1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 346 ISD::BUILD_VECTOR != RHS.getOpcode()) 347 return false; 348 349 EVT SVT = LHS.getValueType().getScalarType(); 350 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 351 SDValue LHSOp = LHS.getOperand(i); 352 SDValue RHSOp = RHS.getOperand(i); 353 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 354 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 355 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 356 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 357 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 358 return false; 359 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 360 LHSOp.getValueType() != RHSOp.getValueType())) 361 return false; 362 if (!Match(LHSCst, RHSCst)) 363 return false; 364 } 365 return true; 366 } 367 368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 369 switch (VecReduceOpcode) { 370 default: 371 llvm_unreachable("Expected VECREDUCE opcode"); 372 case ISD::VECREDUCE_FADD: 373 case ISD::VECREDUCE_SEQ_FADD: 374 return ISD::FADD; 375 case ISD::VECREDUCE_FMUL: 376 case ISD::VECREDUCE_SEQ_FMUL: 377 return ISD::FMUL; 378 case ISD::VECREDUCE_ADD: 379 return ISD::ADD; 380 case ISD::VECREDUCE_MUL: 381 return ISD::MUL; 382 case ISD::VECREDUCE_AND: 383 return ISD::AND; 384 case ISD::VECREDUCE_OR: 385 return ISD::OR; 386 case ISD::VECREDUCE_XOR: 387 return ISD::XOR; 388 case ISD::VECREDUCE_SMAX: 389 return ISD::SMAX; 390 case ISD::VECREDUCE_SMIN: 391 return ISD::SMIN; 392 case ISD::VECREDUCE_UMAX: 393 return ISD::UMAX; 394 case ISD::VECREDUCE_UMIN: 395 return ISD::UMIN; 396 case ISD::VECREDUCE_FMAX: 397 return ISD::FMAXNUM; 398 case ISD::VECREDUCE_FMIN: 399 return ISD::FMINNUM; 400 } 401 } 402 403 bool ISD::isVPOpcode(unsigned Opcode) { 404 switch (Opcode) { 405 default: 406 return false; 407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 408 case ISD::SDOPC: \ 409 return true; 410 #include "llvm/IR/VPIntrinsics.def" 411 } 412 } 413 414 /// The operand position of the vector mask. 415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 416 switch (Opcode) { 417 default: 418 return None; 419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 420 case ISD::SDOPC: \ 421 return MASKPOS; 422 #include "llvm/IR/VPIntrinsics.def" 423 } 424 } 425 426 /// The operand position of the explicit vector length parameter. 427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return None; 431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 432 case ISD::SDOPC: \ 433 return EVLPOS; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 439 switch (ExtType) { 440 case ISD::EXTLOAD: 441 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 442 case ISD::SEXTLOAD: 443 return ISD::SIGN_EXTEND; 444 case ISD::ZEXTLOAD: 445 return ISD::ZERO_EXTEND; 446 default: 447 break; 448 } 449 450 llvm_unreachable("Invalid LoadExtType"); 451 } 452 453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 454 // To perform this operation, we just need to swap the L and G bits of the 455 // operation. 456 unsigned OldL = (Operation >> 2) & 1; 457 unsigned OldG = (Operation >> 1) & 1; 458 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 459 (OldL << 1) | // New G bit 460 (OldG << 2)); // New L bit. 461 } 462 463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 464 unsigned Operation = Op; 465 if (isIntegerLike) 466 Operation ^= 7; // Flip L, G, E bits, but not U. 467 else 468 Operation ^= 15; // Flip all of the condition bits. 469 470 if (Operation > ISD::SETTRUE2) 471 Operation &= ~8; // Don't let N and U bits get set. 472 473 return ISD::CondCode(Operation); 474 } 475 476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 477 return getSetCCInverseImpl(Op, Type.isInteger()); 478 } 479 480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 481 bool isIntegerLike) { 482 return getSetCCInverseImpl(Op, isIntegerLike); 483 } 484 485 /// For an integer comparison, return 1 if the comparison is a signed operation 486 /// and 2 if the result is an unsigned comparison. Return zero if the operation 487 /// does not depend on the sign of the input (setne and seteq). 488 static int isSignedOp(ISD::CondCode Opcode) { 489 switch (Opcode) { 490 default: llvm_unreachable("Illegal integer setcc operation!"); 491 case ISD::SETEQ: 492 case ISD::SETNE: return 0; 493 case ISD::SETLT: 494 case ISD::SETLE: 495 case ISD::SETGT: 496 case ISD::SETGE: return 1; 497 case ISD::SETULT: 498 case ISD::SETULE: 499 case ISD::SETUGT: 500 case ISD::SETUGE: return 2; 501 } 502 } 503 504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 505 EVT Type) { 506 bool IsInteger = Type.isInteger(); 507 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 508 // Cannot fold a signed integer setcc with an unsigned integer setcc. 509 return ISD::SETCC_INVALID; 510 511 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 512 513 // If the N and U bits get set, then the resultant comparison DOES suddenly 514 // care about orderedness, and it is true when ordered. 515 if (Op > ISD::SETTRUE2) 516 Op &= ~16; // Clear the U bit if the N bit is set. 517 518 // Canonicalize illegal integer setcc's. 519 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 520 Op = ISD::SETNE; 521 522 return ISD::CondCode(Op); 523 } 524 525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 526 EVT Type) { 527 bool IsInteger = Type.isInteger(); 528 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 529 // Cannot fold a signed setcc with an unsigned setcc. 530 return ISD::SETCC_INVALID; 531 532 // Combine all of the condition bits. 533 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 534 535 // Canonicalize illegal integer setcc's. 536 if (IsInteger) { 537 switch (Result) { 538 default: break; 539 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 540 case ISD::SETOEQ: // SETEQ & SETU[LG]E 541 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 542 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 543 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 544 } 545 } 546 547 return Result; 548 } 549 550 //===----------------------------------------------------------------------===// 551 // SDNode Profile Support 552 //===----------------------------------------------------------------------===// 553 554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 556 ID.AddInteger(OpC); 557 } 558 559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 560 /// solely with their pointer. 561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 562 ID.AddPointer(VTList.VTs); 563 } 564 565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 566 static void AddNodeIDOperands(FoldingSetNodeID &ID, 567 ArrayRef<SDValue> Ops) { 568 for (auto& Op : Ops) { 569 ID.AddPointer(Op.getNode()); 570 ID.AddInteger(Op.getResNo()); 571 } 572 } 573 574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 575 static void AddNodeIDOperands(FoldingSetNodeID &ID, 576 ArrayRef<SDUse> Ops) { 577 for (auto& Op : Ops) { 578 ID.AddPointer(Op.getNode()); 579 ID.AddInteger(Op.getResNo()); 580 } 581 } 582 583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 584 SDVTList VTList, ArrayRef<SDValue> OpList) { 585 AddNodeIDOpcode(ID, OpC); 586 AddNodeIDValueTypes(ID, VTList); 587 AddNodeIDOperands(ID, OpList); 588 } 589 590 /// If this is an SDNode with special info, add this info to the NodeID data. 591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 592 switch (N->getOpcode()) { 593 case ISD::TargetExternalSymbol: 594 case ISD::ExternalSymbol: 595 case ISD::MCSymbol: 596 llvm_unreachable("Should only be used on nodes with operands"); 597 default: break; // Normal nodes don't need extra info. 598 case ISD::TargetConstant: 599 case ISD::Constant: { 600 const ConstantSDNode *C = cast<ConstantSDNode>(N); 601 ID.AddPointer(C->getConstantIntValue()); 602 ID.AddBoolean(C->isOpaque()); 603 break; 604 } 605 case ISD::TargetConstantFP: 606 case ISD::ConstantFP: 607 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 608 break; 609 case ISD::TargetGlobalAddress: 610 case ISD::GlobalAddress: 611 case ISD::TargetGlobalTLSAddress: 612 case ISD::GlobalTLSAddress: { 613 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 614 ID.AddPointer(GA->getGlobal()); 615 ID.AddInteger(GA->getOffset()); 616 ID.AddInteger(GA->getTargetFlags()); 617 break; 618 } 619 case ISD::BasicBlock: 620 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 621 break; 622 case ISD::Register: 623 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 624 break; 625 case ISD::RegisterMask: 626 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 627 break; 628 case ISD::SRCVALUE: 629 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 630 break; 631 case ISD::FrameIndex: 632 case ISD::TargetFrameIndex: 633 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 634 break; 635 case ISD::LIFETIME_START: 636 case ISD::LIFETIME_END: 637 if (cast<LifetimeSDNode>(N)->hasOffset()) { 638 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 640 } 641 break; 642 case ISD::PSEUDO_PROBE: 643 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 646 break; 647 case ISD::JumpTable: 648 case ISD::TargetJumpTable: 649 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 651 break; 652 case ISD::ConstantPool: 653 case ISD::TargetConstantPool: { 654 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 655 ID.AddInteger(CP->getAlign().value()); 656 ID.AddInteger(CP->getOffset()); 657 if (CP->isMachineConstantPoolEntry()) 658 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 659 else 660 ID.AddPointer(CP->getConstVal()); 661 ID.AddInteger(CP->getTargetFlags()); 662 break; 663 } 664 case ISD::TargetIndex: { 665 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 666 ID.AddInteger(TI->getIndex()); 667 ID.AddInteger(TI->getOffset()); 668 ID.AddInteger(TI->getTargetFlags()); 669 break; 670 } 671 case ISD::LOAD: { 672 const LoadSDNode *LD = cast<LoadSDNode>(N); 673 ID.AddInteger(LD->getMemoryVT().getRawBits()); 674 ID.AddInteger(LD->getRawSubclassData()); 675 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 676 break; 677 } 678 case ISD::STORE: { 679 const StoreSDNode *ST = cast<StoreSDNode>(N); 680 ID.AddInteger(ST->getMemoryVT().getRawBits()); 681 ID.AddInteger(ST->getRawSubclassData()); 682 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 683 break; 684 } 685 case ISD::MLOAD: { 686 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 687 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 688 ID.AddInteger(MLD->getRawSubclassData()); 689 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 690 break; 691 } 692 case ISD::MSTORE: { 693 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 694 ID.AddInteger(MST->getMemoryVT().getRawBits()); 695 ID.AddInteger(MST->getRawSubclassData()); 696 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 697 break; 698 } 699 case ISD::MGATHER: { 700 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 701 ID.AddInteger(MG->getMemoryVT().getRawBits()); 702 ID.AddInteger(MG->getRawSubclassData()); 703 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 704 break; 705 } 706 case ISD::MSCATTER: { 707 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 708 ID.AddInteger(MS->getMemoryVT().getRawBits()); 709 ID.AddInteger(MS->getRawSubclassData()); 710 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 711 break; 712 } 713 case ISD::ATOMIC_CMP_SWAP: 714 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 715 case ISD::ATOMIC_SWAP: 716 case ISD::ATOMIC_LOAD_ADD: 717 case ISD::ATOMIC_LOAD_SUB: 718 case ISD::ATOMIC_LOAD_AND: 719 case ISD::ATOMIC_LOAD_CLR: 720 case ISD::ATOMIC_LOAD_OR: 721 case ISD::ATOMIC_LOAD_XOR: 722 case ISD::ATOMIC_LOAD_NAND: 723 case ISD::ATOMIC_LOAD_MIN: 724 case ISD::ATOMIC_LOAD_MAX: 725 case ISD::ATOMIC_LOAD_UMIN: 726 case ISD::ATOMIC_LOAD_UMAX: 727 case ISD::ATOMIC_LOAD: 728 case ISD::ATOMIC_STORE: { 729 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 730 ID.AddInteger(AT->getMemoryVT().getRawBits()); 731 ID.AddInteger(AT->getRawSubclassData()); 732 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::PREFETCH: { 736 const MemSDNode *PF = cast<MemSDNode>(N); 737 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VECTOR_SHUFFLE: { 741 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 742 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 743 i != e; ++i) 744 ID.AddInteger(SVN->getMaskElt(i)); 745 break; 746 } 747 case ISD::TargetBlockAddress: 748 case ISD::BlockAddress: { 749 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 750 ID.AddPointer(BA->getBlockAddress()); 751 ID.AddInteger(BA->getOffset()); 752 ID.AddInteger(BA->getTargetFlags()); 753 break; 754 } 755 } // end switch (N->getOpcode()) 756 757 // Target specific memory nodes could also have address spaces to check. 758 if (N->isTargetMemoryOpcode()) 759 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 760 } 761 762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 763 /// data. 764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 765 AddNodeIDOpcode(ID, N->getOpcode()); 766 // Add the return value info. 767 AddNodeIDValueTypes(ID, N->getVTList()); 768 // Add the operand info. 769 AddNodeIDOperands(ID, N->ops()); 770 771 // Handle SDNode leafs with special info. 772 AddNodeIDCustom(ID, N); 773 } 774 775 //===----------------------------------------------------------------------===// 776 // SelectionDAG Class 777 //===----------------------------------------------------------------------===// 778 779 /// doNotCSE - Return true if CSE should not be performed for this node. 780 static bool doNotCSE(SDNode *N) { 781 if (N->getValueType(0) == MVT::Glue) 782 return true; // Never CSE anything that produces a flag. 783 784 switch (N->getOpcode()) { 785 default: break; 786 case ISD::HANDLENODE: 787 case ISD::EH_LABEL: 788 return true; // Never CSE these nodes. 789 } 790 791 // Check that remaining values produced are not flags. 792 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 793 if (N->getValueType(i) == MVT::Glue) 794 return true; // Never CSE anything that produces a flag. 795 796 return false; 797 } 798 799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 800 /// SelectionDAG. 801 void SelectionDAG::RemoveDeadNodes() { 802 // Create a dummy node (which is not added to allnodes), that adds a reference 803 // to the root node, preventing it from being deleted. 804 HandleSDNode Dummy(getRoot()); 805 806 SmallVector<SDNode*, 128> DeadNodes; 807 808 // Add all obviously-dead nodes to the DeadNodes worklist. 809 for (SDNode &Node : allnodes()) 810 if (Node.use_empty()) 811 DeadNodes.push_back(&Node); 812 813 RemoveDeadNodes(DeadNodes); 814 815 // If the root changed (e.g. it was a dead load, update the root). 816 setRoot(Dummy.getValue()); 817 } 818 819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 820 /// given list, and any nodes that become unreachable as a result. 821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 822 823 // Process the worklist, deleting the nodes and adding their uses to the 824 // worklist. 825 while (!DeadNodes.empty()) { 826 SDNode *N = DeadNodes.pop_back_val(); 827 // Skip to next node if we've already managed to delete the node. This could 828 // happen if replacing a node causes a node previously added to the node to 829 // be deleted. 830 if (N->getOpcode() == ISD::DELETED_NODE) 831 continue; 832 833 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 834 DUL->NodeDeleted(N, nullptr); 835 836 // Take the node out of the appropriate CSE map. 837 RemoveNodeFromCSEMaps(N); 838 839 // Next, brutally remove the operand list. This is safe to do, as there are 840 // no cycles in the graph. 841 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 842 SDUse &Use = *I++; 843 SDNode *Operand = Use.getNode(); 844 Use.set(SDValue()); 845 846 // Now that we removed this operand, see if there are no uses of it left. 847 if (Operand->use_empty()) 848 DeadNodes.push_back(Operand); 849 } 850 851 DeallocateNode(N); 852 } 853 } 854 855 void SelectionDAG::RemoveDeadNode(SDNode *N){ 856 SmallVector<SDNode*, 16> DeadNodes(1, N); 857 858 // Create a dummy node that adds a reference to the root node, preventing 859 // it from being deleted. (This matters if the root is an operand of the 860 // dead node.) 861 HandleSDNode Dummy(getRoot()); 862 863 RemoveDeadNodes(DeadNodes); 864 } 865 866 void SelectionDAG::DeleteNode(SDNode *N) { 867 // First take this out of the appropriate CSE map. 868 RemoveNodeFromCSEMaps(N); 869 870 // Finally, remove uses due to operands of this node, remove from the 871 // AllNodes list, and delete the node. 872 DeleteNodeNotInCSEMaps(N); 873 } 874 875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 876 assert(N->getIterator() != AllNodes.begin() && 877 "Cannot delete the entry node!"); 878 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 879 880 // Drop all of the operands and decrement used node's use counts. 881 N->DropOperands(); 882 883 DeallocateNode(N); 884 } 885 886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 887 assert(!(V->isVariadic() && isParameter)); 888 if (isParameter) 889 ByvalParmDbgValues.push_back(V); 890 else 891 DbgValues.push_back(V); 892 for (const SDNode *Node : V->getSDNodes()) 893 if (Node) 894 DbgValMap[Node].push_back(V); 895 } 896 897 void SDDbgInfo::erase(const SDNode *Node) { 898 DbgValMapType::iterator I = DbgValMap.find(Node); 899 if (I == DbgValMap.end()) 900 return; 901 for (auto &Val: I->second) 902 Val->setIsInvalidated(); 903 DbgValMap.erase(I); 904 } 905 906 void SelectionDAG::DeallocateNode(SDNode *N) { 907 // If we have operands, deallocate them. 908 removeOperands(N); 909 910 NodeAllocator.Deallocate(AllNodes.remove(N)); 911 912 // Set the opcode to DELETED_NODE to help catch bugs when node 913 // memory is reallocated. 914 // FIXME: There are places in SDag that have grown a dependency on the opcode 915 // value in the released node. 916 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 917 N->NodeType = ISD::DELETED_NODE; 918 919 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 920 // them and forget about that node. 921 DbgInfo->erase(N); 922 } 923 924 #ifndef NDEBUG 925 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 926 static void VerifySDNode(SDNode *N) { 927 switch (N->getOpcode()) { 928 default: 929 break; 930 case ISD::BUILD_PAIR: { 931 EVT VT = N->getValueType(0); 932 assert(N->getNumValues() == 1 && "Too many results!"); 933 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 934 "Wrong return type!"); 935 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 936 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 937 "Mismatched operand types!"); 938 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 939 "Wrong operand type!"); 940 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 941 "Wrong return type size"); 942 break; 943 } 944 case ISD::BUILD_VECTOR: { 945 assert(N->getNumValues() == 1 && "Too many results!"); 946 assert(N->getValueType(0).isVector() && "Wrong return type!"); 947 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 948 "Wrong number of operands!"); 949 EVT EltVT = N->getValueType(0).getVectorElementType(); 950 for (const SDUse &Op : N->ops()) { 951 assert((Op.getValueType() == EltVT || 952 (EltVT.isInteger() && Op.getValueType().isInteger() && 953 EltVT.bitsLE(Op.getValueType()))) && 954 "Wrong operand type!"); 955 assert(Op.getValueType() == N->getOperand(0).getValueType() && 956 "Operands must all have the same type"); 957 } 958 break; 959 } 960 } 961 } 962 #endif // NDEBUG 963 964 /// Insert a newly allocated node into the DAG. 965 /// 966 /// Handles insertion into the all nodes list and CSE map, as well as 967 /// verification and other common operations when a new node is allocated. 968 void SelectionDAG::InsertNode(SDNode *N) { 969 AllNodes.push_back(N); 970 #ifndef NDEBUG 971 N->PersistentId = NextPersistentId++; 972 VerifySDNode(N); 973 #endif 974 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 975 DUL->NodeInserted(N); 976 } 977 978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 979 /// correspond to it. This is useful when we're about to delete or repurpose 980 /// the node. We don't want future request for structurally identical nodes 981 /// to return N anymore. 982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 983 bool Erased = false; 984 switch (N->getOpcode()) { 985 case ISD::HANDLENODE: return false; // noop. 986 case ISD::CONDCODE: 987 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 988 "Cond code doesn't exist!"); 989 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 990 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 991 break; 992 case ISD::ExternalSymbol: 993 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 994 break; 995 case ISD::TargetExternalSymbol: { 996 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 997 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 998 ESN->getSymbol(), ESN->getTargetFlags())); 999 break; 1000 } 1001 case ISD::MCSymbol: { 1002 auto *MCSN = cast<MCSymbolSDNode>(N); 1003 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1004 break; 1005 } 1006 case ISD::VALUETYPE: { 1007 EVT VT = cast<VTSDNode>(N)->getVT(); 1008 if (VT.isExtended()) { 1009 Erased = ExtendedValueTypeNodes.erase(VT); 1010 } else { 1011 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1012 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1013 } 1014 break; 1015 } 1016 default: 1017 // Remove it from the CSE Map. 1018 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1019 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1020 Erased = CSEMap.RemoveNode(N); 1021 break; 1022 } 1023 #ifndef NDEBUG 1024 // Verify that the node was actually in one of the CSE maps, unless it has a 1025 // flag result (which cannot be CSE'd) or is one of the special cases that are 1026 // not subject to CSE. 1027 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1028 !N->isMachineOpcode() && !doNotCSE(N)) { 1029 N->dump(this); 1030 dbgs() << "\n"; 1031 llvm_unreachable("Node is not in map!"); 1032 } 1033 #endif 1034 return Erased; 1035 } 1036 1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1039 /// node already exists, in which case transfer all its users to the existing 1040 /// node. This transfer can potentially trigger recursive merging. 1041 void 1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1043 // For node types that aren't CSE'd, just act as if no identical node 1044 // already exists. 1045 if (!doNotCSE(N)) { 1046 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1047 if (Existing != N) { 1048 // If there was already an existing matching node, use ReplaceAllUsesWith 1049 // to replace the dead one with the existing one. This can cause 1050 // recursive merging of other unrelated nodes down the line. 1051 ReplaceAllUsesWith(N, Existing); 1052 1053 // N is now dead. Inform the listeners and delete it. 1054 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1055 DUL->NodeDeleted(N, Existing); 1056 DeleteNodeNotInCSEMaps(N); 1057 return; 1058 } 1059 } 1060 1061 // If the node doesn't already exist, we updated it. Inform listeners. 1062 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1063 DUL->NodeUpdated(N); 1064 } 1065 1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1067 /// were replaced with those specified. If this node is never memoized, 1068 /// return null, otherwise return a pointer to the slot it would take. If a 1069 /// node already exists with these operands, the slot will be non-null. 1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1071 void *&InsertPos) { 1072 if (doNotCSE(N)) 1073 return nullptr; 1074 1075 SDValue Ops[] = { Op }; 1076 FoldingSetNodeID ID; 1077 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1078 AddNodeIDCustom(ID, N); 1079 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1080 if (Node) 1081 Node->intersectFlagsWith(N->getFlags()); 1082 return Node; 1083 } 1084 1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1086 /// were replaced with those specified. If this node is never memoized, 1087 /// return null, otherwise return a pointer to the slot it would take. If a 1088 /// node already exists with these operands, the slot will be non-null. 1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1090 SDValue Op1, SDValue Op2, 1091 void *&InsertPos) { 1092 if (doNotCSE(N)) 1093 return nullptr; 1094 1095 SDValue Ops[] = { Op1, Op2 }; 1096 FoldingSetNodeID ID; 1097 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1098 AddNodeIDCustom(ID, N); 1099 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1100 if (Node) 1101 Node->intersectFlagsWith(N->getFlags()); 1102 return Node; 1103 } 1104 1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1106 /// were replaced with those specified. If this node is never memoized, 1107 /// return null, otherwise return a pointer to the slot it would take. If a 1108 /// node already exists with these operands, the slot will be non-null. 1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1110 void *&InsertPos) { 1111 if (doNotCSE(N)) 1112 return nullptr; 1113 1114 FoldingSetNodeID ID; 1115 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1116 AddNodeIDCustom(ID, N); 1117 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1118 if (Node) 1119 Node->intersectFlagsWith(N->getFlags()); 1120 return Node; 1121 } 1122 1123 Align SelectionDAG::getEVTAlign(EVT VT) const { 1124 Type *Ty = VT == MVT::iPTR ? 1125 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1126 VT.getTypeForEVT(*getContext()); 1127 1128 return getDataLayout().getABITypeAlign(Ty); 1129 } 1130 1131 // EntryNode could meaningfully have debug info if we can find it... 1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1133 : TM(tm), OptLevel(OL), 1134 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1135 Root(getEntryNode()) { 1136 InsertNode(&EntryNode); 1137 DbgInfo = new SDDbgInfo(); 1138 } 1139 1140 void SelectionDAG::init(MachineFunction &NewMF, 1141 OptimizationRemarkEmitter &NewORE, 1142 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1143 LegacyDivergenceAnalysis * Divergence, 1144 ProfileSummaryInfo *PSIin, 1145 BlockFrequencyInfo *BFIin) { 1146 MF = &NewMF; 1147 SDAGISelPass = PassPtr; 1148 ORE = &NewORE; 1149 TLI = getSubtarget().getTargetLowering(); 1150 TSI = getSubtarget().getSelectionDAGInfo(); 1151 LibInfo = LibraryInfo; 1152 Context = &MF->getFunction().getContext(); 1153 DA = Divergence; 1154 PSI = PSIin; 1155 BFI = BFIin; 1156 } 1157 1158 SelectionDAG::~SelectionDAG() { 1159 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1160 allnodes_clear(); 1161 OperandRecycler.clear(OperandAllocator); 1162 delete DbgInfo; 1163 } 1164 1165 bool SelectionDAG::shouldOptForSize() const { 1166 return MF->getFunction().hasOptSize() || 1167 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1168 } 1169 1170 void SelectionDAG::allnodes_clear() { 1171 assert(&*AllNodes.begin() == &EntryNode); 1172 AllNodes.remove(AllNodes.begin()); 1173 while (!AllNodes.empty()) 1174 DeallocateNode(&AllNodes.front()); 1175 #ifndef NDEBUG 1176 NextPersistentId = 0; 1177 #endif 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 default: break; 1186 case ISD::Constant: 1187 case ISD::ConstantFP: 1188 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1189 "debug location. Use another overload."); 1190 } 1191 } 1192 return N; 1193 } 1194 1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1196 const SDLoc &DL, void *&InsertPos) { 1197 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1198 if (N) { 1199 switch (N->getOpcode()) { 1200 case ISD::Constant: 1201 case ISD::ConstantFP: 1202 // Erase debug location from the node if the node is used at several 1203 // different places. Do not propagate one location to all uses as it 1204 // will cause a worse single stepping debugging experience. 1205 if (N->getDebugLoc() != DL.getDebugLoc()) 1206 N->setDebugLoc(DebugLoc()); 1207 break; 1208 default: 1209 // When the node's point of use is located earlier in the instruction 1210 // sequence than its prior point of use, update its debug info to the 1211 // earlier location. 1212 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1213 N->setDebugLoc(DL.getDebugLoc()); 1214 break; 1215 } 1216 } 1217 return N; 1218 } 1219 1220 void SelectionDAG::clear() { 1221 allnodes_clear(); 1222 OperandRecycler.clear(OperandAllocator); 1223 OperandAllocator.Reset(); 1224 CSEMap.clear(); 1225 1226 ExtendedValueTypeNodes.clear(); 1227 ExternalSymbols.clear(); 1228 TargetExternalSymbols.clear(); 1229 MCSymbols.clear(); 1230 SDCallSiteDbgInfo.clear(); 1231 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1232 static_cast<CondCodeSDNode*>(nullptr)); 1233 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1234 static_cast<SDNode*>(nullptr)); 1235 1236 EntryNode.UseList = nullptr; 1237 InsertNode(&EntryNode); 1238 Root = getEntryNode(); 1239 DbgInfo->clear(); 1240 } 1241 1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1243 return VT.bitsGT(Op.getValueType()) 1244 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1245 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1246 } 1247 1248 std::pair<SDValue, SDValue> 1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1250 const SDLoc &DL, EVT VT) { 1251 assert(!VT.bitsEq(Op.getValueType()) && 1252 "Strict no-op FP extend/round not allowed."); 1253 SDValue Res = 1254 VT.bitsGT(Op.getValueType()) 1255 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1256 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1257 {Chain, Op, getIntPtrConstant(0, DL)}); 1258 1259 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1260 } 1261 1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1263 return VT.bitsGT(Op.getValueType()) ? 1264 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1265 getNode(ISD::TRUNCATE, DL, VT, Op); 1266 } 1267 1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1269 return VT.bitsGT(Op.getValueType()) ? 1270 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1271 getNode(ISD::TRUNCATE, DL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1275 return VT.bitsGT(Op.getValueType()) ? 1276 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1277 getNode(ISD::TRUNCATE, DL, VT, Op); 1278 } 1279 1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1281 EVT OpVT) { 1282 if (VT.bitsLE(Op.getValueType())) 1283 return getNode(ISD::TRUNCATE, SL, VT, Op); 1284 1285 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1286 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1287 } 1288 1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1290 EVT OpVT = Op.getValueType(); 1291 assert(VT.isInteger() && OpVT.isInteger() && 1292 "Cannot getZeroExtendInReg FP types"); 1293 assert(VT.isVector() == OpVT.isVector() && 1294 "getZeroExtendInReg type should be vector iff the operand " 1295 "type is vector!"); 1296 assert((!VT.isVector() || 1297 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1298 "Vector element counts must match in getZeroExtendInReg"); 1299 assert(VT.bitsLE(OpVT) && "Not extending!"); 1300 if (OpVT == VT) 1301 return Op; 1302 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1303 VT.getScalarSizeInBits()); 1304 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1305 } 1306 1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1308 // Only unsigned pointer semantics are supported right now. In the future this 1309 // might delegate to TLI to check pointer signedness. 1310 return getZExtOrTrunc(Op, DL, VT); 1311 } 1312 1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1314 // Only unsigned pointer semantics are supported right now. In the future this 1315 // might delegate to TLI to check pointer signedness. 1316 return getZeroExtendInReg(Op, DL, VT); 1317 } 1318 1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1321 EVT EltVT = VT.getScalarType(); 1322 SDValue NegOne = 1323 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1324 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1325 } 1326 1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1328 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1329 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1330 } 1331 1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1333 EVT OpVT) { 1334 if (!V) 1335 return getConstant(0, DL, VT); 1336 1337 switch (TLI->getBooleanContents(OpVT)) { 1338 case TargetLowering::ZeroOrOneBooleanContent: 1339 case TargetLowering::UndefinedBooleanContent: 1340 return getConstant(1, DL, VT); 1341 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1342 return getAllOnesConstant(DL, VT); 1343 } 1344 llvm_unreachable("Unexpected boolean content enum!"); 1345 } 1346 1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1348 bool isT, bool isO) { 1349 EVT EltVT = VT.getScalarType(); 1350 assert((EltVT.getSizeInBits() >= 64 || 1351 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1352 "getConstant with a uint64_t value that doesn't fit in the type!"); 1353 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1354 } 1355 1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1357 bool isT, bool isO) { 1358 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1359 } 1360 1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1362 EVT VT, bool isT, bool isO) { 1363 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1364 1365 EVT EltVT = VT.getScalarType(); 1366 const ConstantInt *Elt = &Val; 1367 1368 // In some cases the vector type is legal but the element type is illegal and 1369 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1370 // inserted value (the type does not need to match the vector element type). 1371 // Any extra bits introduced will be truncated away. 1372 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1373 TargetLowering::TypePromoteInteger) { 1374 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1375 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1376 Elt = ConstantInt::get(*getContext(), NewVal); 1377 } 1378 // In other cases the element type is illegal and needs to be expanded, for 1379 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1380 // the value into n parts and use a vector type with n-times the elements. 1381 // Then bitcast to the type requested. 1382 // Legalizing constants too early makes the DAGCombiner's job harder so we 1383 // only legalize if the DAG tells us we must produce legal types. 1384 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1385 TLI->getTypeAction(*getContext(), EltVT) == 1386 TargetLowering::TypeExpandInteger) { 1387 const APInt &NewVal = Elt->getValue(); 1388 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1389 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1390 1391 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1392 if (VT.isScalableVector()) { 1393 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1394 "Can only handle an even split!"); 1395 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1396 1397 SmallVector<SDValue, 2> ScalarParts; 1398 for (unsigned i = 0; i != Parts; ++i) 1399 ScalarParts.push_back(getConstant( 1400 NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL, 1401 ViaEltVT, isT, isO)); 1402 1403 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1404 } 1405 1406 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1407 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1408 1409 // Check the temporary vector is the correct size. If this fails then 1410 // getTypeToTransformTo() probably returned a type whose size (in bits) 1411 // isn't a power-of-2 factor of the requested type size. 1412 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1413 1414 SmallVector<SDValue, 2> EltParts; 1415 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1416 EltParts.push_back(getConstant( 1417 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1418 ViaEltVT, isT, isO)); 1419 } 1420 1421 // EltParts is currently in little endian order. If we actually want 1422 // big-endian order then reverse it now. 1423 if (getDataLayout().isBigEndian()) 1424 std::reverse(EltParts.begin(), EltParts.end()); 1425 1426 // The elements must be reversed when the element order is different 1427 // to the endianness of the elements (because the BITCAST is itself a 1428 // vector shuffle in this situation). However, we do not need any code to 1429 // perform this reversal because getConstant() is producing a vector 1430 // splat. 1431 // This situation occurs in MIPS MSA. 1432 1433 SmallVector<SDValue, 8> Ops; 1434 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1435 llvm::append_range(Ops, EltParts); 1436 1437 SDValue V = 1438 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1439 return V; 1440 } 1441 1442 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1443 "APInt size does not match type size!"); 1444 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1445 FoldingSetNodeID ID; 1446 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1447 ID.AddPointer(Elt); 1448 ID.AddBoolean(isO); 1449 void *IP = nullptr; 1450 SDNode *N = nullptr; 1451 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1452 if (!VT.isVector()) 1453 return SDValue(N, 0); 1454 1455 if (!N) { 1456 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1457 CSEMap.InsertNode(N, IP); 1458 InsertNode(N); 1459 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1460 } 1461 1462 SDValue Result(N, 0); 1463 if (VT.isScalableVector()) 1464 Result = getSplatVector(VT, DL, Result); 1465 else if (VT.isVector()) 1466 Result = getSplatBuildVector(VT, DL, Result); 1467 1468 return Result; 1469 } 1470 1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1472 bool isTarget) { 1473 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1474 } 1475 1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1477 const SDLoc &DL, bool LegalTypes) { 1478 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1479 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1480 return getConstant(Val, DL, ShiftVT); 1481 } 1482 1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1484 bool isTarget) { 1485 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1486 } 1487 1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1489 bool isTarget) { 1490 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1491 } 1492 1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1494 EVT VT, bool isTarget) { 1495 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1496 1497 EVT EltVT = VT.getScalarType(); 1498 1499 // Do the map lookup using the actual bit pattern for the floating point 1500 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1501 // we don't have issues with SNANs. 1502 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1503 FoldingSetNodeID ID; 1504 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1505 ID.AddPointer(&V); 1506 void *IP = nullptr; 1507 SDNode *N = nullptr; 1508 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1509 if (!VT.isVector()) 1510 return SDValue(N, 0); 1511 1512 if (!N) { 1513 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1514 CSEMap.InsertNode(N, IP); 1515 InsertNode(N); 1516 } 1517 1518 SDValue Result(N, 0); 1519 if (VT.isScalableVector()) 1520 Result = getSplatVector(VT, DL, Result); 1521 else if (VT.isVector()) 1522 Result = getSplatBuildVector(VT, DL, Result); 1523 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1524 return Result; 1525 } 1526 1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1528 bool isTarget) { 1529 EVT EltVT = VT.getScalarType(); 1530 if (EltVT == MVT::f32) 1531 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1532 if (EltVT == MVT::f64) 1533 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1534 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1535 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1536 bool Ignored; 1537 APFloat APF = APFloat(Val); 1538 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1539 &Ignored); 1540 return getConstantFP(APF, DL, VT, isTarget); 1541 } 1542 llvm_unreachable("Unsupported type in getConstantFP"); 1543 } 1544 1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1546 EVT VT, int64_t Offset, bool isTargetGA, 1547 unsigned TargetFlags) { 1548 assert((TargetFlags == 0 || isTargetGA) && 1549 "Cannot set target flags on target-independent globals"); 1550 1551 // Truncate (with sign-extension) the offset value to the pointer size. 1552 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1553 if (BitWidth < 64) 1554 Offset = SignExtend64(Offset, BitWidth); 1555 1556 unsigned Opc; 1557 if (GV->isThreadLocal()) 1558 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1559 else 1560 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1561 1562 FoldingSetNodeID ID; 1563 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1564 ID.AddPointer(GV); 1565 ID.AddInteger(Offset); 1566 ID.AddInteger(TargetFlags); 1567 void *IP = nullptr; 1568 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1569 return SDValue(E, 0); 1570 1571 auto *N = newSDNode<GlobalAddressSDNode>( 1572 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1573 CSEMap.InsertNode(N, IP); 1574 InsertNode(N); 1575 return SDValue(N, 0); 1576 } 1577 1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1579 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1580 FoldingSetNodeID ID; 1581 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1582 ID.AddInteger(FI); 1583 void *IP = nullptr; 1584 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1585 return SDValue(E, 0); 1586 1587 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1588 CSEMap.InsertNode(N, IP); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1594 unsigned TargetFlags) { 1595 assert((TargetFlags == 0 || isTarget) && 1596 "Cannot set target flags on target-independent jump tables"); 1597 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1598 FoldingSetNodeID ID; 1599 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1600 ID.AddInteger(JTI); 1601 ID.AddInteger(TargetFlags); 1602 void *IP = nullptr; 1603 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1604 return SDValue(E, 0); 1605 1606 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1607 CSEMap.InsertNode(N, IP); 1608 InsertNode(N); 1609 return SDValue(N, 0); 1610 } 1611 1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1613 MaybeAlign Alignment, int Offset, 1614 bool isTarget, unsigned TargetFlags) { 1615 assert((TargetFlags == 0 || isTarget) && 1616 "Cannot set target flags on target-independent globals"); 1617 if (!Alignment) 1618 Alignment = shouldOptForSize() 1619 ? getDataLayout().getABITypeAlign(C->getType()) 1620 : getDataLayout().getPrefTypeAlign(C->getType()); 1621 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1622 FoldingSetNodeID ID; 1623 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1624 ID.AddInteger(Alignment->value()); 1625 ID.AddInteger(Offset); 1626 ID.AddPointer(C); 1627 ID.AddInteger(TargetFlags); 1628 void *IP = nullptr; 1629 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1630 return SDValue(E, 0); 1631 1632 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1633 TargetFlags); 1634 CSEMap.InsertNode(N, IP); 1635 InsertNode(N); 1636 SDValue V = SDValue(N, 0); 1637 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1638 return V; 1639 } 1640 1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1642 MaybeAlign Alignment, int Offset, 1643 bool isTarget, unsigned TargetFlags) { 1644 assert((TargetFlags == 0 || isTarget) && 1645 "Cannot set target flags on target-independent globals"); 1646 if (!Alignment) 1647 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1648 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1649 FoldingSetNodeID ID; 1650 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1651 ID.AddInteger(Alignment->value()); 1652 ID.AddInteger(Offset); 1653 C->addSelectionDAGCSEId(ID); 1654 ID.AddInteger(TargetFlags); 1655 void *IP = nullptr; 1656 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1657 return SDValue(E, 0); 1658 1659 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1660 TargetFlags); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1667 unsigned TargetFlags) { 1668 FoldingSetNodeID ID; 1669 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1670 ID.AddInteger(Index); 1671 ID.AddInteger(Offset); 1672 ID.AddInteger(TargetFlags); 1673 void *IP = nullptr; 1674 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1675 return SDValue(E, 0); 1676 1677 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1678 CSEMap.InsertNode(N, IP); 1679 InsertNode(N); 1680 return SDValue(N, 0); 1681 } 1682 1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1686 ID.AddPointer(MBB); 1687 void *IP = nullptr; 1688 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1689 return SDValue(E, 0); 1690 1691 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1692 CSEMap.InsertNode(N, IP); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getValueType(EVT VT) { 1698 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1699 ValueTypeNodes.size()) 1700 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1701 1702 SDNode *&N = VT.isExtended() ? 1703 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1704 1705 if (N) return SDValue(N, 0); 1706 N = newSDNode<VTSDNode>(VT); 1707 InsertNode(N); 1708 return SDValue(N, 0); 1709 } 1710 1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1712 SDNode *&N = ExternalSymbols[Sym]; 1713 if (N) return SDValue(N, 0); 1714 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1715 InsertNode(N); 1716 return SDValue(N, 0); 1717 } 1718 1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1720 SDNode *&N = MCSymbols[Sym]; 1721 if (N) 1722 return SDValue(N, 0); 1723 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1729 unsigned TargetFlags) { 1730 SDNode *&N = 1731 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1732 if (N) return SDValue(N, 0); 1733 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1734 InsertNode(N); 1735 return SDValue(N, 0); 1736 } 1737 1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1739 if ((unsigned)Cond >= CondCodeNodes.size()) 1740 CondCodeNodes.resize(Cond+1); 1741 1742 if (!CondCodeNodes[Cond]) { 1743 auto *N = newSDNode<CondCodeSDNode>(Cond); 1744 CondCodeNodes[Cond] = N; 1745 InsertNode(N); 1746 } 1747 1748 return SDValue(CondCodeNodes[Cond], 0); 1749 } 1750 1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) { 1752 if (ResVT.isScalableVector()) 1753 return getNode(ISD::STEP_VECTOR, DL, ResVT, Step); 1754 1755 EVT OpVT = Step.getValueType(); 1756 APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue(); 1757 SmallVector<SDValue, 16> OpsStepConstants; 1758 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1759 OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT)); 1760 return getBuildVector(ResVT, DL, OpsStepConstants); 1761 } 1762 1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1766 std::swap(N1, N2); 1767 ShuffleVectorSDNode::commuteMask(M); 1768 } 1769 1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1771 SDValue N2, ArrayRef<int> Mask) { 1772 assert(VT.getVectorNumElements() == Mask.size() && 1773 "Must have the same number of vector elements as mask elements!"); 1774 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1775 "Invalid VECTOR_SHUFFLE"); 1776 1777 // Canonicalize shuffle undef, undef -> undef 1778 if (N1.isUndef() && N2.isUndef()) 1779 return getUNDEF(VT); 1780 1781 // Validate that all indices in Mask are within the range of the elements 1782 // input to the shuffle. 1783 int NElts = Mask.size(); 1784 assert(llvm::all_of(Mask, 1785 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1786 "Index out of range"); 1787 1788 // Copy the mask so we can do any needed cleanup. 1789 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1790 1791 // Canonicalize shuffle v, v -> v, undef 1792 if (N1 == N2) { 1793 N2 = getUNDEF(VT); 1794 for (int i = 0; i != NElts; ++i) 1795 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1796 } 1797 1798 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1799 if (N1.isUndef()) 1800 commuteShuffle(N1, N2, MaskVec); 1801 1802 if (TLI->hasVectorBlend()) { 1803 // If shuffling a splat, try to blend the splat instead. We do this here so 1804 // that even when this arises during lowering we don't have to re-handle it. 1805 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1806 BitVector UndefElements; 1807 SDValue Splat = BV->getSplatValue(&UndefElements); 1808 if (!Splat) 1809 return; 1810 1811 for (int i = 0; i < NElts; ++i) { 1812 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1813 continue; 1814 1815 // If this input comes from undef, mark it as such. 1816 if (UndefElements[MaskVec[i] - Offset]) { 1817 MaskVec[i] = -1; 1818 continue; 1819 } 1820 1821 // If we can blend a non-undef lane, use that instead. 1822 if (!UndefElements[i]) 1823 MaskVec[i] = i + Offset; 1824 } 1825 }; 1826 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1827 BlendSplat(N1BV, 0); 1828 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1829 BlendSplat(N2BV, NElts); 1830 } 1831 1832 // Canonicalize all index into lhs, -> shuffle lhs, undef 1833 // Canonicalize all index into rhs, -> shuffle rhs, undef 1834 bool AllLHS = true, AllRHS = true; 1835 bool N2Undef = N2.isUndef(); 1836 for (int i = 0; i != NElts; ++i) { 1837 if (MaskVec[i] >= NElts) { 1838 if (N2Undef) 1839 MaskVec[i] = -1; 1840 else 1841 AllLHS = false; 1842 } else if (MaskVec[i] >= 0) { 1843 AllRHS = false; 1844 } 1845 } 1846 if (AllLHS && AllRHS) 1847 return getUNDEF(VT); 1848 if (AllLHS && !N2Undef) 1849 N2 = getUNDEF(VT); 1850 if (AllRHS) { 1851 N1 = getUNDEF(VT); 1852 commuteShuffle(N1, N2, MaskVec); 1853 } 1854 // Reset our undef status after accounting for the mask. 1855 N2Undef = N2.isUndef(); 1856 // Re-check whether both sides ended up undef. 1857 if (N1.isUndef() && N2Undef) 1858 return getUNDEF(VT); 1859 1860 // If Identity shuffle return that node. 1861 bool Identity = true, AllSame = true; 1862 for (int i = 0; i != NElts; ++i) { 1863 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1864 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1865 } 1866 if (Identity && NElts) 1867 return N1; 1868 1869 // Shuffling a constant splat doesn't change the result. 1870 if (N2Undef) { 1871 SDValue V = N1; 1872 1873 // Look through any bitcasts. We check that these don't change the number 1874 // (and size) of elements and just changes their types. 1875 while (V.getOpcode() == ISD::BITCAST) 1876 V = V->getOperand(0); 1877 1878 // A splat should always show up as a build vector node. 1879 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1880 BitVector UndefElements; 1881 SDValue Splat = BV->getSplatValue(&UndefElements); 1882 // If this is a splat of an undef, shuffling it is also undef. 1883 if (Splat && Splat.isUndef()) 1884 return getUNDEF(VT); 1885 1886 bool SameNumElts = 1887 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1888 1889 // We only have a splat which can skip shuffles if there is a splatted 1890 // value and no undef lanes rearranged by the shuffle. 1891 if (Splat && UndefElements.none()) { 1892 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1893 // number of elements match or the value splatted is a zero constant. 1894 if (SameNumElts) 1895 return N1; 1896 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1897 if (C->isNullValue()) 1898 return N1; 1899 } 1900 1901 // If the shuffle itself creates a splat, build the vector directly. 1902 if (AllSame && SameNumElts) { 1903 EVT BuildVT = BV->getValueType(0); 1904 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1905 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1906 1907 // We may have jumped through bitcasts, so the type of the 1908 // BUILD_VECTOR may not match the type of the shuffle. 1909 if (BuildVT != VT) 1910 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1911 return NewBV; 1912 } 1913 } 1914 } 1915 1916 FoldingSetNodeID ID; 1917 SDValue Ops[2] = { N1, N2 }; 1918 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1919 for (int i = 0; i != NElts; ++i) 1920 ID.AddInteger(MaskVec[i]); 1921 1922 void* IP = nullptr; 1923 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1924 return SDValue(E, 0); 1925 1926 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1927 // SDNode doesn't have access to it. This memory will be "leaked" when 1928 // the node is deallocated, but recovered when the NodeAllocator is released. 1929 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1930 llvm::copy(MaskVec, MaskAlloc); 1931 1932 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1933 dl.getDebugLoc(), MaskAlloc); 1934 createOperands(N, Ops); 1935 1936 CSEMap.InsertNode(N, IP); 1937 InsertNode(N); 1938 SDValue V = SDValue(N, 0); 1939 NewSDValueDbgMsg(V, "Creating new node: ", this); 1940 return V; 1941 } 1942 1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1944 EVT VT = SV.getValueType(0); 1945 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1946 ShuffleVectorSDNode::commuteMask(MaskVec); 1947 1948 SDValue Op0 = SV.getOperand(0); 1949 SDValue Op1 = SV.getOperand(1); 1950 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1951 } 1952 1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1954 FoldingSetNodeID ID; 1955 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1956 ID.AddInteger(RegNo); 1957 void *IP = nullptr; 1958 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1959 return SDValue(E, 0); 1960 1961 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1962 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1963 CSEMap.InsertNode(N, IP); 1964 InsertNode(N); 1965 return SDValue(N, 0); 1966 } 1967 1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1969 FoldingSetNodeID ID; 1970 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1971 ID.AddPointer(RegMask); 1972 void *IP = nullptr; 1973 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1974 return SDValue(E, 0); 1975 1976 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1977 CSEMap.InsertNode(N, IP); 1978 InsertNode(N); 1979 return SDValue(N, 0); 1980 } 1981 1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1983 MCSymbol *Label) { 1984 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1985 } 1986 1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1988 SDValue Root, MCSymbol *Label) { 1989 FoldingSetNodeID ID; 1990 SDValue Ops[] = { Root }; 1991 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1992 ID.AddPointer(Label); 1993 void *IP = nullptr; 1994 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1995 return SDValue(E, 0); 1996 1997 auto *N = 1998 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1999 createOperands(N, Ops); 2000 2001 CSEMap.InsertNode(N, IP); 2002 InsertNode(N); 2003 return SDValue(N, 0); 2004 } 2005 2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2007 int64_t Offset, bool isTarget, 2008 unsigned TargetFlags) { 2009 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2010 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2013 ID.AddPointer(BA); 2014 ID.AddInteger(Offset); 2015 ID.AddInteger(TargetFlags); 2016 void *IP = nullptr; 2017 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2018 return SDValue(E, 0); 2019 2020 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2021 CSEMap.InsertNode(N, IP); 2022 InsertNode(N); 2023 return SDValue(N, 0); 2024 } 2025 2026 SDValue SelectionDAG::getSrcValue(const Value *V) { 2027 FoldingSetNodeID ID; 2028 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2029 ID.AddPointer(V); 2030 2031 void *IP = nullptr; 2032 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2033 return SDValue(E, 0); 2034 2035 auto *N = newSDNode<SrcValueSDNode>(V); 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2042 FoldingSetNodeID ID; 2043 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2044 ID.AddPointer(MD); 2045 2046 void *IP = nullptr; 2047 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2048 return SDValue(E, 0); 2049 2050 auto *N = newSDNode<MDNodeSDNode>(MD); 2051 CSEMap.InsertNode(N, IP); 2052 InsertNode(N); 2053 return SDValue(N, 0); 2054 } 2055 2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2057 if (VT == V.getValueType()) 2058 return V; 2059 2060 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2061 } 2062 2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2064 unsigned SrcAS, unsigned DestAS) { 2065 SDValue Ops[] = {Ptr}; 2066 FoldingSetNodeID ID; 2067 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2068 ID.AddInteger(SrcAS); 2069 ID.AddInteger(DestAS); 2070 2071 void *IP = nullptr; 2072 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2073 return SDValue(E, 0); 2074 2075 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2076 VT, SrcAS, DestAS); 2077 createOperands(N, Ops); 2078 2079 CSEMap.InsertNode(N, IP); 2080 InsertNode(N); 2081 return SDValue(N, 0); 2082 } 2083 2084 SDValue SelectionDAG::getFreeze(SDValue V) { 2085 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2086 } 2087 2088 /// getShiftAmountOperand - Return the specified value casted to 2089 /// the target's desired shift amount type. 2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2091 EVT OpTy = Op.getValueType(); 2092 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2093 if (OpTy == ShTy || OpTy.isVector()) return Op; 2094 2095 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2096 } 2097 2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2099 SDLoc dl(Node); 2100 const TargetLowering &TLI = getTargetLoweringInfo(); 2101 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2102 EVT VT = Node->getValueType(0); 2103 SDValue Tmp1 = Node->getOperand(0); 2104 SDValue Tmp2 = Node->getOperand(1); 2105 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2106 2107 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2108 Tmp2, MachinePointerInfo(V)); 2109 SDValue VAList = VAListLoad; 2110 2111 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2112 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2113 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2114 2115 VAList = 2116 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2117 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2118 } 2119 2120 // Increment the pointer, VAList, to the next vaarg 2121 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2122 getConstant(getDataLayout().getTypeAllocSize( 2123 VT.getTypeForEVT(*getContext())), 2124 dl, VAList.getValueType())); 2125 // Store the incremented VAList to the legalized pointer 2126 Tmp1 = 2127 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2128 // Load the actual argument out of the pointer VAList 2129 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2130 } 2131 2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2133 SDLoc dl(Node); 2134 const TargetLowering &TLI = getTargetLoweringInfo(); 2135 // This defaults to loading a pointer from the input and storing it to the 2136 // output, returning the chain. 2137 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2138 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2139 SDValue Tmp1 = 2140 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2141 Node->getOperand(2), MachinePointerInfo(VS)); 2142 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2143 MachinePointerInfo(VD)); 2144 } 2145 2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2147 const DataLayout &DL = getDataLayout(); 2148 Type *Ty = VT.getTypeForEVT(*getContext()); 2149 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2150 2151 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2152 return RedAlign; 2153 2154 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2155 const Align StackAlign = TFI->getStackAlign(); 2156 2157 // See if we can choose a smaller ABI alignment in cases where it's an 2158 // illegal vector type that will get broken down. 2159 if (RedAlign > StackAlign) { 2160 EVT IntermediateVT; 2161 MVT RegisterVT; 2162 unsigned NumIntermediates; 2163 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2164 NumIntermediates, RegisterVT); 2165 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2166 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2167 if (RedAlign2 < RedAlign) 2168 RedAlign = RedAlign2; 2169 } 2170 2171 return RedAlign; 2172 } 2173 2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2175 MachineFrameInfo &MFI = MF->getFrameInfo(); 2176 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2177 int StackID = 0; 2178 if (Bytes.isScalable()) 2179 StackID = TFI->getStackIDForScalableVectors(); 2180 // The stack id gives an indication of whether the object is scalable or 2181 // not, so it's safe to pass in the minimum size here. 2182 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2183 false, nullptr, StackID); 2184 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2185 } 2186 2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2188 Type *Ty = VT.getTypeForEVT(*getContext()); 2189 Align StackAlign = 2190 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2191 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2192 } 2193 2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2195 TypeSize VT1Size = VT1.getStoreSize(); 2196 TypeSize VT2Size = VT2.getStoreSize(); 2197 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2198 "Don't know how to choose the maximum size when creating a stack " 2199 "temporary"); 2200 TypeSize Bytes = 2201 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2202 2203 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2204 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2205 const DataLayout &DL = getDataLayout(); 2206 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2207 return CreateStackTemporary(Bytes, Align); 2208 } 2209 2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2211 ISD::CondCode Cond, const SDLoc &dl) { 2212 EVT OpVT = N1.getValueType(); 2213 2214 // These setcc operations always fold. 2215 switch (Cond) { 2216 default: break; 2217 case ISD::SETFALSE: 2218 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2219 case ISD::SETTRUE: 2220 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2221 2222 case ISD::SETOEQ: 2223 case ISD::SETOGT: 2224 case ISD::SETOGE: 2225 case ISD::SETOLT: 2226 case ISD::SETOLE: 2227 case ISD::SETONE: 2228 case ISD::SETO: 2229 case ISD::SETUO: 2230 case ISD::SETUEQ: 2231 case ISD::SETUNE: 2232 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2233 break; 2234 } 2235 2236 if (OpVT.isInteger()) { 2237 // For EQ and NE, we can always pick a value for the undef to make the 2238 // predicate pass or fail, so we can return undef. 2239 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2240 // icmp eq/ne X, undef -> undef. 2241 if ((N1.isUndef() || N2.isUndef()) && 2242 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2243 return getUNDEF(VT); 2244 2245 // If both operands are undef, we can return undef for int comparison. 2246 // icmp undef, undef -> undef. 2247 if (N1.isUndef() && N2.isUndef()) 2248 return getUNDEF(VT); 2249 2250 // icmp X, X -> true/false 2251 // icmp X, undef -> true/false because undef could be X. 2252 if (N1 == N2) 2253 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2254 } 2255 2256 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2257 const APInt &C2 = N2C->getAPIntValue(); 2258 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2259 const APInt &C1 = N1C->getAPIntValue(); 2260 2261 switch (Cond) { 2262 default: llvm_unreachable("Unknown integer setcc!"); 2263 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2264 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2265 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2266 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2267 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2268 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2269 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2270 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2271 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2272 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2273 } 2274 } 2275 } 2276 2277 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2278 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2279 2280 if (N1CFP && N2CFP) { 2281 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2282 switch (Cond) { 2283 default: break; 2284 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2285 return getUNDEF(VT); 2286 LLVM_FALLTHROUGH; 2287 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2288 OpVT); 2289 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2290 return getUNDEF(VT); 2291 LLVM_FALLTHROUGH; 2292 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2293 R==APFloat::cmpLessThan, dl, VT, 2294 OpVT); 2295 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2296 return getUNDEF(VT); 2297 LLVM_FALLTHROUGH; 2298 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2299 OpVT); 2300 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2301 return getUNDEF(VT); 2302 LLVM_FALLTHROUGH; 2303 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2304 VT, OpVT); 2305 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2306 return getUNDEF(VT); 2307 LLVM_FALLTHROUGH; 2308 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2309 R==APFloat::cmpEqual, dl, VT, 2310 OpVT); 2311 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2312 return getUNDEF(VT); 2313 LLVM_FALLTHROUGH; 2314 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2315 R==APFloat::cmpEqual, dl, VT, OpVT); 2316 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2317 OpVT); 2318 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2319 OpVT); 2320 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2321 R==APFloat::cmpEqual, dl, VT, 2322 OpVT); 2323 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2324 OpVT); 2325 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2326 R==APFloat::cmpLessThan, dl, VT, 2327 OpVT); 2328 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2329 R==APFloat::cmpUnordered, dl, VT, 2330 OpVT); 2331 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2332 VT, OpVT); 2333 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2334 OpVT); 2335 } 2336 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2337 // Ensure that the constant occurs on the RHS. 2338 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2339 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2340 return SDValue(); 2341 return getSetCC(dl, VT, N2, N1, SwappedCond); 2342 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2343 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2344 // If an operand is known to be a nan (or undef that could be a nan), we can 2345 // fold it. 2346 // Choosing NaN for the undef will always make unordered comparison succeed 2347 // and ordered comparison fails. 2348 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2349 switch (ISD::getUnorderedFlavor(Cond)) { 2350 default: 2351 llvm_unreachable("Unknown flavor!"); 2352 case 0: // Known false. 2353 return getBoolConstant(false, dl, VT, OpVT); 2354 case 1: // Known true. 2355 return getBoolConstant(true, dl, VT, OpVT); 2356 case 2: // Undefined. 2357 return getUNDEF(VT); 2358 } 2359 } 2360 2361 // Could not fold it. 2362 return SDValue(); 2363 } 2364 2365 /// See if the specified operand can be simplified with the knowledge that only 2366 /// the bits specified by DemandedBits are used. 2367 /// TODO: really we should be making this into the DAG equivalent of 2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2370 EVT VT = V.getValueType(); 2371 2372 if (VT.isScalableVector()) 2373 return SDValue(); 2374 2375 APInt DemandedElts = VT.isVector() 2376 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2377 : APInt(1, 1); 2378 return GetDemandedBits(V, DemandedBits, DemandedElts); 2379 } 2380 2381 /// See if the specified operand can be simplified with the knowledge that only 2382 /// the bits specified by DemandedBits are used in the elements specified by 2383 /// DemandedElts. 2384 /// TODO: really we should be making this into the DAG equivalent of 2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2387 const APInt &DemandedElts) { 2388 switch (V.getOpcode()) { 2389 default: 2390 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2391 *this, 0); 2392 case ISD::Constant: { 2393 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2394 APInt NewVal = CVal & DemandedBits; 2395 if (NewVal != CVal) 2396 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2397 break; 2398 } 2399 case ISD::SRL: 2400 // Only look at single-use SRLs. 2401 if (!V.getNode()->hasOneUse()) 2402 break; 2403 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2404 // See if we can recursively simplify the LHS. 2405 unsigned Amt = RHSC->getZExtValue(); 2406 2407 // Watch out for shift count overflow though. 2408 if (Amt >= DemandedBits.getBitWidth()) 2409 break; 2410 APInt SrcDemandedBits = DemandedBits << Amt; 2411 if (SDValue SimplifyLHS = 2412 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2413 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2414 V.getOperand(1)); 2415 } 2416 break; 2417 } 2418 return SDValue(); 2419 } 2420 2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2422 /// use this predicate to simplify operations downstream. 2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2424 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2425 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2426 } 2427 2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2429 /// this predicate to simplify operations downstream. Mask is known to be zero 2430 /// for bits that V cannot have. 2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2432 unsigned Depth) const { 2433 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2434 } 2435 2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2437 /// DemandedElts. We use this predicate to simplify operations downstream. 2438 /// Mask is known to be zero for bits that V cannot have. 2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2440 const APInt &DemandedElts, 2441 unsigned Depth) const { 2442 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2443 } 2444 2445 /// Return true if the DemandedElts of the vector Op are all zero. We 2446 /// use this predicate to simplify operations downstream. 2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts, 2448 unsigned Depth) const { 2449 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2450 APInt DemandedBits = APInt::getAllOnesValue(BitWidth); 2451 return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth); 2452 } 2453 2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2456 unsigned Depth) const { 2457 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2458 } 2459 2460 /// isSplatValue - Return true if the vector V has the same value 2461 /// across all DemandedElts. For scalable vectors it does not make 2462 /// sense to specify which elements are demanded or undefined, therefore 2463 /// they are simply ignored. 2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2465 APInt &UndefElts, unsigned Depth) { 2466 EVT VT = V.getValueType(); 2467 assert(VT.isVector() && "Vector type expected"); 2468 2469 if (!VT.isScalableVector() && !DemandedElts) 2470 return false; // No demanded elts, better to assume we don't know anything. 2471 2472 if (Depth >= MaxRecursionDepth) 2473 return false; // Limit search depth. 2474 2475 // Deal with some common cases here that work for both fixed and scalable 2476 // vector types. 2477 switch (V.getOpcode()) { 2478 case ISD::SPLAT_VECTOR: 2479 UndefElts = V.getOperand(0).isUndef() 2480 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2481 : APInt(DemandedElts.getBitWidth(), 0); 2482 return true; 2483 case ISD::ADD: 2484 case ISD::SUB: 2485 case ISD::AND: 2486 case ISD::XOR: 2487 case ISD::OR: { 2488 APInt UndefLHS, UndefRHS; 2489 SDValue LHS = V.getOperand(0); 2490 SDValue RHS = V.getOperand(1); 2491 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2492 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2493 UndefElts = UndefLHS | UndefRHS; 2494 return true; 2495 } 2496 return false; 2497 } 2498 case ISD::ABS: 2499 case ISD::TRUNCATE: 2500 case ISD::SIGN_EXTEND: 2501 case ISD::ZERO_EXTEND: 2502 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2503 } 2504 2505 // We don't support other cases than those above for scalable vectors at 2506 // the moment. 2507 if (VT.isScalableVector()) 2508 return false; 2509 2510 unsigned NumElts = VT.getVectorNumElements(); 2511 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2512 UndefElts = APInt::getNullValue(NumElts); 2513 2514 switch (V.getOpcode()) { 2515 case ISD::BUILD_VECTOR: { 2516 SDValue Scl; 2517 for (unsigned i = 0; i != NumElts; ++i) { 2518 SDValue Op = V.getOperand(i); 2519 if (Op.isUndef()) { 2520 UndefElts.setBit(i); 2521 continue; 2522 } 2523 if (!DemandedElts[i]) 2524 continue; 2525 if (Scl && Scl != Op) 2526 return false; 2527 Scl = Op; 2528 } 2529 return true; 2530 } 2531 case ISD::VECTOR_SHUFFLE: { 2532 // Check if this is a shuffle node doing a splat. 2533 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2534 int SplatIndex = -1; 2535 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2536 for (int i = 0; i != (int)NumElts; ++i) { 2537 int M = Mask[i]; 2538 if (M < 0) { 2539 UndefElts.setBit(i); 2540 continue; 2541 } 2542 if (!DemandedElts[i]) 2543 continue; 2544 if (0 <= SplatIndex && SplatIndex != M) 2545 return false; 2546 SplatIndex = M; 2547 } 2548 return true; 2549 } 2550 case ISD::EXTRACT_SUBVECTOR: { 2551 // Offset the demanded elts by the subvector index. 2552 SDValue Src = V.getOperand(0); 2553 // We don't support scalable vectors at the moment. 2554 if (Src.getValueType().isScalableVector()) 2555 return false; 2556 uint64_t Idx = V.getConstantOperandVal(1); 2557 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2558 APInt UndefSrcElts; 2559 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2560 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2561 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2562 return true; 2563 } 2564 break; 2565 } 2566 } 2567 2568 return false; 2569 } 2570 2571 /// Helper wrapper to main isSplatValue function. 2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2573 EVT VT = V.getValueType(); 2574 assert(VT.isVector() && "Vector type expected"); 2575 2576 APInt UndefElts; 2577 APInt DemandedElts; 2578 2579 // For now we don't support this with scalable vectors. 2580 if (!VT.isScalableVector()) 2581 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2582 return isSplatValue(V, DemandedElts, UndefElts) && 2583 (AllowUndefs || !UndefElts); 2584 } 2585 2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2587 V = peekThroughExtractSubvectors(V); 2588 2589 EVT VT = V.getValueType(); 2590 unsigned Opcode = V.getOpcode(); 2591 switch (Opcode) { 2592 default: { 2593 APInt UndefElts; 2594 APInt DemandedElts; 2595 2596 if (!VT.isScalableVector()) 2597 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2598 2599 if (isSplatValue(V, DemandedElts, UndefElts)) { 2600 if (VT.isScalableVector()) { 2601 // DemandedElts and UndefElts are ignored for scalable vectors, since 2602 // the only supported cases are SPLAT_VECTOR nodes. 2603 SplatIdx = 0; 2604 } else { 2605 // Handle case where all demanded elements are UNDEF. 2606 if (DemandedElts.isSubsetOf(UndefElts)) { 2607 SplatIdx = 0; 2608 return getUNDEF(VT); 2609 } 2610 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2611 } 2612 return V; 2613 } 2614 break; 2615 } 2616 case ISD::SPLAT_VECTOR: 2617 SplatIdx = 0; 2618 return V; 2619 case ISD::VECTOR_SHUFFLE: { 2620 if (VT.isScalableVector()) 2621 return SDValue(); 2622 2623 // Check if this is a shuffle node doing a splat. 2624 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2625 // getTargetVShiftNode currently struggles without the splat source. 2626 auto *SVN = cast<ShuffleVectorSDNode>(V); 2627 if (!SVN->isSplat()) 2628 break; 2629 int Idx = SVN->getSplatIndex(); 2630 int NumElts = V.getValueType().getVectorNumElements(); 2631 SplatIdx = Idx % NumElts; 2632 return V.getOperand(Idx / NumElts); 2633 } 2634 } 2635 2636 return SDValue(); 2637 } 2638 2639 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2640 int SplatIdx; 2641 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2642 EVT SVT = SrcVector.getValueType().getScalarType(); 2643 EVT LegalSVT = SVT; 2644 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2645 if (!SVT.isInteger()) 2646 return SDValue(); 2647 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2648 if (LegalSVT.bitsLT(SVT)) 2649 return SDValue(); 2650 } 2651 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2652 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2653 } 2654 return SDValue(); 2655 } 2656 2657 const APInt * 2658 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2659 const APInt &DemandedElts) const { 2660 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2661 V.getOpcode() == ISD::SRA) && 2662 "Unknown shift node"); 2663 unsigned BitWidth = V.getScalarValueSizeInBits(); 2664 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2665 // Shifting more than the bitwidth is not valid. 2666 const APInt &ShAmt = SA->getAPIntValue(); 2667 if (ShAmt.ult(BitWidth)) 2668 return &ShAmt; 2669 } 2670 return nullptr; 2671 } 2672 2673 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2674 SDValue V, const APInt &DemandedElts) const { 2675 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2676 V.getOpcode() == ISD::SRA) && 2677 "Unknown shift node"); 2678 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2679 return ValidAmt; 2680 unsigned BitWidth = V.getScalarValueSizeInBits(); 2681 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2682 if (!BV) 2683 return nullptr; 2684 const APInt *MinShAmt = nullptr; 2685 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2686 if (!DemandedElts[i]) 2687 continue; 2688 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2689 if (!SA) 2690 return nullptr; 2691 // Shifting more than the bitwidth is not valid. 2692 const APInt &ShAmt = SA->getAPIntValue(); 2693 if (ShAmt.uge(BitWidth)) 2694 return nullptr; 2695 if (MinShAmt && MinShAmt->ule(ShAmt)) 2696 continue; 2697 MinShAmt = &ShAmt; 2698 } 2699 return MinShAmt; 2700 } 2701 2702 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2703 SDValue V, const APInt &DemandedElts) const { 2704 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2705 V.getOpcode() == ISD::SRA) && 2706 "Unknown shift node"); 2707 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2708 return ValidAmt; 2709 unsigned BitWidth = V.getScalarValueSizeInBits(); 2710 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2711 if (!BV) 2712 return nullptr; 2713 const APInt *MaxShAmt = nullptr; 2714 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2715 if (!DemandedElts[i]) 2716 continue; 2717 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2718 if (!SA) 2719 return nullptr; 2720 // Shifting more than the bitwidth is not valid. 2721 const APInt &ShAmt = SA->getAPIntValue(); 2722 if (ShAmt.uge(BitWidth)) 2723 return nullptr; 2724 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2725 continue; 2726 MaxShAmt = &ShAmt; 2727 } 2728 return MaxShAmt; 2729 } 2730 2731 /// Determine which bits of Op are known to be either zero or one and return 2732 /// them in Known. For vectors, the known bits are those that are shared by 2733 /// every vector element. 2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2735 EVT VT = Op.getValueType(); 2736 2737 // TOOD: Until we have a plan for how to represent demanded elements for 2738 // scalable vectors, we can just bail out for now. 2739 if (Op.getValueType().isScalableVector()) { 2740 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2741 return KnownBits(BitWidth); 2742 } 2743 2744 APInt DemandedElts = VT.isVector() 2745 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2746 : APInt(1, 1); 2747 return computeKnownBits(Op, DemandedElts, Depth); 2748 } 2749 2750 /// Determine which bits of Op are known to be either zero or one and return 2751 /// them in Known. The DemandedElts argument allows us to only collect the known 2752 /// bits that are shared by the requested vector elements. 2753 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2754 unsigned Depth) const { 2755 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2756 2757 KnownBits Known(BitWidth); // Don't know anything. 2758 2759 // TOOD: Until we have a plan for how to represent demanded elements for 2760 // scalable vectors, we can just bail out for now. 2761 if (Op.getValueType().isScalableVector()) 2762 return Known; 2763 2764 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2765 // We know all of the bits for a constant! 2766 return KnownBits::makeConstant(C->getAPIntValue()); 2767 } 2768 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2769 // We know all of the bits for a constant fp! 2770 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2771 } 2772 2773 if (Depth >= MaxRecursionDepth) 2774 return Known; // Limit search depth. 2775 2776 KnownBits Known2; 2777 unsigned NumElts = DemandedElts.getBitWidth(); 2778 assert((!Op.getValueType().isVector() || 2779 NumElts == Op.getValueType().getVectorNumElements()) && 2780 "Unexpected vector size"); 2781 2782 if (!DemandedElts) 2783 return Known; // No demanded elts, better to assume we don't know anything. 2784 2785 unsigned Opcode = Op.getOpcode(); 2786 switch (Opcode) { 2787 case ISD::BUILD_VECTOR: 2788 // Collect the known bits that are shared by every demanded vector element. 2789 Known.Zero.setAllBits(); Known.One.setAllBits(); 2790 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2791 if (!DemandedElts[i]) 2792 continue; 2793 2794 SDValue SrcOp = Op.getOperand(i); 2795 Known2 = computeKnownBits(SrcOp, Depth + 1); 2796 2797 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2798 if (SrcOp.getValueSizeInBits() != BitWidth) { 2799 assert(SrcOp.getValueSizeInBits() > BitWidth && 2800 "Expected BUILD_VECTOR implicit truncation"); 2801 Known2 = Known2.trunc(BitWidth); 2802 } 2803 2804 // Known bits are the values that are shared by every demanded element. 2805 Known = KnownBits::commonBits(Known, Known2); 2806 2807 // If we don't know any bits, early out. 2808 if (Known.isUnknown()) 2809 break; 2810 } 2811 break; 2812 case ISD::VECTOR_SHUFFLE: { 2813 // Collect the known bits that are shared by every vector element referenced 2814 // by the shuffle. 2815 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2816 Known.Zero.setAllBits(); Known.One.setAllBits(); 2817 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2818 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2819 for (unsigned i = 0; i != NumElts; ++i) { 2820 if (!DemandedElts[i]) 2821 continue; 2822 2823 int M = SVN->getMaskElt(i); 2824 if (M < 0) { 2825 // For UNDEF elements, we don't know anything about the common state of 2826 // the shuffle result. 2827 Known.resetAll(); 2828 DemandedLHS.clearAllBits(); 2829 DemandedRHS.clearAllBits(); 2830 break; 2831 } 2832 2833 if ((unsigned)M < NumElts) 2834 DemandedLHS.setBit((unsigned)M % NumElts); 2835 else 2836 DemandedRHS.setBit((unsigned)M % NumElts); 2837 } 2838 // Known bits are the values that are shared by every demanded element. 2839 if (!!DemandedLHS) { 2840 SDValue LHS = Op.getOperand(0); 2841 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2842 Known = KnownBits::commonBits(Known, Known2); 2843 } 2844 // If we don't know any bits, early out. 2845 if (Known.isUnknown()) 2846 break; 2847 if (!!DemandedRHS) { 2848 SDValue RHS = Op.getOperand(1); 2849 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2850 Known = KnownBits::commonBits(Known, Known2); 2851 } 2852 break; 2853 } 2854 case ISD::CONCAT_VECTORS: { 2855 // Split DemandedElts and test each of the demanded subvectors. 2856 Known.Zero.setAllBits(); Known.One.setAllBits(); 2857 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2858 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2859 unsigned NumSubVectors = Op.getNumOperands(); 2860 for (unsigned i = 0; i != NumSubVectors; ++i) { 2861 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2862 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2863 if (!!DemandedSub) { 2864 SDValue Sub = Op.getOperand(i); 2865 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2866 Known = KnownBits::commonBits(Known, Known2); 2867 } 2868 // If we don't know any bits, early out. 2869 if (Known.isUnknown()) 2870 break; 2871 } 2872 break; 2873 } 2874 case ISD::INSERT_SUBVECTOR: { 2875 // Demand any elements from the subvector and the remainder from the src its 2876 // inserted into. 2877 SDValue Src = Op.getOperand(0); 2878 SDValue Sub = Op.getOperand(1); 2879 uint64_t Idx = Op.getConstantOperandVal(2); 2880 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2881 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2882 APInt DemandedSrcElts = DemandedElts; 2883 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2884 2885 Known.One.setAllBits(); 2886 Known.Zero.setAllBits(); 2887 if (!!DemandedSubElts) { 2888 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2889 if (Known.isUnknown()) 2890 break; // early-out. 2891 } 2892 if (!!DemandedSrcElts) { 2893 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2894 Known = KnownBits::commonBits(Known, Known2); 2895 } 2896 break; 2897 } 2898 case ISD::EXTRACT_SUBVECTOR: { 2899 // Offset the demanded elts by the subvector index. 2900 SDValue Src = Op.getOperand(0); 2901 // Bail until we can represent demanded elements for scalable vectors. 2902 if (Src.getValueType().isScalableVector()) 2903 break; 2904 uint64_t Idx = Op.getConstantOperandVal(1); 2905 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2906 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2907 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2908 break; 2909 } 2910 case ISD::SCALAR_TO_VECTOR: { 2911 // We know about scalar_to_vector as much as we know about it source, 2912 // which becomes the first element of otherwise unknown vector. 2913 if (DemandedElts != 1) 2914 break; 2915 2916 SDValue N0 = Op.getOperand(0); 2917 Known = computeKnownBits(N0, Depth + 1); 2918 if (N0.getValueSizeInBits() != BitWidth) 2919 Known = Known.trunc(BitWidth); 2920 2921 break; 2922 } 2923 case ISD::BITCAST: { 2924 SDValue N0 = Op.getOperand(0); 2925 EVT SubVT = N0.getValueType(); 2926 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2927 2928 // Ignore bitcasts from unsupported types. 2929 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2930 break; 2931 2932 // Fast handling of 'identity' bitcasts. 2933 if (BitWidth == SubBitWidth) { 2934 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2935 break; 2936 } 2937 2938 bool IsLE = getDataLayout().isLittleEndian(); 2939 2940 // Bitcast 'small element' vector to 'large element' scalar/vector. 2941 if ((BitWidth % SubBitWidth) == 0) { 2942 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2943 2944 // Collect known bits for the (larger) output by collecting the known 2945 // bits from each set of sub elements and shift these into place. 2946 // We need to separately call computeKnownBits for each set of 2947 // sub elements as the knownbits for each is likely to be different. 2948 unsigned SubScale = BitWidth / SubBitWidth; 2949 APInt SubDemandedElts(NumElts * SubScale, 0); 2950 for (unsigned i = 0; i != NumElts; ++i) 2951 if (DemandedElts[i]) 2952 SubDemandedElts.setBit(i * SubScale); 2953 2954 for (unsigned i = 0; i != SubScale; ++i) { 2955 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2956 Depth + 1); 2957 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2958 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2959 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2960 } 2961 } 2962 2963 // Bitcast 'large element' scalar/vector to 'small element' vector. 2964 if ((SubBitWidth % BitWidth) == 0) { 2965 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2966 2967 // Collect known bits for the (smaller) output by collecting the known 2968 // bits from the overlapping larger input elements and extracting the 2969 // sub sections we actually care about. 2970 unsigned SubScale = SubBitWidth / BitWidth; 2971 APInt SubDemandedElts(NumElts / SubScale, 0); 2972 for (unsigned i = 0; i != NumElts; ++i) 2973 if (DemandedElts[i]) 2974 SubDemandedElts.setBit(i / SubScale); 2975 2976 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2977 2978 Known.Zero.setAllBits(); Known.One.setAllBits(); 2979 for (unsigned i = 0; i != NumElts; ++i) 2980 if (DemandedElts[i]) { 2981 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2982 unsigned Offset = (Shifts % SubScale) * BitWidth; 2983 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2984 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2985 // If we don't know any bits, early out. 2986 if (Known.isUnknown()) 2987 break; 2988 } 2989 } 2990 break; 2991 } 2992 case ISD::AND: 2993 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2994 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2995 2996 Known &= Known2; 2997 break; 2998 case ISD::OR: 2999 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3000 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3001 3002 Known |= Known2; 3003 break; 3004 case ISD::XOR: 3005 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3006 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3007 3008 Known ^= Known2; 3009 break; 3010 case ISD::MUL: { 3011 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3012 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 Known = KnownBits::mul(Known, Known2); 3014 break; 3015 } 3016 case ISD::MULHU: { 3017 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3018 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3019 Known = KnownBits::mulhu(Known, Known2); 3020 break; 3021 } 3022 case ISD::MULHS: { 3023 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3024 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3025 Known = KnownBits::mulhs(Known, Known2); 3026 break; 3027 } 3028 case ISD::UMUL_LOHI: { 3029 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3030 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3032 if (Op.getResNo() == 0) 3033 Known = KnownBits::mul(Known, Known2); 3034 else 3035 Known = KnownBits::mulhu(Known, Known2); 3036 break; 3037 } 3038 case ISD::SMUL_LOHI: { 3039 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3040 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3041 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3042 if (Op.getResNo() == 0) 3043 Known = KnownBits::mul(Known, Known2); 3044 else 3045 Known = KnownBits::mulhs(Known, Known2); 3046 break; 3047 } 3048 case ISD::UDIV: { 3049 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3051 Known = KnownBits::udiv(Known, Known2); 3052 break; 3053 } 3054 case ISD::SELECT: 3055 case ISD::VSELECT: 3056 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3057 // If we don't know any bits, early out. 3058 if (Known.isUnknown()) 3059 break; 3060 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3061 3062 // Only known if known in both the LHS and RHS. 3063 Known = KnownBits::commonBits(Known, Known2); 3064 break; 3065 case ISD::SELECT_CC: 3066 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3067 // If we don't know any bits, early out. 3068 if (Known.isUnknown()) 3069 break; 3070 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3071 3072 // Only known if known in both the LHS and RHS. 3073 Known = KnownBits::commonBits(Known, Known2); 3074 break; 3075 case ISD::SMULO: 3076 case ISD::UMULO: 3077 if (Op.getResNo() != 1) 3078 break; 3079 // The boolean result conforms to getBooleanContents. 3080 // If we know the result of a setcc has the top bits zero, use this info. 3081 // We know that we have an integer-based boolean since these operations 3082 // are only available for integer. 3083 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3084 TargetLowering::ZeroOrOneBooleanContent && 3085 BitWidth > 1) 3086 Known.Zero.setBitsFrom(1); 3087 break; 3088 case ISD::SETCC: 3089 case ISD::STRICT_FSETCC: 3090 case ISD::STRICT_FSETCCS: { 3091 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3092 // If we know the result of a setcc has the top bits zero, use this info. 3093 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3094 TargetLowering::ZeroOrOneBooleanContent && 3095 BitWidth > 1) 3096 Known.Zero.setBitsFrom(1); 3097 break; 3098 } 3099 case ISD::SHL: 3100 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3101 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3102 Known = KnownBits::shl(Known, Known2); 3103 3104 // Minimum shift low bits are known zero. 3105 if (const APInt *ShMinAmt = 3106 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3107 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3108 break; 3109 case ISD::SRL: 3110 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3111 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3112 Known = KnownBits::lshr(Known, Known2); 3113 3114 // Minimum shift high bits are known zero. 3115 if (const APInt *ShMinAmt = 3116 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3117 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3118 break; 3119 case ISD::SRA: 3120 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3121 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3122 Known = KnownBits::ashr(Known, Known2); 3123 // TODO: Add minimum shift high known sign bits. 3124 break; 3125 case ISD::FSHL: 3126 case ISD::FSHR: 3127 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3128 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3129 3130 // For fshl, 0-shift returns the 1st arg. 3131 // For fshr, 0-shift returns the 2nd arg. 3132 if (Amt == 0) { 3133 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3134 DemandedElts, Depth + 1); 3135 break; 3136 } 3137 3138 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3139 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3140 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3141 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3142 if (Opcode == ISD::FSHL) { 3143 Known.One <<= Amt; 3144 Known.Zero <<= Amt; 3145 Known2.One.lshrInPlace(BitWidth - Amt); 3146 Known2.Zero.lshrInPlace(BitWidth - Amt); 3147 } else { 3148 Known.One <<= BitWidth - Amt; 3149 Known.Zero <<= BitWidth - Amt; 3150 Known2.One.lshrInPlace(Amt); 3151 Known2.Zero.lshrInPlace(Amt); 3152 } 3153 Known.One |= Known2.One; 3154 Known.Zero |= Known2.Zero; 3155 } 3156 break; 3157 case ISD::SIGN_EXTEND_INREG: { 3158 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3159 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3160 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3161 break; 3162 } 3163 case ISD::CTTZ: 3164 case ISD::CTTZ_ZERO_UNDEF: { 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 // If we have a known 1, its position is our upper bound. 3167 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3168 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3169 Known.Zero.setBitsFrom(LowBits); 3170 break; 3171 } 3172 case ISD::CTLZ: 3173 case ISD::CTLZ_ZERO_UNDEF: { 3174 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3175 // If we have a known 1, its position is our upper bound. 3176 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3177 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3178 Known.Zero.setBitsFrom(LowBits); 3179 break; 3180 } 3181 case ISD::CTPOP: { 3182 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3183 // If we know some of the bits are zero, they can't be one. 3184 unsigned PossibleOnes = Known2.countMaxPopulation(); 3185 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3186 break; 3187 } 3188 case ISD::PARITY: { 3189 // Parity returns 0 everywhere but the LSB. 3190 Known.Zero.setBitsFrom(1); 3191 break; 3192 } 3193 case ISD::LOAD: { 3194 LoadSDNode *LD = cast<LoadSDNode>(Op); 3195 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3196 if (ISD::isNON_EXTLoad(LD) && Cst) { 3197 // Determine any common known bits from the loaded constant pool value. 3198 Type *CstTy = Cst->getType(); 3199 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3200 // If its a vector splat, then we can (quickly) reuse the scalar path. 3201 // NOTE: We assume all elements match and none are UNDEF. 3202 if (CstTy->isVectorTy()) { 3203 if (const Constant *Splat = Cst->getSplatValue()) { 3204 Cst = Splat; 3205 CstTy = Cst->getType(); 3206 } 3207 } 3208 // TODO - do we need to handle different bitwidths? 3209 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3210 // Iterate across all vector elements finding common known bits. 3211 Known.One.setAllBits(); 3212 Known.Zero.setAllBits(); 3213 for (unsigned i = 0; i != NumElts; ++i) { 3214 if (!DemandedElts[i]) 3215 continue; 3216 if (Constant *Elt = Cst->getAggregateElement(i)) { 3217 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3218 const APInt &Value = CInt->getValue(); 3219 Known.One &= Value; 3220 Known.Zero &= ~Value; 3221 continue; 3222 } 3223 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3224 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3225 Known.One &= Value; 3226 Known.Zero &= ~Value; 3227 continue; 3228 } 3229 } 3230 Known.One.clearAllBits(); 3231 Known.Zero.clearAllBits(); 3232 break; 3233 } 3234 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3235 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3236 Known = KnownBits::makeConstant(CInt->getValue()); 3237 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3238 Known = 3239 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3240 } 3241 } 3242 } 3243 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3244 // If this is a ZEXTLoad and we are looking at the loaded value. 3245 EVT VT = LD->getMemoryVT(); 3246 unsigned MemBits = VT.getScalarSizeInBits(); 3247 Known.Zero.setBitsFrom(MemBits); 3248 } else if (const MDNode *Ranges = LD->getRanges()) { 3249 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3250 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3251 } 3252 break; 3253 } 3254 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3255 EVT InVT = Op.getOperand(0).getValueType(); 3256 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3257 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3258 Known = Known.zext(BitWidth); 3259 break; 3260 } 3261 case ISD::ZERO_EXTEND: { 3262 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3263 Known = Known.zext(BitWidth); 3264 break; 3265 } 3266 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3267 EVT InVT = Op.getOperand(0).getValueType(); 3268 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3269 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3270 // If the sign bit is known to be zero or one, then sext will extend 3271 // it to the top bits, else it will just zext. 3272 Known = Known.sext(BitWidth); 3273 break; 3274 } 3275 case ISD::SIGN_EXTEND: { 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 // If the sign bit is known to be zero or one, then sext will extend 3278 // it to the top bits, else it will just zext. 3279 Known = Known.sext(BitWidth); 3280 break; 3281 } 3282 case ISD::ANY_EXTEND_VECTOR_INREG: { 3283 EVT InVT = Op.getOperand(0).getValueType(); 3284 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3285 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3286 Known = Known.anyext(BitWidth); 3287 break; 3288 } 3289 case ISD::ANY_EXTEND: { 3290 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3291 Known = Known.anyext(BitWidth); 3292 break; 3293 } 3294 case ISD::TRUNCATE: { 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known = Known.trunc(BitWidth); 3297 break; 3298 } 3299 case ISD::AssertZext: { 3300 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3301 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3302 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3303 Known.Zero |= (~InMask); 3304 Known.One &= (~Known.Zero); 3305 break; 3306 } 3307 case ISD::AssertAlign: { 3308 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3309 assert(LogOfAlign != 0); 3310 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3311 // well as clearing one bits. 3312 Known.Zero.setLowBits(LogOfAlign); 3313 Known.One.clearLowBits(LogOfAlign); 3314 break; 3315 } 3316 case ISD::FGETSIGN: 3317 // All bits are zero except the low bit. 3318 Known.Zero.setBitsFrom(1); 3319 break; 3320 case ISD::USUBO: 3321 case ISD::SSUBO: 3322 if (Op.getResNo() == 1) { 3323 // If we know the result of a setcc has the top bits zero, use this info. 3324 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3325 TargetLowering::ZeroOrOneBooleanContent && 3326 BitWidth > 1) 3327 Known.Zero.setBitsFrom(1); 3328 break; 3329 } 3330 LLVM_FALLTHROUGH; 3331 case ISD::SUB: 3332 case ISD::SUBC: { 3333 assert(Op.getResNo() == 0 && 3334 "We only compute knownbits for the difference here."); 3335 3336 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3338 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3339 Known, Known2); 3340 break; 3341 } 3342 case ISD::UADDO: 3343 case ISD::SADDO: 3344 case ISD::ADDCARRY: 3345 if (Op.getResNo() == 1) { 3346 // If we know the result of a setcc has the top bits zero, use this info. 3347 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3348 TargetLowering::ZeroOrOneBooleanContent && 3349 BitWidth > 1) 3350 Known.Zero.setBitsFrom(1); 3351 break; 3352 } 3353 LLVM_FALLTHROUGH; 3354 case ISD::ADD: 3355 case ISD::ADDC: 3356 case ISD::ADDE: { 3357 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3358 3359 // With ADDE and ADDCARRY, a carry bit may be added in. 3360 KnownBits Carry(1); 3361 if (Opcode == ISD::ADDE) 3362 // Can't track carry from glue, set carry to unknown. 3363 Carry.resetAll(); 3364 else if (Opcode == ISD::ADDCARRY) 3365 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3366 // the trouble (how often will we find a known carry bit). And I haven't 3367 // tested this very much yet, but something like this might work: 3368 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3369 // Carry = Carry.zextOrTrunc(1, false); 3370 Carry.resetAll(); 3371 else 3372 Carry.setAllZero(); 3373 3374 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3375 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3376 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3377 break; 3378 } 3379 case ISD::SREM: { 3380 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3381 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3382 Known = KnownBits::srem(Known, Known2); 3383 break; 3384 } 3385 case ISD::UREM: { 3386 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3387 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3388 Known = KnownBits::urem(Known, Known2); 3389 break; 3390 } 3391 case ISD::EXTRACT_ELEMENT: { 3392 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3393 const unsigned Index = Op.getConstantOperandVal(1); 3394 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3395 3396 // Remove low part of known bits mask 3397 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3398 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3399 3400 // Remove high part of known bit mask 3401 Known = Known.trunc(EltBitWidth); 3402 break; 3403 } 3404 case ISD::EXTRACT_VECTOR_ELT: { 3405 SDValue InVec = Op.getOperand(0); 3406 SDValue EltNo = Op.getOperand(1); 3407 EVT VecVT = InVec.getValueType(); 3408 // computeKnownBits not yet implemented for scalable vectors. 3409 if (VecVT.isScalableVector()) 3410 break; 3411 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3412 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3413 3414 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3415 // anything about the extended bits. 3416 if (BitWidth > EltBitWidth) 3417 Known = Known.trunc(EltBitWidth); 3418 3419 // If we know the element index, just demand that vector element, else for 3420 // an unknown element index, ignore DemandedElts and demand them all. 3421 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3422 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3423 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3424 DemandedSrcElts = 3425 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3426 3427 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3428 if (BitWidth > EltBitWidth) 3429 Known = Known.anyext(BitWidth); 3430 break; 3431 } 3432 case ISD::INSERT_VECTOR_ELT: { 3433 // If we know the element index, split the demand between the 3434 // source vector and the inserted element, otherwise assume we need 3435 // the original demanded vector elements and the value. 3436 SDValue InVec = Op.getOperand(0); 3437 SDValue InVal = Op.getOperand(1); 3438 SDValue EltNo = Op.getOperand(2); 3439 bool DemandedVal = true; 3440 APInt DemandedVecElts = DemandedElts; 3441 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3442 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3443 unsigned EltIdx = CEltNo->getZExtValue(); 3444 DemandedVal = !!DemandedElts[EltIdx]; 3445 DemandedVecElts.clearBit(EltIdx); 3446 } 3447 Known.One.setAllBits(); 3448 Known.Zero.setAllBits(); 3449 if (DemandedVal) { 3450 Known2 = computeKnownBits(InVal, Depth + 1); 3451 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3452 } 3453 if (!!DemandedVecElts) { 3454 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3455 Known = KnownBits::commonBits(Known, Known2); 3456 } 3457 break; 3458 } 3459 case ISD::BITREVERSE: { 3460 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3461 Known = Known2.reverseBits(); 3462 break; 3463 } 3464 case ISD::BSWAP: { 3465 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3466 Known = Known2.byteSwap(); 3467 break; 3468 } 3469 case ISD::ABS: { 3470 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3471 Known = Known2.abs(); 3472 break; 3473 } 3474 case ISD::USUBSAT: { 3475 // The result of usubsat will never be larger than the LHS. 3476 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3477 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3478 break; 3479 } 3480 case ISD::UMIN: { 3481 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3482 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3483 Known = KnownBits::umin(Known, Known2); 3484 break; 3485 } 3486 case ISD::UMAX: { 3487 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3488 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3489 Known = KnownBits::umax(Known, Known2); 3490 break; 3491 } 3492 case ISD::SMIN: 3493 case ISD::SMAX: { 3494 // If we have a clamp pattern, we know that the number of sign bits will be 3495 // the minimum of the clamp min/max range. 3496 bool IsMax = (Opcode == ISD::SMAX); 3497 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3498 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3499 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3500 CstHigh = 3501 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3502 if (CstLow && CstHigh) { 3503 if (!IsMax) 3504 std::swap(CstLow, CstHigh); 3505 3506 const APInt &ValueLow = CstLow->getAPIntValue(); 3507 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3508 if (ValueLow.sle(ValueHigh)) { 3509 unsigned LowSignBits = ValueLow.getNumSignBits(); 3510 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3511 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3512 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3513 Known.One.setHighBits(MinSignBits); 3514 break; 3515 } 3516 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3517 Known.Zero.setHighBits(MinSignBits); 3518 break; 3519 } 3520 } 3521 } 3522 3523 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3524 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3525 if (IsMax) 3526 Known = KnownBits::smax(Known, Known2); 3527 else 3528 Known = KnownBits::smin(Known, Known2); 3529 break; 3530 } 3531 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3532 if (Op.getResNo() == 1) { 3533 // The boolean result conforms to getBooleanContents. 3534 // If we know the result of a setcc has the top bits zero, use this info. 3535 // We know that we have an integer-based boolean since these operations 3536 // are only available for integer. 3537 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3538 TargetLowering::ZeroOrOneBooleanContent && 3539 BitWidth > 1) 3540 Known.Zero.setBitsFrom(1); 3541 break; 3542 } 3543 LLVM_FALLTHROUGH; 3544 case ISD::ATOMIC_CMP_SWAP: 3545 case ISD::ATOMIC_SWAP: 3546 case ISD::ATOMIC_LOAD_ADD: 3547 case ISD::ATOMIC_LOAD_SUB: 3548 case ISD::ATOMIC_LOAD_AND: 3549 case ISD::ATOMIC_LOAD_CLR: 3550 case ISD::ATOMIC_LOAD_OR: 3551 case ISD::ATOMIC_LOAD_XOR: 3552 case ISD::ATOMIC_LOAD_NAND: 3553 case ISD::ATOMIC_LOAD_MIN: 3554 case ISD::ATOMIC_LOAD_MAX: 3555 case ISD::ATOMIC_LOAD_UMIN: 3556 case ISD::ATOMIC_LOAD_UMAX: 3557 case ISD::ATOMIC_LOAD: { 3558 unsigned MemBits = 3559 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3560 // If we are looking at the loaded value. 3561 if (Op.getResNo() == 0) { 3562 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3563 Known.Zero.setBitsFrom(MemBits); 3564 } 3565 break; 3566 } 3567 case ISD::FrameIndex: 3568 case ISD::TargetFrameIndex: 3569 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3570 Known, getMachineFunction()); 3571 break; 3572 3573 default: 3574 if (Opcode < ISD::BUILTIN_OP_END) 3575 break; 3576 LLVM_FALLTHROUGH; 3577 case ISD::INTRINSIC_WO_CHAIN: 3578 case ISD::INTRINSIC_W_CHAIN: 3579 case ISD::INTRINSIC_VOID: 3580 // Allow the target to implement this method for its nodes. 3581 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3582 break; 3583 } 3584 3585 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3586 return Known; 3587 } 3588 3589 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3590 SDValue N1) const { 3591 // X + 0 never overflow 3592 if (isNullConstant(N1)) 3593 return OFK_Never; 3594 3595 KnownBits N1Known = computeKnownBits(N1); 3596 if (N1Known.Zero.getBoolValue()) { 3597 KnownBits N0Known = computeKnownBits(N0); 3598 3599 bool overflow; 3600 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3601 if (!overflow) 3602 return OFK_Never; 3603 } 3604 3605 // mulhi + 1 never overflow 3606 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3607 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3608 return OFK_Never; 3609 3610 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3611 KnownBits N0Known = computeKnownBits(N0); 3612 3613 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3614 return OFK_Never; 3615 } 3616 3617 return OFK_Sometime; 3618 } 3619 3620 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3621 EVT OpVT = Val.getValueType(); 3622 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3623 3624 // Is the constant a known power of 2? 3625 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3626 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3627 3628 // A left-shift of a constant one will have exactly one bit set because 3629 // shifting the bit off the end is undefined. 3630 if (Val.getOpcode() == ISD::SHL) { 3631 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3632 if (C && C->getAPIntValue() == 1) 3633 return true; 3634 } 3635 3636 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3637 // one bit set. 3638 if (Val.getOpcode() == ISD::SRL) { 3639 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3640 if (C && C->getAPIntValue().isSignMask()) 3641 return true; 3642 } 3643 3644 // Are all operands of a build vector constant powers of two? 3645 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3646 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3647 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3648 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3649 return false; 3650 })) 3651 return true; 3652 3653 // More could be done here, though the above checks are enough 3654 // to handle some common cases. 3655 3656 // Fall back to computeKnownBits to catch other known cases. 3657 KnownBits Known = computeKnownBits(Val); 3658 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3659 } 3660 3661 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3662 EVT VT = Op.getValueType(); 3663 3664 // TODO: Assume we don't know anything for now. 3665 if (VT.isScalableVector()) 3666 return 1; 3667 3668 APInt DemandedElts = VT.isVector() 3669 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3670 : APInt(1, 1); 3671 return ComputeNumSignBits(Op, DemandedElts, Depth); 3672 } 3673 3674 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3675 unsigned Depth) const { 3676 EVT VT = Op.getValueType(); 3677 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3678 unsigned VTBits = VT.getScalarSizeInBits(); 3679 unsigned NumElts = DemandedElts.getBitWidth(); 3680 unsigned Tmp, Tmp2; 3681 unsigned FirstAnswer = 1; 3682 3683 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3684 const APInt &Val = C->getAPIntValue(); 3685 return Val.getNumSignBits(); 3686 } 3687 3688 if (Depth >= MaxRecursionDepth) 3689 return 1; // Limit search depth. 3690 3691 if (!DemandedElts || VT.isScalableVector()) 3692 return 1; // No demanded elts, better to assume we don't know anything. 3693 3694 unsigned Opcode = Op.getOpcode(); 3695 switch (Opcode) { 3696 default: break; 3697 case ISD::AssertSext: 3698 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3699 return VTBits-Tmp+1; 3700 case ISD::AssertZext: 3701 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3702 return VTBits-Tmp; 3703 3704 case ISD::BUILD_VECTOR: 3705 Tmp = VTBits; 3706 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3707 if (!DemandedElts[i]) 3708 continue; 3709 3710 SDValue SrcOp = Op.getOperand(i); 3711 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3712 3713 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3714 if (SrcOp.getValueSizeInBits() != VTBits) { 3715 assert(SrcOp.getValueSizeInBits() > VTBits && 3716 "Expected BUILD_VECTOR implicit truncation"); 3717 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3718 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3719 } 3720 Tmp = std::min(Tmp, Tmp2); 3721 } 3722 return Tmp; 3723 3724 case ISD::VECTOR_SHUFFLE: { 3725 // Collect the minimum number of sign bits that are shared by every vector 3726 // element referenced by the shuffle. 3727 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3728 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3729 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3730 for (unsigned i = 0; i != NumElts; ++i) { 3731 int M = SVN->getMaskElt(i); 3732 if (!DemandedElts[i]) 3733 continue; 3734 // For UNDEF elements, we don't know anything about the common state of 3735 // the shuffle result. 3736 if (M < 0) 3737 return 1; 3738 if ((unsigned)M < NumElts) 3739 DemandedLHS.setBit((unsigned)M % NumElts); 3740 else 3741 DemandedRHS.setBit((unsigned)M % NumElts); 3742 } 3743 Tmp = std::numeric_limits<unsigned>::max(); 3744 if (!!DemandedLHS) 3745 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3746 if (!!DemandedRHS) { 3747 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3748 Tmp = std::min(Tmp, Tmp2); 3749 } 3750 // If we don't know anything, early out and try computeKnownBits fall-back. 3751 if (Tmp == 1) 3752 break; 3753 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3754 return Tmp; 3755 } 3756 3757 case ISD::BITCAST: { 3758 SDValue N0 = Op.getOperand(0); 3759 EVT SrcVT = N0.getValueType(); 3760 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3761 3762 // Ignore bitcasts from unsupported types.. 3763 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3764 break; 3765 3766 // Fast handling of 'identity' bitcasts. 3767 if (VTBits == SrcBits) 3768 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3769 3770 bool IsLE = getDataLayout().isLittleEndian(); 3771 3772 // Bitcast 'large element' scalar/vector to 'small element' vector. 3773 if ((SrcBits % VTBits) == 0) { 3774 assert(VT.isVector() && "Expected bitcast to vector"); 3775 3776 unsigned Scale = SrcBits / VTBits; 3777 APInt SrcDemandedElts(NumElts / Scale, 0); 3778 for (unsigned i = 0; i != NumElts; ++i) 3779 if (DemandedElts[i]) 3780 SrcDemandedElts.setBit(i / Scale); 3781 3782 // Fast case - sign splat can be simply split across the small elements. 3783 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3784 if (Tmp == SrcBits) 3785 return VTBits; 3786 3787 // Slow case - determine how far the sign extends into each sub-element. 3788 Tmp2 = VTBits; 3789 for (unsigned i = 0; i != NumElts; ++i) 3790 if (DemandedElts[i]) { 3791 unsigned SubOffset = i % Scale; 3792 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3793 SubOffset = SubOffset * VTBits; 3794 if (Tmp <= SubOffset) 3795 return 1; 3796 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3797 } 3798 return Tmp2; 3799 } 3800 break; 3801 } 3802 3803 case ISD::SIGN_EXTEND: 3804 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3805 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3806 case ISD::SIGN_EXTEND_INREG: 3807 // Max of the input and what this extends. 3808 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3809 Tmp = VTBits-Tmp+1; 3810 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3811 return std::max(Tmp, Tmp2); 3812 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3813 SDValue Src = Op.getOperand(0); 3814 EVT SrcVT = Src.getValueType(); 3815 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3816 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3817 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3818 } 3819 case ISD::SRA: 3820 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3821 // SRA X, C -> adds C sign bits. 3822 if (const APInt *ShAmt = 3823 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3824 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3825 return Tmp; 3826 case ISD::SHL: 3827 if (const APInt *ShAmt = 3828 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3829 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3830 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3831 if (ShAmt->ult(Tmp)) 3832 return Tmp - ShAmt->getZExtValue(); 3833 } 3834 break; 3835 case ISD::AND: 3836 case ISD::OR: 3837 case ISD::XOR: // NOT is handled here. 3838 // Logical binary ops preserve the number of sign bits at the worst. 3839 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3840 if (Tmp != 1) { 3841 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3842 FirstAnswer = std::min(Tmp, Tmp2); 3843 // We computed what we know about the sign bits as our first 3844 // answer. Now proceed to the generic code that uses 3845 // computeKnownBits, and pick whichever answer is better. 3846 } 3847 break; 3848 3849 case ISD::SELECT: 3850 case ISD::VSELECT: 3851 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3852 if (Tmp == 1) return 1; // Early out. 3853 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3854 return std::min(Tmp, Tmp2); 3855 case ISD::SELECT_CC: 3856 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3857 if (Tmp == 1) return 1; // Early out. 3858 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3859 return std::min(Tmp, Tmp2); 3860 3861 case ISD::SMIN: 3862 case ISD::SMAX: { 3863 // If we have a clamp pattern, we know that the number of sign bits will be 3864 // the minimum of the clamp min/max range. 3865 bool IsMax = (Opcode == ISD::SMAX); 3866 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3867 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3868 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3869 CstHigh = 3870 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3871 if (CstLow && CstHigh) { 3872 if (!IsMax) 3873 std::swap(CstLow, CstHigh); 3874 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3875 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3876 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3877 return std::min(Tmp, Tmp2); 3878 } 3879 } 3880 3881 // Fallback - just get the minimum number of sign bits of the operands. 3882 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3883 if (Tmp == 1) 3884 return 1; // Early out. 3885 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3886 return std::min(Tmp, Tmp2); 3887 } 3888 case ISD::UMIN: 3889 case ISD::UMAX: 3890 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3891 if (Tmp == 1) 3892 return 1; // Early out. 3893 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3894 return std::min(Tmp, Tmp2); 3895 case ISD::SADDO: 3896 case ISD::UADDO: 3897 case ISD::SSUBO: 3898 case ISD::USUBO: 3899 case ISD::SMULO: 3900 case ISD::UMULO: 3901 if (Op.getResNo() != 1) 3902 break; 3903 // The boolean result conforms to getBooleanContents. Fall through. 3904 // If setcc returns 0/-1, all bits are sign bits. 3905 // We know that we have an integer-based boolean since these operations 3906 // are only available for integer. 3907 if (TLI->getBooleanContents(VT.isVector(), false) == 3908 TargetLowering::ZeroOrNegativeOneBooleanContent) 3909 return VTBits; 3910 break; 3911 case ISD::SETCC: 3912 case ISD::STRICT_FSETCC: 3913 case ISD::STRICT_FSETCCS: { 3914 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3915 // If setcc returns 0/-1, all bits are sign bits. 3916 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3917 TargetLowering::ZeroOrNegativeOneBooleanContent) 3918 return VTBits; 3919 break; 3920 } 3921 case ISD::ROTL: 3922 case ISD::ROTR: 3923 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3924 3925 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3926 if (Tmp == VTBits) 3927 return VTBits; 3928 3929 if (ConstantSDNode *C = 3930 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3931 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3932 3933 // Handle rotate right by N like a rotate left by 32-N. 3934 if (Opcode == ISD::ROTR) 3935 RotAmt = (VTBits - RotAmt) % VTBits; 3936 3937 // If we aren't rotating out all of the known-in sign bits, return the 3938 // number that are left. This handles rotl(sext(x), 1) for example. 3939 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3940 } 3941 break; 3942 case ISD::ADD: 3943 case ISD::ADDC: 3944 // Add can have at most one carry bit. Thus we know that the output 3945 // is, at worst, one more bit than the inputs. 3946 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3947 if (Tmp == 1) return 1; // Early out. 3948 3949 // Special case decrementing a value (ADD X, -1): 3950 if (ConstantSDNode *CRHS = 3951 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3952 if (CRHS->isAllOnesValue()) { 3953 KnownBits Known = 3954 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3955 3956 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3957 // sign bits set. 3958 if ((Known.Zero | 1).isAllOnesValue()) 3959 return VTBits; 3960 3961 // If we are subtracting one from a positive number, there is no carry 3962 // out of the result. 3963 if (Known.isNonNegative()) 3964 return Tmp; 3965 } 3966 3967 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3968 if (Tmp2 == 1) return 1; // Early out. 3969 return std::min(Tmp, Tmp2) - 1; 3970 case ISD::SUB: 3971 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3972 if (Tmp2 == 1) return 1; // Early out. 3973 3974 // Handle NEG. 3975 if (ConstantSDNode *CLHS = 3976 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3977 if (CLHS->isNullValue()) { 3978 KnownBits Known = 3979 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3980 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3981 // sign bits set. 3982 if ((Known.Zero | 1).isAllOnesValue()) 3983 return VTBits; 3984 3985 // If the input is known to be positive (the sign bit is known clear), 3986 // the output of the NEG has the same number of sign bits as the input. 3987 if (Known.isNonNegative()) 3988 return Tmp2; 3989 3990 // Otherwise, we treat this like a SUB. 3991 } 3992 3993 // Sub can have at most one carry bit. Thus we know that the output 3994 // is, at worst, one more bit than the inputs. 3995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3996 if (Tmp == 1) return 1; // Early out. 3997 return std::min(Tmp, Tmp2) - 1; 3998 case ISD::MUL: { 3999 // The output of the Mul can be at most twice the valid bits in the inputs. 4000 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4001 if (SignBitsOp0 == 1) 4002 break; 4003 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4004 if (SignBitsOp1 == 1) 4005 break; 4006 unsigned OutValidBits = 4007 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4008 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4009 } 4010 case ISD::SREM: 4011 // The sign bit is the LHS's sign bit, except when the result of the 4012 // remainder is zero. The magnitude of the result should be less than or 4013 // equal to the magnitude of the LHS. Therefore, the result should have 4014 // at least as many sign bits as the left hand side. 4015 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4016 case ISD::TRUNCATE: { 4017 // Check if the sign bits of source go down as far as the truncated value. 4018 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4019 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4020 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4021 return NumSrcSignBits - (NumSrcBits - VTBits); 4022 break; 4023 } 4024 case ISD::EXTRACT_ELEMENT: { 4025 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4026 const int BitWidth = Op.getValueSizeInBits(); 4027 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4028 4029 // Get reverse index (starting from 1), Op1 value indexes elements from 4030 // little end. Sign starts at big end. 4031 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4032 4033 // If the sign portion ends in our element the subtraction gives correct 4034 // result. Otherwise it gives either negative or > bitwidth result 4035 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4036 } 4037 case ISD::INSERT_VECTOR_ELT: { 4038 // If we know the element index, split the demand between the 4039 // source vector and the inserted element, otherwise assume we need 4040 // the original demanded vector elements and the value. 4041 SDValue InVec = Op.getOperand(0); 4042 SDValue InVal = Op.getOperand(1); 4043 SDValue EltNo = Op.getOperand(2); 4044 bool DemandedVal = true; 4045 APInt DemandedVecElts = DemandedElts; 4046 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4047 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4048 unsigned EltIdx = CEltNo->getZExtValue(); 4049 DemandedVal = !!DemandedElts[EltIdx]; 4050 DemandedVecElts.clearBit(EltIdx); 4051 } 4052 Tmp = std::numeric_limits<unsigned>::max(); 4053 if (DemandedVal) { 4054 // TODO - handle implicit truncation of inserted elements. 4055 if (InVal.getScalarValueSizeInBits() != VTBits) 4056 break; 4057 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4058 Tmp = std::min(Tmp, Tmp2); 4059 } 4060 if (!!DemandedVecElts) { 4061 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4062 Tmp = std::min(Tmp, Tmp2); 4063 } 4064 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4065 return Tmp; 4066 } 4067 case ISD::EXTRACT_VECTOR_ELT: { 4068 SDValue InVec = Op.getOperand(0); 4069 SDValue EltNo = Op.getOperand(1); 4070 EVT VecVT = InVec.getValueType(); 4071 // ComputeNumSignBits not yet implemented for scalable vectors. 4072 if (VecVT.isScalableVector()) 4073 break; 4074 const unsigned BitWidth = Op.getValueSizeInBits(); 4075 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4076 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4077 4078 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4079 // anything about sign bits. But if the sizes match we can derive knowledge 4080 // about sign bits from the vector operand. 4081 if (BitWidth != EltBitWidth) 4082 break; 4083 4084 // If we know the element index, just demand that vector element, else for 4085 // an unknown element index, ignore DemandedElts and demand them all. 4086 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4087 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4088 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4089 DemandedSrcElts = 4090 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4091 4092 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4093 } 4094 case ISD::EXTRACT_SUBVECTOR: { 4095 // Offset the demanded elts by the subvector index. 4096 SDValue Src = Op.getOperand(0); 4097 // Bail until we can represent demanded elements for scalable vectors. 4098 if (Src.getValueType().isScalableVector()) 4099 break; 4100 uint64_t Idx = Op.getConstantOperandVal(1); 4101 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4102 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4103 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4104 } 4105 case ISD::CONCAT_VECTORS: { 4106 // Determine the minimum number of sign bits across all demanded 4107 // elts of the input vectors. Early out if the result is already 1. 4108 Tmp = std::numeric_limits<unsigned>::max(); 4109 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4110 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4111 unsigned NumSubVectors = Op.getNumOperands(); 4112 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4113 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4114 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4115 if (!DemandedSub) 4116 continue; 4117 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4118 Tmp = std::min(Tmp, Tmp2); 4119 } 4120 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4121 return Tmp; 4122 } 4123 case ISD::INSERT_SUBVECTOR: { 4124 // Demand any elements from the subvector and the remainder from the src its 4125 // inserted into. 4126 SDValue Src = Op.getOperand(0); 4127 SDValue Sub = Op.getOperand(1); 4128 uint64_t Idx = Op.getConstantOperandVal(2); 4129 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4130 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4131 APInt DemandedSrcElts = DemandedElts; 4132 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4133 4134 Tmp = std::numeric_limits<unsigned>::max(); 4135 if (!!DemandedSubElts) { 4136 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4137 if (Tmp == 1) 4138 return 1; // early-out 4139 } 4140 if (!!DemandedSrcElts) { 4141 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4142 Tmp = std::min(Tmp, Tmp2); 4143 } 4144 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4145 return Tmp; 4146 } 4147 case ISD::ATOMIC_CMP_SWAP: 4148 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4149 case ISD::ATOMIC_SWAP: 4150 case ISD::ATOMIC_LOAD_ADD: 4151 case ISD::ATOMIC_LOAD_SUB: 4152 case ISD::ATOMIC_LOAD_AND: 4153 case ISD::ATOMIC_LOAD_CLR: 4154 case ISD::ATOMIC_LOAD_OR: 4155 case ISD::ATOMIC_LOAD_XOR: 4156 case ISD::ATOMIC_LOAD_NAND: 4157 case ISD::ATOMIC_LOAD_MIN: 4158 case ISD::ATOMIC_LOAD_MAX: 4159 case ISD::ATOMIC_LOAD_UMIN: 4160 case ISD::ATOMIC_LOAD_UMAX: 4161 case ISD::ATOMIC_LOAD: { 4162 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4163 // If we are looking at the loaded value. 4164 if (Op.getResNo() == 0) { 4165 if (Tmp == VTBits) 4166 return 1; // early-out 4167 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4168 return VTBits - Tmp + 1; 4169 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4170 return VTBits - Tmp; 4171 } 4172 break; 4173 } 4174 } 4175 4176 // If we are looking at the loaded value of the SDNode. 4177 if (Op.getResNo() == 0) { 4178 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4179 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4180 unsigned ExtType = LD->getExtensionType(); 4181 switch (ExtType) { 4182 default: break; 4183 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4184 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4185 return VTBits - Tmp + 1; 4186 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4187 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4188 return VTBits - Tmp; 4189 case ISD::NON_EXTLOAD: 4190 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4191 // We only need to handle vectors - computeKnownBits should handle 4192 // scalar cases. 4193 Type *CstTy = Cst->getType(); 4194 if (CstTy->isVectorTy() && 4195 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4196 Tmp = VTBits; 4197 for (unsigned i = 0; i != NumElts; ++i) { 4198 if (!DemandedElts[i]) 4199 continue; 4200 if (Constant *Elt = Cst->getAggregateElement(i)) { 4201 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4202 const APInt &Value = CInt->getValue(); 4203 Tmp = std::min(Tmp, Value.getNumSignBits()); 4204 continue; 4205 } 4206 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4207 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4208 Tmp = std::min(Tmp, Value.getNumSignBits()); 4209 continue; 4210 } 4211 } 4212 // Unknown type. Conservatively assume no bits match sign bit. 4213 return 1; 4214 } 4215 return Tmp; 4216 } 4217 } 4218 break; 4219 } 4220 } 4221 } 4222 4223 // Allow the target to implement this method for its nodes. 4224 if (Opcode >= ISD::BUILTIN_OP_END || 4225 Opcode == ISD::INTRINSIC_WO_CHAIN || 4226 Opcode == ISD::INTRINSIC_W_CHAIN || 4227 Opcode == ISD::INTRINSIC_VOID) { 4228 unsigned NumBits = 4229 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4230 if (NumBits > 1) 4231 FirstAnswer = std::max(FirstAnswer, NumBits); 4232 } 4233 4234 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4235 // use this information. 4236 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4237 4238 APInt Mask; 4239 if (Known.isNonNegative()) { // sign bit is 0 4240 Mask = Known.Zero; 4241 } else if (Known.isNegative()) { // sign bit is 1; 4242 Mask = Known.One; 4243 } else { 4244 // Nothing known. 4245 return FirstAnswer; 4246 } 4247 4248 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4249 // the number of identical bits in the top of the input value. 4250 Mask <<= Mask.getBitWidth()-VTBits; 4251 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4252 } 4253 4254 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4255 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4256 !isa<ConstantSDNode>(Op.getOperand(1))) 4257 return false; 4258 4259 if (Op.getOpcode() == ISD::OR && 4260 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4261 return false; 4262 4263 return true; 4264 } 4265 4266 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4267 // If we're told that NaNs won't happen, assume they won't. 4268 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4269 return true; 4270 4271 if (Depth >= MaxRecursionDepth) 4272 return false; // Limit search depth. 4273 4274 // TODO: Handle vectors. 4275 // If the value is a constant, we can obviously see if it is a NaN or not. 4276 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4277 return !C->getValueAPF().isNaN() || 4278 (SNaN && !C->getValueAPF().isSignaling()); 4279 } 4280 4281 unsigned Opcode = Op.getOpcode(); 4282 switch (Opcode) { 4283 case ISD::FADD: 4284 case ISD::FSUB: 4285 case ISD::FMUL: 4286 case ISD::FDIV: 4287 case ISD::FREM: 4288 case ISD::FSIN: 4289 case ISD::FCOS: { 4290 if (SNaN) 4291 return true; 4292 // TODO: Need isKnownNeverInfinity 4293 return false; 4294 } 4295 case ISD::FCANONICALIZE: 4296 case ISD::FEXP: 4297 case ISD::FEXP2: 4298 case ISD::FTRUNC: 4299 case ISD::FFLOOR: 4300 case ISD::FCEIL: 4301 case ISD::FROUND: 4302 case ISD::FROUNDEVEN: 4303 case ISD::FRINT: 4304 case ISD::FNEARBYINT: { 4305 if (SNaN) 4306 return true; 4307 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4308 } 4309 case ISD::FABS: 4310 case ISD::FNEG: 4311 case ISD::FCOPYSIGN: { 4312 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4313 } 4314 case ISD::SELECT: 4315 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4316 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4317 case ISD::FP_EXTEND: 4318 case ISD::FP_ROUND: { 4319 if (SNaN) 4320 return true; 4321 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4322 } 4323 case ISD::SINT_TO_FP: 4324 case ISD::UINT_TO_FP: 4325 return true; 4326 case ISD::FMA: 4327 case ISD::FMAD: { 4328 if (SNaN) 4329 return true; 4330 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4331 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4332 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4333 } 4334 case ISD::FSQRT: // Need is known positive 4335 case ISD::FLOG: 4336 case ISD::FLOG2: 4337 case ISD::FLOG10: 4338 case ISD::FPOWI: 4339 case ISD::FPOW: { 4340 if (SNaN) 4341 return true; 4342 // TODO: Refine on operand 4343 return false; 4344 } 4345 case ISD::FMINNUM: 4346 case ISD::FMAXNUM: { 4347 // Only one needs to be known not-nan, since it will be returned if the 4348 // other ends up being one. 4349 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4350 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4351 } 4352 case ISD::FMINNUM_IEEE: 4353 case ISD::FMAXNUM_IEEE: { 4354 if (SNaN) 4355 return true; 4356 // This can return a NaN if either operand is an sNaN, or if both operands 4357 // are NaN. 4358 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4359 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4360 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4361 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4362 } 4363 case ISD::FMINIMUM: 4364 case ISD::FMAXIMUM: { 4365 // TODO: Does this quiet or return the origina NaN as-is? 4366 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4367 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4368 } 4369 case ISD::EXTRACT_VECTOR_ELT: { 4370 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4371 } 4372 default: 4373 if (Opcode >= ISD::BUILTIN_OP_END || 4374 Opcode == ISD::INTRINSIC_WO_CHAIN || 4375 Opcode == ISD::INTRINSIC_W_CHAIN || 4376 Opcode == ISD::INTRINSIC_VOID) { 4377 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4378 } 4379 4380 return false; 4381 } 4382 } 4383 4384 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4385 assert(Op.getValueType().isFloatingPoint() && 4386 "Floating point type expected"); 4387 4388 // If the value is a constant, we can obviously see if it is a zero or not. 4389 // TODO: Add BuildVector support. 4390 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4391 return !C->isZero(); 4392 return false; 4393 } 4394 4395 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4396 assert(!Op.getValueType().isFloatingPoint() && 4397 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4398 4399 // If the value is a constant, we can obviously see if it is a zero or not. 4400 if (ISD::matchUnaryPredicate( 4401 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4402 return true; 4403 4404 // TODO: Recognize more cases here. 4405 switch (Op.getOpcode()) { 4406 default: break; 4407 case ISD::OR: 4408 if (isKnownNeverZero(Op.getOperand(1)) || 4409 isKnownNeverZero(Op.getOperand(0))) 4410 return true; 4411 break; 4412 } 4413 4414 return false; 4415 } 4416 4417 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4418 // Check the obvious case. 4419 if (A == B) return true; 4420 4421 // For for negative and positive zero. 4422 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4423 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4424 if (CA->isZero() && CB->isZero()) return true; 4425 4426 // Otherwise they may not be equal. 4427 return false; 4428 } 4429 4430 // FIXME: unify with llvm::haveNoCommonBitsSet. 4431 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4432 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4433 assert(A.getValueType() == B.getValueType() && 4434 "Values must have the same type"); 4435 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4436 computeKnownBits(B)); 4437 } 4438 4439 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4440 SelectionDAG &DAG) { 4441 if (cast<ConstantSDNode>(Step)->isNullValue()) 4442 return DAG.getConstant(0, DL, VT); 4443 4444 return SDValue(); 4445 } 4446 4447 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4448 ArrayRef<SDValue> Ops, 4449 SelectionDAG &DAG) { 4450 int NumOps = Ops.size(); 4451 assert(NumOps != 0 && "Can't build an empty vector!"); 4452 assert(!VT.isScalableVector() && 4453 "BUILD_VECTOR cannot be used with scalable types"); 4454 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4455 "Incorrect element count in BUILD_VECTOR!"); 4456 4457 // BUILD_VECTOR of UNDEFs is UNDEF. 4458 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4459 return DAG.getUNDEF(VT); 4460 4461 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4462 SDValue IdentitySrc; 4463 bool IsIdentity = true; 4464 for (int i = 0; i != NumOps; ++i) { 4465 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4466 Ops[i].getOperand(0).getValueType() != VT || 4467 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4468 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4469 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4470 IsIdentity = false; 4471 break; 4472 } 4473 IdentitySrc = Ops[i].getOperand(0); 4474 } 4475 if (IsIdentity) 4476 return IdentitySrc; 4477 4478 return SDValue(); 4479 } 4480 4481 /// Try to simplify vector concatenation to an input value, undef, or build 4482 /// vector. 4483 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4484 ArrayRef<SDValue> Ops, 4485 SelectionDAG &DAG) { 4486 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4487 assert(llvm::all_of(Ops, 4488 [Ops](SDValue Op) { 4489 return Ops[0].getValueType() == Op.getValueType(); 4490 }) && 4491 "Concatenation of vectors with inconsistent value types!"); 4492 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4493 VT.getVectorElementCount() && 4494 "Incorrect element count in vector concatenation!"); 4495 4496 if (Ops.size() == 1) 4497 return Ops[0]; 4498 4499 // Concat of UNDEFs is UNDEF. 4500 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4501 return DAG.getUNDEF(VT); 4502 4503 // Scan the operands and look for extract operations from a single source 4504 // that correspond to insertion at the same location via this concatenation: 4505 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4506 SDValue IdentitySrc; 4507 bool IsIdentity = true; 4508 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4509 SDValue Op = Ops[i]; 4510 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4511 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4512 Op.getOperand(0).getValueType() != VT || 4513 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4514 Op.getConstantOperandVal(1) != IdentityIndex) { 4515 IsIdentity = false; 4516 break; 4517 } 4518 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4519 "Unexpected identity source vector for concat of extracts"); 4520 IdentitySrc = Op.getOperand(0); 4521 } 4522 if (IsIdentity) { 4523 assert(IdentitySrc && "Failed to set source vector of extracts"); 4524 return IdentitySrc; 4525 } 4526 4527 // The code below this point is only designed to work for fixed width 4528 // vectors, so we bail out for now. 4529 if (VT.isScalableVector()) 4530 return SDValue(); 4531 4532 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4533 // simplified to one big BUILD_VECTOR. 4534 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4535 EVT SVT = VT.getScalarType(); 4536 SmallVector<SDValue, 16> Elts; 4537 for (SDValue Op : Ops) { 4538 EVT OpVT = Op.getValueType(); 4539 if (Op.isUndef()) 4540 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4541 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4542 Elts.append(Op->op_begin(), Op->op_end()); 4543 else 4544 return SDValue(); 4545 } 4546 4547 // BUILD_VECTOR requires all inputs to be of the same type, find the 4548 // maximum type and extend them all. 4549 for (SDValue Op : Elts) 4550 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4551 4552 if (SVT.bitsGT(VT.getScalarType())) { 4553 for (SDValue &Op : Elts) { 4554 if (Op.isUndef()) 4555 Op = DAG.getUNDEF(SVT); 4556 else 4557 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4558 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4559 : DAG.getSExtOrTrunc(Op, DL, SVT); 4560 } 4561 } 4562 4563 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4564 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4565 return V; 4566 } 4567 4568 /// Gets or creates the specified node. 4569 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4570 FoldingSetNodeID ID; 4571 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4572 void *IP = nullptr; 4573 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4574 return SDValue(E, 0); 4575 4576 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4577 getVTList(VT)); 4578 CSEMap.InsertNode(N, IP); 4579 4580 InsertNode(N); 4581 SDValue V = SDValue(N, 0); 4582 NewSDValueDbgMsg(V, "Creating new node: ", this); 4583 return V; 4584 } 4585 4586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4587 SDValue Operand) { 4588 SDNodeFlags Flags; 4589 if (Inserter) 4590 Flags = Inserter->getFlags(); 4591 return getNode(Opcode, DL, VT, Operand, Flags); 4592 } 4593 4594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4595 SDValue Operand, const SDNodeFlags Flags) { 4596 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4597 "Operand is DELETED_NODE!"); 4598 // Constant fold unary operations with an integer constant operand. Even 4599 // opaque constant will be folded, because the folding of unary operations 4600 // doesn't create new constants with different values. Nevertheless, the 4601 // opaque flag is preserved during folding to prevent future folding with 4602 // other constants. 4603 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4604 const APInt &Val = C->getAPIntValue(); 4605 switch (Opcode) { 4606 default: break; 4607 case ISD::SIGN_EXTEND: 4608 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4609 C->isTargetOpcode(), C->isOpaque()); 4610 case ISD::TRUNCATE: 4611 if (C->isOpaque()) 4612 break; 4613 LLVM_FALLTHROUGH; 4614 case ISD::ANY_EXTEND: 4615 case ISD::ZERO_EXTEND: 4616 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4617 C->isTargetOpcode(), C->isOpaque()); 4618 case ISD::UINT_TO_FP: 4619 case ISD::SINT_TO_FP: { 4620 APFloat apf(EVTToAPFloatSemantics(VT), 4621 APInt::getNullValue(VT.getSizeInBits())); 4622 (void)apf.convertFromAPInt(Val, 4623 Opcode==ISD::SINT_TO_FP, 4624 APFloat::rmNearestTiesToEven); 4625 return getConstantFP(apf, DL, VT); 4626 } 4627 case ISD::BITCAST: 4628 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4629 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4630 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4631 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4632 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4633 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4634 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4635 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4636 break; 4637 case ISD::ABS: 4638 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4639 C->isOpaque()); 4640 case ISD::BITREVERSE: 4641 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4642 C->isOpaque()); 4643 case ISD::BSWAP: 4644 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4645 C->isOpaque()); 4646 case ISD::CTPOP: 4647 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4648 C->isOpaque()); 4649 case ISD::CTLZ: 4650 case ISD::CTLZ_ZERO_UNDEF: 4651 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4652 C->isOpaque()); 4653 case ISD::CTTZ: 4654 case ISD::CTTZ_ZERO_UNDEF: 4655 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4656 C->isOpaque()); 4657 case ISD::FP16_TO_FP: { 4658 bool Ignored; 4659 APFloat FPV(APFloat::IEEEhalf(), 4660 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4661 4662 // This can return overflow, underflow, or inexact; we don't care. 4663 // FIXME need to be more flexible about rounding mode. 4664 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4665 APFloat::rmNearestTiesToEven, &Ignored); 4666 return getConstantFP(FPV, DL, VT); 4667 } 4668 case ISD::STEP_VECTOR: { 4669 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4670 return V; 4671 break; 4672 } 4673 } 4674 } 4675 4676 // Constant fold unary operations with a floating point constant operand. 4677 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4678 APFloat V = C->getValueAPF(); // make copy 4679 switch (Opcode) { 4680 case ISD::FNEG: 4681 V.changeSign(); 4682 return getConstantFP(V, DL, VT); 4683 case ISD::FABS: 4684 V.clearSign(); 4685 return getConstantFP(V, DL, VT); 4686 case ISD::FCEIL: { 4687 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4688 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4689 return getConstantFP(V, DL, VT); 4690 break; 4691 } 4692 case ISD::FTRUNC: { 4693 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4694 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4695 return getConstantFP(V, DL, VT); 4696 break; 4697 } 4698 case ISD::FFLOOR: { 4699 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4700 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4701 return getConstantFP(V, DL, VT); 4702 break; 4703 } 4704 case ISD::FP_EXTEND: { 4705 bool ignored; 4706 // This can return overflow, underflow, or inexact; we don't care. 4707 // FIXME need to be more flexible about rounding mode. 4708 (void)V.convert(EVTToAPFloatSemantics(VT), 4709 APFloat::rmNearestTiesToEven, &ignored); 4710 return getConstantFP(V, DL, VT); 4711 } 4712 case ISD::FP_TO_SINT: 4713 case ISD::FP_TO_UINT: { 4714 bool ignored; 4715 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4716 // FIXME need to be more flexible about rounding mode. 4717 APFloat::opStatus s = 4718 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4719 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4720 break; 4721 return getConstant(IntVal, DL, VT); 4722 } 4723 case ISD::BITCAST: 4724 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4725 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4726 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4727 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4728 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4729 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4730 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4731 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4732 break; 4733 case ISD::FP_TO_FP16: { 4734 bool Ignored; 4735 // This can return overflow, underflow, or inexact; we don't care. 4736 // FIXME need to be more flexible about rounding mode. 4737 (void)V.convert(APFloat::IEEEhalf(), 4738 APFloat::rmNearestTiesToEven, &Ignored); 4739 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4740 } 4741 } 4742 } 4743 4744 // Constant fold unary operations with a vector integer or float operand. 4745 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4746 if (BV->isConstant()) { 4747 switch (Opcode) { 4748 default: 4749 // FIXME: Entirely reasonable to perform folding of other unary 4750 // operations here as the need arises. 4751 break; 4752 case ISD::FNEG: 4753 case ISD::FABS: 4754 case ISD::FCEIL: 4755 case ISD::FTRUNC: 4756 case ISD::FFLOOR: 4757 case ISD::FP_EXTEND: 4758 case ISD::FP_TO_SINT: 4759 case ISD::FP_TO_UINT: 4760 case ISD::TRUNCATE: 4761 case ISD::ANY_EXTEND: 4762 case ISD::ZERO_EXTEND: 4763 case ISD::SIGN_EXTEND: 4764 case ISD::UINT_TO_FP: 4765 case ISD::SINT_TO_FP: 4766 case ISD::ABS: 4767 case ISD::BITREVERSE: 4768 case ISD::BSWAP: 4769 case ISD::CTLZ: 4770 case ISD::CTLZ_ZERO_UNDEF: 4771 case ISD::CTTZ: 4772 case ISD::CTTZ_ZERO_UNDEF: 4773 case ISD::CTPOP: { 4774 SDValue Ops = { Operand }; 4775 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4776 return Fold; 4777 } 4778 } 4779 } 4780 } 4781 4782 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4783 switch (Opcode) { 4784 case ISD::STEP_VECTOR: 4785 assert(VT.isScalableVector() && 4786 "STEP_VECTOR can only be used with scalable types"); 4787 assert(VT.getScalarSizeInBits() >= 8 && 4788 "STEP_VECTOR can only be used with vectors of integers that are at " 4789 "least 8 bits wide"); 4790 assert(isa<ConstantSDNode>(Operand) && 4791 cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN( 4792 VT.getScalarSizeInBits()) && 4793 "Expected STEP_VECTOR integer constant to fit in " 4794 "the vector element type"); 4795 break; 4796 case ISD::FREEZE: 4797 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4798 break; 4799 case ISD::TokenFactor: 4800 case ISD::MERGE_VALUES: 4801 case ISD::CONCAT_VECTORS: 4802 return Operand; // Factor, merge or concat of one node? No need. 4803 case ISD::BUILD_VECTOR: { 4804 // Attempt to simplify BUILD_VECTOR. 4805 SDValue Ops[] = {Operand}; 4806 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4807 return V; 4808 break; 4809 } 4810 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4811 case ISD::FP_EXTEND: 4812 assert(VT.isFloatingPoint() && 4813 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4814 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4815 assert((!VT.isVector() || 4816 VT.getVectorElementCount() == 4817 Operand.getValueType().getVectorElementCount()) && 4818 "Vector element count mismatch!"); 4819 assert(Operand.getValueType().bitsLT(VT) && 4820 "Invalid fpext node, dst < src!"); 4821 if (Operand.isUndef()) 4822 return getUNDEF(VT); 4823 break; 4824 case ISD::FP_TO_SINT: 4825 case ISD::FP_TO_UINT: 4826 if (Operand.isUndef()) 4827 return getUNDEF(VT); 4828 break; 4829 case ISD::SINT_TO_FP: 4830 case ISD::UINT_TO_FP: 4831 // [us]itofp(undef) = 0, because the result value is bounded. 4832 if (Operand.isUndef()) 4833 return getConstantFP(0.0, DL, VT); 4834 break; 4835 case ISD::SIGN_EXTEND: 4836 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4837 "Invalid SIGN_EXTEND!"); 4838 assert(VT.isVector() == Operand.getValueType().isVector() && 4839 "SIGN_EXTEND result type type should be vector iff the operand " 4840 "type is vector!"); 4841 if (Operand.getValueType() == VT) return Operand; // noop extension 4842 assert((!VT.isVector() || 4843 VT.getVectorElementCount() == 4844 Operand.getValueType().getVectorElementCount()) && 4845 "Vector element count mismatch!"); 4846 assert(Operand.getValueType().bitsLT(VT) && 4847 "Invalid sext node, dst < src!"); 4848 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4849 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4850 if (OpOpcode == ISD::UNDEF) 4851 // sext(undef) = 0, because the top bits will all be the same. 4852 return getConstant(0, DL, VT); 4853 break; 4854 case ISD::ZERO_EXTEND: 4855 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4856 "Invalid ZERO_EXTEND!"); 4857 assert(VT.isVector() == Operand.getValueType().isVector() && 4858 "ZERO_EXTEND result type type should be vector iff the operand " 4859 "type is vector!"); 4860 if (Operand.getValueType() == VT) return Operand; // noop extension 4861 assert((!VT.isVector() || 4862 VT.getVectorElementCount() == 4863 Operand.getValueType().getVectorElementCount()) && 4864 "Vector element count mismatch!"); 4865 assert(Operand.getValueType().bitsLT(VT) && 4866 "Invalid zext node, dst < src!"); 4867 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4868 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4869 if (OpOpcode == ISD::UNDEF) 4870 // zext(undef) = 0, because the top bits will be zero. 4871 return getConstant(0, DL, VT); 4872 break; 4873 case ISD::ANY_EXTEND: 4874 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4875 "Invalid ANY_EXTEND!"); 4876 assert(VT.isVector() == Operand.getValueType().isVector() && 4877 "ANY_EXTEND result type type should be vector iff the operand " 4878 "type is vector!"); 4879 if (Operand.getValueType() == VT) return Operand; // noop extension 4880 assert((!VT.isVector() || 4881 VT.getVectorElementCount() == 4882 Operand.getValueType().getVectorElementCount()) && 4883 "Vector element count mismatch!"); 4884 assert(Operand.getValueType().bitsLT(VT) && 4885 "Invalid anyext node, dst < src!"); 4886 4887 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4888 OpOpcode == ISD::ANY_EXTEND) 4889 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4890 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4891 if (OpOpcode == ISD::UNDEF) 4892 return getUNDEF(VT); 4893 4894 // (ext (trunc x)) -> x 4895 if (OpOpcode == ISD::TRUNCATE) { 4896 SDValue OpOp = Operand.getOperand(0); 4897 if (OpOp.getValueType() == VT) { 4898 transferDbgValues(Operand, OpOp); 4899 return OpOp; 4900 } 4901 } 4902 break; 4903 case ISD::TRUNCATE: 4904 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4905 "Invalid TRUNCATE!"); 4906 assert(VT.isVector() == Operand.getValueType().isVector() && 4907 "TRUNCATE result type type should be vector iff the operand " 4908 "type is vector!"); 4909 if (Operand.getValueType() == VT) return Operand; // noop truncate 4910 assert((!VT.isVector() || 4911 VT.getVectorElementCount() == 4912 Operand.getValueType().getVectorElementCount()) && 4913 "Vector element count mismatch!"); 4914 assert(Operand.getValueType().bitsGT(VT) && 4915 "Invalid truncate node, src < dst!"); 4916 if (OpOpcode == ISD::TRUNCATE) 4917 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4918 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4919 OpOpcode == ISD::ANY_EXTEND) { 4920 // If the source is smaller than the dest, we still need an extend. 4921 if (Operand.getOperand(0).getValueType().getScalarType() 4922 .bitsLT(VT.getScalarType())) 4923 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4924 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4925 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4926 return Operand.getOperand(0); 4927 } 4928 if (OpOpcode == ISD::UNDEF) 4929 return getUNDEF(VT); 4930 break; 4931 case ISD::ANY_EXTEND_VECTOR_INREG: 4932 case ISD::ZERO_EXTEND_VECTOR_INREG: 4933 case ISD::SIGN_EXTEND_VECTOR_INREG: 4934 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4935 assert(Operand.getValueType().bitsLE(VT) && 4936 "The input must be the same size or smaller than the result."); 4937 assert(VT.getVectorMinNumElements() < 4938 Operand.getValueType().getVectorMinNumElements() && 4939 "The destination vector type must have fewer lanes than the input."); 4940 break; 4941 case ISD::ABS: 4942 assert(VT.isInteger() && VT == Operand.getValueType() && 4943 "Invalid ABS!"); 4944 if (OpOpcode == ISD::UNDEF) 4945 return getUNDEF(VT); 4946 break; 4947 case ISD::BSWAP: 4948 assert(VT.isInteger() && VT == Operand.getValueType() && 4949 "Invalid BSWAP!"); 4950 assert((VT.getScalarSizeInBits() % 16 == 0) && 4951 "BSWAP types must be a multiple of 16 bits!"); 4952 if (OpOpcode == ISD::UNDEF) 4953 return getUNDEF(VT); 4954 break; 4955 case ISD::BITREVERSE: 4956 assert(VT.isInteger() && VT == Operand.getValueType() && 4957 "Invalid BITREVERSE!"); 4958 if (OpOpcode == ISD::UNDEF) 4959 return getUNDEF(VT); 4960 break; 4961 case ISD::BITCAST: 4962 // Basic sanity checking. 4963 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4964 "Cannot BITCAST between types of different sizes!"); 4965 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4966 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4967 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4968 if (OpOpcode == ISD::UNDEF) 4969 return getUNDEF(VT); 4970 break; 4971 case ISD::SCALAR_TO_VECTOR: 4972 assert(VT.isVector() && !Operand.getValueType().isVector() && 4973 (VT.getVectorElementType() == Operand.getValueType() || 4974 (VT.getVectorElementType().isInteger() && 4975 Operand.getValueType().isInteger() && 4976 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4977 "Illegal SCALAR_TO_VECTOR node!"); 4978 if (OpOpcode == ISD::UNDEF) 4979 return getUNDEF(VT); 4980 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4981 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4982 isa<ConstantSDNode>(Operand.getOperand(1)) && 4983 Operand.getConstantOperandVal(1) == 0 && 4984 Operand.getOperand(0).getValueType() == VT) 4985 return Operand.getOperand(0); 4986 break; 4987 case ISD::FNEG: 4988 // Negation of an unknown bag of bits is still completely undefined. 4989 if (OpOpcode == ISD::UNDEF) 4990 return getUNDEF(VT); 4991 4992 if (OpOpcode == ISD::FNEG) // --X -> X 4993 return Operand.getOperand(0); 4994 break; 4995 case ISD::FABS: 4996 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4997 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4998 break; 4999 case ISD::VSCALE: 5000 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5001 break; 5002 case ISD::CTPOP: 5003 if (Operand.getValueType().getScalarType() == MVT::i1) 5004 return Operand; 5005 break; 5006 case ISD::CTLZ: 5007 case ISD::CTTZ: 5008 if (Operand.getValueType().getScalarType() == MVT::i1) 5009 return getNOT(DL, Operand, Operand.getValueType()); 5010 break; 5011 case ISD::VECREDUCE_SMIN: 5012 case ISD::VECREDUCE_UMAX: 5013 if (Operand.getValueType().getScalarType() == MVT::i1) 5014 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5015 break; 5016 case ISD::VECREDUCE_SMAX: 5017 case ISD::VECREDUCE_UMIN: 5018 if (Operand.getValueType().getScalarType() == MVT::i1) 5019 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5020 break; 5021 } 5022 5023 SDNode *N; 5024 SDVTList VTs = getVTList(VT); 5025 SDValue Ops[] = {Operand}; 5026 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5027 FoldingSetNodeID ID; 5028 AddNodeIDNode(ID, Opcode, VTs, Ops); 5029 void *IP = nullptr; 5030 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5031 E->intersectFlagsWith(Flags); 5032 return SDValue(E, 0); 5033 } 5034 5035 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5036 N->setFlags(Flags); 5037 createOperands(N, Ops); 5038 CSEMap.InsertNode(N, IP); 5039 } else { 5040 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5041 createOperands(N, Ops); 5042 } 5043 5044 InsertNode(N); 5045 SDValue V = SDValue(N, 0); 5046 NewSDValueDbgMsg(V, "Creating new node: ", this); 5047 return V; 5048 } 5049 5050 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5051 const APInt &C2) { 5052 switch (Opcode) { 5053 case ISD::ADD: return C1 + C2; 5054 case ISD::SUB: return C1 - C2; 5055 case ISD::MUL: return C1 * C2; 5056 case ISD::AND: return C1 & C2; 5057 case ISD::OR: return C1 | C2; 5058 case ISD::XOR: return C1 ^ C2; 5059 case ISD::SHL: return C1 << C2; 5060 case ISD::SRL: return C1.lshr(C2); 5061 case ISD::SRA: return C1.ashr(C2); 5062 case ISD::ROTL: return C1.rotl(C2); 5063 case ISD::ROTR: return C1.rotr(C2); 5064 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5065 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5066 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5067 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5068 case ISD::SADDSAT: return C1.sadd_sat(C2); 5069 case ISD::UADDSAT: return C1.uadd_sat(C2); 5070 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5071 case ISD::USUBSAT: return C1.usub_sat(C2); 5072 case ISD::UDIV: 5073 if (!C2.getBoolValue()) 5074 break; 5075 return C1.udiv(C2); 5076 case ISD::UREM: 5077 if (!C2.getBoolValue()) 5078 break; 5079 return C1.urem(C2); 5080 case ISD::SDIV: 5081 if (!C2.getBoolValue()) 5082 break; 5083 return C1.sdiv(C2); 5084 case ISD::SREM: 5085 if (!C2.getBoolValue()) 5086 break; 5087 return C1.srem(C2); 5088 } 5089 return llvm::None; 5090 } 5091 5092 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5093 const GlobalAddressSDNode *GA, 5094 const SDNode *N2) { 5095 if (GA->getOpcode() != ISD::GlobalAddress) 5096 return SDValue(); 5097 if (!TLI->isOffsetFoldingLegal(GA)) 5098 return SDValue(); 5099 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5100 if (!C2) 5101 return SDValue(); 5102 int64_t Offset = C2->getSExtValue(); 5103 switch (Opcode) { 5104 case ISD::ADD: break; 5105 case ISD::SUB: Offset = -uint64_t(Offset); break; 5106 default: return SDValue(); 5107 } 5108 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5109 GA->getOffset() + uint64_t(Offset)); 5110 } 5111 5112 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5113 switch (Opcode) { 5114 case ISD::SDIV: 5115 case ISD::UDIV: 5116 case ISD::SREM: 5117 case ISD::UREM: { 5118 // If a divisor is zero/undef or any element of a divisor vector is 5119 // zero/undef, the whole op is undef. 5120 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5121 SDValue Divisor = Ops[1]; 5122 if (Divisor.isUndef() || isNullConstant(Divisor)) 5123 return true; 5124 5125 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5126 llvm::any_of(Divisor->op_values(), 5127 [](SDValue V) { return V.isUndef() || 5128 isNullConstant(V); }); 5129 // TODO: Handle signed overflow. 5130 } 5131 // TODO: Handle oversized shifts. 5132 default: 5133 return false; 5134 } 5135 } 5136 5137 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5138 EVT VT, ArrayRef<SDValue> Ops) { 5139 // If the opcode is a target-specific ISD node, there's nothing we can 5140 // do here and the operand rules may not line up with the below, so 5141 // bail early. 5142 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5143 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5144 // foldCONCAT_VECTORS in getNode before this is called. 5145 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5146 return SDValue(); 5147 5148 // For now, the array Ops should only contain two values. 5149 // This enforcement will be removed once this function is merged with 5150 // FoldConstantVectorArithmetic 5151 if (Ops.size() != 2) 5152 return SDValue(); 5153 5154 if (isUndef(Opcode, Ops)) 5155 return getUNDEF(VT); 5156 5157 SDNode *N1 = Ops[0].getNode(); 5158 SDNode *N2 = Ops[1].getNode(); 5159 5160 // Handle the case of two scalars. 5161 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5162 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5163 if (C1->isOpaque() || C2->isOpaque()) 5164 return SDValue(); 5165 5166 Optional<APInt> FoldAttempt = 5167 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5168 if (!FoldAttempt) 5169 return SDValue(); 5170 5171 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5172 assert((!Folded || !VT.isVector()) && 5173 "Can't fold vectors ops with scalar operands"); 5174 return Folded; 5175 } 5176 } 5177 5178 // fold (add Sym, c) -> Sym+c 5179 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5180 return FoldSymbolOffset(Opcode, VT, GA, N2); 5181 if (TLI->isCommutativeBinOp(Opcode)) 5182 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5183 return FoldSymbolOffset(Opcode, VT, GA, N1); 5184 5185 // For fixed width vectors, extract each constant element and fold them 5186 // individually. Either input may be an undef value. 5187 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5188 N1->getOpcode() == ISD::SPLAT_VECTOR; 5189 if (!IsBVOrSV1 && !N1->isUndef()) 5190 return SDValue(); 5191 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5192 N2->getOpcode() == ISD::SPLAT_VECTOR; 5193 if (!IsBVOrSV2 && !N2->isUndef()) 5194 return SDValue(); 5195 // If both operands are undef, that's handled the same way as scalars. 5196 if (!IsBVOrSV1 && !IsBVOrSV2) 5197 return SDValue(); 5198 5199 EVT SVT = VT.getScalarType(); 5200 EVT LegalSVT = SVT; 5201 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5202 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5203 if (LegalSVT.bitsLT(SVT)) 5204 return SDValue(); 5205 } 5206 5207 SmallVector<SDValue, 4> Outputs; 5208 unsigned NumOps = 0; 5209 if (IsBVOrSV1) 5210 NumOps = std::max(NumOps, N1->getNumOperands()); 5211 if (IsBVOrSV2) 5212 NumOps = std::max(NumOps, N2->getNumOperands()); 5213 assert(NumOps != 0 && "Expected non-zero operands"); 5214 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5215 // one iteration for that. 5216 assert((!VT.isScalableVector() || NumOps == 1) && 5217 "Scalar vector should only have one scalar"); 5218 5219 for (unsigned I = 0; I != NumOps; ++I) { 5220 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5221 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5222 SDValue V1; 5223 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5224 V1 = N1->getOperand(I); 5225 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5226 V1 = N1->getOperand(0); 5227 else 5228 V1 = getUNDEF(SVT); 5229 5230 SDValue V2; 5231 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5232 V2 = N2->getOperand(I); 5233 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5234 V2 = N2->getOperand(0); 5235 else 5236 V2 = getUNDEF(SVT); 5237 5238 if (SVT.isInteger()) { 5239 if (V1.getValueType().bitsGT(SVT)) 5240 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5241 if (V2.getValueType().bitsGT(SVT)) 5242 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5243 } 5244 5245 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5246 return SDValue(); 5247 5248 // Fold one vector element. 5249 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5250 if (LegalSVT != SVT) 5251 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5252 5253 // Scalar folding only succeeded if the result is a constant or UNDEF. 5254 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5255 ScalarResult.getOpcode() != ISD::ConstantFP) 5256 return SDValue(); 5257 Outputs.push_back(ScalarResult); 5258 } 5259 5260 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5261 N2->getOpcode() == ISD::BUILD_VECTOR) { 5262 assert(VT.getVectorNumElements() == Outputs.size() && 5263 "Vector size mismatch!"); 5264 5265 // Build a big vector out of the scalar elements we generated. 5266 return getBuildVector(VT, SDLoc(), Outputs); 5267 } 5268 5269 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5270 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5271 "One operand should be a splat vector"); 5272 5273 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5274 return getSplatVector(VT, SDLoc(), Outputs[0]); 5275 } 5276 5277 // TODO: Merge with FoldConstantArithmetic 5278 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5279 const SDLoc &DL, EVT VT, 5280 ArrayRef<SDValue> Ops, 5281 const SDNodeFlags Flags) { 5282 // If the opcode is a target-specific ISD node, there's nothing we can 5283 // do here and the operand rules may not line up with the below, so 5284 // bail early. 5285 if (Opcode >= ISD::BUILTIN_OP_END) 5286 return SDValue(); 5287 5288 if (isUndef(Opcode, Ops)) 5289 return getUNDEF(VT); 5290 5291 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5292 if (!VT.isVector()) 5293 return SDValue(); 5294 5295 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5296 // vector width, however we should be able to do constant folds involving 5297 // splat vector nodes too. 5298 if (VT.isScalableVector()) 5299 return SDValue(); 5300 5301 // From this point onwards all vectors are assumed to be fixed width. 5302 unsigned NumElts = VT.getVectorNumElements(); 5303 5304 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5305 return !Op.getValueType().isVector() || 5306 Op.getValueType().getVectorNumElements() == NumElts; 5307 }; 5308 5309 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5310 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5311 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5312 (BV && BV->isConstant()); 5313 }; 5314 5315 // All operands must be vector types with the same number of elements as 5316 // the result type and must be either UNDEF or a build vector of constant 5317 // or UNDEF scalars. 5318 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5319 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5320 return SDValue(); 5321 5322 // If we are comparing vectors, then the result needs to be a i1 boolean 5323 // that is then sign-extended back to the legal result type. 5324 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5325 5326 // Find legal integer scalar type for constant promotion and 5327 // ensure that its scalar size is at least as large as source. 5328 EVT LegalSVT = VT.getScalarType(); 5329 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5330 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5331 if (LegalSVT.bitsLT(VT.getScalarType())) 5332 return SDValue(); 5333 } 5334 5335 // Constant fold each scalar lane separately. 5336 SmallVector<SDValue, 4> ScalarResults; 5337 for (unsigned i = 0; i != NumElts; i++) { 5338 SmallVector<SDValue, 4> ScalarOps; 5339 for (SDValue Op : Ops) { 5340 EVT InSVT = Op.getValueType().getScalarType(); 5341 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5342 if (!InBV) { 5343 // We've checked that this is UNDEF or a constant of some kind. 5344 if (Op.isUndef()) 5345 ScalarOps.push_back(getUNDEF(InSVT)); 5346 else 5347 ScalarOps.push_back(Op); 5348 continue; 5349 } 5350 5351 SDValue ScalarOp = InBV->getOperand(i); 5352 EVT ScalarVT = ScalarOp.getValueType(); 5353 5354 // Build vector (integer) scalar operands may need implicit 5355 // truncation - do this before constant folding. 5356 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5357 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5358 5359 ScalarOps.push_back(ScalarOp); 5360 } 5361 5362 // Constant fold the scalar operands. 5363 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5364 5365 // Legalize the (integer) scalar constant if necessary. 5366 if (LegalSVT != SVT) 5367 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5368 5369 // Scalar folding only succeeded if the result is a constant or UNDEF. 5370 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5371 ScalarResult.getOpcode() != ISD::ConstantFP) 5372 return SDValue(); 5373 ScalarResults.push_back(ScalarResult); 5374 } 5375 5376 SDValue V = getBuildVector(VT, DL, ScalarResults); 5377 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5378 return V; 5379 } 5380 5381 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5382 EVT VT, SDValue N1, SDValue N2) { 5383 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5384 // should. That will require dealing with a potentially non-default 5385 // rounding mode, checking the "opStatus" return value from the APFloat 5386 // math calculations, and possibly other variations. 5387 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5388 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5389 if (N1CFP && N2CFP) { 5390 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5391 switch (Opcode) { 5392 case ISD::FADD: 5393 C1.add(C2, APFloat::rmNearestTiesToEven); 5394 return getConstantFP(C1, DL, VT); 5395 case ISD::FSUB: 5396 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5397 return getConstantFP(C1, DL, VT); 5398 case ISD::FMUL: 5399 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5400 return getConstantFP(C1, DL, VT); 5401 case ISD::FDIV: 5402 C1.divide(C2, APFloat::rmNearestTiesToEven); 5403 return getConstantFP(C1, DL, VT); 5404 case ISD::FREM: 5405 C1.mod(C2); 5406 return getConstantFP(C1, DL, VT); 5407 case ISD::FCOPYSIGN: 5408 C1.copySign(C2); 5409 return getConstantFP(C1, DL, VT); 5410 default: break; 5411 } 5412 } 5413 if (N1CFP && Opcode == ISD::FP_ROUND) { 5414 APFloat C1 = N1CFP->getValueAPF(); // make copy 5415 bool Unused; 5416 // This can return overflow, underflow, or inexact; we don't care. 5417 // FIXME need to be more flexible about rounding mode. 5418 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5419 &Unused); 5420 return getConstantFP(C1, DL, VT); 5421 } 5422 5423 switch (Opcode) { 5424 case ISD::FSUB: 5425 // -0.0 - undef --> undef (consistent with "fneg undef") 5426 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5427 return getUNDEF(VT); 5428 LLVM_FALLTHROUGH; 5429 5430 case ISD::FADD: 5431 case ISD::FMUL: 5432 case ISD::FDIV: 5433 case ISD::FREM: 5434 // If both operands are undef, the result is undef. If 1 operand is undef, 5435 // the result is NaN. This should match the behavior of the IR optimizer. 5436 if (N1.isUndef() && N2.isUndef()) 5437 return getUNDEF(VT); 5438 if (N1.isUndef() || N2.isUndef()) 5439 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5440 } 5441 return SDValue(); 5442 } 5443 5444 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5445 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5446 5447 // There's no need to assert on a byte-aligned pointer. All pointers are at 5448 // least byte aligned. 5449 if (A == Align(1)) 5450 return Val; 5451 5452 FoldingSetNodeID ID; 5453 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5454 ID.AddInteger(A.value()); 5455 5456 void *IP = nullptr; 5457 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5458 return SDValue(E, 0); 5459 5460 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5461 Val.getValueType(), A); 5462 createOperands(N, {Val}); 5463 5464 CSEMap.InsertNode(N, IP); 5465 InsertNode(N); 5466 5467 SDValue V(N, 0); 5468 NewSDValueDbgMsg(V, "Creating new node: ", this); 5469 return V; 5470 } 5471 5472 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5473 SDValue N1, SDValue N2) { 5474 SDNodeFlags Flags; 5475 if (Inserter) 5476 Flags = Inserter->getFlags(); 5477 return getNode(Opcode, DL, VT, N1, N2, Flags); 5478 } 5479 5480 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5481 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5482 assert(N1.getOpcode() != ISD::DELETED_NODE && 5483 N2.getOpcode() != ISD::DELETED_NODE && 5484 "Operand is DELETED_NODE!"); 5485 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5486 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5487 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5488 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5489 5490 // Canonicalize constant to RHS if commutative. 5491 if (TLI->isCommutativeBinOp(Opcode)) { 5492 if (N1C && !N2C) { 5493 std::swap(N1C, N2C); 5494 std::swap(N1, N2); 5495 } else if (N1CFP && !N2CFP) { 5496 std::swap(N1CFP, N2CFP); 5497 std::swap(N1, N2); 5498 } 5499 } 5500 5501 switch (Opcode) { 5502 default: break; 5503 case ISD::TokenFactor: 5504 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5505 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5506 // Fold trivial token factors. 5507 if (N1.getOpcode() == ISD::EntryToken) return N2; 5508 if (N2.getOpcode() == ISD::EntryToken) return N1; 5509 if (N1 == N2) return N1; 5510 break; 5511 case ISD::BUILD_VECTOR: { 5512 // Attempt to simplify BUILD_VECTOR. 5513 SDValue Ops[] = {N1, N2}; 5514 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5515 return V; 5516 break; 5517 } 5518 case ISD::CONCAT_VECTORS: { 5519 SDValue Ops[] = {N1, N2}; 5520 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5521 return V; 5522 break; 5523 } 5524 case ISD::AND: 5525 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5526 assert(N1.getValueType() == N2.getValueType() && 5527 N1.getValueType() == VT && "Binary operator types must match!"); 5528 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5529 // worth handling here. 5530 if (N2C && N2C->isNullValue()) 5531 return N2; 5532 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5533 return N1; 5534 break; 5535 case ISD::OR: 5536 case ISD::XOR: 5537 case ISD::ADD: 5538 case ISD::SUB: 5539 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5540 assert(N1.getValueType() == N2.getValueType() && 5541 N1.getValueType() == VT && "Binary operator types must match!"); 5542 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5543 // it's worth handling here. 5544 if (N2C && N2C->isNullValue()) 5545 return N1; 5546 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5547 VT.getVectorElementType() == MVT::i1) 5548 return getNode(ISD::XOR, DL, VT, N1, N2); 5549 break; 5550 case ISD::MUL: 5551 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5552 assert(N1.getValueType() == N2.getValueType() && 5553 N1.getValueType() == VT && "Binary operator types must match!"); 5554 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5555 return getNode(ISD::AND, DL, VT, N1, N2); 5556 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5557 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5558 const APInt &N2CImm = N2C->getAPIntValue(); 5559 return getVScale(DL, VT, MulImm * N2CImm); 5560 } 5561 break; 5562 case ISD::UDIV: 5563 case ISD::UREM: 5564 case ISD::MULHU: 5565 case ISD::MULHS: 5566 case ISD::SDIV: 5567 case ISD::SREM: 5568 case ISD::SADDSAT: 5569 case ISD::SSUBSAT: 5570 case ISD::UADDSAT: 5571 case ISD::USUBSAT: 5572 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5573 assert(N1.getValueType() == N2.getValueType() && 5574 N1.getValueType() == VT && "Binary operator types must match!"); 5575 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5576 // fold (add_sat x, y) -> (or x, y) for bool types. 5577 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5578 return getNode(ISD::OR, DL, VT, N1, N2); 5579 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5580 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5581 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5582 } 5583 break; 5584 case ISD::SMIN: 5585 case ISD::UMAX: 5586 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5587 assert(N1.getValueType() == N2.getValueType() && 5588 N1.getValueType() == VT && "Binary operator types must match!"); 5589 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5590 return getNode(ISD::OR, DL, VT, N1, N2); 5591 break; 5592 case ISD::SMAX: 5593 case ISD::UMIN: 5594 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5595 assert(N1.getValueType() == N2.getValueType() && 5596 N1.getValueType() == VT && "Binary operator types must match!"); 5597 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5598 return getNode(ISD::AND, DL, VT, N1, N2); 5599 break; 5600 case ISD::FADD: 5601 case ISD::FSUB: 5602 case ISD::FMUL: 5603 case ISD::FDIV: 5604 case ISD::FREM: 5605 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5606 assert(N1.getValueType() == N2.getValueType() && 5607 N1.getValueType() == VT && "Binary operator types must match!"); 5608 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5609 return V; 5610 break; 5611 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5612 assert(N1.getValueType() == VT && 5613 N1.getValueType().isFloatingPoint() && 5614 N2.getValueType().isFloatingPoint() && 5615 "Invalid FCOPYSIGN!"); 5616 break; 5617 case ISD::SHL: 5618 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5619 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5620 const APInt &ShiftImm = N2C->getAPIntValue(); 5621 return getVScale(DL, VT, MulImm << ShiftImm); 5622 } 5623 LLVM_FALLTHROUGH; 5624 case ISD::SRA: 5625 case ISD::SRL: 5626 if (SDValue V = simplifyShift(N1, N2)) 5627 return V; 5628 LLVM_FALLTHROUGH; 5629 case ISD::ROTL: 5630 case ISD::ROTR: 5631 assert(VT == N1.getValueType() && 5632 "Shift operators return type must be the same as their first arg"); 5633 assert(VT.isInteger() && N2.getValueType().isInteger() && 5634 "Shifts only work on integers"); 5635 assert((!VT.isVector() || VT == N2.getValueType()) && 5636 "Vector shift amounts must be in the same as their first arg"); 5637 // Verify that the shift amount VT is big enough to hold valid shift 5638 // amounts. This catches things like trying to shift an i1024 value by an 5639 // i8, which is easy to fall into in generic code that uses 5640 // TLI.getShiftAmount(). 5641 assert(N2.getValueType().getScalarSizeInBits() >= 5642 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5643 "Invalid use of small shift amount with oversized value!"); 5644 5645 // Always fold shifts of i1 values so the code generator doesn't need to 5646 // handle them. Since we know the size of the shift has to be less than the 5647 // size of the value, the shift/rotate count is guaranteed to be zero. 5648 if (VT == MVT::i1) 5649 return N1; 5650 if (N2C && N2C->isNullValue()) 5651 return N1; 5652 break; 5653 case ISD::FP_ROUND: 5654 assert(VT.isFloatingPoint() && 5655 N1.getValueType().isFloatingPoint() && 5656 VT.bitsLE(N1.getValueType()) && 5657 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5658 "Invalid FP_ROUND!"); 5659 if (N1.getValueType() == VT) return N1; // noop conversion. 5660 break; 5661 case ISD::AssertSext: 5662 case ISD::AssertZext: { 5663 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5664 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5665 assert(VT.isInteger() && EVT.isInteger() && 5666 "Cannot *_EXTEND_INREG FP types"); 5667 assert(!EVT.isVector() && 5668 "AssertSExt/AssertZExt type should be the vector element type " 5669 "rather than the vector type!"); 5670 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5671 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5672 break; 5673 } 5674 case ISD::SIGN_EXTEND_INREG: { 5675 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5676 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5677 assert(VT.isInteger() && EVT.isInteger() && 5678 "Cannot *_EXTEND_INREG FP types"); 5679 assert(EVT.isVector() == VT.isVector() && 5680 "SIGN_EXTEND_INREG type should be vector iff the operand " 5681 "type is vector!"); 5682 assert((!EVT.isVector() || 5683 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5684 "Vector element counts must match in SIGN_EXTEND_INREG"); 5685 assert(EVT.bitsLE(VT) && "Not extending!"); 5686 if (EVT == VT) return N1; // Not actually extending 5687 5688 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5689 unsigned FromBits = EVT.getScalarSizeInBits(); 5690 Val <<= Val.getBitWidth() - FromBits; 5691 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5692 return getConstant(Val, DL, ConstantVT); 5693 }; 5694 5695 if (N1C) { 5696 const APInt &Val = N1C->getAPIntValue(); 5697 return SignExtendInReg(Val, VT); 5698 } 5699 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5700 SmallVector<SDValue, 8> Ops; 5701 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5702 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5703 SDValue Op = N1.getOperand(i); 5704 if (Op.isUndef()) { 5705 Ops.push_back(getUNDEF(OpVT)); 5706 continue; 5707 } 5708 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5709 APInt Val = C->getAPIntValue(); 5710 Ops.push_back(SignExtendInReg(Val, OpVT)); 5711 } 5712 return getBuildVector(VT, DL, Ops); 5713 } 5714 break; 5715 } 5716 case ISD::FP_TO_SINT_SAT: 5717 case ISD::FP_TO_UINT_SAT: { 5718 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5719 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5720 assert(N1.getValueType().isVector() == VT.isVector() && 5721 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5722 "vector!"); 5723 assert((!VT.isVector() || VT.getVectorNumElements() == 5724 N1.getValueType().getVectorNumElements()) && 5725 "Vector element counts must match in FP_TO_*INT_SAT"); 5726 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5727 "Type to saturate to must be a scalar."); 5728 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5729 "Not extending!"); 5730 break; 5731 } 5732 case ISD::EXTRACT_VECTOR_ELT: 5733 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5734 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5735 element type of the vector."); 5736 5737 // Extract from an undefined value or using an undefined index is undefined. 5738 if (N1.isUndef() || N2.isUndef()) 5739 return getUNDEF(VT); 5740 5741 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5742 // vectors. For scalable vectors we will provide appropriate support for 5743 // dealing with arbitrary indices. 5744 if (N2C && N1.getValueType().isFixedLengthVector() && 5745 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5746 return getUNDEF(VT); 5747 5748 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5749 // expanding copies of large vectors from registers. This only works for 5750 // fixed length vectors, since we need to know the exact number of 5751 // elements. 5752 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5753 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5754 unsigned Factor = 5755 N1.getOperand(0).getValueType().getVectorNumElements(); 5756 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5757 N1.getOperand(N2C->getZExtValue() / Factor), 5758 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5759 } 5760 5761 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5762 // lowering is expanding large vector constants. 5763 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5764 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5765 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5766 N1.getValueType().isFixedLengthVector()) && 5767 "BUILD_VECTOR used for scalable vectors"); 5768 unsigned Index = 5769 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5770 SDValue Elt = N1.getOperand(Index); 5771 5772 if (VT != Elt.getValueType()) 5773 // If the vector element type is not legal, the BUILD_VECTOR operands 5774 // are promoted and implicitly truncated, and the result implicitly 5775 // extended. Make that explicit here. 5776 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5777 5778 return Elt; 5779 } 5780 5781 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5782 // operations are lowered to scalars. 5783 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5784 // If the indices are the same, return the inserted element else 5785 // if the indices are known different, extract the element from 5786 // the original vector. 5787 SDValue N1Op2 = N1.getOperand(2); 5788 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5789 5790 if (N1Op2C && N2C) { 5791 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5792 if (VT == N1.getOperand(1).getValueType()) 5793 return N1.getOperand(1); 5794 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5795 } 5796 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5797 } 5798 } 5799 5800 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5801 // when vector types are scalarized and v1iX is legal. 5802 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5803 // Here we are completely ignoring the extract element index (N2), 5804 // which is fine for fixed width vectors, since any index other than 0 5805 // is undefined anyway. However, this cannot be ignored for scalable 5806 // vectors - in theory we could support this, but we don't want to do this 5807 // without a profitability check. 5808 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5809 N1.getValueType().isFixedLengthVector() && 5810 N1.getValueType().getVectorNumElements() == 1) { 5811 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5812 N1.getOperand(1)); 5813 } 5814 break; 5815 case ISD::EXTRACT_ELEMENT: 5816 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5817 assert(!N1.getValueType().isVector() && !VT.isVector() && 5818 (N1.getValueType().isInteger() == VT.isInteger()) && 5819 N1.getValueType() != VT && 5820 "Wrong types for EXTRACT_ELEMENT!"); 5821 5822 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5823 // 64-bit integers into 32-bit parts. Instead of building the extract of 5824 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5825 if (N1.getOpcode() == ISD::BUILD_PAIR) 5826 return N1.getOperand(N2C->getZExtValue()); 5827 5828 // EXTRACT_ELEMENT of a constant int is also very common. 5829 if (N1C) { 5830 unsigned ElementSize = VT.getSizeInBits(); 5831 unsigned Shift = ElementSize * N2C->getZExtValue(); 5832 const APInt &Val = N1C->getAPIntValue(); 5833 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5834 } 5835 break; 5836 case ISD::EXTRACT_SUBVECTOR: 5837 EVT N1VT = N1.getValueType(); 5838 assert(VT.isVector() && N1VT.isVector() && 5839 "Extract subvector VTs must be vectors!"); 5840 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5841 "Extract subvector VTs must have the same element type!"); 5842 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5843 "Cannot extract a scalable vector from a fixed length vector!"); 5844 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5845 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5846 "Extract subvector must be from larger vector to smaller vector!"); 5847 assert(N2C && "Extract subvector index must be a constant"); 5848 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5849 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5850 N1VT.getVectorMinNumElements()) && 5851 "Extract subvector overflow!"); 5852 assert(N2C->getAPIntValue().getBitWidth() == 5853 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5854 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5855 5856 // Trivial extraction. 5857 if (VT == N1VT) 5858 return N1; 5859 5860 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5861 if (N1.isUndef()) 5862 return getUNDEF(VT); 5863 5864 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5865 // the concat have the same type as the extract. 5866 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5867 VT == N1.getOperand(0).getValueType()) { 5868 unsigned Factor = VT.getVectorMinNumElements(); 5869 return N1.getOperand(N2C->getZExtValue() / Factor); 5870 } 5871 5872 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5873 // during shuffle legalization. 5874 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5875 VT == N1.getOperand(1).getValueType()) 5876 return N1.getOperand(1); 5877 break; 5878 } 5879 5880 // Perform trivial constant folding. 5881 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5882 return SV; 5883 5884 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5885 return V; 5886 5887 // Canonicalize an UNDEF to the RHS, even over a constant. 5888 if (N1.isUndef()) { 5889 if (TLI->isCommutativeBinOp(Opcode)) { 5890 std::swap(N1, N2); 5891 } else { 5892 switch (Opcode) { 5893 case ISD::SIGN_EXTEND_INREG: 5894 case ISD::SUB: 5895 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5896 case ISD::UDIV: 5897 case ISD::SDIV: 5898 case ISD::UREM: 5899 case ISD::SREM: 5900 case ISD::SSUBSAT: 5901 case ISD::USUBSAT: 5902 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5903 } 5904 } 5905 } 5906 5907 // Fold a bunch of operators when the RHS is undef. 5908 if (N2.isUndef()) { 5909 switch (Opcode) { 5910 case ISD::XOR: 5911 if (N1.isUndef()) 5912 // Handle undef ^ undef -> 0 special case. This is a common 5913 // idiom (misuse). 5914 return getConstant(0, DL, VT); 5915 LLVM_FALLTHROUGH; 5916 case ISD::ADD: 5917 case ISD::SUB: 5918 case ISD::UDIV: 5919 case ISD::SDIV: 5920 case ISD::UREM: 5921 case ISD::SREM: 5922 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5923 case ISD::MUL: 5924 case ISD::AND: 5925 case ISD::SSUBSAT: 5926 case ISD::USUBSAT: 5927 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5928 case ISD::OR: 5929 case ISD::SADDSAT: 5930 case ISD::UADDSAT: 5931 return getAllOnesConstant(DL, VT); 5932 } 5933 } 5934 5935 // Memoize this node if possible. 5936 SDNode *N; 5937 SDVTList VTs = getVTList(VT); 5938 SDValue Ops[] = {N1, N2}; 5939 if (VT != MVT::Glue) { 5940 FoldingSetNodeID ID; 5941 AddNodeIDNode(ID, Opcode, VTs, Ops); 5942 void *IP = nullptr; 5943 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5944 E->intersectFlagsWith(Flags); 5945 return SDValue(E, 0); 5946 } 5947 5948 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5949 N->setFlags(Flags); 5950 createOperands(N, Ops); 5951 CSEMap.InsertNode(N, IP); 5952 } else { 5953 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5954 createOperands(N, Ops); 5955 } 5956 5957 InsertNode(N); 5958 SDValue V = SDValue(N, 0); 5959 NewSDValueDbgMsg(V, "Creating new node: ", this); 5960 return V; 5961 } 5962 5963 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5964 SDValue N1, SDValue N2, SDValue N3) { 5965 SDNodeFlags Flags; 5966 if (Inserter) 5967 Flags = Inserter->getFlags(); 5968 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5969 } 5970 5971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5972 SDValue N1, SDValue N2, SDValue N3, 5973 const SDNodeFlags Flags) { 5974 assert(N1.getOpcode() != ISD::DELETED_NODE && 5975 N2.getOpcode() != ISD::DELETED_NODE && 5976 N3.getOpcode() != ISD::DELETED_NODE && 5977 "Operand is DELETED_NODE!"); 5978 // Perform various simplifications. 5979 switch (Opcode) { 5980 case ISD::FMA: { 5981 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5982 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5983 N3.getValueType() == VT && "FMA types must match!"); 5984 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5985 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5986 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5987 if (N1CFP && N2CFP && N3CFP) { 5988 APFloat V1 = N1CFP->getValueAPF(); 5989 const APFloat &V2 = N2CFP->getValueAPF(); 5990 const APFloat &V3 = N3CFP->getValueAPF(); 5991 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5992 return getConstantFP(V1, DL, VT); 5993 } 5994 break; 5995 } 5996 case ISD::BUILD_VECTOR: { 5997 // Attempt to simplify BUILD_VECTOR. 5998 SDValue Ops[] = {N1, N2, N3}; 5999 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6000 return V; 6001 break; 6002 } 6003 case ISD::CONCAT_VECTORS: { 6004 SDValue Ops[] = {N1, N2, N3}; 6005 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6006 return V; 6007 break; 6008 } 6009 case ISD::SETCC: { 6010 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6011 assert(N1.getValueType() == N2.getValueType() && 6012 "SETCC operands must have the same type!"); 6013 assert(VT.isVector() == N1.getValueType().isVector() && 6014 "SETCC type should be vector iff the operand type is vector!"); 6015 assert((!VT.isVector() || VT.getVectorElementCount() == 6016 N1.getValueType().getVectorElementCount()) && 6017 "SETCC vector element counts must match!"); 6018 // Use FoldSetCC to simplify SETCC's. 6019 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6020 return V; 6021 // Vector constant folding. 6022 SDValue Ops[] = {N1, N2, N3}; 6023 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6024 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6025 return V; 6026 } 6027 break; 6028 } 6029 case ISD::SELECT: 6030 case ISD::VSELECT: 6031 if (SDValue V = simplifySelect(N1, N2, N3)) 6032 return V; 6033 break; 6034 case ISD::VECTOR_SHUFFLE: 6035 llvm_unreachable("should use getVectorShuffle constructor!"); 6036 case ISD::INSERT_VECTOR_ELT: { 6037 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6038 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6039 // for scalable vectors where we will generate appropriate code to 6040 // deal with out-of-bounds cases correctly. 6041 if (N3C && N1.getValueType().isFixedLengthVector() && 6042 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6043 return getUNDEF(VT); 6044 6045 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6046 if (N3.isUndef()) 6047 return getUNDEF(VT); 6048 6049 // If the inserted element is an UNDEF, just use the input vector. 6050 if (N2.isUndef()) 6051 return N1; 6052 6053 break; 6054 } 6055 case ISD::INSERT_SUBVECTOR: { 6056 // Inserting undef into undef is still undef. 6057 if (N1.isUndef() && N2.isUndef()) 6058 return getUNDEF(VT); 6059 6060 EVT N2VT = N2.getValueType(); 6061 assert(VT == N1.getValueType() && 6062 "Dest and insert subvector source types must match!"); 6063 assert(VT.isVector() && N2VT.isVector() && 6064 "Insert subvector VTs must be vectors!"); 6065 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6066 "Cannot insert a scalable vector into a fixed length vector!"); 6067 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6068 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6069 "Insert subvector must be from smaller vector to larger vector!"); 6070 assert(isa<ConstantSDNode>(N3) && 6071 "Insert subvector index must be constant"); 6072 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6073 (N2VT.getVectorMinNumElements() + 6074 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6075 VT.getVectorMinNumElements()) && 6076 "Insert subvector overflow!"); 6077 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6078 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6079 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6080 6081 // Trivial insertion. 6082 if (VT == N2VT) 6083 return N2; 6084 6085 // If this is an insert of an extracted vector into an undef vector, we 6086 // can just use the input to the extract. 6087 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6088 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6089 return N2.getOperand(0); 6090 break; 6091 } 6092 case ISD::BITCAST: 6093 // Fold bit_convert nodes from a type to themselves. 6094 if (N1.getValueType() == VT) 6095 return N1; 6096 break; 6097 } 6098 6099 // Memoize node if it doesn't produce a flag. 6100 SDNode *N; 6101 SDVTList VTs = getVTList(VT); 6102 SDValue Ops[] = {N1, N2, N3}; 6103 if (VT != MVT::Glue) { 6104 FoldingSetNodeID ID; 6105 AddNodeIDNode(ID, Opcode, VTs, Ops); 6106 void *IP = nullptr; 6107 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6108 E->intersectFlagsWith(Flags); 6109 return SDValue(E, 0); 6110 } 6111 6112 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6113 N->setFlags(Flags); 6114 createOperands(N, Ops); 6115 CSEMap.InsertNode(N, IP); 6116 } else { 6117 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6118 createOperands(N, Ops); 6119 } 6120 6121 InsertNode(N); 6122 SDValue V = SDValue(N, 0); 6123 NewSDValueDbgMsg(V, "Creating new node: ", this); 6124 return V; 6125 } 6126 6127 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6128 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6129 SDValue Ops[] = { N1, N2, N3, N4 }; 6130 return getNode(Opcode, DL, VT, Ops); 6131 } 6132 6133 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6134 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6135 SDValue N5) { 6136 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6137 return getNode(Opcode, DL, VT, Ops); 6138 } 6139 6140 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6141 /// the incoming stack arguments to be loaded from the stack. 6142 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6143 SmallVector<SDValue, 8> ArgChains; 6144 6145 // Include the original chain at the beginning of the list. When this is 6146 // used by target LowerCall hooks, this helps legalize find the 6147 // CALLSEQ_BEGIN node. 6148 ArgChains.push_back(Chain); 6149 6150 // Add a chain value for each stack argument. 6151 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6152 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6153 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6154 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6155 if (FI->getIndex() < 0) 6156 ArgChains.push_back(SDValue(L, 1)); 6157 6158 // Build a tokenfactor for all the chains. 6159 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6160 } 6161 6162 /// getMemsetValue - Vectorized representation of the memset value 6163 /// operand. 6164 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6165 const SDLoc &dl) { 6166 assert(!Value.isUndef()); 6167 6168 unsigned NumBits = VT.getScalarSizeInBits(); 6169 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6170 assert(C->getAPIntValue().getBitWidth() == 8); 6171 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6172 if (VT.isInteger()) { 6173 bool IsOpaque = VT.getSizeInBits() > 64 || 6174 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6175 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6176 } 6177 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6178 VT); 6179 } 6180 6181 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6182 EVT IntVT = VT.getScalarType(); 6183 if (!IntVT.isInteger()) 6184 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6185 6186 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6187 if (NumBits > 8) { 6188 // Use a multiplication with 0x010101... to extend the input to the 6189 // required length. 6190 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6191 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6192 DAG.getConstant(Magic, dl, IntVT)); 6193 } 6194 6195 if (VT != Value.getValueType() && !VT.isInteger()) 6196 Value = DAG.getBitcast(VT.getScalarType(), Value); 6197 if (VT != Value.getValueType()) 6198 Value = DAG.getSplatBuildVector(VT, dl, Value); 6199 6200 return Value; 6201 } 6202 6203 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6204 /// used when a memcpy is turned into a memset when the source is a constant 6205 /// string ptr. 6206 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6207 const TargetLowering &TLI, 6208 const ConstantDataArraySlice &Slice) { 6209 // Handle vector with all elements zero. 6210 if (Slice.Array == nullptr) { 6211 if (VT.isInteger()) 6212 return DAG.getConstant(0, dl, VT); 6213 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6214 return DAG.getConstantFP(0.0, dl, VT); 6215 if (VT.isVector()) { 6216 unsigned NumElts = VT.getVectorNumElements(); 6217 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6218 return DAG.getNode(ISD::BITCAST, dl, VT, 6219 DAG.getConstant(0, dl, 6220 EVT::getVectorVT(*DAG.getContext(), 6221 EltVT, NumElts))); 6222 } 6223 llvm_unreachable("Expected type!"); 6224 } 6225 6226 assert(!VT.isVector() && "Can't handle vector type here!"); 6227 unsigned NumVTBits = VT.getSizeInBits(); 6228 unsigned NumVTBytes = NumVTBits / 8; 6229 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6230 6231 APInt Val(NumVTBits, 0); 6232 if (DAG.getDataLayout().isLittleEndian()) { 6233 for (unsigned i = 0; i != NumBytes; ++i) 6234 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6235 } else { 6236 for (unsigned i = 0; i != NumBytes; ++i) 6237 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6238 } 6239 6240 // If the "cost" of materializing the integer immediate is less than the cost 6241 // of a load, then it is cost effective to turn the load into the immediate. 6242 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6243 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6244 return DAG.getConstant(Val, dl, VT); 6245 return SDValue(nullptr, 0); 6246 } 6247 6248 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6249 const SDLoc &DL, 6250 const SDNodeFlags Flags) { 6251 EVT VT = Base.getValueType(); 6252 SDValue Index; 6253 6254 if (Offset.isScalable()) 6255 Index = getVScale(DL, Base.getValueType(), 6256 APInt(Base.getValueSizeInBits().getFixedSize(), 6257 Offset.getKnownMinSize())); 6258 else 6259 Index = getConstant(Offset.getFixedSize(), DL, VT); 6260 6261 return getMemBasePlusOffset(Base, Index, DL, Flags); 6262 } 6263 6264 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6265 const SDLoc &DL, 6266 const SDNodeFlags Flags) { 6267 assert(Offset.getValueType().isInteger()); 6268 EVT BasePtrVT = Ptr.getValueType(); 6269 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6270 } 6271 6272 /// Returns true if memcpy source is constant data. 6273 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6274 uint64_t SrcDelta = 0; 6275 GlobalAddressSDNode *G = nullptr; 6276 if (Src.getOpcode() == ISD::GlobalAddress) 6277 G = cast<GlobalAddressSDNode>(Src); 6278 else if (Src.getOpcode() == ISD::ADD && 6279 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6280 Src.getOperand(1).getOpcode() == ISD::Constant) { 6281 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6282 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6283 } 6284 if (!G) 6285 return false; 6286 6287 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6288 SrcDelta + G->getOffset()); 6289 } 6290 6291 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6292 SelectionDAG &DAG) { 6293 // On Darwin, -Os means optimize for size without hurting performance, so 6294 // only really optimize for size when -Oz (MinSize) is used. 6295 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6296 return MF.getFunction().hasMinSize(); 6297 return DAG.shouldOptForSize(); 6298 } 6299 6300 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6301 SmallVector<SDValue, 32> &OutChains, unsigned From, 6302 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6303 SmallVector<SDValue, 16> &OutStoreChains) { 6304 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6305 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6306 SmallVector<SDValue, 16> GluedLoadChains; 6307 for (unsigned i = From; i < To; ++i) { 6308 OutChains.push_back(OutLoadChains[i]); 6309 GluedLoadChains.push_back(OutLoadChains[i]); 6310 } 6311 6312 // Chain for all loads. 6313 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6314 GluedLoadChains); 6315 6316 for (unsigned i = From; i < To; ++i) { 6317 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6318 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6319 ST->getBasePtr(), ST->getMemoryVT(), 6320 ST->getMemOperand()); 6321 OutChains.push_back(NewStore); 6322 } 6323 } 6324 6325 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6326 SDValue Chain, SDValue Dst, SDValue Src, 6327 uint64_t Size, Align Alignment, 6328 bool isVol, bool AlwaysInline, 6329 MachinePointerInfo DstPtrInfo, 6330 MachinePointerInfo SrcPtrInfo) { 6331 // Turn a memcpy of undef to nop. 6332 // FIXME: We need to honor volatile even is Src is undef. 6333 if (Src.isUndef()) 6334 return Chain; 6335 6336 // Expand memcpy to a series of load and store ops if the size operand falls 6337 // below a certain threshold. 6338 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6339 // rather than maybe a humongous number of loads and stores. 6340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6341 const DataLayout &DL = DAG.getDataLayout(); 6342 LLVMContext &C = *DAG.getContext(); 6343 std::vector<EVT> MemOps; 6344 bool DstAlignCanChange = false; 6345 MachineFunction &MF = DAG.getMachineFunction(); 6346 MachineFrameInfo &MFI = MF.getFrameInfo(); 6347 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6348 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6349 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6350 DstAlignCanChange = true; 6351 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6352 if (!SrcAlign || Alignment > *SrcAlign) 6353 SrcAlign = Alignment; 6354 assert(SrcAlign && "SrcAlign must be set"); 6355 ConstantDataArraySlice Slice; 6356 // If marked as volatile, perform a copy even when marked as constant. 6357 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6358 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6359 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6360 const MemOp Op = isZeroConstant 6361 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6362 /*IsZeroMemset*/ true, isVol) 6363 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6364 *SrcAlign, isVol, CopyFromConstant); 6365 if (!TLI.findOptimalMemOpLowering( 6366 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6367 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6368 return SDValue(); 6369 6370 if (DstAlignCanChange) { 6371 Type *Ty = MemOps[0].getTypeForEVT(C); 6372 Align NewAlign = DL.getABITypeAlign(Ty); 6373 6374 // Don't promote to an alignment that would require dynamic stack 6375 // realignment. 6376 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6377 if (!TRI->hasStackRealignment(MF)) 6378 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6379 NewAlign = NewAlign / 2; 6380 6381 if (NewAlign > Alignment) { 6382 // Give the stack frame object a larger alignment if needed. 6383 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6384 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6385 Alignment = NewAlign; 6386 } 6387 } 6388 6389 MachineMemOperand::Flags MMOFlags = 6390 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6391 SmallVector<SDValue, 16> OutLoadChains; 6392 SmallVector<SDValue, 16> OutStoreChains; 6393 SmallVector<SDValue, 32> OutChains; 6394 unsigned NumMemOps = MemOps.size(); 6395 uint64_t SrcOff = 0, DstOff = 0; 6396 for (unsigned i = 0; i != NumMemOps; ++i) { 6397 EVT VT = MemOps[i]; 6398 unsigned VTSize = VT.getSizeInBits() / 8; 6399 SDValue Value, Store; 6400 6401 if (VTSize > Size) { 6402 // Issuing an unaligned load / store pair that overlaps with the previous 6403 // pair. Adjust the offset accordingly. 6404 assert(i == NumMemOps-1 && i != 0); 6405 SrcOff -= VTSize - Size; 6406 DstOff -= VTSize - Size; 6407 } 6408 6409 if (CopyFromConstant && 6410 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6411 // It's unlikely a store of a vector immediate can be done in a single 6412 // instruction. It would require a load from a constantpool first. 6413 // We only handle zero vectors here. 6414 // FIXME: Handle other cases where store of vector immediate is done in 6415 // a single instruction. 6416 ConstantDataArraySlice SubSlice; 6417 if (SrcOff < Slice.Length) { 6418 SubSlice = Slice; 6419 SubSlice.move(SrcOff); 6420 } else { 6421 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6422 SubSlice.Array = nullptr; 6423 SubSlice.Offset = 0; 6424 SubSlice.Length = VTSize; 6425 } 6426 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6427 if (Value.getNode()) { 6428 Store = DAG.getStore( 6429 Chain, dl, Value, 6430 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6431 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6432 OutChains.push_back(Store); 6433 } 6434 } 6435 6436 if (!Store.getNode()) { 6437 // The type might not be legal for the target. This should only happen 6438 // if the type is smaller than a legal type, as on PPC, so the right 6439 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6440 // to Load/Store if NVT==VT. 6441 // FIXME does the case above also need this? 6442 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6443 assert(NVT.bitsGE(VT)); 6444 6445 bool isDereferenceable = 6446 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6447 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6448 if (isDereferenceable) 6449 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6450 6451 Value = DAG.getExtLoad( 6452 ISD::EXTLOAD, dl, NVT, Chain, 6453 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6454 SrcPtrInfo.getWithOffset(SrcOff), VT, 6455 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6456 OutLoadChains.push_back(Value.getValue(1)); 6457 6458 Store = DAG.getTruncStore( 6459 Chain, dl, Value, 6460 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6461 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6462 OutStoreChains.push_back(Store); 6463 } 6464 SrcOff += VTSize; 6465 DstOff += VTSize; 6466 Size -= VTSize; 6467 } 6468 6469 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6470 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6471 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6472 6473 if (NumLdStInMemcpy) { 6474 // It may be that memcpy might be converted to memset if it's memcpy 6475 // of constants. In such a case, we won't have loads and stores, but 6476 // just stores. In the absence of loads, there is nothing to gang up. 6477 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6478 // If target does not care, just leave as it. 6479 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6480 OutChains.push_back(OutLoadChains[i]); 6481 OutChains.push_back(OutStoreChains[i]); 6482 } 6483 } else { 6484 // Ld/St less than/equal limit set by target. 6485 if (NumLdStInMemcpy <= GluedLdStLimit) { 6486 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6487 NumLdStInMemcpy, OutLoadChains, 6488 OutStoreChains); 6489 } else { 6490 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6491 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6492 unsigned GlueIter = 0; 6493 6494 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6495 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6496 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6497 6498 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6499 OutLoadChains, OutStoreChains); 6500 GlueIter += GluedLdStLimit; 6501 } 6502 6503 // Residual ld/st. 6504 if (RemainingLdStInMemcpy) { 6505 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6506 RemainingLdStInMemcpy, OutLoadChains, 6507 OutStoreChains); 6508 } 6509 } 6510 } 6511 } 6512 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6513 } 6514 6515 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6516 SDValue Chain, SDValue Dst, SDValue Src, 6517 uint64_t Size, Align Alignment, 6518 bool isVol, bool AlwaysInline, 6519 MachinePointerInfo DstPtrInfo, 6520 MachinePointerInfo SrcPtrInfo) { 6521 // Turn a memmove of undef to nop. 6522 // FIXME: We need to honor volatile even is Src is undef. 6523 if (Src.isUndef()) 6524 return Chain; 6525 6526 // Expand memmove to a series of load and store ops if the size operand falls 6527 // below a certain threshold. 6528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6529 const DataLayout &DL = DAG.getDataLayout(); 6530 LLVMContext &C = *DAG.getContext(); 6531 std::vector<EVT> MemOps; 6532 bool DstAlignCanChange = false; 6533 MachineFunction &MF = DAG.getMachineFunction(); 6534 MachineFrameInfo &MFI = MF.getFrameInfo(); 6535 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6536 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6537 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6538 DstAlignCanChange = true; 6539 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6540 if (!SrcAlign || Alignment > *SrcAlign) 6541 SrcAlign = Alignment; 6542 assert(SrcAlign && "SrcAlign must be set"); 6543 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6544 if (!TLI.findOptimalMemOpLowering( 6545 MemOps, Limit, 6546 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6547 /*IsVolatile*/ true), 6548 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6549 MF.getFunction().getAttributes())) 6550 return SDValue(); 6551 6552 if (DstAlignCanChange) { 6553 Type *Ty = MemOps[0].getTypeForEVT(C); 6554 Align NewAlign = DL.getABITypeAlign(Ty); 6555 if (NewAlign > Alignment) { 6556 // Give the stack frame object a larger alignment if needed. 6557 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6558 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6559 Alignment = NewAlign; 6560 } 6561 } 6562 6563 MachineMemOperand::Flags MMOFlags = 6564 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6565 uint64_t SrcOff = 0, DstOff = 0; 6566 SmallVector<SDValue, 8> LoadValues; 6567 SmallVector<SDValue, 8> LoadChains; 6568 SmallVector<SDValue, 8> OutChains; 6569 unsigned NumMemOps = MemOps.size(); 6570 for (unsigned i = 0; i < NumMemOps; i++) { 6571 EVT VT = MemOps[i]; 6572 unsigned VTSize = VT.getSizeInBits() / 8; 6573 SDValue Value; 6574 6575 bool isDereferenceable = 6576 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6577 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6578 if (isDereferenceable) 6579 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6580 6581 Value = 6582 DAG.getLoad(VT, dl, Chain, 6583 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6584 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6585 LoadValues.push_back(Value); 6586 LoadChains.push_back(Value.getValue(1)); 6587 SrcOff += VTSize; 6588 } 6589 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6590 OutChains.clear(); 6591 for (unsigned i = 0; i < NumMemOps; i++) { 6592 EVT VT = MemOps[i]; 6593 unsigned VTSize = VT.getSizeInBits() / 8; 6594 SDValue Store; 6595 6596 Store = 6597 DAG.getStore(Chain, dl, LoadValues[i], 6598 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6599 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6600 OutChains.push_back(Store); 6601 DstOff += VTSize; 6602 } 6603 6604 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6605 } 6606 6607 /// Lower the call to 'memset' intrinsic function into a series of store 6608 /// operations. 6609 /// 6610 /// \param DAG Selection DAG where lowered code is placed. 6611 /// \param dl Link to corresponding IR location. 6612 /// \param Chain Control flow dependency. 6613 /// \param Dst Pointer to destination memory location. 6614 /// \param Src Value of byte to write into the memory. 6615 /// \param Size Number of bytes to write. 6616 /// \param Alignment Alignment of the destination in bytes. 6617 /// \param isVol True if destination is volatile. 6618 /// \param DstPtrInfo IR information on the memory pointer. 6619 /// \returns New head in the control flow, if lowering was successful, empty 6620 /// SDValue otherwise. 6621 /// 6622 /// The function tries to replace 'llvm.memset' intrinsic with several store 6623 /// operations and value calculation code. This is usually profitable for small 6624 /// memory size. 6625 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6626 SDValue Chain, SDValue Dst, SDValue Src, 6627 uint64_t Size, Align Alignment, bool isVol, 6628 MachinePointerInfo DstPtrInfo) { 6629 // Turn a memset of undef to nop. 6630 // FIXME: We need to honor volatile even is Src is undef. 6631 if (Src.isUndef()) 6632 return Chain; 6633 6634 // Expand memset to a series of load/store ops if the size operand 6635 // falls below a certain threshold. 6636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6637 std::vector<EVT> MemOps; 6638 bool DstAlignCanChange = false; 6639 MachineFunction &MF = DAG.getMachineFunction(); 6640 MachineFrameInfo &MFI = MF.getFrameInfo(); 6641 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6642 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6643 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6644 DstAlignCanChange = true; 6645 bool IsZeroVal = 6646 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6647 if (!TLI.findOptimalMemOpLowering( 6648 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6649 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6650 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6651 return SDValue(); 6652 6653 if (DstAlignCanChange) { 6654 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6655 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6656 if (NewAlign > Alignment) { 6657 // Give the stack frame object a larger alignment if needed. 6658 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6659 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6660 Alignment = NewAlign; 6661 } 6662 } 6663 6664 SmallVector<SDValue, 8> OutChains; 6665 uint64_t DstOff = 0; 6666 unsigned NumMemOps = MemOps.size(); 6667 6668 // Find the largest store and generate the bit pattern for it. 6669 EVT LargestVT = MemOps[0]; 6670 for (unsigned i = 1; i < NumMemOps; i++) 6671 if (MemOps[i].bitsGT(LargestVT)) 6672 LargestVT = MemOps[i]; 6673 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6674 6675 for (unsigned i = 0; i < NumMemOps; i++) { 6676 EVT VT = MemOps[i]; 6677 unsigned VTSize = VT.getSizeInBits() / 8; 6678 if (VTSize > Size) { 6679 // Issuing an unaligned load / store pair that overlaps with the previous 6680 // pair. Adjust the offset accordingly. 6681 assert(i == NumMemOps-1 && i != 0); 6682 DstOff -= VTSize - Size; 6683 } 6684 6685 // If this store is smaller than the largest store see whether we can get 6686 // the smaller value for free with a truncate. 6687 SDValue Value = MemSetValue; 6688 if (VT.bitsLT(LargestVT)) { 6689 if (!LargestVT.isVector() && !VT.isVector() && 6690 TLI.isTruncateFree(LargestVT, VT)) 6691 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6692 else 6693 Value = getMemsetValue(Src, VT, DAG, dl); 6694 } 6695 assert(Value.getValueType() == VT && "Value with wrong type."); 6696 SDValue Store = DAG.getStore( 6697 Chain, dl, Value, 6698 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6699 DstPtrInfo.getWithOffset(DstOff), Alignment, 6700 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6701 OutChains.push_back(Store); 6702 DstOff += VT.getSizeInBits() / 8; 6703 Size -= VTSize; 6704 } 6705 6706 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6707 } 6708 6709 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6710 unsigned AS) { 6711 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6712 // pointer operands can be losslessly bitcasted to pointers of address space 0 6713 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6714 report_fatal_error("cannot lower memory intrinsic in address space " + 6715 Twine(AS)); 6716 } 6717 } 6718 6719 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6720 SDValue Src, SDValue Size, Align Alignment, 6721 bool isVol, bool AlwaysInline, bool isTailCall, 6722 MachinePointerInfo DstPtrInfo, 6723 MachinePointerInfo SrcPtrInfo) { 6724 // Check to see if we should lower the memcpy to loads and stores first. 6725 // For cases within the target-specified limits, this is the best choice. 6726 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6727 if (ConstantSize) { 6728 // Memcpy with size zero? Just return the original chain. 6729 if (ConstantSize->isNullValue()) 6730 return Chain; 6731 6732 SDValue Result = getMemcpyLoadsAndStores( 6733 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6734 isVol, false, DstPtrInfo, SrcPtrInfo); 6735 if (Result.getNode()) 6736 return Result; 6737 } 6738 6739 // Then check to see if we should lower the memcpy with target-specific 6740 // code. If the target chooses to do this, this is the next best. 6741 if (TSI) { 6742 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6743 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6744 DstPtrInfo, SrcPtrInfo); 6745 if (Result.getNode()) 6746 return Result; 6747 } 6748 6749 // If we really need inline code and the target declined to provide it, 6750 // use a (potentially long) sequence of loads and stores. 6751 if (AlwaysInline) { 6752 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6753 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6754 ConstantSize->getZExtValue(), Alignment, 6755 isVol, true, DstPtrInfo, SrcPtrInfo); 6756 } 6757 6758 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6759 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6760 6761 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6762 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6763 // respect volatile, so they may do things like read or write memory 6764 // beyond the given memory regions. But fixing this isn't easy, and most 6765 // people don't care. 6766 6767 // Emit a library call. 6768 TargetLowering::ArgListTy Args; 6769 TargetLowering::ArgListEntry Entry; 6770 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6771 Entry.Node = Dst; Args.push_back(Entry); 6772 Entry.Node = Src; Args.push_back(Entry); 6773 6774 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6775 Entry.Node = Size; Args.push_back(Entry); 6776 // FIXME: pass in SDLoc 6777 TargetLowering::CallLoweringInfo CLI(*this); 6778 CLI.setDebugLoc(dl) 6779 .setChain(Chain) 6780 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6781 Dst.getValueType().getTypeForEVT(*getContext()), 6782 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6783 TLI->getPointerTy(getDataLayout())), 6784 std::move(Args)) 6785 .setDiscardResult() 6786 .setTailCall(isTailCall); 6787 6788 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6789 return CallResult.second; 6790 } 6791 6792 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6793 SDValue Dst, unsigned DstAlign, 6794 SDValue Src, unsigned SrcAlign, 6795 SDValue Size, Type *SizeTy, 6796 unsigned ElemSz, bool isTailCall, 6797 MachinePointerInfo DstPtrInfo, 6798 MachinePointerInfo SrcPtrInfo) { 6799 // Emit a library call. 6800 TargetLowering::ArgListTy Args; 6801 TargetLowering::ArgListEntry Entry; 6802 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6803 Entry.Node = Dst; 6804 Args.push_back(Entry); 6805 6806 Entry.Node = Src; 6807 Args.push_back(Entry); 6808 6809 Entry.Ty = SizeTy; 6810 Entry.Node = Size; 6811 Args.push_back(Entry); 6812 6813 RTLIB::Libcall LibraryCall = 6814 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6815 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6816 report_fatal_error("Unsupported element size"); 6817 6818 TargetLowering::CallLoweringInfo CLI(*this); 6819 CLI.setDebugLoc(dl) 6820 .setChain(Chain) 6821 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6822 Type::getVoidTy(*getContext()), 6823 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6824 TLI->getPointerTy(getDataLayout())), 6825 std::move(Args)) 6826 .setDiscardResult() 6827 .setTailCall(isTailCall); 6828 6829 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6830 return CallResult.second; 6831 } 6832 6833 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6834 SDValue Src, SDValue Size, Align Alignment, 6835 bool isVol, bool isTailCall, 6836 MachinePointerInfo DstPtrInfo, 6837 MachinePointerInfo SrcPtrInfo) { 6838 // Check to see if we should lower the memmove to loads and stores first. 6839 // For cases within the target-specified limits, this is the best choice. 6840 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6841 if (ConstantSize) { 6842 // Memmove with size zero? Just return the original chain. 6843 if (ConstantSize->isNullValue()) 6844 return Chain; 6845 6846 SDValue Result = getMemmoveLoadsAndStores( 6847 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6848 isVol, false, DstPtrInfo, SrcPtrInfo); 6849 if (Result.getNode()) 6850 return Result; 6851 } 6852 6853 // Then check to see if we should lower the memmove with target-specific 6854 // code. If the target chooses to do this, this is the next best. 6855 if (TSI) { 6856 SDValue Result = 6857 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6858 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6859 if (Result.getNode()) 6860 return Result; 6861 } 6862 6863 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6864 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6865 6866 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6867 // not be safe. See memcpy above for more details. 6868 6869 // Emit a library call. 6870 TargetLowering::ArgListTy Args; 6871 TargetLowering::ArgListEntry Entry; 6872 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6873 Entry.Node = Dst; Args.push_back(Entry); 6874 Entry.Node = Src; Args.push_back(Entry); 6875 6876 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6877 Entry.Node = Size; Args.push_back(Entry); 6878 // FIXME: pass in SDLoc 6879 TargetLowering::CallLoweringInfo CLI(*this); 6880 CLI.setDebugLoc(dl) 6881 .setChain(Chain) 6882 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6883 Dst.getValueType().getTypeForEVT(*getContext()), 6884 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6885 TLI->getPointerTy(getDataLayout())), 6886 std::move(Args)) 6887 .setDiscardResult() 6888 .setTailCall(isTailCall); 6889 6890 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6891 return CallResult.second; 6892 } 6893 6894 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6895 SDValue Dst, unsigned DstAlign, 6896 SDValue Src, unsigned SrcAlign, 6897 SDValue Size, Type *SizeTy, 6898 unsigned ElemSz, bool isTailCall, 6899 MachinePointerInfo DstPtrInfo, 6900 MachinePointerInfo SrcPtrInfo) { 6901 // Emit a library call. 6902 TargetLowering::ArgListTy Args; 6903 TargetLowering::ArgListEntry Entry; 6904 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6905 Entry.Node = Dst; 6906 Args.push_back(Entry); 6907 6908 Entry.Node = Src; 6909 Args.push_back(Entry); 6910 6911 Entry.Ty = SizeTy; 6912 Entry.Node = Size; 6913 Args.push_back(Entry); 6914 6915 RTLIB::Libcall LibraryCall = 6916 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6917 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6918 report_fatal_error("Unsupported element size"); 6919 6920 TargetLowering::CallLoweringInfo CLI(*this); 6921 CLI.setDebugLoc(dl) 6922 .setChain(Chain) 6923 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6924 Type::getVoidTy(*getContext()), 6925 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6926 TLI->getPointerTy(getDataLayout())), 6927 std::move(Args)) 6928 .setDiscardResult() 6929 .setTailCall(isTailCall); 6930 6931 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6932 return CallResult.second; 6933 } 6934 6935 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6936 SDValue Src, SDValue Size, Align Alignment, 6937 bool isVol, bool isTailCall, 6938 MachinePointerInfo DstPtrInfo) { 6939 // Check to see if we should lower the memset to stores first. 6940 // For cases within the target-specified limits, this is the best choice. 6941 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6942 if (ConstantSize) { 6943 // Memset with size zero? Just return the original chain. 6944 if (ConstantSize->isNullValue()) 6945 return Chain; 6946 6947 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6948 ConstantSize->getZExtValue(), Alignment, 6949 isVol, DstPtrInfo); 6950 6951 if (Result.getNode()) 6952 return Result; 6953 } 6954 6955 // Then check to see if we should lower the memset with target-specific 6956 // code. If the target chooses to do this, this is the next best. 6957 if (TSI) { 6958 SDValue Result = TSI->EmitTargetCodeForMemset( 6959 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6960 if (Result.getNode()) 6961 return Result; 6962 } 6963 6964 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6965 6966 // Emit a library call. 6967 TargetLowering::ArgListTy Args; 6968 TargetLowering::ArgListEntry Entry; 6969 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6970 Args.push_back(Entry); 6971 Entry.Node = Src; 6972 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6973 Args.push_back(Entry); 6974 Entry.Node = Size; 6975 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6976 Args.push_back(Entry); 6977 6978 // FIXME: pass in SDLoc 6979 TargetLowering::CallLoweringInfo CLI(*this); 6980 CLI.setDebugLoc(dl) 6981 .setChain(Chain) 6982 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6983 Dst.getValueType().getTypeForEVT(*getContext()), 6984 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6985 TLI->getPointerTy(getDataLayout())), 6986 std::move(Args)) 6987 .setDiscardResult() 6988 .setTailCall(isTailCall); 6989 6990 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6991 return CallResult.second; 6992 } 6993 6994 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6995 SDValue Dst, unsigned DstAlign, 6996 SDValue Value, SDValue Size, Type *SizeTy, 6997 unsigned ElemSz, bool isTailCall, 6998 MachinePointerInfo DstPtrInfo) { 6999 // Emit a library call. 7000 TargetLowering::ArgListTy Args; 7001 TargetLowering::ArgListEntry Entry; 7002 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7003 Entry.Node = Dst; 7004 Args.push_back(Entry); 7005 7006 Entry.Ty = Type::getInt8Ty(*getContext()); 7007 Entry.Node = Value; 7008 Args.push_back(Entry); 7009 7010 Entry.Ty = SizeTy; 7011 Entry.Node = Size; 7012 Args.push_back(Entry); 7013 7014 RTLIB::Libcall LibraryCall = 7015 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7016 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7017 report_fatal_error("Unsupported element size"); 7018 7019 TargetLowering::CallLoweringInfo CLI(*this); 7020 CLI.setDebugLoc(dl) 7021 .setChain(Chain) 7022 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7023 Type::getVoidTy(*getContext()), 7024 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7025 TLI->getPointerTy(getDataLayout())), 7026 std::move(Args)) 7027 .setDiscardResult() 7028 .setTailCall(isTailCall); 7029 7030 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7031 return CallResult.second; 7032 } 7033 7034 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7035 SDVTList VTList, ArrayRef<SDValue> Ops, 7036 MachineMemOperand *MMO) { 7037 FoldingSetNodeID ID; 7038 ID.AddInteger(MemVT.getRawBits()); 7039 AddNodeIDNode(ID, Opcode, VTList, Ops); 7040 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7041 void* IP = nullptr; 7042 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7043 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7044 return SDValue(E, 0); 7045 } 7046 7047 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7048 VTList, MemVT, MMO); 7049 createOperands(N, Ops); 7050 7051 CSEMap.InsertNode(N, IP); 7052 InsertNode(N); 7053 return SDValue(N, 0); 7054 } 7055 7056 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7057 EVT MemVT, SDVTList VTs, SDValue Chain, 7058 SDValue Ptr, SDValue Cmp, SDValue Swp, 7059 MachineMemOperand *MMO) { 7060 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7061 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7062 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7063 7064 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7065 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7066 } 7067 7068 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7069 SDValue Chain, SDValue Ptr, SDValue Val, 7070 MachineMemOperand *MMO) { 7071 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7072 Opcode == ISD::ATOMIC_LOAD_SUB || 7073 Opcode == ISD::ATOMIC_LOAD_AND || 7074 Opcode == ISD::ATOMIC_LOAD_CLR || 7075 Opcode == ISD::ATOMIC_LOAD_OR || 7076 Opcode == ISD::ATOMIC_LOAD_XOR || 7077 Opcode == ISD::ATOMIC_LOAD_NAND || 7078 Opcode == ISD::ATOMIC_LOAD_MIN || 7079 Opcode == ISD::ATOMIC_LOAD_MAX || 7080 Opcode == ISD::ATOMIC_LOAD_UMIN || 7081 Opcode == ISD::ATOMIC_LOAD_UMAX || 7082 Opcode == ISD::ATOMIC_LOAD_FADD || 7083 Opcode == ISD::ATOMIC_LOAD_FSUB || 7084 Opcode == ISD::ATOMIC_SWAP || 7085 Opcode == ISD::ATOMIC_STORE) && 7086 "Invalid Atomic Op"); 7087 7088 EVT VT = Val.getValueType(); 7089 7090 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7091 getVTList(VT, MVT::Other); 7092 SDValue Ops[] = {Chain, Ptr, Val}; 7093 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7094 } 7095 7096 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7097 EVT VT, SDValue Chain, SDValue Ptr, 7098 MachineMemOperand *MMO) { 7099 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7100 7101 SDVTList VTs = getVTList(VT, MVT::Other); 7102 SDValue Ops[] = {Chain, Ptr}; 7103 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7104 } 7105 7106 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7107 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7108 if (Ops.size() == 1) 7109 return Ops[0]; 7110 7111 SmallVector<EVT, 4> VTs; 7112 VTs.reserve(Ops.size()); 7113 for (const SDValue &Op : Ops) 7114 VTs.push_back(Op.getValueType()); 7115 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7116 } 7117 7118 SDValue SelectionDAG::getMemIntrinsicNode( 7119 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7120 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7121 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7122 if (!Size && MemVT.isScalableVector()) 7123 Size = MemoryLocation::UnknownSize; 7124 else if (!Size) 7125 Size = MemVT.getStoreSize(); 7126 7127 MachineFunction &MF = getMachineFunction(); 7128 MachineMemOperand *MMO = 7129 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7130 7131 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7132 } 7133 7134 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7135 SDVTList VTList, 7136 ArrayRef<SDValue> Ops, EVT MemVT, 7137 MachineMemOperand *MMO) { 7138 assert((Opcode == ISD::INTRINSIC_VOID || 7139 Opcode == ISD::INTRINSIC_W_CHAIN || 7140 Opcode == ISD::PREFETCH || 7141 ((int)Opcode <= std::numeric_limits<int>::max() && 7142 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7143 "Opcode is not a memory-accessing opcode!"); 7144 7145 // Memoize the node unless it returns a flag. 7146 MemIntrinsicSDNode *N; 7147 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7148 FoldingSetNodeID ID; 7149 AddNodeIDNode(ID, Opcode, VTList, Ops); 7150 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7151 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7152 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7153 void *IP = nullptr; 7154 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7155 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7156 return SDValue(E, 0); 7157 } 7158 7159 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7160 VTList, MemVT, MMO); 7161 createOperands(N, Ops); 7162 7163 CSEMap.InsertNode(N, IP); 7164 } else { 7165 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7166 VTList, MemVT, MMO); 7167 createOperands(N, Ops); 7168 } 7169 InsertNode(N); 7170 SDValue V(N, 0); 7171 NewSDValueDbgMsg(V, "Creating new node: ", this); 7172 return V; 7173 } 7174 7175 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7176 SDValue Chain, int FrameIndex, 7177 int64_t Size, int64_t Offset) { 7178 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7179 const auto VTs = getVTList(MVT::Other); 7180 SDValue Ops[2] = { 7181 Chain, 7182 getFrameIndex(FrameIndex, 7183 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7184 true)}; 7185 7186 FoldingSetNodeID ID; 7187 AddNodeIDNode(ID, Opcode, VTs, Ops); 7188 ID.AddInteger(FrameIndex); 7189 ID.AddInteger(Size); 7190 ID.AddInteger(Offset); 7191 void *IP = nullptr; 7192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7193 return SDValue(E, 0); 7194 7195 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7196 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7197 createOperands(N, Ops); 7198 CSEMap.InsertNode(N, IP); 7199 InsertNode(N); 7200 SDValue V(N, 0); 7201 NewSDValueDbgMsg(V, "Creating new node: ", this); 7202 return V; 7203 } 7204 7205 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7206 uint64_t Guid, uint64_t Index, 7207 uint32_t Attr) { 7208 const unsigned Opcode = ISD::PSEUDO_PROBE; 7209 const auto VTs = getVTList(MVT::Other); 7210 SDValue Ops[] = {Chain}; 7211 FoldingSetNodeID ID; 7212 AddNodeIDNode(ID, Opcode, VTs, Ops); 7213 ID.AddInteger(Guid); 7214 ID.AddInteger(Index); 7215 void *IP = nullptr; 7216 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7217 return SDValue(E, 0); 7218 7219 auto *N = newSDNode<PseudoProbeSDNode>( 7220 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7221 createOperands(N, Ops); 7222 CSEMap.InsertNode(N, IP); 7223 InsertNode(N); 7224 SDValue V(N, 0); 7225 NewSDValueDbgMsg(V, "Creating new node: ", this); 7226 return V; 7227 } 7228 7229 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7230 /// MachinePointerInfo record from it. This is particularly useful because the 7231 /// code generator has many cases where it doesn't bother passing in a 7232 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7233 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7234 SelectionDAG &DAG, SDValue Ptr, 7235 int64_t Offset = 0) { 7236 // If this is FI+Offset, we can model it. 7237 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7238 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7239 FI->getIndex(), Offset); 7240 7241 // If this is (FI+Offset1)+Offset2, we can model it. 7242 if (Ptr.getOpcode() != ISD::ADD || 7243 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7244 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7245 return Info; 7246 7247 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7248 return MachinePointerInfo::getFixedStack( 7249 DAG.getMachineFunction(), FI, 7250 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7251 } 7252 7253 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7254 /// MachinePointerInfo record from it. This is particularly useful because the 7255 /// code generator has many cases where it doesn't bother passing in a 7256 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7257 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7258 SelectionDAG &DAG, SDValue Ptr, 7259 SDValue OffsetOp) { 7260 // If the 'Offset' value isn't a constant, we can't handle this. 7261 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7262 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7263 if (OffsetOp.isUndef()) 7264 return InferPointerInfo(Info, DAG, Ptr); 7265 return Info; 7266 } 7267 7268 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7269 EVT VT, const SDLoc &dl, SDValue Chain, 7270 SDValue Ptr, SDValue Offset, 7271 MachinePointerInfo PtrInfo, EVT MemVT, 7272 Align Alignment, 7273 MachineMemOperand::Flags MMOFlags, 7274 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7275 assert(Chain.getValueType() == MVT::Other && 7276 "Invalid chain type"); 7277 7278 MMOFlags |= MachineMemOperand::MOLoad; 7279 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7280 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7281 // clients. 7282 if (PtrInfo.V.isNull()) 7283 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7284 7285 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7286 MachineFunction &MF = getMachineFunction(); 7287 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7288 Alignment, AAInfo, Ranges); 7289 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7290 } 7291 7292 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7293 EVT VT, const SDLoc &dl, SDValue Chain, 7294 SDValue Ptr, SDValue Offset, EVT MemVT, 7295 MachineMemOperand *MMO) { 7296 if (VT == MemVT) { 7297 ExtType = ISD::NON_EXTLOAD; 7298 } else if (ExtType == ISD::NON_EXTLOAD) { 7299 assert(VT == MemVT && "Non-extending load from different memory type!"); 7300 } else { 7301 // Extending load. 7302 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7303 "Should only be an extending load, not truncating!"); 7304 assert(VT.isInteger() == MemVT.isInteger() && 7305 "Cannot convert from FP to Int or Int -> FP!"); 7306 assert(VT.isVector() == MemVT.isVector() && 7307 "Cannot use an ext load to convert to or from a vector!"); 7308 assert((!VT.isVector() || 7309 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7310 "Cannot use an ext load to change the number of vector elements!"); 7311 } 7312 7313 bool Indexed = AM != ISD::UNINDEXED; 7314 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7315 7316 SDVTList VTs = Indexed ? 7317 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7318 SDValue Ops[] = { Chain, Ptr, Offset }; 7319 FoldingSetNodeID ID; 7320 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7321 ID.AddInteger(MemVT.getRawBits()); 7322 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7323 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7324 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7325 void *IP = nullptr; 7326 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7327 cast<LoadSDNode>(E)->refineAlignment(MMO); 7328 return SDValue(E, 0); 7329 } 7330 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7331 ExtType, MemVT, MMO); 7332 createOperands(N, Ops); 7333 7334 CSEMap.InsertNode(N, IP); 7335 InsertNode(N); 7336 SDValue V(N, 0); 7337 NewSDValueDbgMsg(V, "Creating new node: ", this); 7338 return V; 7339 } 7340 7341 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7342 SDValue Ptr, MachinePointerInfo PtrInfo, 7343 MaybeAlign Alignment, 7344 MachineMemOperand::Flags MMOFlags, 7345 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7346 SDValue Undef = getUNDEF(Ptr.getValueType()); 7347 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7348 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7349 } 7350 7351 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7352 SDValue Ptr, MachineMemOperand *MMO) { 7353 SDValue Undef = getUNDEF(Ptr.getValueType()); 7354 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7355 VT, MMO); 7356 } 7357 7358 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7359 EVT VT, SDValue Chain, SDValue Ptr, 7360 MachinePointerInfo PtrInfo, EVT MemVT, 7361 MaybeAlign Alignment, 7362 MachineMemOperand::Flags MMOFlags, 7363 const AAMDNodes &AAInfo) { 7364 SDValue Undef = getUNDEF(Ptr.getValueType()); 7365 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7366 MemVT, Alignment, MMOFlags, AAInfo); 7367 } 7368 7369 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7370 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7371 MachineMemOperand *MMO) { 7372 SDValue Undef = getUNDEF(Ptr.getValueType()); 7373 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7374 MemVT, MMO); 7375 } 7376 7377 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7378 SDValue Base, SDValue Offset, 7379 ISD::MemIndexedMode AM) { 7380 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7381 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7382 // Don't propagate the invariant or dereferenceable flags. 7383 auto MMOFlags = 7384 LD->getMemOperand()->getFlags() & 7385 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7386 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7387 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7388 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7389 } 7390 7391 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7392 SDValue Ptr, MachinePointerInfo PtrInfo, 7393 Align Alignment, 7394 MachineMemOperand::Flags MMOFlags, 7395 const AAMDNodes &AAInfo) { 7396 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7397 7398 MMOFlags |= MachineMemOperand::MOStore; 7399 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7400 7401 if (PtrInfo.V.isNull()) 7402 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7403 7404 MachineFunction &MF = getMachineFunction(); 7405 uint64_t Size = 7406 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7407 MachineMemOperand *MMO = 7408 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7409 return getStore(Chain, dl, Val, Ptr, MMO); 7410 } 7411 7412 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7413 SDValue Ptr, MachineMemOperand *MMO) { 7414 assert(Chain.getValueType() == MVT::Other && 7415 "Invalid chain type"); 7416 EVT VT = Val.getValueType(); 7417 SDVTList VTs = getVTList(MVT::Other); 7418 SDValue Undef = getUNDEF(Ptr.getValueType()); 7419 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7420 FoldingSetNodeID ID; 7421 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7422 ID.AddInteger(VT.getRawBits()); 7423 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7424 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7425 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7426 void *IP = nullptr; 7427 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7428 cast<StoreSDNode>(E)->refineAlignment(MMO); 7429 return SDValue(E, 0); 7430 } 7431 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7432 ISD::UNINDEXED, false, VT, MMO); 7433 createOperands(N, Ops); 7434 7435 CSEMap.InsertNode(N, IP); 7436 InsertNode(N); 7437 SDValue V(N, 0); 7438 NewSDValueDbgMsg(V, "Creating new node: ", this); 7439 return V; 7440 } 7441 7442 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7443 SDValue Ptr, MachinePointerInfo PtrInfo, 7444 EVT SVT, Align Alignment, 7445 MachineMemOperand::Flags MMOFlags, 7446 const AAMDNodes &AAInfo) { 7447 assert(Chain.getValueType() == MVT::Other && 7448 "Invalid chain type"); 7449 7450 MMOFlags |= MachineMemOperand::MOStore; 7451 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7452 7453 if (PtrInfo.V.isNull()) 7454 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7455 7456 MachineFunction &MF = getMachineFunction(); 7457 MachineMemOperand *MMO = MF.getMachineMemOperand( 7458 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7459 Alignment, AAInfo); 7460 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7461 } 7462 7463 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7464 SDValue Ptr, EVT SVT, 7465 MachineMemOperand *MMO) { 7466 EVT VT = Val.getValueType(); 7467 7468 assert(Chain.getValueType() == MVT::Other && 7469 "Invalid chain type"); 7470 if (VT == SVT) 7471 return getStore(Chain, dl, Val, Ptr, MMO); 7472 7473 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7474 "Should only be a truncating store, not extending!"); 7475 assert(VT.isInteger() == SVT.isInteger() && 7476 "Can't do FP-INT conversion!"); 7477 assert(VT.isVector() == SVT.isVector() && 7478 "Cannot use trunc store to convert to or from a vector!"); 7479 assert((!VT.isVector() || 7480 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7481 "Cannot use trunc store to change the number of vector elements!"); 7482 7483 SDVTList VTs = getVTList(MVT::Other); 7484 SDValue Undef = getUNDEF(Ptr.getValueType()); 7485 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7486 FoldingSetNodeID ID; 7487 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7488 ID.AddInteger(SVT.getRawBits()); 7489 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7490 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7491 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7492 void *IP = nullptr; 7493 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7494 cast<StoreSDNode>(E)->refineAlignment(MMO); 7495 return SDValue(E, 0); 7496 } 7497 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7498 ISD::UNINDEXED, true, SVT, MMO); 7499 createOperands(N, Ops); 7500 7501 CSEMap.InsertNode(N, IP); 7502 InsertNode(N); 7503 SDValue V(N, 0); 7504 NewSDValueDbgMsg(V, "Creating new node: ", this); 7505 return V; 7506 } 7507 7508 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7509 SDValue Base, SDValue Offset, 7510 ISD::MemIndexedMode AM) { 7511 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7512 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7513 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7514 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7515 FoldingSetNodeID ID; 7516 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7517 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7518 ID.AddInteger(ST->getRawSubclassData()); 7519 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7520 void *IP = nullptr; 7521 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7522 return SDValue(E, 0); 7523 7524 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7525 ST->isTruncatingStore(), ST->getMemoryVT(), 7526 ST->getMemOperand()); 7527 createOperands(N, Ops); 7528 7529 CSEMap.InsertNode(N, IP); 7530 InsertNode(N); 7531 SDValue V(N, 0); 7532 NewSDValueDbgMsg(V, "Creating new node: ", this); 7533 return V; 7534 } 7535 7536 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7537 SDValue Base, SDValue Offset, SDValue Mask, 7538 SDValue PassThru, EVT MemVT, 7539 MachineMemOperand *MMO, 7540 ISD::MemIndexedMode AM, 7541 ISD::LoadExtType ExtTy, bool isExpanding) { 7542 bool Indexed = AM != ISD::UNINDEXED; 7543 assert((Indexed || Offset.isUndef()) && 7544 "Unindexed masked load with an offset!"); 7545 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7546 : getVTList(VT, MVT::Other); 7547 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7548 FoldingSetNodeID ID; 7549 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7550 ID.AddInteger(MemVT.getRawBits()); 7551 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7552 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7553 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7554 void *IP = nullptr; 7555 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7556 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7557 return SDValue(E, 0); 7558 } 7559 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7560 AM, ExtTy, isExpanding, MemVT, MMO); 7561 createOperands(N, Ops); 7562 7563 CSEMap.InsertNode(N, IP); 7564 InsertNode(N); 7565 SDValue V(N, 0); 7566 NewSDValueDbgMsg(V, "Creating new node: ", this); 7567 return V; 7568 } 7569 7570 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7571 SDValue Base, SDValue Offset, 7572 ISD::MemIndexedMode AM) { 7573 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7574 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7575 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7576 Offset, LD->getMask(), LD->getPassThru(), 7577 LD->getMemoryVT(), LD->getMemOperand(), AM, 7578 LD->getExtensionType(), LD->isExpandingLoad()); 7579 } 7580 7581 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7582 SDValue Val, SDValue Base, SDValue Offset, 7583 SDValue Mask, EVT MemVT, 7584 MachineMemOperand *MMO, 7585 ISD::MemIndexedMode AM, bool IsTruncating, 7586 bool IsCompressing) { 7587 assert(Chain.getValueType() == MVT::Other && 7588 "Invalid chain type"); 7589 bool Indexed = AM != ISD::UNINDEXED; 7590 assert((Indexed || Offset.isUndef()) && 7591 "Unindexed masked store with an offset!"); 7592 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7593 : getVTList(MVT::Other); 7594 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7595 FoldingSetNodeID ID; 7596 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7597 ID.AddInteger(MemVT.getRawBits()); 7598 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7599 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7600 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7601 void *IP = nullptr; 7602 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7603 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7604 return SDValue(E, 0); 7605 } 7606 auto *N = 7607 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7608 IsTruncating, IsCompressing, MemVT, MMO); 7609 createOperands(N, Ops); 7610 7611 CSEMap.InsertNode(N, IP); 7612 InsertNode(N); 7613 SDValue V(N, 0); 7614 NewSDValueDbgMsg(V, "Creating new node: ", this); 7615 return V; 7616 } 7617 7618 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7619 SDValue Base, SDValue Offset, 7620 ISD::MemIndexedMode AM) { 7621 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7622 assert(ST->getOffset().isUndef() && 7623 "Masked store is already a indexed store!"); 7624 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7625 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7626 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7627 } 7628 7629 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7630 ArrayRef<SDValue> Ops, 7631 MachineMemOperand *MMO, 7632 ISD::MemIndexType IndexType, 7633 ISD::LoadExtType ExtTy) { 7634 assert(Ops.size() == 6 && "Incompatible number of operands"); 7635 7636 FoldingSetNodeID ID; 7637 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7638 ID.AddInteger(VT.getRawBits()); 7639 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7640 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7641 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7642 void *IP = nullptr; 7643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7644 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7645 return SDValue(E, 0); 7646 } 7647 7648 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7649 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7650 VTs, VT, MMO, IndexType, ExtTy); 7651 createOperands(N, Ops); 7652 7653 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7654 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7655 assert(N->getMask().getValueType().getVectorElementCount() == 7656 N->getValueType(0).getVectorElementCount() && 7657 "Vector width mismatch between mask and data"); 7658 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7659 N->getValueType(0).getVectorElementCount().isScalable() && 7660 "Scalable flags of index and data do not match"); 7661 assert(ElementCount::isKnownGE( 7662 N->getIndex().getValueType().getVectorElementCount(), 7663 N->getValueType(0).getVectorElementCount()) && 7664 "Vector width mismatch between index and data"); 7665 assert(isa<ConstantSDNode>(N->getScale()) && 7666 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7667 "Scale should be a constant power of 2"); 7668 7669 CSEMap.InsertNode(N, IP); 7670 InsertNode(N); 7671 SDValue V(N, 0); 7672 NewSDValueDbgMsg(V, "Creating new node: ", this); 7673 return V; 7674 } 7675 7676 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7677 ArrayRef<SDValue> Ops, 7678 MachineMemOperand *MMO, 7679 ISD::MemIndexType IndexType, 7680 bool IsTrunc) { 7681 assert(Ops.size() == 6 && "Incompatible number of operands"); 7682 7683 FoldingSetNodeID ID; 7684 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7685 ID.AddInteger(VT.getRawBits()); 7686 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7687 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7688 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7689 void *IP = nullptr; 7690 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7691 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7692 return SDValue(E, 0); 7693 } 7694 7695 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7696 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7697 VTs, VT, MMO, IndexType, IsTrunc); 7698 createOperands(N, Ops); 7699 7700 assert(N->getMask().getValueType().getVectorElementCount() == 7701 N->getValue().getValueType().getVectorElementCount() && 7702 "Vector width mismatch between mask and data"); 7703 assert( 7704 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7705 N->getValue().getValueType().getVectorElementCount().isScalable() && 7706 "Scalable flags of index and data do not match"); 7707 assert(ElementCount::isKnownGE( 7708 N->getIndex().getValueType().getVectorElementCount(), 7709 N->getValue().getValueType().getVectorElementCount()) && 7710 "Vector width mismatch between index and data"); 7711 assert(isa<ConstantSDNode>(N->getScale()) && 7712 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7713 "Scale should be a constant power of 2"); 7714 7715 CSEMap.InsertNode(N, IP); 7716 InsertNode(N); 7717 SDValue V(N, 0); 7718 NewSDValueDbgMsg(V, "Creating new node: ", this); 7719 return V; 7720 } 7721 7722 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7723 // select undef, T, F --> T (if T is a constant), otherwise F 7724 // select, ?, undef, F --> F 7725 // select, ?, T, undef --> T 7726 if (Cond.isUndef()) 7727 return isConstantValueOfAnyType(T) ? T : F; 7728 if (T.isUndef()) 7729 return F; 7730 if (F.isUndef()) 7731 return T; 7732 7733 // select true, T, F --> T 7734 // select false, T, F --> F 7735 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7736 return CondC->isNullValue() ? F : T; 7737 7738 // TODO: This should simplify VSELECT with constant condition using something 7739 // like this (but check boolean contents to be complete?): 7740 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7741 // return T; 7742 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7743 // return F; 7744 7745 // select ?, T, T --> T 7746 if (T == F) 7747 return T; 7748 7749 return SDValue(); 7750 } 7751 7752 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7753 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7754 if (X.isUndef()) 7755 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7756 // shift X, undef --> undef (because it may shift by the bitwidth) 7757 if (Y.isUndef()) 7758 return getUNDEF(X.getValueType()); 7759 7760 // shift 0, Y --> 0 7761 // shift X, 0 --> X 7762 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7763 return X; 7764 7765 // shift X, C >= bitwidth(X) --> undef 7766 // All vector elements must be too big (or undef) to avoid partial undefs. 7767 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7768 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7769 }; 7770 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7771 return getUNDEF(X.getValueType()); 7772 7773 return SDValue(); 7774 } 7775 7776 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7777 SDNodeFlags Flags) { 7778 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7779 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7780 // operation is poison. That result can be relaxed to undef. 7781 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7782 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7783 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7784 (YC && YC->getValueAPF().isNaN()); 7785 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7786 (YC && YC->getValueAPF().isInfinity()); 7787 7788 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7789 return getUNDEF(X.getValueType()); 7790 7791 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7792 return getUNDEF(X.getValueType()); 7793 7794 if (!YC) 7795 return SDValue(); 7796 7797 // X + -0.0 --> X 7798 if (Opcode == ISD::FADD) 7799 if (YC->getValueAPF().isNegZero()) 7800 return X; 7801 7802 // X - +0.0 --> X 7803 if (Opcode == ISD::FSUB) 7804 if (YC->getValueAPF().isPosZero()) 7805 return X; 7806 7807 // X * 1.0 --> X 7808 // X / 1.0 --> X 7809 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7810 if (YC->getValueAPF().isExactlyValue(1.0)) 7811 return X; 7812 7813 // X * 0.0 --> 0.0 7814 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7815 if (YC->getValueAPF().isZero()) 7816 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7817 7818 return SDValue(); 7819 } 7820 7821 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7822 SDValue Ptr, SDValue SV, unsigned Align) { 7823 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7824 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7825 } 7826 7827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7828 ArrayRef<SDUse> Ops) { 7829 switch (Ops.size()) { 7830 case 0: return getNode(Opcode, DL, VT); 7831 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7832 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7833 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7834 default: break; 7835 } 7836 7837 // Copy from an SDUse array into an SDValue array for use with 7838 // the regular getNode logic. 7839 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7840 return getNode(Opcode, DL, VT, NewOps); 7841 } 7842 7843 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7844 ArrayRef<SDValue> Ops) { 7845 SDNodeFlags Flags; 7846 if (Inserter) 7847 Flags = Inserter->getFlags(); 7848 return getNode(Opcode, DL, VT, Ops, Flags); 7849 } 7850 7851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7852 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7853 unsigned NumOps = Ops.size(); 7854 switch (NumOps) { 7855 case 0: return getNode(Opcode, DL, VT); 7856 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7857 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7858 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7859 default: break; 7860 } 7861 7862 #ifndef NDEBUG 7863 for (auto &Op : Ops) 7864 assert(Op.getOpcode() != ISD::DELETED_NODE && 7865 "Operand is DELETED_NODE!"); 7866 #endif 7867 7868 switch (Opcode) { 7869 default: break; 7870 case ISD::BUILD_VECTOR: 7871 // Attempt to simplify BUILD_VECTOR. 7872 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7873 return V; 7874 break; 7875 case ISD::CONCAT_VECTORS: 7876 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7877 return V; 7878 break; 7879 case ISD::SELECT_CC: 7880 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7881 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7882 "LHS and RHS of condition must have same type!"); 7883 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7884 "True and False arms of SelectCC must have same type!"); 7885 assert(Ops[2].getValueType() == VT && 7886 "select_cc node must be of same type as true and false value!"); 7887 break; 7888 case ISD::BR_CC: 7889 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7890 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7891 "LHS/RHS of comparison should match types!"); 7892 break; 7893 } 7894 7895 // Memoize nodes. 7896 SDNode *N; 7897 SDVTList VTs = getVTList(VT); 7898 7899 if (VT != MVT::Glue) { 7900 FoldingSetNodeID ID; 7901 AddNodeIDNode(ID, Opcode, VTs, Ops); 7902 void *IP = nullptr; 7903 7904 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7905 return SDValue(E, 0); 7906 7907 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7908 createOperands(N, Ops); 7909 7910 CSEMap.InsertNode(N, IP); 7911 } else { 7912 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7913 createOperands(N, Ops); 7914 } 7915 7916 N->setFlags(Flags); 7917 InsertNode(N); 7918 SDValue V(N, 0); 7919 NewSDValueDbgMsg(V, "Creating new node: ", this); 7920 return V; 7921 } 7922 7923 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7924 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7925 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7926 } 7927 7928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7929 ArrayRef<SDValue> Ops) { 7930 SDNodeFlags Flags; 7931 if (Inserter) 7932 Flags = Inserter->getFlags(); 7933 return getNode(Opcode, DL, VTList, Ops, Flags); 7934 } 7935 7936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7937 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7938 if (VTList.NumVTs == 1) 7939 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7940 7941 #ifndef NDEBUG 7942 for (auto &Op : Ops) 7943 assert(Op.getOpcode() != ISD::DELETED_NODE && 7944 "Operand is DELETED_NODE!"); 7945 #endif 7946 7947 switch (Opcode) { 7948 case ISD::STRICT_FP_EXTEND: 7949 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7950 "Invalid STRICT_FP_EXTEND!"); 7951 assert(VTList.VTs[0].isFloatingPoint() && 7952 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7953 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7954 "STRICT_FP_EXTEND result type should be vector iff the operand " 7955 "type is vector!"); 7956 assert((!VTList.VTs[0].isVector() || 7957 VTList.VTs[0].getVectorNumElements() == 7958 Ops[1].getValueType().getVectorNumElements()) && 7959 "Vector element count mismatch!"); 7960 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7961 "Invalid fpext node, dst <= src!"); 7962 break; 7963 case ISD::STRICT_FP_ROUND: 7964 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7965 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7966 "STRICT_FP_ROUND result type should be vector iff the operand " 7967 "type is vector!"); 7968 assert((!VTList.VTs[0].isVector() || 7969 VTList.VTs[0].getVectorNumElements() == 7970 Ops[1].getValueType().getVectorNumElements()) && 7971 "Vector element count mismatch!"); 7972 assert(VTList.VTs[0].isFloatingPoint() && 7973 Ops[1].getValueType().isFloatingPoint() && 7974 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7975 isa<ConstantSDNode>(Ops[2]) && 7976 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7977 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7978 "Invalid STRICT_FP_ROUND!"); 7979 break; 7980 #if 0 7981 // FIXME: figure out how to safely handle things like 7982 // int foo(int x) { return 1 << (x & 255); } 7983 // int bar() { return foo(256); } 7984 case ISD::SRA_PARTS: 7985 case ISD::SRL_PARTS: 7986 case ISD::SHL_PARTS: 7987 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7988 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7989 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7990 else if (N3.getOpcode() == ISD::AND) 7991 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7992 // If the and is only masking out bits that cannot effect the shift, 7993 // eliminate the and. 7994 unsigned NumBits = VT.getScalarSizeInBits()*2; 7995 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7996 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7997 } 7998 break; 7999 #endif 8000 } 8001 8002 // Memoize the node unless it returns a flag. 8003 SDNode *N; 8004 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8005 FoldingSetNodeID ID; 8006 AddNodeIDNode(ID, Opcode, VTList, Ops); 8007 void *IP = nullptr; 8008 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8009 return SDValue(E, 0); 8010 8011 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8012 createOperands(N, Ops); 8013 CSEMap.InsertNode(N, IP); 8014 } else { 8015 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8016 createOperands(N, Ops); 8017 } 8018 8019 N->setFlags(Flags); 8020 InsertNode(N); 8021 SDValue V(N, 0); 8022 NewSDValueDbgMsg(V, "Creating new node: ", this); 8023 return V; 8024 } 8025 8026 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8027 SDVTList VTList) { 8028 return getNode(Opcode, DL, VTList, None); 8029 } 8030 8031 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8032 SDValue N1) { 8033 SDValue Ops[] = { N1 }; 8034 return getNode(Opcode, DL, VTList, Ops); 8035 } 8036 8037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8038 SDValue N1, SDValue N2) { 8039 SDValue Ops[] = { N1, N2 }; 8040 return getNode(Opcode, DL, VTList, Ops); 8041 } 8042 8043 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8044 SDValue N1, SDValue N2, SDValue N3) { 8045 SDValue Ops[] = { N1, N2, N3 }; 8046 return getNode(Opcode, DL, VTList, Ops); 8047 } 8048 8049 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8050 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8051 SDValue Ops[] = { N1, N2, N3, N4 }; 8052 return getNode(Opcode, DL, VTList, Ops); 8053 } 8054 8055 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8056 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8057 SDValue N5) { 8058 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8059 return getNode(Opcode, DL, VTList, Ops); 8060 } 8061 8062 SDVTList SelectionDAG::getVTList(EVT VT) { 8063 return makeVTList(SDNode::getValueTypeList(VT), 1); 8064 } 8065 8066 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8067 FoldingSetNodeID ID; 8068 ID.AddInteger(2U); 8069 ID.AddInteger(VT1.getRawBits()); 8070 ID.AddInteger(VT2.getRawBits()); 8071 8072 void *IP = nullptr; 8073 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8074 if (!Result) { 8075 EVT *Array = Allocator.Allocate<EVT>(2); 8076 Array[0] = VT1; 8077 Array[1] = VT2; 8078 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8079 VTListMap.InsertNode(Result, IP); 8080 } 8081 return Result->getSDVTList(); 8082 } 8083 8084 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8085 FoldingSetNodeID ID; 8086 ID.AddInteger(3U); 8087 ID.AddInteger(VT1.getRawBits()); 8088 ID.AddInteger(VT2.getRawBits()); 8089 ID.AddInteger(VT3.getRawBits()); 8090 8091 void *IP = nullptr; 8092 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8093 if (!Result) { 8094 EVT *Array = Allocator.Allocate<EVT>(3); 8095 Array[0] = VT1; 8096 Array[1] = VT2; 8097 Array[2] = VT3; 8098 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8099 VTListMap.InsertNode(Result, IP); 8100 } 8101 return Result->getSDVTList(); 8102 } 8103 8104 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8105 FoldingSetNodeID ID; 8106 ID.AddInteger(4U); 8107 ID.AddInteger(VT1.getRawBits()); 8108 ID.AddInteger(VT2.getRawBits()); 8109 ID.AddInteger(VT3.getRawBits()); 8110 ID.AddInteger(VT4.getRawBits()); 8111 8112 void *IP = nullptr; 8113 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8114 if (!Result) { 8115 EVT *Array = Allocator.Allocate<EVT>(4); 8116 Array[0] = VT1; 8117 Array[1] = VT2; 8118 Array[2] = VT3; 8119 Array[3] = VT4; 8120 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8121 VTListMap.InsertNode(Result, IP); 8122 } 8123 return Result->getSDVTList(); 8124 } 8125 8126 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8127 unsigned NumVTs = VTs.size(); 8128 FoldingSetNodeID ID; 8129 ID.AddInteger(NumVTs); 8130 for (unsigned index = 0; index < NumVTs; index++) { 8131 ID.AddInteger(VTs[index].getRawBits()); 8132 } 8133 8134 void *IP = nullptr; 8135 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8136 if (!Result) { 8137 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8138 llvm::copy(VTs, Array); 8139 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8140 VTListMap.InsertNode(Result, IP); 8141 } 8142 return Result->getSDVTList(); 8143 } 8144 8145 8146 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8147 /// specified operands. If the resultant node already exists in the DAG, 8148 /// this does not modify the specified node, instead it returns the node that 8149 /// already exists. If the resultant node does not exist in the DAG, the 8150 /// input node is returned. As a degenerate case, if you specify the same 8151 /// input operands as the node already has, the input node is returned. 8152 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8153 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8154 8155 // Check to see if there is no change. 8156 if (Op == N->getOperand(0)) return N; 8157 8158 // See if the modified node already exists. 8159 void *InsertPos = nullptr; 8160 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8161 return Existing; 8162 8163 // Nope it doesn't. Remove the node from its current place in the maps. 8164 if (InsertPos) 8165 if (!RemoveNodeFromCSEMaps(N)) 8166 InsertPos = nullptr; 8167 8168 // Now we update the operands. 8169 N->OperandList[0].set(Op); 8170 8171 updateDivergence(N); 8172 // If this gets put into a CSE map, add it. 8173 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8174 return N; 8175 } 8176 8177 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8178 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8179 8180 // Check to see if there is no change. 8181 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8182 return N; // No operands changed, just return the input node. 8183 8184 // See if the modified node already exists. 8185 void *InsertPos = nullptr; 8186 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8187 return Existing; 8188 8189 // Nope it doesn't. Remove the node from its current place in the maps. 8190 if (InsertPos) 8191 if (!RemoveNodeFromCSEMaps(N)) 8192 InsertPos = nullptr; 8193 8194 // Now we update the operands. 8195 if (N->OperandList[0] != Op1) 8196 N->OperandList[0].set(Op1); 8197 if (N->OperandList[1] != Op2) 8198 N->OperandList[1].set(Op2); 8199 8200 updateDivergence(N); 8201 // If this gets put into a CSE map, add it. 8202 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8203 return N; 8204 } 8205 8206 SDNode *SelectionDAG:: 8207 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8208 SDValue Ops[] = { Op1, Op2, Op3 }; 8209 return UpdateNodeOperands(N, Ops); 8210 } 8211 8212 SDNode *SelectionDAG:: 8213 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8214 SDValue Op3, SDValue Op4) { 8215 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8216 return UpdateNodeOperands(N, Ops); 8217 } 8218 8219 SDNode *SelectionDAG:: 8220 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8221 SDValue Op3, SDValue Op4, SDValue Op5) { 8222 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8223 return UpdateNodeOperands(N, Ops); 8224 } 8225 8226 SDNode *SelectionDAG:: 8227 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8228 unsigned NumOps = Ops.size(); 8229 assert(N->getNumOperands() == NumOps && 8230 "Update with wrong number of operands"); 8231 8232 // If no operands changed just return the input node. 8233 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8234 return N; 8235 8236 // See if the modified node already exists. 8237 void *InsertPos = nullptr; 8238 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8239 return Existing; 8240 8241 // Nope it doesn't. Remove the node from its current place in the maps. 8242 if (InsertPos) 8243 if (!RemoveNodeFromCSEMaps(N)) 8244 InsertPos = nullptr; 8245 8246 // Now we update the operands. 8247 for (unsigned i = 0; i != NumOps; ++i) 8248 if (N->OperandList[i] != Ops[i]) 8249 N->OperandList[i].set(Ops[i]); 8250 8251 updateDivergence(N); 8252 // If this gets put into a CSE map, add it. 8253 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8254 return N; 8255 } 8256 8257 /// DropOperands - Release the operands and set this node to have 8258 /// zero operands. 8259 void SDNode::DropOperands() { 8260 // Unlike the code in MorphNodeTo that does this, we don't need to 8261 // watch for dead nodes here. 8262 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8263 SDUse &Use = *I++; 8264 Use.set(SDValue()); 8265 } 8266 } 8267 8268 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8269 ArrayRef<MachineMemOperand *> NewMemRefs) { 8270 if (NewMemRefs.empty()) { 8271 N->clearMemRefs(); 8272 return; 8273 } 8274 8275 // Check if we can avoid allocating by storing a single reference directly. 8276 if (NewMemRefs.size() == 1) { 8277 N->MemRefs = NewMemRefs[0]; 8278 N->NumMemRefs = 1; 8279 return; 8280 } 8281 8282 MachineMemOperand **MemRefsBuffer = 8283 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8284 llvm::copy(NewMemRefs, MemRefsBuffer); 8285 N->MemRefs = MemRefsBuffer; 8286 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8287 } 8288 8289 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8290 /// machine opcode. 8291 /// 8292 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8293 EVT VT) { 8294 SDVTList VTs = getVTList(VT); 8295 return SelectNodeTo(N, MachineOpc, VTs, None); 8296 } 8297 8298 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8299 EVT VT, SDValue Op1) { 8300 SDVTList VTs = getVTList(VT); 8301 SDValue Ops[] = { Op1 }; 8302 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8303 } 8304 8305 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8306 EVT VT, SDValue Op1, 8307 SDValue Op2) { 8308 SDVTList VTs = getVTList(VT); 8309 SDValue Ops[] = { Op1, Op2 }; 8310 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8311 } 8312 8313 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8314 EVT VT, SDValue Op1, 8315 SDValue Op2, SDValue Op3) { 8316 SDVTList VTs = getVTList(VT); 8317 SDValue Ops[] = { Op1, Op2, Op3 }; 8318 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8319 } 8320 8321 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8322 EVT VT, ArrayRef<SDValue> Ops) { 8323 SDVTList VTs = getVTList(VT); 8324 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8325 } 8326 8327 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8328 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8329 SDVTList VTs = getVTList(VT1, VT2); 8330 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8331 } 8332 8333 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8334 EVT VT1, EVT VT2) { 8335 SDVTList VTs = getVTList(VT1, VT2); 8336 return SelectNodeTo(N, MachineOpc, VTs, None); 8337 } 8338 8339 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8340 EVT VT1, EVT VT2, EVT VT3, 8341 ArrayRef<SDValue> Ops) { 8342 SDVTList VTs = getVTList(VT1, VT2, VT3); 8343 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8344 } 8345 8346 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8347 EVT VT1, EVT VT2, 8348 SDValue Op1, SDValue Op2) { 8349 SDVTList VTs = getVTList(VT1, VT2); 8350 SDValue Ops[] = { Op1, Op2 }; 8351 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8352 } 8353 8354 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8355 SDVTList VTs,ArrayRef<SDValue> Ops) { 8356 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8357 // Reset the NodeID to -1. 8358 New->setNodeId(-1); 8359 if (New != N) { 8360 ReplaceAllUsesWith(N, New); 8361 RemoveDeadNode(N); 8362 } 8363 return New; 8364 } 8365 8366 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8367 /// the line number information on the merged node since it is not possible to 8368 /// preserve the information that operation is associated with multiple lines. 8369 /// This will make the debugger working better at -O0, were there is a higher 8370 /// probability having other instructions associated with that line. 8371 /// 8372 /// For IROrder, we keep the smaller of the two 8373 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8374 DebugLoc NLoc = N->getDebugLoc(); 8375 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8376 N->setDebugLoc(DebugLoc()); 8377 } 8378 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8379 N->setIROrder(Order); 8380 return N; 8381 } 8382 8383 /// MorphNodeTo - This *mutates* the specified node to have the specified 8384 /// return type, opcode, and operands. 8385 /// 8386 /// Note that MorphNodeTo returns the resultant node. If there is already a 8387 /// node of the specified opcode and operands, it returns that node instead of 8388 /// the current one. Note that the SDLoc need not be the same. 8389 /// 8390 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8391 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8392 /// node, and because it doesn't require CSE recalculation for any of 8393 /// the node's users. 8394 /// 8395 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8396 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8397 /// the legalizer which maintain worklists that would need to be updated when 8398 /// deleting things. 8399 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8400 SDVTList VTs, ArrayRef<SDValue> Ops) { 8401 // If an identical node already exists, use it. 8402 void *IP = nullptr; 8403 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8404 FoldingSetNodeID ID; 8405 AddNodeIDNode(ID, Opc, VTs, Ops); 8406 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8407 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8408 } 8409 8410 if (!RemoveNodeFromCSEMaps(N)) 8411 IP = nullptr; 8412 8413 // Start the morphing. 8414 N->NodeType = Opc; 8415 N->ValueList = VTs.VTs; 8416 N->NumValues = VTs.NumVTs; 8417 8418 // Clear the operands list, updating used nodes to remove this from their 8419 // use list. Keep track of any operands that become dead as a result. 8420 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8421 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8422 SDUse &Use = *I++; 8423 SDNode *Used = Use.getNode(); 8424 Use.set(SDValue()); 8425 if (Used->use_empty()) 8426 DeadNodeSet.insert(Used); 8427 } 8428 8429 // For MachineNode, initialize the memory references information. 8430 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8431 MN->clearMemRefs(); 8432 8433 // Swap for an appropriately sized array from the recycler. 8434 removeOperands(N); 8435 createOperands(N, Ops); 8436 8437 // Delete any nodes that are still dead after adding the uses for the 8438 // new operands. 8439 if (!DeadNodeSet.empty()) { 8440 SmallVector<SDNode *, 16> DeadNodes; 8441 for (SDNode *N : DeadNodeSet) 8442 if (N->use_empty()) 8443 DeadNodes.push_back(N); 8444 RemoveDeadNodes(DeadNodes); 8445 } 8446 8447 if (IP) 8448 CSEMap.InsertNode(N, IP); // Memoize the new node. 8449 return N; 8450 } 8451 8452 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8453 unsigned OrigOpc = Node->getOpcode(); 8454 unsigned NewOpc; 8455 switch (OrigOpc) { 8456 default: 8457 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8458 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8459 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8460 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8461 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8462 #include "llvm/IR/ConstrainedOps.def" 8463 } 8464 8465 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8466 8467 // We're taking this node out of the chain, so we need to re-link things. 8468 SDValue InputChain = Node->getOperand(0); 8469 SDValue OutputChain = SDValue(Node, 1); 8470 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8471 8472 SmallVector<SDValue, 3> Ops; 8473 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8474 Ops.push_back(Node->getOperand(i)); 8475 8476 SDVTList VTs = getVTList(Node->getValueType(0)); 8477 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8478 8479 // MorphNodeTo can operate in two ways: if an existing node with the 8480 // specified operands exists, it can just return it. Otherwise, it 8481 // updates the node in place to have the requested operands. 8482 if (Res == Node) { 8483 // If we updated the node in place, reset the node ID. To the isel, 8484 // this should be just like a newly allocated machine node. 8485 Res->setNodeId(-1); 8486 } else { 8487 ReplaceAllUsesWith(Node, Res); 8488 RemoveDeadNode(Node); 8489 } 8490 8491 return Res; 8492 } 8493 8494 /// getMachineNode - These are used for target selectors to create a new node 8495 /// with specified return type(s), MachineInstr opcode, and operands. 8496 /// 8497 /// Note that getMachineNode returns the resultant node. If there is already a 8498 /// node of the specified opcode and operands, it returns that node instead of 8499 /// the current one. 8500 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8501 EVT VT) { 8502 SDVTList VTs = getVTList(VT); 8503 return getMachineNode(Opcode, dl, VTs, None); 8504 } 8505 8506 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8507 EVT VT, SDValue Op1) { 8508 SDVTList VTs = getVTList(VT); 8509 SDValue Ops[] = { Op1 }; 8510 return getMachineNode(Opcode, dl, VTs, Ops); 8511 } 8512 8513 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8514 EVT VT, SDValue Op1, SDValue Op2) { 8515 SDVTList VTs = getVTList(VT); 8516 SDValue Ops[] = { Op1, Op2 }; 8517 return getMachineNode(Opcode, dl, VTs, Ops); 8518 } 8519 8520 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8521 EVT VT, SDValue Op1, SDValue Op2, 8522 SDValue Op3) { 8523 SDVTList VTs = getVTList(VT); 8524 SDValue Ops[] = { Op1, Op2, Op3 }; 8525 return getMachineNode(Opcode, dl, VTs, Ops); 8526 } 8527 8528 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8529 EVT VT, ArrayRef<SDValue> Ops) { 8530 SDVTList VTs = getVTList(VT); 8531 return getMachineNode(Opcode, dl, VTs, Ops); 8532 } 8533 8534 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8535 EVT VT1, EVT VT2, SDValue Op1, 8536 SDValue Op2) { 8537 SDVTList VTs = getVTList(VT1, VT2); 8538 SDValue Ops[] = { Op1, Op2 }; 8539 return getMachineNode(Opcode, dl, VTs, Ops); 8540 } 8541 8542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8543 EVT VT1, EVT VT2, SDValue Op1, 8544 SDValue Op2, SDValue Op3) { 8545 SDVTList VTs = getVTList(VT1, VT2); 8546 SDValue Ops[] = { Op1, Op2, Op3 }; 8547 return getMachineNode(Opcode, dl, VTs, Ops); 8548 } 8549 8550 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8551 EVT VT1, EVT VT2, 8552 ArrayRef<SDValue> Ops) { 8553 SDVTList VTs = getVTList(VT1, VT2); 8554 return getMachineNode(Opcode, dl, VTs, Ops); 8555 } 8556 8557 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8558 EVT VT1, EVT VT2, EVT VT3, 8559 SDValue Op1, SDValue Op2) { 8560 SDVTList VTs = getVTList(VT1, VT2, VT3); 8561 SDValue Ops[] = { Op1, Op2 }; 8562 return getMachineNode(Opcode, dl, VTs, Ops); 8563 } 8564 8565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8566 EVT VT1, EVT VT2, EVT VT3, 8567 SDValue Op1, SDValue Op2, 8568 SDValue Op3) { 8569 SDVTList VTs = getVTList(VT1, VT2, VT3); 8570 SDValue Ops[] = { Op1, Op2, Op3 }; 8571 return getMachineNode(Opcode, dl, VTs, Ops); 8572 } 8573 8574 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8575 EVT VT1, EVT VT2, EVT VT3, 8576 ArrayRef<SDValue> Ops) { 8577 SDVTList VTs = getVTList(VT1, VT2, VT3); 8578 return getMachineNode(Opcode, dl, VTs, Ops); 8579 } 8580 8581 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8582 ArrayRef<EVT> ResultTys, 8583 ArrayRef<SDValue> Ops) { 8584 SDVTList VTs = getVTList(ResultTys); 8585 return getMachineNode(Opcode, dl, VTs, Ops); 8586 } 8587 8588 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8589 SDVTList VTs, 8590 ArrayRef<SDValue> Ops) { 8591 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8592 MachineSDNode *N; 8593 void *IP = nullptr; 8594 8595 if (DoCSE) { 8596 FoldingSetNodeID ID; 8597 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8598 IP = nullptr; 8599 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8600 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8601 } 8602 } 8603 8604 // Allocate a new MachineSDNode. 8605 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8606 createOperands(N, Ops); 8607 8608 if (DoCSE) 8609 CSEMap.InsertNode(N, IP); 8610 8611 InsertNode(N); 8612 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8613 return N; 8614 } 8615 8616 /// getTargetExtractSubreg - A convenience function for creating 8617 /// TargetOpcode::EXTRACT_SUBREG nodes. 8618 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8619 SDValue Operand) { 8620 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8621 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8622 VT, Operand, SRIdxVal); 8623 return SDValue(Subreg, 0); 8624 } 8625 8626 /// getTargetInsertSubreg - A convenience function for creating 8627 /// TargetOpcode::INSERT_SUBREG nodes. 8628 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8629 SDValue Operand, SDValue Subreg) { 8630 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8631 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8632 VT, Operand, Subreg, SRIdxVal); 8633 return SDValue(Result, 0); 8634 } 8635 8636 /// getNodeIfExists - Get the specified node if it's already available, or 8637 /// else return NULL. 8638 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8639 ArrayRef<SDValue> Ops) { 8640 SDNodeFlags Flags; 8641 if (Inserter) 8642 Flags = Inserter->getFlags(); 8643 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8644 } 8645 8646 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8647 ArrayRef<SDValue> Ops, 8648 const SDNodeFlags Flags) { 8649 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8650 FoldingSetNodeID ID; 8651 AddNodeIDNode(ID, Opcode, VTList, Ops); 8652 void *IP = nullptr; 8653 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8654 E->intersectFlagsWith(Flags); 8655 return E; 8656 } 8657 } 8658 return nullptr; 8659 } 8660 8661 /// doesNodeExist - Check if a node exists without modifying its flags. 8662 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8663 ArrayRef<SDValue> Ops) { 8664 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8665 FoldingSetNodeID ID; 8666 AddNodeIDNode(ID, Opcode, VTList, Ops); 8667 void *IP = nullptr; 8668 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8669 return true; 8670 } 8671 return false; 8672 } 8673 8674 /// getDbgValue - Creates a SDDbgValue node. 8675 /// 8676 /// SDNode 8677 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8678 SDNode *N, unsigned R, bool IsIndirect, 8679 const DebugLoc &DL, unsigned O) { 8680 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8681 "Expected inlined-at fields to agree"); 8682 return new (DbgInfo->getAlloc()) 8683 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 8684 {}, IsIndirect, DL, O, 8685 /*IsVariadic=*/false); 8686 } 8687 8688 /// Constant 8689 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8690 DIExpression *Expr, 8691 const Value *C, 8692 const DebugLoc &DL, unsigned O) { 8693 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8694 "Expected inlined-at fields to agree"); 8695 return new (DbgInfo->getAlloc()) 8696 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 8697 /*IsIndirect=*/false, DL, O, 8698 /*IsVariadic=*/false); 8699 } 8700 8701 /// FrameIndex 8702 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8703 DIExpression *Expr, unsigned FI, 8704 bool IsIndirect, 8705 const DebugLoc &DL, 8706 unsigned O) { 8707 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8708 "Expected inlined-at fields to agree"); 8709 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8710 } 8711 8712 /// FrameIndex with dependencies 8713 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8714 DIExpression *Expr, unsigned FI, 8715 ArrayRef<SDNode *> Dependencies, 8716 bool IsIndirect, 8717 const DebugLoc &DL, 8718 unsigned O) { 8719 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8720 "Expected inlined-at fields to agree"); 8721 return new (DbgInfo->getAlloc()) 8722 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 8723 Dependencies, IsIndirect, DL, O, 8724 /*IsVariadic=*/false); 8725 } 8726 8727 /// VReg 8728 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8729 unsigned VReg, bool IsIndirect, 8730 const DebugLoc &DL, unsigned O) { 8731 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8732 "Expected inlined-at fields to agree"); 8733 return new (DbgInfo->getAlloc()) 8734 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 8735 {}, IsIndirect, DL, O, 8736 /*IsVariadic=*/false); 8737 } 8738 8739 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8740 ArrayRef<SDDbgOperand> Locs, 8741 ArrayRef<SDNode *> Dependencies, 8742 bool IsIndirect, const DebugLoc &DL, 8743 unsigned O, bool IsVariadic) { 8744 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8745 "Expected inlined-at fields to agree"); 8746 return new (DbgInfo->getAlloc()) 8747 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 8748 DL, O, IsVariadic); 8749 } 8750 8751 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8752 unsigned OffsetInBits, unsigned SizeInBits, 8753 bool InvalidateDbg) { 8754 SDNode *FromNode = From.getNode(); 8755 SDNode *ToNode = To.getNode(); 8756 assert(FromNode && ToNode && "Can't modify dbg values"); 8757 8758 // PR35338 8759 // TODO: assert(From != To && "Redundant dbg value transfer"); 8760 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8761 if (From == To || FromNode == ToNode) 8762 return; 8763 8764 if (!FromNode->getHasDebugValue()) 8765 return; 8766 8767 SDDbgOperand FromLocOp = 8768 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8769 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8770 8771 SmallVector<SDDbgValue *, 2> ClonedDVs; 8772 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8773 if (Dbg->isInvalidated()) 8774 continue; 8775 8776 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8777 8778 // Create a new location ops vector that is equal to the old vector, but 8779 // with each instance of FromLocOp replaced with ToLocOp. 8780 bool Changed = false; 8781 auto NewLocOps = Dbg->copyLocationOps(); 8782 std::replace_if( 8783 NewLocOps.begin(), NewLocOps.end(), 8784 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8785 bool Match = Op == FromLocOp; 8786 Changed |= Match; 8787 return Match; 8788 }, 8789 ToLocOp); 8790 // Ignore this SDDbgValue if we didn't find a matching location. 8791 if (!Changed) 8792 continue; 8793 8794 DIVariable *Var = Dbg->getVariable(); 8795 auto *Expr = Dbg->getExpression(); 8796 // If a fragment is requested, update the expression. 8797 if (SizeInBits) { 8798 // When splitting a larger (e.g., sign-extended) value whose 8799 // lower bits are described with an SDDbgValue, do not attempt 8800 // to transfer the SDDbgValue to the upper bits. 8801 if (auto FI = Expr->getFragmentInfo()) 8802 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8803 continue; 8804 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8805 SizeInBits); 8806 if (!Fragment) 8807 continue; 8808 Expr = *Fragment; 8809 } 8810 8811 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 8812 // Clone the SDDbgValue and move it to To. 8813 SDDbgValue *Clone = getDbgValueList( 8814 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 8815 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8816 Dbg->isVariadic()); 8817 ClonedDVs.push_back(Clone); 8818 8819 if (InvalidateDbg) { 8820 // Invalidate value and indicate the SDDbgValue should not be emitted. 8821 Dbg->setIsInvalidated(); 8822 Dbg->setIsEmitted(); 8823 } 8824 } 8825 8826 for (SDDbgValue *Dbg : ClonedDVs) { 8827 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8828 "Transferred DbgValues should depend on the new SDNode"); 8829 AddDbgValue(Dbg, false); 8830 } 8831 } 8832 8833 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8834 if (!N.getHasDebugValue()) 8835 return; 8836 8837 SmallVector<SDDbgValue *, 2> ClonedDVs; 8838 for (auto DV : GetDbgValues(&N)) { 8839 if (DV->isInvalidated()) 8840 continue; 8841 switch (N.getOpcode()) { 8842 default: 8843 break; 8844 case ISD::ADD: 8845 SDValue N0 = N.getOperand(0); 8846 SDValue N1 = N.getOperand(1); 8847 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8848 isConstantIntBuildVectorOrConstantInt(N1)) { 8849 uint64_t Offset = N.getConstantOperandVal(1); 8850 8851 // Rewrite an ADD constant node into a DIExpression. Since we are 8852 // performing arithmetic to compute the variable's *value* in the 8853 // DIExpression, we need to mark the expression with a 8854 // DW_OP_stack_value. 8855 auto *DIExpr = DV->getExpression(); 8856 auto NewLocOps = DV->copyLocationOps(); 8857 bool Changed = false; 8858 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8859 // We're not given a ResNo to compare against because the whole 8860 // node is going away. We know that any ISD::ADD only has one 8861 // result, so we can assume any node match is using the result. 8862 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8863 NewLocOps[i].getSDNode() != &N) 8864 continue; 8865 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8866 SmallVector<uint64_t, 3> ExprOps; 8867 DIExpression::appendOffset(ExprOps, Offset); 8868 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8869 Changed = true; 8870 } 8871 (void)Changed; 8872 assert(Changed && "Salvage target doesn't use N"); 8873 8874 auto AdditionalDependencies = DV->getAdditionalDependencies(); 8875 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8876 NewLocOps, AdditionalDependencies, 8877 DV->isIndirect(), DV->getDebugLoc(), 8878 DV->getOrder(), DV->isVariadic()); 8879 ClonedDVs.push_back(Clone); 8880 DV->setIsInvalidated(); 8881 DV->setIsEmitted(); 8882 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8883 N0.getNode()->dumprFull(this); 8884 dbgs() << " into " << *DIExpr << '\n'); 8885 } 8886 } 8887 } 8888 8889 for (SDDbgValue *Dbg : ClonedDVs) { 8890 assert(!Dbg->getSDNodes().empty() && 8891 "Salvaged DbgValue should depend on a new SDNode"); 8892 AddDbgValue(Dbg, false); 8893 } 8894 } 8895 8896 /// Creates a SDDbgLabel node. 8897 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8898 const DebugLoc &DL, unsigned O) { 8899 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8900 "Expected inlined-at fields to agree"); 8901 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8902 } 8903 8904 namespace { 8905 8906 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8907 /// pointed to by a use iterator is deleted, increment the use iterator 8908 /// so that it doesn't dangle. 8909 /// 8910 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8911 SDNode::use_iterator &UI; 8912 SDNode::use_iterator &UE; 8913 8914 void NodeDeleted(SDNode *N, SDNode *E) override { 8915 // Increment the iterator as needed. 8916 while (UI != UE && N == *UI) 8917 ++UI; 8918 } 8919 8920 public: 8921 RAUWUpdateListener(SelectionDAG &d, 8922 SDNode::use_iterator &ui, 8923 SDNode::use_iterator &ue) 8924 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8925 }; 8926 8927 } // end anonymous namespace 8928 8929 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8930 /// This can cause recursive merging of nodes in the DAG. 8931 /// 8932 /// This version assumes From has a single result value. 8933 /// 8934 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8935 SDNode *From = FromN.getNode(); 8936 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8937 "Cannot replace with this method!"); 8938 assert(From != To.getNode() && "Cannot replace uses of with self"); 8939 8940 // Preserve Debug Values 8941 transferDbgValues(FromN, To); 8942 8943 // Iterate over all the existing uses of From. New uses will be added 8944 // to the beginning of the use list, which we avoid visiting. 8945 // This specifically avoids visiting uses of From that arise while the 8946 // replacement is happening, because any such uses would be the result 8947 // of CSE: If an existing node looks like From after one of its operands 8948 // is replaced by To, we don't want to replace of all its users with To 8949 // too. See PR3018 for more info. 8950 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8951 RAUWUpdateListener Listener(*this, UI, UE); 8952 while (UI != UE) { 8953 SDNode *User = *UI; 8954 8955 // This node is about to morph, remove its old self from the CSE maps. 8956 RemoveNodeFromCSEMaps(User); 8957 8958 // A user can appear in a use list multiple times, and when this 8959 // happens the uses are usually next to each other in the list. 8960 // To help reduce the number of CSE recomputations, process all 8961 // the uses of this user that we can find this way. 8962 do { 8963 SDUse &Use = UI.getUse(); 8964 ++UI; 8965 Use.set(To); 8966 if (To->isDivergent() != From->isDivergent()) 8967 updateDivergence(User); 8968 } while (UI != UE && *UI == User); 8969 // Now that we have modified User, add it back to the CSE maps. If it 8970 // already exists there, recursively merge the results together. 8971 AddModifiedNodeToCSEMaps(User); 8972 } 8973 8974 // If we just RAUW'd the root, take note. 8975 if (FromN == getRoot()) 8976 setRoot(To); 8977 } 8978 8979 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8980 /// This can cause recursive merging of nodes in the DAG. 8981 /// 8982 /// This version assumes that for each value of From, there is a 8983 /// corresponding value in To in the same position with the same type. 8984 /// 8985 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8986 #ifndef NDEBUG 8987 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8988 assert((!From->hasAnyUseOfValue(i) || 8989 From->getValueType(i) == To->getValueType(i)) && 8990 "Cannot use this version of ReplaceAllUsesWith!"); 8991 #endif 8992 8993 // Handle the trivial case. 8994 if (From == To) 8995 return; 8996 8997 // Preserve Debug Info. Only do this if there's a use. 8998 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8999 if (From->hasAnyUseOfValue(i)) { 9000 assert((i < To->getNumValues()) && "Invalid To location"); 9001 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9002 } 9003 9004 // Iterate over just the existing users of From. See the comments in 9005 // the ReplaceAllUsesWith above. 9006 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9007 RAUWUpdateListener Listener(*this, UI, UE); 9008 while (UI != UE) { 9009 SDNode *User = *UI; 9010 9011 // This node is about to morph, remove its old self from the CSE maps. 9012 RemoveNodeFromCSEMaps(User); 9013 9014 // A user can appear in a use list multiple times, and when this 9015 // happens the uses are usually next to each other in the list. 9016 // To help reduce the number of CSE recomputations, process all 9017 // the uses of this user that we can find this way. 9018 do { 9019 SDUse &Use = UI.getUse(); 9020 ++UI; 9021 Use.setNode(To); 9022 if (To->isDivergent() != From->isDivergent()) 9023 updateDivergence(User); 9024 } while (UI != UE && *UI == User); 9025 9026 // Now that we have modified User, add it back to the CSE maps. If it 9027 // already exists there, recursively merge the results together. 9028 AddModifiedNodeToCSEMaps(User); 9029 } 9030 9031 // If we just RAUW'd the root, take note. 9032 if (From == getRoot().getNode()) 9033 setRoot(SDValue(To, getRoot().getResNo())); 9034 } 9035 9036 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9037 /// This can cause recursive merging of nodes in the DAG. 9038 /// 9039 /// This version can replace From with any result values. To must match the 9040 /// number and types of values returned by From. 9041 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9042 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9043 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9044 9045 // Preserve Debug Info. 9046 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9047 transferDbgValues(SDValue(From, i), To[i]); 9048 9049 // Iterate over just the existing users of From. See the comments in 9050 // the ReplaceAllUsesWith above. 9051 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9052 RAUWUpdateListener Listener(*this, UI, UE); 9053 while (UI != UE) { 9054 SDNode *User = *UI; 9055 9056 // This node is about to morph, remove its old self from the CSE maps. 9057 RemoveNodeFromCSEMaps(User); 9058 9059 // A user can appear in a use list multiple times, and when this happens the 9060 // uses are usually next to each other in the list. To help reduce the 9061 // number of CSE and divergence recomputations, process all the uses of this 9062 // user that we can find this way. 9063 bool To_IsDivergent = false; 9064 do { 9065 SDUse &Use = UI.getUse(); 9066 const SDValue &ToOp = To[Use.getResNo()]; 9067 ++UI; 9068 Use.set(ToOp); 9069 To_IsDivergent |= ToOp->isDivergent(); 9070 } while (UI != UE && *UI == User); 9071 9072 if (To_IsDivergent != From->isDivergent()) 9073 updateDivergence(User); 9074 9075 // Now that we have modified User, add it back to the CSE maps. If it 9076 // already exists there, recursively merge the results together. 9077 AddModifiedNodeToCSEMaps(User); 9078 } 9079 9080 // If we just RAUW'd the root, take note. 9081 if (From == getRoot().getNode()) 9082 setRoot(SDValue(To[getRoot().getResNo()])); 9083 } 9084 9085 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9086 /// uses of other values produced by From.getNode() alone. The Deleted 9087 /// vector is handled the same way as for ReplaceAllUsesWith. 9088 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9089 // Handle the really simple, really trivial case efficiently. 9090 if (From == To) return; 9091 9092 // Handle the simple, trivial, case efficiently. 9093 if (From.getNode()->getNumValues() == 1) { 9094 ReplaceAllUsesWith(From, To); 9095 return; 9096 } 9097 9098 // Preserve Debug Info. 9099 transferDbgValues(From, To); 9100 9101 // Iterate over just the existing users of From. See the comments in 9102 // the ReplaceAllUsesWith above. 9103 SDNode::use_iterator UI = From.getNode()->use_begin(), 9104 UE = From.getNode()->use_end(); 9105 RAUWUpdateListener Listener(*this, UI, UE); 9106 while (UI != UE) { 9107 SDNode *User = *UI; 9108 bool UserRemovedFromCSEMaps = false; 9109 9110 // A user can appear in a use list multiple times, and when this 9111 // happens the uses are usually next to each other in the list. 9112 // To help reduce the number of CSE recomputations, process all 9113 // the uses of this user that we can find this way. 9114 do { 9115 SDUse &Use = UI.getUse(); 9116 9117 // Skip uses of different values from the same node. 9118 if (Use.getResNo() != From.getResNo()) { 9119 ++UI; 9120 continue; 9121 } 9122 9123 // If this node hasn't been modified yet, it's still in the CSE maps, 9124 // so remove its old self from the CSE maps. 9125 if (!UserRemovedFromCSEMaps) { 9126 RemoveNodeFromCSEMaps(User); 9127 UserRemovedFromCSEMaps = true; 9128 } 9129 9130 ++UI; 9131 Use.set(To); 9132 if (To->isDivergent() != From->isDivergent()) 9133 updateDivergence(User); 9134 } while (UI != UE && *UI == User); 9135 // We are iterating over all uses of the From node, so if a use 9136 // doesn't use the specific value, no changes are made. 9137 if (!UserRemovedFromCSEMaps) 9138 continue; 9139 9140 // Now that we have modified User, add it back to the CSE maps. If it 9141 // already exists there, recursively merge the results together. 9142 AddModifiedNodeToCSEMaps(User); 9143 } 9144 9145 // If we just RAUW'd the root, take note. 9146 if (From == getRoot()) 9147 setRoot(To); 9148 } 9149 9150 namespace { 9151 9152 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9153 /// to record information about a use. 9154 struct UseMemo { 9155 SDNode *User; 9156 unsigned Index; 9157 SDUse *Use; 9158 }; 9159 9160 /// operator< - Sort Memos by User. 9161 bool operator<(const UseMemo &L, const UseMemo &R) { 9162 return (intptr_t)L.User < (intptr_t)R.User; 9163 } 9164 9165 } // end anonymous namespace 9166 9167 bool SelectionDAG::calculateDivergence(SDNode *N) { 9168 if (TLI->isSDNodeAlwaysUniform(N)) { 9169 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9170 "Conflicting divergence information!"); 9171 return false; 9172 } 9173 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9174 return true; 9175 for (auto &Op : N->ops()) { 9176 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9177 return true; 9178 } 9179 return false; 9180 } 9181 9182 void SelectionDAG::updateDivergence(SDNode *N) { 9183 SmallVector<SDNode *, 16> Worklist(1, N); 9184 do { 9185 N = Worklist.pop_back_val(); 9186 bool IsDivergent = calculateDivergence(N); 9187 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9188 N->SDNodeBits.IsDivergent = IsDivergent; 9189 llvm::append_range(Worklist, N->uses()); 9190 } 9191 } while (!Worklist.empty()); 9192 } 9193 9194 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9195 DenseMap<SDNode *, unsigned> Degree; 9196 Order.reserve(AllNodes.size()); 9197 for (auto &N : allnodes()) { 9198 unsigned NOps = N.getNumOperands(); 9199 Degree[&N] = NOps; 9200 if (0 == NOps) 9201 Order.push_back(&N); 9202 } 9203 for (size_t I = 0; I != Order.size(); ++I) { 9204 SDNode *N = Order[I]; 9205 for (auto U : N->uses()) { 9206 unsigned &UnsortedOps = Degree[U]; 9207 if (0 == --UnsortedOps) 9208 Order.push_back(U); 9209 } 9210 } 9211 } 9212 9213 #ifndef NDEBUG 9214 void SelectionDAG::VerifyDAGDiverence() { 9215 std::vector<SDNode *> TopoOrder; 9216 CreateTopologicalOrder(TopoOrder); 9217 for (auto *N : TopoOrder) { 9218 assert(calculateDivergence(N) == N->isDivergent() && 9219 "Divergence bit inconsistency detected"); 9220 } 9221 } 9222 #endif 9223 9224 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9225 /// uses of other values produced by From.getNode() alone. The same value 9226 /// may appear in both the From and To list. The Deleted vector is 9227 /// handled the same way as for ReplaceAllUsesWith. 9228 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9229 const SDValue *To, 9230 unsigned Num){ 9231 // Handle the simple, trivial case efficiently. 9232 if (Num == 1) 9233 return ReplaceAllUsesOfValueWith(*From, *To); 9234 9235 transferDbgValues(*From, *To); 9236 9237 // Read up all the uses and make records of them. This helps 9238 // processing new uses that are introduced during the 9239 // replacement process. 9240 SmallVector<UseMemo, 4> Uses; 9241 for (unsigned i = 0; i != Num; ++i) { 9242 unsigned FromResNo = From[i].getResNo(); 9243 SDNode *FromNode = From[i].getNode(); 9244 for (SDNode::use_iterator UI = FromNode->use_begin(), 9245 E = FromNode->use_end(); UI != E; ++UI) { 9246 SDUse &Use = UI.getUse(); 9247 if (Use.getResNo() == FromResNo) { 9248 UseMemo Memo = { *UI, i, &Use }; 9249 Uses.push_back(Memo); 9250 } 9251 } 9252 } 9253 9254 // Sort the uses, so that all the uses from a given User are together. 9255 llvm::sort(Uses); 9256 9257 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9258 UseIndex != UseIndexEnd; ) { 9259 // We know that this user uses some value of From. If it is the right 9260 // value, update it. 9261 SDNode *User = Uses[UseIndex].User; 9262 9263 // This node is about to morph, remove its old self from the CSE maps. 9264 RemoveNodeFromCSEMaps(User); 9265 9266 // The Uses array is sorted, so all the uses for a given User 9267 // are next to each other in the list. 9268 // To help reduce the number of CSE recomputations, process all 9269 // the uses of this user that we can find this way. 9270 do { 9271 unsigned i = Uses[UseIndex].Index; 9272 SDUse &Use = *Uses[UseIndex].Use; 9273 ++UseIndex; 9274 9275 Use.set(To[i]); 9276 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9277 9278 // Now that we have modified User, add it back to the CSE maps. If it 9279 // already exists there, recursively merge the results together. 9280 AddModifiedNodeToCSEMaps(User); 9281 } 9282 } 9283 9284 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9285 /// based on their topological order. It returns the maximum id and a vector 9286 /// of the SDNodes* in assigned order by reference. 9287 unsigned SelectionDAG::AssignTopologicalOrder() { 9288 unsigned DAGSize = 0; 9289 9290 // SortedPos tracks the progress of the algorithm. Nodes before it are 9291 // sorted, nodes after it are unsorted. When the algorithm completes 9292 // it is at the end of the list. 9293 allnodes_iterator SortedPos = allnodes_begin(); 9294 9295 // Visit all the nodes. Move nodes with no operands to the front of 9296 // the list immediately. Annotate nodes that do have operands with their 9297 // operand count. Before we do this, the Node Id fields of the nodes 9298 // may contain arbitrary values. After, the Node Id fields for nodes 9299 // before SortedPos will contain the topological sort index, and the 9300 // Node Id fields for nodes At SortedPos and after will contain the 9301 // count of outstanding operands. 9302 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9303 SDNode *N = &*I++; 9304 checkForCycles(N, this); 9305 unsigned Degree = N->getNumOperands(); 9306 if (Degree == 0) { 9307 // A node with no uses, add it to the result array immediately. 9308 N->setNodeId(DAGSize++); 9309 allnodes_iterator Q(N); 9310 if (Q != SortedPos) 9311 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9312 assert(SortedPos != AllNodes.end() && "Overran node list"); 9313 ++SortedPos; 9314 } else { 9315 // Temporarily use the Node Id as scratch space for the degree count. 9316 N->setNodeId(Degree); 9317 } 9318 } 9319 9320 // Visit all the nodes. As we iterate, move nodes into sorted order, 9321 // such that by the time the end is reached all nodes will be sorted. 9322 for (SDNode &Node : allnodes()) { 9323 SDNode *N = &Node; 9324 checkForCycles(N, this); 9325 // N is in sorted position, so all its uses have one less operand 9326 // that needs to be sorted. 9327 for (SDNode *P : N->uses()) { 9328 unsigned Degree = P->getNodeId(); 9329 assert(Degree != 0 && "Invalid node degree"); 9330 --Degree; 9331 if (Degree == 0) { 9332 // All of P's operands are sorted, so P may sorted now. 9333 P->setNodeId(DAGSize++); 9334 if (P->getIterator() != SortedPos) 9335 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9336 assert(SortedPos != AllNodes.end() && "Overran node list"); 9337 ++SortedPos; 9338 } else { 9339 // Update P's outstanding operand count. 9340 P->setNodeId(Degree); 9341 } 9342 } 9343 if (Node.getIterator() == SortedPos) { 9344 #ifndef NDEBUG 9345 allnodes_iterator I(N); 9346 SDNode *S = &*++I; 9347 dbgs() << "Overran sorted position:\n"; 9348 S->dumprFull(this); dbgs() << "\n"; 9349 dbgs() << "Checking if this is due to cycles\n"; 9350 checkForCycles(this, true); 9351 #endif 9352 llvm_unreachable(nullptr); 9353 } 9354 } 9355 9356 assert(SortedPos == AllNodes.end() && 9357 "Topological sort incomplete!"); 9358 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9359 "First node in topological sort is not the entry token!"); 9360 assert(AllNodes.front().getNodeId() == 0 && 9361 "First node in topological sort has non-zero id!"); 9362 assert(AllNodes.front().getNumOperands() == 0 && 9363 "First node in topological sort has operands!"); 9364 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9365 "Last node in topologic sort has unexpected id!"); 9366 assert(AllNodes.back().use_empty() && 9367 "Last node in topologic sort has users!"); 9368 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9369 return DAGSize; 9370 } 9371 9372 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9373 /// value is produced by SD. 9374 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9375 for (SDNode *SD : DB->getSDNodes()) { 9376 if (!SD) 9377 continue; 9378 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9379 SD->setHasDebugValue(true); 9380 } 9381 DbgInfo->add(DB, isParameter); 9382 } 9383 9384 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9385 9386 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9387 SDValue NewMemOpChain) { 9388 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9389 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9390 // The new memory operation must have the same position as the old load in 9391 // terms of memory dependency. Create a TokenFactor for the old load and new 9392 // memory operation and update uses of the old load's output chain to use that 9393 // TokenFactor. 9394 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9395 return NewMemOpChain; 9396 9397 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9398 OldChain, NewMemOpChain); 9399 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9400 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9401 return TokenFactor; 9402 } 9403 9404 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9405 SDValue NewMemOp) { 9406 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9407 SDValue OldChain = SDValue(OldLoad, 1); 9408 SDValue NewMemOpChain = NewMemOp.getValue(1); 9409 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9410 } 9411 9412 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9413 Function **OutFunction) { 9414 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9415 9416 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9417 auto *Module = MF->getFunction().getParent(); 9418 auto *Function = Module->getFunction(Symbol); 9419 9420 if (OutFunction != nullptr) 9421 *OutFunction = Function; 9422 9423 if (Function != nullptr) { 9424 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9425 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9426 } 9427 9428 std::string ErrorStr; 9429 raw_string_ostream ErrorFormatter(ErrorStr); 9430 9431 ErrorFormatter << "Undefined external symbol "; 9432 ErrorFormatter << '"' << Symbol << '"'; 9433 ErrorFormatter.flush(); 9434 9435 report_fatal_error(ErrorStr); 9436 } 9437 9438 //===----------------------------------------------------------------------===// 9439 // SDNode Class 9440 //===----------------------------------------------------------------------===// 9441 9442 bool llvm::isNullConstant(SDValue V) { 9443 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9444 return Const != nullptr && Const->isNullValue(); 9445 } 9446 9447 bool llvm::isNullFPConstant(SDValue V) { 9448 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9449 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9450 } 9451 9452 bool llvm::isAllOnesConstant(SDValue V) { 9453 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9454 return Const != nullptr && Const->isAllOnesValue(); 9455 } 9456 9457 bool llvm::isOneConstant(SDValue V) { 9458 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9459 return Const != nullptr && Const->isOne(); 9460 } 9461 9462 SDValue llvm::peekThroughBitcasts(SDValue V) { 9463 while (V.getOpcode() == ISD::BITCAST) 9464 V = V.getOperand(0); 9465 return V; 9466 } 9467 9468 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9469 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9470 V = V.getOperand(0); 9471 return V; 9472 } 9473 9474 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9475 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9476 V = V.getOperand(0); 9477 return V; 9478 } 9479 9480 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9481 if (V.getOpcode() != ISD::XOR) 9482 return false; 9483 V = peekThroughBitcasts(V.getOperand(1)); 9484 unsigned NumBits = V.getScalarValueSizeInBits(); 9485 ConstantSDNode *C = 9486 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9487 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9488 } 9489 9490 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9491 bool AllowTruncation) { 9492 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9493 return CN; 9494 9495 // SplatVectors can truncate their operands. Ignore that case here unless 9496 // AllowTruncation is set. 9497 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9498 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9499 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9500 EVT CVT = CN->getValueType(0); 9501 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9502 if (AllowTruncation || CVT == VecEltVT) 9503 return CN; 9504 } 9505 } 9506 9507 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9508 BitVector UndefElements; 9509 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9510 9511 // BuildVectors can truncate their operands. Ignore that case here unless 9512 // AllowTruncation is set. 9513 if (CN && (UndefElements.none() || AllowUndefs)) { 9514 EVT CVT = CN->getValueType(0); 9515 EVT NSVT = N.getValueType().getScalarType(); 9516 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9517 if (AllowTruncation || (CVT == NSVT)) 9518 return CN; 9519 } 9520 } 9521 9522 return nullptr; 9523 } 9524 9525 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9526 bool AllowUndefs, 9527 bool AllowTruncation) { 9528 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9529 return CN; 9530 9531 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9532 BitVector UndefElements; 9533 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9534 9535 // BuildVectors can truncate their operands. Ignore that case here unless 9536 // AllowTruncation is set. 9537 if (CN && (UndefElements.none() || AllowUndefs)) { 9538 EVT CVT = CN->getValueType(0); 9539 EVT NSVT = N.getValueType().getScalarType(); 9540 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9541 if (AllowTruncation || (CVT == NSVT)) 9542 return CN; 9543 } 9544 } 9545 9546 return nullptr; 9547 } 9548 9549 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9550 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9551 return CN; 9552 9553 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9554 BitVector UndefElements; 9555 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9556 if (CN && (UndefElements.none() || AllowUndefs)) 9557 return CN; 9558 } 9559 9560 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9561 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9562 return CN; 9563 9564 return nullptr; 9565 } 9566 9567 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9568 const APInt &DemandedElts, 9569 bool AllowUndefs) { 9570 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9571 return CN; 9572 9573 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9574 BitVector UndefElements; 9575 ConstantFPSDNode *CN = 9576 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9577 if (CN && (UndefElements.none() || AllowUndefs)) 9578 return CN; 9579 } 9580 9581 return nullptr; 9582 } 9583 9584 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9585 // TODO: may want to use peekThroughBitcast() here. 9586 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9587 return C && C->isNullValue(); 9588 } 9589 9590 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9591 // TODO: may want to use peekThroughBitcast() here. 9592 unsigned BitWidth = N.getScalarValueSizeInBits(); 9593 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9594 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9595 } 9596 9597 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9598 N = peekThroughBitcasts(N); 9599 unsigned BitWidth = N.getScalarValueSizeInBits(); 9600 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9601 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9602 } 9603 9604 HandleSDNode::~HandleSDNode() { 9605 DropOperands(); 9606 } 9607 9608 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9609 const DebugLoc &DL, 9610 const GlobalValue *GA, EVT VT, 9611 int64_t o, unsigned TF) 9612 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9613 TheGlobal = GA; 9614 } 9615 9616 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9617 EVT VT, unsigned SrcAS, 9618 unsigned DestAS) 9619 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9620 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9621 9622 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9623 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9624 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9625 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9626 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9627 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9628 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9629 9630 // We check here that the size of the memory operand fits within the size of 9631 // the MMO. This is because the MMO might indicate only a possible address 9632 // range instead of specifying the affected memory addresses precisely. 9633 // TODO: Make MachineMemOperands aware of scalable vectors. 9634 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9635 "Size mismatch!"); 9636 } 9637 9638 /// Profile - Gather unique data for the node. 9639 /// 9640 void SDNode::Profile(FoldingSetNodeID &ID) const { 9641 AddNodeIDNode(ID, this); 9642 } 9643 9644 namespace { 9645 9646 struct EVTArray { 9647 std::vector<EVT> VTs; 9648 9649 EVTArray() { 9650 VTs.reserve(MVT::LAST_VALUETYPE); 9651 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9652 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9653 } 9654 }; 9655 9656 } // end anonymous namespace 9657 9658 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9659 static ManagedStatic<EVTArray> SimpleVTArray; 9660 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9661 9662 /// getValueTypeList - Return a pointer to the specified value type. 9663 /// 9664 const EVT *SDNode::getValueTypeList(EVT VT) { 9665 if (VT.isExtended()) { 9666 sys::SmartScopedLock<true> Lock(*VTMutex); 9667 return &(*EVTs->insert(VT).first); 9668 } 9669 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!"); 9670 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9671 } 9672 9673 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9674 /// indicated value. This method ignores uses of other values defined by this 9675 /// operation. 9676 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9677 assert(Value < getNumValues() && "Bad value!"); 9678 9679 // TODO: Only iterate over uses of a given value of the node 9680 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9681 if (UI.getUse().getResNo() == Value) { 9682 if (NUses == 0) 9683 return false; 9684 --NUses; 9685 } 9686 } 9687 9688 // Found exactly the right number of uses? 9689 return NUses == 0; 9690 } 9691 9692 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9693 /// value. This method ignores uses of other values defined by this operation. 9694 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9695 assert(Value < getNumValues() && "Bad value!"); 9696 9697 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9698 if (UI.getUse().getResNo() == Value) 9699 return true; 9700 9701 return false; 9702 } 9703 9704 /// isOnlyUserOf - Return true if this node is the only use of N. 9705 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9706 bool Seen = false; 9707 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9708 SDNode *User = *I; 9709 if (User == this) 9710 Seen = true; 9711 else 9712 return false; 9713 } 9714 9715 return Seen; 9716 } 9717 9718 /// Return true if the only users of N are contained in Nodes. 9719 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9720 bool Seen = false; 9721 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9722 SDNode *User = *I; 9723 if (llvm::is_contained(Nodes, User)) 9724 Seen = true; 9725 else 9726 return false; 9727 } 9728 9729 return Seen; 9730 } 9731 9732 /// isOperand - Return true if this node is an operand of N. 9733 bool SDValue::isOperandOf(const SDNode *N) const { 9734 return is_contained(N->op_values(), *this); 9735 } 9736 9737 bool SDNode::isOperandOf(const SDNode *N) const { 9738 return any_of(N->op_values(), 9739 [this](SDValue Op) { return this == Op.getNode(); }); 9740 } 9741 9742 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9743 /// be a chain) reaches the specified operand without crossing any 9744 /// side-effecting instructions on any chain path. In practice, this looks 9745 /// through token factors and non-volatile loads. In order to remain efficient, 9746 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9747 /// 9748 /// Note that we only need to examine chains when we're searching for 9749 /// side-effects; SelectionDAG requires that all side-effects are represented 9750 /// by chains, even if another operand would force a specific ordering. This 9751 /// constraint is necessary to allow transformations like splitting loads. 9752 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9753 unsigned Depth) const { 9754 if (*this == Dest) return true; 9755 9756 // Don't search too deeply, we just want to be able to see through 9757 // TokenFactor's etc. 9758 if (Depth == 0) return false; 9759 9760 // If this is a token factor, all inputs to the TF happen in parallel. 9761 if (getOpcode() == ISD::TokenFactor) { 9762 // First, try a shallow search. 9763 if (is_contained((*this)->ops(), Dest)) { 9764 // We found the chain we want as an operand of this TokenFactor. 9765 // Essentially, we reach the chain without side-effects if we could 9766 // serialize the TokenFactor into a simple chain of operations with 9767 // Dest as the last operation. This is automatically true if the 9768 // chain has one use: there are no other ordering constraints. 9769 // If the chain has more than one use, we give up: some other 9770 // use of Dest might force a side-effect between Dest and the current 9771 // node. 9772 if (Dest.hasOneUse()) 9773 return true; 9774 } 9775 // Next, try a deep search: check whether every operand of the TokenFactor 9776 // reaches Dest. 9777 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9778 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9779 }); 9780 } 9781 9782 // Loads don't have side effects, look through them. 9783 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9784 if (Ld->isUnordered()) 9785 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9786 } 9787 return false; 9788 } 9789 9790 bool SDNode::hasPredecessor(const SDNode *N) const { 9791 SmallPtrSet<const SDNode *, 32> Visited; 9792 SmallVector<const SDNode *, 16> Worklist; 9793 Worklist.push_back(this); 9794 return hasPredecessorHelper(N, Visited, Worklist); 9795 } 9796 9797 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9798 this->Flags.intersectWith(Flags); 9799 } 9800 9801 SDValue 9802 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9803 ArrayRef<ISD::NodeType> CandidateBinOps, 9804 bool AllowPartials) { 9805 // The pattern must end in an extract from index 0. 9806 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9807 !isNullConstant(Extract->getOperand(1))) 9808 return SDValue(); 9809 9810 // Match against one of the candidate binary ops. 9811 SDValue Op = Extract->getOperand(0); 9812 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9813 return Op.getOpcode() == unsigned(BinOp); 9814 })) 9815 return SDValue(); 9816 9817 // Floating-point reductions may require relaxed constraints on the final step 9818 // of the reduction because they may reorder intermediate operations. 9819 unsigned CandidateBinOp = Op.getOpcode(); 9820 if (Op.getValueType().isFloatingPoint()) { 9821 SDNodeFlags Flags = Op->getFlags(); 9822 switch (CandidateBinOp) { 9823 case ISD::FADD: 9824 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9825 return SDValue(); 9826 break; 9827 default: 9828 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9829 } 9830 } 9831 9832 // Matching failed - attempt to see if we did enough stages that a partial 9833 // reduction from a subvector is possible. 9834 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9835 if (!AllowPartials || !Op) 9836 return SDValue(); 9837 EVT OpVT = Op.getValueType(); 9838 EVT OpSVT = OpVT.getScalarType(); 9839 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9840 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9841 return SDValue(); 9842 BinOp = (ISD::NodeType)CandidateBinOp; 9843 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9844 getVectorIdxConstant(0, SDLoc(Op))); 9845 }; 9846 9847 // At each stage, we're looking for something that looks like: 9848 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9849 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9850 // i32 undef, i32 undef, i32 undef, i32 undef> 9851 // %a = binop <8 x i32> %op, %s 9852 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9853 // we expect something like: 9854 // <4,5,6,7,u,u,u,u> 9855 // <2,3,u,u,u,u,u,u> 9856 // <1,u,u,u,u,u,u,u> 9857 // While a partial reduction match would be: 9858 // <2,3,u,u,u,u,u,u> 9859 // <1,u,u,u,u,u,u,u> 9860 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9861 SDValue PrevOp; 9862 for (unsigned i = 0; i < Stages; ++i) { 9863 unsigned MaskEnd = (1 << i); 9864 9865 if (Op.getOpcode() != CandidateBinOp) 9866 return PartialReduction(PrevOp, MaskEnd); 9867 9868 SDValue Op0 = Op.getOperand(0); 9869 SDValue Op1 = Op.getOperand(1); 9870 9871 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9872 if (Shuffle) { 9873 Op = Op1; 9874 } else { 9875 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9876 Op = Op0; 9877 } 9878 9879 // The first operand of the shuffle should be the same as the other operand 9880 // of the binop. 9881 if (!Shuffle || Shuffle->getOperand(0) != Op) 9882 return PartialReduction(PrevOp, MaskEnd); 9883 9884 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9885 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9886 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9887 return PartialReduction(PrevOp, MaskEnd); 9888 9889 PrevOp = Op; 9890 } 9891 9892 // Handle subvector reductions, which tend to appear after the shuffle 9893 // reduction stages. 9894 while (Op.getOpcode() == CandidateBinOp) { 9895 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9896 SDValue Op0 = Op.getOperand(0); 9897 SDValue Op1 = Op.getOperand(1); 9898 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9899 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9900 Op0.getOperand(0) != Op1.getOperand(0)) 9901 break; 9902 SDValue Src = Op0.getOperand(0); 9903 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9904 if (NumSrcElts != (2 * NumElts)) 9905 break; 9906 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9907 Op1.getConstantOperandAPInt(1) == NumElts) && 9908 !(Op1.getConstantOperandAPInt(1) == 0 && 9909 Op0.getConstantOperandAPInt(1) == NumElts)) 9910 break; 9911 Op = Src; 9912 } 9913 9914 BinOp = (ISD::NodeType)CandidateBinOp; 9915 return Op; 9916 } 9917 9918 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9919 assert(N->getNumValues() == 1 && 9920 "Can't unroll a vector with multiple results!"); 9921 9922 EVT VT = N->getValueType(0); 9923 unsigned NE = VT.getVectorNumElements(); 9924 EVT EltVT = VT.getVectorElementType(); 9925 SDLoc dl(N); 9926 9927 SmallVector<SDValue, 8> Scalars; 9928 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9929 9930 // If ResNE is 0, fully unroll the vector op. 9931 if (ResNE == 0) 9932 ResNE = NE; 9933 else if (NE > ResNE) 9934 NE = ResNE; 9935 9936 unsigned i; 9937 for (i= 0; i != NE; ++i) { 9938 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9939 SDValue Operand = N->getOperand(j); 9940 EVT OperandVT = Operand.getValueType(); 9941 if (OperandVT.isVector()) { 9942 // A vector operand; extract a single element. 9943 EVT OperandEltVT = OperandVT.getVectorElementType(); 9944 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9945 Operand, getVectorIdxConstant(i, dl)); 9946 } else { 9947 // A scalar operand; just use it as is. 9948 Operands[j] = Operand; 9949 } 9950 } 9951 9952 switch (N->getOpcode()) { 9953 default: { 9954 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9955 N->getFlags())); 9956 break; 9957 } 9958 case ISD::VSELECT: 9959 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9960 break; 9961 case ISD::SHL: 9962 case ISD::SRA: 9963 case ISD::SRL: 9964 case ISD::ROTL: 9965 case ISD::ROTR: 9966 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9967 getShiftAmountOperand(Operands[0].getValueType(), 9968 Operands[1]))); 9969 break; 9970 case ISD::SIGN_EXTEND_INREG: { 9971 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9972 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9973 Operands[0], 9974 getValueType(ExtVT))); 9975 } 9976 } 9977 } 9978 9979 for (; i < ResNE; ++i) 9980 Scalars.push_back(getUNDEF(EltVT)); 9981 9982 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9983 return getBuildVector(VecVT, dl, Scalars); 9984 } 9985 9986 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9987 SDNode *N, unsigned ResNE) { 9988 unsigned Opcode = N->getOpcode(); 9989 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9990 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9991 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9992 "Expected an overflow opcode"); 9993 9994 EVT ResVT = N->getValueType(0); 9995 EVT OvVT = N->getValueType(1); 9996 EVT ResEltVT = ResVT.getVectorElementType(); 9997 EVT OvEltVT = OvVT.getVectorElementType(); 9998 SDLoc dl(N); 9999 10000 // If ResNE is 0, fully unroll the vector op. 10001 unsigned NE = ResVT.getVectorNumElements(); 10002 if (ResNE == 0) 10003 ResNE = NE; 10004 else if (NE > ResNE) 10005 NE = ResNE; 10006 10007 SmallVector<SDValue, 8> LHSScalars; 10008 SmallVector<SDValue, 8> RHSScalars; 10009 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10010 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10011 10012 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10013 SDVTList VTs = getVTList(ResEltVT, SVT); 10014 SmallVector<SDValue, 8> ResScalars; 10015 SmallVector<SDValue, 8> OvScalars; 10016 for (unsigned i = 0; i < NE; ++i) { 10017 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10018 SDValue Ov = 10019 getSelect(dl, OvEltVT, Res.getValue(1), 10020 getBoolConstant(true, dl, OvEltVT, ResVT), 10021 getConstant(0, dl, OvEltVT)); 10022 10023 ResScalars.push_back(Res); 10024 OvScalars.push_back(Ov); 10025 } 10026 10027 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10028 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10029 10030 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10031 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10032 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10033 getBuildVector(NewOvVT, dl, OvScalars)); 10034 } 10035 10036 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10037 LoadSDNode *Base, 10038 unsigned Bytes, 10039 int Dist) const { 10040 if (LD->isVolatile() || Base->isVolatile()) 10041 return false; 10042 // TODO: probably too restrictive for atomics, revisit 10043 if (!LD->isSimple()) 10044 return false; 10045 if (LD->isIndexed() || Base->isIndexed()) 10046 return false; 10047 if (LD->getChain() != Base->getChain()) 10048 return false; 10049 EVT VT = LD->getValueType(0); 10050 if (VT.getSizeInBits() / 8 != Bytes) 10051 return false; 10052 10053 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10054 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10055 10056 int64_t Offset = 0; 10057 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10058 return (Dist * Bytes == Offset); 10059 return false; 10060 } 10061 10062 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10063 /// if it cannot be inferred. 10064 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10065 // If this is a GlobalAddress + cst, return the alignment. 10066 const GlobalValue *GV = nullptr; 10067 int64_t GVOffset = 0; 10068 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10069 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10070 KnownBits Known(PtrWidth); 10071 llvm::computeKnownBits(GV, Known, getDataLayout()); 10072 unsigned AlignBits = Known.countMinTrailingZeros(); 10073 if (AlignBits) 10074 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10075 } 10076 10077 // If this is a direct reference to a stack slot, use information about the 10078 // stack slot's alignment. 10079 int FrameIdx = INT_MIN; 10080 int64_t FrameOffset = 0; 10081 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10082 FrameIdx = FI->getIndex(); 10083 } else if (isBaseWithConstantOffset(Ptr) && 10084 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10085 // Handle FI+Cst 10086 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10087 FrameOffset = Ptr.getConstantOperandVal(1); 10088 } 10089 10090 if (FrameIdx != INT_MIN) { 10091 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10092 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10093 } 10094 10095 return None; 10096 } 10097 10098 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10099 /// which is split (or expanded) into two not necessarily identical pieces. 10100 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10101 // Currently all types are split in half. 10102 EVT LoVT, HiVT; 10103 if (!VT.isVector()) 10104 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10105 else 10106 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10107 10108 return std::make_pair(LoVT, HiVT); 10109 } 10110 10111 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10112 /// type, dependent on an enveloping VT that has been split into two identical 10113 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10114 std::pair<EVT, EVT> 10115 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10116 bool *HiIsEmpty) const { 10117 EVT EltTp = VT.getVectorElementType(); 10118 // Examples: 10119 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10120 // custom VL=9 with enveloping VL=8/8 yields 8/1 10121 // custom VL=10 with enveloping VL=8/8 yields 8/2 10122 // etc. 10123 ElementCount VTNumElts = VT.getVectorElementCount(); 10124 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10125 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10126 "Mixing fixed width and scalable vectors when enveloping a type"); 10127 EVT LoVT, HiVT; 10128 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10129 LoVT = EnvVT; 10130 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10131 *HiIsEmpty = false; 10132 } else { 10133 // Flag that hi type has zero storage size, but return split envelop type 10134 // (this would be easier if vector types with zero elements were allowed). 10135 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10136 HiVT = EnvVT; 10137 *HiIsEmpty = true; 10138 } 10139 return std::make_pair(LoVT, HiVT); 10140 } 10141 10142 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10143 /// low/high part. 10144 std::pair<SDValue, SDValue> 10145 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10146 const EVT &HiVT) { 10147 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10148 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10149 "Splitting vector with an invalid mixture of fixed and scalable " 10150 "vector types"); 10151 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10152 N.getValueType().getVectorMinNumElements() && 10153 "More vector elements requested than available!"); 10154 SDValue Lo, Hi; 10155 Lo = 10156 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10157 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10158 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10159 // IDX with the runtime scaling factor of the result vector type. For 10160 // fixed-width result vectors, that runtime scaling factor is 1. 10161 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10162 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10163 return std::make_pair(Lo, Hi); 10164 } 10165 10166 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10167 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10168 EVT VT = N.getValueType(); 10169 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10170 NextPowerOf2(VT.getVectorNumElements())); 10171 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10172 getVectorIdxConstant(0, DL)); 10173 } 10174 10175 void SelectionDAG::ExtractVectorElements(SDValue Op, 10176 SmallVectorImpl<SDValue> &Args, 10177 unsigned Start, unsigned Count, 10178 EVT EltVT) { 10179 EVT VT = Op.getValueType(); 10180 if (Count == 0) 10181 Count = VT.getVectorNumElements(); 10182 if (EltVT == EVT()) 10183 EltVT = VT.getVectorElementType(); 10184 SDLoc SL(Op); 10185 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10186 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10187 getVectorIdxConstant(i, SL))); 10188 } 10189 } 10190 10191 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10192 unsigned GlobalAddressSDNode::getAddressSpace() const { 10193 return getGlobal()->getType()->getAddressSpace(); 10194 } 10195 10196 Type *ConstantPoolSDNode::getType() const { 10197 if (isMachineConstantPoolEntry()) 10198 return Val.MachineCPVal->getType(); 10199 return Val.ConstVal->getType(); 10200 } 10201 10202 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10203 unsigned &SplatBitSize, 10204 bool &HasAnyUndefs, 10205 unsigned MinSplatBits, 10206 bool IsBigEndian) const { 10207 EVT VT = getValueType(0); 10208 assert(VT.isVector() && "Expected a vector type"); 10209 unsigned VecWidth = VT.getSizeInBits(); 10210 if (MinSplatBits > VecWidth) 10211 return false; 10212 10213 // FIXME: The widths are based on this node's type, but build vectors can 10214 // truncate their operands. 10215 SplatValue = APInt(VecWidth, 0); 10216 SplatUndef = APInt(VecWidth, 0); 10217 10218 // Get the bits. Bits with undefined values (when the corresponding element 10219 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10220 // in SplatValue. If any of the values are not constant, give up and return 10221 // false. 10222 unsigned int NumOps = getNumOperands(); 10223 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10224 unsigned EltWidth = VT.getScalarSizeInBits(); 10225 10226 for (unsigned j = 0; j < NumOps; ++j) { 10227 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10228 SDValue OpVal = getOperand(i); 10229 unsigned BitPos = j * EltWidth; 10230 10231 if (OpVal.isUndef()) 10232 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10233 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10234 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10235 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10236 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10237 else 10238 return false; 10239 } 10240 10241 // The build_vector is all constants or undefs. Find the smallest element 10242 // size that splats the vector. 10243 HasAnyUndefs = (SplatUndef != 0); 10244 10245 // FIXME: This does not work for vectors with elements less than 8 bits. 10246 while (VecWidth > 8) { 10247 unsigned HalfSize = VecWidth / 2; 10248 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10249 APInt LowValue = SplatValue.trunc(HalfSize); 10250 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10251 APInt LowUndef = SplatUndef.trunc(HalfSize); 10252 10253 // If the two halves do not match (ignoring undef bits), stop here. 10254 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10255 MinSplatBits > HalfSize) 10256 break; 10257 10258 SplatValue = HighValue | LowValue; 10259 SplatUndef = HighUndef & LowUndef; 10260 10261 VecWidth = HalfSize; 10262 } 10263 10264 SplatBitSize = VecWidth; 10265 return true; 10266 } 10267 10268 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10269 BitVector *UndefElements) const { 10270 unsigned NumOps = getNumOperands(); 10271 if (UndefElements) { 10272 UndefElements->clear(); 10273 UndefElements->resize(NumOps); 10274 } 10275 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10276 if (!DemandedElts) 10277 return SDValue(); 10278 SDValue Splatted; 10279 for (unsigned i = 0; i != NumOps; ++i) { 10280 if (!DemandedElts[i]) 10281 continue; 10282 SDValue Op = getOperand(i); 10283 if (Op.isUndef()) { 10284 if (UndefElements) 10285 (*UndefElements)[i] = true; 10286 } else if (!Splatted) { 10287 Splatted = Op; 10288 } else if (Splatted != Op) { 10289 return SDValue(); 10290 } 10291 } 10292 10293 if (!Splatted) { 10294 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10295 assert(getOperand(FirstDemandedIdx).isUndef() && 10296 "Can only have a splat without a constant for all undefs."); 10297 return getOperand(FirstDemandedIdx); 10298 } 10299 10300 return Splatted; 10301 } 10302 10303 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10304 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10305 return getSplatValue(DemandedElts, UndefElements); 10306 } 10307 10308 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10309 SmallVectorImpl<SDValue> &Sequence, 10310 BitVector *UndefElements) const { 10311 unsigned NumOps = getNumOperands(); 10312 Sequence.clear(); 10313 if (UndefElements) { 10314 UndefElements->clear(); 10315 UndefElements->resize(NumOps); 10316 } 10317 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10318 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10319 return false; 10320 10321 // Set the undefs even if we don't find a sequence (like getSplatValue). 10322 if (UndefElements) 10323 for (unsigned I = 0; I != NumOps; ++I) 10324 if (DemandedElts[I] && getOperand(I).isUndef()) 10325 (*UndefElements)[I] = true; 10326 10327 // Iteratively widen the sequence length looking for repetitions. 10328 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10329 Sequence.append(SeqLen, SDValue()); 10330 for (unsigned I = 0; I != NumOps; ++I) { 10331 if (!DemandedElts[I]) 10332 continue; 10333 SDValue &SeqOp = Sequence[I % SeqLen]; 10334 SDValue Op = getOperand(I); 10335 if (Op.isUndef()) { 10336 if (!SeqOp) 10337 SeqOp = Op; 10338 continue; 10339 } 10340 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10341 Sequence.clear(); 10342 break; 10343 } 10344 SeqOp = Op; 10345 } 10346 if (!Sequence.empty()) 10347 return true; 10348 } 10349 10350 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10351 return false; 10352 } 10353 10354 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10355 BitVector *UndefElements) const { 10356 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10357 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10358 } 10359 10360 ConstantSDNode * 10361 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10362 BitVector *UndefElements) const { 10363 return dyn_cast_or_null<ConstantSDNode>( 10364 getSplatValue(DemandedElts, UndefElements)); 10365 } 10366 10367 ConstantSDNode * 10368 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10369 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10370 } 10371 10372 ConstantFPSDNode * 10373 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10374 BitVector *UndefElements) const { 10375 return dyn_cast_or_null<ConstantFPSDNode>( 10376 getSplatValue(DemandedElts, UndefElements)); 10377 } 10378 10379 ConstantFPSDNode * 10380 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10381 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10382 } 10383 10384 int32_t 10385 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10386 uint32_t BitWidth) const { 10387 if (ConstantFPSDNode *CN = 10388 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10389 bool IsExact; 10390 APSInt IntVal(BitWidth); 10391 const APFloat &APF = CN->getValueAPF(); 10392 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10393 APFloat::opOK || 10394 !IsExact) 10395 return -1; 10396 10397 return IntVal.exactLogBase2(); 10398 } 10399 return -1; 10400 } 10401 10402 bool BuildVectorSDNode::isConstant() const { 10403 for (const SDValue &Op : op_values()) { 10404 unsigned Opc = Op.getOpcode(); 10405 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10406 return false; 10407 } 10408 return true; 10409 } 10410 10411 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10412 // Find the first non-undef value in the shuffle mask. 10413 unsigned i, e; 10414 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10415 /* search */; 10416 10417 // If all elements are undefined, this shuffle can be considered a splat 10418 // (although it should eventually get simplified away completely). 10419 if (i == e) 10420 return true; 10421 10422 // Make sure all remaining elements are either undef or the same as the first 10423 // non-undef value. 10424 for (int Idx = Mask[i]; i != e; ++i) 10425 if (Mask[i] >= 0 && Mask[i] != Idx) 10426 return false; 10427 return true; 10428 } 10429 10430 // Returns the SDNode if it is a constant integer BuildVector 10431 // or constant integer. 10432 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10433 if (isa<ConstantSDNode>(N)) 10434 return N.getNode(); 10435 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10436 return N.getNode(); 10437 // Treat a GlobalAddress supporting constant offset folding as a 10438 // constant integer. 10439 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10440 if (GA->getOpcode() == ISD::GlobalAddress && 10441 TLI->isOffsetFoldingLegal(GA)) 10442 return GA; 10443 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10444 isa<ConstantSDNode>(N.getOperand(0))) 10445 return N.getNode(); 10446 return nullptr; 10447 } 10448 10449 // Returns the SDNode if it is a constant float BuildVector 10450 // or constant float. 10451 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10452 if (isa<ConstantFPSDNode>(N)) 10453 return N.getNode(); 10454 10455 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10456 return N.getNode(); 10457 10458 return nullptr; 10459 } 10460 10461 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10462 assert(!Node->OperandList && "Node already has operands"); 10463 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10464 "too many operands to fit into SDNode"); 10465 SDUse *Ops = OperandRecycler.allocate( 10466 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10467 10468 bool IsDivergent = false; 10469 for (unsigned I = 0; I != Vals.size(); ++I) { 10470 Ops[I].setUser(Node); 10471 Ops[I].setInitial(Vals[I]); 10472 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10473 IsDivergent |= Ops[I].getNode()->isDivergent(); 10474 } 10475 Node->NumOperands = Vals.size(); 10476 Node->OperandList = Ops; 10477 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10478 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10479 Node->SDNodeBits.IsDivergent = IsDivergent; 10480 } 10481 checkForCycles(Node); 10482 } 10483 10484 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10485 SmallVectorImpl<SDValue> &Vals) { 10486 size_t Limit = SDNode::getMaxNumOperands(); 10487 while (Vals.size() > Limit) { 10488 unsigned SliceIdx = Vals.size() - Limit; 10489 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10490 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10491 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10492 Vals.emplace_back(NewTF); 10493 } 10494 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10495 } 10496 10497 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10498 EVT VT, SDNodeFlags Flags) { 10499 switch (Opcode) { 10500 default: 10501 return SDValue(); 10502 case ISD::ADD: 10503 case ISD::OR: 10504 case ISD::XOR: 10505 case ISD::UMAX: 10506 return getConstant(0, DL, VT); 10507 case ISD::MUL: 10508 return getConstant(1, DL, VT); 10509 case ISD::AND: 10510 case ISD::UMIN: 10511 return getAllOnesConstant(DL, VT); 10512 case ISD::SMAX: 10513 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10514 case ISD::SMIN: 10515 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10516 case ISD::FADD: 10517 return getConstantFP(-0.0, DL, VT); 10518 case ISD::FMUL: 10519 return getConstantFP(1.0, DL, VT); 10520 case ISD::FMINNUM: 10521 case ISD::FMAXNUM: { 10522 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10523 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10524 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10525 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10526 APFloat::getLargest(Semantics); 10527 if (Opcode == ISD::FMAXNUM) 10528 NeutralAF.changeSign(); 10529 10530 return getConstantFP(NeutralAF, DL, VT); 10531 } 10532 } 10533 } 10534 10535 #ifndef NDEBUG 10536 static void checkForCyclesHelper(const SDNode *N, 10537 SmallPtrSetImpl<const SDNode*> &Visited, 10538 SmallPtrSetImpl<const SDNode*> &Checked, 10539 const llvm::SelectionDAG *DAG) { 10540 // If this node has already been checked, don't check it again. 10541 if (Checked.count(N)) 10542 return; 10543 10544 // If a node has already been visited on this depth-first walk, reject it as 10545 // a cycle. 10546 if (!Visited.insert(N).second) { 10547 errs() << "Detected cycle in SelectionDAG\n"; 10548 dbgs() << "Offending node:\n"; 10549 N->dumprFull(DAG); dbgs() << "\n"; 10550 abort(); 10551 } 10552 10553 for (const SDValue &Op : N->op_values()) 10554 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10555 10556 Checked.insert(N); 10557 Visited.erase(N); 10558 } 10559 #endif 10560 10561 void llvm::checkForCycles(const llvm::SDNode *N, 10562 const llvm::SelectionDAG *DAG, 10563 bool force) { 10564 #ifndef NDEBUG 10565 bool check = force; 10566 #ifdef EXPENSIVE_CHECKS 10567 check = true; 10568 #endif // EXPENSIVE_CHECKS 10569 if (check) { 10570 assert(N && "Checking nonexistent SDNode"); 10571 SmallPtrSet<const SDNode*, 32> visited; 10572 SmallPtrSet<const SDNode*, 32> checked; 10573 checkForCyclesHelper(N, visited, checked, DAG); 10574 } 10575 #endif // !NDEBUG 10576 } 10577 10578 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10579 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10580 } 10581