1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     break;
407   }
408   case ISD::BasicBlock:
409     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
410     break;
411   case ISD::Register:
412     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
413     break;
414   case ISD::RegisterMask:
415     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
416     break;
417   case ISD::SRCVALUE:
418     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
419     break;
420   case ISD::FrameIndex:
421   case ISD::TargetFrameIndex:
422     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
423     break;
424   case ISD::JumpTable:
425   case ISD::TargetJumpTable:
426     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
428     break;
429   case ISD::ConstantPool:
430   case ISD::TargetConstantPool: {
431     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
432     ID.AddInteger(CP->getAlignment());
433     ID.AddInteger(CP->getOffset());
434     if (CP->isMachineConstantPoolEntry())
435       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
436     else
437       ID.AddPointer(CP->getConstVal());
438     ID.AddInteger(CP->getTargetFlags());
439     break;
440   }
441   case ISD::TargetIndex: {
442     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
443     ID.AddInteger(TI->getIndex());
444     ID.AddInteger(TI->getOffset());
445     ID.AddInteger(TI->getTargetFlags());
446     break;
447   }
448   case ISD::LOAD: {
449     const LoadSDNode *LD = cast<LoadSDNode>(N);
450     ID.AddInteger(LD->getMemoryVT().getRawBits());
451     ID.AddInteger(LD->getRawSubclassData());
452     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
453     break;
454   }
455   case ISD::STORE: {
456     const StoreSDNode *ST = cast<StoreSDNode>(N);
457     ID.AddInteger(ST->getMemoryVT().getRawBits());
458     ID.AddInteger(ST->getRawSubclassData());
459     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
460     break;
461   }
462   case ISD::ATOMIC_CMP_SWAP:
463   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
464   case ISD::ATOMIC_SWAP:
465   case ISD::ATOMIC_LOAD_ADD:
466   case ISD::ATOMIC_LOAD_SUB:
467   case ISD::ATOMIC_LOAD_AND:
468   case ISD::ATOMIC_LOAD_OR:
469   case ISD::ATOMIC_LOAD_XOR:
470   case ISD::ATOMIC_LOAD_NAND:
471   case ISD::ATOMIC_LOAD_MIN:
472   case ISD::ATOMIC_LOAD_MAX:
473   case ISD::ATOMIC_LOAD_UMIN:
474   case ISD::ATOMIC_LOAD_UMAX:
475   case ISD::ATOMIC_LOAD:
476   case ISD::ATOMIC_STORE: {
477     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
478     ID.AddInteger(AT->getMemoryVT().getRawBits());
479     ID.AddInteger(AT->getRawSubclassData());
480     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::PREFETCH: {
484     const MemSDNode *PF = cast<MemSDNode>(N);
485     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
486     break;
487   }
488   case ISD::VECTOR_SHUFFLE: {
489     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
490     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
491          i != e; ++i)
492       ID.AddInteger(SVN->getMaskElt(i));
493     break;
494   }
495   case ISD::TargetBlockAddress:
496   case ISD::BlockAddress: {
497     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
498     ID.AddPointer(BA->getBlockAddress());
499     ID.AddInteger(BA->getOffset());
500     ID.AddInteger(BA->getTargetFlags());
501     break;
502   }
503   } // end switch (N->getOpcode())
504 
505   // Target specific memory nodes could also have address spaces to check.
506   if (N->isTargetMemoryOpcode())
507     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
508 }
509 
510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
511 /// data.
512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
513   AddNodeIDOpcode(ID, N->getOpcode());
514   // Add the return value info.
515   AddNodeIDValueTypes(ID, N->getVTList());
516   // Add the operand info.
517   AddNodeIDOperands(ID, N->ops());
518 
519   // Handle SDNode leafs with special info.
520   AddNodeIDCustom(ID, N);
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //                              SelectionDAG Class
525 //===----------------------------------------------------------------------===//
526 
527 /// doNotCSE - Return true if CSE should not be performed for this node.
528 static bool doNotCSE(SDNode *N) {
529   if (N->getValueType(0) == MVT::Glue)
530     return true; // Never CSE anything that produces a flag.
531 
532   switch (N->getOpcode()) {
533   default: break;
534   case ISD::HANDLENODE:
535   case ISD::EH_LABEL:
536     return true;   // Never CSE these nodes.
537   }
538 
539   // Check that remaining values produced are not flags.
540   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
541     if (N->getValueType(i) == MVT::Glue)
542       return true; // Never CSE anything that produces a flag.
543 
544   return false;
545 }
546 
547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
548 /// SelectionDAG.
549 void SelectionDAG::RemoveDeadNodes() {
550   // Create a dummy node (which is not added to allnodes), that adds a reference
551   // to the root node, preventing it from being deleted.
552   HandleSDNode Dummy(getRoot());
553 
554   SmallVector<SDNode*, 128> DeadNodes;
555 
556   // Add all obviously-dead nodes to the DeadNodes worklist.
557   for (SDNode &Node : allnodes())
558     if (Node.use_empty())
559       DeadNodes.push_back(&Node);
560 
561   RemoveDeadNodes(DeadNodes);
562 
563   // If the root changed (e.g. it was a dead load, update the root).
564   setRoot(Dummy.getValue());
565 }
566 
567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
568 /// given list, and any nodes that become unreachable as a result.
569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
570 
571   // Process the worklist, deleting the nodes and adding their uses to the
572   // worklist.
573   while (!DeadNodes.empty()) {
574     SDNode *N = DeadNodes.pop_back_val();
575 
576     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
577       DUL->NodeDeleted(N, nullptr);
578 
579     // Take the node out of the appropriate CSE map.
580     RemoveNodeFromCSEMaps(N);
581 
582     // Next, brutally remove the operand list.  This is safe to do, as there are
583     // no cycles in the graph.
584     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
585       SDUse &Use = *I++;
586       SDNode *Operand = Use.getNode();
587       Use.set(SDValue());
588 
589       // Now that we removed this operand, see if there are no uses of it left.
590       if (Operand->use_empty())
591         DeadNodes.push_back(Operand);
592     }
593 
594     DeallocateNode(N);
595   }
596 }
597 
598 void SelectionDAG::RemoveDeadNode(SDNode *N){
599   SmallVector<SDNode*, 16> DeadNodes(1, N);
600 
601   // Create a dummy node that adds a reference to the root node, preventing
602   // it from being deleted.  (This matters if the root is an operand of the
603   // dead node.)
604   HandleSDNode Dummy(getRoot());
605 
606   RemoveDeadNodes(DeadNodes);
607 }
608 
609 void SelectionDAG::DeleteNode(SDNode *N) {
610   // First take this out of the appropriate CSE map.
611   RemoveNodeFromCSEMaps(N);
612 
613   // Finally, remove uses due to operands of this node, remove from the
614   // AllNodes list, and delete the node.
615   DeleteNodeNotInCSEMaps(N);
616 }
617 
618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
619   assert(N->getIterator() != AllNodes.begin() &&
620          "Cannot delete the entry node!");
621   assert(N->use_empty() && "Cannot delete a node that is not dead!");
622 
623   // Drop all of the operands and decrement used node's use counts.
624   N->DropOperands();
625 
626   DeallocateNode(N);
627 }
628 
629 void SDDbgInfo::erase(const SDNode *Node) {
630   DbgValMapType::iterator I = DbgValMap.find(Node);
631   if (I == DbgValMap.end())
632     return;
633   for (auto &Val: I->second)
634     Val->setIsInvalidated();
635   DbgValMap.erase(I);
636 }
637 
638 void SelectionDAG::DeallocateNode(SDNode *N) {
639   // If we have operands, deallocate them.
640   removeOperands(N);
641 
642   // Set the opcode to DELETED_NODE to help catch bugs when node
643   // memory is reallocated.
644   N->NodeType = ISD::DELETED_NODE;
645 
646   NodeAllocator.Deallocate(AllNodes.remove(N));
647 
648   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
649   // them and forget about that node.
650   DbgInfo->erase(N);
651 }
652 
653 #ifndef NDEBUG
654 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
655 static void VerifySDNode(SDNode *N) {
656   switch (N->getOpcode()) {
657   default:
658     break;
659   case ISD::BUILD_PAIR: {
660     EVT VT = N->getValueType(0);
661     assert(N->getNumValues() == 1 && "Too many results!");
662     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
663            "Wrong return type!");
664     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
665     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
666            "Mismatched operand types!");
667     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
668            "Wrong operand type!");
669     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
670            "Wrong return type size");
671     break;
672   }
673   case ISD::BUILD_VECTOR: {
674     assert(N->getNumValues() == 1 && "Too many results!");
675     assert(N->getValueType(0).isVector() && "Wrong return type!");
676     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
677            "Wrong number of operands!");
678     EVT EltVT = N->getValueType(0).getVectorElementType();
679     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
680       assert((I->getValueType() == EltVT ||
681              (EltVT.isInteger() && I->getValueType().isInteger() &&
682               EltVT.bitsLE(I->getValueType()))) &&
683             "Wrong operand type!");
684       assert(I->getValueType() == N->getOperand(0).getValueType() &&
685              "Operands must all have the same type");
686     }
687     break;
688   }
689   }
690 }
691 #endif // NDEBUG
692 
693 /// \brief Insert a newly allocated node into the DAG.
694 ///
695 /// Handles insertion into the all nodes list and CSE map, as well as
696 /// verification and other common operations when a new node is allocated.
697 void SelectionDAG::InsertNode(SDNode *N) {
698   AllNodes.push_back(N);
699 #ifndef NDEBUG
700   N->PersistentId = NextPersistentId++;
701   VerifySDNode(N);
702 #endif
703 }
704 
705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
706 /// correspond to it.  This is useful when we're about to delete or repurpose
707 /// the node.  We don't want future request for structurally identical nodes
708 /// to return N anymore.
709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
710   bool Erased = false;
711   switch (N->getOpcode()) {
712   case ISD::HANDLENODE: return false;  // noop.
713   case ISD::CONDCODE:
714     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
715            "Cond code doesn't exist!");
716     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
717     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
718     break;
719   case ISD::ExternalSymbol:
720     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
721     break;
722   case ISD::TargetExternalSymbol: {
723     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
724     Erased = TargetExternalSymbols.erase(
725                std::pair<std::string,unsigned char>(ESN->getSymbol(),
726                                                     ESN->getTargetFlags()));
727     break;
728   }
729   case ISD::MCSymbol: {
730     auto *MCSN = cast<MCSymbolSDNode>(N);
731     Erased = MCSymbols.erase(MCSN->getMCSymbol());
732     break;
733   }
734   case ISD::VALUETYPE: {
735     EVT VT = cast<VTSDNode>(N)->getVT();
736     if (VT.isExtended()) {
737       Erased = ExtendedValueTypeNodes.erase(VT);
738     } else {
739       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
740       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
741     }
742     break;
743   }
744   default:
745     // Remove it from the CSE Map.
746     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
747     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
748     Erased = CSEMap.RemoveNode(N);
749     break;
750   }
751 #ifndef NDEBUG
752   // Verify that the node was actually in one of the CSE maps, unless it has a
753   // flag result (which cannot be CSE'd) or is one of the special cases that are
754   // not subject to CSE.
755   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
756       !N->isMachineOpcode() && !doNotCSE(N)) {
757     N->dump(this);
758     dbgs() << "\n";
759     llvm_unreachable("Node is not in map!");
760   }
761 #endif
762   return Erased;
763 }
764 
765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
766 /// maps and modified in place. Add it back to the CSE maps, unless an identical
767 /// node already exists, in which case transfer all its users to the existing
768 /// node. This transfer can potentially trigger recursive merging.
769 ///
770 void
771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
772   // For node types that aren't CSE'd, just act as if no identical node
773   // already exists.
774   if (!doNotCSE(N)) {
775     SDNode *Existing = CSEMap.GetOrInsertNode(N);
776     if (Existing != N) {
777       // If there was already an existing matching node, use ReplaceAllUsesWith
778       // to replace the dead one with the existing one.  This can cause
779       // recursive merging of other unrelated nodes down the line.
780       ReplaceAllUsesWith(N, Existing);
781 
782       // N is now dead. Inform the listeners and delete it.
783       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
784         DUL->NodeDeleted(N, Existing);
785       DeleteNodeNotInCSEMaps(N);
786       return;
787     }
788   }
789 
790   // If the node doesn't already exist, we updated it.  Inform listeners.
791   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
792     DUL->NodeUpdated(N);
793 }
794 
795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
796 /// were replaced with those specified.  If this node is never memoized,
797 /// return null, otherwise return a pointer to the slot it would take.  If a
798 /// node already exists with these operands, the slot will be non-null.
799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
800                                            void *&InsertPos) {
801   if (doNotCSE(N))
802     return nullptr;
803 
804   SDValue Ops[] = { Op };
805   FoldingSetNodeID ID;
806   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
807   AddNodeIDCustom(ID, N);
808   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
809   if (Node)
810     if (const SDNodeFlags *Flags = N->getFlags())
811       Node->intersectFlagsWith(Flags);
812   return Node;
813 }
814 
815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
816 /// were replaced with those specified.  If this node is never memoized,
817 /// return null, otherwise return a pointer to the slot it would take.  If a
818 /// node already exists with these operands, the slot will be non-null.
819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
820                                            SDValue Op1, SDValue Op2,
821                                            void *&InsertPos) {
822   if (doNotCSE(N))
823     return nullptr;
824 
825   SDValue Ops[] = { Op1, Op2 };
826   FoldingSetNodeID ID;
827   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
828   AddNodeIDCustom(ID, N);
829   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
830   if (Node)
831     if (const SDNodeFlags *Flags = N->getFlags())
832       Node->intersectFlagsWith(Flags);
833   return Node;
834 }
835 
836 
837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
838 /// were replaced with those specified.  If this node is never memoized,
839 /// return null, otherwise return a pointer to the slot it would take.  If a
840 /// node already exists with these operands, the slot will be non-null.
841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
842                                            void *&InsertPos) {
843   if (doNotCSE(N))
844     return nullptr;
845 
846   FoldingSetNodeID ID;
847   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
848   AddNodeIDCustom(ID, N);
849   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
850   if (Node)
851     if (const SDNodeFlags *Flags = N->getFlags())
852       Node->intersectFlagsWith(Flags);
853   return Node;
854 }
855 
856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
857   Type *Ty = VT == MVT::iPTR ?
858                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
859                    VT.getTypeForEVT(*getContext());
860 
861   return getDataLayout().getABITypeAlignment(Ty);
862 }
863 
864 // EntryNode could meaningfully have debug info if we can find it...
865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
866     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
867       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
868       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
869       UpdateListeners(nullptr) {
870   InsertNode(&EntryNode);
871   DbgInfo = new SDDbgInfo();
872 }
873 
874 void SelectionDAG::init(MachineFunction &mf) {
875   MF = &mf;
876   TLI = getSubtarget().getTargetLowering();
877   TSI = getSubtarget().getSelectionDAGInfo();
878   Context = &mf.getFunction()->getContext();
879 }
880 
881 SelectionDAG::~SelectionDAG() {
882   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
883   allnodes_clear();
884   OperandRecycler.clear(OperandAllocator);
885   delete DbgInfo;
886 }
887 
888 void SelectionDAG::allnodes_clear() {
889   assert(&*AllNodes.begin() == &EntryNode);
890   AllNodes.remove(AllNodes.begin());
891   while (!AllNodes.empty())
892     DeallocateNode(&AllNodes.front());
893 #ifndef NDEBUG
894   NextPersistentId = 0;
895 #endif
896 }
897 
898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
899                                       SDVTList VTs, SDValue N1, SDValue N2,
900                                       const SDNodeFlags *Flags) {
901   SDValue Ops[] = {N1, N2};
902 
903   if (isBinOpWithFlags(Opcode)) {
904     // If no flags were passed in, use a default flags object.
905     SDNodeFlags F;
906     if (Flags == nullptr)
907       Flags = &F;
908 
909     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
910                                                 DL.getDebugLoc(), VTs, *Flags);
911     createOperands(FN, Ops);
912 
913     return FN;
914   }
915 
916   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
917   createOperands(N, Ops);
918   return N;
919 }
920 
921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
922                                           void *&InsertPos) {
923   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
924   if (N) {
925     switch (N->getOpcode()) {
926     default: break;
927     case ISD::Constant:
928     case ISD::ConstantFP:
929       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
930                        "debug location.  Use another overload.");
931     }
932   }
933   return N;
934 }
935 
936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
937                                           const SDLoc &DL, void *&InsertPos) {
938   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
939   if (N) {
940     switch (N->getOpcode()) {
941     case ISD::Constant:
942     case ISD::ConstantFP:
943       // Erase debug location from the node if the node is used at several
944       // different places. Do not propagate one location to all uses as it
945       // will cause a worse single stepping debugging experience.
946       if (N->getDebugLoc() != DL.getDebugLoc())
947         N->setDebugLoc(DebugLoc());
948       break;
949     default:
950       // When the node's point of use is located earlier in the instruction
951       // sequence than its prior point of use, update its debug info to the
952       // earlier location.
953       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
954         N->setDebugLoc(DL.getDebugLoc());
955       break;
956     }
957   }
958   return N;
959 }
960 
961 void SelectionDAG::clear() {
962   allnodes_clear();
963   OperandRecycler.clear(OperandAllocator);
964   OperandAllocator.Reset();
965   CSEMap.clear();
966 
967   ExtendedValueTypeNodes.clear();
968   ExternalSymbols.clear();
969   TargetExternalSymbols.clear();
970   MCSymbols.clear();
971   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
972             static_cast<CondCodeSDNode*>(nullptr));
973   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
974             static_cast<SDNode*>(nullptr));
975 
976   EntryNode.UseList = nullptr;
977   InsertNode(&EntryNode);
978   Root = getEntryNode();
979   DbgInfo->clear();
980 }
981 
982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
983   return VT.bitsGT(Op.getValueType()) ?
984     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
985     getNode(ISD::TRUNCATE, DL, VT, Op);
986 }
987 
988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
989   return VT.bitsGT(Op.getValueType()) ?
990     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
991     getNode(ISD::TRUNCATE, DL, VT, Op);
992 }
993 
994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
995   return VT.bitsGT(Op.getValueType()) ?
996     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
997     getNode(ISD::TRUNCATE, DL, VT, Op);
998 }
999 
1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1001                                         EVT OpVT) {
1002   if (VT.bitsLE(Op.getValueType()))
1003     return getNode(ISD::TRUNCATE, SL, VT, Op);
1004 
1005   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1006   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1007 }
1008 
1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1010   assert(!VT.isVector() &&
1011          "getZeroExtendInReg should use the vector element type instead of "
1012          "the vector type!");
1013   if (Op.getValueType() == VT) return Op;
1014   unsigned BitWidth = Op.getScalarValueSizeInBits();
1015   APInt Imm = APInt::getLowBitsSet(BitWidth,
1016                                    VT.getSizeInBits());
1017   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1018                  getConstant(Imm, DL, Op.getValueType()));
1019 }
1020 
1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1022                                               EVT VT) {
1023   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1024   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1025          "The sizes of the input and result must match in order to perform the "
1026          "extend in-register.");
1027   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1028          "The destination vector type must have fewer lanes than the input.");
1029   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1030 }
1031 
1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1033                                                EVT VT) {
1034   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1035   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1036          "The sizes of the input and result must match in order to perform the "
1037          "extend in-register.");
1038   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1039          "The destination vector type must have fewer lanes than the input.");
1040   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1041 }
1042 
1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1044                                                EVT VT) {
1045   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1046   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1047          "The sizes of the input and result must match in order to perform the "
1048          "extend in-register.");
1049   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1050          "The destination vector type must have fewer lanes than the input.");
1051   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1052 }
1053 
1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1055 ///
1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1057   EVT EltVT = VT.getScalarType();
1058   SDValue NegOne =
1059     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1060   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1061 }
1062 
1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1064   EVT EltVT = VT.getScalarType();
1065   SDValue TrueValue;
1066   switch (TLI->getBooleanContents(VT)) {
1067     case TargetLowering::ZeroOrOneBooleanContent:
1068     case TargetLowering::UndefinedBooleanContent:
1069       TrueValue = getConstant(1, DL, VT);
1070       break;
1071     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1072       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1073                               VT);
1074       break;
1075   }
1076   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1077 }
1078 
1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1080                                   bool isT, bool isO) {
1081   EVT EltVT = VT.getScalarType();
1082   assert((EltVT.getSizeInBits() >= 64 ||
1083          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1084          "getConstant with a uint64_t value that doesn't fit in the type!");
1085   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1086 }
1087 
1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1089                                   bool isT, bool isO) {
1090   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1091 }
1092 
1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1094                                   EVT VT, bool isT, bool isO) {
1095   assert(VT.isInteger() && "Cannot create FP integer constant!");
1096 
1097   EVT EltVT = VT.getScalarType();
1098   const ConstantInt *Elt = &Val;
1099 
1100   // In some cases the vector type is legal but the element type is illegal and
1101   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1102   // inserted value (the type does not need to match the vector element type).
1103   // Any extra bits introduced will be truncated away.
1104   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1105       TargetLowering::TypePromoteInteger) {
1106    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1107    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1108    Elt = ConstantInt::get(*getContext(), NewVal);
1109   }
1110   // In other cases the element type is illegal and needs to be expanded, for
1111   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1112   // the value into n parts and use a vector type with n-times the elements.
1113   // Then bitcast to the type requested.
1114   // Legalizing constants too early makes the DAGCombiner's job harder so we
1115   // only legalize if the DAG tells us we must produce legal types.
1116   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1117            TLI->getTypeAction(*getContext(), EltVT) ==
1118            TargetLowering::TypeExpandInteger) {
1119     const APInt &NewVal = Elt->getValue();
1120     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1121     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1122     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1123     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1124 
1125     // Check the temporary vector is the correct size. If this fails then
1126     // getTypeToTransformTo() probably returned a type whose size (in bits)
1127     // isn't a power-of-2 factor of the requested type size.
1128     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1129 
1130     SmallVector<SDValue, 2> EltParts;
1131     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1132       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1133                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1134                                      ViaEltVT, isT, isO));
1135     }
1136 
1137     // EltParts is currently in little endian order. If we actually want
1138     // big-endian order then reverse it now.
1139     if (getDataLayout().isBigEndian())
1140       std::reverse(EltParts.begin(), EltParts.end());
1141 
1142     // The elements must be reversed when the element order is different
1143     // to the endianness of the elements (because the BITCAST is itself a
1144     // vector shuffle in this situation). However, we do not need any code to
1145     // perform this reversal because getConstant() is producing a vector
1146     // splat.
1147     // This situation occurs in MIPS MSA.
1148 
1149     SmallVector<SDValue, 8> Ops;
1150     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1151       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1152     return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1153   }
1154 
1155   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1156          "APInt size does not match type size!");
1157   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1158   FoldingSetNodeID ID;
1159   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1160   ID.AddPointer(Elt);
1161   ID.AddBoolean(isO);
1162   void *IP = nullptr;
1163   SDNode *N = nullptr;
1164   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1165     if (!VT.isVector())
1166       return SDValue(N, 0);
1167 
1168   if (!N) {
1169     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1170     CSEMap.InsertNode(N, IP);
1171     InsertNode(N);
1172   }
1173 
1174   SDValue Result(N, 0);
1175   if (VT.isVector())
1176     Result = getSplatBuildVector(VT, DL, Result);
1177   return Result;
1178 }
1179 
1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1181                                         bool isTarget) {
1182   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1183 }
1184 
1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1186                                     bool isTarget) {
1187   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1188 }
1189 
1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1191                                     EVT VT, bool isTarget) {
1192   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1193 
1194   EVT EltVT = VT.getScalarType();
1195 
1196   // Do the map lookup using the actual bit pattern for the floating point
1197   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1198   // we don't have issues with SNANs.
1199   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1200   FoldingSetNodeID ID;
1201   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1202   ID.AddPointer(&V);
1203   void *IP = nullptr;
1204   SDNode *N = nullptr;
1205   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1206     if (!VT.isVector())
1207       return SDValue(N, 0);
1208 
1209   if (!N) {
1210     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1211     CSEMap.InsertNode(N, IP);
1212     InsertNode(N);
1213   }
1214 
1215   SDValue Result(N, 0);
1216   if (VT.isVector())
1217     Result = getSplatBuildVector(VT, DL, Result);
1218   return Result;
1219 }
1220 
1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1222                                     bool isTarget) {
1223   EVT EltVT = VT.getScalarType();
1224   if (EltVT == MVT::f32)
1225     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1226   else if (EltVT == MVT::f64)
1227     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1228   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1229            EltVT == MVT::f16) {
1230     bool Ignored;
1231     APFloat APF = APFloat(Val);
1232     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1233                 &Ignored);
1234     return getConstantFP(APF, DL, VT, isTarget);
1235   } else
1236     llvm_unreachable("Unsupported type in getConstantFP");
1237 }
1238 
1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1240                                        EVT VT, int64_t Offset, bool isTargetGA,
1241                                        unsigned char TargetFlags) {
1242   assert((TargetFlags == 0 || isTargetGA) &&
1243          "Cannot set target flags on target-independent globals");
1244 
1245   // Truncate (with sign-extension) the offset value to the pointer size.
1246   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1247   if (BitWidth < 64)
1248     Offset = SignExtend64(Offset, BitWidth);
1249 
1250   unsigned Opc;
1251   if (GV->isThreadLocal())
1252     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1253   else
1254     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1255 
1256   FoldingSetNodeID ID;
1257   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1258   ID.AddPointer(GV);
1259   ID.AddInteger(Offset);
1260   ID.AddInteger(TargetFlags);
1261   void *IP = nullptr;
1262   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1263     return SDValue(E, 0);
1264 
1265   auto *N = newSDNode<GlobalAddressSDNode>(
1266       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1267   CSEMap.InsertNode(N, IP);
1268     InsertNode(N);
1269   return SDValue(N, 0);
1270 }
1271 
1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1273   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1274   FoldingSetNodeID ID;
1275   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1276   ID.AddInteger(FI);
1277   void *IP = nullptr;
1278   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1279     return SDValue(E, 0);
1280 
1281   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1282   CSEMap.InsertNode(N, IP);
1283   InsertNode(N);
1284   return SDValue(N, 0);
1285 }
1286 
1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1288                                    unsigned char TargetFlags) {
1289   assert((TargetFlags == 0 || isTarget) &&
1290          "Cannot set target flags on target-independent jump tables");
1291   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1292   FoldingSetNodeID ID;
1293   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1294   ID.AddInteger(JTI);
1295   ID.AddInteger(TargetFlags);
1296   void *IP = nullptr;
1297   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1298     return SDValue(E, 0);
1299 
1300   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1301   CSEMap.InsertNode(N, IP);
1302   InsertNode(N);
1303   return SDValue(N, 0);
1304 }
1305 
1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1307                                       unsigned Alignment, int Offset,
1308                                       bool isTarget,
1309                                       unsigned char TargetFlags) {
1310   assert((TargetFlags == 0 || isTarget) &&
1311          "Cannot set target flags on target-independent globals");
1312   if (Alignment == 0)
1313     Alignment = MF->getFunction()->optForSize()
1314                     ? getDataLayout().getABITypeAlignment(C->getType())
1315                     : getDataLayout().getPrefTypeAlignment(C->getType());
1316   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1317   FoldingSetNodeID ID;
1318   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1319   ID.AddInteger(Alignment);
1320   ID.AddInteger(Offset);
1321   ID.AddPointer(C);
1322   ID.AddInteger(TargetFlags);
1323   void *IP = nullptr;
1324   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1325     return SDValue(E, 0);
1326 
1327   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1328                                           TargetFlags);
1329   CSEMap.InsertNode(N, IP);
1330   InsertNode(N);
1331   return SDValue(N, 0);
1332 }
1333 
1334 
1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1336                                       unsigned Alignment, int Offset,
1337                                       bool isTarget,
1338                                       unsigned char TargetFlags) {
1339   assert((TargetFlags == 0 || isTarget) &&
1340          "Cannot set target flags on target-independent globals");
1341   if (Alignment == 0)
1342     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1343   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1344   FoldingSetNodeID ID;
1345   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1346   ID.AddInteger(Alignment);
1347   ID.AddInteger(Offset);
1348   C->addSelectionDAGCSEId(ID);
1349   ID.AddInteger(TargetFlags);
1350   void *IP = nullptr;
1351   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1352     return SDValue(E, 0);
1353 
1354   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1355                                           TargetFlags);
1356   CSEMap.InsertNode(N, IP);
1357   InsertNode(N);
1358   return SDValue(N, 0);
1359 }
1360 
1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1362                                      unsigned char TargetFlags) {
1363   FoldingSetNodeID ID;
1364   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1365   ID.AddInteger(Index);
1366   ID.AddInteger(Offset);
1367   ID.AddInteger(TargetFlags);
1368   void *IP = nullptr;
1369   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1370     return SDValue(E, 0);
1371 
1372   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1373   CSEMap.InsertNode(N, IP);
1374   InsertNode(N);
1375   return SDValue(N, 0);
1376 }
1377 
1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1379   FoldingSetNodeID ID;
1380   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1381   ID.AddPointer(MBB);
1382   void *IP = nullptr;
1383   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1384     return SDValue(E, 0);
1385 
1386   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1387   CSEMap.InsertNode(N, IP);
1388   InsertNode(N);
1389   return SDValue(N, 0);
1390 }
1391 
1392 SDValue SelectionDAG::getValueType(EVT VT) {
1393   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1394       ValueTypeNodes.size())
1395     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1396 
1397   SDNode *&N = VT.isExtended() ?
1398     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1399 
1400   if (N) return SDValue(N, 0);
1401   N = newSDNode<VTSDNode>(VT);
1402   InsertNode(N);
1403   return SDValue(N, 0);
1404 }
1405 
1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1407   SDNode *&N = ExternalSymbols[Sym];
1408   if (N) return SDValue(N, 0);
1409   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1415   SDNode *&N = MCSymbols[Sym];
1416   if (N)
1417     return SDValue(N, 0);
1418   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1419   InsertNode(N);
1420   return SDValue(N, 0);
1421 }
1422 
1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1424                                               unsigned char TargetFlags) {
1425   SDNode *&N =
1426     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1427                                                                TargetFlags)];
1428   if (N) return SDValue(N, 0);
1429   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1430   InsertNode(N);
1431   return SDValue(N, 0);
1432 }
1433 
1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1435   if ((unsigned)Cond >= CondCodeNodes.size())
1436     CondCodeNodes.resize(Cond+1);
1437 
1438   if (!CondCodeNodes[Cond]) {
1439     auto *N = newSDNode<CondCodeSDNode>(Cond);
1440     CondCodeNodes[Cond] = N;
1441     InsertNode(N);
1442   }
1443 
1444   return SDValue(CondCodeNodes[Cond], 0);
1445 }
1446 
1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1450   std::swap(N1, N2);
1451   ShuffleVectorSDNode::commuteMask(M);
1452 }
1453 
1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1455                                        SDValue N2, ArrayRef<int> Mask) {
1456   assert(VT.getVectorNumElements() == Mask.size() &&
1457            "Must have the same number of vector elements as mask elements!");
1458   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1459          "Invalid VECTOR_SHUFFLE");
1460 
1461   // Canonicalize shuffle undef, undef -> undef
1462   if (N1.isUndef() && N2.isUndef())
1463     return getUNDEF(VT);
1464 
1465   // Validate that all indices in Mask are within the range of the elements
1466   // input to the shuffle.
1467   int NElts = Mask.size();
1468   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1469          "Index out of range");
1470 
1471   // Copy the mask so we can do any needed cleanup.
1472   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1473 
1474   // Canonicalize shuffle v, v -> v, undef
1475   if (N1 == N2) {
1476     N2 = getUNDEF(VT);
1477     for (int i = 0; i != NElts; ++i)
1478       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1479   }
1480 
1481   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1482   if (N1.isUndef())
1483     commuteShuffle(N1, N2, MaskVec);
1484 
1485   // If shuffling a splat, try to blend the splat instead. We do this here so
1486   // that even when this arises during lowering we don't have to re-handle it.
1487   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1488     BitVector UndefElements;
1489     SDValue Splat = BV->getSplatValue(&UndefElements);
1490     if (!Splat)
1491       return;
1492 
1493     for (int i = 0; i < NElts; ++i) {
1494       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1495         continue;
1496 
1497       // If this input comes from undef, mark it as such.
1498       if (UndefElements[MaskVec[i] - Offset]) {
1499         MaskVec[i] = -1;
1500         continue;
1501       }
1502 
1503       // If we can blend a non-undef lane, use that instead.
1504       if (!UndefElements[i])
1505         MaskVec[i] = i + Offset;
1506     }
1507   };
1508   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1509     BlendSplat(N1BV, 0);
1510   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1511     BlendSplat(N2BV, NElts);
1512 
1513   // Canonicalize all index into lhs, -> shuffle lhs, undef
1514   // Canonicalize all index into rhs, -> shuffle rhs, undef
1515   bool AllLHS = true, AllRHS = true;
1516   bool N2Undef = N2.isUndef();
1517   for (int i = 0; i != NElts; ++i) {
1518     if (MaskVec[i] >= NElts) {
1519       if (N2Undef)
1520         MaskVec[i] = -1;
1521       else
1522         AllLHS = false;
1523     } else if (MaskVec[i] >= 0) {
1524       AllRHS = false;
1525     }
1526   }
1527   if (AllLHS && AllRHS)
1528     return getUNDEF(VT);
1529   if (AllLHS && !N2Undef)
1530     N2 = getUNDEF(VT);
1531   if (AllRHS) {
1532     N1 = getUNDEF(VT);
1533     commuteShuffle(N1, N2, MaskVec);
1534   }
1535   // Reset our undef status after accounting for the mask.
1536   N2Undef = N2.isUndef();
1537   // Re-check whether both sides ended up undef.
1538   if (N1.isUndef() && N2Undef)
1539     return getUNDEF(VT);
1540 
1541   // If Identity shuffle return that node.
1542   bool Identity = true, AllSame = true;
1543   for (int i = 0; i != NElts; ++i) {
1544     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1545     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1546   }
1547   if (Identity && NElts)
1548     return N1;
1549 
1550   // Shuffling a constant splat doesn't change the result.
1551   if (N2Undef) {
1552     SDValue V = N1;
1553 
1554     // Look through any bitcasts. We check that these don't change the number
1555     // (and size) of elements and just changes their types.
1556     while (V.getOpcode() == ISD::BITCAST)
1557       V = V->getOperand(0);
1558 
1559     // A splat should always show up as a build vector node.
1560     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1561       BitVector UndefElements;
1562       SDValue Splat = BV->getSplatValue(&UndefElements);
1563       // If this is a splat of an undef, shuffling it is also undef.
1564       if (Splat && Splat.isUndef())
1565         return getUNDEF(VT);
1566 
1567       bool SameNumElts =
1568           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1569 
1570       // We only have a splat which can skip shuffles if there is a splatted
1571       // value and no undef lanes rearranged by the shuffle.
1572       if (Splat && UndefElements.none()) {
1573         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1574         // number of elements match or the value splatted is a zero constant.
1575         if (SameNumElts)
1576           return N1;
1577         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1578           if (C->isNullValue())
1579             return N1;
1580       }
1581 
1582       // If the shuffle itself creates a splat, build the vector directly.
1583       if (AllSame && SameNumElts) {
1584         EVT BuildVT = BV->getValueType(0);
1585         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1586         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1587 
1588         // We may have jumped through bitcasts, so the type of the
1589         // BUILD_VECTOR may not match the type of the shuffle.
1590         if (BuildVT != VT)
1591           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1592         return NewBV;
1593       }
1594     }
1595   }
1596 
1597   FoldingSetNodeID ID;
1598   SDValue Ops[2] = { N1, N2 };
1599   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1600   for (int i = 0; i != NElts; ++i)
1601     ID.AddInteger(MaskVec[i]);
1602 
1603   void* IP = nullptr;
1604   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1605     return SDValue(E, 0);
1606 
1607   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1608   // SDNode doesn't have access to it.  This memory will be "leaked" when
1609   // the node is deallocated, but recovered when the NodeAllocator is released.
1610   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1611   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1612 
1613   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1614                                            dl.getDebugLoc(), MaskAlloc);
1615   createOperands(N, Ops);
1616 
1617   CSEMap.InsertNode(N, IP);
1618   InsertNode(N);
1619   return SDValue(N, 0);
1620 }
1621 
1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1623   MVT VT = SV.getSimpleValueType(0);
1624   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1625   ShuffleVectorSDNode::commuteMask(MaskVec);
1626 
1627   SDValue Op0 = SV.getOperand(0);
1628   SDValue Op1 = SV.getOperand(1);
1629   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1630 }
1631 
1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1633   FoldingSetNodeID ID;
1634   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1635   ID.AddInteger(RegNo);
1636   void *IP = nullptr;
1637   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1638     return SDValue(E, 0);
1639 
1640   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1641   CSEMap.InsertNode(N, IP);
1642   InsertNode(N);
1643   return SDValue(N, 0);
1644 }
1645 
1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1647   FoldingSetNodeID ID;
1648   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1649   ID.AddPointer(RegMask);
1650   void *IP = nullptr;
1651   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1652     return SDValue(E, 0);
1653 
1654   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1655   CSEMap.InsertNode(N, IP);
1656   InsertNode(N);
1657   return SDValue(N, 0);
1658 }
1659 
1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1661                                  MCSymbol *Label) {
1662   FoldingSetNodeID ID;
1663   SDValue Ops[] = { Root };
1664   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1665   ID.AddPointer(Label);
1666   void *IP = nullptr;
1667   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1668     return SDValue(E, 0);
1669 
1670   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1671   createOperands(N, Ops);
1672 
1673   CSEMap.InsertNode(N, IP);
1674   InsertNode(N);
1675   return SDValue(N, 0);
1676 }
1677 
1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1679                                       int64_t Offset,
1680                                       bool isTarget,
1681                                       unsigned char TargetFlags) {
1682   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1683 
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1686   ID.AddPointer(BA);
1687   ID.AddInteger(Offset);
1688   ID.AddInteger(TargetFlags);
1689   void *IP = nullptr;
1690   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1691     return SDValue(E, 0);
1692 
1693   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1694   CSEMap.InsertNode(N, IP);
1695   InsertNode(N);
1696   return SDValue(N, 0);
1697 }
1698 
1699 SDValue SelectionDAG::getSrcValue(const Value *V) {
1700   assert((!V || V->getType()->isPointerTy()) &&
1701          "SrcValue is not a pointer?");
1702 
1703   FoldingSetNodeID ID;
1704   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1705   ID.AddPointer(V);
1706 
1707   void *IP = nullptr;
1708   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1709     return SDValue(E, 0);
1710 
1711   auto *N = newSDNode<SrcValueSDNode>(V);
1712   CSEMap.InsertNode(N, IP);
1713   InsertNode(N);
1714   return SDValue(N, 0);
1715 }
1716 
1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1718   FoldingSetNodeID ID;
1719   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1720   ID.AddPointer(MD);
1721 
1722   void *IP = nullptr;
1723   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1724     return SDValue(E, 0);
1725 
1726   auto *N = newSDNode<MDNodeSDNode>(MD);
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   return SDValue(N, 0);
1730 }
1731 
1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1733   if (VT == V.getValueType())
1734     return V;
1735 
1736   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1737 }
1738 
1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1740                                        unsigned SrcAS, unsigned DestAS) {
1741   SDValue Ops[] = {Ptr};
1742   FoldingSetNodeID ID;
1743   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1744   ID.AddInteger(SrcAS);
1745   ID.AddInteger(DestAS);
1746 
1747   void *IP = nullptr;
1748   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1749     return SDValue(E, 0);
1750 
1751   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1752                                            VT, SrcAS, DestAS);
1753   createOperands(N, Ops);
1754 
1755   CSEMap.InsertNode(N, IP);
1756   InsertNode(N);
1757   return SDValue(N, 0);
1758 }
1759 
1760 /// getShiftAmountOperand - Return the specified value casted to
1761 /// the target's desired shift amount type.
1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1763   EVT OpTy = Op.getValueType();
1764   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1765   if (OpTy == ShTy || OpTy.isVector()) return Op;
1766 
1767   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1768 }
1769 
1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1771   SDLoc dl(Node);
1772   const TargetLowering &TLI = getTargetLoweringInfo();
1773   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1774   EVT VT = Node->getValueType(0);
1775   SDValue Tmp1 = Node->getOperand(0);
1776   SDValue Tmp2 = Node->getOperand(1);
1777   unsigned Align = Node->getConstantOperandVal(3);
1778 
1779   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1780                                Tmp2, MachinePointerInfo(V));
1781   SDValue VAList = VAListLoad;
1782 
1783   if (Align > TLI.getMinStackArgumentAlignment()) {
1784     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1785 
1786     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1787                      getConstant(Align - 1, dl, VAList.getValueType()));
1788 
1789     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1790                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1791   }
1792 
1793   // Increment the pointer, VAList, to the next vaarg
1794   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1795                  getConstant(getDataLayout().getTypeAllocSize(
1796                                                VT.getTypeForEVT(*getContext())),
1797                              dl, VAList.getValueType()));
1798   // Store the incremented VAList to the legalized pointer
1799   Tmp1 =
1800       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1801   // Load the actual argument out of the pointer VAList
1802   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1803 }
1804 
1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1806   SDLoc dl(Node);
1807   const TargetLowering &TLI = getTargetLoweringInfo();
1808   // This defaults to loading a pointer from the input and storing it to the
1809   // output, returning the chain.
1810   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1811   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1812   SDValue Tmp1 =
1813       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1814               Node->getOperand(2), MachinePointerInfo(VS));
1815   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1816                   MachinePointerInfo(VD));
1817 }
1818 
1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1820   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1821   unsigned ByteSize = VT.getStoreSize();
1822   Type *Ty = VT.getTypeForEVT(*getContext());
1823   unsigned StackAlign =
1824       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1825 
1826   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1827   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1828 }
1829 
1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1831   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1832   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1833   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1834   const DataLayout &DL = getDataLayout();
1835   unsigned Align =
1836       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1837 
1838   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1839   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1840   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1841 }
1842 
1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1844                                 ISD::CondCode Cond, const SDLoc &dl) {
1845   // These setcc operations always fold.
1846   switch (Cond) {
1847   default: break;
1848   case ISD::SETFALSE:
1849   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1850   case ISD::SETTRUE:
1851   case ISD::SETTRUE2: {
1852     TargetLowering::BooleanContent Cnt =
1853         TLI->getBooleanContents(N1->getValueType(0));
1854     return getConstant(
1855         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1856         VT);
1857   }
1858 
1859   case ISD::SETOEQ:
1860   case ISD::SETOGT:
1861   case ISD::SETOGE:
1862   case ISD::SETOLT:
1863   case ISD::SETOLE:
1864   case ISD::SETONE:
1865   case ISD::SETO:
1866   case ISD::SETUO:
1867   case ISD::SETUEQ:
1868   case ISD::SETUNE:
1869     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1870     break;
1871   }
1872 
1873   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1874     const APInt &C2 = N2C->getAPIntValue();
1875     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1876       const APInt &C1 = N1C->getAPIntValue();
1877 
1878       switch (Cond) {
1879       default: llvm_unreachable("Unknown integer setcc!");
1880       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1881       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1882       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1883       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1884       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1885       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1886       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1887       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1888       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1889       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1890       }
1891     }
1892   }
1893   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1894     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1895       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1896       switch (Cond) {
1897       default: break;
1898       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1899                           return getUNDEF(VT);
1900                         LLVM_FALLTHROUGH;
1901       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1902       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1903                           return getUNDEF(VT);
1904                         LLVM_FALLTHROUGH;
1905       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1906                                            R==APFloat::cmpLessThan, dl, VT);
1907       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1908                           return getUNDEF(VT);
1909                         LLVM_FALLTHROUGH;
1910       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1911       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1912                           return getUNDEF(VT);
1913                         LLVM_FALLTHROUGH;
1914       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1915       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1916                           return getUNDEF(VT);
1917                         LLVM_FALLTHROUGH;
1918       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1919                                            R==APFloat::cmpEqual, dl, VT);
1920       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1921                           return getUNDEF(VT);
1922                         LLVM_FALLTHROUGH;
1923       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1924                                            R==APFloat::cmpEqual, dl, VT);
1925       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1926       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1927       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1928                                            R==APFloat::cmpEqual, dl, VT);
1929       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1930       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1931                                            R==APFloat::cmpLessThan, dl, VT);
1932       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1933                                            R==APFloat::cmpUnordered, dl, VT);
1934       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1935       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1936       }
1937     } else {
1938       // Ensure that the constant occurs on the RHS.
1939       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1940       MVT CompVT = N1.getValueType().getSimpleVT();
1941       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1942         return SDValue();
1943 
1944       return getSetCC(dl, VT, N2, N1, SwappedCond);
1945     }
1946   }
1947 
1948   // Could not fold it.
1949   return SDValue();
1950 }
1951 
1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1953 /// use this predicate to simplify operations downstream.
1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1955   unsigned BitWidth = Op.getScalarValueSizeInBits();
1956   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1957 }
1958 
1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1960 /// this predicate to simplify operations downstream.  Mask is known to be zero
1961 /// for bits that V cannot have.
1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1963                                      unsigned Depth) const {
1964   APInt KnownZero, KnownOne;
1965   computeKnownBits(Op, KnownZero, KnownOne, Depth);
1966   return (KnownZero & Mask) == Mask;
1967 }
1968 
1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
1970 /// is less than the element bit-width of the shift node, return it.
1971 static const APInt *getValidShiftAmountConstant(SDValue V) {
1972   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
1973     // Shifting more than the bitwidth is not valid.
1974     const APInt &ShAmt = SA->getAPIntValue();
1975     if (ShAmt.ult(V.getScalarValueSizeInBits()))
1976       return &ShAmt;
1977   }
1978   return nullptr;
1979 }
1980 
1981 /// Determine which bits of Op are known to be either zero or one and return
1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
1983 /// those that are shared by every vector element.
1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
1985                                     APInt &KnownOne, unsigned Depth) const {
1986   EVT VT = Op.getValueType();
1987   APInt DemandedElts = VT.isVector()
1988                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
1989                            : APInt(1, 1);
1990   computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
1991 }
1992 
1993 /// Determine which bits of Op are known to be either zero or one and return
1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
1995 /// us to only collect the known bits that are shared by the requested vector
1996 /// elements.
1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder
1998 /// should be added when they become necessary.
1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2000                                     APInt &KnownOne, const APInt &DemandedElts,
2001                                     unsigned Depth) const {
2002   unsigned BitWidth = Op.getScalarValueSizeInBits();
2003 
2004   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2005   if (Depth == 6)
2006     return;  // Limit search depth.
2007 
2008   APInt KnownZero2, KnownOne2;
2009   unsigned NumElts = DemandedElts.getBitWidth();
2010 
2011   if (!DemandedElts)
2012     return;  // No demanded elts, better to assume we don't know anything.
2013 
2014   unsigned Opcode = Op.getOpcode();
2015   switch (Opcode) {
2016   case ISD::Constant:
2017     // We know all of the bits for a constant!
2018     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2019     KnownZero = ~KnownOne;
2020     break;
2021   case ISD::BUILD_VECTOR:
2022     // Collect the known bits that are shared by every demanded vector element.
2023     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2024            "Unexpected vector size");
2025     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2026     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2027       if (!DemandedElts[i])
2028         continue;
2029 
2030       SDValue SrcOp = Op.getOperand(i);
2031       computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
2032 
2033       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2034       if (SrcOp.getValueSizeInBits() != BitWidth) {
2035         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2036                "Expected BUILD_VECTOR implicit truncation");
2037         KnownOne2 = KnownOne2.trunc(BitWidth);
2038         KnownZero2 = KnownZero2.trunc(BitWidth);
2039       }
2040 
2041       // Known bits are the values that are shared by every demanded element.
2042       KnownOne &= KnownOne2;
2043       KnownZero &= KnownZero2;
2044 
2045       // If we don't know any bits, early out.
2046       if (!KnownOne && !KnownZero)
2047         break;
2048     }
2049     break;
2050   case ISD::VECTOR_SHUFFLE: {
2051     // Collect the known bits that are shared by every vector element referenced
2052     // by the shuffle.
2053     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2054     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2055     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2056     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2057     for (unsigned i = 0; i != NumElts; ++i) {
2058       if (!DemandedElts[i])
2059         continue;
2060 
2061       int M = SVN->getMaskElt(i);
2062       if (M < 0) {
2063         // For UNDEF elements, we don't know anything about the common state of
2064         // the shuffle result.
2065         KnownOne.clearAllBits();
2066         KnownZero.clearAllBits();
2067         DemandedLHS.clearAllBits();
2068         DemandedRHS.clearAllBits();
2069         break;
2070       }
2071 
2072       if ((unsigned)M < NumElts)
2073         DemandedLHS.setBit((unsigned)M % NumElts);
2074       else
2075         DemandedRHS.setBit((unsigned)M % NumElts);
2076     }
2077     // Known bits are the values that are shared by every demanded element.
2078     if (!!DemandedLHS) {
2079       SDValue LHS = Op.getOperand(0);
2080       computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
2081       KnownOne &= KnownOne2;
2082       KnownZero &= KnownZero2;
2083     }
2084     // If we don't know any bits, early out.
2085     if (!KnownOne && !KnownZero)
2086       break;
2087     if (!!DemandedRHS) {
2088       SDValue RHS = Op.getOperand(1);
2089       computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
2090       KnownOne &= KnownOne2;
2091       KnownZero &= KnownZero2;
2092     }
2093     break;
2094   }
2095   case ISD::CONCAT_VECTORS: {
2096     // Split DemandedElts and test each of the demanded subvectors.
2097     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2098     EVT SubVectorVT = Op.getOperand(0).getValueType();
2099     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2100     unsigned NumSubVectors = Op.getNumOperands();
2101     for (unsigned i = 0; i != NumSubVectors; ++i) {
2102       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2103       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2104       if (!!DemandedSub) {
2105         SDValue Sub = Op.getOperand(i);
2106         computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
2107         KnownOne &= KnownOne2;
2108         KnownZero &= KnownZero2;
2109       }
2110       // If we don't know any bits, early out.
2111       if (!KnownOne && !KnownZero)
2112         break;
2113     }
2114     break;
2115   }
2116   case ISD::EXTRACT_SUBVECTOR: {
2117     // If we know the element index, just demand that subvector elements,
2118     // otherwise demand them all.
2119     SDValue Src = Op.getOperand(0);
2120     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2121     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2122     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2123       // Offset the demanded elts by the subvector index.
2124       uint64_t Idx = SubIdx->getZExtValue();
2125       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2126       computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
2127     } else {
2128       computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
2129     }
2130     break;
2131   }
2132   case ISD::BITCAST: {
2133     SDValue N0 = Op.getOperand(0);
2134     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
2135 
2136     // Ignore bitcasts from floating point.
2137     if (!N0.getValueType().isInteger())
2138       break;
2139 
2140     // Fast handling of 'identity' bitcasts.
2141     if (BitWidth == SubBitWidth) {
2142       computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
2143       break;
2144     }
2145 
2146     // Support big-endian targets when it becomes useful.
2147     bool IsLE = getDataLayout().isLittleEndian();
2148     if (!IsLE)
2149       break;
2150 
2151     // Bitcast 'small element' vector to 'large element' scalar/vector.
2152     if ((BitWidth % SubBitWidth) == 0) {
2153       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2154 
2155       // Collect known bits for the (larger) output by collecting the known
2156       // bits from each set of sub elements and shift these into place.
2157       // We need to separately call computeKnownBits for each set of
2158       // sub elements as the knownbits for each is likely to be different.
2159       unsigned SubScale = BitWidth / SubBitWidth;
2160       APInt SubDemandedElts(NumElts * SubScale, 0);
2161       for (unsigned i = 0; i != NumElts; ++i)
2162         if (DemandedElts[i])
2163           SubDemandedElts.setBit(i * SubScale);
2164 
2165       for (unsigned i = 0; i != SubScale; ++i) {
2166         computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i),
2167                          Depth + 1);
2168         KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i);
2169         KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i);
2170       }
2171     }
2172 
2173     // Bitcast 'large element' scalar/vector to 'small element' vector.
2174     if ((SubBitWidth % BitWidth) == 0) {
2175       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2176 
2177       // Collect known bits for the (smaller) output by collecting the known
2178       // bits from the overlapping larger input elements and extracting the
2179       // sub sections we actually care about.
2180       unsigned SubScale = SubBitWidth / BitWidth;
2181       APInt SubDemandedElts(NumElts / SubScale, 0);
2182       for (unsigned i = 0; i != NumElts; ++i)
2183         if (DemandedElts[i])
2184           SubDemandedElts.setBit(i / SubScale);
2185 
2186       computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1);
2187 
2188       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2189       for (unsigned i = 0; i != NumElts; ++i)
2190         if (DemandedElts[i]) {
2191           unsigned Offset = (i % SubScale) * BitWidth;
2192           KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth);
2193           KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth);
2194           // If we don't know any bits, early out.
2195           if (!KnownOne && !KnownZero)
2196             break;
2197         }
2198     }
2199     break;
2200   }
2201   case ISD::AND:
2202     // If either the LHS or the RHS are Zero, the result is zero.
2203     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2204                      Depth + 1);
2205     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2206                      Depth + 1);
2207 
2208     // Output known-1 bits are only known if set in both the LHS & RHS.
2209     KnownOne &= KnownOne2;
2210     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2211     KnownZero |= KnownZero2;
2212     break;
2213   case ISD::OR:
2214     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2215                      Depth + 1);
2216     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2217                      Depth + 1);
2218 
2219     // Output known-0 bits are only known if clear in both the LHS & RHS.
2220     KnownZero &= KnownZero2;
2221     // Output known-1 are known to be set if set in either the LHS | RHS.
2222     KnownOne |= KnownOne2;
2223     break;
2224   case ISD::XOR: {
2225     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2226                      Depth + 1);
2227     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2228                      Depth + 1);
2229 
2230     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2231     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2232     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2233     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2234     KnownZero = KnownZeroOut;
2235     break;
2236   }
2237   case ISD::MUL: {
2238     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2239                      Depth + 1);
2240     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2241                      Depth + 1);
2242 
2243     // If low bits are zero in either operand, output low known-0 bits.
2244     // Also compute a conservative estimate for high known-0 bits.
2245     // More trickiness is possible, but this is sufficient for the
2246     // interesting case of alignment computation.
2247     KnownOne.clearAllBits();
2248     unsigned TrailZ = KnownZero.countTrailingOnes() +
2249                       KnownZero2.countTrailingOnes();
2250     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2251                                KnownZero2.countLeadingOnes(),
2252                                BitWidth) - BitWidth;
2253 
2254     TrailZ = std::min(TrailZ, BitWidth);
2255     LeadZ = std::min(LeadZ, BitWidth);
2256     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2257                 APInt::getHighBitsSet(BitWidth, LeadZ);
2258     break;
2259   }
2260   case ISD::UDIV: {
2261     // For the purposes of computing leading zeros we can conservatively
2262     // treat a udiv as a logical right shift by the power of 2 known to
2263     // be less than the denominator.
2264     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2265                      Depth + 1);
2266     unsigned LeadZ = KnownZero2.countLeadingOnes();
2267 
2268     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2269                      Depth + 1);
2270     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2271     if (RHSUnknownLeadingOnes != BitWidth)
2272       LeadZ = std::min(BitWidth,
2273                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2274 
2275     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2276     break;
2277   }
2278   case ISD::SELECT:
2279     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2280     // If we don't know any bits, early out.
2281     if (!KnownOne && !KnownZero)
2282       break;
2283     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2284 
2285     // Only known if known in both the LHS and RHS.
2286     KnownOne &= KnownOne2;
2287     KnownZero &= KnownZero2;
2288     break;
2289   case ISD::SELECT_CC:
2290     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2291     // If we don't know any bits, early out.
2292     if (!KnownOne && !KnownZero)
2293       break;
2294     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2295 
2296     // Only known if known in both the LHS and RHS.
2297     KnownOne &= KnownOne2;
2298     KnownZero &= KnownZero2;
2299     break;
2300   case ISD::SADDO:
2301   case ISD::UADDO:
2302   case ISD::SSUBO:
2303   case ISD::USUBO:
2304   case ISD::SMULO:
2305   case ISD::UMULO:
2306     if (Op.getResNo() != 1)
2307       break;
2308     // The boolean result conforms to getBooleanContents.
2309     // If we know the result of a setcc has the top bits zero, use this info.
2310     // We know that we have an integer-based boolean since these operations
2311     // are only available for integer.
2312     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2313             TargetLowering::ZeroOrOneBooleanContent &&
2314         BitWidth > 1)
2315       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2316     break;
2317   case ISD::SETCC:
2318     // If we know the result of a setcc has the top bits zero, use this info.
2319     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2320             TargetLowering::ZeroOrOneBooleanContent &&
2321         BitWidth > 1)
2322       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2323     break;
2324   case ISD::SHL:
2325     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2326       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2327                        Depth + 1);
2328       KnownZero = KnownZero << *ShAmt;
2329       KnownOne = KnownOne << *ShAmt;
2330       // Low bits are known zero.
2331       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue());
2332     }
2333     break;
2334   case ISD::SRL:
2335     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2336       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2337                        Depth + 1);
2338       KnownZero = KnownZero.lshr(*ShAmt);
2339       KnownOne  = KnownOne.lshr(*ShAmt);
2340       // High bits are known zero.
2341       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2342       KnownZero |= HighBits;
2343     }
2344     break;
2345   case ISD::SRA:
2346     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2347       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2348                        Depth + 1);
2349       KnownZero = KnownZero.lshr(*ShAmt);
2350       KnownOne  = KnownOne.lshr(*ShAmt);
2351       // If we know the value of the sign bit, then we know it is copied across
2352       // the high bits by the shift amount.
2353       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2354       APInt SignBit = APInt::getSignBit(BitWidth);
2355       SignBit = SignBit.lshr(*ShAmt);  // Adjust to where it is now in the mask.
2356       if (KnownZero.intersects(SignBit)) {
2357         KnownZero |= HighBits;  // New bits are known zero.
2358       } else if (KnownOne.intersects(SignBit)) {
2359         KnownOne  |= HighBits;  // New bits are known one.
2360       }
2361     }
2362     break;
2363   case ISD::SIGN_EXTEND_INREG: {
2364     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2365     unsigned EBits = EVT.getScalarSizeInBits();
2366 
2367     // Sign extension.  Compute the demanded bits in the result that are not
2368     // present in the input.
2369     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2370 
2371     APInt InSignBit = APInt::getSignBit(EBits);
2372     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2373 
2374     // If the sign extended bits are demanded, we know that the sign
2375     // bit is demanded.
2376     InSignBit = InSignBit.zext(BitWidth);
2377     if (NewBits.getBoolValue())
2378       InputDemandedBits |= InSignBit;
2379 
2380     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2381                      Depth + 1);
2382     KnownOne &= InputDemandedBits;
2383     KnownZero &= InputDemandedBits;
2384 
2385     // If the sign bit of the input is known set or clear, then we know the
2386     // top bits of the result.
2387     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2388       KnownZero |= NewBits;
2389       KnownOne  &= ~NewBits;
2390     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2391       KnownOne  |= NewBits;
2392       KnownZero &= ~NewBits;
2393     } else {                              // Input sign bit unknown
2394       KnownZero &= ~NewBits;
2395       KnownOne  &= ~NewBits;
2396     }
2397     break;
2398   }
2399   case ISD::CTTZ:
2400   case ISD::CTTZ_ZERO_UNDEF:
2401   case ISD::CTLZ:
2402   case ISD::CTLZ_ZERO_UNDEF:
2403   case ISD::CTPOP: {
2404     unsigned LowBits = Log2_32(BitWidth)+1;
2405     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2406     KnownOne.clearAllBits();
2407     break;
2408   }
2409   case ISD::LOAD: {
2410     LoadSDNode *LD = cast<LoadSDNode>(Op);
2411     // If this is a ZEXTLoad and we are looking at the loaded value.
2412     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2413       EVT VT = LD->getMemoryVT();
2414       unsigned MemBits = VT.getScalarSizeInBits();
2415       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2416     } else if (const MDNode *Ranges = LD->getRanges()) {
2417       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2418         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2419     }
2420     break;
2421   }
2422   case ISD::ZERO_EXTEND: {
2423     EVT InVT = Op.getOperand(0).getValueType();
2424     unsigned InBits = InVT.getScalarSizeInBits();
2425     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2426     KnownZero = KnownZero.trunc(InBits);
2427     KnownOne = KnownOne.trunc(InBits);
2428     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2429                      Depth + 1);
2430     KnownZero = KnownZero.zext(BitWidth);
2431     KnownOne = KnownOne.zext(BitWidth);
2432     KnownZero |= NewBits;
2433     break;
2434   }
2435   case ISD::SIGN_EXTEND: {
2436     EVT InVT = Op.getOperand(0).getValueType();
2437     unsigned InBits = InVT.getScalarSizeInBits();
2438 
2439     KnownZero = KnownZero.trunc(InBits);
2440     KnownOne = KnownOne.trunc(InBits);
2441     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2442                      Depth + 1);
2443 
2444     // If the sign bit is known to be zero or one, then sext will extend
2445     // it to the top bits, else it will just zext.
2446     KnownZero = KnownZero.sext(BitWidth);
2447     KnownOne = KnownOne.sext(BitWidth);
2448     break;
2449   }
2450   case ISD::ANY_EXTEND: {
2451     EVT InVT = Op.getOperand(0).getValueType();
2452     unsigned InBits = InVT.getScalarSizeInBits();
2453     KnownZero = KnownZero.trunc(InBits);
2454     KnownOne = KnownOne.trunc(InBits);
2455     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2456     KnownZero = KnownZero.zext(BitWidth);
2457     KnownOne = KnownOne.zext(BitWidth);
2458     break;
2459   }
2460   case ISD::TRUNCATE: {
2461     EVT InVT = Op.getOperand(0).getValueType();
2462     unsigned InBits = InVT.getScalarSizeInBits();
2463     KnownZero = KnownZero.zext(InBits);
2464     KnownOne = KnownOne.zext(InBits);
2465     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2466                      Depth + 1);
2467     KnownZero = KnownZero.trunc(BitWidth);
2468     KnownOne = KnownOne.trunc(BitWidth);
2469     break;
2470   }
2471   case ISD::AssertZext: {
2472     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2473     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2474     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2475     KnownZero |= (~InMask);
2476     KnownOne  &= (~KnownZero);
2477     break;
2478   }
2479   case ISD::FGETSIGN:
2480     // All bits are zero except the low bit.
2481     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2482     break;
2483 
2484   case ISD::SUB: {
2485     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2486       // We know that the top bits of C-X are clear if X contains less bits
2487       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2488       // positive if we can prove that X is >= 0 and < 16.
2489       if (CLHS->getAPIntValue().isNonNegative()) {
2490         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2491         // NLZ can't be BitWidth with no sign bit
2492         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2493         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2494                          Depth + 1);
2495 
2496         // If all of the MaskV bits are known to be zero, then we know the
2497         // output top bits are zero, because we now know that the output is
2498         // from [0-C].
2499         if ((KnownZero2 & MaskV) == MaskV) {
2500           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2501           // Top bits known zero.
2502           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2503         }
2504       }
2505     }
2506     LLVM_FALLTHROUGH;
2507   }
2508   case ISD::ADD:
2509   case ISD::ADDE: {
2510     // Output known-0 bits are known if clear or set in both the low clear bits
2511     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2512     // low 3 bits clear.
2513     // Output known-0 bits are also known if the top bits of each input are
2514     // known to be clear. For example, if one input has the top 10 bits clear
2515     // and the other has the top 8 bits clear, we know the top 7 bits of the
2516     // output must be clear.
2517     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2518                      Depth + 1);
2519     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2520     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2521 
2522     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2523                      Depth + 1);
2524     KnownZeroHigh = std::min(KnownZeroHigh,
2525                              KnownZero2.countLeadingOnes());
2526     KnownZeroLow = std::min(KnownZeroLow,
2527                             KnownZero2.countTrailingOnes());
2528 
2529     if (Opcode == ISD::ADD) {
2530       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
2531       if (KnownZeroHigh > 1)
2532         KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
2533       break;
2534     }
2535 
2536     // With ADDE, a carry bit may be added in, so we can only use this
2537     // information if we know (at least) that the low two bits are clear.  We
2538     // then return to the caller that the low bit is unknown but that other bits
2539     // are known zero.
2540     if (KnownZeroLow >= 2) // ADDE
2541       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
2542     break;
2543   }
2544   case ISD::SREM:
2545     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2546       const APInt &RA = Rem->getAPIntValue().abs();
2547       if (RA.isPowerOf2()) {
2548         APInt LowBits = RA - 1;
2549         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2550                          Depth + 1);
2551 
2552         // The low bits of the first operand are unchanged by the srem.
2553         KnownZero = KnownZero2 & LowBits;
2554         KnownOne = KnownOne2 & LowBits;
2555 
2556         // If the first operand is non-negative or has all low bits zero, then
2557         // the upper bits are all zero.
2558         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2559           KnownZero |= ~LowBits;
2560 
2561         // If the first operand is negative and not all low bits are zero, then
2562         // the upper bits are all one.
2563         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2564           KnownOne |= ~LowBits;
2565         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2566       }
2567     }
2568     break;
2569   case ISD::UREM: {
2570     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2571       const APInt &RA = Rem->getAPIntValue();
2572       if (RA.isPowerOf2()) {
2573         APInt LowBits = (RA - 1);
2574         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2575                          Depth + 1);
2576 
2577         // The upper bits are all zero, the lower ones are unchanged.
2578         KnownZero = KnownZero2 | ~LowBits;
2579         KnownOne = KnownOne2 & LowBits;
2580         break;
2581       }
2582     }
2583 
2584     // Since the result is less than or equal to either operand, any leading
2585     // zero bits in either operand must also exist in the result.
2586     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2587                      Depth + 1);
2588     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2589                      Depth + 1);
2590 
2591     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2592                                 KnownZero2.countLeadingOnes());
2593     KnownOne.clearAllBits();
2594     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2595     break;
2596   }
2597   case ISD::EXTRACT_ELEMENT: {
2598     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2599     const unsigned Index = Op.getConstantOperandVal(1);
2600     const unsigned BitWidth = Op.getValueSizeInBits();
2601 
2602     // Remove low part of known bits mask
2603     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2604     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2605 
2606     // Remove high part of known bit mask
2607     KnownZero = KnownZero.trunc(BitWidth);
2608     KnownOne = KnownOne.trunc(BitWidth);
2609     break;
2610   }
2611   case ISD::EXTRACT_VECTOR_ELT: {
2612     SDValue InVec = Op.getOperand(0);
2613     SDValue EltNo = Op.getOperand(1);
2614     EVT VecVT = InVec.getValueType();
2615     const unsigned BitWidth = Op.getValueSizeInBits();
2616     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2617     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2618     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2619     // anything about the extended bits.
2620     if (BitWidth > EltBitWidth) {
2621       KnownZero = KnownZero.trunc(EltBitWidth);
2622       KnownOne = KnownOne.trunc(EltBitWidth);
2623     }
2624     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2625     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2626       // If we know the element index, just demand that vector element.
2627       unsigned Idx = ConstEltNo->getZExtValue();
2628       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2629       computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
2630     } else {
2631       // Unknown element index, so ignore DemandedElts and demand them all.
2632       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2633     }
2634     if (BitWidth > EltBitWidth) {
2635       KnownZero = KnownZero.zext(BitWidth);
2636       KnownOne = KnownOne.zext(BitWidth);
2637     }
2638     break;
2639   }
2640   case ISD::INSERT_VECTOR_ELT: {
2641     SDValue InVec = Op.getOperand(0);
2642     SDValue InVal = Op.getOperand(1);
2643     SDValue EltNo = Op.getOperand(2);
2644 
2645     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2646     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2647       // If we know the element index, split the demand between the
2648       // source vector and the inserted element.
2649       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2650       unsigned EltIdx = CEltNo->getZExtValue();
2651 
2652       // If we demand the inserted element then add its common known bits.
2653       if (DemandedElts[EltIdx]) {
2654         computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2655         KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2656         KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2657       }
2658 
2659       // If we demand the source vector then add its common known bits, ensuring
2660       // that we don't demand the inserted element.
2661       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2662       if (!!VectorElts) {
2663         computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1);
2664         KnownOne &= KnownOne2;
2665         KnownZero &= KnownZero2;
2666       }
2667     } else {
2668       // Unknown element index, so ignore DemandedElts and demand them all.
2669       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2670       computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2671       KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2672       KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2673     }
2674     break;
2675   }
2676   case ISD::BITREVERSE: {
2677     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2678                      Depth + 1);
2679     KnownZero = KnownZero2.reverseBits();
2680     KnownOne = KnownOne2.reverseBits();
2681     break;
2682   }
2683   case ISD::BSWAP: {
2684     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2685                      Depth + 1);
2686     KnownZero = KnownZero2.byteSwap();
2687     KnownOne = KnownOne2.byteSwap();
2688     break;
2689   }
2690   case ISD::UMIN: {
2691     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2692                      Depth + 1);
2693     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2694                      Depth + 1);
2695 
2696     // UMIN - we know that the result will have the maximum of the
2697     // known zero leading bits of the inputs.
2698     unsigned LeadZero = KnownZero.countLeadingOnes();
2699     LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes());
2700 
2701     KnownZero &= KnownZero2;
2702     KnownOne &= KnownOne2;
2703     KnownZero |= APInt::getHighBitsSet(BitWidth, LeadZero);
2704     break;
2705   }
2706   case ISD::UMAX: {
2707     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2708                      Depth + 1);
2709     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2710                      Depth + 1);
2711 
2712     // UMAX - we know that the result will have the maximum of the
2713     // known one leading bits of the inputs.
2714     unsigned LeadOne = KnownOne.countLeadingOnes();
2715     LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes());
2716 
2717     KnownZero &= KnownZero2;
2718     KnownOne &= KnownOne2;
2719     KnownOne |= APInt::getHighBitsSet(BitWidth, LeadOne);
2720     break;
2721   }
2722   case ISD::SMIN:
2723   case ISD::SMAX: {
2724     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2725                      Depth + 1);
2726     // If we don't know any bits, early out.
2727     if (!KnownOne && !KnownZero)
2728       break;
2729     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2730                      Depth + 1);
2731     KnownZero &= KnownZero2;
2732     KnownOne &= KnownOne2;
2733     break;
2734   }
2735   case ISD::FrameIndex:
2736   case ISD::TargetFrameIndex:
2737     if (unsigned Align = InferPtrAlignment(Op)) {
2738       // The low bits are known zero if the pointer is aligned.
2739       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2740       break;
2741     }
2742     break;
2743 
2744   default:
2745     if (Opcode < ISD::BUILTIN_OP_END)
2746       break;
2747     LLVM_FALLTHROUGH;
2748   case ISD::INTRINSIC_WO_CHAIN:
2749   case ISD::INTRINSIC_W_CHAIN:
2750   case ISD::INTRINSIC_VOID:
2751     // Allow the target to implement this method for its nodes.
2752     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2753     break;
2754   }
2755 
2756   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2757 }
2758 
2759 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2760   EVT OpVT = Val.getValueType();
2761   unsigned BitWidth = OpVT.getScalarSizeInBits();
2762 
2763   // Is the constant a known power of 2?
2764   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2765     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2766 
2767   // A left-shift of a constant one will have exactly one bit set because
2768   // shifting the bit off the end is undefined.
2769   if (Val.getOpcode() == ISD::SHL) {
2770     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2771     if (C && C->getAPIntValue() == 1)
2772       return true;
2773   }
2774 
2775   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2776   // one bit set.
2777   if (Val.getOpcode() == ISD::SRL) {
2778     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2779     if (C && C->getAPIntValue().isSignBit())
2780       return true;
2781   }
2782 
2783   // Are all operands of a build vector constant powers of two?
2784   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2785     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
2786           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
2787             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2788           return false;
2789         }))
2790       return true;
2791 
2792   // More could be done here, though the above checks are enough
2793   // to handle some common cases.
2794 
2795   // Fall back to computeKnownBits to catch other known cases.
2796   APInt KnownZero, KnownOne;
2797   computeKnownBits(Val, KnownZero, KnownOne);
2798   return (KnownZero.countPopulation() == BitWidth - 1) &&
2799          (KnownOne.countPopulation() == 1);
2800 }
2801 
2802 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2803   EVT VT = Op.getValueType();
2804   assert(VT.isInteger() && "Invalid VT!");
2805   unsigned VTBits = VT.getScalarSizeInBits();
2806   unsigned Tmp, Tmp2;
2807   unsigned FirstAnswer = 1;
2808 
2809   if (Depth == 6)
2810     return 1;  // Limit search depth.
2811 
2812   switch (Op.getOpcode()) {
2813   default: break;
2814   case ISD::AssertSext:
2815     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2816     return VTBits-Tmp+1;
2817   case ISD::AssertZext:
2818     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2819     return VTBits-Tmp;
2820 
2821   case ISD::Constant: {
2822     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2823     return Val.getNumSignBits();
2824   }
2825 
2826   case ISD::SIGN_EXTEND:
2827     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
2828     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2829 
2830   case ISD::SIGN_EXTEND_INREG:
2831     // Max of the input and what this extends.
2832     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
2833     Tmp = VTBits-Tmp+1;
2834 
2835     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2836     return std::max(Tmp, Tmp2);
2837 
2838   case ISD::SRA:
2839     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2840     // SRA X, C   -> adds C sign bits.
2841     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2842       APInt ShiftVal = C->getAPIntValue();
2843       ShiftVal += Tmp;
2844       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
2845     }
2846     return Tmp;
2847   case ISD::SHL:
2848     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2849       // shl destroys sign bits.
2850       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2851       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
2852           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
2853       return Tmp - C->getZExtValue();
2854     }
2855     break;
2856   case ISD::AND:
2857   case ISD::OR:
2858   case ISD::XOR:    // NOT is handled here.
2859     // Logical binary ops preserve the number of sign bits at the worst.
2860     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2861     if (Tmp != 1) {
2862       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2863       FirstAnswer = std::min(Tmp, Tmp2);
2864       // We computed what we know about the sign bits as our first
2865       // answer. Now proceed to the generic code that uses
2866       // computeKnownBits, and pick whichever answer is better.
2867     }
2868     break;
2869 
2870   case ISD::SELECT:
2871     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2872     if (Tmp == 1) return 1;  // Early out.
2873     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2874     return std::min(Tmp, Tmp2);
2875   case ISD::SELECT_CC:
2876     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2877     if (Tmp == 1) return 1;  // Early out.
2878     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2879     return std::min(Tmp, Tmp2);
2880   case ISD::SMIN:
2881   case ISD::SMAX:
2882   case ISD::UMIN:
2883   case ISD::UMAX:
2884     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2885     if (Tmp == 1)
2886       return 1;  // Early out.
2887     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2888     return std::min(Tmp, Tmp2);
2889   case ISD::SADDO:
2890   case ISD::UADDO:
2891   case ISD::SSUBO:
2892   case ISD::USUBO:
2893   case ISD::SMULO:
2894   case ISD::UMULO:
2895     if (Op.getResNo() != 1)
2896       break;
2897     // The boolean result conforms to getBooleanContents.  Fall through.
2898     // If setcc returns 0/-1, all bits are sign bits.
2899     // We know that we have an integer-based boolean since these operations
2900     // are only available for integer.
2901     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2902         TargetLowering::ZeroOrNegativeOneBooleanContent)
2903       return VTBits;
2904     break;
2905   case ISD::SETCC:
2906     // If setcc returns 0/-1, all bits are sign bits.
2907     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2908         TargetLowering::ZeroOrNegativeOneBooleanContent)
2909       return VTBits;
2910     break;
2911   case ISD::ROTL:
2912   case ISD::ROTR:
2913     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2914       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2915 
2916       // Handle rotate right by N like a rotate left by 32-N.
2917       if (Op.getOpcode() == ISD::ROTR)
2918         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2919 
2920       // If we aren't rotating out all of the known-in sign bits, return the
2921       // number that are left.  This handles rotl(sext(x), 1) for example.
2922       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2923       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2924     }
2925     break;
2926   case ISD::ADD:
2927     // Add can have at most one carry bit.  Thus we know that the output
2928     // is, at worst, one more bit than the inputs.
2929     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2930     if (Tmp == 1) return 1;  // Early out.
2931 
2932     // Special case decrementing a value (ADD X, -1):
2933     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2934       if (CRHS->isAllOnesValue()) {
2935         APInt KnownZero, KnownOne;
2936         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2937 
2938         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2939         // sign bits set.
2940         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2941           return VTBits;
2942 
2943         // If we are subtracting one from a positive number, there is no carry
2944         // out of the result.
2945         if (KnownZero.isNegative())
2946           return Tmp;
2947       }
2948 
2949     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2950     if (Tmp2 == 1) return 1;
2951     return std::min(Tmp, Tmp2)-1;
2952 
2953   case ISD::SUB:
2954     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2955     if (Tmp2 == 1) return 1;
2956 
2957     // Handle NEG.
2958     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
2959       if (CLHS->isNullValue()) {
2960         APInt KnownZero, KnownOne;
2961         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2962         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2963         // sign bits set.
2964         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2965           return VTBits;
2966 
2967         // If the input is known to be positive (the sign bit is known clear),
2968         // the output of the NEG has the same number of sign bits as the input.
2969         if (KnownZero.isNegative())
2970           return Tmp2;
2971 
2972         // Otherwise, we treat this like a SUB.
2973       }
2974 
2975     // Sub can have at most one carry bit.  Thus we know that the output
2976     // is, at worst, one more bit than the inputs.
2977     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2978     if (Tmp == 1) return 1;  // Early out.
2979     return std::min(Tmp, Tmp2)-1;
2980   case ISD::TRUNCATE: {
2981     // Check if the sign bits of source go down as far as the truncated value.
2982     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
2983     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2984     if (NumSrcSignBits > (NumSrcBits - VTBits))
2985       return NumSrcSignBits - (NumSrcBits - VTBits);
2986     break;
2987   }
2988   case ISD::EXTRACT_ELEMENT: {
2989     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2990     const int BitWidth = Op.getValueSizeInBits();
2991     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
2992 
2993     // Get reverse index (starting from 1), Op1 value indexes elements from
2994     // little end. Sign starts at big end.
2995     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
2996 
2997     // If the sign portion ends in our element the subtraction gives correct
2998     // result. Otherwise it gives either negative or > bitwidth result
2999     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3000   }
3001   case ISD::EXTRACT_VECTOR_ELT: {
3002     // At the moment we keep this simple and skip tracking the specific
3003     // element. This way we get the lowest common denominator for all elements
3004     // of the vector.
3005     // TODO: get information for given vector element
3006     const unsigned BitWidth = Op.getValueSizeInBits();
3007     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3008     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3009     // anything about sign bits. But if the sizes match we can derive knowledge
3010     // about sign bits from the vector operand.
3011     if (BitWidth == EltBitWidth)
3012       return ComputeNumSignBits(Op.getOperand(0), Depth+1);
3013     break;
3014   }
3015   case ISD::EXTRACT_SUBVECTOR:
3016     return ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3017   case ISD::CONCAT_VECTORS:
3018     // Determine the minimum number of sign bits across all input vectors.
3019     // Early out if the result is already 1.
3020     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3021     for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
3022       Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
3023     return Tmp;
3024   }
3025 
3026   // If we are looking at the loaded value of the SDNode.
3027   if (Op.getResNo() == 0) {
3028     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3029     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3030       unsigned ExtType = LD->getExtensionType();
3031       switch (ExtType) {
3032         default: break;
3033         case ISD::SEXTLOAD:    // '17' bits known
3034           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3035           return VTBits-Tmp+1;
3036         case ISD::ZEXTLOAD:    // '16' bits known
3037           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3038           return VTBits-Tmp;
3039       }
3040     }
3041   }
3042 
3043   // Allow the target to implement this method for its nodes.
3044   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3045       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3046       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3047       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3048     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
3049     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
3050   }
3051 
3052   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3053   // use this information.
3054   APInt KnownZero, KnownOne;
3055   computeKnownBits(Op, KnownZero, KnownOne, Depth);
3056 
3057   APInt Mask;
3058   if (KnownZero.isNegative()) {        // sign bit is 0
3059     Mask = KnownZero;
3060   } else if (KnownOne.isNegative()) {  // sign bit is 1;
3061     Mask = KnownOne;
3062   } else {
3063     // Nothing known.
3064     return FirstAnswer;
3065   }
3066 
3067   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3068   // the number of identical bits in the top of the input value.
3069   Mask = ~Mask;
3070   Mask <<= Mask.getBitWidth()-VTBits;
3071   // Return # leading zeros.  We use 'min' here in case Val was zero before
3072   // shifting.  We don't want to return '64' as for an i32 "0".
3073   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3074 }
3075 
3076 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3077   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3078       !isa<ConstantSDNode>(Op.getOperand(1)))
3079     return false;
3080 
3081   if (Op.getOpcode() == ISD::OR &&
3082       !MaskedValueIsZero(Op.getOperand(0),
3083                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3084     return false;
3085 
3086   return true;
3087 }
3088 
3089 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3090   // If we're told that NaNs won't happen, assume they won't.
3091   if (getTarget().Options.NoNaNsFPMath)
3092     return true;
3093 
3094   if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op))
3095     return BF->Flags.hasNoNaNs();
3096 
3097   // If the value is a constant, we can obviously see if it is a NaN or not.
3098   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3099     return !C->getValueAPF().isNaN();
3100 
3101   // TODO: Recognize more cases here.
3102 
3103   return false;
3104 }
3105 
3106 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3107   // If the value is a constant, we can obviously see if it is a zero or not.
3108   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3109     return !C->isZero();
3110 
3111   // TODO: Recognize more cases here.
3112   switch (Op.getOpcode()) {
3113   default: break;
3114   case ISD::OR:
3115     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3116       return !C->isNullValue();
3117     break;
3118   }
3119 
3120   return false;
3121 }
3122 
3123 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3124   // Check the obvious case.
3125   if (A == B) return true;
3126 
3127   // For for negative and positive zero.
3128   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3129     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3130       if (CA->isZero() && CB->isZero()) return true;
3131 
3132   // Otherwise they may not be equal.
3133   return false;
3134 }
3135 
3136 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3137   assert(A.getValueType() == B.getValueType() &&
3138          "Values must have the same type");
3139   APInt AZero, AOne;
3140   APInt BZero, BOne;
3141   computeKnownBits(A, AZero, AOne);
3142   computeKnownBits(B, BZero, BOne);
3143   return (AZero | BZero).isAllOnesValue();
3144 }
3145 
3146 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3147                                   ArrayRef<SDValue> Ops,
3148                                   llvm::SelectionDAG &DAG) {
3149   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3150   assert(llvm::all_of(Ops,
3151                       [Ops](SDValue Op) {
3152                         return Ops[0].getValueType() == Op.getValueType();
3153                       }) &&
3154          "Concatenation of vectors with inconsistent value types!");
3155   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3156              VT.getVectorNumElements() &&
3157          "Incorrect element count in vector concatenation!");
3158 
3159   if (Ops.size() == 1)
3160     return Ops[0];
3161 
3162   // Concat of UNDEFs is UNDEF.
3163   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3164     return DAG.getUNDEF(VT);
3165 
3166   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3167   // simplified to one big BUILD_VECTOR.
3168   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3169   EVT SVT = VT.getScalarType();
3170   SmallVector<SDValue, 16> Elts;
3171   for (SDValue Op : Ops) {
3172     EVT OpVT = Op.getValueType();
3173     if (Op.isUndef())
3174       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3175     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3176       Elts.append(Op->op_begin(), Op->op_end());
3177     else
3178       return SDValue();
3179   }
3180 
3181   // BUILD_VECTOR requires all inputs to be of the same type, find the
3182   // maximum type and extend them all.
3183   for (SDValue Op : Elts)
3184     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3185 
3186   if (SVT.bitsGT(VT.getScalarType()))
3187     for (SDValue &Op : Elts)
3188       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3189                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3190                : DAG.getSExtOrTrunc(Op, DL, SVT);
3191 
3192   return DAG.getBuildVector(VT, DL, Elts);
3193 }
3194 
3195 /// Gets or creates the specified node.
3196 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3197   FoldingSetNodeID ID;
3198   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3199   void *IP = nullptr;
3200   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3201     return SDValue(E, 0);
3202 
3203   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3204                               getVTList(VT));
3205   CSEMap.InsertNode(N, IP);
3206 
3207   InsertNode(N);
3208   return SDValue(N, 0);
3209 }
3210 
3211 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3212                               SDValue Operand) {
3213   // Constant fold unary operations with an integer constant operand. Even
3214   // opaque constant will be folded, because the folding of unary operations
3215   // doesn't create new constants with different values. Nevertheless, the
3216   // opaque flag is preserved during folding to prevent future folding with
3217   // other constants.
3218   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3219     const APInt &Val = C->getAPIntValue();
3220     switch (Opcode) {
3221     default: break;
3222     case ISD::SIGN_EXTEND:
3223       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3224                          C->isTargetOpcode(), C->isOpaque());
3225     case ISD::ANY_EXTEND:
3226     case ISD::ZERO_EXTEND:
3227     case ISD::TRUNCATE:
3228       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3229                          C->isTargetOpcode(), C->isOpaque());
3230     case ISD::UINT_TO_FP:
3231     case ISD::SINT_TO_FP: {
3232       APFloat apf(EVTToAPFloatSemantics(VT),
3233                   APInt::getNullValue(VT.getSizeInBits()));
3234       (void)apf.convertFromAPInt(Val,
3235                                  Opcode==ISD::SINT_TO_FP,
3236                                  APFloat::rmNearestTiesToEven);
3237       return getConstantFP(apf, DL, VT);
3238     }
3239     case ISD::BITCAST:
3240       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3241         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3242       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3243         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3244       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3245         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3246       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3247         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3248       break;
3249     case ISD::BITREVERSE:
3250       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3251                          C->isOpaque());
3252     case ISD::BSWAP:
3253       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3254                          C->isOpaque());
3255     case ISD::CTPOP:
3256       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3257                          C->isOpaque());
3258     case ISD::CTLZ:
3259     case ISD::CTLZ_ZERO_UNDEF:
3260       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3261                          C->isOpaque());
3262     case ISD::CTTZ:
3263     case ISD::CTTZ_ZERO_UNDEF:
3264       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3265                          C->isOpaque());
3266     case ISD::FP16_TO_FP: {
3267       bool Ignored;
3268       APFloat FPV(APFloat::IEEEhalf(),
3269                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3270 
3271       // This can return overflow, underflow, or inexact; we don't care.
3272       // FIXME need to be more flexible about rounding mode.
3273       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3274                         APFloat::rmNearestTiesToEven, &Ignored);
3275       return getConstantFP(FPV, DL, VT);
3276     }
3277     }
3278   }
3279 
3280   // Constant fold unary operations with a floating point constant operand.
3281   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3282     APFloat V = C->getValueAPF();    // make copy
3283     switch (Opcode) {
3284     case ISD::FNEG:
3285       V.changeSign();
3286       return getConstantFP(V, DL, VT);
3287     case ISD::FABS:
3288       V.clearSign();
3289       return getConstantFP(V, DL, VT);
3290     case ISD::FCEIL: {
3291       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3292       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3293         return getConstantFP(V, DL, VT);
3294       break;
3295     }
3296     case ISD::FTRUNC: {
3297       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3298       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3299         return getConstantFP(V, DL, VT);
3300       break;
3301     }
3302     case ISD::FFLOOR: {
3303       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3304       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3305         return getConstantFP(V, DL, VT);
3306       break;
3307     }
3308     case ISD::FP_EXTEND: {
3309       bool ignored;
3310       // This can return overflow, underflow, or inexact; we don't care.
3311       // FIXME need to be more flexible about rounding mode.
3312       (void)V.convert(EVTToAPFloatSemantics(VT),
3313                       APFloat::rmNearestTiesToEven, &ignored);
3314       return getConstantFP(V, DL, VT);
3315     }
3316     case ISD::FP_TO_SINT:
3317     case ISD::FP_TO_UINT: {
3318       integerPart x[2];
3319       bool ignored;
3320       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
3321       // FIXME need to be more flexible about rounding mode.
3322       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
3323                             Opcode==ISD::FP_TO_SINT,
3324                             APFloat::rmTowardZero, &ignored);
3325       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
3326         break;
3327       APInt api(VT.getSizeInBits(), x);
3328       return getConstant(api, DL, VT);
3329     }
3330     case ISD::BITCAST:
3331       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3332         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3333       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3334         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3335       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3336         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3337       break;
3338     case ISD::FP_TO_FP16: {
3339       bool Ignored;
3340       // This can return overflow, underflow, or inexact; we don't care.
3341       // FIXME need to be more flexible about rounding mode.
3342       (void)V.convert(APFloat::IEEEhalf(),
3343                       APFloat::rmNearestTiesToEven, &Ignored);
3344       return getConstant(V.bitcastToAPInt(), DL, VT);
3345     }
3346     }
3347   }
3348 
3349   // Constant fold unary operations with a vector integer or float operand.
3350   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3351     if (BV->isConstant()) {
3352       switch (Opcode) {
3353       default:
3354         // FIXME: Entirely reasonable to perform folding of other unary
3355         // operations here as the need arises.
3356         break;
3357       case ISD::FNEG:
3358       case ISD::FABS:
3359       case ISD::FCEIL:
3360       case ISD::FTRUNC:
3361       case ISD::FFLOOR:
3362       case ISD::FP_EXTEND:
3363       case ISD::FP_TO_SINT:
3364       case ISD::FP_TO_UINT:
3365       case ISD::TRUNCATE:
3366       case ISD::UINT_TO_FP:
3367       case ISD::SINT_TO_FP:
3368       case ISD::BITREVERSE:
3369       case ISD::BSWAP:
3370       case ISD::CTLZ:
3371       case ISD::CTLZ_ZERO_UNDEF:
3372       case ISD::CTTZ:
3373       case ISD::CTTZ_ZERO_UNDEF:
3374       case ISD::CTPOP: {
3375         SDValue Ops = { Operand };
3376         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3377           return Fold;
3378       }
3379       }
3380     }
3381   }
3382 
3383   unsigned OpOpcode = Operand.getNode()->getOpcode();
3384   switch (Opcode) {
3385   case ISD::TokenFactor:
3386   case ISD::MERGE_VALUES:
3387   case ISD::CONCAT_VECTORS:
3388     return Operand;         // Factor, merge or concat of one node?  No need.
3389   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3390   case ISD::FP_EXTEND:
3391     assert(VT.isFloatingPoint() &&
3392            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3393     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3394     assert((!VT.isVector() ||
3395             VT.getVectorNumElements() ==
3396             Operand.getValueType().getVectorNumElements()) &&
3397            "Vector element count mismatch!");
3398     assert(Operand.getValueType().bitsLT(VT) &&
3399            "Invalid fpext node, dst < src!");
3400     if (Operand.isUndef())
3401       return getUNDEF(VT);
3402     break;
3403   case ISD::SIGN_EXTEND:
3404     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3405            "Invalid SIGN_EXTEND!");
3406     if (Operand.getValueType() == VT) return Operand;   // noop extension
3407     assert((!VT.isVector() ||
3408             VT.getVectorNumElements() ==
3409             Operand.getValueType().getVectorNumElements()) &&
3410            "Vector element count mismatch!");
3411     assert(Operand.getValueType().bitsLT(VT) &&
3412            "Invalid sext node, dst < src!");
3413     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3414       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3415     else if (OpOpcode == ISD::UNDEF)
3416       // sext(undef) = 0, because the top bits will all be the same.
3417       return getConstant(0, DL, VT);
3418     break;
3419   case ISD::ZERO_EXTEND:
3420     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3421            "Invalid ZERO_EXTEND!");
3422     if (Operand.getValueType() == VT) return Operand;   // noop extension
3423     assert((!VT.isVector() ||
3424             VT.getVectorNumElements() ==
3425             Operand.getValueType().getVectorNumElements()) &&
3426            "Vector element count mismatch!");
3427     assert(Operand.getValueType().bitsLT(VT) &&
3428            "Invalid zext node, dst < src!");
3429     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3430       return getNode(ISD::ZERO_EXTEND, DL, VT,
3431                      Operand.getNode()->getOperand(0));
3432     else if (OpOpcode == ISD::UNDEF)
3433       // zext(undef) = 0, because the top bits will be zero.
3434       return getConstant(0, DL, VT);
3435     break;
3436   case ISD::ANY_EXTEND:
3437     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3438            "Invalid ANY_EXTEND!");
3439     if (Operand.getValueType() == VT) return Operand;   // noop extension
3440     assert((!VT.isVector() ||
3441             VT.getVectorNumElements() ==
3442             Operand.getValueType().getVectorNumElements()) &&
3443            "Vector element count mismatch!");
3444     assert(Operand.getValueType().bitsLT(VT) &&
3445            "Invalid anyext node, dst < src!");
3446 
3447     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3448         OpOpcode == ISD::ANY_EXTEND)
3449       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3450       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3451     else if (OpOpcode == ISD::UNDEF)
3452       return getUNDEF(VT);
3453 
3454     // (ext (trunx x)) -> x
3455     if (OpOpcode == ISD::TRUNCATE) {
3456       SDValue OpOp = Operand.getNode()->getOperand(0);
3457       if (OpOp.getValueType() == VT)
3458         return OpOp;
3459     }
3460     break;
3461   case ISD::TRUNCATE:
3462     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3463            "Invalid TRUNCATE!");
3464     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3465     assert((!VT.isVector() ||
3466             VT.getVectorNumElements() ==
3467             Operand.getValueType().getVectorNumElements()) &&
3468            "Vector element count mismatch!");
3469     assert(Operand.getValueType().bitsGT(VT) &&
3470            "Invalid truncate node, src < dst!");
3471     if (OpOpcode == ISD::TRUNCATE)
3472       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3473     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3474         OpOpcode == ISD::ANY_EXTEND) {
3475       // If the source is smaller than the dest, we still need an extend.
3476       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3477             .bitsLT(VT.getScalarType()))
3478         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3479       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3480         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3481       return Operand.getNode()->getOperand(0);
3482     }
3483     if (OpOpcode == ISD::UNDEF)
3484       return getUNDEF(VT);
3485     break;
3486   case ISD::BSWAP:
3487     assert(VT.isInteger() && VT == Operand.getValueType() &&
3488            "Invalid BSWAP!");
3489     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3490            "BSWAP types must be a multiple of 16 bits!");
3491     if (OpOpcode == ISD::UNDEF)
3492       return getUNDEF(VT);
3493     break;
3494   case ISD::BITREVERSE:
3495     assert(VT.isInteger() && VT == Operand.getValueType() &&
3496            "Invalid BITREVERSE!");
3497     if (OpOpcode == ISD::UNDEF)
3498       return getUNDEF(VT);
3499     break;
3500   case ISD::BITCAST:
3501     // Basic sanity checking.
3502     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3503            "Cannot BITCAST between types of different sizes!");
3504     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3505     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3506       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3507     if (OpOpcode == ISD::UNDEF)
3508       return getUNDEF(VT);
3509     break;
3510   case ISD::SCALAR_TO_VECTOR:
3511     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3512            (VT.getVectorElementType() == Operand.getValueType() ||
3513             (VT.getVectorElementType().isInteger() &&
3514              Operand.getValueType().isInteger() &&
3515              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3516            "Illegal SCALAR_TO_VECTOR node!");
3517     if (OpOpcode == ISD::UNDEF)
3518       return getUNDEF(VT);
3519     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3520     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3521         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3522         Operand.getConstantOperandVal(1) == 0 &&
3523         Operand.getOperand(0).getValueType() == VT)
3524       return Operand.getOperand(0);
3525     break;
3526   case ISD::FNEG:
3527     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3528     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3529       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3530       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3531                        Operand.getNode()->getOperand(0),
3532                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3533     if (OpOpcode == ISD::FNEG)  // --X -> X
3534       return Operand.getNode()->getOperand(0);
3535     break;
3536   case ISD::FABS:
3537     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3538       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3539     break;
3540   }
3541 
3542   SDNode *N;
3543   SDVTList VTs = getVTList(VT);
3544   SDValue Ops[] = {Operand};
3545   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3546     FoldingSetNodeID ID;
3547     AddNodeIDNode(ID, Opcode, VTs, Ops);
3548     void *IP = nullptr;
3549     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3550       return SDValue(E, 0);
3551 
3552     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3553     createOperands(N, Ops);
3554     CSEMap.InsertNode(N, IP);
3555   } else {
3556     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3557     createOperands(N, Ops);
3558   }
3559 
3560   InsertNode(N);
3561   return SDValue(N, 0);
3562 }
3563 
3564 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3565                                         const APInt &C2) {
3566   switch (Opcode) {
3567   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3568   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3569   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3570   case ISD::AND:  return std::make_pair(C1 & C2, true);
3571   case ISD::OR:   return std::make_pair(C1 | C2, true);
3572   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3573   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3574   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3575   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3576   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3577   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3578   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3579   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3580   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3581   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3582   case ISD::UDIV:
3583     if (!C2.getBoolValue())
3584       break;
3585     return std::make_pair(C1.udiv(C2), true);
3586   case ISD::UREM:
3587     if (!C2.getBoolValue())
3588       break;
3589     return std::make_pair(C1.urem(C2), true);
3590   case ISD::SDIV:
3591     if (!C2.getBoolValue())
3592       break;
3593     return std::make_pair(C1.sdiv(C2), true);
3594   case ISD::SREM:
3595     if (!C2.getBoolValue())
3596       break;
3597     return std::make_pair(C1.srem(C2), true);
3598   }
3599   return std::make_pair(APInt(1, 0), false);
3600 }
3601 
3602 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3603                                              EVT VT, const ConstantSDNode *Cst1,
3604                                              const ConstantSDNode *Cst2) {
3605   if (Cst1->isOpaque() || Cst2->isOpaque())
3606     return SDValue();
3607 
3608   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3609                                             Cst2->getAPIntValue());
3610   if (!Folded.second)
3611     return SDValue();
3612   return getConstant(Folded.first, DL, VT);
3613 }
3614 
3615 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3616                                        const GlobalAddressSDNode *GA,
3617                                        const SDNode *N2) {
3618   if (GA->getOpcode() != ISD::GlobalAddress)
3619     return SDValue();
3620   if (!TLI->isOffsetFoldingLegal(GA))
3621     return SDValue();
3622   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3623   if (!Cst2)
3624     return SDValue();
3625   int64_t Offset = Cst2->getSExtValue();
3626   switch (Opcode) {
3627   case ISD::ADD: break;
3628   case ISD::SUB: Offset = -uint64_t(Offset); break;
3629   default: return SDValue();
3630   }
3631   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3632                           GA->getOffset() + uint64_t(Offset));
3633 }
3634 
3635 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3636                                              EVT VT, SDNode *Cst1,
3637                                              SDNode *Cst2) {
3638   // If the opcode is a target-specific ISD node, there's nothing we can
3639   // do here and the operand rules may not line up with the below, so
3640   // bail early.
3641   if (Opcode >= ISD::BUILTIN_OP_END)
3642     return SDValue();
3643 
3644   // Handle the case of two scalars.
3645   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3646     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3647       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3648       assert((!Folded || !VT.isVector()) &&
3649              "Can't fold vectors ops with scalar operands");
3650       return Folded;
3651     }
3652   }
3653 
3654   // fold (add Sym, c) -> Sym+c
3655   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3656     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3657   if (isCommutativeBinOp(Opcode))
3658     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3659       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3660 
3661   // For vectors extract each constant element into Inputs so we can constant
3662   // fold them individually.
3663   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3664   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3665   if (!BV1 || !BV2)
3666     return SDValue();
3667 
3668   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3669 
3670   EVT SVT = VT.getScalarType();
3671   SmallVector<SDValue, 4> Outputs;
3672   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3673     SDValue V1 = BV1->getOperand(I);
3674     SDValue V2 = BV2->getOperand(I);
3675 
3676     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3677     // FIXME: This is valid and could be handled by truncation.
3678     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3679       return SDValue();
3680 
3681     // Fold one vector element.
3682     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
3683 
3684     // Scalar folding only succeeded if the result is a constant or UNDEF.
3685     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3686         ScalarResult.getOpcode() != ISD::ConstantFP)
3687       return SDValue();
3688     Outputs.push_back(ScalarResult);
3689   }
3690 
3691   assert(VT.getVectorNumElements() == Outputs.size() &&
3692          "Vector size mismatch!");
3693 
3694   // We may have a vector type but a scalar result. Create a splat.
3695   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3696 
3697   // Build a big vector out of the scalar elements we generated.
3698   return getBuildVector(VT, SDLoc(), Outputs);
3699 }
3700 
3701 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3702                                                    const SDLoc &DL, EVT VT,
3703                                                    ArrayRef<SDValue> Ops,
3704                                                    const SDNodeFlags *Flags) {
3705   // If the opcode is a target-specific ISD node, there's nothing we can
3706   // do here and the operand rules may not line up with the below, so
3707   // bail early.
3708   if (Opcode >= ISD::BUILTIN_OP_END)
3709     return SDValue();
3710 
3711   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3712   if (!VT.isVector())
3713     return SDValue();
3714 
3715   unsigned NumElts = VT.getVectorNumElements();
3716 
3717   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3718     return !Op.getValueType().isVector() ||
3719            Op.getValueType().getVectorNumElements() == NumElts;
3720   };
3721 
3722   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3723     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3724     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3725            (BV && BV->isConstant());
3726   };
3727 
3728   // All operands must be vector types with the same number of elements as
3729   // the result type and must be either UNDEF or a build vector of constant
3730   // or UNDEF scalars.
3731   if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
3732       !all_of(Ops, IsScalarOrSameVectorSize))
3733     return SDValue();
3734 
3735   // If we are comparing vectors, then the result needs to be a i1 boolean
3736   // that is then sign-extended back to the legal result type.
3737   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3738 
3739   // Find legal integer scalar type for constant promotion and
3740   // ensure that its scalar size is at least as large as source.
3741   EVT LegalSVT = VT.getScalarType();
3742   if (LegalSVT.isInteger()) {
3743     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3744     if (LegalSVT.bitsLT(VT.getScalarType()))
3745       return SDValue();
3746   }
3747 
3748   // Constant fold each scalar lane separately.
3749   SmallVector<SDValue, 4> ScalarResults;
3750   for (unsigned i = 0; i != NumElts; i++) {
3751     SmallVector<SDValue, 4> ScalarOps;
3752     for (SDValue Op : Ops) {
3753       EVT InSVT = Op.getValueType().getScalarType();
3754       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3755       if (!InBV) {
3756         // We've checked that this is UNDEF or a constant of some kind.
3757         if (Op.isUndef())
3758           ScalarOps.push_back(getUNDEF(InSVT));
3759         else
3760           ScalarOps.push_back(Op);
3761         continue;
3762       }
3763 
3764       SDValue ScalarOp = InBV->getOperand(i);
3765       EVT ScalarVT = ScalarOp.getValueType();
3766 
3767       // Build vector (integer) scalar operands may need implicit
3768       // truncation - do this before constant folding.
3769       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3770         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3771 
3772       ScalarOps.push_back(ScalarOp);
3773     }
3774 
3775     // Constant fold the scalar operands.
3776     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3777 
3778     // Legalize the (integer) scalar constant if necessary.
3779     if (LegalSVT != SVT)
3780       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3781 
3782     // Scalar folding only succeeded if the result is a constant or UNDEF.
3783     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3784         ScalarResult.getOpcode() != ISD::ConstantFP)
3785       return SDValue();
3786     ScalarResults.push_back(ScalarResult);
3787   }
3788 
3789   return getBuildVector(VT, DL, ScalarResults);
3790 }
3791 
3792 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3793                               SDValue N1, SDValue N2,
3794                               const SDNodeFlags *Flags) {
3795   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3796   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3797   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3798   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3799 
3800   // Canonicalize constant to RHS if commutative.
3801   if (isCommutativeBinOp(Opcode)) {
3802     if (N1C && !N2C) {
3803       std::swap(N1C, N2C);
3804       std::swap(N1, N2);
3805     } else if (N1CFP && !N2CFP) {
3806       std::swap(N1CFP, N2CFP);
3807       std::swap(N1, N2);
3808     }
3809   }
3810 
3811   switch (Opcode) {
3812   default: break;
3813   case ISD::TokenFactor:
3814     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3815            N2.getValueType() == MVT::Other && "Invalid token factor!");
3816     // Fold trivial token factors.
3817     if (N1.getOpcode() == ISD::EntryToken) return N2;
3818     if (N2.getOpcode() == ISD::EntryToken) return N1;
3819     if (N1 == N2) return N1;
3820     break;
3821   case ISD::CONCAT_VECTORS: {
3822     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3823     SDValue Ops[] = {N1, N2};
3824     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3825       return V;
3826     break;
3827   }
3828   case ISD::AND:
3829     assert(VT.isInteger() && "This operator does not apply to FP types!");
3830     assert(N1.getValueType() == N2.getValueType() &&
3831            N1.getValueType() == VT && "Binary operator types must match!");
3832     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3833     // worth handling here.
3834     if (N2C && N2C->isNullValue())
3835       return N2;
3836     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3837       return N1;
3838     break;
3839   case ISD::OR:
3840   case ISD::XOR:
3841   case ISD::ADD:
3842   case ISD::SUB:
3843     assert(VT.isInteger() && "This operator does not apply to FP types!");
3844     assert(N1.getValueType() == N2.getValueType() &&
3845            N1.getValueType() == VT && "Binary operator types must match!");
3846     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3847     // it's worth handling here.
3848     if (N2C && N2C->isNullValue())
3849       return N1;
3850     break;
3851   case ISD::UDIV:
3852   case ISD::UREM:
3853   case ISD::MULHU:
3854   case ISD::MULHS:
3855   case ISD::MUL:
3856   case ISD::SDIV:
3857   case ISD::SREM:
3858   case ISD::SMIN:
3859   case ISD::SMAX:
3860   case ISD::UMIN:
3861   case ISD::UMAX:
3862     assert(VT.isInteger() && "This operator does not apply to FP types!");
3863     assert(N1.getValueType() == N2.getValueType() &&
3864            N1.getValueType() == VT && "Binary operator types must match!");
3865     break;
3866   case ISD::FADD:
3867   case ISD::FSUB:
3868   case ISD::FMUL:
3869   case ISD::FDIV:
3870   case ISD::FREM:
3871     if (getTarget().Options.UnsafeFPMath) {
3872       if (Opcode == ISD::FADD) {
3873         // x+0 --> x
3874         if (N2CFP && N2CFP->getValueAPF().isZero())
3875           return N1;
3876       } else if (Opcode == ISD::FSUB) {
3877         // x-0 --> x
3878         if (N2CFP && N2CFP->getValueAPF().isZero())
3879           return N1;
3880       } else if (Opcode == ISD::FMUL) {
3881         // x*0 --> 0
3882         if (N2CFP && N2CFP->isZero())
3883           return N2;
3884         // x*1 --> x
3885         if (N2CFP && N2CFP->isExactlyValue(1.0))
3886           return N1;
3887       }
3888     }
3889     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
3890     assert(N1.getValueType() == N2.getValueType() &&
3891            N1.getValueType() == VT && "Binary operator types must match!");
3892     break;
3893   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
3894     assert(N1.getValueType() == VT &&
3895            N1.getValueType().isFloatingPoint() &&
3896            N2.getValueType().isFloatingPoint() &&
3897            "Invalid FCOPYSIGN!");
3898     break;
3899   case ISD::SHL:
3900   case ISD::SRA:
3901   case ISD::SRL:
3902   case ISD::ROTL:
3903   case ISD::ROTR:
3904     assert(VT == N1.getValueType() &&
3905            "Shift operators return type must be the same as their first arg");
3906     assert(VT.isInteger() && N2.getValueType().isInteger() &&
3907            "Shifts only work on integers");
3908     assert((!VT.isVector() || VT == N2.getValueType()) &&
3909            "Vector shift amounts must be in the same as their first arg");
3910     // Verify that the shift amount VT is bit enough to hold valid shift
3911     // amounts.  This catches things like trying to shift an i1024 value by an
3912     // i8, which is easy to fall into in generic code that uses
3913     // TLI.getShiftAmount().
3914     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
3915            "Invalid use of small shift amount with oversized value!");
3916 
3917     // Always fold shifts of i1 values so the code generator doesn't need to
3918     // handle them.  Since we know the size of the shift has to be less than the
3919     // size of the value, the shift/rotate count is guaranteed to be zero.
3920     if (VT == MVT::i1)
3921       return N1;
3922     if (N2C && N2C->isNullValue())
3923       return N1;
3924     break;
3925   case ISD::FP_ROUND_INREG: {
3926     EVT EVT = cast<VTSDNode>(N2)->getVT();
3927     assert(VT == N1.getValueType() && "Not an inreg round!");
3928     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
3929            "Cannot FP_ROUND_INREG integer types");
3930     assert(EVT.isVector() == VT.isVector() &&
3931            "FP_ROUND_INREG type should be vector iff the operand "
3932            "type is vector!");
3933     assert((!EVT.isVector() ||
3934             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3935            "Vector element counts must match in FP_ROUND_INREG");
3936     assert(EVT.bitsLE(VT) && "Not rounding down!");
3937     (void)EVT;
3938     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
3939     break;
3940   }
3941   case ISD::FP_ROUND:
3942     assert(VT.isFloatingPoint() &&
3943            N1.getValueType().isFloatingPoint() &&
3944            VT.bitsLE(N1.getValueType()) &&
3945            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
3946            "Invalid FP_ROUND!");
3947     if (N1.getValueType() == VT) return N1;  // noop conversion.
3948     break;
3949   case ISD::AssertSext:
3950   case ISD::AssertZext: {
3951     EVT EVT = cast<VTSDNode>(N2)->getVT();
3952     assert(VT == N1.getValueType() && "Not an inreg extend!");
3953     assert(VT.isInteger() && EVT.isInteger() &&
3954            "Cannot *_EXTEND_INREG FP types");
3955     assert(!EVT.isVector() &&
3956            "AssertSExt/AssertZExt type should be the vector element type "
3957            "rather than the vector type!");
3958     assert(EVT.bitsLE(VT) && "Not extending!");
3959     if (VT == EVT) return N1; // noop assertion.
3960     break;
3961   }
3962   case ISD::SIGN_EXTEND_INREG: {
3963     EVT EVT = cast<VTSDNode>(N2)->getVT();
3964     assert(VT == N1.getValueType() && "Not an inreg extend!");
3965     assert(VT.isInteger() && EVT.isInteger() &&
3966            "Cannot *_EXTEND_INREG FP types");
3967     assert(EVT.isVector() == VT.isVector() &&
3968            "SIGN_EXTEND_INREG type should be vector iff the operand "
3969            "type is vector!");
3970     assert((!EVT.isVector() ||
3971             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3972            "Vector element counts must match in SIGN_EXTEND_INREG");
3973     assert(EVT.bitsLE(VT) && "Not extending!");
3974     if (EVT == VT) return N1;  // Not actually extending
3975 
3976     auto SignExtendInReg = [&](APInt Val) {
3977       unsigned FromBits = EVT.getScalarSizeInBits();
3978       Val <<= Val.getBitWidth() - FromBits;
3979       Val = Val.ashr(Val.getBitWidth() - FromBits);
3980       return getConstant(Val, DL, VT.getScalarType());
3981     };
3982 
3983     if (N1C) {
3984       const APInt &Val = N1C->getAPIntValue();
3985       return SignExtendInReg(Val);
3986     }
3987     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
3988       SmallVector<SDValue, 8> Ops;
3989       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3990         SDValue Op = N1.getOperand(i);
3991         if (Op.isUndef()) {
3992           Ops.push_back(getUNDEF(VT.getScalarType()));
3993           continue;
3994         }
3995         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3996           APInt Val = C->getAPIntValue();
3997           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
3998           Ops.push_back(SignExtendInReg(Val));
3999           continue;
4000         }
4001         break;
4002       }
4003       if (Ops.size() == VT.getVectorNumElements())
4004         return getBuildVector(VT, DL, Ops);
4005     }
4006     break;
4007   }
4008   case ISD::EXTRACT_VECTOR_ELT:
4009     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4010     if (N1.isUndef())
4011       return getUNDEF(VT);
4012 
4013     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4014     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4015       return getUNDEF(VT);
4016 
4017     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4018     // expanding copies of large vectors from registers.
4019     if (N2C &&
4020         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4021         N1.getNumOperands() > 0) {
4022       unsigned Factor =
4023         N1.getOperand(0).getValueType().getVectorNumElements();
4024       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4025                      N1.getOperand(N2C->getZExtValue() / Factor),
4026                      getConstant(N2C->getZExtValue() % Factor, DL,
4027                                  N2.getValueType()));
4028     }
4029 
4030     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4031     // expanding large vector constants.
4032     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4033       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4034 
4035       if (VT != Elt.getValueType())
4036         // If the vector element type is not legal, the BUILD_VECTOR operands
4037         // are promoted and implicitly truncated, and the result implicitly
4038         // extended. Make that explicit here.
4039         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4040 
4041       return Elt;
4042     }
4043 
4044     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4045     // operations are lowered to scalars.
4046     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4047       // If the indices are the same, return the inserted element else
4048       // if the indices are known different, extract the element from
4049       // the original vector.
4050       SDValue N1Op2 = N1.getOperand(2);
4051       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4052 
4053       if (N1Op2C && N2C) {
4054         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4055           if (VT == N1.getOperand(1).getValueType())
4056             return N1.getOperand(1);
4057           else
4058             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4059         }
4060 
4061         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4062       }
4063     }
4064     break;
4065   case ISD::EXTRACT_ELEMENT:
4066     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4067     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4068            (N1.getValueType().isInteger() == VT.isInteger()) &&
4069            N1.getValueType() != VT &&
4070            "Wrong types for EXTRACT_ELEMENT!");
4071 
4072     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4073     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4074     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4075     if (N1.getOpcode() == ISD::BUILD_PAIR)
4076       return N1.getOperand(N2C->getZExtValue());
4077 
4078     // EXTRACT_ELEMENT of a constant int is also very common.
4079     if (N1C) {
4080       unsigned ElementSize = VT.getSizeInBits();
4081       unsigned Shift = ElementSize * N2C->getZExtValue();
4082       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4083       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4084     }
4085     break;
4086   case ISD::EXTRACT_SUBVECTOR:
4087     if (VT.isSimple() && N1.getValueType().isSimple()) {
4088       assert(VT.isVector() && N1.getValueType().isVector() &&
4089              "Extract subvector VTs must be a vectors!");
4090       assert(VT.getVectorElementType() ==
4091              N1.getValueType().getVectorElementType() &&
4092              "Extract subvector VTs must have the same element type!");
4093       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4094              "Extract subvector must be from larger vector to smaller vector!");
4095 
4096       if (N2C) {
4097         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4098                 <= N1.getValueType().getVectorNumElements())
4099                && "Extract subvector overflow!");
4100       }
4101 
4102       // Trivial extraction.
4103       if (VT.getSimpleVT() == N1.getSimpleValueType())
4104         return N1;
4105 
4106       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4107       if (N1.isUndef())
4108         return getUNDEF(VT);
4109 
4110       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4111       // the concat have the same type as the extract.
4112       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4113           N1.getNumOperands() > 0 &&
4114           VT == N1.getOperand(0).getValueType()) {
4115         unsigned Factor = VT.getVectorNumElements();
4116         return N1.getOperand(N2C->getZExtValue() / Factor);
4117       }
4118 
4119       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4120       // during shuffle legalization.
4121       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4122           VT == N1.getOperand(1).getValueType())
4123         return N1.getOperand(1);
4124     }
4125     break;
4126   }
4127 
4128   // Perform trivial constant folding.
4129   if (SDValue SV =
4130           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4131     return SV;
4132 
4133   // Constant fold FP operations.
4134   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4135   if (N1CFP) {
4136     if (N2CFP) {
4137       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4138       APFloat::opStatus s;
4139       switch (Opcode) {
4140       case ISD::FADD:
4141         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4142         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4143           return getConstantFP(V1, DL, VT);
4144         break;
4145       case ISD::FSUB:
4146         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4147         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4148           return getConstantFP(V1, DL, VT);
4149         break;
4150       case ISD::FMUL:
4151         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4152         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4153           return getConstantFP(V1, DL, VT);
4154         break;
4155       case ISD::FDIV:
4156         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4157         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4158                                  s!=APFloat::opDivByZero)) {
4159           return getConstantFP(V1, DL, VT);
4160         }
4161         break;
4162       case ISD::FREM :
4163         s = V1.mod(V2);
4164         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4165                                  s!=APFloat::opDivByZero)) {
4166           return getConstantFP(V1, DL, VT);
4167         }
4168         break;
4169       case ISD::FCOPYSIGN:
4170         V1.copySign(V2);
4171         return getConstantFP(V1, DL, VT);
4172       default: break;
4173       }
4174     }
4175 
4176     if (Opcode == ISD::FP_ROUND) {
4177       APFloat V = N1CFP->getValueAPF();    // make copy
4178       bool ignored;
4179       // This can return overflow, underflow, or inexact; we don't care.
4180       // FIXME need to be more flexible about rounding mode.
4181       (void)V.convert(EVTToAPFloatSemantics(VT),
4182                       APFloat::rmNearestTiesToEven, &ignored);
4183       return getConstantFP(V, DL, VT);
4184     }
4185   }
4186 
4187   // Canonicalize an UNDEF to the RHS, even over a constant.
4188   if (N1.isUndef()) {
4189     if (isCommutativeBinOp(Opcode)) {
4190       std::swap(N1, N2);
4191     } else {
4192       switch (Opcode) {
4193       case ISD::FP_ROUND_INREG:
4194       case ISD::SIGN_EXTEND_INREG:
4195       case ISD::SUB:
4196       case ISD::FSUB:
4197       case ISD::FDIV:
4198       case ISD::FREM:
4199       case ISD::SRA:
4200         return N1;     // fold op(undef, arg2) -> undef
4201       case ISD::UDIV:
4202       case ISD::SDIV:
4203       case ISD::UREM:
4204       case ISD::SREM:
4205       case ISD::SRL:
4206       case ISD::SHL:
4207         if (!VT.isVector())
4208           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4209         // For vectors, we can't easily build an all zero vector, just return
4210         // the LHS.
4211         return N2;
4212       }
4213     }
4214   }
4215 
4216   // Fold a bunch of operators when the RHS is undef.
4217   if (N2.isUndef()) {
4218     switch (Opcode) {
4219     case ISD::XOR:
4220       if (N1.isUndef())
4221         // Handle undef ^ undef -> 0 special case. This is a common
4222         // idiom (misuse).
4223         return getConstant(0, DL, VT);
4224       LLVM_FALLTHROUGH;
4225     case ISD::ADD:
4226     case ISD::ADDC:
4227     case ISD::ADDE:
4228     case ISD::SUB:
4229     case ISD::UDIV:
4230     case ISD::SDIV:
4231     case ISD::UREM:
4232     case ISD::SREM:
4233       return N2;       // fold op(arg1, undef) -> undef
4234     case ISD::FADD:
4235     case ISD::FSUB:
4236     case ISD::FMUL:
4237     case ISD::FDIV:
4238     case ISD::FREM:
4239       if (getTarget().Options.UnsafeFPMath)
4240         return N2;
4241       break;
4242     case ISD::MUL:
4243     case ISD::AND:
4244     case ISD::SRL:
4245     case ISD::SHL:
4246       if (!VT.isVector())
4247         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4248       // For vectors, we can't easily build an all zero vector, just return
4249       // the LHS.
4250       return N1;
4251     case ISD::OR:
4252       if (!VT.isVector())
4253         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4254       // For vectors, we can't easily build an all one vector, just return
4255       // the LHS.
4256       return N1;
4257     case ISD::SRA:
4258       return N1;
4259     }
4260   }
4261 
4262   // Memoize this node if possible.
4263   SDNode *N;
4264   SDVTList VTs = getVTList(VT);
4265   if (VT != MVT::Glue) {
4266     SDValue Ops[] = {N1, N2};
4267     FoldingSetNodeID ID;
4268     AddNodeIDNode(ID, Opcode, VTs, Ops);
4269     void *IP = nullptr;
4270     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4271       if (Flags)
4272         E->intersectFlagsWith(Flags);
4273       return SDValue(E, 0);
4274     }
4275 
4276     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4277     CSEMap.InsertNode(N, IP);
4278   } else {
4279     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4280   }
4281 
4282   InsertNode(N);
4283   return SDValue(N, 0);
4284 }
4285 
4286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4287                               SDValue N1, SDValue N2, SDValue N3) {
4288   // Perform various simplifications.
4289   switch (Opcode) {
4290   case ISD::FMA: {
4291     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4292     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4293     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4294     if (N1CFP && N2CFP && N3CFP) {
4295       APFloat  V1 = N1CFP->getValueAPF();
4296       const APFloat &V2 = N2CFP->getValueAPF();
4297       const APFloat &V3 = N3CFP->getValueAPF();
4298       APFloat::opStatus s =
4299         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4300       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4301         return getConstantFP(V1, DL, VT);
4302     }
4303     break;
4304   }
4305   case ISD::CONCAT_VECTORS: {
4306     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4307     SDValue Ops[] = {N1, N2, N3};
4308     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4309       return V;
4310     break;
4311   }
4312   case ISD::SETCC: {
4313     // Use FoldSetCC to simplify SETCC's.
4314     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4315       return V;
4316     // Vector constant folding.
4317     SDValue Ops[] = {N1, N2, N3};
4318     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4319       return V;
4320     break;
4321   }
4322   case ISD::SELECT:
4323     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4324      if (N1C->getZExtValue())
4325        return N2;             // select true, X, Y -> X
4326      return N3;             // select false, X, Y -> Y
4327     }
4328 
4329     if (N2 == N3) return N2;   // select C, X, X -> X
4330     break;
4331   case ISD::VECTOR_SHUFFLE:
4332     llvm_unreachable("should use getVectorShuffle constructor!");
4333   case ISD::INSERT_VECTOR_ELT: {
4334     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4335     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4336     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4337       return getUNDEF(VT);
4338     break;
4339   }
4340   case ISD::INSERT_SUBVECTOR: {
4341     SDValue Index = N3;
4342     if (VT.isSimple() && N1.getValueType().isSimple()
4343         && N2.getValueType().isSimple()) {
4344       assert(VT.isVector() && N1.getValueType().isVector() &&
4345              N2.getValueType().isVector() &&
4346              "Insert subvector VTs must be a vectors");
4347       assert(VT == N1.getValueType() &&
4348              "Dest and insert subvector source types must match!");
4349       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4350              "Insert subvector must be from smaller vector to larger vector!");
4351       if (isa<ConstantSDNode>(Index)) {
4352         assert((N2.getValueType().getVectorNumElements() +
4353                 cast<ConstantSDNode>(Index)->getZExtValue()
4354                 <= VT.getVectorNumElements())
4355                && "Insert subvector overflow!");
4356       }
4357 
4358       // Trivial insertion.
4359       if (VT.getSimpleVT() == N2.getSimpleValueType())
4360         return N2;
4361     }
4362     break;
4363   }
4364   case ISD::BITCAST:
4365     // Fold bit_convert nodes from a type to themselves.
4366     if (N1.getValueType() == VT)
4367       return N1;
4368     break;
4369   }
4370 
4371   // Memoize node if it doesn't produce a flag.
4372   SDNode *N;
4373   SDVTList VTs = getVTList(VT);
4374   SDValue Ops[] = {N1, N2, N3};
4375   if (VT != MVT::Glue) {
4376     FoldingSetNodeID ID;
4377     AddNodeIDNode(ID, Opcode, VTs, Ops);
4378     void *IP = nullptr;
4379     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4380       return SDValue(E, 0);
4381 
4382     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4383     createOperands(N, Ops);
4384     CSEMap.InsertNode(N, IP);
4385   } else {
4386     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4387     createOperands(N, Ops);
4388   }
4389 
4390   InsertNode(N);
4391   return SDValue(N, 0);
4392 }
4393 
4394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4395                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4396   SDValue Ops[] = { N1, N2, N3, N4 };
4397   return getNode(Opcode, DL, VT, Ops);
4398 }
4399 
4400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4401                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4402                               SDValue N5) {
4403   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4404   return getNode(Opcode, DL, VT, Ops);
4405 }
4406 
4407 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4408 /// the incoming stack arguments to be loaded from the stack.
4409 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4410   SmallVector<SDValue, 8> ArgChains;
4411 
4412   // Include the original chain at the beginning of the list. When this is
4413   // used by target LowerCall hooks, this helps legalize find the
4414   // CALLSEQ_BEGIN node.
4415   ArgChains.push_back(Chain);
4416 
4417   // Add a chain value for each stack argument.
4418   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4419        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4420     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4421       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4422         if (FI->getIndex() < 0)
4423           ArgChains.push_back(SDValue(L, 1));
4424 
4425   // Build a tokenfactor for all the chains.
4426   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4427 }
4428 
4429 /// getMemsetValue - Vectorized representation of the memset value
4430 /// operand.
4431 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4432                               const SDLoc &dl) {
4433   assert(!Value.isUndef());
4434 
4435   unsigned NumBits = VT.getScalarSizeInBits();
4436   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4437     assert(C->getAPIntValue().getBitWidth() == 8);
4438     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4439     if (VT.isInteger())
4440       return DAG.getConstant(Val, dl, VT);
4441     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4442                              VT);
4443   }
4444 
4445   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4446   EVT IntVT = VT.getScalarType();
4447   if (!IntVT.isInteger())
4448     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4449 
4450   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4451   if (NumBits > 8) {
4452     // Use a multiplication with 0x010101... to extend the input to the
4453     // required length.
4454     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4455     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4456                         DAG.getConstant(Magic, dl, IntVT));
4457   }
4458 
4459   if (VT != Value.getValueType() && !VT.isInteger())
4460     Value = DAG.getBitcast(VT.getScalarType(), Value);
4461   if (VT != Value.getValueType())
4462     Value = DAG.getSplatBuildVector(VT, dl, Value);
4463 
4464   return Value;
4465 }
4466 
4467 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4468 /// used when a memcpy is turned into a memset when the source is a constant
4469 /// string ptr.
4470 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4471                                   const TargetLowering &TLI, StringRef Str) {
4472   // Handle vector with all elements zero.
4473   if (Str.empty()) {
4474     if (VT.isInteger())
4475       return DAG.getConstant(0, dl, VT);
4476     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4477       return DAG.getConstantFP(0.0, dl, VT);
4478     else if (VT.isVector()) {
4479       unsigned NumElts = VT.getVectorNumElements();
4480       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4481       return DAG.getNode(ISD::BITCAST, dl, VT,
4482                          DAG.getConstant(0, dl,
4483                                          EVT::getVectorVT(*DAG.getContext(),
4484                                                           EltVT, NumElts)));
4485     } else
4486       llvm_unreachable("Expected type!");
4487   }
4488 
4489   assert(!VT.isVector() && "Can't handle vector type here!");
4490   unsigned NumVTBits = VT.getSizeInBits();
4491   unsigned NumVTBytes = NumVTBits / 8;
4492   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4493 
4494   APInt Val(NumVTBits, 0);
4495   if (DAG.getDataLayout().isLittleEndian()) {
4496     for (unsigned i = 0; i != NumBytes; ++i)
4497       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4498   } else {
4499     for (unsigned i = 0; i != NumBytes; ++i)
4500       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4501   }
4502 
4503   // If the "cost" of materializing the integer immediate is less than the cost
4504   // of a load, then it is cost effective to turn the load into the immediate.
4505   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4506   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4507     return DAG.getConstant(Val, dl, VT);
4508   return SDValue(nullptr, 0);
4509 }
4510 
4511 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4512                                            const SDLoc &DL) {
4513   EVT VT = Base.getValueType();
4514   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4515 }
4516 
4517 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4518 ///
4519 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4520   uint64_t SrcDelta = 0;
4521   GlobalAddressSDNode *G = nullptr;
4522   if (Src.getOpcode() == ISD::GlobalAddress)
4523     G = cast<GlobalAddressSDNode>(Src);
4524   else if (Src.getOpcode() == ISD::ADD &&
4525            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4526            Src.getOperand(1).getOpcode() == ISD::Constant) {
4527     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4528     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4529   }
4530   if (!G)
4531     return false;
4532 
4533   return getConstantStringInfo(G->getGlobal(), Str,
4534                                SrcDelta + G->getOffset(), false);
4535 }
4536 
4537 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4538 /// Return true if the number of memory ops is below the threshold (Limit).
4539 /// It returns the types of the sequence of memory ops to perform
4540 /// memset / memcpy by reference.
4541 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4542                                      unsigned Limit, uint64_t Size,
4543                                      unsigned DstAlign, unsigned SrcAlign,
4544                                      bool IsMemset,
4545                                      bool ZeroMemset,
4546                                      bool MemcpyStrSrc,
4547                                      bool AllowOverlap,
4548                                      unsigned DstAS, unsigned SrcAS,
4549                                      SelectionDAG &DAG,
4550                                      const TargetLowering &TLI) {
4551   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4552          "Expecting memcpy / memset source to meet alignment requirement!");
4553   // If 'SrcAlign' is zero, that means the memory operation does not need to
4554   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4555   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4556   // is the specified alignment of the memory operation. If it is zero, that
4557   // means it's possible to change the alignment of the destination.
4558   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4559   // not need to be loaded.
4560   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4561                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4562                                    DAG.getMachineFunction());
4563 
4564   if (VT == MVT::Other) {
4565     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4566         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4567       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4568     } else {
4569       switch (DstAlign & 7) {
4570       case 0:  VT = MVT::i64; break;
4571       case 4:  VT = MVT::i32; break;
4572       case 2:  VT = MVT::i16; break;
4573       default: VT = MVT::i8;  break;
4574       }
4575     }
4576 
4577     MVT LVT = MVT::i64;
4578     while (!TLI.isTypeLegal(LVT))
4579       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4580     assert(LVT.isInteger());
4581 
4582     if (VT.bitsGT(LVT))
4583       VT = LVT;
4584   }
4585 
4586   unsigned NumMemOps = 0;
4587   while (Size != 0) {
4588     unsigned VTSize = VT.getSizeInBits() / 8;
4589     while (VTSize > Size) {
4590       // For now, only use non-vector load / store's for the left-over pieces.
4591       EVT NewVT = VT;
4592       unsigned NewVTSize;
4593 
4594       bool Found = false;
4595       if (VT.isVector() || VT.isFloatingPoint()) {
4596         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4597         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4598             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4599           Found = true;
4600         else if (NewVT == MVT::i64 &&
4601                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4602                  TLI.isSafeMemOpType(MVT::f64)) {
4603           // i64 is usually not legal on 32-bit targets, but f64 may be.
4604           NewVT = MVT::f64;
4605           Found = true;
4606         }
4607       }
4608 
4609       if (!Found) {
4610         do {
4611           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4612           if (NewVT == MVT::i8)
4613             break;
4614         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4615       }
4616       NewVTSize = NewVT.getSizeInBits() / 8;
4617 
4618       // If the new VT cannot cover all of the remaining bits, then consider
4619       // issuing a (or a pair of) unaligned and overlapping load / store.
4620       // FIXME: Only does this for 64-bit or more since we don't have proper
4621       // cost model for unaligned load / store.
4622       bool Fast;
4623       if (NumMemOps && AllowOverlap &&
4624           VTSize >= 8 && NewVTSize < Size &&
4625           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4626         VTSize = Size;
4627       else {
4628         VT = NewVT;
4629         VTSize = NewVTSize;
4630       }
4631     }
4632 
4633     if (++NumMemOps > Limit)
4634       return false;
4635 
4636     MemOps.push_back(VT);
4637     Size -= VTSize;
4638   }
4639 
4640   return true;
4641 }
4642 
4643 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4644   // On Darwin, -Os means optimize for size without hurting performance, so
4645   // only really optimize for size when -Oz (MinSize) is used.
4646   if (MF.getTarget().getTargetTriple().isOSDarwin())
4647     return MF.getFunction()->optForMinSize();
4648   return MF.getFunction()->optForSize();
4649 }
4650 
4651 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4652                                        SDValue Chain, SDValue Dst, SDValue Src,
4653                                        uint64_t Size, unsigned Align,
4654                                        bool isVol, bool AlwaysInline,
4655                                        MachinePointerInfo DstPtrInfo,
4656                                        MachinePointerInfo SrcPtrInfo) {
4657   // Turn a memcpy of undef to nop.
4658   if (Src.isUndef())
4659     return Chain;
4660 
4661   // Expand memcpy to a series of load and store ops if the size operand falls
4662   // below a certain threshold.
4663   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4664   // rather than maybe a humongous number of loads and stores.
4665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4666   std::vector<EVT> MemOps;
4667   bool DstAlignCanChange = false;
4668   MachineFunction &MF = DAG.getMachineFunction();
4669   MachineFrameInfo &MFI = MF.getFrameInfo();
4670   bool OptSize = shouldLowerMemFuncForSize(MF);
4671   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4672   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4673     DstAlignCanChange = true;
4674   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4675   if (Align > SrcAlign)
4676     SrcAlign = Align;
4677   StringRef Str;
4678   bool CopyFromStr = isMemSrcFromString(Src, Str);
4679   bool isZeroStr = CopyFromStr && Str.empty();
4680   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4681 
4682   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4683                                 (DstAlignCanChange ? 0 : Align),
4684                                 (isZeroStr ? 0 : SrcAlign),
4685                                 false, false, CopyFromStr, true,
4686                                 DstPtrInfo.getAddrSpace(),
4687                                 SrcPtrInfo.getAddrSpace(),
4688                                 DAG, TLI))
4689     return SDValue();
4690 
4691   if (DstAlignCanChange) {
4692     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4693     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4694 
4695     // Don't promote to an alignment that would require dynamic stack
4696     // realignment.
4697     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4698     if (!TRI->needsStackRealignment(MF))
4699       while (NewAlign > Align &&
4700              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4701           NewAlign /= 2;
4702 
4703     if (NewAlign > Align) {
4704       // Give the stack frame object a larger alignment if needed.
4705       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4706         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4707       Align = NewAlign;
4708     }
4709   }
4710 
4711   MachineMemOperand::Flags MMOFlags =
4712       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4713   SmallVector<SDValue, 8> OutChains;
4714   unsigned NumMemOps = MemOps.size();
4715   uint64_t SrcOff = 0, DstOff = 0;
4716   for (unsigned i = 0; i != NumMemOps; ++i) {
4717     EVT VT = MemOps[i];
4718     unsigned VTSize = VT.getSizeInBits() / 8;
4719     SDValue Value, Store;
4720 
4721     if (VTSize > Size) {
4722       // Issuing an unaligned load / store pair  that overlaps with the previous
4723       // pair. Adjust the offset accordingly.
4724       assert(i == NumMemOps-1 && i != 0);
4725       SrcOff -= VTSize - Size;
4726       DstOff -= VTSize - Size;
4727     }
4728 
4729     if (CopyFromStr &&
4730         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4731       // It's unlikely a store of a vector immediate can be done in a single
4732       // instruction. It would require a load from a constantpool first.
4733       // We only handle zero vectors here.
4734       // FIXME: Handle other cases where store of vector immediate is done in
4735       // a single instruction.
4736       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4737       if (Value.getNode())
4738         Store = DAG.getStore(Chain, dl, Value,
4739                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4740                              DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4741     }
4742 
4743     if (!Store.getNode()) {
4744       // The type might not be legal for the target.  This should only happen
4745       // if the type is smaller than a legal type, as on PPC, so the right
4746       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4747       // to Load/Store if NVT==VT.
4748       // FIXME does the case above also need this?
4749       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4750       assert(NVT.bitsGE(VT));
4751       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4752                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4753                              SrcPtrInfo.getWithOffset(SrcOff), VT,
4754                              MinAlign(SrcAlign, SrcOff), MMOFlags);
4755       OutChains.push_back(Value.getValue(1));
4756       Store = DAG.getTruncStore(
4757           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4758           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
4759     }
4760     OutChains.push_back(Store);
4761     SrcOff += VTSize;
4762     DstOff += VTSize;
4763     Size -= VTSize;
4764   }
4765 
4766   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4767 }
4768 
4769 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4770                                         SDValue Chain, SDValue Dst, SDValue Src,
4771                                         uint64_t Size, unsigned Align,
4772                                         bool isVol, bool AlwaysInline,
4773                                         MachinePointerInfo DstPtrInfo,
4774                                         MachinePointerInfo SrcPtrInfo) {
4775   // Turn a memmove of undef to nop.
4776   if (Src.isUndef())
4777     return Chain;
4778 
4779   // Expand memmove to a series of load and store ops if the size operand falls
4780   // below a certain threshold.
4781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4782   std::vector<EVT> MemOps;
4783   bool DstAlignCanChange = false;
4784   MachineFunction &MF = DAG.getMachineFunction();
4785   MachineFrameInfo &MFI = MF.getFrameInfo();
4786   bool OptSize = shouldLowerMemFuncForSize(MF);
4787   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4788   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4789     DstAlignCanChange = true;
4790   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4791   if (Align > SrcAlign)
4792     SrcAlign = Align;
4793   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4794 
4795   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4796                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4797                                 false, false, false, false,
4798                                 DstPtrInfo.getAddrSpace(),
4799                                 SrcPtrInfo.getAddrSpace(),
4800                                 DAG, TLI))
4801     return SDValue();
4802 
4803   if (DstAlignCanChange) {
4804     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4805     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4806     if (NewAlign > Align) {
4807       // Give the stack frame object a larger alignment if needed.
4808       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4809         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4810       Align = NewAlign;
4811     }
4812   }
4813 
4814   MachineMemOperand::Flags MMOFlags =
4815       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4816   uint64_t SrcOff = 0, DstOff = 0;
4817   SmallVector<SDValue, 8> LoadValues;
4818   SmallVector<SDValue, 8> LoadChains;
4819   SmallVector<SDValue, 8> OutChains;
4820   unsigned NumMemOps = MemOps.size();
4821   for (unsigned i = 0; i < NumMemOps; i++) {
4822     EVT VT = MemOps[i];
4823     unsigned VTSize = VT.getSizeInBits() / 8;
4824     SDValue Value;
4825 
4826     Value =
4827         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4828                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags);
4829     LoadValues.push_back(Value);
4830     LoadChains.push_back(Value.getValue(1));
4831     SrcOff += VTSize;
4832   }
4833   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4834   OutChains.clear();
4835   for (unsigned i = 0; i < NumMemOps; i++) {
4836     EVT VT = MemOps[i];
4837     unsigned VTSize = VT.getSizeInBits() / 8;
4838     SDValue Store;
4839 
4840     Store = DAG.getStore(Chain, dl, LoadValues[i],
4841                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4842                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4843     OutChains.push_back(Store);
4844     DstOff += VTSize;
4845   }
4846 
4847   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4848 }
4849 
4850 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4851 /// operations.
4852 ///
4853 /// \param DAG Selection DAG where lowered code is placed.
4854 /// \param dl Link to corresponding IR location.
4855 /// \param Chain Control flow dependency.
4856 /// \param Dst Pointer to destination memory location.
4857 /// \param Src Value of byte to write into the memory.
4858 /// \param Size Number of bytes to write.
4859 /// \param Align Alignment of the destination in bytes.
4860 /// \param isVol True if destination is volatile.
4861 /// \param DstPtrInfo IR information on the memory pointer.
4862 /// \returns New head in the control flow, if lowering was successful, empty
4863 /// SDValue otherwise.
4864 ///
4865 /// The function tries to replace 'llvm.memset' intrinsic with several store
4866 /// operations and value calculation code. This is usually profitable for small
4867 /// memory size.
4868 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4869                                SDValue Chain, SDValue Dst, SDValue Src,
4870                                uint64_t Size, unsigned Align, bool isVol,
4871                                MachinePointerInfo DstPtrInfo) {
4872   // Turn a memset of undef to nop.
4873   if (Src.isUndef())
4874     return Chain;
4875 
4876   // Expand memset to a series of load/store ops if the size operand
4877   // falls below a certain threshold.
4878   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4879   std::vector<EVT> MemOps;
4880   bool DstAlignCanChange = false;
4881   MachineFunction &MF = DAG.getMachineFunction();
4882   MachineFrameInfo &MFI = MF.getFrameInfo();
4883   bool OptSize = shouldLowerMemFuncForSize(MF);
4884   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4885   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4886     DstAlignCanChange = true;
4887   bool IsZeroVal =
4888     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
4889   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
4890                                 Size, (DstAlignCanChange ? 0 : Align), 0,
4891                                 true, IsZeroVal, false, true,
4892                                 DstPtrInfo.getAddrSpace(), ~0u,
4893                                 DAG, TLI))
4894     return SDValue();
4895 
4896   if (DstAlignCanChange) {
4897     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4898     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4899     if (NewAlign > Align) {
4900       // Give the stack frame object a larger alignment if needed.
4901       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4902         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4903       Align = NewAlign;
4904     }
4905   }
4906 
4907   SmallVector<SDValue, 8> OutChains;
4908   uint64_t DstOff = 0;
4909   unsigned NumMemOps = MemOps.size();
4910 
4911   // Find the largest store and generate the bit pattern for it.
4912   EVT LargestVT = MemOps[0];
4913   for (unsigned i = 1; i < NumMemOps; i++)
4914     if (MemOps[i].bitsGT(LargestVT))
4915       LargestVT = MemOps[i];
4916   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
4917 
4918   for (unsigned i = 0; i < NumMemOps; i++) {
4919     EVT VT = MemOps[i];
4920     unsigned VTSize = VT.getSizeInBits() / 8;
4921     if (VTSize > Size) {
4922       // Issuing an unaligned load / store pair  that overlaps with the previous
4923       // pair. Adjust the offset accordingly.
4924       assert(i == NumMemOps-1 && i != 0);
4925       DstOff -= VTSize - Size;
4926     }
4927 
4928     // If this store is smaller than the largest store see whether we can get
4929     // the smaller value for free with a truncate.
4930     SDValue Value = MemSetValue;
4931     if (VT.bitsLT(LargestVT)) {
4932       if (!LargestVT.isVector() && !VT.isVector() &&
4933           TLI.isTruncateFree(LargestVT, VT))
4934         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
4935       else
4936         Value = getMemsetValue(Src, VT, DAG, dl);
4937     }
4938     assert(Value.getValueType() == VT && "Value with wrong type.");
4939     SDValue Store = DAG.getStore(
4940         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4941         DstPtrInfo.getWithOffset(DstOff), Align,
4942         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
4943     OutChains.push_back(Store);
4944     DstOff += VT.getSizeInBits() / 8;
4945     Size -= VTSize;
4946   }
4947 
4948   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4949 }
4950 
4951 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
4952                                             unsigned AS) {
4953   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
4954   // pointer operands can be losslessly bitcasted to pointers of address space 0
4955   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
4956     report_fatal_error("cannot lower memory intrinsic in address space " +
4957                        Twine(AS));
4958   }
4959 }
4960 
4961 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
4962                                 SDValue Src, SDValue Size, unsigned Align,
4963                                 bool isVol, bool AlwaysInline, bool isTailCall,
4964                                 MachinePointerInfo DstPtrInfo,
4965                                 MachinePointerInfo SrcPtrInfo) {
4966   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4967 
4968   // Check to see if we should lower the memcpy to loads and stores first.
4969   // For cases within the target-specified limits, this is the best choice.
4970   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4971   if (ConstantSize) {
4972     // Memcpy with size zero? Just return the original chain.
4973     if (ConstantSize->isNullValue())
4974       return Chain;
4975 
4976     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4977                                              ConstantSize->getZExtValue(),Align,
4978                                 isVol, false, DstPtrInfo, SrcPtrInfo);
4979     if (Result.getNode())
4980       return Result;
4981   }
4982 
4983   // Then check to see if we should lower the memcpy with target-specific
4984   // code. If the target chooses to do this, this is the next best.
4985   if (TSI) {
4986     SDValue Result = TSI->EmitTargetCodeForMemcpy(
4987         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
4988         DstPtrInfo, SrcPtrInfo);
4989     if (Result.getNode())
4990       return Result;
4991   }
4992 
4993   // If we really need inline code and the target declined to provide it,
4994   // use a (potentially long) sequence of loads and stores.
4995   if (AlwaysInline) {
4996     assert(ConstantSize && "AlwaysInline requires a constant size!");
4997     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4998                                    ConstantSize->getZExtValue(), Align, isVol,
4999                                    true, DstPtrInfo, SrcPtrInfo);
5000   }
5001 
5002   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5003   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5004 
5005   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5006   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5007   // respect volatile, so they may do things like read or write memory
5008   // beyond the given memory regions. But fixing this isn't easy, and most
5009   // people don't care.
5010 
5011   // Emit a library call.
5012   TargetLowering::ArgListTy Args;
5013   TargetLowering::ArgListEntry Entry;
5014   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5015   Entry.Node = Dst; Args.push_back(Entry);
5016   Entry.Node = Src; Args.push_back(Entry);
5017   Entry.Node = Size; Args.push_back(Entry);
5018   // FIXME: pass in SDLoc
5019   TargetLowering::CallLoweringInfo CLI(*this);
5020   CLI.setDebugLoc(dl)
5021       .setChain(Chain)
5022       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5023                  Dst.getValueType().getTypeForEVT(*getContext()),
5024                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5025                                    TLI->getPointerTy(getDataLayout())),
5026                  std::move(Args))
5027       .setDiscardResult()
5028       .setTailCall(isTailCall);
5029 
5030   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5031   return CallResult.second;
5032 }
5033 
5034 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5035                                  SDValue Src, SDValue Size, unsigned Align,
5036                                  bool isVol, bool isTailCall,
5037                                  MachinePointerInfo DstPtrInfo,
5038                                  MachinePointerInfo SrcPtrInfo) {
5039   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5040 
5041   // Check to see if we should lower the memmove to loads and stores first.
5042   // For cases within the target-specified limits, this is the best choice.
5043   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5044   if (ConstantSize) {
5045     // Memmove with size zero? Just return the original chain.
5046     if (ConstantSize->isNullValue())
5047       return Chain;
5048 
5049     SDValue Result =
5050       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5051                                ConstantSize->getZExtValue(), Align, isVol,
5052                                false, DstPtrInfo, SrcPtrInfo);
5053     if (Result.getNode())
5054       return Result;
5055   }
5056 
5057   // Then check to see if we should lower the memmove with target-specific
5058   // code. If the target chooses to do this, this is the next best.
5059   if (TSI) {
5060     SDValue Result = TSI->EmitTargetCodeForMemmove(
5061         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5062     if (Result.getNode())
5063       return Result;
5064   }
5065 
5066   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5067   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5068 
5069   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5070   // not be safe.  See memcpy above for more details.
5071 
5072   // Emit a library call.
5073   TargetLowering::ArgListTy Args;
5074   TargetLowering::ArgListEntry Entry;
5075   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5076   Entry.Node = Dst; Args.push_back(Entry);
5077   Entry.Node = Src; Args.push_back(Entry);
5078   Entry.Node = Size; Args.push_back(Entry);
5079   // FIXME:  pass in SDLoc
5080   TargetLowering::CallLoweringInfo CLI(*this);
5081   CLI.setDebugLoc(dl)
5082       .setChain(Chain)
5083       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5084                  Dst.getValueType().getTypeForEVT(*getContext()),
5085                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5086                                    TLI->getPointerTy(getDataLayout())),
5087                  std::move(Args))
5088       .setDiscardResult()
5089       .setTailCall(isTailCall);
5090 
5091   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5092   return CallResult.second;
5093 }
5094 
5095 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5096                                 SDValue Src, SDValue Size, unsigned Align,
5097                                 bool isVol, bool isTailCall,
5098                                 MachinePointerInfo DstPtrInfo) {
5099   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5100 
5101   // Check to see if we should lower the memset to stores first.
5102   // For cases within the target-specified limits, this is the best choice.
5103   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5104   if (ConstantSize) {
5105     // Memset with size zero? Just return the original chain.
5106     if (ConstantSize->isNullValue())
5107       return Chain;
5108 
5109     SDValue Result =
5110       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5111                       Align, isVol, DstPtrInfo);
5112 
5113     if (Result.getNode())
5114       return Result;
5115   }
5116 
5117   // Then check to see if we should lower the memset with target-specific
5118   // code. If the target chooses to do this, this is the next best.
5119   if (TSI) {
5120     SDValue Result = TSI->EmitTargetCodeForMemset(
5121         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5122     if (Result.getNode())
5123       return Result;
5124   }
5125 
5126   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5127 
5128   // Emit a library call.
5129   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5130   TargetLowering::ArgListTy Args;
5131   TargetLowering::ArgListEntry Entry;
5132   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5133   Args.push_back(Entry);
5134   Entry.Node = Src;
5135   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5136   Args.push_back(Entry);
5137   Entry.Node = Size;
5138   Entry.Ty = IntPtrTy;
5139   Args.push_back(Entry);
5140 
5141   // FIXME: pass in SDLoc
5142   TargetLowering::CallLoweringInfo CLI(*this);
5143   CLI.setDebugLoc(dl)
5144       .setChain(Chain)
5145       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5146                  Dst.getValueType().getTypeForEVT(*getContext()),
5147                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5148                                    TLI->getPointerTy(getDataLayout())),
5149                  std::move(Args))
5150       .setDiscardResult()
5151       .setTailCall(isTailCall);
5152 
5153   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5154   return CallResult.second;
5155 }
5156 
5157 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5158                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5159                                 MachineMemOperand *MMO) {
5160   FoldingSetNodeID ID;
5161   ID.AddInteger(MemVT.getRawBits());
5162   AddNodeIDNode(ID, Opcode, VTList, Ops);
5163   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5164   void* IP = nullptr;
5165   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5166     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5167     return SDValue(E, 0);
5168   }
5169 
5170   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5171                                     VTList, MemVT, MMO);
5172   createOperands(N, Ops);
5173 
5174   CSEMap.InsertNode(N, IP);
5175   InsertNode(N);
5176   return SDValue(N, 0);
5177 }
5178 
5179 SDValue SelectionDAG::getAtomicCmpSwap(
5180     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5181     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5182     unsigned Alignment, AtomicOrdering SuccessOrdering,
5183     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
5184   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5185          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5186   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5187 
5188   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5189     Alignment = getEVTAlignment(MemVT);
5190 
5191   MachineFunction &MF = getMachineFunction();
5192 
5193   // FIXME: Volatile isn't really correct; we should keep track of atomic
5194   // orderings in the memoperand.
5195   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5196                MachineMemOperand::MOStore;
5197   MachineMemOperand *MMO =
5198     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5199                             AAMDNodes(), nullptr, SynchScope, SuccessOrdering,
5200                             FailureOrdering);
5201 
5202   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5203 }
5204 
5205 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5206                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5207                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5208                                        MachineMemOperand *MMO) {
5209   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5210          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5211   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5212 
5213   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5214   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5215 }
5216 
5217 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5218                                 SDValue Chain, SDValue Ptr, SDValue Val,
5219                                 const Value *PtrVal, unsigned Alignment,
5220                                 AtomicOrdering Ordering,
5221                                 SynchronizationScope SynchScope) {
5222   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5223     Alignment = getEVTAlignment(MemVT);
5224 
5225   MachineFunction &MF = getMachineFunction();
5226   // An atomic store does not load. An atomic load does not store.
5227   // (An atomicrmw obviously both loads and stores.)
5228   // For now, atomics are considered to be volatile always, and they are
5229   // chained as such.
5230   // FIXME: Volatile isn't really correct; we should keep track of atomic
5231   // orderings in the memoperand.
5232   auto Flags = MachineMemOperand::MOVolatile;
5233   if (Opcode != ISD::ATOMIC_STORE)
5234     Flags |= MachineMemOperand::MOLoad;
5235   if (Opcode != ISD::ATOMIC_LOAD)
5236     Flags |= MachineMemOperand::MOStore;
5237 
5238   MachineMemOperand *MMO =
5239     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5240                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5241                             nullptr, SynchScope, Ordering);
5242 
5243   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5244 }
5245 
5246 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5247                                 SDValue Chain, SDValue Ptr, SDValue Val,
5248                                 MachineMemOperand *MMO) {
5249   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5250           Opcode == ISD::ATOMIC_LOAD_SUB ||
5251           Opcode == ISD::ATOMIC_LOAD_AND ||
5252           Opcode == ISD::ATOMIC_LOAD_OR ||
5253           Opcode == ISD::ATOMIC_LOAD_XOR ||
5254           Opcode == ISD::ATOMIC_LOAD_NAND ||
5255           Opcode == ISD::ATOMIC_LOAD_MIN ||
5256           Opcode == ISD::ATOMIC_LOAD_MAX ||
5257           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5258           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5259           Opcode == ISD::ATOMIC_SWAP ||
5260           Opcode == ISD::ATOMIC_STORE) &&
5261          "Invalid Atomic Op");
5262 
5263   EVT VT = Val.getValueType();
5264 
5265   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5266                                                getVTList(VT, MVT::Other);
5267   SDValue Ops[] = {Chain, Ptr, Val};
5268   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5269 }
5270 
5271 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5272                                 EVT VT, SDValue Chain, SDValue Ptr,
5273                                 MachineMemOperand *MMO) {
5274   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5275 
5276   SDVTList VTs = getVTList(VT, MVT::Other);
5277   SDValue Ops[] = {Chain, Ptr};
5278   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5279 }
5280 
5281 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5282 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5283   if (Ops.size() == 1)
5284     return Ops[0];
5285 
5286   SmallVector<EVT, 4> VTs;
5287   VTs.reserve(Ops.size());
5288   for (unsigned i = 0; i < Ops.size(); ++i)
5289     VTs.push_back(Ops[i].getValueType());
5290   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5291 }
5292 
5293 SDValue SelectionDAG::getMemIntrinsicNode(
5294     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5295     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5296     bool ReadMem, bool WriteMem, unsigned Size) {
5297   if (Align == 0)  // Ensure that codegen never sees alignment 0
5298     Align = getEVTAlignment(MemVT);
5299 
5300   MachineFunction &MF = getMachineFunction();
5301   auto Flags = MachineMemOperand::MONone;
5302   if (WriteMem)
5303     Flags |= MachineMemOperand::MOStore;
5304   if (ReadMem)
5305     Flags |= MachineMemOperand::MOLoad;
5306   if (Vol)
5307     Flags |= MachineMemOperand::MOVolatile;
5308   if (!Size)
5309     Size = MemVT.getStoreSize();
5310   MachineMemOperand *MMO =
5311     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5312 
5313   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5314 }
5315 
5316 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5317                                           SDVTList VTList,
5318                                           ArrayRef<SDValue> Ops, EVT MemVT,
5319                                           MachineMemOperand *MMO) {
5320   assert((Opcode == ISD::INTRINSIC_VOID ||
5321           Opcode == ISD::INTRINSIC_W_CHAIN ||
5322           Opcode == ISD::PREFETCH ||
5323           Opcode == ISD::LIFETIME_START ||
5324           Opcode == ISD::LIFETIME_END ||
5325           (Opcode <= INT_MAX &&
5326            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5327          "Opcode is not a memory-accessing opcode!");
5328 
5329   // Memoize the node unless it returns a flag.
5330   MemIntrinsicSDNode *N;
5331   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5332     FoldingSetNodeID ID;
5333     AddNodeIDNode(ID, Opcode, VTList, Ops);
5334     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5335     void *IP = nullptr;
5336     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5337       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5338       return SDValue(E, 0);
5339     }
5340 
5341     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5342                                       VTList, MemVT, MMO);
5343     createOperands(N, Ops);
5344 
5345   CSEMap.InsertNode(N, IP);
5346   } else {
5347     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5348                                       VTList, MemVT, MMO);
5349     createOperands(N, Ops);
5350   }
5351   InsertNode(N);
5352   return SDValue(N, 0);
5353 }
5354 
5355 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5356 /// MachinePointerInfo record from it.  This is particularly useful because the
5357 /// code generator has many cases where it doesn't bother passing in a
5358 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5359 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5360                                            int64_t Offset = 0) {
5361   // If this is FI+Offset, we can model it.
5362   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5363     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5364                                              FI->getIndex(), Offset);
5365 
5366   // If this is (FI+Offset1)+Offset2, we can model it.
5367   if (Ptr.getOpcode() != ISD::ADD ||
5368       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5369       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5370     return MachinePointerInfo();
5371 
5372   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5373   return MachinePointerInfo::getFixedStack(
5374       DAG.getMachineFunction(), FI,
5375       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5376 }
5377 
5378 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5379 /// MachinePointerInfo record from it.  This is particularly useful because the
5380 /// code generator has many cases where it doesn't bother passing in a
5381 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5382 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5383                                            SDValue OffsetOp) {
5384   // If the 'Offset' value isn't a constant, we can't handle this.
5385   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5386     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5387   if (OffsetOp.isUndef())
5388     return InferPointerInfo(DAG, Ptr);
5389   return MachinePointerInfo();
5390 }
5391 
5392 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5393                               EVT VT, const SDLoc &dl, SDValue Chain,
5394                               SDValue Ptr, SDValue Offset,
5395                               MachinePointerInfo PtrInfo, EVT MemVT,
5396                               unsigned Alignment,
5397                               MachineMemOperand::Flags MMOFlags,
5398                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5399   assert(Chain.getValueType() == MVT::Other &&
5400         "Invalid chain type");
5401   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5402     Alignment = getEVTAlignment(MemVT);
5403 
5404   MMOFlags |= MachineMemOperand::MOLoad;
5405   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5406   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5407   // clients.
5408   if (PtrInfo.V.isNull())
5409     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5410 
5411   MachineFunction &MF = getMachineFunction();
5412   MachineMemOperand *MMO = MF.getMachineMemOperand(
5413       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5414   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5415 }
5416 
5417 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5418                               EVT VT, const SDLoc &dl, SDValue Chain,
5419                               SDValue Ptr, SDValue Offset, EVT MemVT,
5420                               MachineMemOperand *MMO) {
5421   if (VT == MemVT) {
5422     ExtType = ISD::NON_EXTLOAD;
5423   } else if (ExtType == ISD::NON_EXTLOAD) {
5424     assert(VT == MemVT && "Non-extending load from different memory type!");
5425   } else {
5426     // Extending load.
5427     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5428            "Should only be an extending load, not truncating!");
5429     assert(VT.isInteger() == MemVT.isInteger() &&
5430            "Cannot convert from FP to Int or Int -> FP!");
5431     assert(VT.isVector() == MemVT.isVector() &&
5432            "Cannot use an ext load to convert to or from a vector!");
5433     assert((!VT.isVector() ||
5434             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5435            "Cannot use an ext load to change the number of vector elements!");
5436   }
5437 
5438   bool Indexed = AM != ISD::UNINDEXED;
5439   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5440 
5441   SDVTList VTs = Indexed ?
5442     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5443   SDValue Ops[] = { Chain, Ptr, Offset };
5444   FoldingSetNodeID ID;
5445   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5446   ID.AddInteger(MemVT.getRawBits());
5447   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5448       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5449   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5450   void *IP = nullptr;
5451   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5452     cast<LoadSDNode>(E)->refineAlignment(MMO);
5453     return SDValue(E, 0);
5454   }
5455   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5456                                   ExtType, MemVT, MMO);
5457   createOperands(N, Ops);
5458 
5459   CSEMap.InsertNode(N, IP);
5460   InsertNode(N);
5461   return SDValue(N, 0);
5462 }
5463 
5464 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5465                               SDValue Ptr, MachinePointerInfo PtrInfo,
5466                               unsigned Alignment,
5467                               MachineMemOperand::Flags MMOFlags,
5468                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5469   SDValue Undef = getUNDEF(Ptr.getValueType());
5470   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5471                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5472 }
5473 
5474 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5475                               SDValue Ptr, MachineMemOperand *MMO) {
5476   SDValue Undef = getUNDEF(Ptr.getValueType());
5477   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5478                  VT, MMO);
5479 }
5480 
5481 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5482                                  EVT VT, SDValue Chain, SDValue Ptr,
5483                                  MachinePointerInfo PtrInfo, EVT MemVT,
5484                                  unsigned Alignment,
5485                                  MachineMemOperand::Flags MMOFlags,
5486                                  const AAMDNodes &AAInfo) {
5487   SDValue Undef = getUNDEF(Ptr.getValueType());
5488   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5489                  MemVT, Alignment, MMOFlags, AAInfo);
5490 }
5491 
5492 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5493                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5494                                  MachineMemOperand *MMO) {
5495   SDValue Undef = getUNDEF(Ptr.getValueType());
5496   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5497                  MemVT, MMO);
5498 }
5499 
5500 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5501                                      SDValue Base, SDValue Offset,
5502                                      ISD::MemIndexedMode AM) {
5503   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5504   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5505   // Don't propagate the invariant or dereferenceable flags.
5506   auto MMOFlags =
5507       LD->getMemOperand()->getFlags() &
5508       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5509   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5510                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5511                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5512                  LD->getAAInfo());
5513 }
5514 
5515 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5516                                SDValue Ptr, MachinePointerInfo PtrInfo,
5517                                unsigned Alignment,
5518                                MachineMemOperand::Flags MMOFlags,
5519                                const AAMDNodes &AAInfo) {
5520   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5521   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5522     Alignment = getEVTAlignment(Val.getValueType());
5523 
5524   MMOFlags |= MachineMemOperand::MOStore;
5525   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5526 
5527   if (PtrInfo.V.isNull())
5528     PtrInfo = InferPointerInfo(*this, Ptr);
5529 
5530   MachineFunction &MF = getMachineFunction();
5531   MachineMemOperand *MMO = MF.getMachineMemOperand(
5532       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5533   return getStore(Chain, dl, Val, Ptr, MMO);
5534 }
5535 
5536 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5537                                SDValue Ptr, MachineMemOperand *MMO) {
5538   assert(Chain.getValueType() == MVT::Other &&
5539         "Invalid chain type");
5540   EVT VT = Val.getValueType();
5541   SDVTList VTs = getVTList(MVT::Other);
5542   SDValue Undef = getUNDEF(Ptr.getValueType());
5543   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5544   FoldingSetNodeID ID;
5545   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5546   ID.AddInteger(VT.getRawBits());
5547   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5548       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5549   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5550   void *IP = nullptr;
5551   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5552     cast<StoreSDNode>(E)->refineAlignment(MMO);
5553     return SDValue(E, 0);
5554   }
5555   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5556                                    ISD::UNINDEXED, false, VT, MMO);
5557   createOperands(N, Ops);
5558 
5559   CSEMap.InsertNode(N, IP);
5560   InsertNode(N);
5561   return SDValue(N, 0);
5562 }
5563 
5564 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5565                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5566                                     EVT SVT, unsigned Alignment,
5567                                     MachineMemOperand::Flags MMOFlags,
5568                                     const AAMDNodes &AAInfo) {
5569   assert(Chain.getValueType() == MVT::Other &&
5570         "Invalid chain type");
5571   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5572     Alignment = getEVTAlignment(SVT);
5573 
5574   MMOFlags |= MachineMemOperand::MOStore;
5575   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5576 
5577   if (PtrInfo.V.isNull())
5578     PtrInfo = InferPointerInfo(*this, Ptr);
5579 
5580   MachineFunction &MF = getMachineFunction();
5581   MachineMemOperand *MMO = MF.getMachineMemOperand(
5582       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5583   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5584 }
5585 
5586 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5587                                     SDValue Ptr, EVT SVT,
5588                                     MachineMemOperand *MMO) {
5589   EVT VT = Val.getValueType();
5590 
5591   assert(Chain.getValueType() == MVT::Other &&
5592         "Invalid chain type");
5593   if (VT == SVT)
5594     return getStore(Chain, dl, Val, Ptr, MMO);
5595 
5596   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5597          "Should only be a truncating store, not extending!");
5598   assert(VT.isInteger() == SVT.isInteger() &&
5599          "Can't do FP-INT conversion!");
5600   assert(VT.isVector() == SVT.isVector() &&
5601          "Cannot use trunc store to convert to or from a vector!");
5602   assert((!VT.isVector() ||
5603           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5604          "Cannot use trunc store to change the number of vector elements!");
5605 
5606   SDVTList VTs = getVTList(MVT::Other);
5607   SDValue Undef = getUNDEF(Ptr.getValueType());
5608   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5609   FoldingSetNodeID ID;
5610   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5611   ID.AddInteger(SVT.getRawBits());
5612   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5613       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5614   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5615   void *IP = nullptr;
5616   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5617     cast<StoreSDNode>(E)->refineAlignment(MMO);
5618     return SDValue(E, 0);
5619   }
5620   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5621                                    ISD::UNINDEXED, true, SVT, MMO);
5622   createOperands(N, Ops);
5623 
5624   CSEMap.InsertNode(N, IP);
5625   InsertNode(N);
5626   return SDValue(N, 0);
5627 }
5628 
5629 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5630                                       SDValue Base, SDValue Offset,
5631                                       ISD::MemIndexedMode AM) {
5632   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5633   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5634   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5635   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5636   FoldingSetNodeID ID;
5637   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5638   ID.AddInteger(ST->getMemoryVT().getRawBits());
5639   ID.AddInteger(ST->getRawSubclassData());
5640   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5641   void *IP = nullptr;
5642   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5643     return SDValue(E, 0);
5644 
5645   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5646                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5647                                    ST->getMemOperand());
5648   createOperands(N, Ops);
5649 
5650   CSEMap.InsertNode(N, IP);
5651   InsertNode(N);
5652   return SDValue(N, 0);
5653 }
5654 
5655 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5656                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5657                                     EVT MemVT, MachineMemOperand *MMO,
5658                                     ISD::LoadExtType ExtTy, bool isExpanding) {
5659 
5660   SDVTList VTs = getVTList(VT, MVT::Other);
5661   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5662   FoldingSetNodeID ID;
5663   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5664   ID.AddInteger(VT.getRawBits());
5665   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
5666       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
5667   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5668   void *IP = nullptr;
5669   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5670     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5671     return SDValue(E, 0);
5672   }
5673   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5674                                         ExtTy, isExpanding, MemVT, MMO);
5675   createOperands(N, Ops);
5676 
5677   CSEMap.InsertNode(N, IP);
5678   InsertNode(N);
5679   return SDValue(N, 0);
5680 }
5681 
5682 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5683                                      SDValue Val, SDValue Ptr, SDValue Mask,
5684                                      EVT MemVT, MachineMemOperand *MMO,
5685                                      bool IsTruncating, bool IsCompressing) {
5686   assert(Chain.getValueType() == MVT::Other &&
5687         "Invalid chain type");
5688   EVT VT = Val.getValueType();
5689   SDVTList VTs = getVTList(MVT::Other);
5690   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5691   FoldingSetNodeID ID;
5692   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5693   ID.AddInteger(VT.getRawBits());
5694   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
5695       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
5696   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5697   void *IP = nullptr;
5698   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5699     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5700     return SDValue(E, 0);
5701   }
5702   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5703                                          IsTruncating, IsCompressing, MemVT, MMO);
5704   createOperands(N, Ops);
5705 
5706   CSEMap.InsertNode(N, IP);
5707   InsertNode(N);
5708   return SDValue(N, 0);
5709 }
5710 
5711 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5712                                       ArrayRef<SDValue> Ops,
5713                                       MachineMemOperand *MMO) {
5714   assert(Ops.size() == 5 && "Incompatible number of operands");
5715 
5716   FoldingSetNodeID ID;
5717   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5718   ID.AddInteger(VT.getRawBits());
5719   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
5720       dl.getIROrder(), VTs, VT, MMO));
5721   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5722   void *IP = nullptr;
5723   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5724     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5725     return SDValue(E, 0);
5726   }
5727 
5728   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5729                                           VTs, VT, MMO);
5730   createOperands(N, Ops);
5731 
5732   assert(N->getValue().getValueType() == N->getValueType(0) &&
5733          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5734   assert(N->getMask().getValueType().getVectorNumElements() ==
5735              N->getValueType(0).getVectorNumElements() &&
5736          "Vector width mismatch between mask and data");
5737   assert(N->getIndex().getValueType().getVectorNumElements() ==
5738              N->getValueType(0).getVectorNumElements() &&
5739          "Vector width mismatch between index and data");
5740 
5741   CSEMap.InsertNode(N, IP);
5742   InsertNode(N);
5743   return SDValue(N, 0);
5744 }
5745 
5746 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5747                                        ArrayRef<SDValue> Ops,
5748                                        MachineMemOperand *MMO) {
5749   assert(Ops.size() == 5 && "Incompatible number of operands");
5750 
5751   FoldingSetNodeID ID;
5752   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5753   ID.AddInteger(VT.getRawBits());
5754   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
5755       dl.getIROrder(), VTs, VT, MMO));
5756   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5757   void *IP = nullptr;
5758   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5759     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5760     return SDValue(E, 0);
5761   }
5762   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5763                                            VTs, VT, MMO);
5764   createOperands(N, Ops);
5765 
5766   assert(N->getMask().getValueType().getVectorNumElements() ==
5767              N->getValue().getValueType().getVectorNumElements() &&
5768          "Vector width mismatch between mask and data");
5769   assert(N->getIndex().getValueType().getVectorNumElements() ==
5770              N->getValue().getValueType().getVectorNumElements() &&
5771          "Vector width mismatch between index and data");
5772 
5773   CSEMap.InsertNode(N, IP);
5774   InsertNode(N);
5775   return SDValue(N, 0);
5776 }
5777 
5778 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5779                                SDValue Ptr, SDValue SV, unsigned Align) {
5780   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5781   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5782 }
5783 
5784 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5785                               ArrayRef<SDUse> Ops) {
5786   switch (Ops.size()) {
5787   case 0: return getNode(Opcode, DL, VT);
5788   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5789   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5790   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5791   default: break;
5792   }
5793 
5794   // Copy from an SDUse array into an SDValue array for use with
5795   // the regular getNode logic.
5796   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5797   return getNode(Opcode, DL, VT, NewOps);
5798 }
5799 
5800 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5801                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5802   unsigned NumOps = Ops.size();
5803   switch (NumOps) {
5804   case 0: return getNode(Opcode, DL, VT);
5805   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5806   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5807   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5808   default: break;
5809   }
5810 
5811   switch (Opcode) {
5812   default: break;
5813   case ISD::CONCAT_VECTORS: {
5814     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5815     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5816       return V;
5817     break;
5818   }
5819   case ISD::SELECT_CC: {
5820     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5821     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5822            "LHS and RHS of condition must have same type!");
5823     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5824            "True and False arms of SelectCC must have same type!");
5825     assert(Ops[2].getValueType() == VT &&
5826            "select_cc node must be of same type as true and false value!");
5827     break;
5828   }
5829   case ISD::BR_CC: {
5830     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5831     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5832            "LHS/RHS of comparison should match types!");
5833     break;
5834   }
5835   }
5836 
5837   // Memoize nodes.
5838   SDNode *N;
5839   SDVTList VTs = getVTList(VT);
5840 
5841   if (VT != MVT::Glue) {
5842     FoldingSetNodeID ID;
5843     AddNodeIDNode(ID, Opcode, VTs, Ops);
5844     void *IP = nullptr;
5845 
5846     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5847       return SDValue(E, 0);
5848 
5849     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5850     createOperands(N, Ops);
5851 
5852     CSEMap.InsertNode(N, IP);
5853   } else {
5854     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5855     createOperands(N, Ops);
5856   }
5857 
5858   InsertNode(N);
5859   return SDValue(N, 0);
5860 }
5861 
5862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5863                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5864   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5865 }
5866 
5867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5868                               ArrayRef<SDValue> Ops) {
5869   if (VTList.NumVTs == 1)
5870     return getNode(Opcode, DL, VTList.VTs[0], Ops);
5871 
5872 #if 0
5873   switch (Opcode) {
5874   // FIXME: figure out how to safely handle things like
5875   // int foo(int x) { return 1 << (x & 255); }
5876   // int bar() { return foo(256); }
5877   case ISD::SRA_PARTS:
5878   case ISD::SRL_PARTS:
5879   case ISD::SHL_PARTS:
5880     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5881         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
5882       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5883     else if (N3.getOpcode() == ISD::AND)
5884       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
5885         // If the and is only masking out bits that cannot effect the shift,
5886         // eliminate the and.
5887         unsigned NumBits = VT.getScalarSizeInBits()*2;
5888         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
5889           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5890       }
5891     break;
5892   }
5893 #endif
5894 
5895   // Memoize the node unless it returns a flag.
5896   SDNode *N;
5897   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5898     FoldingSetNodeID ID;
5899     AddNodeIDNode(ID, Opcode, VTList, Ops);
5900     void *IP = nullptr;
5901     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5902       return SDValue(E, 0);
5903 
5904     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5905     createOperands(N, Ops);
5906     CSEMap.InsertNode(N, IP);
5907   } else {
5908     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5909     createOperands(N, Ops);
5910   }
5911   InsertNode(N);
5912   return SDValue(N, 0);
5913 }
5914 
5915 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5916                               SDVTList VTList) {
5917   return getNode(Opcode, DL, VTList, None);
5918 }
5919 
5920 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5921                               SDValue N1) {
5922   SDValue Ops[] = { N1 };
5923   return getNode(Opcode, DL, VTList, Ops);
5924 }
5925 
5926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5927                               SDValue N1, SDValue N2) {
5928   SDValue Ops[] = { N1, N2 };
5929   return getNode(Opcode, DL, VTList, Ops);
5930 }
5931 
5932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5933                               SDValue N1, SDValue N2, SDValue N3) {
5934   SDValue Ops[] = { N1, N2, N3 };
5935   return getNode(Opcode, DL, VTList, Ops);
5936 }
5937 
5938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5939                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5940   SDValue Ops[] = { N1, N2, N3, N4 };
5941   return getNode(Opcode, DL, VTList, Ops);
5942 }
5943 
5944 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5945                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5946                               SDValue N5) {
5947   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5948   return getNode(Opcode, DL, VTList, Ops);
5949 }
5950 
5951 SDVTList SelectionDAG::getVTList(EVT VT) {
5952   return makeVTList(SDNode::getValueTypeList(VT), 1);
5953 }
5954 
5955 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
5956   FoldingSetNodeID ID;
5957   ID.AddInteger(2U);
5958   ID.AddInteger(VT1.getRawBits());
5959   ID.AddInteger(VT2.getRawBits());
5960 
5961   void *IP = nullptr;
5962   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5963   if (!Result) {
5964     EVT *Array = Allocator.Allocate<EVT>(2);
5965     Array[0] = VT1;
5966     Array[1] = VT2;
5967     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
5968     VTListMap.InsertNode(Result, IP);
5969   }
5970   return Result->getSDVTList();
5971 }
5972 
5973 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
5974   FoldingSetNodeID ID;
5975   ID.AddInteger(3U);
5976   ID.AddInteger(VT1.getRawBits());
5977   ID.AddInteger(VT2.getRawBits());
5978   ID.AddInteger(VT3.getRawBits());
5979 
5980   void *IP = nullptr;
5981   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5982   if (!Result) {
5983     EVT *Array = Allocator.Allocate<EVT>(3);
5984     Array[0] = VT1;
5985     Array[1] = VT2;
5986     Array[2] = VT3;
5987     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
5988     VTListMap.InsertNode(Result, IP);
5989   }
5990   return Result->getSDVTList();
5991 }
5992 
5993 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
5994   FoldingSetNodeID ID;
5995   ID.AddInteger(4U);
5996   ID.AddInteger(VT1.getRawBits());
5997   ID.AddInteger(VT2.getRawBits());
5998   ID.AddInteger(VT3.getRawBits());
5999   ID.AddInteger(VT4.getRawBits());
6000 
6001   void *IP = nullptr;
6002   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6003   if (!Result) {
6004     EVT *Array = Allocator.Allocate<EVT>(4);
6005     Array[0] = VT1;
6006     Array[1] = VT2;
6007     Array[2] = VT3;
6008     Array[3] = VT4;
6009     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6010     VTListMap.InsertNode(Result, IP);
6011   }
6012   return Result->getSDVTList();
6013 }
6014 
6015 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6016   unsigned NumVTs = VTs.size();
6017   FoldingSetNodeID ID;
6018   ID.AddInteger(NumVTs);
6019   for (unsigned index = 0; index < NumVTs; index++) {
6020     ID.AddInteger(VTs[index].getRawBits());
6021   }
6022 
6023   void *IP = nullptr;
6024   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6025   if (!Result) {
6026     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6027     std::copy(VTs.begin(), VTs.end(), Array);
6028     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6029     VTListMap.InsertNode(Result, IP);
6030   }
6031   return Result->getSDVTList();
6032 }
6033 
6034 
6035 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6036 /// specified operands.  If the resultant node already exists in the DAG,
6037 /// this does not modify the specified node, instead it returns the node that
6038 /// already exists.  If the resultant node does not exist in the DAG, the
6039 /// input node is returned.  As a degenerate case, if you specify the same
6040 /// input operands as the node already has, the input node is returned.
6041 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6042   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6043 
6044   // Check to see if there is no change.
6045   if (Op == N->getOperand(0)) return N;
6046 
6047   // See if the modified node already exists.
6048   void *InsertPos = nullptr;
6049   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6050     return Existing;
6051 
6052   // Nope it doesn't.  Remove the node from its current place in the maps.
6053   if (InsertPos)
6054     if (!RemoveNodeFromCSEMaps(N))
6055       InsertPos = nullptr;
6056 
6057   // Now we update the operands.
6058   N->OperandList[0].set(Op);
6059 
6060   // If this gets put into a CSE map, add it.
6061   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6062   return N;
6063 }
6064 
6065 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6066   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6067 
6068   // Check to see if there is no change.
6069   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6070     return N;   // No operands changed, just return the input node.
6071 
6072   // See if the modified node already exists.
6073   void *InsertPos = nullptr;
6074   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6075     return Existing;
6076 
6077   // Nope it doesn't.  Remove the node from its current place in the maps.
6078   if (InsertPos)
6079     if (!RemoveNodeFromCSEMaps(N))
6080       InsertPos = nullptr;
6081 
6082   // Now we update the operands.
6083   if (N->OperandList[0] != Op1)
6084     N->OperandList[0].set(Op1);
6085   if (N->OperandList[1] != Op2)
6086     N->OperandList[1].set(Op2);
6087 
6088   // If this gets put into a CSE map, add it.
6089   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6090   return N;
6091 }
6092 
6093 SDNode *SelectionDAG::
6094 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6095   SDValue Ops[] = { Op1, Op2, Op3 };
6096   return UpdateNodeOperands(N, Ops);
6097 }
6098 
6099 SDNode *SelectionDAG::
6100 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6101                    SDValue Op3, SDValue Op4) {
6102   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6103   return UpdateNodeOperands(N, Ops);
6104 }
6105 
6106 SDNode *SelectionDAG::
6107 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6108                    SDValue Op3, SDValue Op4, SDValue Op5) {
6109   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6110   return UpdateNodeOperands(N, Ops);
6111 }
6112 
6113 SDNode *SelectionDAG::
6114 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6115   unsigned NumOps = Ops.size();
6116   assert(N->getNumOperands() == NumOps &&
6117          "Update with wrong number of operands");
6118 
6119   // If no operands changed just return the input node.
6120   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6121     return N;
6122 
6123   // See if the modified node already exists.
6124   void *InsertPos = nullptr;
6125   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6126     return Existing;
6127 
6128   // Nope it doesn't.  Remove the node from its current place in the maps.
6129   if (InsertPos)
6130     if (!RemoveNodeFromCSEMaps(N))
6131       InsertPos = nullptr;
6132 
6133   // Now we update the operands.
6134   for (unsigned i = 0; i != NumOps; ++i)
6135     if (N->OperandList[i] != Ops[i])
6136       N->OperandList[i].set(Ops[i]);
6137 
6138   // If this gets put into a CSE map, add it.
6139   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6140   return N;
6141 }
6142 
6143 /// DropOperands - Release the operands and set this node to have
6144 /// zero operands.
6145 void SDNode::DropOperands() {
6146   // Unlike the code in MorphNodeTo that does this, we don't need to
6147   // watch for dead nodes here.
6148   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6149     SDUse &Use = *I++;
6150     Use.set(SDValue());
6151   }
6152 }
6153 
6154 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6155 /// machine opcode.
6156 ///
6157 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6158                                    EVT VT) {
6159   SDVTList VTs = getVTList(VT);
6160   return SelectNodeTo(N, MachineOpc, VTs, None);
6161 }
6162 
6163 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6164                                    EVT VT, SDValue Op1) {
6165   SDVTList VTs = getVTList(VT);
6166   SDValue Ops[] = { Op1 };
6167   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6168 }
6169 
6170 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6171                                    EVT VT, SDValue Op1,
6172                                    SDValue Op2) {
6173   SDVTList VTs = getVTList(VT);
6174   SDValue Ops[] = { Op1, Op2 };
6175   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6176 }
6177 
6178 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6179                                    EVT VT, SDValue Op1,
6180                                    SDValue Op2, SDValue Op3) {
6181   SDVTList VTs = getVTList(VT);
6182   SDValue Ops[] = { Op1, Op2, Op3 };
6183   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6184 }
6185 
6186 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6187                                    EVT VT, ArrayRef<SDValue> Ops) {
6188   SDVTList VTs = getVTList(VT);
6189   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6190 }
6191 
6192 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6193                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6194   SDVTList VTs = getVTList(VT1, VT2);
6195   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6196 }
6197 
6198 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6199                                    EVT VT1, EVT VT2) {
6200   SDVTList VTs = getVTList(VT1, VT2);
6201   return SelectNodeTo(N, MachineOpc, VTs, None);
6202 }
6203 
6204 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6205                                    EVT VT1, EVT VT2, EVT VT3,
6206                                    ArrayRef<SDValue> Ops) {
6207   SDVTList VTs = getVTList(VT1, VT2, VT3);
6208   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6209 }
6210 
6211 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6212                                    EVT VT1, EVT VT2,
6213                                    SDValue Op1, SDValue Op2) {
6214   SDVTList VTs = getVTList(VT1, VT2);
6215   SDValue Ops[] = { Op1, Op2 };
6216   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6217 }
6218 
6219 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6220                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6221   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6222   // Reset the NodeID to -1.
6223   New->setNodeId(-1);
6224   if (New != N) {
6225     ReplaceAllUsesWith(N, New);
6226     RemoveDeadNode(N);
6227   }
6228   return New;
6229 }
6230 
6231 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6232 /// the line number information on the merged node since it is not possible to
6233 /// preserve the information that operation is associated with multiple lines.
6234 /// This will make the debugger working better at -O0, were there is a higher
6235 /// probability having other instructions associated with that line.
6236 ///
6237 /// For IROrder, we keep the smaller of the two
6238 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6239   DebugLoc NLoc = N->getDebugLoc();
6240   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6241     N->setDebugLoc(DebugLoc());
6242   }
6243   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6244   N->setIROrder(Order);
6245   return N;
6246 }
6247 
6248 /// MorphNodeTo - This *mutates* the specified node to have the specified
6249 /// return type, opcode, and operands.
6250 ///
6251 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6252 /// node of the specified opcode and operands, it returns that node instead of
6253 /// the current one.  Note that the SDLoc need not be the same.
6254 ///
6255 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6256 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6257 /// node, and because it doesn't require CSE recalculation for any of
6258 /// the node's users.
6259 ///
6260 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6261 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6262 /// the legalizer which maintain worklists that would need to be updated when
6263 /// deleting things.
6264 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6265                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6266   // If an identical node already exists, use it.
6267   void *IP = nullptr;
6268   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6269     FoldingSetNodeID ID;
6270     AddNodeIDNode(ID, Opc, VTs, Ops);
6271     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6272       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6273   }
6274 
6275   if (!RemoveNodeFromCSEMaps(N))
6276     IP = nullptr;
6277 
6278   // Start the morphing.
6279   N->NodeType = Opc;
6280   N->ValueList = VTs.VTs;
6281   N->NumValues = VTs.NumVTs;
6282 
6283   // Clear the operands list, updating used nodes to remove this from their
6284   // use list.  Keep track of any operands that become dead as a result.
6285   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6286   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6287     SDUse &Use = *I++;
6288     SDNode *Used = Use.getNode();
6289     Use.set(SDValue());
6290     if (Used->use_empty())
6291       DeadNodeSet.insert(Used);
6292   }
6293 
6294   // For MachineNode, initialize the memory references information.
6295   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6296     MN->setMemRefs(nullptr, nullptr);
6297 
6298   // Swap for an appropriately sized array from the recycler.
6299   removeOperands(N);
6300   createOperands(N, Ops);
6301 
6302   // Delete any nodes that are still dead after adding the uses for the
6303   // new operands.
6304   if (!DeadNodeSet.empty()) {
6305     SmallVector<SDNode *, 16> DeadNodes;
6306     for (SDNode *N : DeadNodeSet)
6307       if (N->use_empty())
6308         DeadNodes.push_back(N);
6309     RemoveDeadNodes(DeadNodes);
6310   }
6311 
6312   if (IP)
6313     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6314   return N;
6315 }
6316 
6317 
6318 /// getMachineNode - These are used for target selectors to create a new node
6319 /// with specified return type(s), MachineInstr opcode, and operands.
6320 ///
6321 /// Note that getMachineNode returns the resultant node.  If there is already a
6322 /// node of the specified opcode and operands, it returns that node instead of
6323 /// the current one.
6324 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6325                                             EVT VT) {
6326   SDVTList VTs = getVTList(VT);
6327   return getMachineNode(Opcode, dl, VTs, None);
6328 }
6329 
6330 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6331                                             EVT VT, SDValue Op1) {
6332   SDVTList VTs = getVTList(VT);
6333   SDValue Ops[] = { Op1 };
6334   return getMachineNode(Opcode, dl, VTs, Ops);
6335 }
6336 
6337 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6338                                             EVT VT, SDValue Op1, SDValue Op2) {
6339   SDVTList VTs = getVTList(VT);
6340   SDValue Ops[] = { Op1, Op2 };
6341   return getMachineNode(Opcode, dl, VTs, Ops);
6342 }
6343 
6344 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6345                                             EVT VT, SDValue Op1, SDValue Op2,
6346                                             SDValue Op3) {
6347   SDVTList VTs = getVTList(VT);
6348   SDValue Ops[] = { Op1, Op2, Op3 };
6349   return getMachineNode(Opcode, dl, VTs, Ops);
6350 }
6351 
6352 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6353                                             EVT VT, ArrayRef<SDValue> Ops) {
6354   SDVTList VTs = getVTList(VT);
6355   return getMachineNode(Opcode, dl, VTs, Ops);
6356 }
6357 
6358 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6359                                             EVT VT1, EVT VT2, SDValue Op1,
6360                                             SDValue Op2) {
6361   SDVTList VTs = getVTList(VT1, VT2);
6362   SDValue Ops[] = { Op1, Op2 };
6363   return getMachineNode(Opcode, dl, VTs, Ops);
6364 }
6365 
6366 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6367                                             EVT VT1, EVT VT2, SDValue Op1,
6368                                             SDValue Op2, SDValue Op3) {
6369   SDVTList VTs = getVTList(VT1, VT2);
6370   SDValue Ops[] = { Op1, Op2, Op3 };
6371   return getMachineNode(Opcode, dl, VTs, Ops);
6372 }
6373 
6374 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6375                                             EVT VT1, EVT VT2,
6376                                             ArrayRef<SDValue> Ops) {
6377   SDVTList VTs = getVTList(VT1, VT2);
6378   return getMachineNode(Opcode, dl, VTs, Ops);
6379 }
6380 
6381 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6382                                             EVT VT1, EVT VT2, EVT VT3,
6383                                             SDValue Op1, SDValue Op2) {
6384   SDVTList VTs = getVTList(VT1, VT2, VT3);
6385   SDValue Ops[] = { Op1, Op2 };
6386   return getMachineNode(Opcode, dl, VTs, Ops);
6387 }
6388 
6389 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6390                                             EVT VT1, EVT VT2, EVT VT3,
6391                                             SDValue Op1, SDValue Op2,
6392                                             SDValue Op3) {
6393   SDVTList VTs = getVTList(VT1, VT2, VT3);
6394   SDValue Ops[] = { Op1, Op2, Op3 };
6395   return getMachineNode(Opcode, dl, VTs, Ops);
6396 }
6397 
6398 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6399                                             EVT VT1, EVT VT2, EVT VT3,
6400                                             ArrayRef<SDValue> Ops) {
6401   SDVTList VTs = getVTList(VT1, VT2, VT3);
6402   return getMachineNode(Opcode, dl, VTs, Ops);
6403 }
6404 
6405 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6406                                             ArrayRef<EVT> ResultTys,
6407                                             ArrayRef<SDValue> Ops) {
6408   SDVTList VTs = getVTList(ResultTys);
6409   return getMachineNode(Opcode, dl, VTs, Ops);
6410 }
6411 
6412 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6413                                             SDVTList VTs,
6414                                             ArrayRef<SDValue> Ops) {
6415   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6416   MachineSDNode *N;
6417   void *IP = nullptr;
6418 
6419   if (DoCSE) {
6420     FoldingSetNodeID ID;
6421     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6422     IP = nullptr;
6423     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6424       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6425     }
6426   }
6427 
6428   // Allocate a new MachineSDNode.
6429   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6430   createOperands(N, Ops);
6431 
6432   if (DoCSE)
6433     CSEMap.InsertNode(N, IP);
6434 
6435   InsertNode(N);
6436   return N;
6437 }
6438 
6439 /// getTargetExtractSubreg - A convenience function for creating
6440 /// TargetOpcode::EXTRACT_SUBREG nodes.
6441 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6442                                              SDValue Operand) {
6443   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6444   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6445                                   VT, Operand, SRIdxVal);
6446   return SDValue(Subreg, 0);
6447 }
6448 
6449 /// getTargetInsertSubreg - A convenience function for creating
6450 /// TargetOpcode::INSERT_SUBREG nodes.
6451 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6452                                             SDValue Operand, SDValue Subreg) {
6453   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6454   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6455                                   VT, Operand, Subreg, SRIdxVal);
6456   return SDValue(Result, 0);
6457 }
6458 
6459 /// getNodeIfExists - Get the specified node if it's already available, or
6460 /// else return NULL.
6461 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6462                                       ArrayRef<SDValue> Ops,
6463                                       const SDNodeFlags *Flags) {
6464   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6465     FoldingSetNodeID ID;
6466     AddNodeIDNode(ID, Opcode, VTList, Ops);
6467     void *IP = nullptr;
6468     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6469       if (Flags)
6470         E->intersectFlagsWith(Flags);
6471       return E;
6472     }
6473   }
6474   return nullptr;
6475 }
6476 
6477 /// getDbgValue - Creates a SDDbgValue node.
6478 ///
6479 /// SDNode
6480 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6481                                       unsigned R, bool IsIndirect, uint64_t Off,
6482                                       const DebugLoc &DL, unsigned O) {
6483   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6484          "Expected inlined-at fields to agree");
6485   return new (DbgInfo->getAlloc())
6486       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6487 }
6488 
6489 /// Constant
6490 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6491                                               const Value *C, uint64_t Off,
6492                                               const DebugLoc &DL, unsigned O) {
6493   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6494          "Expected inlined-at fields to agree");
6495   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6496 }
6497 
6498 /// FrameIndex
6499 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6500                                                 unsigned FI, uint64_t Off,
6501                                                 const DebugLoc &DL,
6502                                                 unsigned O) {
6503   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6504          "Expected inlined-at fields to agree");
6505   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6506 }
6507 
6508 namespace {
6509 
6510 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6511 /// pointed to by a use iterator is deleted, increment the use iterator
6512 /// so that it doesn't dangle.
6513 ///
6514 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6515   SDNode::use_iterator &UI;
6516   SDNode::use_iterator &UE;
6517 
6518   void NodeDeleted(SDNode *N, SDNode *E) override {
6519     // Increment the iterator as needed.
6520     while (UI != UE && N == *UI)
6521       ++UI;
6522   }
6523 
6524 public:
6525   RAUWUpdateListener(SelectionDAG &d,
6526                      SDNode::use_iterator &ui,
6527                      SDNode::use_iterator &ue)
6528     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6529 };
6530 
6531 }
6532 
6533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6534 /// This can cause recursive merging of nodes in the DAG.
6535 ///
6536 /// This version assumes From has a single result value.
6537 ///
6538 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6539   SDNode *From = FromN.getNode();
6540   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6541          "Cannot replace with this method!");
6542   assert(From != To.getNode() && "Cannot replace uses of with self");
6543 
6544   // Preserve Debug Values
6545   TransferDbgValues(FromN, To);
6546 
6547   // Iterate over all the existing uses of From. New uses will be added
6548   // to the beginning of the use list, which we avoid visiting.
6549   // This specifically avoids visiting uses of From that arise while the
6550   // replacement is happening, because any such uses would be the result
6551   // of CSE: If an existing node looks like From after one of its operands
6552   // is replaced by To, we don't want to replace of all its users with To
6553   // too. See PR3018 for more info.
6554   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6555   RAUWUpdateListener Listener(*this, UI, UE);
6556   while (UI != UE) {
6557     SDNode *User = *UI;
6558 
6559     // This node is about to morph, remove its old self from the CSE maps.
6560     RemoveNodeFromCSEMaps(User);
6561 
6562     // A user can appear in a use list multiple times, and when this
6563     // happens the uses are usually next to each other in the list.
6564     // To help reduce the number of CSE recomputations, process all
6565     // the uses of this user that we can find this way.
6566     do {
6567       SDUse &Use = UI.getUse();
6568       ++UI;
6569       Use.set(To);
6570     } while (UI != UE && *UI == User);
6571 
6572     // Now that we have modified User, add it back to the CSE maps.  If it
6573     // already exists there, recursively merge the results together.
6574     AddModifiedNodeToCSEMaps(User);
6575   }
6576 
6577 
6578   // If we just RAUW'd the root, take note.
6579   if (FromN == getRoot())
6580     setRoot(To);
6581 }
6582 
6583 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6584 /// This can cause recursive merging of nodes in the DAG.
6585 ///
6586 /// This version assumes that for each value of From, there is a
6587 /// corresponding value in To in the same position with the same type.
6588 ///
6589 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6590 #ifndef NDEBUG
6591   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6592     assert((!From->hasAnyUseOfValue(i) ||
6593             From->getValueType(i) == To->getValueType(i)) &&
6594            "Cannot use this version of ReplaceAllUsesWith!");
6595 #endif
6596 
6597   // Handle the trivial case.
6598   if (From == To)
6599     return;
6600 
6601   // Preserve Debug Info. Only do this if there's a use.
6602   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6603     if (From->hasAnyUseOfValue(i)) {
6604       assert((i < To->getNumValues()) && "Invalid To location");
6605       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6606     }
6607 
6608   // Iterate over just the existing users of From. See the comments in
6609   // the ReplaceAllUsesWith above.
6610   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6611   RAUWUpdateListener Listener(*this, UI, UE);
6612   while (UI != UE) {
6613     SDNode *User = *UI;
6614 
6615     // This node is about to morph, remove its old self from the CSE maps.
6616     RemoveNodeFromCSEMaps(User);
6617 
6618     // A user can appear in a use list multiple times, and when this
6619     // happens the uses are usually next to each other in the list.
6620     // To help reduce the number of CSE recomputations, process all
6621     // the uses of this user that we can find this way.
6622     do {
6623       SDUse &Use = UI.getUse();
6624       ++UI;
6625       Use.setNode(To);
6626     } while (UI != UE && *UI == User);
6627 
6628     // Now that we have modified User, add it back to the CSE maps.  If it
6629     // already exists there, recursively merge the results together.
6630     AddModifiedNodeToCSEMaps(User);
6631   }
6632 
6633   // If we just RAUW'd the root, take note.
6634   if (From == getRoot().getNode())
6635     setRoot(SDValue(To, getRoot().getResNo()));
6636 }
6637 
6638 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6639 /// This can cause recursive merging of nodes in the DAG.
6640 ///
6641 /// This version can replace From with any result values.  To must match the
6642 /// number and types of values returned by From.
6643 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6644   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6645     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6646 
6647   // Preserve Debug Info.
6648   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6649     TransferDbgValues(SDValue(From, i), *To);
6650 
6651   // Iterate over just the existing users of From. See the comments in
6652   // the ReplaceAllUsesWith above.
6653   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6654   RAUWUpdateListener Listener(*this, UI, UE);
6655   while (UI != UE) {
6656     SDNode *User = *UI;
6657 
6658     // This node is about to morph, remove its old self from the CSE maps.
6659     RemoveNodeFromCSEMaps(User);
6660 
6661     // A user can appear in a use list multiple times, and when this
6662     // happens the uses are usually next to each other in the list.
6663     // To help reduce the number of CSE recomputations, process all
6664     // the uses of this user that we can find this way.
6665     do {
6666       SDUse &Use = UI.getUse();
6667       const SDValue &ToOp = To[Use.getResNo()];
6668       ++UI;
6669       Use.set(ToOp);
6670     } while (UI != UE && *UI == User);
6671 
6672     // Now that we have modified User, add it back to the CSE maps.  If it
6673     // already exists there, recursively merge the results together.
6674     AddModifiedNodeToCSEMaps(User);
6675   }
6676 
6677   // If we just RAUW'd the root, take note.
6678   if (From == getRoot().getNode())
6679     setRoot(SDValue(To[getRoot().getResNo()]));
6680 }
6681 
6682 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6683 /// uses of other values produced by From.getNode() alone.  The Deleted
6684 /// vector is handled the same way as for ReplaceAllUsesWith.
6685 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6686   // Handle the really simple, really trivial case efficiently.
6687   if (From == To) return;
6688 
6689   // Handle the simple, trivial, case efficiently.
6690   if (From.getNode()->getNumValues() == 1) {
6691     ReplaceAllUsesWith(From, To);
6692     return;
6693   }
6694 
6695   // Preserve Debug Info.
6696   TransferDbgValues(From, To);
6697 
6698   // Iterate over just the existing users of From. See the comments in
6699   // the ReplaceAllUsesWith above.
6700   SDNode::use_iterator UI = From.getNode()->use_begin(),
6701                        UE = From.getNode()->use_end();
6702   RAUWUpdateListener Listener(*this, UI, UE);
6703   while (UI != UE) {
6704     SDNode *User = *UI;
6705     bool UserRemovedFromCSEMaps = false;
6706 
6707     // A user can appear in a use list multiple times, and when this
6708     // happens the uses are usually next to each other in the list.
6709     // To help reduce the number of CSE recomputations, process all
6710     // the uses of this user that we can find this way.
6711     do {
6712       SDUse &Use = UI.getUse();
6713 
6714       // Skip uses of different values from the same node.
6715       if (Use.getResNo() != From.getResNo()) {
6716         ++UI;
6717         continue;
6718       }
6719 
6720       // If this node hasn't been modified yet, it's still in the CSE maps,
6721       // so remove its old self from the CSE maps.
6722       if (!UserRemovedFromCSEMaps) {
6723         RemoveNodeFromCSEMaps(User);
6724         UserRemovedFromCSEMaps = true;
6725       }
6726 
6727       ++UI;
6728       Use.set(To);
6729     } while (UI != UE && *UI == User);
6730 
6731     // We are iterating over all uses of the From node, so if a use
6732     // doesn't use the specific value, no changes are made.
6733     if (!UserRemovedFromCSEMaps)
6734       continue;
6735 
6736     // Now that we have modified User, add it back to the CSE maps.  If it
6737     // already exists there, recursively merge the results together.
6738     AddModifiedNodeToCSEMaps(User);
6739   }
6740 
6741   // If we just RAUW'd the root, take note.
6742   if (From == getRoot())
6743     setRoot(To);
6744 }
6745 
6746 namespace {
6747   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6748   /// to record information about a use.
6749   struct UseMemo {
6750     SDNode *User;
6751     unsigned Index;
6752     SDUse *Use;
6753   };
6754 
6755   /// operator< - Sort Memos by User.
6756   bool operator<(const UseMemo &L, const UseMemo &R) {
6757     return (intptr_t)L.User < (intptr_t)R.User;
6758   }
6759 }
6760 
6761 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6762 /// uses of other values produced by From.getNode() alone.  The same value
6763 /// may appear in both the From and To list.  The Deleted vector is
6764 /// handled the same way as for ReplaceAllUsesWith.
6765 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6766                                               const SDValue *To,
6767                                               unsigned Num){
6768   // Handle the simple, trivial case efficiently.
6769   if (Num == 1)
6770     return ReplaceAllUsesOfValueWith(*From, *To);
6771 
6772   TransferDbgValues(*From, *To);
6773 
6774   // Read up all the uses and make records of them. This helps
6775   // processing new uses that are introduced during the
6776   // replacement process.
6777   SmallVector<UseMemo, 4> Uses;
6778   for (unsigned i = 0; i != Num; ++i) {
6779     unsigned FromResNo = From[i].getResNo();
6780     SDNode *FromNode = From[i].getNode();
6781     for (SDNode::use_iterator UI = FromNode->use_begin(),
6782          E = FromNode->use_end(); UI != E; ++UI) {
6783       SDUse &Use = UI.getUse();
6784       if (Use.getResNo() == FromResNo) {
6785         UseMemo Memo = { *UI, i, &Use };
6786         Uses.push_back(Memo);
6787       }
6788     }
6789   }
6790 
6791   // Sort the uses, so that all the uses from a given User are together.
6792   std::sort(Uses.begin(), Uses.end());
6793 
6794   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6795        UseIndex != UseIndexEnd; ) {
6796     // We know that this user uses some value of From.  If it is the right
6797     // value, update it.
6798     SDNode *User = Uses[UseIndex].User;
6799 
6800     // This node is about to morph, remove its old self from the CSE maps.
6801     RemoveNodeFromCSEMaps(User);
6802 
6803     // The Uses array is sorted, so all the uses for a given User
6804     // are next to each other in the list.
6805     // To help reduce the number of CSE recomputations, process all
6806     // the uses of this user that we can find this way.
6807     do {
6808       unsigned i = Uses[UseIndex].Index;
6809       SDUse &Use = *Uses[UseIndex].Use;
6810       ++UseIndex;
6811 
6812       Use.set(To[i]);
6813     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6814 
6815     // Now that we have modified User, add it back to the CSE maps.  If it
6816     // already exists there, recursively merge the results together.
6817     AddModifiedNodeToCSEMaps(User);
6818   }
6819 }
6820 
6821 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6822 /// based on their topological order. It returns the maximum id and a vector
6823 /// of the SDNodes* in assigned order by reference.
6824 unsigned SelectionDAG::AssignTopologicalOrder() {
6825 
6826   unsigned DAGSize = 0;
6827 
6828   // SortedPos tracks the progress of the algorithm. Nodes before it are
6829   // sorted, nodes after it are unsorted. When the algorithm completes
6830   // it is at the end of the list.
6831   allnodes_iterator SortedPos = allnodes_begin();
6832 
6833   // Visit all the nodes. Move nodes with no operands to the front of
6834   // the list immediately. Annotate nodes that do have operands with their
6835   // operand count. Before we do this, the Node Id fields of the nodes
6836   // may contain arbitrary values. After, the Node Id fields for nodes
6837   // before SortedPos will contain the topological sort index, and the
6838   // Node Id fields for nodes At SortedPos and after will contain the
6839   // count of outstanding operands.
6840   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6841     SDNode *N = &*I++;
6842     checkForCycles(N, this);
6843     unsigned Degree = N->getNumOperands();
6844     if (Degree == 0) {
6845       // A node with no uses, add it to the result array immediately.
6846       N->setNodeId(DAGSize++);
6847       allnodes_iterator Q(N);
6848       if (Q != SortedPos)
6849         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6850       assert(SortedPos != AllNodes.end() && "Overran node list");
6851       ++SortedPos;
6852     } else {
6853       // Temporarily use the Node Id as scratch space for the degree count.
6854       N->setNodeId(Degree);
6855     }
6856   }
6857 
6858   // Visit all the nodes. As we iterate, move nodes into sorted order,
6859   // such that by the time the end is reached all nodes will be sorted.
6860   for (SDNode &Node : allnodes()) {
6861     SDNode *N = &Node;
6862     checkForCycles(N, this);
6863     // N is in sorted position, so all its uses have one less operand
6864     // that needs to be sorted.
6865     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6866          UI != UE; ++UI) {
6867       SDNode *P = *UI;
6868       unsigned Degree = P->getNodeId();
6869       assert(Degree != 0 && "Invalid node degree");
6870       --Degree;
6871       if (Degree == 0) {
6872         // All of P's operands are sorted, so P may sorted now.
6873         P->setNodeId(DAGSize++);
6874         if (P->getIterator() != SortedPos)
6875           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
6876         assert(SortedPos != AllNodes.end() && "Overran node list");
6877         ++SortedPos;
6878       } else {
6879         // Update P's outstanding operand count.
6880         P->setNodeId(Degree);
6881       }
6882     }
6883     if (Node.getIterator() == SortedPos) {
6884 #ifndef NDEBUG
6885       allnodes_iterator I(N);
6886       SDNode *S = &*++I;
6887       dbgs() << "Overran sorted position:\n";
6888       S->dumprFull(this); dbgs() << "\n";
6889       dbgs() << "Checking if this is due to cycles\n";
6890       checkForCycles(this, true);
6891 #endif
6892       llvm_unreachable(nullptr);
6893     }
6894   }
6895 
6896   assert(SortedPos == AllNodes.end() &&
6897          "Topological sort incomplete!");
6898   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
6899          "First node in topological sort is not the entry token!");
6900   assert(AllNodes.front().getNodeId() == 0 &&
6901          "First node in topological sort has non-zero id!");
6902   assert(AllNodes.front().getNumOperands() == 0 &&
6903          "First node in topological sort has operands!");
6904   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
6905          "Last node in topologic sort has unexpected id!");
6906   assert(AllNodes.back().use_empty() &&
6907          "Last node in topologic sort has users!");
6908   assert(DAGSize == allnodes_size() && "Node count mismatch!");
6909   return DAGSize;
6910 }
6911 
6912 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
6913 /// value is produced by SD.
6914 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
6915   if (SD) {
6916     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
6917     SD->setHasDebugValue(true);
6918   }
6919   DbgInfo->add(DB, SD, isParameter);
6920 }
6921 
6922 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
6923 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
6924   if (From == To || !From.getNode()->getHasDebugValue())
6925     return;
6926   SDNode *FromNode = From.getNode();
6927   SDNode *ToNode = To.getNode();
6928   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
6929   SmallVector<SDDbgValue *, 2> ClonedDVs;
6930   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
6931        I != E; ++I) {
6932     SDDbgValue *Dbg = *I;
6933     // Only add Dbgvalues attached to same ResNo.
6934     if (Dbg->getKind() == SDDbgValue::SDNODE &&
6935         Dbg->getSDNode() == From.getNode() &&
6936         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
6937       assert(FromNode != ToNode &&
6938              "Should not transfer Debug Values intranode");
6939       SDDbgValue *Clone =
6940           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
6941                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
6942                       Dbg->getDebugLoc(), Dbg->getOrder());
6943       ClonedDVs.push_back(Clone);
6944       Dbg->setIsInvalidated();
6945     }
6946   }
6947   for (SDDbgValue *I : ClonedDVs)
6948     AddDbgValue(I, ToNode, false);
6949 }
6950 
6951 //===----------------------------------------------------------------------===//
6952 //                              SDNode Class
6953 //===----------------------------------------------------------------------===//
6954 
6955 bool llvm::isNullConstant(SDValue V) {
6956   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6957   return Const != nullptr && Const->isNullValue();
6958 }
6959 
6960 bool llvm::isNullFPConstant(SDValue V) {
6961   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
6962   return Const != nullptr && Const->isZero() && !Const->isNegative();
6963 }
6964 
6965 bool llvm::isAllOnesConstant(SDValue V) {
6966   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6967   return Const != nullptr && Const->isAllOnesValue();
6968 }
6969 
6970 bool llvm::isOneConstant(SDValue V) {
6971   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6972   return Const != nullptr && Const->isOne();
6973 }
6974 
6975 bool llvm::isBitwiseNot(SDValue V) {
6976   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
6977 }
6978 
6979 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
6980   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
6981     return CN;
6982 
6983   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
6984     BitVector UndefElements;
6985     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
6986 
6987     // BuildVectors can truncate their operands. Ignore that case here.
6988     // FIXME: We blindly ignore splats which include undef which is overly
6989     // pessimistic.
6990     if (CN && UndefElements.none() &&
6991         CN->getValueType(0) == N.getValueType().getScalarType())
6992       return CN;
6993   }
6994 
6995   return nullptr;
6996 }
6997 
6998 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
6999   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7000     return CN;
7001 
7002   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7003     BitVector UndefElements;
7004     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7005 
7006     if (CN && UndefElements.none())
7007       return CN;
7008   }
7009 
7010   return nullptr;
7011 }
7012 
7013 HandleSDNode::~HandleSDNode() {
7014   DropOperands();
7015 }
7016 
7017 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7018                                          const DebugLoc &DL,
7019                                          const GlobalValue *GA, EVT VT,
7020                                          int64_t o, unsigned char TF)
7021     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7022   TheGlobal = GA;
7023 }
7024 
7025 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7026                                          EVT VT, unsigned SrcAS,
7027                                          unsigned DestAS)
7028     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7029       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7030 
7031 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7032                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7033     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7034   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7035   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7036   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7037   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7038 
7039   // We check here that the size of the memory operand fits within the size of
7040   // the MMO. This is because the MMO might indicate only a possible address
7041   // range instead of specifying the affected memory addresses precisely.
7042   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7043 }
7044 
7045 /// Profile - Gather unique data for the node.
7046 ///
7047 void SDNode::Profile(FoldingSetNodeID &ID) const {
7048   AddNodeIDNode(ID, this);
7049 }
7050 
7051 namespace {
7052   struct EVTArray {
7053     std::vector<EVT> VTs;
7054 
7055     EVTArray() {
7056       VTs.reserve(MVT::LAST_VALUETYPE);
7057       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7058         VTs.push_back(MVT((MVT::SimpleValueType)i));
7059     }
7060   };
7061 }
7062 
7063 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
7064 static ManagedStatic<EVTArray> SimpleVTArray;
7065 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
7066 
7067 /// getValueTypeList - Return a pointer to the specified value type.
7068 ///
7069 const EVT *SDNode::getValueTypeList(EVT VT) {
7070   if (VT.isExtended()) {
7071     sys::SmartScopedLock<true> Lock(*VTMutex);
7072     return &(*EVTs->insert(VT).first);
7073   } else {
7074     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7075            "Value type out of range!");
7076     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7077   }
7078 }
7079 
7080 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7081 /// indicated value.  This method ignores uses of other values defined by this
7082 /// operation.
7083 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7084   assert(Value < getNumValues() && "Bad value!");
7085 
7086   // TODO: Only iterate over uses of a given value of the node
7087   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7088     if (UI.getUse().getResNo() == Value) {
7089       if (NUses == 0)
7090         return false;
7091       --NUses;
7092     }
7093   }
7094 
7095   // Found exactly the right number of uses?
7096   return NUses == 0;
7097 }
7098 
7099 
7100 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7101 /// value. This method ignores uses of other values defined by this operation.
7102 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7103   assert(Value < getNumValues() && "Bad value!");
7104 
7105   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7106     if (UI.getUse().getResNo() == Value)
7107       return true;
7108 
7109   return false;
7110 }
7111 
7112 
7113 /// isOnlyUserOf - Return true if this node is the only use of N.
7114 ///
7115 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7116   bool Seen = false;
7117   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7118     SDNode *User = *I;
7119     if (User == this)
7120       Seen = true;
7121     else
7122       return false;
7123   }
7124 
7125   return Seen;
7126 }
7127 
7128 /// isOperand - Return true if this node is an operand of N.
7129 ///
7130 bool SDValue::isOperandOf(const SDNode *N) const {
7131   for (const SDValue &Op : N->op_values())
7132     if (*this == Op)
7133       return true;
7134   return false;
7135 }
7136 
7137 bool SDNode::isOperandOf(const SDNode *N) const {
7138   for (const SDValue &Op : N->op_values())
7139     if (this == Op.getNode())
7140       return true;
7141   return false;
7142 }
7143 
7144 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7145 /// be a chain) reaches the specified operand without crossing any
7146 /// side-effecting instructions on any chain path.  In practice, this looks
7147 /// through token factors and non-volatile loads.  In order to remain efficient,
7148 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7149 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7150                                                unsigned Depth) const {
7151   if (*this == Dest) return true;
7152 
7153   // Don't search too deeply, we just want to be able to see through
7154   // TokenFactor's etc.
7155   if (Depth == 0) return false;
7156 
7157   // If this is a token factor, all inputs to the TF happen in parallel.  If any
7158   // of the operands of the TF does not reach dest, then we cannot do the xform.
7159   if (getOpcode() == ISD::TokenFactor) {
7160     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7161       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
7162         return false;
7163     return true;
7164   }
7165 
7166   // Loads don't have side effects, look through them.
7167   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7168     if (!Ld->isVolatile())
7169       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7170   }
7171   return false;
7172 }
7173 
7174 bool SDNode::hasPredecessor(const SDNode *N) const {
7175   SmallPtrSet<const SDNode *, 32> Visited;
7176   SmallVector<const SDNode *, 16> Worklist;
7177   Worklist.push_back(this);
7178   return hasPredecessorHelper(N, Visited, Worklist);
7179 }
7180 
7181 const SDNodeFlags *SDNode::getFlags() const {
7182   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7183     return &FlagsNode->Flags;
7184   return nullptr;
7185 }
7186 
7187 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
7188   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7189     FlagsNode->Flags.intersectWith(Flags);
7190 }
7191 
7192 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7193   assert(N->getNumValues() == 1 &&
7194          "Can't unroll a vector with multiple results!");
7195 
7196   EVT VT = N->getValueType(0);
7197   unsigned NE = VT.getVectorNumElements();
7198   EVT EltVT = VT.getVectorElementType();
7199   SDLoc dl(N);
7200 
7201   SmallVector<SDValue, 8> Scalars;
7202   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7203 
7204   // If ResNE is 0, fully unroll the vector op.
7205   if (ResNE == 0)
7206     ResNE = NE;
7207   else if (NE > ResNE)
7208     NE = ResNE;
7209 
7210   unsigned i;
7211   for (i= 0; i != NE; ++i) {
7212     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7213       SDValue Operand = N->getOperand(j);
7214       EVT OperandVT = Operand.getValueType();
7215       if (OperandVT.isVector()) {
7216         // A vector operand; extract a single element.
7217         EVT OperandEltVT = OperandVT.getVectorElementType();
7218         Operands[j] =
7219             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7220                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7221       } else {
7222         // A scalar operand; just use it as is.
7223         Operands[j] = Operand;
7224       }
7225     }
7226 
7227     switch (N->getOpcode()) {
7228     default: {
7229       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7230                                 N->getFlags()));
7231       break;
7232     }
7233     case ISD::VSELECT:
7234       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7235       break;
7236     case ISD::SHL:
7237     case ISD::SRA:
7238     case ISD::SRL:
7239     case ISD::ROTL:
7240     case ISD::ROTR:
7241       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7242                                getShiftAmountOperand(Operands[0].getValueType(),
7243                                                      Operands[1])));
7244       break;
7245     case ISD::SIGN_EXTEND_INREG:
7246     case ISD::FP_ROUND_INREG: {
7247       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7248       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7249                                 Operands[0],
7250                                 getValueType(ExtVT)));
7251     }
7252     }
7253   }
7254 
7255   for (; i < ResNE; ++i)
7256     Scalars.push_back(getUNDEF(EltVT));
7257 
7258   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7259   return getBuildVector(VecVT, dl, Scalars);
7260 }
7261 
7262 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7263                                                   LoadSDNode *Base,
7264                                                   unsigned Bytes,
7265                                                   int Dist) const {
7266   if (LD->isVolatile() || Base->isVolatile())
7267     return false;
7268   if (LD->isIndexed() || Base->isIndexed())
7269     return false;
7270   if (LD->getChain() != Base->getChain())
7271     return false;
7272   EVT VT = LD->getValueType(0);
7273   if (VT.getSizeInBits() / 8 != Bytes)
7274     return false;
7275 
7276   SDValue Loc = LD->getOperand(1);
7277   SDValue BaseLoc = Base->getOperand(1);
7278   if (Loc.getOpcode() == ISD::FrameIndex) {
7279     if (BaseLoc.getOpcode() != ISD::FrameIndex)
7280       return false;
7281     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7282     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7283     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7284     int FS  = MFI.getObjectSize(FI);
7285     int BFS = MFI.getObjectSize(BFI);
7286     if (FS != BFS || FS != (int)Bytes) return false;
7287     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
7288   }
7289 
7290   // Handle X + C.
7291   if (isBaseWithConstantOffset(Loc)) {
7292     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
7293     if (Loc.getOperand(0) == BaseLoc) {
7294       // If the base location is a simple address with no offset itself, then
7295       // the second load's first add operand should be the base address.
7296       if (LocOffset == Dist * (int)Bytes)
7297         return true;
7298     } else if (isBaseWithConstantOffset(BaseLoc)) {
7299       // The base location itself has an offset, so subtract that value from the
7300       // second load's offset before comparing to distance * size.
7301       int64_t BOffset =
7302         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
7303       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
7304         if ((LocOffset - BOffset) == Dist * (int)Bytes)
7305           return true;
7306       }
7307     }
7308   }
7309   const GlobalValue *GV1 = nullptr;
7310   const GlobalValue *GV2 = nullptr;
7311   int64_t Offset1 = 0;
7312   int64_t Offset2 = 0;
7313   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7314   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7315   if (isGA1 && isGA2 && GV1 == GV2)
7316     return Offset1 == (Offset2 + Dist*Bytes);
7317   return false;
7318 }
7319 
7320 
7321 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7322 /// it cannot be inferred.
7323 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7324   // If this is a GlobalAddress + cst, return the alignment.
7325   const GlobalValue *GV;
7326   int64_t GVOffset = 0;
7327   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7328     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7329     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7330     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7331                            getDataLayout());
7332     unsigned AlignBits = KnownZero.countTrailingOnes();
7333     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7334     if (Align)
7335       return MinAlign(Align, GVOffset);
7336   }
7337 
7338   // If this is a direct reference to a stack slot, use information about the
7339   // stack slot's alignment.
7340   int FrameIdx = 1 << 31;
7341   int64_t FrameOffset = 0;
7342   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7343     FrameIdx = FI->getIndex();
7344   } else if (isBaseWithConstantOffset(Ptr) &&
7345              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7346     // Handle FI+Cst
7347     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7348     FrameOffset = Ptr.getConstantOperandVal(1);
7349   }
7350 
7351   if (FrameIdx != (1 << 31)) {
7352     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7353     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7354                                     FrameOffset);
7355     return FIInfoAlign;
7356   }
7357 
7358   return 0;
7359 }
7360 
7361 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7362 /// which is split (or expanded) into two not necessarily identical pieces.
7363 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7364   // Currently all types are split in half.
7365   EVT LoVT, HiVT;
7366   if (!VT.isVector()) {
7367     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7368   } else {
7369     unsigned NumElements = VT.getVectorNumElements();
7370     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7371     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7372                                    NumElements/2);
7373   }
7374   return std::make_pair(LoVT, HiVT);
7375 }
7376 
7377 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7378 /// low/high part.
7379 std::pair<SDValue, SDValue>
7380 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7381                           const EVT &HiVT) {
7382   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7383          N.getValueType().getVectorNumElements() &&
7384          "More vector elements requested than available!");
7385   SDValue Lo, Hi;
7386   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7387                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7388   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7389                getConstant(LoVT.getVectorNumElements(), DL,
7390                            TLI->getVectorIdxTy(getDataLayout())));
7391   return std::make_pair(Lo, Hi);
7392 }
7393 
7394 void SelectionDAG::ExtractVectorElements(SDValue Op,
7395                                          SmallVectorImpl<SDValue> &Args,
7396                                          unsigned Start, unsigned Count) {
7397   EVT VT = Op.getValueType();
7398   if (Count == 0)
7399     Count = VT.getVectorNumElements();
7400 
7401   EVT EltVT = VT.getVectorElementType();
7402   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7403   SDLoc SL(Op);
7404   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7405     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7406                            Op, getConstant(i, SL, IdxTy)));
7407   }
7408 }
7409 
7410 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7411 unsigned GlobalAddressSDNode::getAddressSpace() const {
7412   return getGlobal()->getType()->getAddressSpace();
7413 }
7414 
7415 
7416 Type *ConstantPoolSDNode::getType() const {
7417   if (isMachineConstantPoolEntry())
7418     return Val.MachineCPVal->getType();
7419   return Val.ConstVal->getType();
7420 }
7421 
7422 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7423                                         APInt &SplatUndef,
7424                                         unsigned &SplatBitSize,
7425                                         bool &HasAnyUndefs,
7426                                         unsigned MinSplatBits,
7427                                         bool isBigEndian) const {
7428   EVT VT = getValueType(0);
7429   assert(VT.isVector() && "Expected a vector type");
7430   unsigned sz = VT.getSizeInBits();
7431   if (MinSplatBits > sz)
7432     return false;
7433 
7434   SplatValue = APInt(sz, 0);
7435   SplatUndef = APInt(sz, 0);
7436 
7437   // Get the bits.  Bits with undefined values (when the corresponding element
7438   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7439   // in SplatValue.  If any of the values are not constant, give up and return
7440   // false.
7441   unsigned int nOps = getNumOperands();
7442   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7443   unsigned EltBitSize = VT.getScalarSizeInBits();
7444 
7445   for (unsigned j = 0; j < nOps; ++j) {
7446     unsigned i = isBigEndian ? nOps-1-j : j;
7447     SDValue OpVal = getOperand(i);
7448     unsigned BitPos = j * EltBitSize;
7449 
7450     if (OpVal.isUndef())
7451       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
7452     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7453       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
7454                     zextOrTrunc(sz) << BitPos;
7455     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7456       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
7457      else
7458       return false;
7459   }
7460 
7461   // The build_vector is all constants or undefs.  Find the smallest element
7462   // size that splats the vector.
7463 
7464   HasAnyUndefs = (SplatUndef != 0);
7465   while (sz > 8) {
7466 
7467     unsigned HalfSize = sz / 2;
7468     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7469     APInt LowValue = SplatValue.trunc(HalfSize);
7470     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7471     APInt LowUndef = SplatUndef.trunc(HalfSize);
7472 
7473     // If the two halves do not match (ignoring undef bits), stop here.
7474     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7475         MinSplatBits > HalfSize)
7476       break;
7477 
7478     SplatValue = HighValue | LowValue;
7479     SplatUndef = HighUndef & LowUndef;
7480 
7481     sz = HalfSize;
7482   }
7483 
7484   SplatBitSize = sz;
7485   return true;
7486 }
7487 
7488 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7489   if (UndefElements) {
7490     UndefElements->clear();
7491     UndefElements->resize(getNumOperands());
7492   }
7493   SDValue Splatted;
7494   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7495     SDValue Op = getOperand(i);
7496     if (Op.isUndef()) {
7497       if (UndefElements)
7498         (*UndefElements)[i] = true;
7499     } else if (!Splatted) {
7500       Splatted = Op;
7501     } else if (Splatted != Op) {
7502       return SDValue();
7503     }
7504   }
7505 
7506   if (!Splatted) {
7507     assert(getOperand(0).isUndef() &&
7508            "Can only have a splat without a constant for all undefs.");
7509     return getOperand(0);
7510   }
7511 
7512   return Splatted;
7513 }
7514 
7515 ConstantSDNode *
7516 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7517   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7518 }
7519 
7520 ConstantFPSDNode *
7521 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7522   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7523 }
7524 
7525 int32_t
7526 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7527                                                    uint32_t BitWidth) const {
7528   if (ConstantFPSDNode *CN =
7529           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7530     bool IsExact;
7531     APSInt IntVal(BitWidth);
7532     const APFloat &APF = CN->getValueAPF();
7533     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7534             APFloat::opOK ||
7535         !IsExact)
7536       return -1;
7537 
7538     return IntVal.exactLogBase2();
7539   }
7540   return -1;
7541 }
7542 
7543 bool BuildVectorSDNode::isConstant() const {
7544   for (const SDValue &Op : op_values()) {
7545     unsigned Opc = Op.getOpcode();
7546     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7547       return false;
7548   }
7549   return true;
7550 }
7551 
7552 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7553   // Find the first non-undef value in the shuffle mask.
7554   unsigned i, e;
7555   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7556     /* search */;
7557 
7558   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7559 
7560   // Make sure all remaining elements are either undef or the same as the first
7561   // non-undef value.
7562   for (int Idx = Mask[i]; i != e; ++i)
7563     if (Mask[i] >= 0 && Mask[i] != Idx)
7564       return false;
7565   return true;
7566 }
7567 
7568 // \brief Returns the SDNode if it is a constant integer BuildVector
7569 // or constant integer.
7570 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7571   if (isa<ConstantSDNode>(N))
7572     return N.getNode();
7573   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7574     return N.getNode();
7575   // Treat a GlobalAddress supporting constant offset folding as a
7576   // constant integer.
7577   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7578     if (GA->getOpcode() == ISD::GlobalAddress &&
7579         TLI->isOffsetFoldingLegal(GA))
7580       return GA;
7581   return nullptr;
7582 }
7583 
7584 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
7585   if (isa<ConstantFPSDNode>(N))
7586     return N.getNode();
7587 
7588   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
7589     return N.getNode();
7590 
7591   return nullptr;
7592 }
7593 
7594 #ifndef NDEBUG
7595 static void checkForCyclesHelper(const SDNode *N,
7596                                  SmallPtrSetImpl<const SDNode*> &Visited,
7597                                  SmallPtrSetImpl<const SDNode*> &Checked,
7598                                  const llvm::SelectionDAG *DAG) {
7599   // If this node has already been checked, don't check it again.
7600   if (Checked.count(N))
7601     return;
7602 
7603   // If a node has already been visited on this depth-first walk, reject it as
7604   // a cycle.
7605   if (!Visited.insert(N).second) {
7606     errs() << "Detected cycle in SelectionDAG\n";
7607     dbgs() << "Offending node:\n";
7608     N->dumprFull(DAG); dbgs() << "\n";
7609     abort();
7610   }
7611 
7612   for (const SDValue &Op : N->op_values())
7613     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7614 
7615   Checked.insert(N);
7616   Visited.erase(N);
7617 }
7618 #endif
7619 
7620 void llvm::checkForCycles(const llvm::SDNode *N,
7621                           const llvm::SelectionDAG *DAG,
7622                           bool force) {
7623 #ifndef NDEBUG
7624   bool check = force;
7625 #ifdef EXPENSIVE_CHECKS
7626   check = true;
7627 #endif  // EXPENSIVE_CHECKS
7628   if (check) {
7629     assert(N && "Checking nonexistent SDNode");
7630     SmallPtrSet<const SDNode*, 32> visited;
7631     SmallPtrSet<const SDNode*, 32> checked;
7632     checkForCyclesHelper(N, visited, checked, DAG);
7633   }
7634 #endif  // !NDEBUG
7635 }
7636 
7637 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7638   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7639 }
7640