts = Mask.size(); 1686 assert(llvm::all_of(Mask, 1687 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1688 "Index out of range"); 1689 1690 // Copy the mask so we can do any needed cleanup. 1691 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1692 1693 // Canonicalize shuffle v, v -> v, undef 1694 if (N1 == N2) { 1695 N2 = getUNDEF(VT); 1696 for (int i = 0; i != NElts; ++i) 1697 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1698 } 1699 1700 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1701 if (N1.isUndef()) 1702 commuteShuffle(N1, N2, MaskVec); 1703 1704 if (TLI->hasVectorBlend()) { 1705 // If shuffling a splat, try to blend the splat instead. We do this here so 1706 // that even when this arises during lowering we don't have to re-handle it. 1707 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1708 BitVector UndefElements; 1709 SDValue Splat = BV->getSplatValue(&UndefElements); 1710 if (!Splat) 1711 return; 1712 1713 for (int i = 0; i < NElts; ++i) { 1714 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1715 continue; 1716 1717 // If this input comes from undef, mark it as such. 1718 if (UndefElements[MaskVec[i] - Offset]) { 1719 MaskVec[i] = -1; 1720 continue; 1721 } 1722 1723 // If we can blend a non-undef lane, use that instead. 1724 if (!UndefElements[i]) 1725 MaskVec[i] = i + Offset; 1726 } 1727 }; 1728 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1729 BlendSplat(N1BV, 0); 1730 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1731 BlendSplat(N2BV, NElts); 1732 } 1733 1734 // Canonicalize all index into lhs, -> shuffle lhs, undef 1735 // Canonicalize all index into rhs, -> shuffle rhs, undef 1736 bool AllLHS = true, AllRHS = true; 1737 bool N2Undef = N2.isUndef(); 1738 for (int i = 0; i != NElts; ++i) { 1739 if (MaskVec[i] >= NElts) { 1740 if (N2Undef) 1741 MaskVec[i] = -1; 1742 else 1743 AllLHS = false; 1744 } else if (MaskVec[i] >= 0) { 1745 AllRHS = false; 1746 } 1747 } 1748 if (AllLHS && AllRHS) 1749 return getUNDEF(VT); 1750 if (AllLHS && !N2Undef) 1751 N2 = getUNDEF(VT); 1752 if (AllRHS) { 1753 N1 = getUNDEF(VT); 1754 commuteShuffle(N1, N2, MaskVec); 1755 } 1756 // Reset our undef status after accounting for the mask. 1757 N2Undef = N2.isUndef(); 1758 // Re-check whether both sides ended up undef. 1759 if (N1.isUndef() && N2Undef) 1760 return getUNDEF(VT); 1761 1762 // If Identity shuffle return that node. 1763 bool Identity = true, AllSame = true; 1764 for (int i = 0; i != NElts; ++i) { 1765 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1766 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1767 } 1768 if (Identity && NElts) 1769 return N1; 1770 1771 // Shuffling a constant splat doesn't change the result. 1772 if (N2Undef) { 1773 SDValue V = N1; 1774 1775 // Look through any bitcasts. We check that these don't change the number 1776 // (and size) of elements and just changes their types. 1777 while (V.getOpcode() == ISD::BITCAST) 1778 V = V->getOperand(0); 1779 1780 // A splat should always show up as a build vector node. 1781 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1782 BitVector UndefElements; 1783 SDValue Splat = BV->getSplatValue(&UndefElements); 1784 // If this is a splat of an undef, shuffling it is also undef. 1785 if (Splat && Splat.isUndef()) 1786 return getUNDEF(VT); 1787 1788 bool SameNumElts = 1789 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1790 1791 // We only have a splat which can skip shuffles if there is a splatted 1792 // value and no undef lanes rearranged by the shuffle. 1793 if (Splat && UndefElements.none()) { 1794 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1795 // number of elements match or the value splatted is a zero constant. 1796 if (SameNumElts) 1797 return N1; 1798 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1799 if (C->isNullValue()) 1800 return N1; 1801 } 1802 1803 // If the shuffle itself creates a splat, build the vector directly. 1804 if (AllSame && SameNumElts) { 1805 EVT BuildVT = BV->getValueType(0); 1806 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1807 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1808 1809 // We may have jumped through bitcasts, so the type of the 1810 // BUILD_VECTOR may not match the type of the shuffle. 1811 if (BuildVT != VT) 1812 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1813 return NewBV; 1814 } 1815 } 1816 } 1817 1818 FoldingSetNodeID ID; 1819 SDValue Ops[2] = { N1, N2 }; 1820 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1821 for (int i = 0; i != NElts; ++i) 1822 ID.AddInteger(MaskVec[i]); 1823 1824 void* IP = nullptr; 1825 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1826 return SDValue(E, 0); 1827 1828 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1829 // SDNode doesn't have access to it. This memory will be "leaked" when 1830 // the node is deallocated, but recovered when the NodeAllocator is released. 1831 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1832 llvm::copy(MaskVec, MaskAlloc); 1833 1834 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1835 dl.getDebugLoc(), MaskAlloc); 1836 createOperands(N, Ops); 1837 1838 CSEMap.InsertNode(N, IP); 1839 InsertNode(N); 1840 SDValue V = SDValue(N, 0); 1841 NewSDValueDbgMsg(V, "Creating new node: ", this); 1842 return V; 1843 } 1844 1845 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1846 EVT VT = SV.getValueType(0); 1847 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1848 ShuffleVectorSDNode::commuteMask(MaskVec); 1849 1850 SDValue Op0 = SV.getOperand(0); 1851 SDValue Op1 = SV.getOperand(1); 1852 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1853 } 1854 1855 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1856 FoldingSetNodeID ID; 1857 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1858 ID.AddInteger(RegNo); 1859 void *IP = nullptr; 1860 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1861 return SDValue(E, 0); 1862 1863 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1864 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1865 CSEMap.InsertNode(N, IP); 1866 InsertNode(N); 1867 return SDValue(N, 0); 1868 } 1869 1870 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1871 FoldingSetNodeID ID; 1872 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1873 ID.AddPointer(RegMask); 1874 void *IP = nullptr; 1875 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1876 return SDValue(E, 0); 1877 1878 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1879 CSEMap.InsertNode(N, IP); 1880 InsertNode(N); 1881 return SDValue(N, 0); 1882 } 1883 1884 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1885 MCSymbol *Label) { 1886 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1887 } 1888 1889 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1890 SDValue Root, MCSymbol *Label) { 1891 FoldingSetNodeID ID; 1892 SDValue Ops[] = { Root }; 1893 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1894 ID.AddPointer(Label); 1895 void *IP = nullptr; 1896 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1897 return SDValue(E, 0); 1898 1899 auto *N = 1900 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1901 createOperands(N, Ops); 1902 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1909 int64_t Offset, bool isTarget, 1910 unsigned TargetFlags) { 1911 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1912 1913 FoldingSetNodeID ID; 1914 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1915 ID.AddPointer(BA); 1916 ID.AddInteger(Offset); 1917 ID.AddInteger(TargetFlags); 1918 void *IP = nullptr; 1919 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1920 return SDValue(E, 0); 1921 1922 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1923 CSEMap.InsertNode(N, IP); 1924 InsertNode(N); 1925 return SDValue(N, 0); 1926 } 1927 1928 SDValue SelectionDAG::getSrcValue(const Value *V) { 1929 FoldingSetNodeID ID; 1930 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1931 ID.AddPointer(V); 1932 1933 void *IP = nullptr; 1934 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1935 return SDValue(E, 0); 1936 1937 auto *N = newSDNode<SrcValueSDNode>(V); 1938 CSEMap.InsertNode(N, IP); 1939 InsertNode(N); 1940 return SDValue(N, 0); 1941 } 1942 1943 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1944 FoldingSetNodeID ID; 1945 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1946 ID.AddPointer(MD); 1947 1948 void *IP = nullptr; 1949 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1950 return SDValue(E, 0); 1951 1952 auto *N = newSDNode<MDNodeSDNode>(MD); 1953 CSEMap.InsertNode(N, IP); 1954 InsertNode(N); 1955 return SDValue(N, 0); 1956 } 1957 1958 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1959 if (VT == V.getValueType()) 1960 return V; 1961 1962 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1963 } 1964 1965 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1966 unsigned SrcAS, unsigned DestAS) { 1967 SDValue Ops[] = {Ptr}; 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1970 ID.AddInteger(SrcAS); 1971 ID.AddInteger(DestAS); 1972 1973 void *IP = nullptr; 1974 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1975 return SDValue(E, 0); 1976 1977 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1978 VT, SrcAS, DestAS); 1979 createOperands(N, Ops); 1980 1981 CSEMap.InsertNode(N, IP); 1982 InsertNode(N); 1983 return SDValue(N, 0); 1984 } 1985 1986 SDValue SelectionDAG::getFreeze(SDValue V) { 1987 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1988 } 1989 1990 /// getShiftAmountOperand - Return the specified value casted to 1991 /// the target's desired shift amount type. 1992 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1993 EVT OpTy = Op.getValueType(); 1994 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1995 if (OpTy == ShTy || OpTy.isVector()) return Op; 1996 1997 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1998 } 1999 2000 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2001 SDLoc dl(Node); 2002 const TargetLowering &TLI = getTargetLoweringInfo(); 2003 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2004 EVT VT = Node->getValueType(0); 2005 SDValue Tmp1 = Node->getOperand(0); 2006 SDValue Tmp2 = Node->getOperand(1); 2007 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2008 2009 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2010 Tmp2, MachinePointerInfo(V)); 2011 SDValue VAList = VAListLoad; 2012 2013 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2014 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2015 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2016 2017 VAList = 2018 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2019 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2020 } 2021 2022 // Increment the pointer, VAList, to the next vaarg 2023 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2024 getConstant(getDataLayout().getTypeAllocSize( 2025 VT.getTypeForEVT(*getContext())), 2026 dl, VAList.getValueType())); 2027 // Store the incremented VAList to the legalized pointer 2028 Tmp1 = 2029 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2030 // Load the actual argument out of the pointer VAList 2031 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2032 } 2033 2034 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2035 SDLoc dl(Node); 2036 const TargetLowering &TLI = getTargetLoweringInfo(); 2037 // This defaults to loading a pointer from the input and storing it to the 2038 // output, returning the chain. 2039 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2040 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2041 SDValue Tmp1 = 2042 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2043 Node->getOperand(2), MachinePointerInfo(VS)); 2044 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2045 MachinePointerInfo(VD)); 2046 } 2047 2048 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2049 const DataLayout &DL = getDataLayout(); 2050 Type *Ty = VT.getTypeForEVT(*getContext()); 2051 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2052 2053 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2054 return RedAlign; 2055 2056 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2057 const Align StackAlign = TFI->getStackAlign(); 2058 2059 // See if we can choose a smaller ABI alignment in cases where it's an 2060 // illegal vector type that will get broken down. 2061 if (RedAlign > StackAlign) { 2062 EVT IntermediateVT; 2063 MVT RegisterVT; 2064 unsigned NumIntermediates; 2065 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2066 NumIntermediates, RegisterVT); 2067 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2068 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2069 if (RedAlign2 < RedAlign) 2070 RedAlign = RedAlign2; 2071 } 2072 2073 return RedAlign; 2074 } 2075 2076 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2077 MachineFrameInfo &MFI = MF->getFrameInfo(); 2078 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2079 int StackID = 0; 2080 if (Bytes.isScalable()) 2081 StackID = TFI->getStackIDForScalableVectors(); 2082 // The stack id gives an indication of whether the object is scalable or 2083 // not, so it's safe to pass in the minimum size here. 2084 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2085 false, nullptr, StackID); 2086 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2087 } 2088 2089 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2090 Type *Ty = VT.getTypeForEVT(*getContext()); 2091 Align StackAlign = 2092 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2093 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2094 } 2095 2096 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2097 TypeSize VT1Size = VT1.getStoreSize(); 2098 TypeSize VT2Size = VT2.getStoreSize(); 2099 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2100 "Don't know how to choose the maximum size when creating a stack " 2101 "temporary"); 2102 TypeSize Bytes = 2103 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2104 2105 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2106 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2107 const DataLayout &DL = getDataLayout(); 2108 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2109 return CreateStackTemporary(Bytes, Align); 2110 } 2111 2112 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2113 ISD::CondCode Cond, const SDLoc &dl) { 2114 EVT OpVT = N1.getValueType(); 2115 2116 // These setcc operations always fold. 2117 switch (Cond) { 2118 default: break; 2119 case ISD::SETFALSE: 2120 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2121 case ISD::SETTRUE: 2122 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2123 2124 case ISD::SETOEQ: 2125 case ISD::SETOGT: 2126 case ISD::SETOGE: 2127 case ISD::SETOLT: 2128 case ISD::SETOLE: 2129 case ISD::SETONE: 2130 case ISD::SETO: 2131 case ISD::SETUO: 2132 case ISD::SETUEQ: 2133 case ISD::SETUNE: 2134 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2135 break; 2136 } 2137 2138 if (OpVT.isInteger()) { 2139 // For EQ and NE, we can always pick a value for the undef to make the 2140 // predicate pass or fail, so we can return undef. 2141 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2142 // icmp eq/ne X, undef -> undef. 2143 if ((N1.isUndef() || N2.isUndef()) && 2144 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2145 return getUNDEF(VT); 2146 2147 // If both operands are undef, we can return undef for int comparison. 2148 // icmp undef, undef -> undef. 2149 if (N1.isUndef() && N2.isUndef()) 2150 return getUNDEF(VT); 2151 2152 // icmp X, X -> true/false 2153 // icmp X, undef -> true/false because undef could be X. 2154 if (N1 == N2) 2155 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2156 } 2157 2158 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2159 const APInt &C2 = N2C->getAPIntValue(); 2160 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2161 const APInt &C1 = N1C->getAPIntValue(); 2162 2163 switch (Cond) { 2164 default: llvm_unreachable("Unknown integer setcc!"); 2165 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2166 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2167 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2168 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2169 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2170 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2171 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2172 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2173 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2174 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2175 } 2176 } 2177 } 2178 2179 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2180 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2181 2182 if (N1CFP && N2CFP) { 2183 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2184 switch (Cond) { 2185 default: break; 2186 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2187 return getUNDEF(VT); 2188 LLVM_FALLTHROUGH; 2189 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2190 OpVT); 2191 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2192 return getUNDEF(VT); 2193 LLVM_FALLTHROUGH; 2194 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2195 R==APFloat::cmpLessThan, dl, VT, 2196 OpVT); 2197 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2198 return getUNDEF(VT); 2199 LLVM_FALLTHROUGH; 2200 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2201 OpVT); 2202 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2203 return getUNDEF(VT); 2204 LLVM_FALLTHROUGH; 2205 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2206 VT, OpVT); 2207 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2208 return getUNDEF(VT); 2209 LLVM_FALLTHROUGH; 2210 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2211 R==APFloat::cmpEqual, dl, VT, 2212 OpVT); 2213 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2214 return getUNDEF(VT); 2215 LLVM_FALLTHROUGH; 2216 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2217 R==APFloat::cmpEqual, dl, VT, OpVT); 2218 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2219 OpVT); 2220 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2221 OpVT); 2222 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2223 R==APFloat::cmpEqual, dl, VT, 2224 OpVT); 2225 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2226 OpVT); 2227 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2228 R==APFloat::cmpLessThan, dl, VT, 2229 OpVT); 2230 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2231 R==APFloat::cmpUnordered, dl, VT, 2232 OpVT); 2233 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2234 VT, OpVT); 2235 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2236 OpVT); 2237 } 2238 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2239 // Ensure that the constant occurs on the RHS. 2240 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2241 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2242 return SDValue(); 2243 return getSetCC(dl, VT, N2, N1, SwappedCond); 2244 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2245 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2246 // If an operand is known to be a nan (or undef that could be a nan), we can 2247 // fold it. 2248 // Choosing NaN for the undef will always make unordered comparison succeed 2249 // and ordered comparison fails. 2250 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2251 switch (ISD::getUnorderedFlavor(Cond)) { 2252 default: 2253 llvm_unreachable("Unknown flavor!"); 2254 case 0: // Known false. 2255 return getBoolConstant(false, dl, VT, OpVT); 2256 case 1: // Known true. 2257 return getBoolConstant(true, dl, VT, OpVT); 2258 case 2: // Undefined. 2259 return getUNDEF(VT); 2260 } 2261 } 2262 2263 // Could not fold it. 2264 return SDValue(); 2265 } 2266 2267 /// See if the specified operand can be simplified with the knowledge that only 2268 /// the bits specified by DemandedBits are used. 2269 /// TODO: really we should be making this into the DAG equivalent of 2270 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2271 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2272 EVT VT = V.getValueType(); 2273 2274 if (VT.isScalableVector()) 2275 return SDValue(); 2276 2277 APInt DemandedElts = VT.isVector() 2278 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2279 : APInt(1, 1); 2280 return GetDemandedBits(V, DemandedBits, DemandedElts); 2281 } 2282 2283 /// See if the specified operand can be simplified with the knowledge that only 2284 /// the bits specified by DemandedBits are used in the elements specified by 2285 /// DemandedElts. 2286 /// TODO: really we should be making this into the DAG equivalent of 2287 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2288 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2289 const APInt &DemandedElts) { 2290 switch (V.getOpcode()) { 2291 default: 2292 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2293 *this, 0); 2294 case ISD::Constant: { 2295 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2296 APInt NewVal = CVal & DemandedBits; 2297 if (NewVal != CVal) 2298 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2299 break; 2300 } 2301 case ISD::SRL: 2302 // Only look at single-use SRLs. 2303 if (!V.getNode()->hasOneUse()) 2304 break; 2305 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2306 // See if we can recursively simplify the LHS. 2307 unsigned Amt = RHSC->getZExtValue(); 2308 2309 // Watch out for shift count overflow though. 2310 if (Amt >= DemandedBits.getBitWidth()) 2311 break; 2312 APInt SrcDemandedBits = DemandedBits << Amt; 2313 if (SDValue SimplifyLHS = 2314 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2315 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2316 V.getOperand(1)); 2317 } 2318 break; 2319 } 2320 return SDValue(); 2321 } 2322 2323 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2324 /// use this predicate to simplify operations downstream. 2325 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2326 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2327 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2328 } 2329 2330 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2331 /// this predicate to simplify operations downstream. Mask is known to be zero 2332 /// for bits that V cannot have. 2333 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2334 unsigned Depth) const { 2335 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2336 } 2337 2338 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2339 /// DemandedElts. We use this predicate to simplify operations downstream. 2340 /// Mask is known to be zero for bits that V cannot have. 2341 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2342 const APInt &DemandedElts, 2343 unsigned Depth) const { 2344 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2345 } 2346 2347 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2348 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2349 unsigned Depth) const { 2350 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2351 } 2352 2353 /// isSplatValue - Return true if the vector V has the same value 2354 /// across all DemandedElts. For scalable vectors it does not make 2355 /// sense to specify which elements are demanded or undefined, therefore 2356 /// they are simply ignored. 2357 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2358 APInt &UndefElts) { 2359 EVT VT = V.getValueType(); 2360 assert(VT.isVector() && "Vector type expected"); 2361 2362 if (!VT.isScalableVector() && !DemandedElts) 2363 return false; // No demanded elts, better to assume we don't know anything. 2364 2365 // Deal with some common cases here that work for both fixed and scalable 2366 // vector types. 2367 switch (V.getOpcode()) { 2368 case ISD::SPLAT_VECTOR: 2369 UndefElts = V.getOperand(0).isUndef() 2370 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2371 : APInt(DemandedElts.getBitWidth(), 0); 2372 return true; 2373 case ISD::ADD: 2374 case ISD::SUB: 2375 case ISD::AND: { 2376 APInt UndefLHS, UndefRHS; 2377 SDValue LHS = V.getOperand(0); 2378 SDValue RHS = V.getOperand(1); 2379 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2380 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2381 UndefElts = UndefLHS | UndefRHS; 2382 return true; 2383 } 2384 break; 2385 } 2386 case ISD::TRUNCATE: 2387 case ISD::SIGN_EXTEND: 2388 case ISD::ZERO_EXTEND: 2389 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2390 } 2391 2392 // We don't support other cases than those above for scalable vectors at 2393 // the moment. 2394 if (VT.isScalableVector()) 2395 return false; 2396 2397 unsigned NumElts = VT.getVectorNumElements(); 2398 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2399 UndefElts = APInt::getNullValue(NumElts); 2400 2401 switch (V.getOpcode()) { 2402 case ISD::BUILD_VECTOR: { 2403 SDValue Scl; 2404 for (unsigned i = 0; i != NumElts; ++i) { 2405 SDValue Op = V.getOperand(i); 2406 if (Op.isUndef()) { 2407 UndefElts.setBit(i); 2408 continue; 2409 } 2410 if (!DemandedElts[i]) 2411 continue; 2412 if (Scl && Scl != Op) 2413 return false; 2414 Scl = Op; 2415 } 2416 return true; 2417 } 2418 case ISD::VECTOR_SHUFFLE: { 2419 // Check if this is a shuffle node doing a splat. 2420 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2421 int SplatIndex = -1; 2422 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2423 for (int i = 0; i != (int)NumElts; ++i) { 2424 int M = Mask[i]; 2425 if (M < 0) { 2426 UndefElts.setBit(i); 2427 continue; 2428 } 2429 if (!DemandedElts[i]) 2430 continue; 2431 if (0 <= SplatIndex && SplatIndex != M) 2432 return false; 2433 SplatIndex = M; 2434 } 2435 return true; 2436 } 2437 case ISD::EXTRACT_SUBVECTOR: { 2438 // Offset the demanded elts by the subvector index. 2439 SDValue Src = V.getOperand(0); 2440 uint64_t Idx = V.getConstantOperandVal(1); 2441 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2442 APInt UndefSrcElts; 2443 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2444 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2445 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2446 return true; 2447 } 2448 break; 2449 } 2450 } 2451 2452 return false; 2453 } 2454 2455 /// Helper wrapper to main isSplatValue function. 2456 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2457 EVT VT = V.getValueType(); 2458 assert(VT.isVector() && "Vector type expected"); 2459 2460 APInt UndefElts; 2461 APInt DemandedElts; 2462 2463 // For now we don't support this with scalable vectors. 2464 if (!VT.isScalableVector()) 2465 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2466 return isSplatValue(V, DemandedElts, UndefElts) && 2467 (AllowUndefs || !UndefElts); 2468 } 2469 2470 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2471 V = peekThroughExtractSubvectors(V); 2472 2473 EVT VT = V.getValueType(); 2474 unsigned Opcode = V.getOpcode(); 2475 switch (Opcode) { 2476 default: { 2477 APInt UndefElts; 2478 APInt DemandedElts; 2479 2480 if (!VT.isScalableVector()) 2481 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2482 2483 if (isSplatValue(V, DemandedElts, UndefElts)) { 2484 if (VT.isScalableVector()) { 2485 // DemandedElts and UndefElts are ignored for scalable vectors, since 2486 // the only supported cases are SPLAT_VECTOR nodes. 2487 SplatIdx = 0; 2488 } else { 2489 // Handle case where all demanded elements are UNDEF. 2490 if (DemandedElts.isSubsetOf(UndefElts)) { 2491 SplatIdx = 0; 2492 return getUNDEF(VT); 2493 } 2494 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2495 } 2496 return V; 2497 } 2498 break; 2499 } 2500 case ISD::SPLAT_VECTOR: 2501 SplatIdx = 0; 2502 return V; 2503 case ISD::VECTOR_SHUFFLE: { 2504 if (VT.isScalableVector()) 2505 return SDValue(); 2506 2507 // Check if this is a shuffle node doing a splat. 2508 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2509 // getTargetVShiftNode currently struggles without the splat source. 2510 auto *SVN = cast<ShuffleVectorSDNode>(V); 2511 if (!SVN->isSplat()) 2512 break; 2513 int Idx = SVN->getSplatIndex(); 2514 int NumElts = V.getValueType().getVectorNumElements(); 2515 SplatIdx = Idx % NumElts; 2516 return V.getOperand(Idx / NumElts); 2517 } 2518 } 2519 2520 return SDValue(); 2521 } 2522 2523 SDValue SelectionDAG::getSplatValue(SDValue V) { 2524 int SplatIdx; 2525 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2526 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2527 SrcVector.getValueType().getScalarType(), SrcVector, 2528 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2529 return SDValue(); 2530 } 2531 2532 const APInt * 2533 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2534 const APInt &DemandedElts) const { 2535 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2536 V.getOpcode() == ISD::SRA) && 2537 "Unknown shift node"); 2538 unsigned BitWidth = V.getScalarValueSizeInBits(); 2539 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2540 // Shifting more than the bitwidth is not valid. 2541 const APInt &ShAmt = SA->getAPIntValue(); 2542 if (ShAmt.ult(BitWidth)) 2543 return &ShAmt; 2544 } 2545 return nullptr; 2546 } 2547 2548 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2549 SDValue V, const APInt &DemandedElts) const { 2550 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2551 V.getOpcode() == ISD::SRA) && 2552 "Unknown shift node"); 2553 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2554 return ValidAmt; 2555 unsigned BitWidth = V.getScalarValueSizeInBits(); 2556 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2557 if (!BV) 2558 return nullptr; 2559 const APInt *MinShAmt = nullptr; 2560 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2561 if (!DemandedElts[i]) 2562 continue; 2563 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2564 if (!SA) 2565 return nullptr; 2566 // Shifting more than the bitwidth is not valid. 2567 const APInt &ShAmt = SA->getAPIntValue(); 2568 if (ShAmt.uge(BitWidth)) 2569 return nullptr; 2570 if (MinShAmt && MinShAmt->ule(ShAmt)) 2571 continue; 2572 MinShAmt = &ShAmt; 2573 } 2574 return MinShAmt; 2575 } 2576 2577 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2578 SDValue V, const APInt &DemandedElts) const { 2579 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2580 V.getOpcode() == ISD::SRA) && 2581 "Unknown shift node"); 2582 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2583 return ValidAmt; 2584 unsigned BitWidth = V.getScalarValueSizeInBits(); 2585 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2586 if (!BV) 2587 return nullptr; 2588 const APInt *MaxShAmt = nullptr; 2589 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2590 if (!DemandedElts[i]) 2591 continue; 2592 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2593 if (!SA) 2594 return nullptr; 2595 // Shifting more than the bitwidth is not valid. 2596 const APInt &ShAmt = SA->getAPIntValue(); 2597 if (ShAmt.uge(BitWidth)) 2598 return nullptr; 2599 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2600 continue; 2601 MaxShAmt = &ShAmt; 2602 } 2603 return MaxShAmt; 2604 } 2605 2606 /// Determine which bits of Op are known to be either zero or one and return 2607 /// them in Known. For vectors, the known bits are those that are shared by 2608 /// every vector element. 2609 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2610 EVT VT = Op.getValueType(); 2611 2612 // TOOD: Until we have a plan for how to represent demanded elements for 2613 // scalable vectors, we can just bail out for now. 2614 if (Op.getValueType().isScalableVector()) { 2615 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2616 return KnownBits(BitWidth); 2617 } 2618 2619 APInt DemandedElts = VT.isVector() 2620 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2621 : APInt(1, 1); 2622 return computeKnownBits(Op, DemandedElts, Depth); 2623 } 2624 2625 /// Determine which bits of Op are known to be either zero or one and return 2626 /// them in Known. The DemandedElts argument allows us to only collect the known 2627 /// bits that are shared by the requested vector elements. 2628 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2629 unsigned Depth) const { 2630 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2631 2632 KnownBits Known(BitWidth); // Don't know anything. 2633 2634 // TOOD: Until we have a plan for how to represent demanded elements for 2635 // scalable vectors, we can just bail out for now. 2636 if (Op.getValueType().isScalableVector()) 2637 return Known; 2638 2639 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2640 // We know all of the bits for a constant! 2641 return KnownBits::makeConstant(C->getAPIntValue()); 2642 } 2643 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2644 // We know all of the bits for a constant fp! 2645 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2646 } 2647 2648 if (Depth >= MaxRecursionDepth) 2649 return Known; // Limit search depth. 2650 2651 KnownBits Known2; 2652 unsigned NumElts = DemandedElts.getBitWidth(); 2653 assert((!Op.getValueType().isVector() || 2654 NumElts == Op.getValueType().getVectorNumElements()) && 2655 "Unexpected vector size"); 2656 2657 if (!DemandedElts) 2658 return Known; // No demanded elts, better to assume we don't know anything. 2659 2660 unsigned Opcode = Op.getOpcode(); 2661 switch (Opcode) { 2662 case ISD::BUILD_VECTOR: 2663 // Collect the known bits that are shared by every demanded vector element. 2664 Known.Zero.setAllBits(); Known.One.setAllBits(); 2665 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2666 if (!DemandedElts[i]) 2667 continue; 2668 2669 SDValue SrcOp = Op.getOperand(i); 2670 Known2 = computeKnownBits(SrcOp, Depth + 1); 2671 2672 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2673 if (SrcOp.getValueSizeInBits() != BitWidth) { 2674 assert(SrcOp.getValueSizeInBits() > BitWidth && 2675 "Expected BUILD_VECTOR implicit truncation"); 2676 Known2 = Known2.trunc(BitWidth); 2677 } 2678 2679 // Known bits are the values that are shared by every demanded element. 2680 Known = KnownBits::commonBits(Known, Known2); 2681 2682 // If we don't know any bits, early out. 2683 if (Known.isUnknown()) 2684 break; 2685 } 2686 break; 2687 case ISD::VECTOR_SHUFFLE: { 2688 // Collect the known bits that are shared by every vector element referenced 2689 // by the shuffle. 2690 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2691 Known.Zero.setAllBits(); Known.One.setAllBits(); 2692 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2693 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2694 for (unsigned i = 0; i != NumElts; ++i) { 2695 if (!DemandedElts[i]) 2696 continue; 2697 2698 int M = SVN->getMaskElt(i); 2699 if (M < 0) { 2700 // For UNDEF elements, we don't know anything about the common state of 2701 // the shuffle result. 2702 Known.resetAll(); 2703 DemandedLHS.clearAllBits(); 2704 DemandedRHS.clearAllBits(); 2705 break; 2706 } 2707 2708 if ((unsigned)M < NumElts) 2709 DemandedLHS.setBit((unsigned)M % NumElts); 2710 else 2711 DemandedRHS.setBit((unsigned)M % NumElts); 2712 } 2713 // Known bits are the values that are shared by every demanded element. 2714 if (!!DemandedLHS) { 2715 SDValue LHS = Op.getOperand(0); 2716 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2717 Known = KnownBits::commonBits(Known, Known2); 2718 } 2719 // If we don't know any bits, early out. 2720 if (Known.isUnknown()) 2721 break; 2722 if (!!DemandedRHS) { 2723 SDValue RHS = Op.getOperand(1); 2724 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2725 Known = KnownBits::commonBits(Known, Known2); 2726 } 2727 break; 2728 } 2729 case ISD::CONCAT_VECTORS: { 2730 // Split DemandedElts and test each of the demanded subvectors. 2731 Known.Zero.setAllBits(); Known.One.setAllBits(); 2732 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2733 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2734 unsigned NumSubVectors = Op.getNumOperands(); 2735 for (unsigned i = 0; i != NumSubVectors; ++i) { 2736 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2737 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2738 if (!!DemandedSub) { 2739 SDValue Sub = Op.getOperand(i); 2740 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2741 Known = KnownBits::commonBits(Known, Known2); 2742 } 2743 // If we don't know any bits, early out. 2744 if (Known.isUnknown()) 2745 break; 2746 } 2747 break; 2748 } 2749 case ISD::INSERT_SUBVECTOR: { 2750 // Demand any elements from the subvector and the remainder from the src its 2751 // inserted into. 2752 SDValue Src = Op.getOperand(0); 2753 SDValue Sub = Op.getOperand(1); 2754 uint64_t Idx = Op.getConstantOperandVal(2); 2755 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2756 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2757 APInt DemandedSrcElts = DemandedElts; 2758 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2759 2760 Known.One.setAllBits(); 2761 Known.Zero.setAllBits(); 2762 if (!!DemandedSubElts) { 2763 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2764 if (Known.isUnknown()) 2765 break; // early-out. 2766 } 2767 if (!!DemandedSrcElts) { 2768 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2769 Known = KnownBits::commonBits(Known, Known2); 2770 } 2771 break; 2772 } 2773 case ISD::EXTRACT_SUBVECTOR: { 2774 // Offset the demanded elts by the subvector index. 2775 SDValue Src = Op.getOperand(0); 2776 // Bail until we can represent demanded elements for scalable vectors. 2777 if (Src.getValueType().isScalableVector()) 2778 break; 2779 uint64_t Idx = Op.getConstantOperandVal(1); 2780 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2781 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2782 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2783 break; 2784 } 2785 case ISD::SCALAR_TO_VECTOR: { 2786 // We know about scalar_to_vector as much as we know about it source, 2787 // which becomes the first element of otherwise unknown vector. 2788 if (DemandedElts != 1) 2789 break; 2790 2791 SDValue N0 = Op.getOperand(0); 2792 Known = computeKnownBits(N0, Depth + 1); 2793 if (N0.getValueSizeInBits() != BitWidth) 2794 Known = Known.trunc(BitWidth); 2795 2796 break; 2797 } 2798 case ISD::BITCAST: { 2799 SDValue N0 = Op.getOperand(0); 2800 EVT SubVT = N0.getValueType(); 2801 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2802 2803 // Ignore bitcasts from unsupported types. 2804 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2805 break; 2806 2807 // Fast handling of 'identity' bitcasts. 2808 if (BitWidth == SubBitWidth) { 2809 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2810 break; 2811 } 2812 2813 bool IsLE = getDataLayout().isLittleEndian(); 2814 2815 // Bitcast 'small element' vector to 'large element' scalar/vector. 2816 if ((BitWidth % SubBitWidth) == 0) { 2817 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2818 2819 // Collect known bits for the (larger) output by collecting the known 2820 // bits from each set of sub elements and shift these into place. 2821 // We need to separately call computeKnownBits for each set of 2822 // sub elements as the knownbits for each is likely to be different. 2823 unsigned SubScale = BitWidth / SubBitWidth; 2824 APInt SubDemandedElts(NumElts * SubScale, 0); 2825 for (unsigned i = 0; i != NumElts; ++i) 2826 if (DemandedElts[i]) 2827 SubDemandedElts.setBit(i * SubScale); 2828 2829 for (unsigned i = 0; i != SubScale; ++i) { 2830 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2831 Depth + 1); 2832 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2833 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2834 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2835 } 2836 } 2837 2838 // Bitcast 'large element' scalar/vector to 'small element' vector. 2839 if ((SubBitWidth % BitWidth) == 0) { 2840 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2841 2842 // Collect known bits for the (smaller) output by collecting the known 2843 // bits from the overlapping larger input elements and extracting the 2844 // sub sections we actually care about. 2845 unsigned SubScale = SubBitWidth / BitWidth; 2846 APInt SubDemandedElts(NumElts / SubScale, 0); 2847 for (unsigned i = 0; i != NumElts; ++i) 2848 if (DemandedElts[i]) 2849 SubDemandedElts.setBit(i / SubScale); 2850 2851 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2852 2853 Known.Zero.setAllBits(); Known.One.setAllBits(); 2854 for (unsigned i = 0; i != NumElts; ++i) 2855 if (DemandedElts[i]) { 2856 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2857 unsigned Offset = (Shifts % SubScale) * BitWidth; 2858 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2859 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2860 // If we don't know any bits, early out. 2861 if (Known.isUnknown()) 2862 break; 2863 } 2864 } 2865 break; 2866 } 2867 case ISD::AND: 2868 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2869 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2870 2871 Known &= Known2; 2872 break; 2873 case ISD::OR: 2874 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2875 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2876 2877 Known |= Known2; 2878 break; 2879 case ISD::XOR: 2880 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2881 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2882 2883 Known ^= Known2; 2884 break; 2885 case ISD::MUL: { 2886 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2887 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 Known = KnownBits::computeForMul(Known, Known2); 2889 break; 2890 } 2891 case ISD::UDIV: { 2892 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2893 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2894 Known = KnownBits::udiv(Known, Known2); 2895 break; 2896 } 2897 case ISD::SELECT: 2898 case ISD::VSELECT: 2899 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2900 // If we don't know any bits, early out. 2901 if (Known.isUnknown()) 2902 break; 2903 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2904 2905 // Only known if known in both the LHS and RHS. 2906 Known = KnownBits::commonBits(Known, Known2); 2907 break; 2908 case ISD::SELECT_CC: 2909 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2910 // If we don't know any bits, early out. 2911 if (Known.isUnknown()) 2912 break; 2913 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2914 2915 // Only known if known in both the LHS and RHS. 2916 Known = KnownBits::commonBits(Known, Known2); 2917 break; 2918 case ISD::SMULO: 2919 case ISD::UMULO: 2920 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2921 if (Op.getResNo() != 1) 2922 break; 2923 // The boolean result conforms to getBooleanContents. 2924 // If we know the result of a setcc has the top bits zero, use this info. 2925 // We know that we have an integer-based boolean since these operations 2926 // are only available for integer. 2927 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2928 TargetLowering::ZeroOrOneBooleanContent && 2929 BitWidth > 1) 2930 Known.Zero.setBitsFrom(1); 2931 break; 2932 case ISD::SETCC: 2933 case ISD::STRICT_FSETCC: 2934 case ISD::STRICT_FSETCCS: { 2935 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2936 // If we know the result of a setcc has the top bits zero, use this info. 2937 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2938 TargetLowering::ZeroOrOneBooleanContent && 2939 BitWidth > 1) 2940 Known.Zero.setBitsFrom(1); 2941 break; 2942 } 2943 case ISD::SHL: 2944 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2945 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2946 Known = KnownBits::shl(Known, Known2); 2947 2948 // Minimum shift low bits are known zero. 2949 if (const APInt *ShMinAmt = 2950 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2951 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2952 break; 2953 case ISD::SRL: 2954 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2955 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2956 Known = KnownBits::lshr(Known, Known2); 2957 2958 // Minimum shift high bits are known zero. 2959 if (const APInt *ShMinAmt = 2960 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2961 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2962 break; 2963 case ISD::SRA: 2964 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2965 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2966 Known = KnownBits::ashr(Known, Known2); 2967 // TODO: Add minimum shift high known sign bits. 2968 break; 2969 case ISD::FSHL: 2970 case ISD::FSHR: 2971 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2972 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2973 2974 // For fshl, 0-shift returns the 1st arg. 2975 // For fshr, 0-shift returns the 2nd arg. 2976 if (Amt == 0) { 2977 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2978 DemandedElts, Depth + 1); 2979 break; 2980 } 2981 2982 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2983 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2984 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2985 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2986 if (Opcode == ISD::FSHL) { 2987 Known.One <<= Amt; 2988 Known.Zero <<= Amt; 2989 Known2.One.lshrInPlace(BitWidth - Amt); 2990 Known2.Zero.lshrInPlace(BitWidth - Amt); 2991 } else { 2992 Known.One <<= BitWidth - Amt; 2993 Known.Zero <<= BitWidth - Amt; 2994 Known2.One.lshrInPlace(Amt); 2995 Known2.Zero.lshrInPlace(Amt); 2996 } 2997 Known.One |= Known2.One; 2998 Known.Zero |= Known2.Zero; 2999 } 3000 break; 3001 case ISD::SIGN_EXTEND_INREG: { 3002 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3004 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3005 break; 3006 } 3007 case ISD::CTTZ: 3008 case ISD::CTTZ_ZERO_UNDEF: { 3009 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 // If we have a known 1, its position is our upper bound. 3011 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3012 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3013 Known.Zero.setBitsFrom(LowBits); 3014 break; 3015 } 3016 case ISD::CTLZ: 3017 case ISD::CTLZ_ZERO_UNDEF: { 3018 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3019 // If we have a known 1, its position is our upper bound. 3020 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3021 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3022 Known.Zero.setBitsFrom(LowBits); 3023 break; 3024 } 3025 case ISD::CTPOP: { 3026 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3027 // If we know some of the bits are zero, they can't be one. 3028 unsigned PossibleOnes = Known2.countMaxPopulation(); 3029 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3030 break; 3031 } 3032 case ISD::PARITY: { 3033 // Parity returns 0 everywhere but the LSB. 3034 Known.Zero.setBitsFrom(1); 3035 break; 3036 } 3037 case ISD::LOAD: { 3038 LoadSDNode *LD = cast<LoadSDNode>(Op); 3039 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3040 if (ISD::isNON_EXTLoad(LD) && Cst) { 3041 // Determine any common known bits from the loaded constant pool value. 3042 Type *CstTy = Cst->getType(); 3043 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3044 // If its a vector splat, then we can (quickly) reuse the scalar path. 3045 // NOTE: We assume all elements match and none are UNDEF. 3046 if (CstTy->isVectorTy()) { 3047 if (const Constant *Splat = Cst->getSplatValue()) { 3048 Cst = Splat; 3049 CstTy = Cst->getType(); 3050 } 3051 } 3052 // TODO - do we need to handle different bitwidths? 3053 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3054 // Iterate across all vector elements finding common known bits. 3055 Known.One.setAllBits(); 3056 Known.Zero.setAllBits(); 3057 for (unsigned i = 0; i != NumElts; ++i) { 3058 if (!DemandedElts[i]) 3059 continue; 3060 if (Constant *Elt = Cst->getAggregateElement(i)) { 3061 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3062 const APInt &Value = CInt->getValue(); 3063 Known.One &= Value; 3064 Known.Zero &= ~Value; 3065 continue; 3066 } 3067 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3068 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3069 Known.One &= Value; 3070 Known.Zero &= ~Value; 3071 continue; 3072 } 3073 } 3074 Known.One.clearAllBits(); 3075 Known.Zero.clearAllBits(); 3076 break; 3077 } 3078 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3079 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3080 const APInt &Value = CInt->getValue(); 3081 Known.One = Value; 3082 Known.Zero = ~Value; 3083 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3084 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3085 Known.One = Value; 3086 Known.Zero = ~Value; 3087 } 3088 } 3089 } 3090 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3091 // If this is a ZEXTLoad and we are looking at the loaded value. 3092 EVT VT = LD->getMemoryVT(); 3093 unsigned MemBits = VT.getScalarSizeInBits(); 3094 Known.Zero.setBitsFrom(MemBits); 3095 } else if (const MDNode *Ranges = LD->getRanges()) { 3096 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3097 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3098 } 3099 break; 3100 } 3101 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3102 EVT InVT = Op.getOperand(0).getValueType(); 3103 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3104 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3105 Known = Known.zext(BitWidth); 3106 break; 3107 } 3108 case ISD::ZERO_EXTEND: { 3109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3110 Known = Known.zext(BitWidth); 3111 break; 3112 } 3113 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3114 EVT InVT = Op.getOperand(0).getValueType(); 3115 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3116 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3117 // If the sign bit is known to be zero or one, then sext will extend 3118 // it to the top bits, else it will just zext. 3119 Known = Known.sext(BitWidth); 3120 break; 3121 } 3122 case ISD::SIGN_EXTEND: { 3123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3124 // If the sign bit is known to be zero or one, then sext will extend 3125 // it to the top bits, else it will just zext. 3126 Known = Known.sext(BitWidth); 3127 break; 3128 } 3129 case ISD::ANY_EXTEND_VECTOR_INREG: { 3130 EVT InVT = Op.getOperand(0).getValueType(); 3131 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3132 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3133 Known = Known.anyext(BitWidth); 3134 break; 3135 } 3136 case ISD::ANY_EXTEND: { 3137 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3138 Known = Known.anyext(BitWidth); 3139 break; 3140 } 3141 case ISD::TRUNCATE: { 3142 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3143 Known = Known.trunc(BitWidth); 3144 break; 3145 } 3146 case ISD::AssertZext: { 3147 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3148 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3149 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3150 Known.Zero |= (~InMask); 3151 Known.One &= (~Known.Zero); 3152 break; 3153 } 3154 case ISD::AssertAlign: { 3155 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3156 assert(LogOfAlign != 0); 3157 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3158 // well as clearing one bits. 3159 Known.Zero.setLowBits(LogOfAlign); 3160 Known.One.clearLowBits(LogOfAlign); 3161 break; 3162 } 3163 case ISD::FGETSIGN: 3164 // All bits are zero except the low bit. 3165 Known.Zero.setBitsFrom(1); 3166 break; 3167 case ISD::USUBO: 3168 case ISD::SSUBO: 3169 if (Op.getResNo() == 1) { 3170 // If we know the result of a setcc has the top bits zero, use this info. 3171 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3172 TargetLowering::ZeroOrOneBooleanContent && 3173 BitWidth > 1) 3174 Known.Zero.setBitsFrom(1); 3175 break; 3176 } 3177 LLVM_FALLTHROUGH; 3178 case ISD::SUB: 3179 case ISD::SUBC: { 3180 assert(Op.getResNo() == 0 && 3181 "We only compute knownbits for the difference here."); 3182 3183 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3184 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3185 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3186 Known, Known2); 3187 break; 3188 } 3189 case ISD::UADDO: 3190 case ISD::SADDO: 3191 case ISD::ADDCARRY: 3192 if (Op.getResNo() == 1) { 3193 // If we know the result of a setcc has the top bits zero, use this info. 3194 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3195 TargetLowering::ZeroOrOneBooleanContent && 3196 BitWidth > 1) 3197 Known.Zero.setBitsFrom(1); 3198 break; 3199 } 3200 LLVM_FALLTHROUGH; 3201 case ISD::ADD: 3202 case ISD::ADDC: 3203 case ISD::ADDE: { 3204 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3205 3206 // With ADDE and ADDCARRY, a carry bit may be added in. 3207 KnownBits Carry(1); 3208 if (Opcode == ISD::ADDE) 3209 // Can't track carry from glue, set carry to unknown. 3210 Carry.resetAll(); 3211 else if (Opcode == ISD::ADDCARRY) 3212 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3213 // the trouble (how often will we find a known carry bit). And I haven't 3214 // tested this very much yet, but something like this might work: 3215 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3216 // Carry = Carry.zextOrTrunc(1, false); 3217 Carry.resetAll(); 3218 else 3219 Carry.setAllZero(); 3220 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3224 break; 3225 } 3226 case ISD::SREM: { 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = KnownBits::srem(Known, Known2); 3230 break; 3231 } 3232 case ISD::UREM: { 3233 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3234 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3235 Known = KnownBits::urem(Known, Known2); 3236 break; 3237 } 3238 case ISD::EXTRACT_ELEMENT: { 3239 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3240 const unsigned Index = Op.getConstantOperandVal(1); 3241 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3242 3243 // Remove low part of known bits mask 3244 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3245 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3246 3247 // Remove high part of known bit mask 3248 Known = Known.trunc(EltBitWidth); 3249 break; 3250 } 3251 case ISD::EXTRACT_VECTOR_ELT: { 3252 SDValue InVec = Op.getOperand(0); 3253 SDValue EltNo = Op.getOperand(1); 3254 EVT VecVT = InVec.getValueType(); 3255 // computeKnownBits not yet implemented for scalable vectors. 3256 if (VecVT.isScalableVector()) 3257 break; 3258 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3259 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3260 3261 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3262 // anything about the extended bits. 3263 if (BitWidth > EltBitWidth) 3264 Known = Known.trunc(EltBitWidth); 3265 3266 // If we know the element index, just demand that vector element, else for 3267 // an unknown element index, ignore DemandedElts and demand them all. 3268 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3269 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3270 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3271 DemandedSrcElts = 3272 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3273 3274 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3275 if (BitWidth > EltBitWidth) 3276 Known = Known.anyext(BitWidth); 3277 break; 3278 } 3279 case ISD::INSERT_VECTOR_ELT: { 3280 // If we know the element index, split the demand between the 3281 // source vector and the inserted element, otherwise assume we need 3282 // the original demanded vector elements and the value. 3283 SDValue InVec = Op.getOperand(0); 3284 SDValue InVal = Op.getOperand(1); 3285 SDValue EltNo = Op.getOperand(2); 3286 bool DemandedVal = true; 3287 APInt DemandedVecElts = DemandedElts; 3288 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3289 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3290 unsigned EltIdx = CEltNo->getZExtValue(); 3291 DemandedVal = !!DemandedElts[EltIdx]; 3292 DemandedVecElts.clearBit(EltIdx); 3293 } 3294 Known.One.setAllBits(); 3295 Known.Zero.setAllBits(); 3296 if (DemandedVal) { 3297 Known2 = computeKnownBits(InVal, Depth + 1); 3298 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3299 } 3300 if (!!DemandedVecElts) { 3301 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3302 Known = KnownBits::commonBits(Known, Known2); 3303 } 3304 break; 3305 } 3306 case ISD::BITREVERSE: { 3307 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3308 Known = Known2.reverseBits(); 3309 break; 3310 } 3311 case ISD::BSWAP: { 3312 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3313 Known = Known2.byteSwap(); 3314 break; 3315 } 3316 case ISD::ABS: { 3317 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3318 Known = Known2.abs(); 3319 break; 3320 } 3321 case ISD::UMIN: { 3322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3324 Known = KnownBits::umin(Known, Known2); 3325 break; 3326 } 3327 case ISD::UMAX: { 3328 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3329 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3330 Known = KnownBits::umax(Known, Known2); 3331 break; 3332 } 3333 case ISD::SMIN: 3334 case ISD::SMAX: { 3335 // If we have a clamp pattern, we know that the number of sign bits will be 3336 // the minimum of the clamp min/max range. 3337 bool IsMax = (Opcode == ISD::SMAX); 3338 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3339 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3340 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3341 CstHigh = 3342 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3343 if (CstLow && CstHigh) { 3344 if (!IsMax) 3345 std::swap(CstLow, CstHigh); 3346 3347 const APInt &ValueLow = CstLow->getAPIntValue(); 3348 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3349 if (ValueLow.sle(ValueHigh)) { 3350 unsigned LowSignBits = ValueLow.getNumSignBits(); 3351 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3352 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3353 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3354 Known.One.setHighBits(MinSignBits); 3355 break; 3356 } 3357 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3358 Known.Zero.setHighBits(MinSignBits); 3359 break; 3360 } 3361 } 3362 } 3363 3364 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 if (Known.isUnknown()) break; // Early-out 3366 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3367 if (IsMax) 3368 Known = KnownBits::smax(Known, Known2); 3369 else 3370 Known = KnownBits::smin(Known, Known2); 3371 break; 3372 } 3373 case ISD::FrameIndex: 3374 case ISD::TargetFrameIndex: 3375 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3376 Known, getMachineFunction()); 3377 break; 3378 3379 default: 3380 if (Opcode < ISD::BUILTIN_OP_END) 3381 break; 3382 LLVM_FALLTHROUGH; 3383 case ISD::INTRINSIC_WO_CHAIN: 3384 case ISD::INTRINSIC_W_CHAIN: 3385 case ISD::INTRINSIC_VOID: 3386 // Allow the target to implement this method for its nodes. 3387 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3388 break; 3389 } 3390 3391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3392 return Known; 3393 } 3394 3395 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3396 SDValue N1) const { 3397 // X + 0 never overflow 3398 if (isNullConstant(N1)) 3399 return OFK_Never; 3400 3401 KnownBits N1Known = computeKnownBits(N1); 3402 if (N1Known.Zero.getBoolValue()) { 3403 KnownBits N0Known = computeKnownBits(N0); 3404 3405 bool overflow; 3406 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3407 if (!overflow) 3408 return OFK_Never; 3409 } 3410 3411 // mulhi + 1 never overflow 3412 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3413 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3414 return OFK_Never; 3415 3416 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3417 KnownBits N0Known = computeKnownBits(N0); 3418 3419 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3420 return OFK_Never; 3421 } 3422 3423 return OFK_Sometime; 3424 } 3425 3426 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3427 EVT OpVT = Val.getValueType(); 3428 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3429 3430 // Is the constant a known power of 2? 3431 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3432 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3433 3434 // A left-shift of a constant one will have exactly one bit set because 3435 // shifting the bit off the end is undefined. 3436 if (Val.getOpcode() == ISD::SHL) { 3437 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3438 if (C && C->getAPIntValue() == 1) 3439 return true; 3440 } 3441 3442 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3443 // one bit set. 3444 if (Val.getOpcode() == ISD::SRL) { 3445 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3446 if (C && C->getAPIntValue().isSignMask()) 3447 return true; 3448 } 3449 3450 // Are all operands of a build vector constant powers of two? 3451 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3452 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3453 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3454 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3455 return false; 3456 })) 3457 return true; 3458 3459 // More could be done here, though the above checks are enough 3460 // to handle some common cases. 3461 3462 // Fall back to computeKnownBits to catch other known cases. 3463 KnownBits Known = computeKnownBits(Val); 3464 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3465 } 3466 3467 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3468 EVT VT = Op.getValueType(); 3469 3470 // TODO: Assume we don't know anything for now. 3471 if (VT.isScalableVector()) 3472 return 1; 3473 3474 APInt DemandedElts = VT.isVector() 3475 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3476 : APInt(1, 1); 3477 return ComputeNumSignBits(Op, DemandedElts, Depth); 3478 } 3479 3480 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3481 unsigned Depth) const { 3482 EVT VT = Op.getValueType(); 3483 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3484 unsigned VTBits = VT.getScalarSizeInBits(); 3485 unsigned NumElts = DemandedElts.getBitWidth(); 3486 unsigned Tmp, Tmp2; 3487 unsigned FirstAnswer = 1; 3488 3489 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3490 const APInt &Val = C->getAPIntValue(); 3491 return Val.getNumSignBits(); 3492 } 3493 3494 if (Depth >= MaxRecursionDepth) 3495 return 1; // Limit search depth. 3496 3497 if (!DemandedElts || VT.isScalableVector()) 3498 return 1; // No demanded elts, better to assume we don't know anything. 3499 3500 unsigned Opcode = Op.getOpcode(); 3501 switch (Opcode) { 3502 default: break; 3503 case ISD::AssertSext: 3504 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3505 return VTBits-Tmp+1; 3506 case ISD::AssertZext: 3507 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3508 return VTBits-Tmp; 3509 3510 case ISD::BUILD_VECTOR: 3511 Tmp = VTBits; 3512 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3513 if (!DemandedElts[i]) 3514 continue; 3515 3516 SDValue SrcOp = Op.getOperand(i); 3517 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3518 3519 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3520 if (SrcOp.getValueSizeInBits() != VTBits) { 3521 assert(SrcOp.getValueSizeInBits() > VTBits && 3522 "Expected BUILD_VECTOR implicit truncation"); 3523 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3524 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3525 } 3526 Tmp = std::min(Tmp, Tmp2); 3527 } 3528 return Tmp; 3529 3530 case ISD::VECTOR_SHUFFLE: { 3531 // Collect the minimum number of sign bits that are shared by every vector 3532 // element referenced by the shuffle. 3533 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3534 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3535 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3536 for (unsigned i = 0; i != NumElts; ++i) { 3537 int M = SVN->getMaskElt(i); 3538 if (!DemandedElts[i]) 3539 continue; 3540 // For UNDEF elements, we don't know anything about the common state of 3541 // the shuffle result. 3542 if (M < 0) 3543 return 1; 3544 if ((unsigned)M < NumElts) 3545 DemandedLHS.setBit((unsigned)M % NumElts); 3546 else 3547 DemandedRHS.setBit((unsigned)M % NumElts); 3548 } 3549 Tmp = std::numeric_limits<unsigned>::max(); 3550 if (!!DemandedLHS) 3551 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3552 if (!!DemandedRHS) { 3553 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3554 Tmp = std::min(Tmp, Tmp2); 3555 } 3556 // If we don't know anything, early out and try computeKnownBits fall-back. 3557 if (Tmp == 1) 3558 break; 3559 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3560 return Tmp; 3561 } 3562 3563 case ISD::BITCAST: { 3564 SDValue N0 = Op.getOperand(0); 3565 EVT SrcVT = N0.getValueType(); 3566 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3567 3568 // Ignore bitcasts from unsupported types.. 3569 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3570 break; 3571 3572 // Fast handling of 'identity' bitcasts. 3573 if (VTBits == SrcBits) 3574 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3575 3576 bool IsLE = getDataLayout().isLittleEndian(); 3577 3578 // Bitcast 'large element' scalar/vector to 'small element' vector. 3579 if ((SrcBits % VTBits) == 0) { 3580 assert(VT.isVector() && "Expected bitcast to vector"); 3581 3582 unsigned Scale = SrcBits / VTBits; 3583 APInt SrcDemandedElts(NumElts / Scale, 0); 3584 for (unsigned i = 0; i != NumElts; ++i) 3585 if (DemandedElts[i]) 3586 SrcDemandedElts.setBit(i / Scale); 3587 3588 // Fast case - sign splat can be simply split across the small elements. 3589 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3590 if (Tmp == SrcBits) 3591 return VTBits; 3592 3593 // Slow case - determine how far the sign extends into each sub-element. 3594 Tmp2 = VTBits; 3595 for (unsigned i = 0; i != NumElts; ++i) 3596 if (DemandedElts[i]) { 3597 unsigned SubOffset = i % Scale; 3598 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3599 SubOffset = SubOffset * VTBits; 3600 if (Tmp <= SubOffset) 3601 return 1; 3602 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3603 } 3604 return Tmp2; 3605 } 3606 break; 3607 } 3608 3609 case ISD::SIGN_EXTEND: 3610 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3611 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3612 case ISD::SIGN_EXTEND_INREG: 3613 // Max of the input and what this extends. 3614 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3615 Tmp = VTBits-Tmp+1; 3616 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3617 return std::max(Tmp, Tmp2); 3618 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3619 SDValue Src = Op.getOperand(0); 3620 EVT SrcVT = Src.getValueType(); 3621 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3622 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3623 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3624 } 3625 case ISD::SRA: 3626 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3627 // SRA X, C -> adds C sign bits. 3628 if (const APInt *ShAmt = 3629 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3630 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3631 return Tmp; 3632 case ISD::SHL: 3633 if (const APInt *ShAmt = 3634 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3635 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3636 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3637 if (ShAmt->ult(Tmp)) 3638 return Tmp - ShAmt->getZExtValue(); 3639 } 3640 break; 3641 case ISD::AND: 3642 case ISD::OR: 3643 case ISD::XOR: // NOT is handled here. 3644 // Logical binary ops preserve the number of sign bits at the worst. 3645 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3646 if (Tmp != 1) { 3647 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3648 FirstAnswer = std::min(Tmp, Tmp2); 3649 // We computed what we know about the sign bits as our first 3650 // answer. Now proceed to the generic code that uses 3651 // computeKnownBits, and pick whichever answer is better. 3652 } 3653 break; 3654 3655 case ISD::SELECT: 3656 case ISD::VSELECT: 3657 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3658 if (Tmp == 1) return 1; // Early out. 3659 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3660 return std::min(Tmp, Tmp2); 3661 case ISD::SELECT_CC: 3662 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3663 if (Tmp == 1) return 1; // Early out. 3664 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3665 return std::min(Tmp, Tmp2); 3666 3667 case ISD::SMIN: 3668 case ISD::SMAX: { 3669 // If we have a clamp pattern, we know that the number of sign bits will be 3670 // the minimum of the clamp min/max range. 3671 bool IsMax = (Opcode == ISD::SMAX); 3672 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3673 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3674 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3675 CstHigh = 3676 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3677 if (CstLow && CstHigh) { 3678 if (!IsMax) 3679 std::swap(CstLow, CstHigh); 3680 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3681 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3682 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3683 return std::min(Tmp, Tmp2); 3684 } 3685 } 3686 3687 // Fallback - just get the minimum number of sign bits of the operands. 3688 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3689 if (Tmp == 1) 3690 return 1; // Early out. 3691 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3692 return std::min(Tmp, Tmp2); 3693 } 3694 case ISD::UMIN: 3695 case ISD::UMAX: 3696 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3697 if (Tmp == 1) 3698 return 1; // Early out. 3699 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3700 return std::min(Tmp, Tmp2); 3701 case ISD::SADDO: 3702 case ISD::UADDO: 3703 case ISD::SSUBO: 3704 case ISD::USUBO: 3705 case ISD::SMULO: 3706 case ISD::UMULO: 3707 if (Op.getResNo() != 1) 3708 break; 3709 // The boolean result conforms to getBooleanContents. Fall through. 3710 // If setcc returns 0/-1, all bits are sign bits. 3711 // We know that we have an integer-based boolean since these operations 3712 // are only available for integer. 3713 if (TLI->getBooleanContents(VT.isVector(), false) == 3714 TargetLowering::ZeroOrNegativeOneBooleanContent) 3715 return VTBits; 3716 break; 3717 case ISD::SETCC: 3718 case ISD::STRICT_FSETCC: 3719 case ISD::STRICT_FSETCCS: { 3720 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3721 // If setcc returns 0/-1, all bits are sign bits. 3722 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3723 TargetLowering::ZeroOrNegativeOneBooleanContent) 3724 return VTBits; 3725 break; 3726 } 3727 case ISD::ROTL: 3728 case ISD::ROTR: 3729 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3730 3731 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3732 if (Tmp == VTBits) 3733 return VTBits; 3734 3735 if (ConstantSDNode *C = 3736 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3737 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3738 3739 // Handle rotate right by N like a rotate left by 32-N. 3740 if (Opcode == ISD::ROTR) 3741 RotAmt = (VTBits - RotAmt) % VTBits; 3742 3743 // If we aren't rotating out all of the known-in sign bits, return the 3744 // number that are left. This handles rotl(sext(x), 1) for example. 3745 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3746 } 3747 break; 3748 case ISD::ADD: 3749 case ISD::ADDC: 3750 // Add can have at most one carry bit. Thus we know that the output 3751 // is, at worst, one more bit than the inputs. 3752 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3753 if (Tmp == 1) return 1; // Early out. 3754 3755 // Special case decrementing a value (ADD X, -1): 3756 if (ConstantSDNode *CRHS = 3757 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3758 if (CRHS->isAllOnesValue()) { 3759 KnownBits Known = 3760 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3761 3762 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3763 // sign bits set. 3764 if ((Known.Zero | 1).isAllOnesValue()) 3765 return VTBits; 3766 3767 // If we are subtracting one from a positive number, there is no carry 3768 // out of the result. 3769 if (Known.isNonNegative()) 3770 return Tmp; 3771 } 3772 3773 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3774 if (Tmp2 == 1) return 1; // Early out. 3775 return std::min(Tmp, Tmp2) - 1; 3776 case ISD::SUB: 3777 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3778 if (Tmp2 == 1) return 1; // Early out. 3779 3780 // Handle NEG. 3781 if (ConstantSDNode *CLHS = 3782 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3783 if (CLHS->isNullValue()) { 3784 KnownBits Known = 3785 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3786 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3787 // sign bits set. 3788 if ((Known.Zero | 1).isAllOnesValue()) 3789 return VTBits; 3790 3791 // If the input is known to be positive (the sign bit is known clear), 3792 // the output of the NEG has the same number of sign bits as the input. 3793 if (Known.isNonNegative()) 3794 return Tmp2; 3795 3796 // Otherwise, we treat this like a SUB. 3797 } 3798 3799 // Sub can have at most one carry bit. Thus we know that the output 3800 // is, at worst, one more bit than the inputs. 3801 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3802 if (Tmp == 1) return 1; // Early out. 3803 return std::min(Tmp, Tmp2) - 1; 3804 case ISD::MUL: { 3805 // The output of the Mul can be at most twice the valid bits in the inputs. 3806 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3807 if (SignBitsOp0 == 1) 3808 break; 3809 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3810 if (SignBitsOp1 == 1) 3811 break; 3812 unsigned OutValidBits = 3813 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3814 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3815 } 3816 case ISD::TRUNCATE: { 3817 // Check if the sign bits of source go down as far as the truncated value. 3818 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3819 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3820 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3821 return NumSrcSignBits - (NumSrcBits - VTBits); 3822 break; 3823 } 3824 case ISD::EXTRACT_ELEMENT: { 3825 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3826 const int BitWidth = Op.getValueSizeInBits(); 3827 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3828 3829 // Get reverse index (starting from 1), Op1 value indexes elements from 3830 // little end. Sign starts at big end. 3831 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3832 3833 // If the sign portion ends in our element the subtraction gives correct 3834 // result. Otherwise it gives either negative or > bitwidth result 3835 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3836 } 3837 case ISD::INSERT_VECTOR_ELT: { 3838 // If we know the element index, split the demand between the 3839 // source vector and the inserted element, otherwise assume we need 3840 // the original demanded vector elements and the value. 3841 SDValue InVec = Op.getOperand(0); 3842 SDValue InVal = Op.getOperand(1); 3843 SDValue EltNo = Op.getOperand(2); 3844 bool DemandedVal = true; 3845 APInt DemandedVecElts = DemandedElts; 3846 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3847 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3848 unsigned EltIdx = CEltNo->getZExtValue(); 3849 DemandedVal = !!DemandedElts[EltIdx]; 3850 DemandedVecElts.clearBit(EltIdx); 3851 } 3852 Tmp = std::numeric_limits<unsigned>::max(); 3853 if (DemandedVal) { 3854 // TODO - handle implicit truncation of inserted elements. 3855 if (InVal.getScalarValueSizeInBits() != VTBits) 3856 break; 3857 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3858 Tmp = std::min(Tmp, Tmp2); 3859 } 3860 if (!!DemandedVecElts) { 3861 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3862 Tmp = std::min(Tmp, Tmp2); 3863 } 3864 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3865 return Tmp; 3866 } 3867 case ISD::EXTRACT_VECTOR_ELT: { 3868 SDValue InVec = Op.getOperand(0); 3869 SDValue EltNo = Op.getOperand(1); 3870 EVT VecVT = InVec.getValueType(); 3871 const unsigned BitWidth = Op.getValueSizeInBits(); 3872 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3873 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3874 3875 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3876 // anything about sign bits. But if the sizes match we can derive knowledge 3877 // about sign bits from the vector operand. 3878 if (BitWidth != EltBitWidth) 3879 break; 3880 3881 // If we know the element index, just demand that vector element, else for 3882 // an unknown element index, ignore DemandedElts and demand them all. 3883 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3884 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3885 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3886 DemandedSrcElts = 3887 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3888 3889 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3890 } 3891 case ISD::EXTRACT_SUBVECTOR: { 3892 // Offset the demanded elts by the subvector index. 3893 SDValue Src = Op.getOperand(0); 3894 // Bail until we can represent demanded elements for scalable vectors. 3895 if (Src.getValueType().isScalableVector()) 3896 break; 3897 uint64_t Idx = Op.getConstantOperandVal(1); 3898 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3899 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3900 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3901 } 3902 case ISD::CONCAT_VECTORS: { 3903 // Determine the minimum number of sign bits across all demanded 3904 // elts of the input vectors. Early out if the result is already 1. 3905 Tmp = std::numeric_limits<unsigned>::max(); 3906 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3907 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3908 unsigned NumSubVectors = Op.getNumOperands(); 3909 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3910 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3911 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3912 if (!DemandedSub) 3913 continue; 3914 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3915 Tmp = std::min(Tmp, Tmp2); 3916 } 3917 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3918 return Tmp; 3919 } 3920 case ISD::INSERT_SUBVECTOR: { 3921 // Demand any elements from the subvector and the remainder from the src its 3922 // inserted into. 3923 SDValue Src = Op.getOperand(0); 3924 SDValue Sub = Op.getOperand(1); 3925 uint64_t Idx = Op.getConstantOperandVal(2); 3926 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3927 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3928 APInt DemandedSrcElts = DemandedElts; 3929 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3930 3931 Tmp = std::numeric_limits<unsigned>::max(); 3932 if (!!DemandedSubElts) { 3933 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3934 if (Tmp == 1) 3935 return 1; // early-out 3936 } 3937 if (!!DemandedSrcElts) { 3938 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3939 Tmp = std::min(Tmp, Tmp2); 3940 } 3941 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3942 return Tmp; 3943 } 3944 } 3945 3946 // If we are looking at the loaded value of the SDNode. 3947 if (Op.getResNo() == 0) { 3948 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3949 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3950 unsigned ExtType = LD->getExtensionType(); 3951 switch (ExtType) { 3952 default: break; 3953 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3954 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3955 return VTBits - Tmp + 1; 3956 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3957 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3958 return VTBits - Tmp; 3959 case ISD::NON_EXTLOAD: 3960 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3961 // We only need to handle vectors - computeKnownBits should handle 3962 // scalar cases. 3963 Type *CstTy = Cst->getType(); 3964 if (CstTy->isVectorTy() && 3965 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3966 Tmp = VTBits; 3967 for (unsigned i = 0; i != NumElts; ++i) { 3968 if (!DemandedElts[i]) 3969 continue; 3970 if (Constant *Elt = Cst->getAggregateElement(i)) { 3971 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3972 const APInt &Value = CInt->getValue(); 3973 Tmp = std::min(Tmp, Value.getNumSignBits()); 3974 continue; 3975 } 3976 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3977 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3978 Tmp = std::min(Tmp, Value.getNumSignBits()); 3979 continue; 3980 } 3981 } 3982 // Unknown type. Conservatively assume no bits match sign bit. 3983 return 1; 3984 } 3985 return Tmp; 3986 } 3987 } 3988 break; 3989 } 3990 } 3991 } 3992 3993 // Allow the target to implement this method for its nodes. 3994 if (Opcode >= ISD::BUILTIN_OP_END || 3995 Opcode == ISD::INTRINSIC_WO_CHAIN || 3996 Opcode == ISD::INTRINSIC_W_CHAIN || 3997 Opcode == ISD::INTRINSIC_VOID) { 3998 unsigned NumBits = 3999 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4000 if (NumBits > 1) 4001 FirstAnswer = std::max(FirstAnswer, NumBits); 4002 } 4003 4004 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4005 // use this information. 4006 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4007 4008 APInt Mask; 4009 if (Known.isNonNegative()) { // sign bit is 0 4010 Mask = Known.Zero; 4011 } else if (Known.isNegative()) { // sign bit is 1; 4012 Mask = Known.One; 4013 } else { 4014 // Nothing known. 4015 return FirstAnswer; 4016 } 4017 4018 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4019 // the number of identical bits in the top of the input value. 4020 Mask <<= Mask.getBitWidth()-VTBits; 4021 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4022 } 4023 4024 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4025 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4026 !isa<ConstantSDNode>(Op.getOperand(1))) 4027 return false; 4028 4029 if (Op.getOpcode() == ISD::OR && 4030 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4031 return false; 4032 4033 return true; 4034 } 4035 4036 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4037 // If we're told that NaNs won't happen, assume they won't. 4038 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4039 return true; 4040 4041 if (Depth >= MaxRecursionDepth) 4042 return false; // Limit search depth. 4043 4044 // TODO: Handle vectors. 4045 // If the value is a constant, we can obviously see if it is a NaN or not. 4046 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4047 return !C->getValueAPF().isNaN() || 4048 (SNaN && !C->getValueAPF().isSignaling()); 4049 } 4050 4051 unsigned Opcode = Op.getOpcode(); 4052 switch (Opcode) { 4053 case ISD::FADD: 4054 case ISD::FSUB: 4055 case ISD::FMUL: 4056 case ISD::FDIV: 4057 case ISD::FREM: 4058 case ISD::FSIN: 4059 case ISD::FCOS: { 4060 if (SNaN) 4061 return true; 4062 // TODO: Need isKnownNeverInfinity 4063 return false; 4064 } 4065 case ISD::FCANONICALIZE: 4066 case ISD::FEXP: 4067 case ISD::FEXP2: 4068 case ISD::FTRUNC: 4069 case ISD::FFLOOR: 4070 case ISD::FCEIL: 4071 case ISD::FROUND: 4072 case ISD::FROUNDEVEN: 4073 case ISD::FRINT: 4074 case ISD::FNEARBYINT: { 4075 if (SNaN) 4076 return true; 4077 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4078 } 4079 case ISD::FABS: 4080 case ISD::FNEG: 4081 case ISD::FCOPYSIGN: { 4082 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4083 } 4084 case ISD::SELECT: 4085 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4086 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4087 case ISD::FP_EXTEND: 4088 case ISD::FP_ROUND: { 4089 if (SNaN) 4090 return true; 4091 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4092 } 4093 case ISD::SINT_TO_FP: 4094 case ISD::UINT_TO_FP: 4095 return true; 4096 case ISD::FMA: 4097 case ISD::FMAD: { 4098 if (SNaN) 4099 return true; 4100 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4101 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4102 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4103 } 4104 case ISD::FSQRT: // Need is known positive 4105 case ISD::FLOG: 4106 case ISD::FLOG2: 4107 case ISD::FLOG10: 4108 case ISD::FPOWI: 4109 case ISD::FPOW: { 4110 if (SNaN) 4111 return true; 4112 // TODO: Refine on operand 4113 return false; 4114 } 4115 case ISD::FMINNUM: 4116 case ISD::FMAXNUM: { 4117 // Only one needs to be known not-nan, since it will be returned if the 4118 // other ends up being one. 4119 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4120 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4121 } 4122 case ISD::FMINNUM_IEEE: 4123 case ISD::FMAXNUM_IEEE: { 4124 if (SNaN) 4125 return true; 4126 // This can return a NaN if either operand is an sNaN, or if both operands 4127 // are NaN. 4128 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4129 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4130 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4131 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4132 } 4133 case ISD::FMINIMUM: 4134 case ISD::FMAXIMUM: { 4135 // TODO: Does this quiet or return the origina NaN as-is? 4136 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4137 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4138 } 4139 case ISD::EXTRACT_VECTOR_ELT: { 4140 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4141 } 4142 default: 4143 if (Opcode >= ISD::BUILTIN_OP_END || 4144 Opcode == ISD::INTRINSIC_WO_CHAIN || 4145 Opcode == ISD::INTRINSIC_W_CHAIN || 4146 Opcode == ISD::INTRINSIC_VOID) { 4147 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4148 } 4149 4150 return false; 4151 } 4152 } 4153 4154 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4155 assert(Op.getValueType().isFloatingPoint() && 4156 "Floating point type expected"); 4157 4158 // If the value is a constant, we can obviously see if it is a zero or not. 4159 // TODO: Add BuildVector support. 4160 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4161 return !C->isZero(); 4162 return false; 4163 } 4164 4165 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4166 assert(!Op.getValueType().isFloatingPoint() && 4167 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4168 4169 // If the value is a constant, we can obviously see if it is a zero or not. 4170 if (ISD::matchUnaryPredicate( 4171 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4172 return true; 4173 4174 // TODO: Recognize more cases here. 4175 switch (Op.getOpcode()) { 4176 default: break; 4177 case ISD::OR: 4178 if (isKnownNeverZero(Op.getOperand(1)) || 4179 isKnownNeverZero(Op.getOperand(0))) 4180 return true; 4181 break; 4182 } 4183 4184 return false; 4185 } 4186 4187 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4188 // Check the obvious case. 4189 if (A == B) return true; 4190 4191 // For for negative and positive zero. 4192 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4193 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4194 if (CA->isZero() && CB->isZero()) return true; 4195 4196 // Otherwise they may not be equal. 4197 return false; 4198 } 4199 4200 // FIXME: unify with llvm::haveNoCommonBitsSet. 4201 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4202 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4203 assert(A.getValueType() == B.getValueType() && 4204 "Values must have the same type"); 4205 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4206 } 4207 4208 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4209 ArrayRef<SDValue> Ops, 4210 SelectionDAG &DAG) { 4211 int NumOps = Ops.size(); 4212 assert(NumOps != 0 && "Can't build an empty vector!"); 4213 assert(!VT.isScalableVector() && 4214 "BUILD_VECTOR cannot be used with scalable types"); 4215 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4216 "Incorrect element count in BUILD_VECTOR!"); 4217 4218 // BUILD_VECTOR of UNDEFs is UNDEF. 4219 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4220 return DAG.getUNDEF(VT); 4221 4222 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4223 SDValue IdentitySrc; 4224 bool IsIdentity = true; 4225 for (int i = 0; i != NumOps; ++i) { 4226 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4227 Ops[i].getOperand(0).getValueType() != VT || 4228 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4229 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4230 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4231 IsIdentity = false; 4232 break; 4233 } 4234 IdentitySrc = Ops[i].getOperand(0); 4235 } 4236 if (IsIdentity) 4237 return IdentitySrc; 4238 4239 return SDValue(); 4240 } 4241 4242 /// Try to simplify vector concatenation to an input value, undef, or build 4243 /// vector. 4244 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4245 ArrayRef<SDValue> Ops, 4246 SelectionDAG &DAG) { 4247 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4248 assert(llvm::all_of(Ops, 4249 [Ops](SDValue Op) { 4250 return Ops[0].getValueType() == Op.getValueType(); 4251 }) && 4252 "Concatenation of vectors with inconsistent value types!"); 4253 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4254 VT.getVectorElementCount() && 4255 "Incorrect element count in vector concatenation!"); 4256 4257 if (Ops.size() == 1) 4258 return Ops[0]; 4259 4260 // Concat of UNDEFs is UNDEF. 4261 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4262 return DAG.getUNDEF(VT); 4263 4264 // Scan the operands and look for extract operations from a single source 4265 // that correspond to insertion at the same location via this concatenation: 4266 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4267 SDValue IdentitySrc; 4268 bool IsIdentity = true; 4269 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4270 SDValue Op = Ops[i]; 4271 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4272 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4273 Op.getOperand(0).getValueType() != VT || 4274 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4275 Op.getConstantOperandVal(1) != IdentityIndex) { 4276 IsIdentity = false; 4277 break; 4278 } 4279 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4280 "Unexpected identity source vector for concat of extracts"); 4281 IdentitySrc = Op.getOperand(0); 4282 } 4283 if (IsIdentity) { 4284 assert(IdentitySrc && "Failed to set source vector of extracts"); 4285 return IdentitySrc; 4286 } 4287 4288 // The code below this point is only designed to work for fixed width 4289 // vectors, so we bail out for now. 4290 if (VT.isScalableVector()) 4291 return SDValue(); 4292 4293 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4294 // simplified to one big BUILD_VECTOR. 4295 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4296 EVT SVT = VT.getScalarType(); 4297 SmallVector<SDValue, 16> Elts; 4298 for (SDValue Op : Ops) { 4299 EVT OpVT = Op.getValueType(); 4300 if (Op.isUndef()) 4301 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4302 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4303 Elts.append(Op->op_begin(), Op->op_end()); 4304 else 4305 return SDValue(); 4306 } 4307 4308 // BUILD_VECTOR requires all inputs to be of the same type, find the 4309 // maximum type and extend them all. 4310 for (SDValue Op : Elts) 4311 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4312 4313 if (SVT.bitsGT(VT.getScalarType())) { 4314 for (SDValue &Op : Elts) { 4315 if (Op.isUndef()) 4316 Op = DAG.getUNDEF(SVT); 4317 else 4318 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4319 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4320 : DAG.getSExtOrTrunc(Op, DL, SVT); 4321 } 4322 } 4323 4324 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4325 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4326 return V; 4327 } 4328 4329 /// Gets or creates the specified node. 4330 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4331 FoldingSetNodeID ID; 4332 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4333 void *IP = nullptr; 4334 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4335 return SDValue(E, 0); 4336 4337 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4338 getVTList(VT)); 4339 CSEMap.InsertNode(N, IP); 4340 4341 InsertNode(N); 4342 SDValue V = SDValue(N, 0); 4343 NewSDValueDbgMsg(V, "Creating new node: ", this); 4344 return V; 4345 } 4346 4347 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4348 SDValue Operand) { 4349 SDNodeFlags Flags; 4350 if (Inserter) 4351 Flags = Inserter->getFlags(); 4352 return getNode(Opcode, DL, VT, Operand, Flags); 4353 } 4354 4355 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4356 SDValue Operand, const SDNodeFlags Flags) { 4357 // Constant fold unary operations with an integer constant operand. Even 4358 // opaque constant will be folded, because the folding of unary operations 4359 // doesn't create new constants with different values. Nevertheless, the 4360 // opaque flag is preserved during folding to prevent future folding with 4361 // other constants. 4362 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4363 const APInt &Val = C->getAPIntValue(); 4364 switch (Opcode) { 4365 default: break; 4366 case ISD::SIGN_EXTEND: 4367 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4368 C->isTargetOpcode(), C->isOpaque()); 4369 case ISD::TRUNCATE: 4370 if (C->isOpaque()) 4371 break; 4372 LLVM_FALLTHROUGH; 4373 case ISD::ANY_EXTEND: 4374 case ISD::ZERO_EXTEND: 4375 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4376 C->isTargetOpcode(), C->isOpaque()); 4377 case ISD::UINT_TO_FP: 4378 case ISD::SINT_TO_FP: { 4379 APFloat apf(EVTToAPFloatSemantics(VT), 4380 APInt::getNullValue(VT.getSizeInBits())); 4381 (void)apf.convertFromAPInt(Val, 4382 Opcode==ISD::SINT_TO_FP, 4383 APFloat::rmNearestTiesToEven); 4384 return getConstantFP(apf, DL, VT); 4385 } 4386 case ISD::BITCAST: 4387 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4388 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4389 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4390 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4391 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4392 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4393 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4394 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4395 break; 4396 case ISD::ABS: 4397 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4398 C->isOpaque()); 4399 case ISD::BITREVERSE: 4400 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4401 C->isOpaque()); 4402 case ISD::BSWAP: 4403 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4404 C->isOpaque()); 4405 case ISD::CTPOP: 4406 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4407 C->isOpaque()); 4408 case ISD::CTLZ: 4409 case ISD::CTLZ_ZERO_UNDEF: 4410 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4411 C->isOpaque()); 4412 case ISD::CTTZ: 4413 case ISD::CTTZ_ZERO_UNDEF: 4414 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4415 C->isOpaque()); 4416 case ISD::FP16_TO_FP: { 4417 bool Ignored; 4418 APFloat FPV(APFloat::IEEEhalf(), 4419 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4420 4421 // This can return overflow, underflow, or inexact; we don't care. 4422 // FIXME need to be more flexible about rounding mode. 4423 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4424 APFloat::rmNearestTiesToEven, &Ignored); 4425 return getConstantFP(FPV, DL, VT); 4426 } 4427 } 4428 } 4429 4430 // Constant fold unary operations with a floating point constant operand. 4431 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4432 APFloat V = C->getValueAPF(); // make copy 4433 switch (Opcode) { 4434 case ISD::FNEG: 4435 V.changeSign(); 4436 return getConstantFP(V, DL, VT); 4437 case ISD::FABS: 4438 V.clearSign(); 4439 return getConstantFP(V, DL, VT); 4440 case ISD::FCEIL: { 4441 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4442 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4443 return getConstantFP(V, DL, VT); 4444 break; 4445 } 4446 case ISD::FTRUNC: { 4447 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4448 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4449 return getConstantFP(V, DL, VT); 4450 break; 4451 } 4452 case ISD::FFLOOR: { 4453 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4454 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4455 return getConstantFP(V, DL, VT); 4456 break; 4457 } 4458 case ISD::FP_EXTEND: { 4459 bool ignored; 4460 // This can return overflow, underflow, or inexact; we don't care. 4461 // FIXME need to be more flexible about rounding mode. 4462 (void)V.convert(EVTToAPFloatSemantics(VT), 4463 APFloat::rmNearestTiesToEven, &ignored); 4464 return getConstantFP(V, DL, VT); 4465 } 4466 case ISD::FP_TO_SINT: 4467 case ISD::FP_TO_UINT: { 4468 bool ignored; 4469 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4470 // FIXME need to be more flexible about rounding mode. 4471 APFloat::opStatus s = 4472 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4473 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4474 break; 4475 return getConstant(IntVal, DL, VT); 4476 } 4477 case ISD::BITCAST: 4478 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4479 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4480 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4481 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4482 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4483 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4484 break; 4485 case ISD::FP_TO_FP16: { 4486 bool Ignored; 4487 // This can return overflow, underflow, or inexact; we don't care. 4488 // FIXME need to be more flexible about rounding mode. 4489 (void)V.convert(APFloat::IEEEhalf(), 4490 APFloat::rmNearestTiesToEven, &Ignored); 4491 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4492 } 4493 } 4494 } 4495 4496 // Constant fold unary operations with a vector integer or float operand. 4497 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4498 if (BV->isConstant()) { 4499 switch (Opcode) { 4500 default: 4501 // FIXME: Entirely reasonable to perform folding of other unary 4502 // operations here as the need arises. 4503 break; 4504 case ISD::FNEG: 4505 case ISD::FABS: 4506 case ISD::FCEIL: 4507 case ISD::FTRUNC: 4508 case ISD::FFLOOR: 4509 case ISD::FP_EXTEND: 4510 case ISD::FP_TO_SINT: 4511 case ISD::FP_TO_UINT: 4512 case ISD::TRUNCATE: 4513 case ISD::ANY_EXTEND: 4514 case ISD::ZERO_EXTEND: 4515 case ISD::SIGN_EXTEND: 4516 case ISD::UINT_TO_FP: 4517 case ISD::SINT_TO_FP: 4518 case ISD::ABS: 4519 case ISD::BITREVERSE: 4520 case ISD::BSWAP: 4521 case ISD::CTLZ: 4522 case ISD::CTLZ_ZERO_UNDEF: 4523 case ISD::CTTZ: 4524 case ISD::CTTZ_ZERO_UNDEF: 4525 case ISD::CTPOP: { 4526 SDValue Ops = { Operand }; 4527 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4528 return Fold; 4529 } 4530 } 4531 } 4532 } 4533 4534 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4535 switch (Opcode) { 4536 case ISD::FREEZE: 4537 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4538 break; 4539 case ISD::TokenFactor: 4540 case ISD::MERGE_VALUES: 4541 case ISD::CONCAT_VECTORS: 4542 return Operand; // Factor, merge or concat of one node? No need. 4543 case ISD::BUILD_VECTOR: { 4544 // Attempt to simplify BUILD_VECTOR. 4545 SDValue Ops[] = {Operand}; 4546 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4547 return V; 4548 break; 4549 } 4550 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4551 case ISD::FP_EXTEND: 4552 assert(VT.isFloatingPoint() && 4553 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4554 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4555 assert((!VT.isVector() || 4556 VT.getVectorElementCount() == 4557 Operand.getValueType().getVectorElementCount()) && 4558 "Vector element count mismatch!"); 4559 assert(Operand.getValueType().bitsLT(VT) && 4560 "Invalid fpext node, dst < src!"); 4561 if (Operand.isUndef()) 4562 return getUNDEF(VT); 4563 break; 4564 case ISD::FP_TO_SINT: 4565 case ISD::FP_TO_UINT: 4566 if (Operand.isUndef()) 4567 return getUNDEF(VT); 4568 break; 4569 case ISD::SINT_TO_FP: 4570 case ISD::UINT_TO_FP: 4571 // [us]itofp(undef) = 0, because the result value is bounded. 4572 if (Operand.isUndef()) 4573 return getConstantFP(0.0, DL, VT); 4574 break; 4575 case ISD::SIGN_EXTEND: 4576 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4577 "Invalid SIGN_EXTEND!"); 4578 assert(VT.isVector() == Operand.getValueType().isVector() && 4579 "SIGN_EXTEND result type type should be vector iff the operand " 4580 "type is vector!"); 4581 if (Operand.getValueType() == VT) return Operand; // noop extension 4582 assert((!VT.isVector() || 4583 VT.getVectorElementCount() == 4584 Operand.getValueType().getVectorElementCount()) && 4585 "Vector element count mismatch!"); 4586 assert(Operand.getValueType().bitsLT(VT) && 4587 "Invalid sext node, dst < src!"); 4588 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4589 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4590 else if (OpOpcode == ISD::UNDEF) 4591 // sext(undef) = 0, because the top bits will all be the same. 4592 return getConstant(0, DL, VT); 4593 break; 4594 case ISD::ZERO_EXTEND: 4595 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4596 "Invalid ZERO_EXTEND!"); 4597 assert(VT.isVector() == Operand.getValueType().isVector() && 4598 "ZERO_EXTEND result type type should be vector iff the operand " 4599 "type is vector!"); 4600 if (Operand.getValueType() == VT) return Operand; // noop extension 4601 assert((!VT.isVector() || 4602 VT.getVectorElementCount() == 4603 Operand.getValueType().getVectorElementCount()) && 4604 "Vector element count mismatch!"); 4605 assert(Operand.getValueType().bitsLT(VT) && 4606 "Invalid zext node, dst < src!"); 4607 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4608 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4609 else if (OpOpcode == ISD::UNDEF) 4610 // zext(undef) = 0, because the top bits will be zero. 4611 return getConstant(0, DL, VT); 4612 break; 4613 case ISD::ANY_EXTEND: 4614 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4615 "Invalid ANY_EXTEND!"); 4616 assert(VT.isVector() == Operand.getValueType().isVector() && 4617 "ANY_EXTEND result type type should be vector iff the operand " 4618 "type is vector!"); 4619 if (Operand.getValueType() == VT) return Operand; // noop extension 4620 assert((!VT.isVector() || 4621 VT.getVectorElementCount() == 4622 Operand.getValueType().getVectorElementCount()) && 4623 "Vector element count mismatch!"); 4624 assert(Operand.getValueType().bitsLT(VT) && 4625 "Invalid anyext node, dst < src!"); 4626 4627 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4628 OpOpcode == ISD::ANY_EXTEND) 4629 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4630 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4631 else if (OpOpcode == ISD::UNDEF) 4632 return getUNDEF(VT); 4633 4634 // (ext (trunc x)) -> x 4635 if (OpOpcode == ISD::TRUNCATE) { 4636 SDValue OpOp = Operand.getOperand(0); 4637 if (OpOp.getValueType() == VT) { 4638 transferDbgValues(Operand, OpOp); 4639 return OpOp; 4640 } 4641 } 4642 break; 4643 case ISD::TRUNCATE: 4644 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4645 "Invalid TRUNCATE!"); 4646 assert(VT.isVector() == Operand.getValueType().isVector() && 4647 "TRUNCATE result type type should be vector iff the operand " 4648 "type is vector!"); 4649 if (Operand.getValueType() == VT) return Operand; // noop truncate 4650 assert((!VT.isVector() || 4651 VT.getVectorElementCount() == 4652 Operand.getValueType().getVectorElementCount()) && 4653 "Vector element count mismatch!"); 4654 assert(Operand.getValueType().bitsGT(VT) && 4655 "Invalid truncate node, src < dst!"); 4656 if (OpOpcode == ISD::TRUNCATE) 4657 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4658 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4659 OpOpcode == ISD::ANY_EXTEND) { 4660 // If the source is smaller than the dest, we still need an extend. 4661 if (Operand.getOperand(0).getValueType().getScalarType() 4662 .bitsLT(VT.getScalarType())) 4663 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4664 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4665 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4666 return Operand.getOperand(0); 4667 } 4668 if (OpOpcode == ISD::UNDEF) 4669 return getUNDEF(VT); 4670 break; 4671 case ISD::ANY_EXTEND_VECTOR_INREG: 4672 case ISD::ZERO_EXTEND_VECTOR_INREG: 4673 case ISD::SIGN_EXTEND_VECTOR_INREG: 4674 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4675 assert(Operand.getValueType().bitsLE(VT) && 4676 "The input must be the same size or smaller than the result."); 4677 assert(VT.getVectorNumElements() < 4678 Operand.getValueType().getVectorNumElements() && 4679 "The destination vector type must have fewer lanes than the input."); 4680 break; 4681 case ISD::ABS: 4682 assert(VT.isInteger() && VT == Operand.getValueType() && 4683 "Invalid ABS!"); 4684 if (OpOpcode == ISD::UNDEF) 4685 return getUNDEF(VT); 4686 break; 4687 case ISD::BSWAP: 4688 assert(VT.isInteger() && VT == Operand.getValueType() && 4689 "Invalid BSWAP!"); 4690 assert((VT.getScalarSizeInBits() % 16 == 0) && 4691 "BSWAP types must be a multiple of 16 bits!"); 4692 if (OpOpcode == ISD::UNDEF) 4693 return getUNDEF(VT); 4694 break; 4695 case ISD::BITREVERSE: 4696 assert(VT.isInteger() && VT == Operand.getValueType() && 4697 "Invalid BITREVERSE!"); 4698 if (OpOpcode == ISD::UNDEF) 4699 return getUNDEF(VT); 4700 break; 4701 case ISD::BITCAST: 4702 // Basic sanity checking. 4703 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4704 "Cannot BITCAST between types of different sizes!"); 4705 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4706 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4707 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4708 if (OpOpcode == ISD::UNDEF) 4709 return getUNDEF(VT); 4710 break; 4711 case ISD::SCALAR_TO_VECTOR: 4712 assert(VT.isVector() && !Operand.getValueType().isVector() && 4713 (VT.getVectorElementType() == Operand.getValueType() || 4714 (VT.getVectorElementType().isInteger() && 4715 Operand.getValueType().isInteger() && 4716 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4717 "Illegal SCALAR_TO_VECTOR node!"); 4718 if (OpOpcode == ISD::UNDEF) 4719 return getUNDEF(VT); 4720 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4721 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4722 isa<ConstantSDNode>(Operand.getOperand(1)) && 4723 Operand.getConstantOperandVal(1) == 0 && 4724 Operand.getOperand(0).getValueType() == VT) 4725 return Operand.getOperand(0); 4726 break; 4727 case ISD::FNEG: 4728 // Negation of an unknown bag of bits is still completely undefined. 4729 if (OpOpcode == ISD::UNDEF) 4730 return getUNDEF(VT); 4731 4732 if (OpOpcode == ISD::FNEG) // --X -> X 4733 return Operand.getOperand(0); 4734 break; 4735 case ISD::FABS: 4736 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4737 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4738 break; 4739 case ISD::VSCALE: 4740 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4741 break; 4742 case ISD::VECREDUCE_SMIN: 4743 case ISD::VECREDUCE_UMAX: 4744 if (Operand.getValueType().getScalarType() == MVT::i1) 4745 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4746 break; 4747 case ISD::VECREDUCE_SMAX: 4748 case ISD::VECREDUCE_UMIN: 4749 if (Operand.getValueType().getScalarType() == MVT::i1) 4750 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4751 break; 4752 } 4753 4754 SDNode *N; 4755 SDVTList VTs = getVTList(VT); 4756 SDValue Ops[] = {Operand}; 4757 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4758 FoldingSetNodeID ID; 4759 AddNodeIDNode(ID, Opcode, VTs, Ops); 4760 void *IP = nullptr; 4761 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4762 E->intersectFlagsWith(Flags); 4763 return SDValue(E, 0); 4764 } 4765 4766 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4767 N->setFlags(Flags); 4768 createOperands(N, Ops); 4769 CSEMap.InsertNode(N, IP); 4770 } else { 4771 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4772 createOperands(N, Ops); 4773 } 4774 4775 InsertNode(N); 4776 SDValue V = SDValue(N, 0); 4777 NewSDValueDbgMsg(V, "Creating new node: ", this); 4778 return V; 4779 } 4780 4781 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4782 const APInt &C2) { 4783 switch (Opcode) { 4784 case ISD::ADD: return C1 + C2; 4785 case ISD::SUB: return C1 - C2; 4786 case ISD::MUL: return C1 * C2; 4787 case ISD::AND: return C1 & C2; 4788 case ISD::OR: return C1 | C2; 4789 case ISD::XOR: return C1 ^ C2; 4790 case ISD::SHL: return C1 << C2; 4791 case ISD::SRL: return C1.lshr(C2); 4792 case ISD::SRA: return C1.ashr(C2); 4793 case ISD::ROTL: return C1.rotl(C2); 4794 case ISD::ROTR: return C1.rotr(C2); 4795 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4796 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4797 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4798 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4799 case ISD::SADDSAT: return C1.sadd_sat(C2); 4800 case ISD::UADDSAT: return C1.uadd_sat(C2); 4801 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4802 case ISD::USUBSAT: return C1.usub_sat(C2); 4803 case ISD::UDIV: 4804 if (!C2.getBoolValue()) 4805 break; 4806 return C1.udiv(C2); 4807 case ISD::UREM: 4808 if (!C2.getBoolValue()) 4809 break; 4810 return C1.urem(C2); 4811 case ISD::SDIV: 4812 if (!C2.getBoolValue()) 4813 break; 4814 return C1.sdiv(C2); 4815 case ISD::SREM: 4816 if (!C2.getBoolValue()) 4817 break; 4818 return C1.srem(C2); 4819 } 4820 return llvm::None; 4821 } 4822 4823 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4824 const GlobalAddressSDNode *GA, 4825 const SDNode *N2) { 4826 if (GA->getOpcode() != ISD::GlobalAddress) 4827 return SDValue(); 4828 if (!TLI->isOffsetFoldingLegal(GA)) 4829 return SDValue(); 4830 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4831 if (!C2) 4832 return SDValue(); 4833 int64_t Offset = C2->getSExtValue(); 4834 switch (Opcode) { 4835 case ISD::ADD: break; 4836 case ISD::SUB: Offset = -uint64_t(Offset); break; 4837 default: return SDValue(); 4838 } 4839 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4840 GA->getOffset() + uint64_t(Offset)); 4841 } 4842 4843 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4844 switch (Opcode) { 4845 case ISD::SDIV: 4846 case ISD::UDIV: 4847 case ISD::SREM: 4848 case ISD::UREM: { 4849 // If a divisor is zero/undef or any element of a divisor vector is 4850 // zero/undef, the whole op is undef. 4851 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4852 SDValue Divisor = Ops[1]; 4853 if (Divisor.isUndef() || isNullConstant(Divisor)) 4854 return true; 4855 4856 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4857 llvm::any_of(Divisor->op_values(), 4858 [](SDValue V) { return V.isUndef() || 4859 isNullConstant(V); }); 4860 // TODO: Handle signed overflow. 4861 } 4862 // TODO: Handle oversized shifts. 4863 default: 4864 return false; 4865 } 4866 } 4867 4868 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4869 EVT VT, ArrayRef<SDValue> Ops) { 4870 // If the opcode is a target-specific ISD node, there's nothing we can 4871 // do here and the operand rules may not line up with the below, so 4872 // bail early. 4873 if (Opcode >= ISD::BUILTIN_OP_END) 4874 return SDValue(); 4875 4876 // For now, the array Ops should only contain two values. 4877 // This enforcement will be removed once this function is merged with 4878 // FoldConstantVectorArithmetic 4879 if (Ops.size() != 2) 4880 return SDValue(); 4881 4882 if (isUndef(Opcode, Ops)) 4883 return getUNDEF(VT); 4884 4885 SDNode *N1 = Ops[0].getNode(); 4886 SDNode *N2 = Ops[1].getNode(); 4887 4888 // Handle the case of two scalars. 4889 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4890 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4891 if (C1->isOpaque() || C2->isOpaque()) 4892 return SDValue(); 4893 4894 Optional<APInt> FoldAttempt = 4895 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4896 if (!FoldAttempt) 4897 return SDValue(); 4898 4899 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4900 assert((!Folded || !VT.isVector()) && 4901 "Can't fold vectors ops with scalar operands"); 4902 return Folded; 4903 } 4904 } 4905 4906 // fold (add Sym, c) -> Sym+c 4907 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4908 return FoldSymbolOffset(Opcode, VT, GA, N2); 4909 if (TLI->isCommutativeBinOp(Opcode)) 4910 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4911 return FoldSymbolOffset(Opcode, VT, GA, N1); 4912 4913 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4914 // vector width, however we should be able to do constant folds involving 4915 // splat vector nodes too. 4916 if (VT.isScalableVector()) 4917 return SDValue(); 4918 4919 // For fixed width vectors, extract each constant element and fold them 4920 // individually. Either input may be an undef value. 4921 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4922 if (!BV1 && !N1->isUndef()) 4923 return SDValue(); 4924 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4925 if (!BV2 && !N2->isUndef()) 4926 return SDValue(); 4927 // If both operands are undef, that's handled the same way as scalars. 4928 if (!BV1 && !BV2) 4929 return SDValue(); 4930 4931 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4932 "Vector binop with different number of elements in operands?"); 4933 4934 EVT SVT = VT.getScalarType(); 4935 EVT LegalSVT = SVT; 4936 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4937 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4938 if (LegalSVT.bitsLT(SVT)) 4939 return SDValue(); 4940 } 4941 SmallVector<SDValue, 4> Outputs; 4942 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4943 for (unsigned I = 0; I != NumOps; ++I) { 4944 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4945 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4946 if (SVT.isInteger()) { 4947 if (V1->getValueType(0).bitsGT(SVT)) 4948 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4949 if (V2->getValueType(0).bitsGT(SVT)) 4950 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4951 } 4952 4953 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4954 return SDValue(); 4955 4956 // Fold one vector element. 4957 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4958 if (LegalSVT != SVT) 4959 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4960 4961 // Scalar folding only succeeded if the result is a constant or UNDEF. 4962 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4963 ScalarResult.getOpcode() != ISD::ConstantFP) 4964 return SDValue(); 4965 Outputs.push_back(ScalarResult); 4966 } 4967 4968 assert(VT.getVectorNumElements() == Outputs.size() && 4969 "Vector size mismatch!"); 4970 4971 // We may have a vector type but a scalar result. Create a splat. 4972 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4973 4974 // Build a big vector out of the scalar elements we generated. 4975 return getBuildVector(VT, SDLoc(), Outputs); 4976 } 4977 4978 // TODO: Merge with FoldConstantArithmetic 4979 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4980 const SDLoc &DL, EVT VT, 4981 ArrayRef<SDValue> Ops, 4982 const SDNodeFlags Flags) { 4983 // If the opcode is a target-specific ISD node, there's nothing we can 4984 // do here and the operand rules may not line up with the below, so 4985 // bail early. 4986 if (Opcode >= ISD::BUILTIN_OP_END) 4987 return SDValue(); 4988 4989 if (isUndef(Opcode, Ops)) 4990 return getUNDEF(VT); 4991 4992 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4993 if (!VT.isVector()) 4994 return SDValue(); 4995 4996 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4997 // vector width, however we should be able to do constant folds involving 4998 // splat vector nodes too. 4999 if (VT.isScalableVector()) 5000 return SDValue(); 5001 5002 // From this point onwards all vectors are assumed to be fixed width. 5003 unsigned NumElts = VT.getVectorNumElements(); 5004 5005 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5006 return !Op.getValueType().isVector() || 5007 Op.getValueType().getVectorNumElements() == NumElts; 5008 }; 5009 5010 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5011 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5012 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5013 (BV && BV->isConstant()); 5014 }; 5015 5016 // All operands must be vector types with the same number of elements as 5017 // the result type and must be either UNDEF or a build vector of constant 5018 // or UNDEF scalars. 5019 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5020 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5021 return SDValue(); 5022 5023 // If we are comparing vectors, then the result needs to be a i1 boolean 5024 // that is then sign-extended back to the legal result type. 5025 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5026 5027 // Find legal integer scalar type for constant promotion and 5028 // ensure that its scalar size is at least as large as source. 5029 EVT LegalSVT = VT.getScalarType(); 5030 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5031 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5032 if (LegalSVT.bitsLT(VT.getScalarType())) 5033 return SDValue(); 5034 } 5035 5036 // Constant fold each scalar lane separately. 5037 SmallVector<SDValue, 4> ScalarResults; 5038 for (unsigned i = 0; i != NumElts; i++) { 5039 SmallVector<SDValue, 4> ScalarOps; 5040 for (SDValue Op : Ops) { 5041 EVT InSVT = Op.getValueType().getScalarType(); 5042 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5043 if (!InBV) { 5044 // We've checked that this is UNDEF or a constant of some kind. 5045 if (Op.isUndef()) 5046 ScalarOps.push_back(getUNDEF(InSVT)); 5047 else 5048 ScalarOps.push_back(Op); 5049 continue; 5050 } 5051 5052 SDValue ScalarOp = InBV->getOperand(i); 5053 EVT ScalarVT = ScalarOp.getValueType(); 5054 5055 // Build vector (integer) scalar operands may need implicit 5056 // truncation - do this before constant folding. 5057 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5058 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5059 5060 ScalarOps.push_back(ScalarOp); 5061 } 5062 5063 // Constant fold the scalar operands. 5064 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5065 5066 // Legalize the (integer) scalar constant if necessary. 5067 if (LegalSVT != SVT) 5068 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5069 5070 // Scalar folding only succeeded if the result is a constant or UNDEF. 5071 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5072 ScalarResult.getOpcode() != ISD::ConstantFP) 5073 return SDValue(); 5074 ScalarResults.push_back(ScalarResult); 5075 } 5076 5077 SDValue V = getBuildVector(VT, DL, ScalarResults); 5078 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5079 return V; 5080 } 5081 5082 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5083 EVT VT, SDValue N1, SDValue N2) { 5084 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5085 // should. That will require dealing with a potentially non-default 5086 // rounding mode, checking the "opStatus" return value from the APFloat 5087 // math calculations, and possibly other variations. 5088 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5089 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5090 if (N1CFP && N2CFP) { 5091 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5092 switch (Opcode) { 5093 case ISD::FADD: 5094 C1.add(C2, APFloat::rmNearestTiesToEven); 5095 return getConstantFP(C1, DL, VT); 5096 case ISD::FSUB: 5097 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5098 return getConstantFP(C1, DL, VT); 5099 case ISD::FMUL: 5100 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5101 return getConstantFP(C1, DL, VT); 5102 case ISD::FDIV: 5103 C1.divide(C2, APFloat::rmNearestTiesToEven); 5104 return getConstantFP(C1, DL, VT); 5105 case ISD::FREM: 5106 C1.mod(C2); 5107 return getConstantFP(C1, DL, VT); 5108 case ISD::FCOPYSIGN: 5109 C1.copySign(C2); 5110 return getConstantFP(C1, DL, VT); 5111 default: break; 5112 } 5113 } 5114 if (N1CFP && Opcode == ISD::FP_ROUND) { 5115 APFloat C1 = N1CFP->getValueAPF(); // make copy 5116 bool Unused; 5117 // This can return overflow, underflow, or inexact; we don't care. 5118 // FIXME need to be more flexible about rounding mode. 5119 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5120 &Unused); 5121 return getConstantFP(C1, DL, VT); 5122 } 5123 5124 switch (Opcode) { 5125 case ISD::FSUB: 5126 // -0.0 - undef --> undef (consistent with "fneg undef") 5127 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5128 return getUNDEF(VT); 5129 LLVM_FALLTHROUGH; 5130 5131 case ISD::FADD: 5132 case ISD::FMUL: 5133 case ISD::FDIV: 5134 case ISD::FREM: 5135 // If both operands are undef, the result is undef. If 1 operand is undef, 5136 // the result is NaN. This should match the behavior of the IR optimizer. 5137 if (N1.isUndef() && N2.isUndef()) 5138 return getUNDEF(VT); 5139 if (N1.isUndef() || N2.isUndef()) 5140 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5141 } 5142 return SDValue(); 5143 } 5144 5145 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5146 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5147 5148 // There's no need to assert on a byte-aligned pointer. All pointers are at 5149 // least byte aligned. 5150 if (A == Align(1)) 5151 return Val; 5152 5153 FoldingSetNodeID ID; 5154 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5155 ID.AddInteger(A.value()); 5156 5157 void *IP = nullptr; 5158 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5159 return SDValue(E, 0); 5160 5161 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5162 Val.getValueType(), A); 5163 createOperands(N, {Val}); 5164 5165 CSEMap.InsertNode(N, IP); 5166 InsertNode(N); 5167 5168 SDValue V(N, 0); 5169 NewSDValueDbgMsg(V, "Creating new node: ", this); 5170 return V; 5171 } 5172 5173 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5174 SDValue N1, SDValue N2) { 5175 SDNodeFlags Flags; 5176 if (Inserter) 5177 Flags = Inserter->getFlags(); 5178 return getNode(Opcode, DL, VT, N1, N2, Flags); 5179 } 5180 5181 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5182 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5183 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5184 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5185 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5186 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5187 5188 // Canonicalize constant to RHS if commutative. 5189 if (TLI->isCommutativeBinOp(Opcode)) { 5190 if (N1C && !N2C) { 5191 std::swap(N1C, N2C); 5192 std::swap(N1, N2); 5193 } else if (N1CFP && !N2CFP) { 5194 std::swap(N1CFP, N2CFP); 5195 std::swap(N1, N2); 5196 } 5197 } 5198 5199 switch (Opcode) { 5200 default: break; 5201 case ISD::TokenFactor: 5202 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5203 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5204 // Fold trivial token factors. 5205 if (N1.getOpcode() == ISD::EntryToken) return N2; 5206 if (N2.getOpcode() == ISD::EntryToken) return N1; 5207 if (N1 == N2) return N1; 5208 break; 5209 case ISD::BUILD_VECTOR: { 5210 // Attempt to simplify BUILD_VECTOR. 5211 SDValue Ops[] = {N1, N2}; 5212 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5213 return V; 5214 break; 5215 } 5216 case ISD::CONCAT_VECTORS: { 5217 SDValue Ops[] = {N1, N2}; 5218 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5219 return V; 5220 break; 5221 } 5222 case ISD::AND: 5223 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5224 assert(N1.getValueType() == N2.getValueType() && 5225 N1.getValueType() == VT && "Binary operator types must match!"); 5226 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5227 // worth handling here. 5228 if (N2C && N2C->isNullValue()) 5229 return N2; 5230 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5231 return N1; 5232 break; 5233 case ISD::OR: 5234 case ISD::XOR: 5235 case ISD::ADD: 5236 case ISD::SUB: 5237 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5238 assert(N1.getValueType() == N2.getValueType() && 5239 N1.getValueType() == VT && "Binary operator types must match!"); 5240 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5241 // it's worth handling here. 5242 if (N2C && N2C->isNullValue()) 5243 return N1; 5244 break; 5245 case ISD::MUL: 5246 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5247 assert(N1.getValueType() == N2.getValueType() && 5248 N1.getValueType() == VT && "Binary operator types must match!"); 5249 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5250 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5251 APInt N2CImm = N2C->getAPIntValue(); 5252 return getVScale(DL, VT, MulImm * N2CImm); 5253 } 5254 break; 5255 case ISD::UDIV: 5256 case ISD::UREM: 5257 case ISD::MULHU: 5258 case ISD::MULHS: 5259 case ISD::SDIV: 5260 case ISD::SREM: 5261 case ISD::SADDSAT: 5262 case ISD::SSUBSAT: 5263 case ISD::UADDSAT: 5264 case ISD::USUBSAT: 5265 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5266 assert(N1.getValueType() == N2.getValueType() && 5267 N1.getValueType() == VT && "Binary operator types must match!"); 5268 break; 5269 case ISD::SMIN: 5270 case ISD::UMAX: 5271 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5272 assert(N1.getValueType() == N2.getValueType() && 5273 N1.getValueType() == VT && "Binary operator types must match!"); 5274 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5275 return getNode(ISD::OR, DL, VT, N1, N2); 5276 break; 5277 case ISD::SMAX: 5278 case ISD::UMIN: 5279 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5280 assert(N1.getValueType() == N2.getValueType() && 5281 N1.getValueType() == VT && "Binary operator types must match!"); 5282 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5283 return getNode(ISD::AND, DL, VT, N1, N2); 5284 break; 5285 case ISD::FADD: 5286 case ISD::FSUB: 5287 case ISD::FMUL: 5288 case ISD::FDIV: 5289 case ISD::FREM: 5290 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5291 assert(N1.getValueType() == N2.getValueType() && 5292 N1.getValueType() == VT && "Binary operator types must match!"); 5293 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5294 return V; 5295 break; 5296 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5297 assert(N1.getValueType() == VT && 5298 N1.getValueType().isFloatingPoint() && 5299 N2.getValueType().isFloatingPoint() && 5300 "Invalid FCOPYSIGN!"); 5301 break; 5302 case ISD::SHL: 5303 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5304 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5305 APInt ShiftImm = N2C->getAPIntValue(); 5306 return getVScale(DL, VT, MulImm << ShiftImm); 5307 } 5308 LLVM_FALLTHROUGH; 5309 case ISD::SRA: 5310 case ISD::SRL: 5311 if (SDValue V = simplifyShift(N1, N2)) 5312 return V; 5313 LLVM_FALLTHROUGH; 5314 case ISD::ROTL: 5315 case ISD::ROTR: 5316 assert(VT == N1.getValueType() && 5317 "Shift operators return type must be the same as their first arg"); 5318 assert(VT.isInteger() && N2.getValueType().isInteger() && 5319 "Shifts only work on integers"); 5320 assert((!VT.isVector() || VT == N2.getValueType()) && 5321 "Vector shift amounts must be in the same as their first arg"); 5322 // Verify that the shift amount VT is big enough to hold valid shift 5323 // amounts. This catches things like trying to shift an i1024 value by an 5324 // i8, which is easy to fall into in generic code that uses 5325 // TLI.getShiftAmount(). 5326 assert(N2.getValueType().getScalarSizeInBits() >= 5327 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5328 "Invalid use of small shift amount with oversized value!"); 5329 5330 // Always fold shifts of i1 values so the code generator doesn't need to 5331 // handle them. Since we know the size of the shift has to be less than the 5332 // size of the value, the shift/rotate count is guaranteed to be zero. 5333 if (VT == MVT::i1) 5334 return N1; 5335 if (N2C && N2C->isNullValue()) 5336 return N1; 5337 break; 5338 case ISD::FP_ROUND: 5339 assert(VT.isFloatingPoint() && 5340 N1.getValueType().isFloatingPoint() && 5341 VT.bitsLE(N1.getValueType()) && 5342 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5343 "Invalid FP_ROUND!"); 5344 if (N1.getValueType() == VT) return N1; // noop conversion. 5345 break; 5346 case ISD::AssertSext: 5347 case ISD::AssertZext: { 5348 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5349 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5350 assert(VT.isInteger() && EVT.isInteger() && 5351 "Cannot *_EXTEND_INREG FP types"); 5352 assert(!EVT.isVector() && 5353 "AssertSExt/AssertZExt type should be the vector element type " 5354 "rather than the vector type!"); 5355 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5356 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5357 break; 5358 } 5359 case ISD::SIGN_EXTEND_INREG: { 5360 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5361 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5362 assert(VT.isInteger() && EVT.isInteger() && 5363 "Cannot *_EXTEND_INREG FP types"); 5364 assert(EVT.isVector() == VT.isVector() && 5365 "SIGN_EXTEND_INREG type should be vector iff the operand " 5366 "type is vector!"); 5367 assert((!EVT.isVector() || 5368 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5369 "Vector element counts must match in SIGN_EXTEND_INREG"); 5370 assert(EVT.bitsLE(VT) && "Not extending!"); 5371 if (EVT == VT) return N1; // Not actually extending 5372 5373 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5374 unsigned FromBits = EVT.getScalarSizeInBits(); 5375 Val <<= Val.getBitWidth() - FromBits; 5376 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5377 return getConstant(Val, DL, ConstantVT); 5378 }; 5379 5380 if (N1C) { 5381 const APInt &Val = N1C->getAPIntValue(); 5382 return SignExtendInReg(Val, VT); 5383 } 5384 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5385 SmallVector<SDValue, 8> Ops; 5386 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5387 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5388 SDValue Op = N1.getOperand(i); 5389 if (Op.isUndef()) { 5390 Ops.push_back(getUNDEF(OpVT)); 5391 continue; 5392 } 5393 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5394 APInt Val = C->getAPIntValue(); 5395 Ops.push_back(SignExtendInReg(Val, OpVT)); 5396 } 5397 return getBuildVector(VT, DL, Ops); 5398 } 5399 break; 5400 } 5401 case ISD::EXTRACT_VECTOR_ELT: 5402 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5403 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5404 element type of the vector."); 5405 5406 // Extract from an undefined value or using an undefined index is undefined. 5407 if (N1.isUndef() || N2.isUndef()) 5408 return getUNDEF(VT); 5409 5410 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5411 // vectors. For scalable vectors we will provide appropriate support for 5412 // dealing with arbitrary indices. 5413 if (N2C && N1.getValueType().isFixedLengthVector() && 5414 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5415 return getUNDEF(VT); 5416 5417 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5418 // expanding copies of large vectors from registers. This only works for 5419 // fixed length vectors, since we need to know the exact number of 5420 // elements. 5421 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5422 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5423 unsigned Factor = 5424 N1.getOperand(0).getValueType().getVectorNumElements(); 5425 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5426 N1.getOperand(N2C->getZExtValue() / Factor), 5427 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5428 } 5429 5430 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5431 // lowering is expanding large vector constants. 5432 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5433 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5434 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5435 N1.getValueType().isFixedLengthVector()) && 5436 "BUILD_VECTOR used for scalable vectors"); 5437 unsigned Index = 5438 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5439 SDValue Elt = N1.getOperand(Index); 5440 5441 if (VT != Elt.getValueType()) 5442 // If the vector element type is not legal, the BUILD_VECTOR operands 5443 // are promoted and implicitly truncated, and the result implicitly 5444 // extended. Make that explicit here. 5445 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5446 5447 return Elt; 5448 } 5449 5450 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5451 // operations are lowered to scalars. 5452 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5453 // If the indices are the same, return the inserted element else 5454 // if the indices are known different, extract the element from 5455 // the original vector. 5456 SDValue N1Op2 = N1.getOperand(2); 5457 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5458 5459 if (N1Op2C && N2C) { 5460 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5461 if (VT == N1.getOperand(1).getValueType()) 5462 return N1.getOperand(1); 5463 else 5464 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5465 } 5466 5467 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5468 } 5469 } 5470 5471 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5472 // when vector types are scalarized and v1iX is legal. 5473 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5474 // Here we are completely ignoring the extract element index (N2), 5475 // which is fine for fixed width vectors, since any index other than 0 5476 // is undefined anyway. However, this cannot be ignored for scalable 5477 // vectors - in theory we could support this, but we don't want to do this 5478 // without a profitability check. 5479 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5480 N1.getValueType().isFixedLengthVector() && 5481 N1.getValueType().getVectorNumElements() == 1) { 5482 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5483 N1.getOperand(1)); 5484 } 5485 break; 5486 case ISD::EXTRACT_ELEMENT: 5487 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5488 assert(!N1.getValueType().isVector() && !VT.isVector() && 5489 (N1.getValueType().isInteger() == VT.isInteger()) && 5490 N1.getValueType() != VT && 5491 "Wrong types for EXTRACT_ELEMENT!"); 5492 5493 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5494 // 64-bit integers into 32-bit parts. Instead of building the extract of 5495 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5496 if (N1.getOpcode() == ISD::BUILD_PAIR) 5497 return N1.getOperand(N2C->getZExtValue()); 5498 5499 // EXTRACT_ELEMENT of a constant int is also very common. 5500 if (N1C) { 5501 unsigned ElementSize = VT.getSizeInBits(); 5502 unsigned Shift = ElementSize * N2C->getZExtValue(); 5503 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5504 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5505 } 5506 break; 5507 case ISD::EXTRACT_SUBVECTOR: 5508 EVT N1VT = N1.getValueType(); 5509 assert(VT.isVector() && N1VT.isVector() && 5510 "Extract subvector VTs must be vectors!"); 5511 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5512 "Extract subvector VTs must have the same element type!"); 5513 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5514 "Cannot extract a scalable vector from a fixed length vector!"); 5515 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5516 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5517 "Extract subvector must be from larger vector to smaller vector!"); 5518 assert(N2C && "Extract subvector index must be a constant"); 5519 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5520 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5521 N1VT.getVectorMinNumElements()) && 5522 "Extract subvector overflow!"); 5523 assert(N2C->getAPIntValue().getBitWidth() == 5524 TLI->getVectorIdxTy(getDataLayout()) 5525 .getSizeInBits() 5526 .getFixedSize() && 5527 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5528 5529 // Trivial extraction. 5530 if (VT == N1VT) 5531 return N1; 5532 5533 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5534 if (N1.isUndef()) 5535 return getUNDEF(VT); 5536 5537 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5538 // the concat have the same type as the extract. 5539 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5540 VT == N1.getOperand(0).getValueType()) { 5541 unsigned Factor = VT.getVectorMinNumElements(); 5542 return N1.getOperand(N2C->getZExtValue() / Factor); 5543 } 5544 5545 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5546 // during shuffle legalization. 5547 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5548 VT == N1.getOperand(1).getValueType()) 5549 return N1.getOperand(1); 5550 break; 5551 } 5552 5553 // Perform trivial constant folding. 5554 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5555 return SV; 5556 5557 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5558 return V; 5559 5560 // Canonicalize an UNDEF to the RHS, even over a constant. 5561 if (N1.isUndef()) { 5562 if (TLI->isCommutativeBinOp(Opcode)) { 5563 std::swap(N1, N2); 5564 } else { 5565 switch (Opcode) { 5566 case ISD::SIGN_EXTEND_INREG: 5567 case ISD::SUB: 5568 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5569 case ISD::UDIV: 5570 case ISD::SDIV: 5571 case ISD::UREM: 5572 case ISD::SREM: 5573 case ISD::SSUBSAT: 5574 case ISD::USUBSAT: 5575 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5576 } 5577 } 5578 } 5579 5580 // Fold a bunch of operators when the RHS is undef. 5581 if (N2.isUndef()) { 5582 switch (Opcode) { 5583 case ISD::XOR: 5584 if (N1.isUndef()) 5585 // Handle undef ^ undef -> 0 special case. This is a common 5586 // idiom (misuse). 5587 return getConstant(0, DL, VT); 5588 LLVM_FALLTHROUGH; 5589 case ISD::ADD: 5590 case ISD::SUB: 5591 case ISD::UDIV: 5592 case ISD::SDIV: 5593 case ISD::UREM: 5594 case ISD::SREM: 5595 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5596 case ISD::MUL: 5597 case ISD::AND: 5598 case ISD::SSUBSAT: 5599 case ISD::USUBSAT: 5600 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5601 case ISD::OR: 5602 case ISD::SADDSAT: 5603 case ISD::UADDSAT: 5604 return getAllOnesConstant(DL, VT); 5605 } 5606 } 5607 5608 // Memoize this node if possible. 5609 SDNode *N; 5610 SDVTList VTs = getVTList(VT); 5611 SDValue Ops[] = {N1, N2}; 5612 if (VT != MVT::Glue) { 5613 FoldingSetNodeID ID; 5614 AddNodeIDNode(ID, Opcode, VTs, Ops); 5615 void *IP = nullptr; 5616 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5617 E->intersectFlagsWith(Flags); 5618 return SDValue(E, 0); 5619 } 5620 5621 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5622 N->setFlags(Flags); 5623 createOperands(N, Ops); 5624 CSEMap.InsertNode(N, IP); 5625 } else { 5626 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5627 createOperands(N, Ops); 5628 } 5629 5630 InsertNode(N); 5631 SDValue V = SDValue(N, 0); 5632 NewSDValueDbgMsg(V, "Creating new node: ", this); 5633 return V; 5634 } 5635 5636 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5637 SDValue N1, SDValue N2, SDValue N3) { 5638 SDNodeFlags Flags; 5639 if (Inserter) 5640 Flags = Inserter->getFlags(); 5641 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5642 } 5643 5644 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5645 SDValue N1, SDValue N2, SDValue N3, 5646 const SDNodeFlags Flags) { 5647 // Perform various simplifications. 5648 switch (Opcode) { 5649 case ISD::FMA: { 5650 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5651 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5652 N3.getValueType() == VT && "FMA types must match!"); 5653 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5654 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5655 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5656 if (N1CFP && N2CFP && N3CFP) { 5657 APFloat V1 = N1CFP->getValueAPF(); 5658 const APFloat &V2 = N2CFP->getValueAPF(); 5659 const APFloat &V3 = N3CFP->getValueAPF(); 5660 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5661 return getConstantFP(V1, DL, VT); 5662 } 5663 break; 5664 } 5665 case ISD::BUILD_VECTOR: { 5666 // Attempt to simplify BUILD_VECTOR. 5667 SDValue Ops[] = {N1, N2, N3}; 5668 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5669 return V; 5670 break; 5671 } 5672 case ISD::CONCAT_VECTORS: { 5673 SDValue Ops[] = {N1, N2, N3}; 5674 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5675 return V; 5676 break; 5677 } 5678 case ISD::SETCC: { 5679 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5680 assert(N1.getValueType() == N2.getValueType() && 5681 "SETCC operands must have the same type!"); 5682 assert(VT.isVector() == N1.getValueType().isVector() && 5683 "SETCC type should be vector iff the operand type is vector!"); 5684 assert((!VT.isVector() || VT.getVectorElementCount() == 5685 N1.getValueType().getVectorElementCount()) && 5686 "SETCC vector element counts must match!"); 5687 // Use FoldSetCC to simplify SETCC's. 5688 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5689 return V; 5690 // Vector constant folding. 5691 SDValue Ops[] = {N1, N2, N3}; 5692 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5693 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5694 return V; 5695 } 5696 break; 5697 } 5698 case ISD::SELECT: 5699 case ISD::VSELECT: 5700 if (SDValue V = simplifySelect(N1, N2, N3)) 5701 return V; 5702 break; 5703 case ISD::VECTOR_SHUFFLE: 5704 llvm_unreachable("should use getVectorShuffle constructor!"); 5705 case ISD::INSERT_VECTOR_ELT: { 5706 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5707 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5708 // for scalable vectors where we will generate appropriate code to 5709 // deal with out-of-bounds cases correctly. 5710 if (N3C && N1.getValueType().isFixedLengthVector() && 5711 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5712 return getUNDEF(VT); 5713 5714 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5715 if (N3.isUndef()) 5716 return getUNDEF(VT); 5717 5718 // If the inserted element is an UNDEF, just use the input vector. 5719 if (N2.isUndef()) 5720 return N1; 5721 5722 break; 5723 } 5724 case ISD::INSERT_SUBVECTOR: { 5725 // Inserting undef into undef is still undef. 5726 if (N1.isUndef() && N2.isUndef()) 5727 return getUNDEF(VT); 5728 5729 EVT N2VT = N2.getValueType(); 5730 assert(VT == N1.getValueType() && 5731 "Dest and insert subvector source types must match!"); 5732 assert(VT.isVector() && N2VT.isVector() && 5733 "Insert subvector VTs must be vectors!"); 5734 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5735 "Cannot insert a scalable vector into a fixed length vector!"); 5736 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5737 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5738 "Insert subvector must be from smaller vector to larger vector!"); 5739 assert(isa<ConstantSDNode>(N3) && 5740 "Insert subvector index must be constant"); 5741 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5742 (N2VT.getVectorMinNumElements() + 5743 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5744 VT.getVectorMinNumElements()) && 5745 "Insert subvector overflow!"); 5746 5747 // Trivial insertion. 5748 if (VT == N2VT) 5749 return N2; 5750 5751 // If this is an insert of an extracted vector into an undef vector, we 5752 // can just use the input to the extract. 5753 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5754 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5755 return N2.getOperand(0); 5756 break; 5757 } 5758 case ISD::BITCAST: 5759 // Fold bit_convert nodes from a type to themselves. 5760 if (N1.getValueType() == VT) 5761 return N1; 5762 break; 5763 } 5764 5765 // Memoize node if it doesn't produce a flag. 5766 SDNode *N; 5767 SDVTList VTs = getVTList(VT); 5768 SDValue Ops[] = {N1, N2, N3}; 5769 if (VT != MVT::Glue) { 5770 FoldingSetNodeID ID; 5771 AddNodeIDNode(ID, Opcode, VTs, Ops); 5772 void *IP = nullptr; 5773 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5774 E->intersectFlagsWith(Flags); 5775 return SDValue(E, 0); 5776 } 5777 5778 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5779 N->setFlags(Flags); 5780 createOperands(N, Ops); 5781 CSEMap.InsertNode(N, IP); 5782 } else { 5783 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5784 createOperands(N, Ops); 5785 } 5786 5787 InsertNode(N); 5788 SDValue V = SDValue(N, 0); 5789 NewSDValueDbgMsg(V, "Creating new node: ", this); 5790 return V; 5791 } 5792 5793 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5794 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5795 SDValue Ops[] = { N1, N2, N3, N4 }; 5796 return getNode(Opcode, DL, VT, Ops); 5797 } 5798 5799 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5800 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5801 SDValue N5) { 5802 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5803 return getNode(Opcode, DL, VT, Ops); 5804 } 5805 5806 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5807 /// the incoming stack arguments to be loaded from the stack. 5808 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5809 SmallVector<SDValue, 8> ArgChains; 5810 5811 // Include the original chain at the beginning of the list. When this is 5812 // used by target LowerCall hooks, this helps legalize find the 5813 // CALLSEQ_BEGIN node. 5814 ArgChains.push_back(Chain); 5815 5816 // Add a chain value for each stack argument. 5817 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5818 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5819 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5820 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5821 if (FI->getIndex() < 0) 5822 ArgChains.push_back(SDValue(L, 1)); 5823 5824 // Build a tokenfactor for all the chains. 5825 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5826 } 5827 5828 /// getMemsetValue - Vectorized representation of the memset value 5829 /// operand. 5830 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5831 const SDLoc &dl) { 5832 assert(!Value.isUndef()); 5833 5834 unsigned NumBits = VT.getScalarSizeInBits(); 5835 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5836 assert(C->getAPIntValue().getBitWidth() == 8); 5837 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5838 if (VT.isInteger()) { 5839 bool IsOpaque = VT.getSizeInBits() > 64 || 5840 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5841 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5842 } 5843 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5844 VT); 5845 } 5846 5847 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5848 EVT IntVT = VT.getScalarType(); 5849 if (!IntVT.isInteger()) 5850 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5851 5852 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5853 if (NumBits > 8) { 5854 // Use a multiplication with 0x010101... to extend the input to the 5855 // required length. 5856 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5857 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5858 DAG.getConstant(Magic, dl, IntVT)); 5859 } 5860 5861 if (VT != Value.getValueType() && !VT.isInteger()) 5862 Value = DAG.getBitcast(VT.getScalarType(), Value); 5863 if (VT != Value.getValueType()) 5864 Value = DAG.getSplatBuildVector(VT, dl, Value); 5865 5866 return Value; 5867 } 5868 5869 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5870 /// used when a memcpy is turned into a memset when the source is a constant 5871 /// string ptr. 5872 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5873 const TargetLowering &TLI, 5874 const ConstantDataArraySlice &Slice) { 5875 // Handle vector with all elements zero. 5876 if (Slice.Array == nullptr) { 5877 if (VT.isInteger()) 5878 return DAG.getConstant(0, dl, VT); 5879 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5880 return DAG.getConstantFP(0.0, dl, VT); 5881 else if (VT.isVector()) { 5882 unsigned NumElts = VT.getVectorNumElements(); 5883 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5884 return DAG.getNode(ISD::BITCAST, dl, VT, 5885 DAG.getConstant(0, dl, 5886 EVT::getVectorVT(*DAG.getContext(), 5887 EltVT, NumElts))); 5888 } else 5889 llvm_unreachable("Expected type!"); 5890 } 5891 5892 assert(!VT.isVector() && "Can't handle vector type here!"); 5893 unsigned NumVTBits = VT.getSizeInBits(); 5894 unsigned NumVTBytes = NumVTBits / 8; 5895 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5896 5897 APInt Val(NumVTBits, 0); 5898 if (DAG.getDataLayout().isLittleEndian()) { 5899 for (unsigned i = 0; i != NumBytes; ++i) 5900 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5901 } else { 5902 for (unsigned i = 0; i != NumBytes; ++i) 5903 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5904 } 5905 5906 // If the "cost" of materializing the integer immediate is less than the cost 5907 // of a load, then it is cost effective to turn the load into the immediate. 5908 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5909 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5910 return DAG.getConstant(Val, dl, VT); 5911 return SDValue(nullptr, 0); 5912 } 5913 5914 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5915 const SDLoc &DL, 5916 const SDNodeFlags Flags) { 5917 EVT VT = Base.getValueType(); 5918 SDValue Index; 5919 5920 if (Offset.isScalable()) 5921 Index = getVScale(DL, Base.getValueType(), 5922 APInt(Base.getValueSizeInBits().getFixedSize(), 5923 Offset.getKnownMinSize())); 5924 else 5925 Index = getConstant(Offset.getFixedSize(), DL, VT); 5926 5927 return getMemBasePlusOffset(Base, Index, DL, Flags); 5928 } 5929 5930 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5931 const SDLoc &DL, 5932 const SDNodeFlags Flags) { 5933 assert(Offset.getValueType().isInteger()); 5934 EVT BasePtrVT = Ptr.getValueType(); 5935 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5936 } 5937 5938 /// Returns true if memcpy source is constant data. 5939 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5940 uint64_t SrcDelta = 0; 5941 GlobalAddressSDNode *G = nullptr; 5942 if (Src.getOpcode() == ISD::GlobalAddress) 5943 G = cast<GlobalAddressSDNode>(Src); 5944 else if (Src.getOpcode() == ISD::ADD && 5945 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5946 Src.getOperand(1).getOpcode() == ISD::Constant) { 5947 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5948 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5949 } 5950 if (!G) 5951 return false; 5952 5953 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5954 SrcDelta + G->getOffset()); 5955 } 5956 5957 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5958 SelectionDAG &DAG) { 5959 // On Darwin, -Os means optimize for size without hurting performance, so 5960 // only really optimize for size when -Oz (MinSize) is used. 5961 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5962 return MF.getFunction().hasMinSize(); 5963 return DAG.shouldOptForSize(); 5964 } 5965 5966 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5967 SmallVector<SDValue, 32> &OutChains, unsigned From, 5968 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5969 SmallVector<SDValue, 16> &OutStoreChains) { 5970 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5971 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5972 SmallVector<SDValue, 16> GluedLoadChains; 5973 for (unsigned i = From; i < To; ++i) { 5974 OutChains.push_back(OutLoadChains[i]); 5975 GluedLoadChains.push_back(OutLoadChains[i]); 5976 } 5977 5978 // Chain for all loads. 5979 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5980 GluedLoadChains); 5981 5982 for (unsigned i = From; i < To; ++i) { 5983 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5984 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5985 ST->getBasePtr(), ST->getMemoryVT(), 5986 ST->getMemOperand()); 5987 OutChains.push_back(NewStore); 5988 } 5989 } 5990 5991 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5992 SDValue Chain, SDValue Dst, SDValue Src, 5993 uint64_t Size, Align Alignment, 5994 bool isVol, bool AlwaysInline, 5995 MachinePointerInfo DstPtrInfo, 5996 MachinePointerInfo SrcPtrInfo) { 5997 // Turn a memcpy of undef to nop. 5998 // FIXME: We need to honor volatile even is Src is undef. 5999 if (Src.isUndef()) 6000 return Chain; 6001 6002 // Expand memcpy to a series of load and store ops if the size operand falls 6003 // below a certain threshold. 6004 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6005 // rather than maybe a humongous number of loads and stores. 6006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6007 const DataLayout &DL = DAG.getDataLayout(); 6008 LLVMContext &C = *DAG.getContext(); 6009 std::vector<EVT> MemOps; 6010 bool DstAlignCanChange = false; 6011 MachineFunction &MF = DAG.getMachineFunction(); 6012 MachineFrameInfo &MFI = MF.getFrameInfo(); 6013 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6014 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6015 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6016 DstAlignCanChange = true; 6017 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6018 if (!SrcAlign || Alignment > *SrcAlign) 6019 SrcAlign = Alignment; 6020 assert(SrcAlign && "SrcAlign must be set"); 6021 ConstantDataArraySlice Slice; 6022 // If marked as volatile, perform a copy even when marked as constant. 6023 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6024 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6025 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6026 const MemOp Op = isZeroConstant 6027 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6028 /*IsZeroMemset*/ true, isVol) 6029 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6030 *SrcAlign, isVol, CopyFromConstant); 6031 if (!TLI.findOptimalMemOpLowering( 6032 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6033 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6034 return SDValue(); 6035 6036 if (DstAlignCanChange) { 6037 Type *Ty = MemOps[0].getTypeForEVT(C); 6038 Align NewAlign = DL.getABITypeAlign(Ty); 6039 6040 // Don't promote to an alignment that would require dynamic stack 6041 // realignment. 6042 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6043 if (!TRI->needsStackRealignment(MF)) 6044 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6045 NewAlign = NewAlign / 2; 6046 6047 if (NewAlign > Alignment) { 6048 // Give the stack frame object a larger alignment if needed. 6049 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6050 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6051 Alignment = NewAlign; 6052 } 6053 } 6054 6055 MachineMemOperand::Flags MMOFlags = 6056 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6057 SmallVector<SDValue, 16> OutLoadChains; 6058 SmallVector<SDValue, 16> OutStoreChains; 6059 SmallVector<SDValue, 32> OutChains; 6060 unsigned NumMemOps = MemOps.size(); 6061 uint64_t SrcOff = 0, DstOff = 0; 6062 for (unsigned i = 0; i != NumMemOps; ++i) { 6063 EVT VT = MemOps[i]; 6064 unsigned VTSize = VT.getSizeInBits() / 8; 6065 SDValue Value, Store; 6066 6067 if (VTSize > Size) { 6068 // Issuing an unaligned load / store pair that overlaps with the previous 6069 // pair. Adjust the offset accordingly. 6070 assert(i == NumMemOps-1 && i != 0); 6071 SrcOff -= VTSize - Size; 6072 DstOff -= VTSize - Size; 6073 } 6074 6075 if (CopyFromConstant && 6076 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6077 // It's unlikely a store of a vector immediate can be done in a single 6078 // instruction. It would require a load from a constantpool first. 6079 // We only handle zero vectors here. 6080 // FIXME: Handle other cases where store of vector immediate is done in 6081 // a single instruction. 6082 ConstantDataArraySlice SubSlice; 6083 if (SrcOff < Slice.Length) { 6084 SubSlice = Slice; 6085 SubSlice.move(SrcOff); 6086 } else { 6087 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6088 SubSlice.Array = nullptr; 6089 SubSlice.Offset = 0; 6090 SubSlice.Length = VTSize; 6091 } 6092 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6093 if (Value.getNode()) { 6094 Store = DAG.getStore( 6095 Chain, dl, Value, 6096 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6097 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6098 OutChains.push_back(Store); 6099 } 6100 } 6101 6102 if (!Store.getNode()) { 6103 // The type might not be legal for the target. This should only happen 6104 // if the type is smaller than a legal type, as on PPC, so the right 6105 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6106 // to Load/Store if NVT==VT. 6107 // FIXME does the case above also need this? 6108 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6109 assert(NVT.bitsGE(VT)); 6110 6111 bool isDereferenceable = 6112 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6113 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6114 if (isDereferenceable) 6115 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6116 6117 Value = DAG.getExtLoad( 6118 ISD::EXTLOAD, dl, NVT, Chain, 6119 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6120 SrcPtrInfo.getWithOffset(SrcOff), VT, 6121 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6122 OutLoadChains.push_back(Value.getValue(1)); 6123 6124 Store = DAG.getTruncStore( 6125 Chain, dl, Value, 6126 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6127 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6128 OutStoreChains.push_back(Store); 6129 } 6130 SrcOff += VTSize; 6131 DstOff += VTSize; 6132 Size -= VTSize; 6133 } 6134 6135 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6136 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6137 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6138 6139 if (NumLdStInMemcpy) { 6140 // It may be that memcpy might be converted to memset if it's memcpy 6141 // of constants. In such a case, we won't have loads and stores, but 6142 // just stores. In the absence of loads, there is nothing to gang up. 6143 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6144 // If target does not care, just leave as it. 6145 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6146 OutChains.push_back(OutLoadChains[i]); 6147 OutChains.push_back(OutStoreChains[i]); 6148 } 6149 } else { 6150 // Ld/St less than/equal limit set by target. 6151 if (NumLdStInMemcpy <= GluedLdStLimit) { 6152 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6153 NumLdStInMemcpy, OutLoadChains, 6154 OutStoreChains); 6155 } else { 6156 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6157 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6158 unsigned GlueIter = 0; 6159 6160 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6161 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6162 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6163 6164 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6165 OutLoadChains, OutStoreChains); 6166 GlueIter += GluedLdStLimit; 6167 } 6168 6169 // Residual ld/st. 6170 if (RemainingLdStInMemcpy) { 6171 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6172 RemainingLdStInMemcpy, OutLoadChains, 6173 OutStoreChains); 6174 } 6175 } 6176 } 6177 } 6178 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6179 } 6180 6181 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6182 SDValue Chain, SDValue Dst, SDValue Src, 6183 uint64_t Size, Align Alignment, 6184 bool isVol, bool AlwaysInline, 6185 MachinePointerInfo DstPtrInfo, 6186 MachinePointerInfo SrcPtrInfo) { 6187 // Turn a memmove of undef to nop. 6188 // FIXME: We need to honor volatile even is Src is undef. 6189 if (Src.isUndef()) 6190 return Chain; 6191 6192 // Expand memmove to a series of load and store ops if the size operand falls 6193 // below a certain threshold. 6194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6195 const DataLayout &DL = DAG.getDataLayout(); 6196 LLVMContext &C = *DAG.getContext(); 6197 std::vector<EVT> MemOps; 6198 bool DstAlignCanChange = false; 6199 MachineFunction &MF = DAG.getMachineFunction(); 6200 MachineFrameInfo &MFI = MF.getFrameInfo(); 6201 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6202 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6203 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6204 DstAlignCanChange = true; 6205 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6206 if (!SrcAlign || Alignment > *SrcAlign) 6207 SrcAlign = Alignment; 6208 assert(SrcAlign && "SrcAlign must be set"); 6209 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6210 if (!TLI.findOptimalMemOpLowering( 6211 MemOps, Limit, 6212 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6213 /*IsVolatile*/ true), 6214 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6215 MF.getFunction().getAttributes())) 6216 return SDValue(); 6217 6218 if (DstAlignCanChange) { 6219 Type *Ty = MemOps[0].getTypeForEVT(C); 6220 Align NewAlign = DL.getABITypeAlign(Ty); 6221 if (NewAlign > Alignment) { 6222 // Give the stack frame object a larger alignment if needed. 6223 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6224 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6225 Alignment = NewAlign; 6226 } 6227 } 6228 6229 MachineMemOperand::Flags MMOFlags = 6230 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6231 uint64_t SrcOff = 0, DstOff = 0; 6232 SmallVector<SDValue, 8> LoadValues; 6233 SmallVector<SDValue, 8> LoadChains; 6234 SmallVector<SDValue, 8> OutChains; 6235 unsigned NumMemOps = MemOps.size(); 6236 for (unsigned i = 0; i < NumMemOps; i++) { 6237 EVT VT = MemOps[i]; 6238 unsigned VTSize = VT.getSizeInBits() / 8; 6239 SDValue Value; 6240 6241 bool isDereferenceable = 6242 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6243 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6244 if (isDereferenceable) 6245 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6246 6247 Value = 6248 DAG.getLoad(VT, dl, Chain, 6249 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6250 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6251 LoadValues.push_back(Value); 6252 LoadChains.push_back(Value.getValue(1)); 6253 SrcOff += VTSize; 6254 } 6255 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6256 OutChains.clear(); 6257 for (unsigned i = 0; i < NumMemOps; i++) { 6258 EVT VT = MemOps[i]; 6259 unsigned VTSize = VT.getSizeInBits() / 8; 6260 SDValue Store; 6261 6262 Store = 6263 DAG.getStore(Chain, dl, LoadValues[i], 6264 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6265 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6266 OutChains.push_back(Store); 6267 DstOff += VTSize; 6268 } 6269 6270 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6271 } 6272 6273 /// Lower the call to 'memset' intrinsic function into a series of store 6274 /// operations. 6275 /// 6276 /// \param DAG Selection DAG where lowered code is placed. 6277 /// \param dl Link to corresponding IR location. 6278 /// \param Chain Control flow dependency. 6279 /// \param Dst Pointer to destination memory location. 6280 /// \param Src Value of byte to write into the memory. 6281 /// \param Size Number of bytes to write. 6282 /// \param Alignment Alignment of the destination in bytes. 6283 /// \param isVol True if destination is volatile. 6284 /// \param DstPtrInfo IR information on the memory pointer. 6285 /// \returns New head in the control flow, if lowering was successful, empty 6286 /// SDValue otherwise. 6287 /// 6288 /// The function tries to replace 'llvm.memset' intrinsic with several store 6289 /// operations and value calculation code. This is usually profitable for small 6290 /// memory size. 6291 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6292 SDValue Chain, SDValue Dst, SDValue Src, 6293 uint64_t Size, Align Alignment, bool isVol, 6294 MachinePointerInfo DstPtrInfo) { 6295 // Turn a memset of undef to nop. 6296 // FIXME: We need to honor volatile even is Src is undef. 6297 if (Src.isUndef()) 6298 return Chain; 6299 6300 // Expand memset to a series of load/store ops if the size operand 6301 // falls below a certain threshold. 6302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6303 std::vector<EVT> MemOps; 6304 bool DstAlignCanChange = false; 6305 MachineFunction &MF = DAG.getMachineFunction(); 6306 MachineFrameInfo &MFI = MF.getFrameInfo(); 6307 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6308 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6309 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6310 DstAlignCanChange = true; 6311 bool IsZeroVal = 6312 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6313 if (!TLI.findOptimalMemOpLowering( 6314 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6315 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6316 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6317 return SDValue(); 6318 6319 if (DstAlignCanChange) { 6320 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6321 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6322 if (NewAlign > Alignment) { 6323 // Give the stack frame object a larger alignment if needed. 6324 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6325 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6326 Alignment = NewAlign; 6327 } 6328 } 6329 6330 SmallVector<SDValue, 8> OutChains; 6331 uint64_t DstOff = 0; 6332 unsigned NumMemOps = MemOps.size(); 6333 6334 // Find the largest store and generate the bit pattern for it. 6335 EVT LargestVT = MemOps[0]; 6336 for (unsigned i = 1; i < NumMemOps; i++) 6337 if (MemOps[i].bitsGT(LargestVT)) 6338 LargestVT = MemOps[i]; 6339 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6340 6341 for (unsigned i = 0; i < NumMemOps; i++) { 6342 EVT VT = MemOps[i]; 6343 unsigned VTSize = VT.getSizeInBits() / 8; 6344 if (VTSize > Size) { 6345 // Issuing an unaligned load / store pair that overlaps with the previous 6346 // pair. Adjust the offset accordingly. 6347 assert(i == NumMemOps-1 && i != 0); 6348 DstOff -= VTSize - Size; 6349 } 6350 6351 // If this store is smaller than the largest store see whether we can get 6352 // the smaller value for free with a truncate. 6353 SDValue Value = MemSetValue; 6354 if (VT.bitsLT(LargestVT)) { 6355 if (!LargestVT.isVector() && !VT.isVector() && 6356 TLI.isTruncateFree(LargestVT, VT)) 6357 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6358 else 6359 Value = getMemsetValue(Src, VT, DAG, dl); 6360 } 6361 assert(Value.getValueType() == VT && "Value with wrong type."); 6362 SDValue Store = DAG.getStore( 6363 Chain, dl, Value, 6364 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6365 DstPtrInfo.getWithOffset(DstOff), Alignment, 6366 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6367 OutChains.push_back(Store); 6368 DstOff += VT.getSizeInBits() / 8; 6369 Size -= VTSize; 6370 } 6371 6372 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6373 } 6374 6375 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6376 unsigned AS) { 6377 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6378 // pointer operands can be losslessly bitcasted to pointers of address space 0 6379 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6380 report_fatal_error("cannot lower memory intrinsic in address space " + 6381 Twine(AS)); 6382 } 6383 } 6384 6385 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6386 SDValue Src, SDValue Size, Align Alignment, 6387 bool isVol, bool AlwaysInline, bool isTailCall, 6388 MachinePointerInfo DstPtrInfo, 6389 MachinePointerInfo SrcPtrInfo) { 6390 // Check to see if we should lower the memcpy to loads and stores first. 6391 // For cases within the target-specified limits, this is the best choice. 6392 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6393 if (ConstantSize) { 6394 // Memcpy with size zero? Just return the original chain. 6395 if (ConstantSize->isNullValue()) 6396 return Chain; 6397 6398 SDValue Result = getMemcpyLoadsAndStores( 6399 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6400 isVol, false, DstPtrInfo, SrcPtrInfo); 6401 if (Result.getNode()) 6402 return Result; 6403 } 6404 6405 // Then check to see if we should lower the memcpy with target-specific 6406 // code. If the target chooses to do this, this is the next best. 6407 if (TSI) { 6408 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6409 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6410 DstPtrInfo, SrcPtrInfo); 6411 if (Result.getNode()) 6412 return Result; 6413 } 6414 6415 // If we really need inline code and the target declined to provide it, 6416 // use a (potentially long) sequence of loads and stores. 6417 if (AlwaysInline) { 6418 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6419 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6420 ConstantSize->getZExtValue(), Alignment, 6421 isVol, true, DstPtrInfo, SrcPtrInfo); 6422 } 6423 6424 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6425 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6426 6427 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6428 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6429 // respect volatile, so they may do things like read or write memory 6430 // beyond the given memory regions. But fixing this isn't easy, and most 6431 // people don't care. 6432 6433 // Emit a library call. 6434 TargetLowering::ArgListTy Args; 6435 TargetLowering::ArgListEntry Entry; 6436 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6437 Entry.Node = Dst; Args.push_back(Entry); 6438 Entry.Node = Src; Args.push_back(Entry); 6439 6440 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6441 Entry.Node = Size; Args.push_back(Entry); 6442 // FIXME: pass in SDLoc 6443 TargetLowering::CallLoweringInfo CLI(*this); 6444 CLI.setDebugLoc(dl) 6445 .setChain(Chain) 6446 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6447 Dst.getValueType().getTypeForEVT(*getContext()), 6448 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6449 TLI->getPointerTy(getDataLayout())), 6450 std::move(Args)) 6451 .setDiscardResult() 6452 .setTailCall(isTailCall); 6453 6454 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6455 return CallResult.second; 6456 } 6457 6458 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6459 SDValue Dst, unsigned DstAlign, 6460 SDValue Src, unsigned SrcAlign, 6461 SDValue Size, Type *SizeTy, 6462 unsigned ElemSz, bool isTailCall, 6463 MachinePointerInfo DstPtrInfo, 6464 MachinePointerInfo SrcPtrInfo) { 6465 // Emit a library call. 6466 TargetLowering::ArgListTy Args; 6467 TargetLowering::ArgListEntry Entry; 6468 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6469 Entry.Node = Dst; 6470 Args.push_back(Entry); 6471 6472 Entry.Node = Src; 6473 Args.push_back(Entry); 6474 6475 Entry.Ty = SizeTy; 6476 Entry.Node = Size; 6477 Args.push_back(Entry); 6478 6479 RTLIB::Libcall LibraryCall = 6480 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6481 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6482 report_fatal_error("Unsupported element size"); 6483 6484 TargetLowering::CallLoweringInfo CLI(*this); 6485 CLI.setDebugLoc(dl) 6486 .setChain(Chain) 6487 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6488 Type::getVoidTy(*getContext()), 6489 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6490 TLI->getPointerTy(getDataLayout())), 6491 std::move(Args)) 6492 .setDiscardResult() 6493 .setTailCall(isTailCall); 6494 6495 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6496 return CallResult.second; 6497 } 6498 6499 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6500 SDValue Src, SDValue Size, Align Alignment, 6501 bool isVol, bool isTailCall, 6502 MachinePointerInfo DstPtrInfo, 6503 MachinePointerInfo SrcPtrInfo) { 6504 // Check to see if we should lower the memmove to loads and stores first. 6505 // For cases within the target-specified limits, this is the best choice. 6506 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6507 if (ConstantSize) { 6508 // Memmove with size zero? Just return the original chain. 6509 if (ConstantSize->isNullValue()) 6510 return Chain; 6511 6512 SDValue Result = getMemmoveLoadsAndStores( 6513 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6514 isVol, false, DstPtrInfo, SrcPtrInfo); 6515 if (Result.getNode()) 6516 return Result; 6517 } 6518 6519 // Then check to see if we should lower the memmove with target-specific 6520 // code. If the target chooses to do this, this is the next best. 6521 if (TSI) { 6522 SDValue Result = 6523 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6524 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6525 if (Result.getNode()) 6526 return Result; 6527 } 6528 6529 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6530 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6531 6532 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6533 // not be safe. See memcpy above for more details. 6534 6535 // Emit a library call. 6536 TargetLowering::ArgListTy Args; 6537 TargetLowering::ArgListEntry Entry; 6538 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6539 Entry.Node = Dst; Args.push_back(Entry); 6540 Entry.Node = Src; Args.push_back(Entry); 6541 6542 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6543 Entry.Node = Size; Args.push_back(Entry); 6544 // FIXME: pass in SDLoc 6545 TargetLowering::CallLoweringInfo CLI(*this); 6546 CLI.setDebugLoc(dl) 6547 .setChain(Chain) 6548 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6549 Dst.getValueType().getTypeForEVT(*getContext()), 6550 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6551 TLI->getPointerTy(getDataLayout())), 6552 std::move(Args)) 6553 .setDiscardResult() 6554 .setTailCall(isTailCall); 6555 6556 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6557 return CallResult.second; 6558 } 6559 6560 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6561 SDValue Dst, unsigned DstAlign, 6562 SDValue Src, unsigned SrcAlign, 6563 SDValue Size, Type *SizeTy, 6564 unsigned ElemSz, bool isTailCall, 6565 MachinePointerInfo DstPtrInfo, 6566 MachinePointerInfo SrcPtrInfo) { 6567 // Emit a library call. 6568 TargetLowering::ArgListTy Args; 6569 TargetLowering::ArgListEntry Entry; 6570 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6571 Entry.Node = Dst; 6572 Args.push_back(Entry); 6573 6574 Entry.Node = Src; 6575 Args.push_back(Entry); 6576 6577 Entry.Ty = SizeTy; 6578 Entry.Node = Size; 6579 Args.push_back(Entry); 6580 6581 RTLIB::Libcall LibraryCall = 6582 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6583 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6584 report_fatal_error("Unsupported element size"); 6585 6586 TargetLowering::CallLoweringInfo CLI(*this); 6587 CLI.setDebugLoc(dl) 6588 .setChain(Chain) 6589 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6590 Type::getVoidTy(*getContext()), 6591 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6592 TLI->getPointerTy(getDataLayout())), 6593 std::move(Args)) 6594 .setDiscardResult() 6595 .setTailCall(isTailCall); 6596 6597 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6598 return CallResult.second; 6599 } 6600 6601 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6602 SDValue Src, SDValue Size, Align Alignment, 6603 bool isVol, bool isTailCall, 6604 MachinePointerInfo DstPtrInfo) { 6605 // Check to see if we should lower the memset to stores first. 6606 // For cases within the target-specified limits, this is the best choice. 6607 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6608 if (ConstantSize) { 6609 // Memset with size zero? Just return the original chain. 6610 if (ConstantSize->isNullValue()) 6611 return Chain; 6612 6613 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6614 ConstantSize->getZExtValue(), Alignment, 6615 isVol, DstPtrInfo); 6616 6617 if (Result.getNode()) 6618 return Result; 6619 } 6620 6621 // Then check to see if we should lower the memset with target-specific 6622 // code. If the target chooses to do this, this is the next best. 6623 if (TSI) { 6624 SDValue Result = TSI->EmitTargetCodeForMemset( 6625 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6626 if (Result.getNode()) 6627 return Result; 6628 } 6629 6630 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6631 6632 // Emit a library call. 6633 TargetLowering::ArgListTy Args; 6634 TargetLowering::ArgListEntry Entry; 6635 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6636 Args.push_back(Entry); 6637 Entry.Node = Src; 6638 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6639 Args.push_back(Entry); 6640 Entry.Node = Size; 6641 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6642 Args.push_back(Entry); 6643 6644 // FIXME: pass in SDLoc 6645 TargetLowering::CallLoweringInfo CLI(*this); 6646 CLI.setDebugLoc(dl) 6647 .setChain(Chain) 6648 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6649 Dst.getValueType().getTypeForEVT(*getContext()), 6650 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6651 TLI->getPointerTy(getDataLayout())), 6652 std::move(Args)) 6653 .setDiscardResult() 6654 .setTailCall(isTailCall); 6655 6656 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6657 return CallResult.second; 6658 } 6659 6660 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6661 SDValue Dst, unsigned DstAlign, 6662 SDValue Value, SDValue Size, Type *SizeTy, 6663 unsigned ElemSz, bool isTailCall, 6664 MachinePointerInfo DstPtrInfo) { 6665 // Emit a library call. 6666 TargetLowering::ArgListTy Args; 6667 TargetLowering::ArgListEntry Entry; 6668 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6669 Entry.Node = Dst; 6670 Args.push_back(Entry); 6671 6672 Entry.Ty = Type::getInt8Ty(*getContext()); 6673 Entry.Node = Value; 6674 Args.push_back(Entry); 6675 6676 Entry.Ty = SizeTy; 6677 Entry.Node = Size; 6678 Args.push_back(Entry); 6679 6680 RTLIB::Libcall LibraryCall = 6681 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6682 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6683 report_fatal_error("Unsupported element size"); 6684 6685 TargetLowering::CallLoweringInfo CLI(*this); 6686 CLI.setDebugLoc(dl) 6687 .setChain(Chain) 6688 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6689 Type::getVoidTy(*getContext()), 6690 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6691 TLI->getPointerTy(getDataLayout())), 6692 std::move(Args)) 6693 .setDiscardResult() 6694 .setTailCall(isTailCall); 6695 6696 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6697 return CallResult.second; 6698 } 6699 6700 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6701 SDVTList VTList, ArrayRef<SDValue> Ops, 6702 MachineMemOperand *MMO) { 6703 FoldingSetNodeID ID; 6704 ID.AddInteger(MemVT.getRawBits()); 6705 AddNodeIDNode(ID, Opcode, VTList, Ops); 6706 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6707 void* IP = nullptr; 6708 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6709 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6710 return SDValue(E, 0); 6711 } 6712 6713 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6714 VTList, MemVT, MMO); 6715 createOperands(N, Ops); 6716 6717 CSEMap.InsertNode(N, IP); 6718 InsertNode(N); 6719 return SDValue(N, 0); 6720 } 6721 6722 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6723 EVT MemVT, SDVTList VTs, SDValue Chain, 6724 SDValue Ptr, SDValue Cmp, SDValue Swp, 6725 MachineMemOperand *MMO) { 6726 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6727 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6728 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6729 6730 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6731 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6732 } 6733 6734 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6735 SDValue Chain, SDValue Ptr, SDValue Val, 6736 MachineMemOperand *MMO) { 6737 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6738 Opcode == ISD::ATOMIC_LOAD_SUB || 6739 Opcode == ISD::ATOMIC_LOAD_AND || 6740 Opcode == ISD::ATOMIC_LOAD_CLR || 6741 Opcode == ISD::ATOMIC_LOAD_OR || 6742 Opcode == ISD::ATOMIC_LOAD_XOR || 6743 Opcode == ISD::ATOMIC_LOAD_NAND || 6744 Opcode == ISD::ATOMIC_LOAD_MIN || 6745 Opcode == ISD::ATOMIC_LOAD_MAX || 6746 Opcode == ISD::ATOMIC_LOAD_UMIN || 6747 Opcode == ISD::ATOMIC_LOAD_UMAX || 6748 Opcode == ISD::ATOMIC_LOAD_FADD || 6749 Opcode == ISD::ATOMIC_LOAD_FSUB || 6750 Opcode == ISD::ATOMIC_SWAP || 6751 Opcode == ISD::ATOMIC_STORE) && 6752 "Invalid Atomic Op"); 6753 6754 EVT VT = Val.getValueType(); 6755 6756 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6757 getVTList(VT, MVT::Other); 6758 SDValue Ops[] = {Chain, Ptr, Val}; 6759 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6760 } 6761 6762 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6763 EVT VT, SDValue Chain, SDValue Ptr, 6764 MachineMemOperand *MMO) { 6765 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6766 6767 SDVTList VTs = getVTList(VT, MVT::Other); 6768 SDValue Ops[] = {Chain, Ptr}; 6769 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6770 } 6771 6772 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6773 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6774 if (Ops.size() == 1) 6775 return Ops[0]; 6776 6777 SmallVector<EVT, 4> VTs; 6778 VTs.reserve(Ops.size()); 6779 for (unsigned i = 0; i < Ops.size(); ++i) 6780 VTs.push_back(Ops[i].getValueType()); 6781 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6782 } 6783 6784 SDValue SelectionDAG::getMemIntrinsicNode( 6785 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6786 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6787 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6788 if (!Size && MemVT.isScalableVector()) 6789 Size = MemoryLocation::UnknownSize; 6790 else if (!Size) 6791 Size = MemVT.getStoreSize(); 6792 6793 MachineFunction &MF = getMachineFunction(); 6794 MachineMemOperand *MMO = 6795 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6796 6797 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6798 } 6799 6800 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6801 SDVTList VTList, 6802 ArrayRef<SDValue> Ops, EVT MemVT, 6803 MachineMemOperand *MMO) { 6804 assert((Opcode == ISD::INTRINSIC_VOID || 6805 Opcode == ISD::INTRINSIC_W_CHAIN || 6806 Opcode == ISD::PREFETCH || 6807 ((int)Opcode <= std::numeric_limits<int>::max() && 6808 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6809 "Opcode is not a memory-accessing opcode!"); 6810 6811 // Memoize the node unless it returns a flag. 6812 MemIntrinsicSDNode *N; 6813 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6814 FoldingSetNodeID ID; 6815 AddNodeIDNode(ID, Opcode, VTList, Ops); 6816 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6817 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6818 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6819 void *IP = nullptr; 6820 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6821 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6822 return SDValue(E, 0); 6823 } 6824 6825 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6826 VTList, MemVT, MMO); 6827 createOperands(N, Ops); 6828 6829 CSEMap.InsertNode(N, IP); 6830 } else { 6831 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6832 VTList, MemVT, MMO); 6833 createOperands(N, Ops); 6834 } 6835 InsertNode(N); 6836 SDValue V(N, 0); 6837 NewSDValueDbgMsg(V, "Creating new node: ", this); 6838 return V; 6839 } 6840 6841 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6842 SDValue Chain, int FrameIndex, 6843 int64_t Size, int64_t Offset) { 6844 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6845 const auto VTs = getVTList(MVT::Other); 6846 SDValue Ops[2] = { 6847 Chain, 6848 getFrameIndex(FrameIndex, 6849 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6850 true)}; 6851 6852 FoldingSetNodeID ID; 6853 AddNodeIDNode(ID, Opcode, VTs, Ops); 6854 ID.AddInteger(FrameIndex); 6855 ID.AddInteger(Size); 6856 ID.AddInteger(Offset); 6857 void *IP = nullptr; 6858 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6859 return SDValue(E, 0); 6860 6861 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6862 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6863 createOperands(N, Ops); 6864 CSEMap.InsertNode(N, IP); 6865 InsertNode(N); 6866 SDValue V(N, 0); 6867 NewSDValueDbgMsg(V, "Creating new node: ", this); 6868 return V; 6869 } 6870 6871 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6872 uint64_t Guid, uint64_t Index, 6873 uint32_t Attr) { 6874 const unsigned Opcode = ISD::PSEUDO_PROBE; 6875 const auto VTs = getVTList(MVT::Other); 6876 SDValue Ops[] = {Chain}; 6877 FoldingSetNodeID ID; 6878 AddNodeIDNode(ID, Opcode, VTs, Ops); 6879 ID.AddInteger(Guid); 6880 ID.AddInteger(Index); 6881 void *IP = nullptr; 6882 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6883 return SDValue(E, 0); 6884 6885 auto *N = newSDNode<PseudoProbeSDNode>( 6886 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6887 createOperands(N, Ops); 6888 CSEMap.InsertNode(N, IP); 6889 InsertNode(N); 6890 SDValue V(N, 0); 6891 NewSDValueDbgMsg(V, "Creating new node: ", this); 6892 return V; 6893 } 6894 6895 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6896 /// MachinePointerInfo record from it. This is particularly useful because the 6897 /// code generator has many cases where it doesn't bother passing in a 6898 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6899 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6900 SelectionDAG &DAG, SDValue Ptr, 6901 int64_t Offset = 0) { 6902 // If this is FI+Offset, we can model it. 6903 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6904 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6905 FI->getIndex(), Offset); 6906 6907 // If this is (FI+Offset1)+Offset2, we can model it. 6908 if (Ptr.getOpcode() != ISD::ADD || 6909 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6910 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6911 return Info; 6912 6913 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6914 return MachinePointerInfo::getFixedStack( 6915 DAG.getMachineFunction(), FI, 6916 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6917 } 6918 6919 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6920 /// MachinePointerInfo record from it. This is particularly useful because the 6921 /// code generator has many cases where it doesn't bother passing in a 6922 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6923 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6924 SelectionDAG &DAG, SDValue Ptr, 6925 SDValue OffsetOp) { 6926 // If the 'Offset' value isn't a constant, we can't handle this. 6927 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6928 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6929 if (OffsetOp.isUndef()) 6930 return InferPointerInfo(Info, DAG, Ptr); 6931 return Info; 6932 } 6933 6934 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6935 EVT VT, const SDLoc &dl, SDValue Chain, 6936 SDValue Ptr, SDValue Offset, 6937 MachinePointerInfo PtrInfo, EVT MemVT, 6938 Align Alignment, 6939 MachineMemOperand::Flags MMOFlags, 6940 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6941 assert(Chain.getValueType() == MVT::Other && 6942 "Invalid chain type"); 6943 6944 MMOFlags |= MachineMemOperand::MOLoad; 6945 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6946 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6947 // clients. 6948 if (PtrInfo.V.isNull()) 6949 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6950 6951 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6952 MachineFunction &MF = getMachineFunction(); 6953 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6954 Alignment, AAInfo, Ranges); 6955 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6956 } 6957 6958 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6959 EVT VT, const SDLoc &dl, SDValue Chain, 6960 SDValue Ptr, SDValue Offset, EVT MemVT, 6961 MachineMemOperand *MMO) { 6962 if (VT == MemVT) { 6963 ExtType = ISD::NON_EXTLOAD; 6964 } else if (ExtType == ISD::NON_EXTLOAD) { 6965 assert(VT == MemVT && "Non-extending load from different memory type!"); 6966 } else { 6967 // Extending load. 6968 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6969 "Should only be an extending load, not truncating!"); 6970 assert(VT.isInteger() == MemVT.isInteger() && 6971 "Cannot convert from FP to Int or Int -> FP!"); 6972 assert(VT.isVector() == MemVT.isVector() && 6973 "Cannot use an ext load to convert to or from a vector!"); 6974 assert((!VT.isVector() || 6975 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6976 "Cannot use an ext load to change the number of vector elements!"); 6977 } 6978 6979 bool Indexed = AM != ISD::UNINDEXED; 6980 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6981 6982 SDVTList VTs = Indexed ? 6983 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6984 SDValue Ops[] = { Chain, Ptr, Offset }; 6985 FoldingSetNodeID ID; 6986 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6987 ID.AddInteger(MemVT.getRawBits()); 6988 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6989 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6990 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6991 void *IP = nullptr; 6992 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6993 cast<LoadSDNode>(E)->refineAlignment(MMO); 6994 return SDValue(E, 0); 6995 } 6996 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6997 ExtType, MemVT, MMO); 6998 createOperands(N, Ops); 6999 7000 CSEMap.InsertNode(N, IP); 7001 InsertNode(N); 7002 SDValue V(N, 0); 7003 NewSDValueDbgMsg(V, "Creating new node: ", this); 7004 return V; 7005 } 7006 7007 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7008 SDValue Ptr, MachinePointerInfo PtrInfo, 7009 MaybeAlign Alignment, 7010 MachineMemOperand::Flags MMOFlags, 7011 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7012 SDValue Undef = getUNDEF(Ptr.getValueType()); 7013 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7014 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7015 } 7016 7017 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7018 SDValue Ptr, MachineMemOperand *MMO) { 7019 SDValue Undef = getUNDEF(Ptr.getValueType()); 7020 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7021 VT, MMO); 7022 } 7023 7024 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7025 EVT VT, SDValue Chain, SDValue Ptr, 7026 MachinePointerInfo PtrInfo, EVT MemVT, 7027 MaybeAlign Alignment, 7028 MachineMemOperand::Flags MMOFlags, 7029 const AAMDNodes &AAInfo) { 7030 SDValue Undef = getUNDEF(Ptr.getValueType()); 7031 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7032 MemVT, Alignment, MMOFlags, AAInfo); 7033 } 7034 7035 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7036 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7037 MachineMemOperand *MMO) { 7038 SDValue Undef = getUNDEF(Ptr.getValueType()); 7039 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7040 MemVT, MMO); 7041 } 7042 7043 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7044 SDValue Base, SDValue Offset, 7045 ISD::MemIndexedMode AM) { 7046 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7047 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7048 // Don't propagate the invariant or dereferenceable flags. 7049 auto MMOFlags = 7050 LD->getMemOperand()->getFlags() & 7051 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7052 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7053 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7054 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7055 } 7056 7057 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7058 SDValue Ptr, MachinePointerInfo PtrInfo, 7059 Align Alignment, 7060 MachineMemOperand::Flags MMOFlags, 7061 const AAMDNodes &AAInfo) { 7062 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7063 7064 MMOFlags |= MachineMemOperand::MOStore; 7065 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7066 7067 if (PtrInfo.V.isNull()) 7068 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7069 7070 MachineFunction &MF = getMachineFunction(); 7071 uint64_t Size = 7072 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7073 MachineMemOperand *MMO = 7074 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7075 return getStore(Chain, dl, Val, Ptr, MMO); 7076 } 7077 7078 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7079 SDValue Ptr, MachineMemOperand *MMO) { 7080 assert(Chain.getValueType() == MVT::Other && 7081 "Invalid chain type"); 7082 EVT VT = Val.getValueType(); 7083 SDVTList VTs = getVTList(MVT::Other); 7084 SDValue Undef = getUNDEF(Ptr.getValueType()); 7085 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7086 FoldingSetNodeID ID; 7087 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7088 ID.AddInteger(VT.getRawBits()); 7089 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7090 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7091 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7092 void *IP = nullptr; 7093 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7094 cast<StoreSDNode>(E)->refineAlignment(MMO); 7095 return SDValue(E, 0); 7096 } 7097 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7098 ISD::UNINDEXED, false, VT, MMO); 7099 createOperands(N, Ops); 7100 7101 CSEMap.InsertNode(N, IP); 7102 InsertNode(N); 7103 SDValue V(N, 0); 7104 NewSDValueDbgMsg(V, "Creating new node: ", this); 7105 return V; 7106 } 7107 7108 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7109 SDValue Ptr, MachinePointerInfo PtrInfo, 7110 EVT SVT, Align Alignment, 7111 MachineMemOperand::Flags MMOFlags, 7112 const AAMDNodes &AAInfo) { 7113 assert(Chain.getValueType() == MVT::Other && 7114 "Invalid chain type"); 7115 7116 MMOFlags |= MachineMemOperand::MOStore; 7117 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7118 7119 if (PtrInfo.V.isNull()) 7120 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7121 7122 MachineFunction &MF = getMachineFunction(); 7123 MachineMemOperand *MMO = MF.getMachineMemOperand( 7124 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7125 Alignment, AAInfo); 7126 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7127 } 7128 7129 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7130 SDValue Ptr, EVT SVT, 7131 MachineMemOperand *MMO) { 7132 EVT VT = Val.getValueType(); 7133 7134 assert(Chain.getValueType() == MVT::Other && 7135 "Invalid chain type"); 7136 if (VT == SVT) 7137 return getStore(Chain, dl, Val, Ptr, MMO); 7138 7139 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7140 "Should only be a truncating store, not extending!"); 7141 assert(VT.isInteger() == SVT.isInteger() && 7142 "Can't do FP-INT conversion!"); 7143 assert(VT.isVector() == SVT.isVector() && 7144 "Cannot use trunc store to convert to or from a vector!"); 7145 assert((!VT.isVector() || 7146 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7147 "Cannot use trunc store to change the number of vector elements!"); 7148 7149 SDVTList VTs = getVTList(MVT::Other); 7150 SDValue Undef = getUNDEF(Ptr.getValueType()); 7151 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7152 FoldingSetNodeID ID; 7153 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7154 ID.AddInteger(SVT.getRawBits()); 7155 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7156 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7157 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7158 void *IP = nullptr; 7159 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7160 cast<StoreSDNode>(E)->refineAlignment(MMO); 7161 return SDValue(E, 0); 7162 } 7163 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7164 ISD::UNINDEXED, true, SVT, MMO); 7165 createOperands(N, Ops); 7166 7167 CSEMap.InsertNode(N, IP); 7168 InsertNode(N); 7169 SDValue V(N, 0); 7170 NewSDValueDbgMsg(V, "Creating new node: ", this); 7171 return V; 7172 } 7173 7174 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7175 SDValue Base, SDValue Offset, 7176 ISD::MemIndexedMode AM) { 7177 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7178 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7179 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7180 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7181 FoldingSetNodeID ID; 7182 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7183 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7184 ID.AddInteger(ST->getRawSubclassData()); 7185 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7186 void *IP = nullptr; 7187 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7188 return SDValue(E, 0); 7189 7190 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7191 ST->isTruncatingStore(), ST->getMemoryVT(), 7192 ST->getMemOperand()); 7193 createOperands(N, Ops); 7194 7195 CSEMap.InsertNode(N, IP); 7196 InsertNode(N); 7197 SDValue V(N, 0); 7198 NewSDValueDbgMsg(V, "Creating new node: ", this); 7199 return V; 7200 } 7201 7202 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7203 SDValue Base, SDValue Offset, SDValue Mask, 7204 SDValue PassThru, EVT MemVT, 7205 MachineMemOperand *MMO, 7206 ISD::MemIndexedMode AM, 7207 ISD::LoadExtType ExtTy, bool isExpanding) { 7208 bool Indexed = AM != ISD::UNINDEXED; 7209 assert((Indexed || Offset.isUndef()) && 7210 "Unindexed masked load with an offset!"); 7211 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7212 : getVTList(VT, MVT::Other); 7213 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7214 FoldingSetNodeID ID; 7215 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7216 ID.AddInteger(MemVT.getRawBits()); 7217 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7218 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7219 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7220 void *IP = nullptr; 7221 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7222 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7223 return SDValue(E, 0); 7224 } 7225 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7226 AM, ExtTy, isExpanding, MemVT, MMO); 7227 createOperands(N, Ops); 7228 7229 CSEMap.InsertNode(N, IP); 7230 InsertNode(N); 7231 SDValue V(N, 0); 7232 NewSDValueDbgMsg(V, "Creating new node: ", this); 7233 return V; 7234 } 7235 7236 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7237 SDValue Base, SDValue Offset, 7238 ISD::MemIndexedMode AM) { 7239 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7240 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7241 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7242 Offset, LD->getMask(), LD->getPassThru(), 7243 LD->getMemoryVT(), LD->getMemOperand(), AM, 7244 LD->getExtensionType(), LD->isExpandingLoad()); 7245 } 7246 7247 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7248 SDValue Val, SDValue Base, SDValue Offset, 7249 SDValue Mask, EVT MemVT, 7250 MachineMemOperand *MMO, 7251 ISD::MemIndexedMode AM, bool IsTruncating, 7252 bool IsCompressing) { 7253 assert(Chain.getValueType() == MVT::Other && 7254 "Invalid chain type"); 7255 bool Indexed = AM != ISD::UNINDEXED; 7256 assert((Indexed || Offset.isUndef()) && 7257 "Unindexed masked store with an offset!"); 7258 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7259 : getVTList(MVT::Other); 7260 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7261 FoldingSetNodeID ID; 7262 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7263 ID.AddInteger(MemVT.getRawBits()); 7264 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7265 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7266 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7267 void *IP = nullptr; 7268 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7269 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7270 return SDValue(E, 0); 7271 } 7272 auto *N = 7273 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7274 IsTruncating, IsCompressing, MemVT, MMO); 7275 createOperands(N, Ops); 7276 7277 CSEMap.InsertNode(N, IP); 7278 InsertNode(N); 7279 SDValue V(N, 0); 7280 NewSDValueDbgMsg(V, "Creating new node: ", this); 7281 return V; 7282 } 7283 7284 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7285 SDValue Base, SDValue Offset, 7286 ISD::MemIndexedMode AM) { 7287 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7288 assert(ST->getOffset().isUndef() && 7289 "Masked store is already a indexed store!"); 7290 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7291 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7292 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7293 } 7294 7295 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7296 ArrayRef<SDValue> Ops, 7297 MachineMemOperand *MMO, 7298 ISD::MemIndexType IndexType) { 7299 assert(Ops.size() == 6 && "Incompatible number of operands"); 7300 7301 FoldingSetNodeID ID; 7302 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7303 ID.AddInteger(VT.getRawBits()); 7304 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7305 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7306 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7307 void *IP = nullptr; 7308 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7309 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7310 return SDValue(E, 0); 7311 } 7312 7313 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7314 VTs, VT, MMO, IndexType); 7315 createOperands(N, Ops); 7316 7317 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7318 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7319 assert(N->getMask().getValueType().getVectorNumElements() == 7320 N->getValueType(0).getVectorNumElements() && 7321 "Vector width mismatch between mask and data"); 7322 assert(N->getIndex().getValueType().getVectorNumElements() >= 7323 N->getValueType(0).getVectorNumElements() && 7324 "Vector width mismatch between index and data"); 7325 assert(isa<ConstantSDNode>(N->getScale()) && 7326 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7327 "Scale should be a constant power of 2"); 7328 7329 CSEMap.InsertNode(N, IP); 7330 InsertNode(N); 7331 SDValue V(N, 0); 7332 NewSDValueDbgMsg(V, "Creating new node: ", this); 7333 return V; 7334 } 7335 7336 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7337 ArrayRef<SDValue> Ops, 7338 MachineMemOperand *MMO, 7339 ISD::MemIndexType IndexType, 7340 bool IsTrunc) { 7341 assert(Ops.size() == 6 && "Incompatible number of operands"); 7342 7343 FoldingSetNodeID ID; 7344 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7345 ID.AddInteger(VT.getRawBits()); 7346 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7347 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7348 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7349 void *IP = nullptr; 7350 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7351 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7352 return SDValue(E, 0); 7353 } 7354 7355 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7356 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7357 VTs, VT, MMO, IndexType, IsTrunc); 7358 createOperands(N, Ops); 7359 7360 assert(N->getMask().getValueType().getVectorElementCount() == 7361 N->getValue().getValueType().getVectorElementCount() && 7362 "Vector width mismatch between mask and data"); 7363 assert( 7364 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7365 N->getValue().getValueType().getVectorElementCount().isScalable() && 7366 "Scalable flags of index and data do not match"); 7367 assert(ElementCount::isKnownGE( 7368 N->getIndex().getValueType().getVectorElementCount(), 7369 N->getValue().getValueType().getVectorElementCount()) && 7370 "Vector width mismatch between index and data"); 7371 assert(isa<ConstantSDNode>(N->getScale()) && 7372 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7373 "Scale should be a constant power of 2"); 7374 7375 CSEMap.InsertNode(N, IP); 7376 InsertNode(N); 7377 SDValue V(N, 0); 7378 NewSDValueDbgMsg(V, "Creating new node: ", this); 7379 return V; 7380 } 7381 7382 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7383 // select undef, T, F --> T (if T is a constant), otherwise F 7384 // select, ?, undef, F --> F 7385 // select, ?, T, undef --> T 7386 if (Cond.isUndef()) 7387 return isConstantValueOfAnyType(T) ? T : F; 7388 if (T.isUndef()) 7389 return F; 7390 if (F.isUndef()) 7391 return T; 7392 7393 // select true, T, F --> T 7394 // select false, T, F --> F 7395 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7396 return CondC->isNullValue() ? F : T; 7397 7398 // TODO: This should simplify VSELECT with constant condition using something 7399 // like this (but check boolean contents to be complete?): 7400 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7401 // return T; 7402 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7403 // return F; 7404 7405 // select ?, T, T --> T 7406 if (T == F) 7407 return T; 7408 7409 return SDValue(); 7410 } 7411 7412 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7413 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7414 if (X.isUndef()) 7415 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7416 // shift X, undef --> undef (because it may shift by the bitwidth) 7417 if (Y.isUndef()) 7418 return getUNDEF(X.getValueType()); 7419 7420 // shift 0, Y --> 0 7421 // shift X, 0 --> X 7422 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7423 return X; 7424 7425 // shift X, C >= bitwidth(X) --> undef 7426 // All vector elements must be too big (or undef) to avoid partial undefs. 7427 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7428 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7429 }; 7430 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7431 return getUNDEF(X.getValueType()); 7432 7433 return SDValue(); 7434 } 7435 7436 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7437 SDNodeFlags Flags) { 7438 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7439 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7440 // operation is poison. That result can be relaxed to undef. 7441 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7442 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7443 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7444 (YC && YC->getValueAPF().isNaN()); 7445 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7446 (YC && YC->getValueAPF().isInfinity()); 7447 7448 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7449 return getUNDEF(X.getValueType()); 7450 7451 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7452 return getUNDEF(X.getValueType()); 7453 7454 if (!YC) 7455 return SDValue(); 7456 7457 // X + -0.0 --> X 7458 if (Opcode == ISD::FADD) 7459 if (YC->getValueAPF().isNegZero()) 7460 return X; 7461 7462 // X - +0.0 --> X 7463 if (Opcode == ISD::FSUB) 7464 if (YC->getValueAPF().isPosZero()) 7465 return X; 7466 7467 // X * 1.0 --> X 7468 // X / 1.0 --> X 7469 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7470 if (YC->getValueAPF().isExactlyValue(1.0)) 7471 return X; 7472 7473 // X * 0.0 --> 0.0 7474 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7475 if (YC->getValueAPF().isZero()) 7476 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7477 7478 return SDValue(); 7479 } 7480 7481 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7482 SDValue Ptr, SDValue SV, unsigned Align) { 7483 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7484 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7485 } 7486 7487 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7488 ArrayRef<SDUse> Ops) { 7489 switch (Ops.size()) { 7490 case 0: return getNode(Opcode, DL, VT); 7491 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7492 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7493 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7494 default: break; 7495 } 7496 7497 // Copy from an SDUse array into an SDValue array for use with 7498 // the regular getNode logic. 7499 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7500 return getNode(Opcode, DL, VT, NewOps); 7501 } 7502 7503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7504 ArrayRef<SDValue> Ops) { 7505 SDNodeFlags Flags; 7506 if (Inserter) 7507 Flags = Inserter->getFlags(); 7508 return getNode(Opcode, DL, VT, Ops, Flags); 7509 } 7510 7511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7512 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7513 unsigned NumOps = Ops.size(); 7514 switch (NumOps) { 7515 case 0: return getNode(Opcode, DL, VT); 7516 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7517 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7518 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7519 default: break; 7520 } 7521 7522 switch (Opcode) { 7523 default: break; 7524 case ISD::BUILD_VECTOR: 7525 // Attempt to simplify BUILD_VECTOR. 7526 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7527 return V; 7528 break; 7529 case ISD::CONCAT_VECTORS: 7530 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7531 return V; 7532 break; 7533 case ISD::SELECT_CC: 7534 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7535 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7536 "LHS and RHS of condition must have same type!"); 7537 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7538 "True and False arms of SelectCC must have same type!"); 7539 assert(Ops[2].getValueType() == VT && 7540 "select_cc node must be of same type as true and false value!"); 7541 break; 7542 case ISD::BR_CC: 7543 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7544 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7545 "LHS/RHS of comparison should match types!"); 7546 break; 7547 } 7548 7549 // Memoize nodes. 7550 SDNode *N; 7551 SDVTList VTs = getVTList(VT); 7552 7553 if (VT != MVT::Glue) { 7554 FoldingSetNodeID ID; 7555 AddNodeIDNode(ID, Opcode, VTs, Ops); 7556 void *IP = nullptr; 7557 7558 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7559 return SDValue(E, 0); 7560 7561 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7562 createOperands(N, Ops); 7563 7564 CSEMap.InsertNode(N, IP); 7565 } else { 7566 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7567 createOperands(N, Ops); 7568 } 7569 7570 N->setFlags(Flags); 7571 InsertNode(N); 7572 SDValue V(N, 0); 7573 NewSDValueDbgMsg(V, "Creating new node: ", this); 7574 return V; 7575 } 7576 7577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7578 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7579 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7580 } 7581 7582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7583 ArrayRef<SDValue> Ops) { 7584 SDNodeFlags Flags; 7585 if (Inserter) 7586 Flags = Inserter->getFlags(); 7587 return getNode(Opcode, DL, VTList, Ops, Flags); 7588 } 7589 7590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7591 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7592 if (VTList.NumVTs == 1) 7593 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7594 7595 switch (Opcode) { 7596 case ISD::STRICT_FP_EXTEND: 7597 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7598 "Invalid STRICT_FP_EXTEND!"); 7599 assert(VTList.VTs[0].isFloatingPoint() && 7600 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7601 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7602 "STRICT_FP_EXTEND result type should be vector iff the operand " 7603 "type is vector!"); 7604 assert((!VTList.VTs[0].isVector() || 7605 VTList.VTs[0].getVectorNumElements() == 7606 Ops[1].getValueType().getVectorNumElements()) && 7607 "Vector element count mismatch!"); 7608 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7609 "Invalid fpext node, dst <= src!"); 7610 break; 7611 case ISD::STRICT_FP_ROUND: 7612 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7613 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7614 "STRICT_FP_ROUND result type should be vector iff the operand " 7615 "type is vector!"); 7616 assert((!VTList.VTs[0].isVector() || 7617 VTList.VTs[0].getVectorNumElements() == 7618 Ops[1].getValueType().getVectorNumElements()) && 7619 "Vector element count mismatch!"); 7620 assert(VTList.VTs[0].isFloatingPoint() && 7621 Ops[1].getValueType().isFloatingPoint() && 7622 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7623 isa<ConstantSDNode>(Ops[2]) && 7624 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7625 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7626 "Invalid STRICT_FP_ROUND!"); 7627 break; 7628 #if 0 7629 // FIXME: figure out how to safely handle things like 7630 // int foo(int x) { return 1 << (x & 255); } 7631 // int bar() { return foo(256); } 7632 case ISD::SRA_PARTS: 7633 case ISD::SRL_PARTS: 7634 case ISD::SHL_PARTS: 7635 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7636 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7637 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7638 else if (N3.getOpcode() == ISD::AND) 7639 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7640 // If the and is only masking out bits that cannot effect the shift, 7641 // eliminate the and. 7642 unsigned NumBits = VT.getScalarSizeInBits()*2; 7643 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7644 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7645 } 7646 break; 7647 #endif 7648 } 7649 7650 // Memoize the node unless it returns a flag. 7651 SDNode *N; 7652 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7653 FoldingSetNodeID ID; 7654 AddNodeIDNode(ID, Opcode, VTList, Ops); 7655 void *IP = nullptr; 7656 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7657 return SDValue(E, 0); 7658 7659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7660 createOperands(N, Ops); 7661 CSEMap.InsertNode(N, IP); 7662 } else { 7663 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7664 createOperands(N, Ops); 7665 } 7666 7667 N->setFlags(Flags); 7668 InsertNode(N); 7669 SDValue V(N, 0); 7670 NewSDValueDbgMsg(V, "Creating new node: ", this); 7671 return V; 7672 } 7673 7674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7675 SDVTList VTList) { 7676 return getNode(Opcode, DL, VTList, None); 7677 } 7678 7679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7680 SDValue N1) { 7681 SDValue Ops[] = { N1 }; 7682 return getNode(Opcode, DL, VTList, Ops); 7683 } 7684 7685 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7686 SDValue N1, SDValue N2) { 7687 SDValue Ops[] = { N1, N2 }; 7688 return getNode(Opcode, DL, VTList, Ops); 7689 } 7690 7691 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7692 SDValue N1, SDValue N2, SDValue N3) { 7693 SDValue Ops[] = { N1, N2, N3 }; 7694 return getNode(Opcode, DL, VTList, Ops); 7695 } 7696 7697 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7698 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7699 SDValue Ops[] = { N1, N2, N3, N4 }; 7700 return getNode(Opcode, DL, VTList, Ops); 7701 } 7702 7703 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7704 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7705 SDValue N5) { 7706 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7707 return getNode(Opcode, DL, VTList, Ops); 7708 } 7709 7710 SDVTList SelectionDAG::getVTList(EVT VT) { 7711 return makeVTList(SDNode::getValueTypeList(VT), 1); 7712 } 7713 7714 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7715 FoldingSetNodeID ID; 7716 ID.AddInteger(2U); 7717 ID.AddInteger(VT1.getRawBits()); 7718 ID.AddInteger(VT2.getRawBits()); 7719 7720 void *IP = nullptr; 7721 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7722 if (!Result) { 7723 EVT *Array = Allocator.Allocate<EVT>(2); 7724 Array[0] = VT1; 7725 Array[1] = VT2; 7726 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7727 VTListMap.InsertNode(Result, IP); 7728 } 7729 return Result->getSDVTList(); 7730 } 7731 7732 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7733 FoldingSetNodeID ID; 7734 ID.AddInteger(3U); 7735 ID.AddInteger(VT1.getRawBits()); 7736 ID.AddInteger(VT2.getRawBits()); 7737 ID.AddInteger(VT3.getRawBits()); 7738 7739 void *IP = nullptr; 7740 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7741 if (!Result) { 7742 EVT *Array = Allocator.Allocate<EVT>(3); 7743 Array[0] = VT1; 7744 Array[1] = VT2; 7745 Array[2] = VT3; 7746 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7747 VTListMap.InsertNode(Result, IP); 7748 } 7749 return Result->getSDVTList(); 7750 } 7751 7752 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7753 FoldingSetNodeID ID; 7754 ID.AddInteger(4U); 7755 ID.AddInteger(VT1.getRawBits()); 7756 ID.AddInteger(VT2.getRawBits()); 7757 ID.AddInteger(VT3.getRawBits()); 7758 ID.AddInteger(VT4.getRawBits()); 7759 7760 void *IP = nullptr; 7761 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7762 if (!Result) { 7763 EVT *Array = Allocator.Allocate<EVT>(4); 7764 Array[0] = VT1; 7765 Array[1] = VT2; 7766 Array[2] = VT3; 7767 Array[3] = VT4; 7768 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7769 VTListMap.InsertNode(Result, IP); 7770 } 7771 return Result->getSDVTList(); 7772 } 7773 7774 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7775 unsigned NumVTs = VTs.size(); 7776 FoldingSetNodeID ID; 7777 ID.AddInteger(NumVTs); 7778 for (unsigned index = 0; index < NumVTs; index++) { 7779 ID.AddInteger(VTs[index].getRawBits()); 7780 } 7781 7782 void *IP = nullptr; 7783 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7784 if (!Result) { 7785 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7786 llvm::copy(VTs, Array); 7787 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7788 VTListMap.InsertNode(Result, IP); 7789 } 7790 return Result->getSDVTList(); 7791 } 7792 7793 7794 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7795 /// specified operands. If the resultant node already exists in the DAG, 7796 /// this does not modify the specified node, instead it returns the node that 7797 /// already exists. If the resultant node does not exist in the DAG, the 7798 /// input node is returned. As a degenerate case, if you specify the same 7799 /// input operands as the node already has, the input node is returned. 7800 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7801 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7802 7803 // Check to see if there is no change. 7804 if (Op == N->getOperand(0)) return N; 7805 7806 // See if the modified node already exists. 7807 void *InsertPos = nullptr; 7808 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7809 return Existing; 7810 7811 // Nope it doesn't. Remove the node from its current place in the maps. 7812 if (InsertPos) 7813 if (!RemoveNodeFromCSEMaps(N)) 7814 InsertPos = nullptr; 7815 7816 // Now we update the operands. 7817 N->OperandList[0].set(Op); 7818 7819 updateDivergence(N); 7820 // If this gets put into a CSE map, add it. 7821 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7822 return N; 7823 } 7824 7825 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7826 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7827 7828 // Check to see if there is no change. 7829 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7830 return N; // No operands changed, just return the input node. 7831 7832 // See if the modified node already exists. 7833 void *InsertPos = nullptr; 7834 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7835 return Existing; 7836 7837 // Nope it doesn't. Remove the node from its current place in the maps. 7838 if (InsertPos) 7839 if (!RemoveNodeFromCSEMaps(N)) 7840 InsertPos = nullptr; 7841 7842 // Now we update the operands. 7843 if (N->OperandList[0] != Op1) 7844 N->OperandList[0].set(Op1); 7845 if (N->OperandList[1] != Op2) 7846 N->OperandList[1].set(Op2); 7847 7848 updateDivergence(N); 7849 // If this gets put into a CSE map, add it. 7850 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7851 return N; 7852 } 7853 7854 SDNode *SelectionDAG:: 7855 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7856 SDValue Ops[] = { Op1, Op2, Op3 }; 7857 return UpdateNodeOperands(N, Ops); 7858 } 7859 7860 SDNode *SelectionDAG:: 7861 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7862 SDValue Op3, SDValue Op4) { 7863 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7864 return UpdateNodeOperands(N, Ops); 7865 } 7866 7867 SDNode *SelectionDAG:: 7868 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7869 SDValue Op3, SDValue Op4, SDValue Op5) { 7870 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7871 return UpdateNodeOperands(N, Ops); 7872 } 7873 7874 SDNode *SelectionDAG:: 7875 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7876 unsigned NumOps = Ops.size(); 7877 assert(N->getNumOperands() == NumOps && 7878 "Update with wrong number of operands"); 7879 7880 // If no operands changed just return the input node. 7881 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7882 return N; 7883 7884 // See if the modified node already exists. 7885 void *InsertPos = nullptr; 7886 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7887 return Existing; 7888 7889 // Nope it doesn't. Remove the node from its current place in the maps. 7890 if (InsertPos) 7891 if (!RemoveNodeFromCSEMaps(N)) 7892 InsertPos = nullptr; 7893 7894 // Now we update the operands. 7895 for (unsigned i = 0; i != NumOps; ++i) 7896 if (N->OperandList[i] != Ops[i]) 7897 N->OperandList[i].set(Ops[i]); 7898 7899 updateDivergence(N); 7900 // If this gets put into a CSE map, add it. 7901 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7902 return N; 7903 } 7904 7905 /// DropOperands - Release the operands and set this node to have 7906 /// zero operands. 7907 void SDNode::DropOperands() { 7908 // Unlike the code in MorphNodeTo that does this, we don't need to 7909 // watch for dead nodes here. 7910 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7911 SDUse &Use = *I++; 7912 Use.set(SDValue()); 7913 } 7914 } 7915 7916 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7917 ArrayRef<MachineMemOperand *> NewMemRefs) { 7918 if (NewMemRefs.empty()) { 7919 N->clearMemRefs(); 7920 return; 7921 } 7922 7923 // Check if we can avoid allocating by storing a single reference directly. 7924 if (NewMemRefs.size() == 1) { 7925 N->MemRefs = NewMemRefs[0]; 7926 N->NumMemRefs = 1; 7927 return; 7928 } 7929 7930 MachineMemOperand **MemRefsBuffer = 7931 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7932 llvm::copy(NewMemRefs, MemRefsBuffer); 7933 N->MemRefs = MemRefsBuffer; 7934 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7935 } 7936 7937 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7938 /// machine opcode. 7939 /// 7940 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7941 EVT VT) { 7942 SDVTList VTs = getVTList(VT); 7943 return SelectNodeTo(N, MachineOpc, VTs, None); 7944 } 7945 7946 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7947 EVT VT, SDValue Op1) { 7948 SDVTList VTs = getVTList(VT); 7949 SDValue Ops[] = { Op1 }; 7950 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7951 } 7952 7953 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7954 EVT VT, SDValue Op1, 7955 SDValue Op2) { 7956 SDVTList VTs = getVTList(VT); 7957 SDValue Ops[] = { Op1, Op2 }; 7958 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7959 } 7960 7961 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7962 EVT VT, SDValue Op1, 7963 SDValue Op2, SDValue Op3) { 7964 SDVTList VTs = getVTList(VT); 7965 SDValue Ops[] = { Op1, Op2, Op3 }; 7966 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7967 } 7968 7969 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7970 EVT VT, ArrayRef<SDValue> Ops) { 7971 SDVTList VTs = getVTList(VT); 7972 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7973 } 7974 7975 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7976 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7977 SDVTList VTs = getVTList(VT1, VT2); 7978 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7979 } 7980 7981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7982 EVT VT1, EVT VT2) { 7983 SDVTList VTs = getVTList(VT1, VT2); 7984 return SelectNodeTo(N, MachineOpc, VTs, None); 7985 } 7986 7987 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7988 EVT VT1, EVT VT2, EVT VT3, 7989 ArrayRef<SDValue> Ops) { 7990 SDVTList VTs = getVTList(VT1, VT2, VT3); 7991 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7992 } 7993 7994 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7995 EVT VT1, EVT VT2, 7996 SDValue Op1, SDValue Op2) { 7997 SDVTList VTs = getVTList(VT1, VT2); 7998 SDValue Ops[] = { Op1, Op2 }; 7999 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8000 } 8001 8002 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8003 SDVTList VTs,ArrayRef<SDValue> Ops) { 8004 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8005 // Reset the NodeID to -1. 8006 New->setNodeId(-1); 8007 if (New != N) { 8008 ReplaceAllUsesWith(N, New); 8009 RemoveDeadNode(N); 8010 } 8011 return New; 8012 } 8013 8014 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8015 /// the line number information on the merged node since it is not possible to 8016 /// preserve the information that operation is associated with multiple lines. 8017 /// This will make the debugger working better at -O0, were there is a higher 8018 /// probability having other instructions associated with that line. 8019 /// 8020 /// For IROrder, we keep the smaller of the two 8021 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8022 DebugLoc NLoc = N->getDebugLoc(); 8023 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8024 N->setDebugLoc(DebugLoc()); 8025 } 8026 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8027 N->setIROrder(Order); 8028 return N; 8029 } 8030 8031 /// MorphNodeTo - This *mutates* the specified node to have the specified 8032 /// return type, opcode, and operands. 8033 /// 8034 /// Note that MorphNodeTo returns the resultant node. If there is already a 8035 /// node of the specified opcode and operands, it returns that node instead of 8036 /// the current one. Note that the SDLoc need not be the same. 8037 /// 8038 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8039 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8040 /// node, and because it doesn't require CSE recalculation for any of 8041 /// the node's users. 8042 /// 8043 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8044 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8045 /// the legalizer which maintain worklists that would need to be updated when 8046 /// deleting things. 8047 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8048 SDVTList VTs, ArrayRef<SDValue> Ops) { 8049 // If an identical node already exists, use it. 8050 void *IP = nullptr; 8051 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8052 FoldingSetNodeID ID; 8053 AddNodeIDNode(ID, Opc, VTs, Ops); 8054 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8055 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8056 } 8057 8058 if (!RemoveNodeFromCSEMaps(N)) 8059 IP = nullptr; 8060 8061 // Start the morphing. 8062 N->NodeType = Opc; 8063 N->ValueList = VTs.VTs; 8064 N->NumValues = VTs.NumVTs; 8065 8066 // Clear the operands list, updating used nodes to remove this from their 8067 // use list. Keep track of any operands that become dead as a result. 8068 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8069 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8070 SDUse &Use = *I++; 8071 SDNode *Used = Use.getNode(); 8072 Use.set(SDValue()); 8073 if (Used->use_empty()) 8074 DeadNodeSet.insert(Used); 8075 } 8076 8077 // For MachineNode, initialize the memory references information. 8078 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8079 MN->clearMemRefs(); 8080 8081 // Swap for an appropriately sized array from the recycler. 8082 removeOperands(N); 8083 createOperands(N, Ops); 8084 8085 // Delete any nodes that are still dead after adding the uses for the 8086 // new operands. 8087 if (!DeadNodeSet.empty()) { 8088 SmallVector<SDNode *, 16> DeadNodes; 8089 for (SDNode *N : DeadNodeSet) 8090 if (N->use_empty()) 8091 DeadNodes.push_back(N); 8092 RemoveDeadNodes(DeadNodes); 8093 } 8094 8095 if (IP) 8096 CSEMap.InsertNode(N, IP); // Memoize the new node. 8097 return N; 8098 } 8099 8100 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8101 unsigned OrigOpc = Node->getOpcode(); 8102 unsigned NewOpc; 8103 switch (OrigOpc) { 8104 default: 8105 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8106 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8107 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8108 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8109 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8110 #include "llvm/IR/ConstrainedOps.def" 8111 } 8112 8113 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8114 8115 // We're taking this node out of the chain, so we need to re-link things. 8116 SDValue InputChain = Node->getOperand(0); 8117 SDValue OutputChain = SDValue(Node, 1); 8118 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8119 8120 SmallVector<SDValue, 3> Ops; 8121 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8122 Ops.push_back(Node->getOperand(i)); 8123 8124 SDVTList VTs = getVTList(Node->getValueType(0)); 8125 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8126 8127 // MorphNodeTo can operate in two ways: if an existing node with the 8128 // specified operands exists, it can just return it. Otherwise, it 8129 // updates the node in place to have the requested operands. 8130 if (Res == Node) { 8131 // If we updated the node in place, reset the node ID. To the isel, 8132 // this should be just like a newly allocated machine node. 8133 Res->setNodeId(-1); 8134 } else { 8135 ReplaceAllUsesWith(Node, Res); 8136 RemoveDeadNode(Node); 8137 } 8138 8139 return Res; 8140 } 8141 8142 /// getMachineNode - These are used for target selectors to create a new node 8143 /// with specified return type(s), MachineInstr opcode, and operands. 8144 /// 8145 /// Note that getMachineNode returns the resultant node. If there is already a 8146 /// node of the specified opcode and operands, it returns that node instead of 8147 /// the current one. 8148 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8149 EVT VT) { 8150 SDVTList VTs = getVTList(VT); 8151 return getMachineNode(Opcode, dl, VTs, None); 8152 } 8153 8154 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8155 EVT VT, SDValue Op1) { 8156 SDVTList VTs = getVTList(VT); 8157 SDValue Ops[] = { Op1 }; 8158 return getMachineNode(Opcode, dl, VTs, Ops); 8159 } 8160 8161 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8162 EVT VT, SDValue Op1, SDValue Op2) { 8163 SDVTList VTs = getVTList(VT); 8164 SDValue Ops[] = { Op1, Op2 }; 8165 return getMachineNode(Opcode, dl, VTs, Ops); 8166 } 8167 8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8169 EVT VT, SDValue Op1, SDValue Op2, 8170 SDValue Op3) { 8171 SDVTList VTs = getVTList(VT); 8172 SDValue Ops[] = { Op1, Op2, Op3 }; 8173 return getMachineNode(Opcode, dl, VTs, Ops); 8174 } 8175 8176 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8177 EVT VT, ArrayRef<SDValue> Ops) { 8178 SDVTList VTs = getVTList(VT); 8179 return getMachineNode(Opcode, dl, VTs, Ops); 8180 } 8181 8182 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8183 EVT VT1, EVT VT2, SDValue Op1, 8184 SDValue Op2) { 8185 SDVTList VTs = getVTList(VT1, VT2); 8186 SDValue Ops[] = { Op1, Op2 }; 8187 return getMachineNode(Opcode, dl, VTs, Ops); 8188 } 8189 8190 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8191 EVT VT1, EVT VT2, SDValue Op1, 8192 SDValue Op2, SDValue Op3) { 8193 SDVTList VTs = getVTList(VT1, VT2); 8194 SDValue Ops[] = { Op1, Op2, Op3 }; 8195 return getMachineNode(Opcode, dl, VTs, Ops); 8196 } 8197 8198 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8199 EVT VT1, EVT VT2, 8200 ArrayRef<SDValue> Ops) { 8201 SDVTList VTs = getVTList(VT1, VT2); 8202 return getMachineNode(Opcode, dl, VTs, Ops); 8203 } 8204 8205 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8206 EVT VT1, EVT VT2, EVT VT3, 8207 SDValue Op1, SDValue Op2) { 8208 SDVTList VTs = getVTList(VT1, VT2, VT3); 8209 SDValue Ops[] = { Op1, Op2 }; 8210 return getMachineNode(Opcode, dl, VTs, Ops); 8211 } 8212 8213 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8214 EVT VT1, EVT VT2, EVT VT3, 8215 SDValue Op1, SDValue Op2, 8216 SDValue Op3) { 8217 SDVTList VTs = getVTList(VT1, VT2, VT3); 8218 SDValue Ops[] = { Op1, Op2, Op3 }; 8219 return getMachineNode(Opcode, dl, VTs, Ops); 8220 } 8221 8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8223 EVT VT1, EVT VT2, EVT VT3, 8224 ArrayRef<SDValue> Ops) { 8225 SDVTList VTs = getVTList(VT1, VT2, VT3); 8226 return getMachineNode(Opcode, dl, VTs, Ops); 8227 } 8228 8229 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8230 ArrayRef<EVT> ResultTys, 8231 ArrayRef<SDValue> Ops) { 8232 SDVTList VTs = getVTList(ResultTys); 8233 return getMachineNode(Opcode, dl, VTs, Ops); 8234 } 8235 8236 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8237 SDVTList VTs, 8238 ArrayRef<SDValue> Ops) { 8239 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8240 MachineSDNode *N; 8241 void *IP = nullptr; 8242 8243 if (DoCSE) { 8244 FoldingSetNodeID ID; 8245 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8246 IP = nullptr; 8247 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8248 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8249 } 8250 } 8251 8252 // Allocate a new MachineSDNode. 8253 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8254 createOperands(N, Ops); 8255 8256 if (DoCSE) 8257 CSEMap.InsertNode(N, IP); 8258 8259 InsertNode(N); 8260 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8261 return N; 8262 } 8263 8264 /// getTargetExtractSubreg - A convenience function for creating 8265 /// TargetOpcode::EXTRACT_SUBREG nodes. 8266 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8267 SDValue Operand) { 8268 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8269 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8270 VT, Operand, SRIdxVal); 8271 return SDValue(Subreg, 0); 8272 } 8273 8274 /// getTargetInsertSubreg - A convenience function for creating 8275 /// TargetOpcode::INSERT_SUBREG nodes. 8276 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8277 SDValue Operand, SDValue Subreg) { 8278 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8279 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8280 VT, Operand, Subreg, SRIdxVal); 8281 return SDValue(Result, 0); 8282 } 8283 8284 /// getNodeIfExists - Get the specified node if it's already available, or 8285 /// else return NULL. 8286 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8287 ArrayRef<SDValue> Ops) { 8288 SDNodeFlags Flags; 8289 if (Inserter) 8290 Flags = Inserter->getFlags(); 8291 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8292 } 8293 8294 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8295 ArrayRef<SDValue> Ops, 8296 const SDNodeFlags Flags) { 8297 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8298 FoldingSetNodeID ID; 8299 AddNodeIDNode(ID, Opcode, VTList, Ops); 8300 void *IP = nullptr; 8301 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8302 E->intersectFlagsWith(Flags); 8303 return E; 8304 } 8305 } 8306 return nullptr; 8307 } 8308 8309 /// doesNodeExist - Check if a node exists without modifying its flags. 8310 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8311 ArrayRef<SDValue> Ops) { 8312 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8313 FoldingSetNodeID ID; 8314 AddNodeIDNode(ID, Opcode, VTList, Ops); 8315 void *IP = nullptr; 8316 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8317 return true; 8318 } 8319 return false; 8320 } 8321 8322 /// getDbgValue - Creates a SDDbgValue node. 8323 /// 8324 /// SDNode 8325 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8326 SDNode *N, unsigned R, bool IsIndirect, 8327 const DebugLoc &DL, unsigned O) { 8328 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8329 "Expected inlined-at fields to agree"); 8330 return new (DbgInfo->getAlloc()) 8331 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8332 } 8333 8334 /// Constant 8335 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8336 DIExpression *Expr, 8337 const Value *C, 8338 const DebugLoc &DL, unsigned O) { 8339 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8340 "Expected inlined-at fields to agree"); 8341 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8342 } 8343 8344 /// FrameIndex 8345 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8346 DIExpression *Expr, unsigned FI, 8347 bool IsIndirect, 8348 const DebugLoc &DL, 8349 unsigned O) { 8350 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8351 "Expected inlined-at fields to agree"); 8352 return new (DbgInfo->getAlloc()) 8353 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8354 } 8355 8356 /// VReg 8357 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8358 DIExpression *Expr, 8359 unsigned VReg, bool IsIndirect, 8360 const DebugLoc &DL, unsigned O) { 8361 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8362 "Expected inlined-at fields to agree"); 8363 return new (DbgInfo->getAlloc()) 8364 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8365 } 8366 8367 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8368 unsigned OffsetInBits, unsigned SizeInBits, 8369 bool InvalidateDbg) { 8370 SDNode *FromNode = From.getNode(); 8371 SDNode *ToNode = To.getNode(); 8372 assert(FromNode && ToNode && "Can't modify dbg values"); 8373 8374 // PR35338 8375 // TODO: assert(From != To && "Redundant dbg value transfer"); 8376 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8377 if (From == To || FromNode == ToNode) 8378 return; 8379 8380 if (!FromNode->getHasDebugValue()) 8381 return; 8382 8383 SmallVector<SDDbgValue *, 2> ClonedDVs; 8384 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8385 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8386 continue; 8387 8388 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8389 8390 // Just transfer the dbg value attached to From. 8391 if (Dbg->getResNo() != From.getResNo()) 8392 continue; 8393 8394 DIVariable *Var = Dbg->getVariable(); 8395 auto *Expr = Dbg->getExpression(); 8396 // If a fragment is requested, update the expression. 8397 if (SizeInBits) { 8398 // When splitting a larger (e.g., sign-extended) value whose 8399 // lower bits are described with an SDDbgValue, do not attempt 8400 // to transfer the SDDbgValue to the upper bits. 8401 if (auto FI = Expr->getFragmentInfo()) 8402 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8403 continue; 8404 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8405 SizeInBits); 8406 if (!Fragment) 8407 continue; 8408 Expr = *Fragment; 8409 } 8410 // Clone the SDDbgValue and move it to To. 8411 SDDbgValue *Clone = getDbgValue( 8412 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8413 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8414 ClonedDVs.push_back(Clone); 8415 8416 if (InvalidateDbg) { 8417 // Invalidate value and indicate the SDDbgValue should not be emitted. 8418 Dbg->setIsInvalidated(); 8419 Dbg->setIsEmitted(); 8420 } 8421 } 8422 8423 for (SDDbgValue *Dbg : ClonedDVs) 8424 AddDbgValue(Dbg, ToNode, false); 8425 } 8426 8427 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8428 if (!N.getHasDebugValue()) 8429 return; 8430 8431 SmallVector<SDDbgValue *, 2> ClonedDVs; 8432 for (auto DV : GetDbgValues(&N)) { 8433 if (DV->isInvalidated()) 8434 continue; 8435 switch (N.getOpcode()) { 8436 default: 8437 break; 8438 case ISD::ADD: 8439 SDValue N0 = N.getOperand(0); 8440 SDValue N1 = N.getOperand(1); 8441 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8442 isConstantIntBuildVectorOrConstantInt(N1)) { 8443 uint64_t Offset = N.getConstantOperandVal(1); 8444 // Rewrite an ADD constant node into a DIExpression. Since we are 8445 // performing arithmetic to compute the variable's *value* in the 8446 // DIExpression, we need to mark the expression with a 8447 // DW_OP_stack_value. 8448 auto *DIExpr = DV->getExpression(); 8449 DIExpr = 8450 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8451 SDDbgValue *Clone = 8452 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8453 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8454 ClonedDVs.push_back(Clone); 8455 DV->setIsInvalidated(); 8456 DV->setIsEmitted(); 8457 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8458 N0.getNode()->dumprFull(this); 8459 dbgs() << " into " << *DIExpr << '\n'); 8460 } 8461 } 8462 } 8463 8464 for (SDDbgValue *Dbg : ClonedDVs) 8465 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8466 } 8467 8468 /// Creates a SDDbgLabel node. 8469 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8470 const DebugLoc &DL, unsigned O) { 8471 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8472 "Expected inlined-at fields to agree"); 8473 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8474 } 8475 8476 namespace { 8477 8478 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8479 /// pointed to by a use iterator is deleted, increment the use iterator 8480 /// so that it doesn't dangle. 8481 /// 8482 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8483 SDNode::use_iterator &UI; 8484 SDNode::use_iterator &UE; 8485 8486 void NodeDeleted(SDNode *N, SDNode *E) override { 8487 // Increment the iterator as needed. 8488 while (UI != UE && N == *UI) 8489 ++UI; 8490 } 8491 8492 public: 8493 RAUWUpdateListener(SelectionDAG &d, 8494 SDNode::use_iterator &ui, 8495 SDNode::use_iterator &ue) 8496 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8497 }; 8498 8499 } // end anonymous namespace 8500 8501 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8502 /// This can cause recursive merging of nodes in the DAG. 8503 /// 8504 /// This version assumes From has a single result value. 8505 /// 8506 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8507 SDNode *From = FromN.getNode(); 8508 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8509 "Cannot replace with this method!"); 8510 assert(From != To.getNode() && "Cannot replace uses of with self"); 8511 8512 // Preserve Debug Values 8513 transferDbgValues(FromN, To); 8514 8515 // Iterate over all the existing uses of From. New uses will be added 8516 // to the beginning of the use list, which we avoid visiting. 8517 // This specifically avoids visiting uses of From that arise while the 8518 // replacement is happening, because any such uses would be the result 8519 // of CSE: If an existing node looks like From after one of its operands 8520 // is replaced by To, we don't want to replace of all its users with To 8521 // too. See PR3018 for more info. 8522 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8523 RAUWUpdateListener Listener(*this, UI, UE); 8524 while (UI != UE) { 8525 SDNode *User = *UI; 8526 8527 // This node is about to morph, remove its old self from the CSE maps. 8528 RemoveNodeFromCSEMaps(User); 8529 8530 // A user can appear in a use list multiple times, and when this 8531 // happens the uses are usually next to each other in the list. 8532 // To help reduce the number of CSE recomputations, process all 8533 // the uses of this user that we can find this way. 8534 do { 8535 SDUse &Use = UI.getUse(); 8536 ++UI; 8537 Use.set(To); 8538 if (To->isDivergent() != From->isDivergent()) 8539 updateDivergence(User); 8540 } while (UI != UE && *UI == User); 8541 // Now that we have modified User, add it back to the CSE maps. If it 8542 // already exists there, recursively merge the results together. 8543 AddModifiedNodeToCSEMaps(User); 8544 } 8545 8546 // If we just RAUW'd the root, take note. 8547 if (FromN == getRoot()) 8548 setRoot(To); 8549 } 8550 8551 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8552 /// This can cause recursive merging of nodes in the DAG. 8553 /// 8554 /// This version assumes that for each value of From, there is a 8555 /// corresponding value in To in the same position with the same type. 8556 /// 8557 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8558 #ifndef NDEBUG 8559 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8560 assert((!From->hasAnyUseOfValue(i) || 8561 From->getValueType(i) == To->getValueType(i)) && 8562 "Cannot use this version of ReplaceAllUsesWith!"); 8563 #endif 8564 8565 // Handle the trivial case. 8566 if (From == To) 8567 return; 8568 8569 // Preserve Debug Info. Only do this if there's a use. 8570 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8571 if (From->hasAnyUseOfValue(i)) { 8572 assert((i < To->getNumValues()) && "Invalid To location"); 8573 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8574 } 8575 8576 // Iterate over just the existing users of From. See the comments in 8577 // the ReplaceAllUsesWith above. 8578 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8579 RAUWUpdateListener Listener(*this, UI, UE); 8580 while (UI != UE) { 8581 SDNode *User = *UI; 8582 8583 // This node is about to morph, remove its old self from the CSE maps. 8584 RemoveNodeFromCSEMaps(User); 8585 8586 // A user can appear in a use list multiple times, and when this 8587 // happens the uses are usually next to each other in the list. 8588 // To help reduce the number of CSE recomputations, process all 8589 // the uses of this user that we can find this way. 8590 do { 8591 SDUse &Use = UI.getUse(); 8592 ++UI; 8593 Use.setNode(To); 8594 if (To->isDivergent() != From->isDivergent()) 8595 updateDivergence(User); 8596 } while (UI != UE && *UI == User); 8597 8598 // Now that we have modified User, add it back to the CSE maps. If it 8599 // already exists there, recursively merge the results together. 8600 AddModifiedNodeToCSEMaps(User); 8601 } 8602 8603 // If we just RAUW'd the root, take note. 8604 if (From == getRoot().getNode()) 8605 setRoot(SDValue(To, getRoot().getResNo())); 8606 } 8607 8608 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8609 /// This can cause recursive merging of nodes in the DAG. 8610 /// 8611 /// This version can replace From with any result values. To must match the 8612 /// number and types of values returned by From. 8613 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8614 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8615 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8616 8617 // Preserve Debug Info. 8618 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8619 transferDbgValues(SDValue(From, i), To[i]); 8620 8621 // Iterate over just the existing users of From. See the comments in 8622 // the ReplaceAllUsesWith above. 8623 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8624 RAUWUpdateListener Listener(*this, UI, UE); 8625 while (UI != UE) { 8626 SDNode *User = *UI; 8627 8628 // This node is about to morph, remove its old self from the CSE maps. 8629 RemoveNodeFromCSEMaps(User); 8630 8631 // A user can appear in a use list multiple times, and when this happens the 8632 // uses are usually next to each other in the list. To help reduce the 8633 // number of CSE and divergence recomputations, process all the uses of this 8634 // user that we can find this way. 8635 bool To_IsDivergent = false; 8636 do { 8637 SDUse &Use = UI.getUse(); 8638 const SDValue &ToOp = To[Use.getResNo()]; 8639 ++UI; 8640 Use.set(ToOp); 8641 To_IsDivergent |= ToOp->isDivergent(); 8642 } while (UI != UE && *UI == User); 8643 8644 if (To_IsDivergent != From->isDivergent()) 8645 updateDivergence(User); 8646 8647 // Now that we have modified User, add it back to the CSE maps. If it 8648 // already exists there, recursively merge the results together. 8649 AddModifiedNodeToCSEMaps(User); 8650 } 8651 8652 // If we just RAUW'd the root, take note. 8653 if (From == getRoot().getNode()) 8654 setRoot(SDValue(To[getRoot().getResNo()])); 8655 } 8656 8657 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8658 /// uses of other values produced by From.getNode() alone. The Deleted 8659 /// vector is handled the same way as for ReplaceAllUsesWith. 8660 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8661 // Handle the really simple, really trivial case efficiently. 8662 if (From == To) return; 8663 8664 // Handle the simple, trivial, case efficiently. 8665 if (From.getNode()->getNumValues() == 1) { 8666 ReplaceAllUsesWith(From, To); 8667 return; 8668 } 8669 8670 // Preserve Debug Info. 8671 transferDbgValues(From, To); 8672 8673 // Iterate over just the existing users of From. See the comments in 8674 // the ReplaceAllUsesWith above. 8675 SDNode::use_iterator UI = From.getNode()->use_begin(), 8676 UE = From.getNode()->use_end(); 8677 RAUWUpdateListener Listener(*this, UI, UE); 8678 while (UI != UE) { 8679 SDNode *User = *UI; 8680 bool UserRemovedFromCSEMaps = false; 8681 8682 // A user can appear in a use list multiple times, and when this 8683 // happens the uses are usually next to each other in the list. 8684 // To help reduce the number of CSE recomputations, process all 8685 // the uses of this user that we can find this way. 8686 do { 8687 SDUse &Use = UI.getUse(); 8688 8689 // Skip uses of different values from the same node. 8690 if (Use.getResNo() != From.getResNo()) { 8691 ++UI; 8692 continue; 8693 } 8694 8695 // If this node hasn't been modified yet, it's still in the CSE maps, 8696 // so remove its old self from the CSE maps. 8697 if (!UserRemovedFromCSEMaps) { 8698 RemoveNodeFromCSEMaps(User); 8699 UserRemovedFromCSEMaps = true; 8700 } 8701 8702 ++UI; 8703 Use.set(To); 8704 if (To->isDivergent() != From->isDivergent()) 8705 updateDivergence(User); 8706 } while (UI != UE && *UI == User); 8707 // We are iterating over all uses of the From node, so if a use 8708 // doesn't use the specific value, no changes are made. 8709 if (!UserRemovedFromCSEMaps) 8710 continue; 8711 8712 // Now that we have modified User, add it back to the CSE maps. If it 8713 // already exists there, recursively merge the results together. 8714 AddModifiedNodeToCSEMaps(User); 8715 } 8716 8717 // If we just RAUW'd the root, take note. 8718 if (From == getRoot()) 8719 setRoot(To); 8720 } 8721 8722 namespace { 8723 8724 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8725 /// to record information about a use. 8726 struct UseMemo { 8727 SDNode *User; 8728 unsigned Index; 8729 SDUse *Use; 8730 }; 8731 8732 /// operator< - Sort Memos by User. 8733 bool operator<(const UseMemo &L, const UseMemo &R) { 8734 return (intptr_t)L.User < (intptr_t)R.User; 8735 } 8736 8737 } // end anonymous namespace 8738 8739 bool SelectionDAG::calculateDivergence(SDNode *N) { 8740 if (TLI->isSDNodeAlwaysUniform(N)) { 8741 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8742 "Conflicting divergence information!"); 8743 return false; 8744 } 8745 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8746 return true; 8747 for (auto &Op : N->ops()) { 8748 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8749 return true; 8750 } 8751 return false; 8752 } 8753 8754 void SelectionDAG::updateDivergence(SDNode *N) { 8755 SmallVector<SDNode *, 16> Worklist(1, N); 8756 do { 8757 N = Worklist.pop_back_val(); 8758 bool IsDivergent = calculateDivergence(N); 8759 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8760 N->SDNodeBits.IsDivergent = IsDivergent; 8761 Worklist.insert(Worklist.end(), N->use_begin(), N->use_end()); 8762 } 8763 } while (!Worklist.empty()); 8764 } 8765 8766 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8767 DenseMap<SDNode *, unsigned> Degree; 8768 Order.reserve(AllNodes.size()); 8769 for (auto &N : allnodes()) { 8770 unsigned NOps = N.getNumOperands(); 8771 Degree[&N] = NOps; 8772 if (0 == NOps) 8773 Order.push_back(&N); 8774 } 8775 for (size_t I = 0; I != Order.size(); ++I) { 8776 SDNode *N = Order[I]; 8777 for (auto U : N->uses()) { 8778 unsigned &UnsortedOps = Degree[U]; 8779 if (0 == --UnsortedOps) 8780 Order.push_back(U); 8781 } 8782 } 8783 } 8784 8785 #ifndef NDEBUG 8786 void SelectionDAG::VerifyDAGDiverence() { 8787 std::vector<SDNode *> TopoOrder; 8788 CreateTopologicalOrder(TopoOrder); 8789 for (auto *N : TopoOrder) { 8790 assert(calculateDivergence(N) == N->isDivergent() && 8791 "Divergence bit inconsistency detected"); 8792 } 8793 } 8794 #endif 8795 8796 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8797 /// uses of other values produced by From.getNode() alone. The same value 8798 /// may appear in both the From and To list. The Deleted vector is 8799 /// handled the same way as for ReplaceAllUsesWith. 8800 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8801 const SDValue *To, 8802 unsigned Num){ 8803 // Handle the simple, trivial case efficiently. 8804 if (Num == 1) 8805 return ReplaceAllUsesOfValueWith(*From, *To); 8806 8807 transferDbgValues(*From, *To); 8808 8809 // Read up all the uses and make records of them. This helps 8810 // processing new uses that are introduced during the 8811 // replacement process. 8812 SmallVector<UseMemo, 4> Uses; 8813 for (unsigned i = 0; i != Num; ++i) { 8814 unsigned FromResNo = From[i].getResNo(); 8815 SDNode *FromNode = From[i].getNode(); 8816 for (SDNode::use_iterator UI = FromNode->use_begin(), 8817 E = FromNode->use_end(); UI != E; ++UI) { 8818 SDUse &Use = UI.getUse(); 8819 if (Use.getResNo() == FromResNo) { 8820 UseMemo Memo = { *UI, i, &Use }; 8821 Uses.push_back(Memo); 8822 } 8823 } 8824 } 8825 8826 // Sort the uses, so that all the uses from a given User are together. 8827 llvm::sort(Uses); 8828 8829 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8830 UseIndex != UseIndexEnd; ) { 8831 // We know that this user uses some value of From. If it is the right 8832 // value, update it. 8833 SDNode *User = Uses[UseIndex].User; 8834 8835 // This node is about to morph, remove its old self from the CSE maps. 8836 RemoveNodeFromCSEMaps(User); 8837 8838 // The Uses array is sorted, so all the uses for a given User 8839 // are next to each other in the list. 8840 // To help reduce the number of CSE recomputations, process all 8841 // the uses of this user that we can find this way. 8842 do { 8843 unsigned i = Uses[UseIndex].Index; 8844 SDUse &Use = *Uses[UseIndex].Use; 8845 ++UseIndex; 8846 8847 Use.set(To[i]); 8848 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8849 8850 // Now that we have modified User, add it back to the CSE maps. If it 8851 // already exists there, recursively merge the results together. 8852 AddModifiedNodeToCSEMaps(User); 8853 } 8854 } 8855 8856 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8857 /// based on their topological order. It returns the maximum id and a vector 8858 /// of the SDNodes* in assigned order by reference. 8859 unsigned SelectionDAG::AssignTopologicalOrder() { 8860 unsigned DAGSize = 0; 8861 8862 // SortedPos tracks the progress of the algorithm. Nodes before it are 8863 // sorted, nodes after it are unsorted. When the algorithm completes 8864 // it is at the end of the list. 8865 allnodes_iterator SortedPos = allnodes_begin(); 8866 8867 // Visit all the nodes. Move nodes with no operands to the front of 8868 // the list immediately. Annotate nodes that do have operands with their 8869 // operand count. Before we do this, the Node Id fields of the nodes 8870 // may contain arbitrary values. After, the Node Id fields for nodes 8871 // before SortedPos will contain the topological sort index, and the 8872 // Node Id fields for nodes At SortedPos and after will contain the 8873 // count of outstanding operands. 8874 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8875 SDNode *N = &*I++; 8876 checkForCycles(N, this); 8877 unsigned Degree = N->getNumOperands(); 8878 if (Degree == 0) { 8879 // A node with no uses, add it to the result array immediately. 8880 N->setNodeId(DAGSize++); 8881 allnodes_iterator Q(N); 8882 if (Q != SortedPos) 8883 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8884 assert(SortedPos != AllNodes.end() && "Overran node list"); 8885 ++SortedPos; 8886 } else { 8887 // Temporarily use the Node Id as scratch space for the degree count. 8888 N->setNodeId(Degree); 8889 } 8890 } 8891 8892 // Visit all the nodes. As we iterate, move nodes into sorted order, 8893 // such that by the time the end is reached all nodes will be sorted. 8894 for (SDNode &Node : allnodes()) { 8895 SDNode *N = &Node; 8896 checkForCycles(N, this); 8897 // N is in sorted position, so all its uses have one less operand 8898 // that needs to be sorted. 8899 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8900 UI != UE; ++UI) { 8901 SDNode *P = *UI; 8902 unsigned Degree = P->getNodeId(); 8903 assert(Degree != 0 && "Invalid node degree"); 8904 --Degree; 8905 if (Degree == 0) { 8906 // All of P's operands are sorted, so P may sorted now. 8907 P->setNodeId(DAGSize++); 8908 if (P->getIterator() != SortedPos) 8909 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8910 assert(SortedPos != AllNodes.end() && "Overran node list"); 8911 ++SortedPos; 8912 } else { 8913 // Update P's outstanding operand count. 8914 P->setNodeId(Degree); 8915 } 8916 } 8917 if (Node.getIterator() == SortedPos) { 8918 #ifndef NDEBUG 8919 allnodes_iterator I(N); 8920 SDNode *S = &*++I; 8921 dbgs() << "Overran sorted position:\n"; 8922 S->dumprFull(this); dbgs() << "\n"; 8923 dbgs() << "Checking if this is due to cycles\n"; 8924 checkForCycles(this, true); 8925 #endif 8926 llvm_unreachable(nullptr); 8927 } 8928 } 8929 8930 assert(SortedPos == AllNodes.end() && 8931 "Topological sort incomplete!"); 8932 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8933 "First node in topological sort is not the entry token!"); 8934 assert(AllNodes.front().getNodeId() == 0 && 8935 "First node in topological sort has non-zero id!"); 8936 assert(AllNodes.front().getNumOperands() == 0 && 8937 "First node in topological sort has operands!"); 8938 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8939 "Last node in topologic sort has unexpected id!"); 8940 assert(AllNodes.back().use_empty() && 8941 "Last node in topologic sort has users!"); 8942 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8943 return DAGSize; 8944 } 8945 8946 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8947 /// value is produced by SD. 8948 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8949 if (SD) { 8950 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8951 SD->setHasDebugValue(true); 8952 } 8953 DbgInfo->add(DB, SD, isParameter); 8954 } 8955 8956 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8957 DbgInfo->add(DB); 8958 } 8959 8960 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8961 SDValue NewMemOp) { 8962 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8963 // The new memory operation must have the same position as the old load in 8964 // terms of memory dependency. Create a TokenFactor for the old load and new 8965 // memory operation and update uses of the old load's output chain to use that 8966 // TokenFactor. 8967 SDValue OldChain = SDValue(OldLoad, 1); 8968 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8969 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8970 return NewChain; 8971 8972 SDValue TokenFactor = 8973 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8974 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8975 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8976 return TokenFactor; 8977 } 8978 8979 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8980 Function **OutFunction) { 8981 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8982 8983 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8984 auto *Module = MF->getFunction().getParent(); 8985 auto *Function = Module->getFunction(Symbol); 8986 8987 if (OutFunction != nullptr) 8988 *OutFunction = Function; 8989 8990 if (Function != nullptr) { 8991 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8992 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8993 } 8994 8995 std::string ErrorStr; 8996 raw_string_ostream ErrorFormatter(ErrorStr); 8997 8998 ErrorFormatter << "Undefined external symbol "; 8999 ErrorFormatter << '"' << Symbol << '"'; 9000 ErrorFormatter.flush(); 9001 9002 report_fatal_error(ErrorStr); 9003 } 9004 9005 //===----------------------------------------------------------------------===// 9006 // SDNode Class 9007 //===----------------------------------------------------------------------===// 9008 9009 bool llvm::isNullConstant(SDValue V) { 9010 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9011 return Const != nullptr && Const->isNullValue(); 9012 } 9013 9014 bool llvm::isNullFPConstant(SDValue V) { 9015 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9016 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9017 } 9018 9019 bool llvm::isAllOnesConstant(SDValue V) { 9020 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9021 return Const != nullptr && Const->isAllOnesValue(); 9022 } 9023 9024 bool llvm::isOneConstant(SDValue V) { 9025 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9026 return Const != nullptr && Const->isOne(); 9027 } 9028 9029 SDValue llvm::peekThroughBitcasts(SDValue V) { 9030 while (V.getOpcode() == ISD::BITCAST) 9031 V = V.getOperand(0); 9032 return V; 9033 } 9034 9035 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9036 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9037 V = V.getOperand(0); 9038 return V; 9039 } 9040 9041 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9042 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9043 V = V.getOperand(0); 9044 return V; 9045 } 9046 9047 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9048 if (V.getOpcode() != ISD::XOR) 9049 return false; 9050 V = peekThroughBitcasts(V.getOperand(1)); 9051 unsigned NumBits = V.getScalarValueSizeInBits(); 9052 ConstantSDNode *C = 9053 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9054 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9055 } 9056 9057 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9058 bool AllowTruncation) { 9059 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9060 return CN; 9061 9062 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9063 BitVector UndefElements; 9064 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9065 9066 // BuildVectors can truncate their operands. Ignore that case here unless 9067 // AllowTruncation is set. 9068 if (CN && (UndefElements.none() || AllowUndefs)) { 9069 EVT CVT = CN->getValueType(0); 9070 EVT NSVT = N.getValueType().getScalarType(); 9071 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9072 if (AllowTruncation || (CVT == NSVT)) 9073 return CN; 9074 } 9075 } 9076 9077 return nullptr; 9078 } 9079 9080 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9081 bool AllowUndefs, 9082 bool AllowTruncation) { 9083 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9084 return CN; 9085 9086 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9087 BitVector UndefElements; 9088 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9089 9090 // BuildVectors can truncate their operands. Ignore that case here unless 9091 // AllowTruncation is set. 9092 if (CN && (UndefElements.none() || AllowUndefs)) { 9093 EVT CVT = CN->getValueType(0); 9094 EVT NSVT = N.getValueType().getScalarType(); 9095 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9096 if (AllowTruncation || (CVT == NSVT)) 9097 return CN; 9098 } 9099 } 9100 9101 return nullptr; 9102 } 9103 9104 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9105 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9106 return CN; 9107 9108 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9109 BitVector UndefElements; 9110 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9111 if (CN && (UndefElements.none() || AllowUndefs)) 9112 return CN; 9113 } 9114 9115 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9116 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9117 return CN; 9118 9119 return nullptr; 9120 } 9121 9122 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9123 const APInt &DemandedElts, 9124 bool AllowUndefs) { 9125 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9126 return CN; 9127 9128 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9129 BitVector UndefElements; 9130 ConstantFPSDNode *CN = 9131 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9132 if (CN && (UndefElements.none() || AllowUndefs)) 9133 return CN; 9134 } 9135 9136 return nullptr; 9137 } 9138 9139 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9140 // TODO: may want to use peekThroughBitcast() here. 9141 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9142 return C && C->isNullValue(); 9143 } 9144 9145 bool llvm::isOneOrOneSplat(SDValue N) { 9146 // TODO: may want to use peekThroughBitcast() here. 9147 unsigned BitWidth = N.getScalarValueSizeInBits(); 9148 ConstantSDNode *C = isConstOrConstSplat(N); 9149 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9150 } 9151 9152 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9153 N = peekThroughBitcasts(N); 9154 unsigned BitWidth = N.getScalarValueSizeInBits(); 9155 ConstantSDNode *C = isConstOrConstSplat(N); 9156 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9157 } 9158 9159 HandleSDNode::~HandleSDNode() { 9160 DropOperands(); 9161 } 9162 9163 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9164 const DebugLoc &DL, 9165 const GlobalValue *GA, EVT VT, 9166 int64_t o, unsigned TF) 9167 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9168 TheGlobal = GA; 9169 } 9170 9171 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9172 EVT VT, unsigned SrcAS, 9173 unsigned DestAS) 9174 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9175 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9176 9177 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9178 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9179 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9180 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9181 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9182 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9183 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9184 9185 // We check here that the size of the memory operand fits within the size of 9186 // the MMO. This is because the MMO might indicate only a possible address 9187 // range instead of specifying the affected memory addresses precisely. 9188 // TODO: Make MachineMemOperands aware of scalable vectors. 9189 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9190 "Size mismatch!"); 9191 } 9192 9193 /// Profile - Gather unique data for the node. 9194 /// 9195 void SDNode::Profile(FoldingSetNodeID &ID) const { 9196 AddNodeIDNode(ID, this); 9197 } 9198 9199 namespace { 9200 9201 struct EVTArray { 9202 std::vector<EVT> VTs; 9203 9204 EVTArray() { 9205 VTs.reserve(MVT::LAST_VALUETYPE); 9206 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9207 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9208 } 9209 }; 9210 9211 } // end anonymous namespace 9212 9213 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9214 static ManagedStatic<EVTArray> SimpleVTArray; 9215 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9216 9217 /// getValueTypeList - Return a pointer to the specified value type. 9218 /// 9219 const EVT *SDNode::getValueTypeList(EVT VT) { 9220 if (VT.isExtended()) { 9221 sys::SmartScopedLock<true> Lock(*VTMutex); 9222 return &(*EVTs->insert(VT).first); 9223 } else { 9224 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9225 "Value type out of range!"); 9226 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9227 } 9228 } 9229 9230 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9231 /// indicated value. This method ignores uses of other values defined by this 9232 /// operation. 9233 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9234 assert(Value < getNumValues() && "Bad value!"); 9235 9236 // TODO: Only iterate over uses of a given value of the node 9237 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9238 if (UI.getUse().getResNo() == Value) { 9239 if (NUses == 0) 9240 return false; 9241 --NUses; 9242 } 9243 } 9244 9245 // Found exactly the right number of uses? 9246 return NUses == 0; 9247 } 9248 9249 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9250 /// value. This method ignores uses of other values defined by this operation. 9251 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9252 assert(Value < getNumValues() && "Bad value!"); 9253 9254 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9255 if (UI.getUse().getResNo() == Value) 9256 return true; 9257 9258 return false; 9259 } 9260 9261 /// isOnlyUserOf - Return true if this node is the only use of N. 9262 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9263 bool Seen = false; 9264 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9265 SDNode *User = *I; 9266 if (User == this) 9267 Seen = true; 9268 else 9269 return false; 9270 } 9271 9272 return Seen; 9273 } 9274 9275 /// Return true if the only users of N are contained in Nodes. 9276 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9277 bool Seen = false; 9278 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9279 SDNode *User = *I; 9280 if (llvm::is_contained(Nodes, User)) 9281 Seen = true; 9282 else 9283 return false; 9284 } 9285 9286 return Seen; 9287 } 9288 9289 /// isOperand - Return true if this node is an operand of N. 9290 bool SDValue::isOperandOf(const SDNode *N) const { 9291 return is_contained(N->op_values(), *this); 9292 } 9293 9294 bool SDNode::isOperandOf(const SDNode *N) const { 9295 return any_of(N->op_values(), 9296 [this](SDValue Op) { return this == Op.getNode(); }); 9297 } 9298 9299 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9300 /// be a chain) reaches the specified operand without crossing any 9301 /// side-effecting instructions on any chain path. In practice, this looks 9302 /// through token factors and non-volatile loads. In order to remain efficient, 9303 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9304 /// 9305 /// Note that we only need to examine chains when we're searching for 9306 /// side-effects; SelectionDAG requires that all side-effects are represented 9307 /// by chains, even if another operand would force a specific ordering. This 9308 /// constraint is necessary to allow transformations like splitting loads. 9309 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9310 unsigned Depth) const { 9311 if (*this == Dest) return true; 9312 9313 // Don't search too deeply, we just want to be able to see through 9314 // TokenFactor's etc. 9315 if (Depth == 0) return false; 9316 9317 // If this is a token factor, all inputs to the TF happen in parallel. 9318 if (getOpcode() == ISD::TokenFactor) { 9319 // First, try a shallow search. 9320 if (is_contained((*this)->ops(), Dest)) { 9321 // We found the chain we want as an operand of this TokenFactor. 9322 // Essentially, we reach the chain without side-effects if we could 9323 // serialize the TokenFactor into a simple chain of operations with 9324 // Dest as the last operation. This is automatically true if the 9325 // chain has one use: there are no other ordering constraints. 9326 // If the chain has more than one use, we give up: some other 9327 // use of Dest might force a side-effect between Dest and the current 9328 // node. 9329 if (Dest.hasOneUse()) 9330 return true; 9331 } 9332 // Next, try a deep search: check whether every operand of the TokenFactor 9333 // reaches Dest. 9334 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9335 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9336 }); 9337 } 9338 9339 // Loads don't have side effects, look through them. 9340 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9341 if (Ld->isUnordered()) 9342 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9343 } 9344 return false; 9345 } 9346 9347 bool SDNode::hasPredecessor(const SDNode *N) const { 9348 SmallPtrSet<const SDNode *, 32> Visited; 9349 SmallVector<const SDNode *, 16> Worklist; 9350 Worklist.push_back(this); 9351 return hasPredecessorHelper(N, Visited, Worklist); 9352 } 9353 9354 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9355 this->Flags.intersectWith(Flags); 9356 } 9357 9358 SDValue 9359 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9360 ArrayRef<ISD::NodeType> CandidateBinOps, 9361 bool AllowPartials) { 9362 // The pattern must end in an extract from index 0. 9363 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9364 !isNullConstant(Extract->getOperand(1))) 9365 return SDValue(); 9366 9367 // Match against one of the candidate binary ops. 9368 SDValue Op = Extract->getOperand(0); 9369 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9370 return Op.getOpcode() == unsigned(BinOp); 9371 })) 9372 return SDValue(); 9373 9374 // Floating-point reductions may require relaxed constraints on the final step 9375 // of the reduction because they may reorder intermediate operations. 9376 unsigned CandidateBinOp = Op.getOpcode(); 9377 if (Op.getValueType().isFloatingPoint()) { 9378 SDNodeFlags Flags = Op->getFlags(); 9379 switch (CandidateBinOp) { 9380 case ISD::FADD: 9381 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9382 return SDValue(); 9383 break; 9384 default: 9385 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9386 } 9387 } 9388 9389 // Matching failed - attempt to see if we did enough stages that a partial 9390 // reduction from a subvector is possible. 9391 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9392 if (!AllowPartials || !Op) 9393 return SDValue(); 9394 EVT OpVT = Op.getValueType(); 9395 EVT OpSVT = OpVT.getScalarType(); 9396 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9397 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9398 return SDValue(); 9399 BinOp = (ISD::NodeType)CandidateBinOp; 9400 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9401 getVectorIdxConstant(0, SDLoc(Op))); 9402 }; 9403 9404 // At each stage, we're looking for something that looks like: 9405 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9406 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9407 // i32 undef, i32 undef, i32 undef, i32 undef> 9408 // %a = binop <8 x i32> %op, %s 9409 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9410 // we expect something like: 9411 // <4,5,6,7,u,u,u,u> 9412 // <2,3,u,u,u,u,u,u> 9413 // <1,u,u,u,u,u,u,u> 9414 // While a partial reduction match would be: 9415 // <2,3,u,u,u,u,u,u> 9416 // <1,u,u,u,u,u,u,u> 9417 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9418 SDValue PrevOp; 9419 for (unsigned i = 0; i < Stages; ++i) { 9420 unsigned MaskEnd = (1 << i); 9421 9422 if (Op.getOpcode() != CandidateBinOp) 9423 return PartialReduction(PrevOp, MaskEnd); 9424 9425 SDValue Op0 = Op.getOperand(0); 9426 SDValue Op1 = Op.getOperand(1); 9427 9428 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9429 if (Shuffle) { 9430 Op = Op1; 9431 } else { 9432 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9433 Op = Op0; 9434 } 9435 9436 // The first operand of the shuffle should be the same as the other operand 9437 // of the binop. 9438 if (!Shuffle || Shuffle->getOperand(0) != Op) 9439 return PartialReduction(PrevOp, MaskEnd); 9440 9441 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9442 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9443 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9444 return PartialReduction(PrevOp, MaskEnd); 9445 9446 PrevOp = Op; 9447 } 9448 9449 // Handle subvector reductions, which tend to appear after the shuffle 9450 // reduction stages. 9451 while (Op.getOpcode() == CandidateBinOp) { 9452 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9453 SDValue Op0 = Op.getOperand(0); 9454 SDValue Op1 = Op.getOperand(1); 9455 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9456 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9457 Op0.getOperand(0) != Op1.getOperand(0)) 9458 break; 9459 SDValue Src = Op0.getOperand(0); 9460 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9461 if (NumSrcElts != (2 * NumElts)) 9462 break; 9463 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9464 Op1.getConstantOperandAPInt(1) == NumElts) && 9465 !(Op1.getConstantOperandAPInt(1) == 0 && 9466 Op0.getConstantOperandAPInt(1) == NumElts)) 9467 break; 9468 Op = Src; 9469 } 9470 9471 BinOp = (ISD::NodeType)CandidateBinOp; 9472 return Op; 9473 } 9474 9475 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9476 assert(N->getNumValues() == 1 && 9477 "Can't unroll a vector with multiple results!"); 9478 9479 EVT VT = N->getValueType(0); 9480 unsigned NE = VT.getVectorNumElements(); 9481 EVT EltVT = VT.getVectorElementType(); 9482 SDLoc dl(N); 9483 9484 SmallVector<SDValue, 8> Scalars; 9485 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9486 9487 // If ResNE is 0, fully unroll the vector op. 9488 if (ResNE == 0) 9489 ResNE = NE; 9490 else if (NE > ResNE) 9491 NE = ResNE; 9492 9493 unsigned i; 9494 for (i= 0; i != NE; ++i) { 9495 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9496 SDValue Operand = N->getOperand(j); 9497 EVT OperandVT = Operand.getValueType(); 9498 if (OperandVT.isVector()) { 9499 // A vector operand; extract a single element. 9500 EVT OperandEltVT = OperandVT.getVectorElementType(); 9501 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9502 Operand, getVectorIdxConstant(i, dl)); 9503 } else { 9504 // A scalar operand; just use it as is. 9505 Operands[j] = Operand; 9506 } 9507 } 9508 9509 switch (N->getOpcode()) { 9510 default: { 9511 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9512 N->getFlags())); 9513 break; 9514 } 9515 case ISD::VSELECT: 9516 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9517 break; 9518 case ISD::SHL: 9519 case ISD::SRA: 9520 case ISD::SRL: 9521 case ISD::ROTL: 9522 case ISD::ROTR: 9523 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9524 getShiftAmountOperand(Operands[0].getValueType(), 9525 Operands[1]))); 9526 break; 9527 case ISD::SIGN_EXTEND_INREG: { 9528 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9529 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9530 Operands[0], 9531 getValueType(ExtVT))); 9532 } 9533 } 9534 } 9535 9536 for (; i < ResNE; ++i) 9537 Scalars.push_back(getUNDEF(EltVT)); 9538 9539 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9540 return getBuildVector(VecVT, dl, Scalars); 9541 } 9542 9543 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9544 SDNode *N, unsigned ResNE) { 9545 unsigned Opcode = N->getOpcode(); 9546 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9547 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9548 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9549 "Expected an overflow opcode"); 9550 9551 EVT ResVT = N->getValueType(0); 9552 EVT OvVT = N->getValueType(1); 9553 EVT ResEltVT = ResVT.getVectorElementType(); 9554 EVT OvEltVT = OvVT.getVectorElementType(); 9555 SDLoc dl(N); 9556 9557 // If ResNE is 0, fully unroll the vector op. 9558 unsigned NE = ResVT.getVectorNumElements(); 9559 if (ResNE == 0) 9560 ResNE = NE; 9561 else if (NE > ResNE) 9562 NE = ResNE; 9563 9564 SmallVector<SDValue, 8> LHSScalars; 9565 SmallVector<SDValue, 8> RHSScalars; 9566 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9567 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9568 9569 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9570 SDVTList VTs = getVTList(ResEltVT, SVT); 9571 SmallVector<SDValue, 8> ResScalars; 9572 SmallVector<SDValue, 8> OvScalars; 9573 for (unsigned i = 0; i < NE; ++i) { 9574 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9575 SDValue Ov = 9576 getSelect(dl, OvEltVT, Res.getValue(1), 9577 getBoolConstant(true, dl, OvEltVT, ResVT), 9578 getConstant(0, dl, OvEltVT)); 9579 9580 ResScalars.push_back(Res); 9581 OvScalars.push_back(Ov); 9582 } 9583 9584 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9585 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9586 9587 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9588 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9589 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9590 getBuildVector(NewOvVT, dl, OvScalars)); 9591 } 9592 9593 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9594 LoadSDNode *Base, 9595 unsigned Bytes, 9596 int Dist) const { 9597 if (LD->isVolatile() || Base->isVolatile()) 9598 return false; 9599 // TODO: probably too restrictive for atomics, revisit 9600 if (!LD->isSimple()) 9601 return false; 9602 if (LD->isIndexed() || Base->isIndexed()) 9603 return false; 9604 if (LD->getChain() != Base->getChain()) 9605 return false; 9606 EVT VT = LD->getValueType(0); 9607 if (VT.getSizeInBits() / 8 != Bytes) 9608 return false; 9609 9610 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9611 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9612 9613 int64_t Offset = 0; 9614 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9615 return (Dist * Bytes == Offset); 9616 return false; 9617 } 9618 9619 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9620 /// if it cannot be inferred. 9621 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9622 // If this is a GlobalAddress + cst, return the alignment. 9623 const GlobalValue *GV = nullptr; 9624 int64_t GVOffset = 0; 9625 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9626 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9627 KnownBits Known(PtrWidth); 9628 llvm::computeKnownBits(GV, Known, getDataLayout()); 9629 unsigned AlignBits = Known.countMinTrailingZeros(); 9630 if (AlignBits) 9631 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9632 } 9633 9634 // If this is a direct reference to a stack slot, use information about the 9635 // stack slot's alignment. 9636 int FrameIdx = INT_MIN; 9637 int64_t FrameOffset = 0; 9638 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9639 FrameIdx = FI->getIndex(); 9640 } else if (isBaseWithConstantOffset(Ptr) && 9641 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9642 // Handle FI+Cst 9643 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9644 FrameOffset = Ptr.getConstantOperandVal(1); 9645 } 9646 9647 if (FrameIdx != INT_MIN) { 9648 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9649 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9650 } 9651 9652 return None; 9653 } 9654 9655 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9656 /// which is split (or expanded) into two not necessarily identical pieces. 9657 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9658 // Currently all types are split in half. 9659 EVT LoVT, HiVT; 9660 if (!VT.isVector()) 9661 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9662 else 9663 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9664 9665 return std::make_pair(LoVT, HiVT); 9666 } 9667 9668 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9669 /// type, dependent on an enveloping VT that has been split into two identical 9670 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9671 std::pair<EVT, EVT> 9672 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9673 bool *HiIsEmpty) const { 9674 EVT EltTp = VT.getVectorElementType(); 9675 // Examples: 9676 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9677 // custom VL=9 with enveloping VL=8/8 yields 8/1 9678 // custom VL=10 with enveloping VL=8/8 yields 8/2 9679 // etc. 9680 ElementCount VTNumElts = VT.getVectorElementCount(); 9681 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9682 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9683 "Mixing fixed width and scalable vectors when enveloping a type"); 9684 EVT LoVT, HiVT; 9685 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9686 LoVT = EnvVT; 9687 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9688 *HiIsEmpty = false; 9689 } else { 9690 // Flag that hi type has zero storage size, but return split envelop type 9691 // (this would be easier if vector types with zero elements were allowed). 9692 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9693 HiVT = EnvVT; 9694 *HiIsEmpty = true; 9695 } 9696 return std::make_pair(LoVT, HiVT); 9697 } 9698 9699 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9700 /// low/high part. 9701 std::pair<SDValue, SDValue> 9702 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9703 const EVT &HiVT) { 9704 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9705 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9706 "Splitting vector with an invalid mixture of fixed and scalable " 9707 "vector types"); 9708 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9709 N.getValueType().getVectorMinNumElements() && 9710 "More vector elements requested than available!"); 9711 SDValue Lo, Hi; 9712 Lo = 9713 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9714 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9715 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9716 // IDX with the runtime scaling factor of the result vector type. For 9717 // fixed-width result vectors, that runtime scaling factor is 1. 9718 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9719 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9720 return std::make_pair(Lo, Hi); 9721 } 9722 9723 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9724 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9725 EVT VT = N.getValueType(); 9726 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9727 NextPowerOf2(VT.getVectorNumElements())); 9728 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9729 getVectorIdxConstant(0, DL)); 9730 } 9731 9732 void SelectionDAG::ExtractVectorElements(SDValue Op, 9733 SmallVectorImpl<SDValue> &Args, 9734 unsigned Start, unsigned Count, 9735 EVT EltVT) { 9736 EVT VT = Op.getValueType(); 9737 if (Count == 0) 9738 Count = VT.getVectorNumElements(); 9739 if (EltVT == EVT()) 9740 EltVT = VT.getVectorElementType(); 9741 SDLoc SL(Op); 9742 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9743 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9744 getVectorIdxConstant(i, SL))); 9745 } 9746 } 9747 9748 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9749 unsigned GlobalAddressSDNode::getAddressSpace() const { 9750 return getGlobal()->getType()->getAddressSpace(); 9751 } 9752 9753 Type *ConstantPoolSDNode::getType() const { 9754 if (isMachineConstantPoolEntry()) 9755 return Val.MachineCPVal->getType(); 9756 return Val.ConstVal->getType(); 9757 } 9758 9759 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9760 unsigned &SplatBitSize, 9761 bool &HasAnyUndefs, 9762 unsigned MinSplatBits, 9763 bool IsBigEndian) const { 9764 EVT VT = getValueType(0); 9765 assert(VT.isVector() && "Expected a vector type"); 9766 unsigned VecWidth = VT.getSizeInBits(); 9767 if (MinSplatBits > VecWidth) 9768 return false; 9769 9770 // FIXME: The widths are based on this node's type, but build vectors can 9771 // truncate their operands. 9772 SplatValue = APInt(VecWidth, 0); 9773 SplatUndef = APInt(VecWidth, 0); 9774 9775 // Get the bits. Bits with undefined values (when the corresponding element 9776 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9777 // in SplatValue. If any of the values are not constant, give up and return 9778 // false. 9779 unsigned int NumOps = getNumOperands(); 9780 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9781 unsigned EltWidth = VT.getScalarSizeInBits(); 9782 9783 for (unsigned j = 0; j < NumOps; ++j) { 9784 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9785 SDValue OpVal = getOperand(i); 9786 unsigned BitPos = j * EltWidth; 9787 9788 if (OpVal.isUndef()) 9789 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9790 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9791 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9792 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9793 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9794 else 9795 return false; 9796 } 9797 9798 // The build_vector is all constants or undefs. Find the smallest element 9799 // size that splats the vector. 9800 HasAnyUndefs = (SplatUndef != 0); 9801 9802 // FIXME: This does not work for vectors with elements less than 8 bits. 9803 while (VecWidth > 8) { 9804 unsigned HalfSize = VecWidth / 2; 9805 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9806 APInt LowValue = SplatValue.trunc(HalfSize); 9807 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9808 APInt LowUndef = SplatUndef.trunc(HalfSize); 9809 9810 // If the two halves do not match (ignoring undef bits), stop here. 9811 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9812 MinSplatBits > HalfSize) 9813 break; 9814 9815 SplatValue = HighValue | LowValue; 9816 SplatUndef = HighUndef & LowUndef; 9817 9818 VecWidth = HalfSize; 9819 } 9820 9821 SplatBitSize = VecWidth; 9822 return true; 9823 } 9824 9825 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9826 BitVector *UndefElements) const { 9827 unsigned NumOps = getNumOperands(); 9828 if (UndefElements) { 9829 UndefElements->clear(); 9830 UndefElements->resize(NumOps); 9831 } 9832 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9833 if (!DemandedElts) 9834 return SDValue(); 9835 SDValue Splatted; 9836 for (unsigned i = 0; i != NumOps; ++i) { 9837 if (!DemandedElts[i]) 9838 continue; 9839 SDValue Op = getOperand(i); 9840 if (Op.isUndef()) { 9841 if (UndefElements) 9842 (*UndefElements)[i] = true; 9843 } else if (!Splatted) { 9844 Splatted = Op; 9845 } else if (Splatted != Op) { 9846 return SDValue(); 9847 } 9848 } 9849 9850 if (!Splatted) { 9851 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9852 assert(getOperand(FirstDemandedIdx).isUndef() && 9853 "Can only have a splat without a constant for all undefs."); 9854 return getOperand(FirstDemandedIdx); 9855 } 9856 9857 return Splatted; 9858 } 9859 9860 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9861 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9862 return getSplatValue(DemandedElts, UndefElements); 9863 } 9864 9865 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9866 SmallVectorImpl<SDValue> &Sequence, 9867 BitVector *UndefElements) const { 9868 unsigned NumOps = getNumOperands(); 9869 Sequence.clear(); 9870 if (UndefElements) { 9871 UndefElements->clear(); 9872 UndefElements->resize(NumOps); 9873 } 9874 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9875 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9876 return false; 9877 9878 // Set the undefs even if we don't find a sequence (like getSplatValue). 9879 if (UndefElements) 9880 for (unsigned I = 0; I != NumOps; ++I) 9881 if (DemandedElts[I] && getOperand(I).isUndef()) 9882 (*UndefElements)[I] = true; 9883 9884 // Iteratively widen the sequence length looking for repetitions. 9885 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9886 Sequence.append(SeqLen, SDValue()); 9887 for (unsigned I = 0; I != NumOps; ++I) { 9888 if (!DemandedElts[I]) 9889 continue; 9890 SDValue &SeqOp = Sequence[I % SeqLen]; 9891 SDValue Op = getOperand(I); 9892 if (Op.isUndef()) { 9893 if (!SeqOp) 9894 SeqOp = Op; 9895 continue; 9896 } 9897 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9898 Sequence.clear(); 9899 break; 9900 } 9901 SeqOp = Op; 9902 } 9903 if (!Sequence.empty()) 9904 return true; 9905 } 9906 9907 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9908 return false; 9909 } 9910 9911 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9912 BitVector *UndefElements) const { 9913 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9914 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9915 } 9916 9917 ConstantSDNode * 9918 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9919 BitVector *UndefElements) const { 9920 return dyn_cast_or_null<ConstantSDNode>( 9921 getSplatValue(DemandedElts, UndefElements)); 9922 } 9923 9924 ConstantSDNode * 9925 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9926 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9927 } 9928 9929 ConstantFPSDNode * 9930 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9931 BitVector *UndefElements) const { 9932 return dyn_cast_or_null<ConstantFPSDNode>( 9933 getSplatValue(DemandedElts, UndefElements)); 9934 } 9935 9936 ConstantFPSDNode * 9937 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9938 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9939 } 9940 9941 int32_t 9942 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9943 uint32_t BitWidth) const { 9944 if (ConstantFPSDNode *CN = 9945 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9946 bool IsExact; 9947 APSInt IntVal(BitWidth); 9948 const APFloat &APF = CN->getValueAPF(); 9949 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9950 APFloat::opOK || 9951 !IsExact) 9952 return -1; 9953 9954 return IntVal.exactLogBase2(); 9955 } 9956 return -1; 9957 } 9958 9959 bool BuildVectorSDNode::isConstant() const { 9960 for (const SDValue &Op : op_values()) { 9961 unsigned Opc = Op.getOpcode(); 9962 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9963 return false; 9964 } 9965 return true; 9966 } 9967 9968 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9969 // Find the first non-undef value in the shuffle mask. 9970 unsigned i, e; 9971 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9972 /* search */; 9973 9974 // If all elements are undefined, this shuffle can be considered a splat 9975 // (although it should eventually get simplified away completely). 9976 if (i == e) 9977 return true; 9978 9979 // Make sure all remaining elements are either undef or the same as the first 9980 // non-undef value. 9981 for (int Idx = Mask[i]; i != e; ++i) 9982 if (Mask[i] >= 0 && Mask[i] != Idx) 9983 return false; 9984 return true; 9985 } 9986 9987 // Returns the SDNode if it is a constant integer BuildVector 9988 // or constant integer. 9989 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9990 if (isa<ConstantSDNode>(N)) 9991 return N.getNode(); 9992 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9993 return N.getNode(); 9994 // Treat a GlobalAddress supporting constant offset folding as a 9995 // constant integer. 9996 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9997 if (GA->getOpcode() == ISD::GlobalAddress && 9998 TLI->isOffsetFoldingLegal(GA)) 9999 return GA; 10000 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10001 isa<ConstantSDNode>(N.getOperand(0))) 10002 return N.getNode(); 10003 return nullptr; 10004 } 10005 10006 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 10007 if (isa<ConstantFPSDNode>(N)) 10008 return N.getNode(); 10009 10010 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10011 return N.getNode(); 10012 10013 return nullptr; 10014 } 10015 10016 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10017 assert(!Node->OperandList && "Node already has operands"); 10018 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10019 "too many operands to fit into SDNode"); 10020 SDUse *Ops = OperandRecycler.allocate( 10021 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10022 10023 bool IsDivergent = false; 10024 for (unsigned I = 0; I != Vals.size(); ++I) { 10025 Ops[I].setUser(Node); 10026 Ops[I].setInitial(Vals[I]); 10027 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10028 IsDivergent |= Ops[I].getNode()->isDivergent(); 10029 } 10030 Node->NumOperands = Vals.size(); 10031 Node->OperandList = Ops; 10032 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10033 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10034 Node->SDNodeBits.IsDivergent = IsDivergent; 10035 } 10036 checkForCycles(Node); 10037 } 10038 10039 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10040 SmallVectorImpl<SDValue> &Vals) { 10041 size_t Limit = SDNode::getMaxNumOperands(); 10042 while (Vals.size() > Limit) { 10043 unsigned SliceIdx = Vals.size() - Limit; 10044 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10045 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10046 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10047 Vals.emplace_back(NewTF); 10048 } 10049 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10050 } 10051 10052 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10053 EVT VT, SDNodeFlags Flags) { 10054 switch (Opcode) { 10055 default: 10056 return SDValue(); 10057 case ISD::ADD: 10058 case ISD::OR: 10059 case ISD::XOR: 10060 case ISD::UMAX: 10061 return getConstant(0, DL, VT); 10062 case ISD::MUL: 10063 return getConstant(1, DL, VT); 10064 case ISD::AND: 10065 case ISD::UMIN: 10066 return getAllOnesConstant(DL, VT); 10067 case ISD::SMAX: 10068 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10069 case ISD::SMIN: 10070 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10071 case ISD::FADD: 10072 return getConstantFP(-0.0, DL, VT); 10073 case ISD::FMUL: 10074 return getConstantFP(1.0, DL, VT); 10075 case ISD::FMINNUM: 10076 case ISD::FMAXNUM: { 10077 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10078 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10079 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10080 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10081 APFloat::getLargest(Semantics); 10082 if (Opcode == ISD::FMAXNUM) 10083 NeutralAF.changeSign(); 10084 10085 return getConstantFP(NeutralAF, DL, VT); 10086 } 10087 } 10088 } 10089 10090 #ifndef NDEBUG 10091 static void checkForCyclesHelper(const SDNode *N, 10092 SmallPtrSetImpl<const SDNode*> &Visited, 10093 SmallPtrSetImpl<const SDNode*> &Checked, 10094 const llvm::SelectionDAG *DAG) { 10095 // If this node has already been checked, don't check it again. 10096 if (Checked.count(N)) 10097 return; 10098 10099 // If a node has already been visited on this depth-first walk, reject it as 10100 // a cycle. 10101 if (!Visited.insert(N).second) { 10102 errs() << "Detected cycle in SelectionDAG\n"; 10103 dbgs() << "Offending node:\n"; 10104 N->dumprFull(DAG); dbgs() << "\n"; 10105 abort(); 10106 } 10107 10108 for (const SDValue &Op : N->op_values()) 10109 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10110 10111 Checked.insert(N); 10112 Visited.erase(N); 10113 } 10114 #endif 10115 10116 void llvm::checkForCycles(const llvm::SDNode *N, 10117 const llvm::SelectionDAG *DAG, 10118 bool force) { 10119 #ifndef NDEBUG 10120 bool check = force; 10121 #ifdef EXPENSIVE_CHECKS 10122 check = true; 10123 #endif // EXPENSIVE_CHECKS 10124 if (check) { 10125 assert(N && "Checking nonexistent SDNode"); 10126 SmallPtrSet<const SDNode*, 32> visited; 10127 SmallPtrSet<const SDNode*, 32> checked; 10128 checkForCyclesHelper(N, visited, checked, DAG); 10129 } 10130 #endif // !NDEBUG 10131 } 10132 10133 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10134 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10135 } 10136