1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 break; 407 } 408 case ISD::BasicBlock: 409 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 410 break; 411 case ISD::Register: 412 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 413 break; 414 case ISD::RegisterMask: 415 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 416 break; 417 case ISD::SRCVALUE: 418 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 419 break; 420 case ISD::FrameIndex: 421 case ISD::TargetFrameIndex: 422 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 423 break; 424 case ISD::JumpTable: 425 case ISD::TargetJumpTable: 426 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 428 break; 429 case ISD::ConstantPool: 430 case ISD::TargetConstantPool: { 431 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 432 ID.AddInteger(CP->getAlignment()); 433 ID.AddInteger(CP->getOffset()); 434 if (CP->isMachineConstantPoolEntry()) 435 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 436 else 437 ID.AddPointer(CP->getConstVal()); 438 ID.AddInteger(CP->getTargetFlags()); 439 break; 440 } 441 case ISD::TargetIndex: { 442 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 443 ID.AddInteger(TI->getIndex()); 444 ID.AddInteger(TI->getOffset()); 445 ID.AddInteger(TI->getTargetFlags()); 446 break; 447 } 448 case ISD::LOAD: { 449 const LoadSDNode *LD = cast<LoadSDNode>(N); 450 ID.AddInteger(LD->getMemoryVT().getRawBits()); 451 ID.AddInteger(LD->getRawSubclassData()); 452 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 453 break; 454 } 455 case ISD::STORE: { 456 const StoreSDNode *ST = cast<StoreSDNode>(N); 457 ID.AddInteger(ST->getMemoryVT().getRawBits()); 458 ID.AddInteger(ST->getRawSubclassData()); 459 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 460 break; 461 } 462 case ISD::ATOMIC_CMP_SWAP: 463 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 464 case ISD::ATOMIC_SWAP: 465 case ISD::ATOMIC_LOAD_ADD: 466 case ISD::ATOMIC_LOAD_SUB: 467 case ISD::ATOMIC_LOAD_AND: 468 case ISD::ATOMIC_LOAD_OR: 469 case ISD::ATOMIC_LOAD_XOR: 470 case ISD::ATOMIC_LOAD_NAND: 471 case ISD::ATOMIC_LOAD_MIN: 472 case ISD::ATOMIC_LOAD_MAX: 473 case ISD::ATOMIC_LOAD_UMIN: 474 case ISD::ATOMIC_LOAD_UMAX: 475 case ISD::ATOMIC_LOAD: 476 case ISD::ATOMIC_STORE: { 477 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 478 ID.AddInteger(AT->getMemoryVT().getRawBits()); 479 ID.AddInteger(AT->getRawSubclassData()); 480 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::PREFETCH: { 484 const MemSDNode *PF = cast<MemSDNode>(N); 485 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 486 break; 487 } 488 case ISD::VECTOR_SHUFFLE: { 489 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 490 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 491 i != e; ++i) 492 ID.AddInteger(SVN->getMaskElt(i)); 493 break; 494 } 495 case ISD::TargetBlockAddress: 496 case ISD::BlockAddress: { 497 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 498 ID.AddPointer(BA->getBlockAddress()); 499 ID.AddInteger(BA->getOffset()); 500 ID.AddInteger(BA->getTargetFlags()); 501 break; 502 } 503 } // end switch (N->getOpcode()) 504 505 // Target specific memory nodes could also have address spaces to check. 506 if (N->isTargetMemoryOpcode()) 507 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 508 } 509 510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 511 /// data. 512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 513 AddNodeIDOpcode(ID, N->getOpcode()); 514 // Add the return value info. 515 AddNodeIDValueTypes(ID, N->getVTList()); 516 // Add the operand info. 517 AddNodeIDOperands(ID, N->ops()); 518 519 // Handle SDNode leafs with special info. 520 AddNodeIDCustom(ID, N); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // SelectionDAG Class 525 //===----------------------------------------------------------------------===// 526 527 /// doNotCSE - Return true if CSE should not be performed for this node. 528 static bool doNotCSE(SDNode *N) { 529 if (N->getValueType(0) == MVT::Glue) 530 return true; // Never CSE anything that produces a flag. 531 532 switch (N->getOpcode()) { 533 default: break; 534 case ISD::HANDLENODE: 535 case ISD::EH_LABEL: 536 return true; // Never CSE these nodes. 537 } 538 539 // Check that remaining values produced are not flags. 540 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 541 if (N->getValueType(i) == MVT::Glue) 542 return true; // Never CSE anything that produces a flag. 543 544 return false; 545 } 546 547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 548 /// SelectionDAG. 549 void SelectionDAG::RemoveDeadNodes() { 550 // Create a dummy node (which is not added to allnodes), that adds a reference 551 // to the root node, preventing it from being deleted. 552 HandleSDNode Dummy(getRoot()); 553 554 SmallVector<SDNode*, 128> DeadNodes; 555 556 // Add all obviously-dead nodes to the DeadNodes worklist. 557 for (SDNode &Node : allnodes()) 558 if (Node.use_empty()) 559 DeadNodes.push_back(&Node); 560 561 RemoveDeadNodes(DeadNodes); 562 563 // If the root changed (e.g. it was a dead load, update the root). 564 setRoot(Dummy.getValue()); 565 } 566 567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 568 /// given list, and any nodes that become unreachable as a result. 569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 570 571 // Process the worklist, deleting the nodes and adding their uses to the 572 // worklist. 573 while (!DeadNodes.empty()) { 574 SDNode *N = DeadNodes.pop_back_val(); 575 576 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 577 DUL->NodeDeleted(N, nullptr); 578 579 // Take the node out of the appropriate CSE map. 580 RemoveNodeFromCSEMaps(N); 581 582 // Next, brutally remove the operand list. This is safe to do, as there are 583 // no cycles in the graph. 584 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 585 SDUse &Use = *I++; 586 SDNode *Operand = Use.getNode(); 587 Use.set(SDValue()); 588 589 // Now that we removed this operand, see if there are no uses of it left. 590 if (Operand->use_empty()) 591 DeadNodes.push_back(Operand); 592 } 593 594 DeallocateNode(N); 595 } 596 } 597 598 void SelectionDAG::RemoveDeadNode(SDNode *N){ 599 SmallVector<SDNode*, 16> DeadNodes(1, N); 600 601 // Create a dummy node that adds a reference to the root node, preventing 602 // it from being deleted. (This matters if the root is an operand of the 603 // dead node.) 604 HandleSDNode Dummy(getRoot()); 605 606 RemoveDeadNodes(DeadNodes); 607 } 608 609 void SelectionDAG::DeleteNode(SDNode *N) { 610 // First take this out of the appropriate CSE map. 611 RemoveNodeFromCSEMaps(N); 612 613 // Finally, remove uses due to operands of this node, remove from the 614 // AllNodes list, and delete the node. 615 DeleteNodeNotInCSEMaps(N); 616 } 617 618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 619 assert(N->getIterator() != AllNodes.begin() && 620 "Cannot delete the entry node!"); 621 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 622 623 // Drop all of the operands and decrement used node's use counts. 624 N->DropOperands(); 625 626 DeallocateNode(N); 627 } 628 629 void SDDbgInfo::erase(const SDNode *Node) { 630 DbgValMapType::iterator I = DbgValMap.find(Node); 631 if (I == DbgValMap.end()) 632 return; 633 for (auto &Val: I->second) 634 Val->setIsInvalidated(); 635 DbgValMap.erase(I); 636 } 637 638 void SelectionDAG::DeallocateNode(SDNode *N) { 639 // If we have operands, deallocate them. 640 removeOperands(N); 641 642 // Set the opcode to DELETED_NODE to help catch bugs when node 643 // memory is reallocated. 644 N->NodeType = ISD::DELETED_NODE; 645 646 NodeAllocator.Deallocate(AllNodes.remove(N)); 647 648 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 649 // them and forget about that node. 650 DbgInfo->erase(N); 651 } 652 653 #ifndef NDEBUG 654 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 655 static void VerifySDNode(SDNode *N) { 656 switch (N->getOpcode()) { 657 default: 658 break; 659 case ISD::BUILD_PAIR: { 660 EVT VT = N->getValueType(0); 661 assert(N->getNumValues() == 1 && "Too many results!"); 662 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 663 "Wrong return type!"); 664 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 665 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 666 "Mismatched operand types!"); 667 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 668 "Wrong operand type!"); 669 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 670 "Wrong return type size"); 671 break; 672 } 673 case ISD::BUILD_VECTOR: { 674 assert(N->getNumValues() == 1 && "Too many results!"); 675 assert(N->getValueType(0).isVector() && "Wrong return type!"); 676 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 677 "Wrong number of operands!"); 678 EVT EltVT = N->getValueType(0).getVectorElementType(); 679 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 680 assert((I->getValueType() == EltVT || 681 (EltVT.isInteger() && I->getValueType().isInteger() && 682 EltVT.bitsLE(I->getValueType()))) && 683 "Wrong operand type!"); 684 assert(I->getValueType() == N->getOperand(0).getValueType() && 685 "Operands must all have the same type"); 686 } 687 break; 688 } 689 } 690 } 691 #endif // NDEBUG 692 693 /// \brief Insert a newly allocated node into the DAG. 694 /// 695 /// Handles insertion into the all nodes list and CSE map, as well as 696 /// verification and other common operations when a new node is allocated. 697 void SelectionDAG::InsertNode(SDNode *N) { 698 AllNodes.push_back(N); 699 #ifndef NDEBUG 700 N->PersistentId = NextPersistentId++; 701 VerifySDNode(N); 702 #endif 703 } 704 705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 706 /// correspond to it. This is useful when we're about to delete or repurpose 707 /// the node. We don't want future request for structurally identical nodes 708 /// to return N anymore. 709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 710 bool Erased = false; 711 switch (N->getOpcode()) { 712 case ISD::HANDLENODE: return false; // noop. 713 case ISD::CONDCODE: 714 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 715 "Cond code doesn't exist!"); 716 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 717 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 718 break; 719 case ISD::ExternalSymbol: 720 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 721 break; 722 case ISD::TargetExternalSymbol: { 723 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 724 Erased = TargetExternalSymbols.erase( 725 std::pair<std::string,unsigned char>(ESN->getSymbol(), 726 ESN->getTargetFlags())); 727 break; 728 } 729 case ISD::MCSymbol: { 730 auto *MCSN = cast<MCSymbolSDNode>(N); 731 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 732 break; 733 } 734 case ISD::VALUETYPE: { 735 EVT VT = cast<VTSDNode>(N)->getVT(); 736 if (VT.isExtended()) { 737 Erased = ExtendedValueTypeNodes.erase(VT); 738 } else { 739 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 740 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 741 } 742 break; 743 } 744 default: 745 // Remove it from the CSE Map. 746 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 747 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 748 Erased = CSEMap.RemoveNode(N); 749 break; 750 } 751 #ifndef NDEBUG 752 // Verify that the node was actually in one of the CSE maps, unless it has a 753 // flag result (which cannot be CSE'd) or is one of the special cases that are 754 // not subject to CSE. 755 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 756 !N->isMachineOpcode() && !doNotCSE(N)) { 757 N->dump(this); 758 dbgs() << "\n"; 759 llvm_unreachable("Node is not in map!"); 760 } 761 #endif 762 return Erased; 763 } 764 765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 766 /// maps and modified in place. Add it back to the CSE maps, unless an identical 767 /// node already exists, in which case transfer all its users to the existing 768 /// node. This transfer can potentially trigger recursive merging. 769 /// 770 void 771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 772 // For node types that aren't CSE'd, just act as if no identical node 773 // already exists. 774 if (!doNotCSE(N)) { 775 SDNode *Existing = CSEMap.GetOrInsertNode(N); 776 if (Existing != N) { 777 // If there was already an existing matching node, use ReplaceAllUsesWith 778 // to replace the dead one with the existing one. This can cause 779 // recursive merging of other unrelated nodes down the line. 780 ReplaceAllUsesWith(N, Existing); 781 782 // N is now dead. Inform the listeners and delete it. 783 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 784 DUL->NodeDeleted(N, Existing); 785 DeleteNodeNotInCSEMaps(N); 786 return; 787 } 788 } 789 790 // If the node doesn't already exist, we updated it. Inform listeners. 791 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 792 DUL->NodeUpdated(N); 793 } 794 795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 796 /// were replaced with those specified. If this node is never memoized, 797 /// return null, otherwise return a pointer to the slot it would take. If a 798 /// node already exists with these operands, the slot will be non-null. 799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 800 void *&InsertPos) { 801 if (doNotCSE(N)) 802 return nullptr; 803 804 SDValue Ops[] = { Op }; 805 FoldingSetNodeID ID; 806 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 807 AddNodeIDCustom(ID, N); 808 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 809 if (Node) 810 if (const SDNodeFlags *Flags = N->getFlags()) 811 Node->intersectFlagsWith(Flags); 812 return Node; 813 } 814 815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 816 /// were replaced with those specified. If this node is never memoized, 817 /// return null, otherwise return a pointer to the slot it would take. If a 818 /// node already exists with these operands, the slot will be non-null. 819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 820 SDValue Op1, SDValue Op2, 821 void *&InsertPos) { 822 if (doNotCSE(N)) 823 return nullptr; 824 825 SDValue Ops[] = { Op1, Op2 }; 826 FoldingSetNodeID ID; 827 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 828 AddNodeIDCustom(ID, N); 829 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 830 if (Node) 831 if (const SDNodeFlags *Flags = N->getFlags()) 832 Node->intersectFlagsWith(Flags); 833 return Node; 834 } 835 836 837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 838 /// were replaced with those specified. If this node is never memoized, 839 /// return null, otherwise return a pointer to the slot it would take. If a 840 /// node already exists with these operands, the slot will be non-null. 841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 842 void *&InsertPos) { 843 if (doNotCSE(N)) 844 return nullptr; 845 846 FoldingSetNodeID ID; 847 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 848 AddNodeIDCustom(ID, N); 849 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 850 if (Node) 851 if (const SDNodeFlags *Flags = N->getFlags()) 852 Node->intersectFlagsWith(Flags); 853 return Node; 854 } 855 856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 857 Type *Ty = VT == MVT::iPTR ? 858 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 859 VT.getTypeForEVT(*getContext()); 860 861 return getDataLayout().getABITypeAlignment(Ty); 862 } 863 864 // EntryNode could meaningfully have debug info if we can find it... 865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 866 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 867 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 868 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 869 UpdateListeners(nullptr) { 870 InsertNode(&EntryNode); 871 DbgInfo = new SDDbgInfo(); 872 } 873 874 void SelectionDAG::init(MachineFunction &mf) { 875 MF = &mf; 876 TLI = getSubtarget().getTargetLowering(); 877 TSI = getSubtarget().getSelectionDAGInfo(); 878 Context = &mf.getFunction()->getContext(); 879 } 880 881 SelectionDAG::~SelectionDAG() { 882 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 883 allnodes_clear(); 884 OperandRecycler.clear(OperandAllocator); 885 delete DbgInfo; 886 } 887 888 void SelectionDAG::allnodes_clear() { 889 assert(&*AllNodes.begin() == &EntryNode); 890 AllNodes.remove(AllNodes.begin()); 891 while (!AllNodes.empty()) 892 DeallocateNode(&AllNodes.front()); 893 #ifndef NDEBUG 894 NextPersistentId = 0; 895 #endif 896 } 897 898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 899 SDVTList VTs, SDValue N1, SDValue N2, 900 const SDNodeFlags *Flags) { 901 SDValue Ops[] = {N1, N2}; 902 903 if (isBinOpWithFlags(Opcode)) { 904 // If no flags were passed in, use a default flags object. 905 SDNodeFlags F; 906 if (Flags == nullptr) 907 Flags = &F; 908 909 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 910 DL.getDebugLoc(), VTs, *Flags); 911 createOperands(FN, Ops); 912 913 return FN; 914 } 915 916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 917 createOperands(N, Ops); 918 return N; 919 } 920 921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 922 void *&InsertPos) { 923 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 924 if (N) { 925 switch (N->getOpcode()) { 926 default: break; 927 case ISD::Constant: 928 case ISD::ConstantFP: 929 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 930 "debug location. Use another overload."); 931 } 932 } 933 return N; 934 } 935 936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 937 const SDLoc &DL, void *&InsertPos) { 938 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 939 if (N) { 940 switch (N->getOpcode()) { 941 case ISD::Constant: 942 case ISD::ConstantFP: 943 // Erase debug location from the node if the node is used at several 944 // different places. Do not propagate one location to all uses as it 945 // will cause a worse single stepping debugging experience. 946 if (N->getDebugLoc() != DL.getDebugLoc()) 947 N->setDebugLoc(DebugLoc()); 948 break; 949 default: 950 // When the node's point of use is located earlier in the instruction 951 // sequence than its prior point of use, update its debug info to the 952 // earlier location. 953 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 954 N->setDebugLoc(DL.getDebugLoc()); 955 break; 956 } 957 } 958 return N; 959 } 960 961 void SelectionDAG::clear() { 962 allnodes_clear(); 963 OperandRecycler.clear(OperandAllocator); 964 OperandAllocator.Reset(); 965 CSEMap.clear(); 966 967 ExtendedValueTypeNodes.clear(); 968 ExternalSymbols.clear(); 969 TargetExternalSymbols.clear(); 970 MCSymbols.clear(); 971 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 972 static_cast<CondCodeSDNode*>(nullptr)); 973 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 974 static_cast<SDNode*>(nullptr)); 975 976 EntryNode.UseList = nullptr; 977 InsertNode(&EntryNode); 978 Root = getEntryNode(); 979 DbgInfo->clear(); 980 } 981 982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 983 return VT.bitsGT(Op.getValueType()) ? 984 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 985 getNode(ISD::TRUNCATE, DL, VT, Op); 986 } 987 988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 989 return VT.bitsGT(Op.getValueType()) ? 990 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 991 getNode(ISD::TRUNCATE, DL, VT, Op); 992 } 993 994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) ? 996 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 997 getNode(ISD::TRUNCATE, DL, VT, Op); 998 } 999 1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1001 EVT OpVT) { 1002 if (VT.bitsLE(Op.getValueType())) 1003 return getNode(ISD::TRUNCATE, SL, VT, Op); 1004 1005 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1006 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1007 } 1008 1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1010 assert(!VT.isVector() && 1011 "getZeroExtendInReg should use the vector element type instead of " 1012 "the vector type!"); 1013 if (Op.getValueType() == VT) return Op; 1014 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1015 APInt Imm = APInt::getLowBitsSet(BitWidth, 1016 VT.getSizeInBits()); 1017 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1018 getConstant(Imm, DL, Op.getValueType())); 1019 } 1020 1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1022 EVT VT) { 1023 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1024 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1025 "The sizes of the input and result must match in order to perform the " 1026 "extend in-register."); 1027 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1028 "The destination vector type must have fewer lanes than the input."); 1029 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1030 } 1031 1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1033 EVT VT) { 1034 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1035 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1036 "The sizes of the input and result must match in order to perform the " 1037 "extend in-register."); 1038 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1039 "The destination vector type must have fewer lanes than the input."); 1040 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1041 } 1042 1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1044 EVT VT) { 1045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1046 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1047 "The sizes of the input and result must match in order to perform the " 1048 "extend in-register."); 1049 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1050 "The destination vector type must have fewer lanes than the input."); 1051 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1052 } 1053 1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1055 /// 1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1057 EVT EltVT = VT.getScalarType(); 1058 SDValue NegOne = 1059 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1060 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1061 } 1062 1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1064 EVT EltVT = VT.getScalarType(); 1065 SDValue TrueValue; 1066 switch (TLI->getBooleanContents(VT)) { 1067 case TargetLowering::ZeroOrOneBooleanContent: 1068 case TargetLowering::UndefinedBooleanContent: 1069 TrueValue = getConstant(1, DL, VT); 1070 break; 1071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1072 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1073 VT); 1074 break; 1075 } 1076 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1077 } 1078 1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1080 bool isT, bool isO) { 1081 EVT EltVT = VT.getScalarType(); 1082 assert((EltVT.getSizeInBits() >= 64 || 1083 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1084 "getConstant with a uint64_t value that doesn't fit in the type!"); 1085 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1086 } 1087 1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1089 bool isT, bool isO) { 1090 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1091 } 1092 1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1094 EVT VT, bool isT, bool isO) { 1095 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1096 1097 EVT EltVT = VT.getScalarType(); 1098 const ConstantInt *Elt = &Val; 1099 1100 // In some cases the vector type is legal but the element type is illegal and 1101 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1102 // inserted value (the type does not need to match the vector element type). 1103 // Any extra bits introduced will be truncated away. 1104 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1105 TargetLowering::TypePromoteInteger) { 1106 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1107 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1108 Elt = ConstantInt::get(*getContext(), NewVal); 1109 } 1110 // In other cases the element type is illegal and needs to be expanded, for 1111 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1112 // the value into n parts and use a vector type with n-times the elements. 1113 // Then bitcast to the type requested. 1114 // Legalizing constants too early makes the DAGCombiner's job harder so we 1115 // only legalize if the DAG tells us we must produce legal types. 1116 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1117 TLI->getTypeAction(*getContext(), EltVT) == 1118 TargetLowering::TypeExpandInteger) { 1119 const APInt &NewVal = Elt->getValue(); 1120 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1121 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1122 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1123 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1124 1125 // Check the temporary vector is the correct size. If this fails then 1126 // getTypeToTransformTo() probably returned a type whose size (in bits) 1127 // isn't a power-of-2 factor of the requested type size. 1128 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1129 1130 SmallVector<SDValue, 2> EltParts; 1131 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1132 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1133 .zextOrTrunc(ViaEltSizeInBits), DL, 1134 ViaEltVT, isT, isO)); 1135 } 1136 1137 // EltParts is currently in little endian order. If we actually want 1138 // big-endian order then reverse it now. 1139 if (getDataLayout().isBigEndian()) 1140 std::reverse(EltParts.begin(), EltParts.end()); 1141 1142 // The elements must be reversed when the element order is different 1143 // to the endianness of the elements (because the BITCAST is itself a 1144 // vector shuffle in this situation). However, we do not need any code to 1145 // perform this reversal because getConstant() is producing a vector 1146 // splat. 1147 // This situation occurs in MIPS MSA. 1148 1149 SmallVector<SDValue, 8> Ops; 1150 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1151 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1152 return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1153 } 1154 1155 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1156 "APInt size does not match type size!"); 1157 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1158 FoldingSetNodeID ID; 1159 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1160 ID.AddPointer(Elt); 1161 ID.AddBoolean(isO); 1162 void *IP = nullptr; 1163 SDNode *N = nullptr; 1164 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1165 if (!VT.isVector()) 1166 return SDValue(N, 0); 1167 1168 if (!N) { 1169 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1170 CSEMap.InsertNode(N, IP); 1171 InsertNode(N); 1172 } 1173 1174 SDValue Result(N, 0); 1175 if (VT.isVector()) 1176 Result = getSplatBuildVector(VT, DL, Result); 1177 return Result; 1178 } 1179 1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1181 bool isTarget) { 1182 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1183 } 1184 1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1186 bool isTarget) { 1187 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1188 } 1189 1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1191 EVT VT, bool isTarget) { 1192 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1193 1194 EVT EltVT = VT.getScalarType(); 1195 1196 // Do the map lookup using the actual bit pattern for the floating point 1197 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1198 // we don't have issues with SNANs. 1199 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1200 FoldingSetNodeID ID; 1201 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1202 ID.AddPointer(&V); 1203 void *IP = nullptr; 1204 SDNode *N = nullptr; 1205 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1206 if (!VT.isVector()) 1207 return SDValue(N, 0); 1208 1209 if (!N) { 1210 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1211 CSEMap.InsertNode(N, IP); 1212 InsertNode(N); 1213 } 1214 1215 SDValue Result(N, 0); 1216 if (VT.isVector()) 1217 Result = getSplatBuildVector(VT, DL, Result); 1218 return Result; 1219 } 1220 1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1222 bool isTarget) { 1223 EVT EltVT = VT.getScalarType(); 1224 if (EltVT == MVT::f32) 1225 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1226 else if (EltVT == MVT::f64) 1227 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1228 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1229 EltVT == MVT::f16) { 1230 bool Ignored; 1231 APFloat APF = APFloat(Val); 1232 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1233 &Ignored); 1234 return getConstantFP(APF, DL, VT, isTarget); 1235 } else 1236 llvm_unreachable("Unsupported type in getConstantFP"); 1237 } 1238 1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1240 EVT VT, int64_t Offset, bool isTargetGA, 1241 unsigned char TargetFlags) { 1242 assert((TargetFlags == 0 || isTargetGA) && 1243 "Cannot set target flags on target-independent globals"); 1244 1245 // Truncate (with sign-extension) the offset value to the pointer size. 1246 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1247 if (BitWidth < 64) 1248 Offset = SignExtend64(Offset, BitWidth); 1249 1250 unsigned Opc; 1251 if (GV->isThreadLocal()) 1252 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1253 else 1254 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1255 1256 FoldingSetNodeID ID; 1257 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1258 ID.AddPointer(GV); 1259 ID.AddInteger(Offset); 1260 ID.AddInteger(TargetFlags); 1261 void *IP = nullptr; 1262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1263 return SDValue(E, 0); 1264 1265 auto *N = newSDNode<GlobalAddressSDNode>( 1266 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1267 CSEMap.InsertNode(N, IP); 1268 InsertNode(N); 1269 return SDValue(N, 0); 1270 } 1271 1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1273 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1274 FoldingSetNodeID ID; 1275 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1276 ID.AddInteger(FI); 1277 void *IP = nullptr; 1278 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1279 return SDValue(E, 0); 1280 1281 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1282 CSEMap.InsertNode(N, IP); 1283 InsertNode(N); 1284 return SDValue(N, 0); 1285 } 1286 1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1288 unsigned char TargetFlags) { 1289 assert((TargetFlags == 0 || isTarget) && 1290 "Cannot set target flags on target-independent jump tables"); 1291 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1292 FoldingSetNodeID ID; 1293 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1294 ID.AddInteger(JTI); 1295 ID.AddInteger(TargetFlags); 1296 void *IP = nullptr; 1297 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1298 return SDValue(E, 0); 1299 1300 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1301 CSEMap.InsertNode(N, IP); 1302 InsertNode(N); 1303 return SDValue(N, 0); 1304 } 1305 1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1307 unsigned Alignment, int Offset, 1308 bool isTarget, 1309 unsigned char TargetFlags) { 1310 assert((TargetFlags == 0 || isTarget) && 1311 "Cannot set target flags on target-independent globals"); 1312 if (Alignment == 0) 1313 Alignment = MF->getFunction()->optForSize() 1314 ? getDataLayout().getABITypeAlignment(C->getType()) 1315 : getDataLayout().getPrefTypeAlignment(C->getType()); 1316 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1317 FoldingSetNodeID ID; 1318 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1319 ID.AddInteger(Alignment); 1320 ID.AddInteger(Offset); 1321 ID.AddPointer(C); 1322 ID.AddInteger(TargetFlags); 1323 void *IP = nullptr; 1324 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1325 return SDValue(E, 0); 1326 1327 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1328 TargetFlags); 1329 CSEMap.InsertNode(N, IP); 1330 InsertNode(N); 1331 return SDValue(N, 0); 1332 } 1333 1334 1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1336 unsigned Alignment, int Offset, 1337 bool isTarget, 1338 unsigned char TargetFlags) { 1339 assert((TargetFlags == 0 || isTarget) && 1340 "Cannot set target flags on target-independent globals"); 1341 if (Alignment == 0) 1342 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1343 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1344 FoldingSetNodeID ID; 1345 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1346 ID.AddInteger(Alignment); 1347 ID.AddInteger(Offset); 1348 C->addSelectionDAGCSEId(ID); 1349 ID.AddInteger(TargetFlags); 1350 void *IP = nullptr; 1351 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1352 return SDValue(E, 0); 1353 1354 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1355 TargetFlags); 1356 CSEMap.InsertNode(N, IP); 1357 InsertNode(N); 1358 return SDValue(N, 0); 1359 } 1360 1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1362 unsigned char TargetFlags) { 1363 FoldingSetNodeID ID; 1364 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1365 ID.AddInteger(Index); 1366 ID.AddInteger(Offset); 1367 ID.AddInteger(TargetFlags); 1368 void *IP = nullptr; 1369 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1370 return SDValue(E, 0); 1371 1372 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1373 CSEMap.InsertNode(N, IP); 1374 InsertNode(N); 1375 return SDValue(N, 0); 1376 } 1377 1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1379 FoldingSetNodeID ID; 1380 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1381 ID.AddPointer(MBB); 1382 void *IP = nullptr; 1383 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1384 return SDValue(E, 0); 1385 1386 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1387 CSEMap.InsertNode(N, IP); 1388 InsertNode(N); 1389 return SDValue(N, 0); 1390 } 1391 1392 SDValue SelectionDAG::getValueType(EVT VT) { 1393 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1394 ValueTypeNodes.size()) 1395 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1396 1397 SDNode *&N = VT.isExtended() ? 1398 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1399 1400 if (N) return SDValue(N, 0); 1401 N = newSDNode<VTSDNode>(VT); 1402 InsertNode(N); 1403 return SDValue(N, 0); 1404 } 1405 1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1407 SDNode *&N = ExternalSymbols[Sym]; 1408 if (N) return SDValue(N, 0); 1409 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1415 SDNode *&N = MCSymbols[Sym]; 1416 if (N) 1417 return SDValue(N, 0); 1418 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1419 InsertNode(N); 1420 return SDValue(N, 0); 1421 } 1422 1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1424 unsigned char TargetFlags) { 1425 SDNode *&N = 1426 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1427 TargetFlags)]; 1428 if (N) return SDValue(N, 0); 1429 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1430 InsertNode(N); 1431 return SDValue(N, 0); 1432 } 1433 1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1435 if ((unsigned)Cond >= CondCodeNodes.size()) 1436 CondCodeNodes.resize(Cond+1); 1437 1438 if (!CondCodeNodes[Cond]) { 1439 auto *N = newSDNode<CondCodeSDNode>(Cond); 1440 CondCodeNodes[Cond] = N; 1441 InsertNode(N); 1442 } 1443 1444 return SDValue(CondCodeNodes[Cond], 0); 1445 } 1446 1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1450 std::swap(N1, N2); 1451 ShuffleVectorSDNode::commuteMask(M); 1452 } 1453 1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1455 SDValue N2, ArrayRef<int> Mask) { 1456 assert(VT.getVectorNumElements() == Mask.size() && 1457 "Must have the same number of vector elements as mask elements!"); 1458 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1459 "Invalid VECTOR_SHUFFLE"); 1460 1461 // Canonicalize shuffle undef, undef -> undef 1462 if (N1.isUndef() && N2.isUndef()) 1463 return getUNDEF(VT); 1464 1465 // Validate that all indices in Mask are within the range of the elements 1466 // input to the shuffle. 1467 int NElts = Mask.size(); 1468 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1469 "Index out of range"); 1470 1471 // Copy the mask so we can do any needed cleanup. 1472 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1473 1474 // Canonicalize shuffle v, v -> v, undef 1475 if (N1 == N2) { 1476 N2 = getUNDEF(VT); 1477 for (int i = 0; i != NElts; ++i) 1478 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1479 } 1480 1481 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1482 if (N1.isUndef()) 1483 commuteShuffle(N1, N2, MaskVec); 1484 1485 // If shuffling a splat, try to blend the splat instead. We do this here so 1486 // that even when this arises during lowering we don't have to re-handle it. 1487 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1488 BitVector UndefElements; 1489 SDValue Splat = BV->getSplatValue(&UndefElements); 1490 if (!Splat) 1491 return; 1492 1493 for (int i = 0; i < NElts; ++i) { 1494 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1495 continue; 1496 1497 // If this input comes from undef, mark it as such. 1498 if (UndefElements[MaskVec[i] - Offset]) { 1499 MaskVec[i] = -1; 1500 continue; 1501 } 1502 1503 // If we can blend a non-undef lane, use that instead. 1504 if (!UndefElements[i]) 1505 MaskVec[i] = i + Offset; 1506 } 1507 }; 1508 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1509 BlendSplat(N1BV, 0); 1510 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1511 BlendSplat(N2BV, NElts); 1512 1513 // Canonicalize all index into lhs, -> shuffle lhs, undef 1514 // Canonicalize all index into rhs, -> shuffle rhs, undef 1515 bool AllLHS = true, AllRHS = true; 1516 bool N2Undef = N2.isUndef(); 1517 for (int i = 0; i != NElts; ++i) { 1518 if (MaskVec[i] >= NElts) { 1519 if (N2Undef) 1520 MaskVec[i] = -1; 1521 else 1522 AllLHS = false; 1523 } else if (MaskVec[i] >= 0) { 1524 AllRHS = false; 1525 } 1526 } 1527 if (AllLHS && AllRHS) 1528 return getUNDEF(VT); 1529 if (AllLHS && !N2Undef) 1530 N2 = getUNDEF(VT); 1531 if (AllRHS) { 1532 N1 = getUNDEF(VT); 1533 commuteShuffle(N1, N2, MaskVec); 1534 } 1535 // Reset our undef status after accounting for the mask. 1536 N2Undef = N2.isUndef(); 1537 // Re-check whether both sides ended up undef. 1538 if (N1.isUndef() && N2Undef) 1539 return getUNDEF(VT); 1540 1541 // If Identity shuffle return that node. 1542 bool Identity = true, AllSame = true; 1543 for (int i = 0; i != NElts; ++i) { 1544 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1545 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1546 } 1547 if (Identity && NElts) 1548 return N1; 1549 1550 // Shuffling a constant splat doesn't change the result. 1551 if (N2Undef) { 1552 SDValue V = N1; 1553 1554 // Look through any bitcasts. We check that these don't change the number 1555 // (and size) of elements and just changes their types. 1556 while (V.getOpcode() == ISD::BITCAST) 1557 V = V->getOperand(0); 1558 1559 // A splat should always show up as a build vector node. 1560 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1561 BitVector UndefElements; 1562 SDValue Splat = BV->getSplatValue(&UndefElements); 1563 // If this is a splat of an undef, shuffling it is also undef. 1564 if (Splat && Splat.isUndef()) 1565 return getUNDEF(VT); 1566 1567 bool SameNumElts = 1568 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1569 1570 // We only have a splat which can skip shuffles if there is a splatted 1571 // value and no undef lanes rearranged by the shuffle. 1572 if (Splat && UndefElements.none()) { 1573 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1574 // number of elements match or the value splatted is a zero constant. 1575 if (SameNumElts) 1576 return N1; 1577 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1578 if (C->isNullValue()) 1579 return N1; 1580 } 1581 1582 // If the shuffle itself creates a splat, build the vector directly. 1583 if (AllSame && SameNumElts) { 1584 EVT BuildVT = BV->getValueType(0); 1585 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1586 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1587 1588 // We may have jumped through bitcasts, so the type of the 1589 // BUILD_VECTOR may not match the type of the shuffle. 1590 if (BuildVT != VT) 1591 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1592 return NewBV; 1593 } 1594 } 1595 } 1596 1597 FoldingSetNodeID ID; 1598 SDValue Ops[2] = { N1, N2 }; 1599 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1600 for (int i = 0; i != NElts; ++i) 1601 ID.AddInteger(MaskVec[i]); 1602 1603 void* IP = nullptr; 1604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1605 return SDValue(E, 0); 1606 1607 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1608 // SDNode doesn't have access to it. This memory will be "leaked" when 1609 // the node is deallocated, but recovered when the NodeAllocator is released. 1610 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1611 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1612 1613 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1614 dl.getDebugLoc(), MaskAlloc); 1615 createOperands(N, Ops); 1616 1617 CSEMap.InsertNode(N, IP); 1618 InsertNode(N); 1619 return SDValue(N, 0); 1620 } 1621 1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1623 MVT VT = SV.getSimpleValueType(0); 1624 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1625 ShuffleVectorSDNode::commuteMask(MaskVec); 1626 1627 SDValue Op0 = SV.getOperand(0); 1628 SDValue Op1 = SV.getOperand(1); 1629 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1630 } 1631 1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1633 FoldingSetNodeID ID; 1634 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1635 ID.AddInteger(RegNo); 1636 void *IP = nullptr; 1637 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1638 return SDValue(E, 0); 1639 1640 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1641 CSEMap.InsertNode(N, IP); 1642 InsertNode(N); 1643 return SDValue(N, 0); 1644 } 1645 1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1647 FoldingSetNodeID ID; 1648 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1649 ID.AddPointer(RegMask); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1661 MCSymbol *Label) { 1662 FoldingSetNodeID ID; 1663 SDValue Ops[] = { Root }; 1664 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1665 ID.AddPointer(Label); 1666 void *IP = nullptr; 1667 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1668 return SDValue(E, 0); 1669 1670 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1671 createOperands(N, Ops); 1672 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1679 int64_t Offset, 1680 bool isTarget, 1681 unsigned char TargetFlags) { 1682 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1683 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1686 ID.AddPointer(BA); 1687 ID.AddInteger(Offset); 1688 ID.AddInteger(TargetFlags); 1689 void *IP = nullptr; 1690 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1691 return SDValue(E, 0); 1692 1693 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1694 CSEMap.InsertNode(N, IP); 1695 InsertNode(N); 1696 return SDValue(N, 0); 1697 } 1698 1699 SDValue SelectionDAG::getSrcValue(const Value *V) { 1700 assert((!V || V->getType()->isPointerTy()) && 1701 "SrcValue is not a pointer?"); 1702 1703 FoldingSetNodeID ID; 1704 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1705 ID.AddPointer(V); 1706 1707 void *IP = nullptr; 1708 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1709 return SDValue(E, 0); 1710 1711 auto *N = newSDNode<SrcValueSDNode>(V); 1712 CSEMap.InsertNode(N, IP); 1713 InsertNode(N); 1714 return SDValue(N, 0); 1715 } 1716 1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1720 ID.AddPointer(MD); 1721 1722 void *IP = nullptr; 1723 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1724 return SDValue(E, 0); 1725 1726 auto *N = newSDNode<MDNodeSDNode>(MD); 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 return SDValue(N, 0); 1730 } 1731 1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1733 if (VT == V.getValueType()) 1734 return V; 1735 1736 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1737 } 1738 1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1740 unsigned SrcAS, unsigned DestAS) { 1741 SDValue Ops[] = {Ptr}; 1742 FoldingSetNodeID ID; 1743 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1744 ID.AddInteger(SrcAS); 1745 ID.AddInteger(DestAS); 1746 1747 void *IP = nullptr; 1748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1749 return SDValue(E, 0); 1750 1751 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1752 VT, SrcAS, DestAS); 1753 createOperands(N, Ops); 1754 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 /// getShiftAmountOperand - Return the specified value casted to 1761 /// the target's desired shift amount type. 1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1763 EVT OpTy = Op.getValueType(); 1764 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1765 if (OpTy == ShTy || OpTy.isVector()) return Op; 1766 1767 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1768 } 1769 1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1771 SDLoc dl(Node); 1772 const TargetLowering &TLI = getTargetLoweringInfo(); 1773 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1774 EVT VT = Node->getValueType(0); 1775 SDValue Tmp1 = Node->getOperand(0); 1776 SDValue Tmp2 = Node->getOperand(1); 1777 unsigned Align = Node->getConstantOperandVal(3); 1778 1779 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1780 Tmp2, MachinePointerInfo(V)); 1781 SDValue VAList = VAListLoad; 1782 1783 if (Align > TLI.getMinStackArgumentAlignment()) { 1784 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1785 1786 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1787 getConstant(Align - 1, dl, VAList.getValueType())); 1788 1789 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1790 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1791 } 1792 1793 // Increment the pointer, VAList, to the next vaarg 1794 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1795 getConstant(getDataLayout().getTypeAllocSize( 1796 VT.getTypeForEVT(*getContext())), 1797 dl, VAList.getValueType())); 1798 // Store the incremented VAList to the legalized pointer 1799 Tmp1 = 1800 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1801 // Load the actual argument out of the pointer VAList 1802 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1803 } 1804 1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1806 SDLoc dl(Node); 1807 const TargetLowering &TLI = getTargetLoweringInfo(); 1808 // This defaults to loading a pointer from the input and storing it to the 1809 // output, returning the chain. 1810 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1811 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1812 SDValue Tmp1 = 1813 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1814 Node->getOperand(2), MachinePointerInfo(VS)); 1815 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1816 MachinePointerInfo(VD)); 1817 } 1818 1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1820 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1821 unsigned ByteSize = VT.getStoreSize(); 1822 Type *Ty = VT.getTypeForEVT(*getContext()); 1823 unsigned StackAlign = 1824 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1825 1826 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1827 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1828 } 1829 1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1831 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1832 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1833 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1834 const DataLayout &DL = getDataLayout(); 1835 unsigned Align = 1836 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1837 1838 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1839 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1840 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1841 } 1842 1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1844 ISD::CondCode Cond, const SDLoc &dl) { 1845 // These setcc operations always fold. 1846 switch (Cond) { 1847 default: break; 1848 case ISD::SETFALSE: 1849 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1850 case ISD::SETTRUE: 1851 case ISD::SETTRUE2: { 1852 TargetLowering::BooleanContent Cnt = 1853 TLI->getBooleanContents(N1->getValueType(0)); 1854 return getConstant( 1855 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1856 VT); 1857 } 1858 1859 case ISD::SETOEQ: 1860 case ISD::SETOGT: 1861 case ISD::SETOGE: 1862 case ISD::SETOLT: 1863 case ISD::SETOLE: 1864 case ISD::SETONE: 1865 case ISD::SETO: 1866 case ISD::SETUO: 1867 case ISD::SETUEQ: 1868 case ISD::SETUNE: 1869 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1870 break; 1871 } 1872 1873 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1874 const APInt &C2 = N2C->getAPIntValue(); 1875 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1876 const APInt &C1 = N1C->getAPIntValue(); 1877 1878 switch (Cond) { 1879 default: llvm_unreachable("Unknown integer setcc!"); 1880 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1881 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1882 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1883 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1884 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1885 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1886 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1887 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1888 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1889 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1890 } 1891 } 1892 } 1893 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1894 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1895 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1896 switch (Cond) { 1897 default: break; 1898 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1899 return getUNDEF(VT); 1900 LLVM_FALLTHROUGH; 1901 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1902 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1903 return getUNDEF(VT); 1904 LLVM_FALLTHROUGH; 1905 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1906 R==APFloat::cmpLessThan, dl, VT); 1907 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1908 return getUNDEF(VT); 1909 LLVM_FALLTHROUGH; 1910 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1911 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1912 return getUNDEF(VT); 1913 LLVM_FALLTHROUGH; 1914 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1915 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1916 return getUNDEF(VT); 1917 LLVM_FALLTHROUGH; 1918 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1919 R==APFloat::cmpEqual, dl, VT); 1920 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1921 return getUNDEF(VT); 1922 LLVM_FALLTHROUGH; 1923 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1924 R==APFloat::cmpEqual, dl, VT); 1925 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1926 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1927 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1928 R==APFloat::cmpEqual, dl, VT); 1929 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1930 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1931 R==APFloat::cmpLessThan, dl, VT); 1932 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1933 R==APFloat::cmpUnordered, dl, VT); 1934 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1935 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1936 } 1937 } else { 1938 // Ensure that the constant occurs on the RHS. 1939 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1940 MVT CompVT = N1.getValueType().getSimpleVT(); 1941 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1942 return SDValue(); 1943 1944 return getSetCC(dl, VT, N2, N1, SwappedCond); 1945 } 1946 } 1947 1948 // Could not fold it. 1949 return SDValue(); 1950 } 1951 1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1953 /// use this predicate to simplify operations downstream. 1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1955 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1956 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1957 } 1958 1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1960 /// this predicate to simplify operations downstream. Mask is known to be zero 1961 /// for bits that V cannot have. 1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1963 unsigned Depth) const { 1964 APInt KnownZero, KnownOne; 1965 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1966 return (KnownZero & Mask) == Mask; 1967 } 1968 1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 1970 /// is less than the element bit-width of the shift node, return it. 1971 static const APInt *getValidShiftAmountConstant(SDValue V) { 1972 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 1973 // Shifting more than the bitwidth is not valid. 1974 const APInt &ShAmt = SA->getAPIntValue(); 1975 if (ShAmt.ult(V.getScalarValueSizeInBits())) 1976 return &ShAmt; 1977 } 1978 return nullptr; 1979 } 1980 1981 /// Determine which bits of Op are known to be either zero or one and return 1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are 1983 /// those that are shared by every vector element. 1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 1985 APInt &KnownOne, unsigned Depth) const { 1986 EVT VT = Op.getValueType(); 1987 APInt DemandedElts = VT.isVector() 1988 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1989 : APInt(1, 1); 1990 computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); 1991 } 1992 1993 /// Determine which bits of Op are known to be either zero or one and return 1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows 1995 /// us to only collect the known bits that are shared by the requested vector 1996 /// elements. 1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder 1998 /// should be added when they become necessary. 1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2000 APInt &KnownOne, const APInt &DemandedElts, 2001 unsigned Depth) const { 2002 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2003 2004 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2005 if (Depth == 6) 2006 return; // Limit search depth. 2007 2008 APInt KnownZero2, KnownOne2; 2009 unsigned NumElts = DemandedElts.getBitWidth(); 2010 2011 if (!DemandedElts) 2012 return; // No demanded elts, better to assume we don't know anything. 2013 2014 unsigned Opcode = Op.getOpcode(); 2015 switch (Opcode) { 2016 case ISD::Constant: 2017 // We know all of the bits for a constant! 2018 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2019 KnownZero = ~KnownOne; 2020 break; 2021 case ISD::BUILD_VECTOR: 2022 // Collect the known bits that are shared by every demanded vector element. 2023 assert(NumElts == Op.getValueType().getVectorNumElements() && 2024 "Unexpected vector size"); 2025 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2026 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2027 if (!DemandedElts[i]) 2028 continue; 2029 2030 SDValue SrcOp = Op.getOperand(i); 2031 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2032 2033 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2034 if (SrcOp.getValueSizeInBits() != BitWidth) { 2035 assert(SrcOp.getValueSizeInBits() > BitWidth && 2036 "Expected BUILD_VECTOR implicit truncation"); 2037 KnownOne2 = KnownOne2.trunc(BitWidth); 2038 KnownZero2 = KnownZero2.trunc(BitWidth); 2039 } 2040 2041 // Known bits are the values that are shared by every demanded element. 2042 KnownOne &= KnownOne2; 2043 KnownZero &= KnownZero2; 2044 2045 // If we don't know any bits, early out. 2046 if (!KnownOne && !KnownZero) 2047 break; 2048 } 2049 break; 2050 case ISD::VECTOR_SHUFFLE: { 2051 // Collect the known bits that are shared by every vector element referenced 2052 // by the shuffle. 2053 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2054 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2055 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2056 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2057 for (unsigned i = 0; i != NumElts; ++i) { 2058 if (!DemandedElts[i]) 2059 continue; 2060 2061 int M = SVN->getMaskElt(i); 2062 if (M < 0) { 2063 // For UNDEF elements, we don't know anything about the common state of 2064 // the shuffle result. 2065 KnownOne.clearAllBits(); 2066 KnownZero.clearAllBits(); 2067 DemandedLHS.clearAllBits(); 2068 DemandedRHS.clearAllBits(); 2069 break; 2070 } 2071 2072 if ((unsigned)M < NumElts) 2073 DemandedLHS.setBit((unsigned)M % NumElts); 2074 else 2075 DemandedRHS.setBit((unsigned)M % NumElts); 2076 } 2077 // Known bits are the values that are shared by every demanded element. 2078 if (!!DemandedLHS) { 2079 SDValue LHS = Op.getOperand(0); 2080 computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); 2081 KnownOne &= KnownOne2; 2082 KnownZero &= KnownZero2; 2083 } 2084 // If we don't know any bits, early out. 2085 if (!KnownOne && !KnownZero) 2086 break; 2087 if (!!DemandedRHS) { 2088 SDValue RHS = Op.getOperand(1); 2089 computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); 2090 KnownOne &= KnownOne2; 2091 KnownZero &= KnownZero2; 2092 } 2093 break; 2094 } 2095 case ISD::CONCAT_VECTORS: { 2096 // Split DemandedElts and test each of the demanded subvectors. 2097 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2098 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2099 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2100 unsigned NumSubVectors = Op.getNumOperands(); 2101 for (unsigned i = 0; i != NumSubVectors; ++i) { 2102 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2103 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2104 if (!!DemandedSub) { 2105 SDValue Sub = Op.getOperand(i); 2106 computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1); 2107 KnownOne &= KnownOne2; 2108 KnownZero &= KnownZero2; 2109 } 2110 // If we don't know any bits, early out. 2111 if (!KnownOne && !KnownZero) 2112 break; 2113 } 2114 break; 2115 } 2116 case ISD::EXTRACT_SUBVECTOR: { 2117 // If we know the element index, just demand that subvector elements, 2118 // otherwise demand them all. 2119 SDValue Src = Op.getOperand(0); 2120 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2122 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2123 // Offset the demanded elts by the subvector index. 2124 uint64_t Idx = SubIdx->getZExtValue(); 2125 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2126 computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); 2127 } else { 2128 computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); 2129 } 2130 break; 2131 } 2132 case ISD::BITCAST: { 2133 SDValue N0 = Op.getOperand(0); 2134 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2135 2136 // Ignore bitcasts from floating point. 2137 if (!N0.getValueType().isInteger()) 2138 break; 2139 2140 // Fast handling of 'identity' bitcasts. 2141 if (BitWidth == SubBitWidth) { 2142 computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1); 2143 break; 2144 } 2145 2146 // Support big-endian targets when it becomes useful. 2147 bool IsLE = getDataLayout().isLittleEndian(); 2148 if (!IsLE) 2149 break; 2150 2151 // Bitcast 'small element' vector to 'large element' scalar/vector. 2152 if ((BitWidth % SubBitWidth) == 0) { 2153 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2154 2155 // Collect known bits for the (larger) output by collecting the known 2156 // bits from each set of sub elements and shift these into place. 2157 // We need to separately call computeKnownBits for each set of 2158 // sub elements as the knownbits for each is likely to be different. 2159 unsigned SubScale = BitWidth / SubBitWidth; 2160 APInt SubDemandedElts(NumElts * SubScale, 0); 2161 for (unsigned i = 0; i != NumElts; ++i) 2162 if (DemandedElts[i]) 2163 SubDemandedElts.setBit(i * SubScale); 2164 2165 for (unsigned i = 0; i != SubScale; ++i) { 2166 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i), 2167 Depth + 1); 2168 KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i); 2169 KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i); 2170 } 2171 } 2172 2173 // Bitcast 'large element' scalar/vector to 'small element' vector. 2174 if ((SubBitWidth % BitWidth) == 0) { 2175 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2176 2177 // Collect known bits for the (smaller) output by collecting the known 2178 // bits from the overlapping larger input elements and extracting the 2179 // sub sections we actually care about. 2180 unsigned SubScale = SubBitWidth / BitWidth; 2181 APInt SubDemandedElts(NumElts / SubScale, 0); 2182 for (unsigned i = 0; i != NumElts; ++i) 2183 if (DemandedElts[i]) 2184 SubDemandedElts.setBit(i / SubScale); 2185 2186 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1); 2187 2188 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2189 for (unsigned i = 0; i != NumElts; ++i) 2190 if (DemandedElts[i]) { 2191 unsigned Offset = (i % SubScale) * BitWidth; 2192 KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth); 2193 KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth); 2194 // If we don't know any bits, early out. 2195 if (!KnownOne && !KnownZero) 2196 break; 2197 } 2198 } 2199 break; 2200 } 2201 case ISD::AND: 2202 // If either the LHS or the RHS are Zero, the result is zero. 2203 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2204 Depth + 1); 2205 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2206 Depth + 1); 2207 2208 // Output known-1 bits are only known if set in both the LHS & RHS. 2209 KnownOne &= KnownOne2; 2210 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2211 KnownZero |= KnownZero2; 2212 break; 2213 case ISD::OR: 2214 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2215 Depth + 1); 2216 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2217 Depth + 1); 2218 2219 // Output known-0 bits are only known if clear in both the LHS & RHS. 2220 KnownZero &= KnownZero2; 2221 // Output known-1 are known to be set if set in either the LHS | RHS. 2222 KnownOne |= KnownOne2; 2223 break; 2224 case ISD::XOR: { 2225 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2226 Depth + 1); 2227 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2228 Depth + 1); 2229 2230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2231 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2232 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2233 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2234 KnownZero = KnownZeroOut; 2235 break; 2236 } 2237 case ISD::MUL: { 2238 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2239 Depth + 1); 2240 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2241 Depth + 1); 2242 2243 // If low bits are zero in either operand, output low known-0 bits. 2244 // Also compute a conservative estimate for high known-0 bits. 2245 // More trickiness is possible, but this is sufficient for the 2246 // interesting case of alignment computation. 2247 KnownOne.clearAllBits(); 2248 unsigned TrailZ = KnownZero.countTrailingOnes() + 2249 KnownZero2.countTrailingOnes(); 2250 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2251 KnownZero2.countLeadingOnes(), 2252 BitWidth) - BitWidth; 2253 2254 TrailZ = std::min(TrailZ, BitWidth); 2255 LeadZ = std::min(LeadZ, BitWidth); 2256 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2257 APInt::getHighBitsSet(BitWidth, LeadZ); 2258 break; 2259 } 2260 case ISD::UDIV: { 2261 // For the purposes of computing leading zeros we can conservatively 2262 // treat a udiv as a logical right shift by the power of 2 known to 2263 // be less than the denominator. 2264 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2265 Depth + 1); 2266 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2267 2268 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2269 Depth + 1); 2270 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2271 if (RHSUnknownLeadingOnes != BitWidth) 2272 LeadZ = std::min(BitWidth, 2273 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2274 2275 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2276 break; 2277 } 2278 case ISD::SELECT: 2279 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2280 // If we don't know any bits, early out. 2281 if (!KnownOne && !KnownZero) 2282 break; 2283 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2284 2285 // Only known if known in both the LHS and RHS. 2286 KnownOne &= KnownOne2; 2287 KnownZero &= KnownZero2; 2288 break; 2289 case ISD::SELECT_CC: 2290 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2291 // If we don't know any bits, early out. 2292 if (!KnownOne && !KnownZero) 2293 break; 2294 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2295 2296 // Only known if known in both the LHS and RHS. 2297 KnownOne &= KnownOne2; 2298 KnownZero &= KnownZero2; 2299 break; 2300 case ISD::SADDO: 2301 case ISD::UADDO: 2302 case ISD::SSUBO: 2303 case ISD::USUBO: 2304 case ISD::SMULO: 2305 case ISD::UMULO: 2306 if (Op.getResNo() != 1) 2307 break; 2308 // The boolean result conforms to getBooleanContents. 2309 // If we know the result of a setcc has the top bits zero, use this info. 2310 // We know that we have an integer-based boolean since these operations 2311 // are only available for integer. 2312 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2313 TargetLowering::ZeroOrOneBooleanContent && 2314 BitWidth > 1) 2315 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2316 break; 2317 case ISD::SETCC: 2318 // If we know the result of a setcc has the top bits zero, use this info. 2319 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2320 TargetLowering::ZeroOrOneBooleanContent && 2321 BitWidth > 1) 2322 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2323 break; 2324 case ISD::SHL: 2325 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2326 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2327 Depth + 1); 2328 KnownZero = KnownZero << *ShAmt; 2329 KnownOne = KnownOne << *ShAmt; 2330 // Low bits are known zero. 2331 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue()); 2332 } 2333 break; 2334 case ISD::SRL: 2335 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2336 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2337 Depth + 1); 2338 KnownZero = KnownZero.lshr(*ShAmt); 2339 KnownOne = KnownOne.lshr(*ShAmt); 2340 // High bits are known zero. 2341 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2342 KnownZero |= HighBits; 2343 } 2344 break; 2345 case ISD::SRA: 2346 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2347 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2348 Depth + 1); 2349 KnownZero = KnownZero.lshr(*ShAmt); 2350 KnownOne = KnownOne.lshr(*ShAmt); 2351 // If we know the value of the sign bit, then we know it is copied across 2352 // the high bits by the shift amount. 2353 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2354 APInt SignBit = APInt::getSignBit(BitWidth); 2355 SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask. 2356 if (KnownZero.intersects(SignBit)) { 2357 KnownZero |= HighBits; // New bits are known zero. 2358 } else if (KnownOne.intersects(SignBit)) { 2359 KnownOne |= HighBits; // New bits are known one. 2360 } 2361 } 2362 break; 2363 case ISD::SIGN_EXTEND_INREG: { 2364 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2365 unsigned EBits = EVT.getScalarSizeInBits(); 2366 2367 // Sign extension. Compute the demanded bits in the result that are not 2368 // present in the input. 2369 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2370 2371 APInt InSignBit = APInt::getSignBit(EBits); 2372 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2373 2374 // If the sign extended bits are demanded, we know that the sign 2375 // bit is demanded. 2376 InSignBit = InSignBit.zext(BitWidth); 2377 if (NewBits.getBoolValue()) 2378 InputDemandedBits |= InSignBit; 2379 2380 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2381 Depth + 1); 2382 KnownOne &= InputDemandedBits; 2383 KnownZero &= InputDemandedBits; 2384 2385 // If the sign bit of the input is known set or clear, then we know the 2386 // top bits of the result. 2387 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2388 KnownZero |= NewBits; 2389 KnownOne &= ~NewBits; 2390 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2391 KnownOne |= NewBits; 2392 KnownZero &= ~NewBits; 2393 } else { // Input sign bit unknown 2394 KnownZero &= ~NewBits; 2395 KnownOne &= ~NewBits; 2396 } 2397 break; 2398 } 2399 case ISD::CTTZ: 2400 case ISD::CTTZ_ZERO_UNDEF: 2401 case ISD::CTLZ: 2402 case ISD::CTLZ_ZERO_UNDEF: 2403 case ISD::CTPOP: { 2404 unsigned LowBits = Log2_32(BitWidth)+1; 2405 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2406 KnownOne.clearAllBits(); 2407 break; 2408 } 2409 case ISD::LOAD: { 2410 LoadSDNode *LD = cast<LoadSDNode>(Op); 2411 // If this is a ZEXTLoad and we are looking at the loaded value. 2412 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2413 EVT VT = LD->getMemoryVT(); 2414 unsigned MemBits = VT.getScalarSizeInBits(); 2415 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2416 } else if (const MDNode *Ranges = LD->getRanges()) { 2417 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2418 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2419 } 2420 break; 2421 } 2422 case ISD::ZERO_EXTEND: { 2423 EVT InVT = Op.getOperand(0).getValueType(); 2424 unsigned InBits = InVT.getScalarSizeInBits(); 2425 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2426 KnownZero = KnownZero.trunc(InBits); 2427 KnownOne = KnownOne.trunc(InBits); 2428 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2429 Depth + 1); 2430 KnownZero = KnownZero.zext(BitWidth); 2431 KnownOne = KnownOne.zext(BitWidth); 2432 KnownZero |= NewBits; 2433 break; 2434 } 2435 case ISD::SIGN_EXTEND: { 2436 EVT InVT = Op.getOperand(0).getValueType(); 2437 unsigned InBits = InVT.getScalarSizeInBits(); 2438 2439 KnownZero = KnownZero.trunc(InBits); 2440 KnownOne = KnownOne.trunc(InBits); 2441 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2442 Depth + 1); 2443 2444 // If the sign bit is known to be zero or one, then sext will extend 2445 // it to the top bits, else it will just zext. 2446 KnownZero = KnownZero.sext(BitWidth); 2447 KnownOne = KnownOne.sext(BitWidth); 2448 break; 2449 } 2450 case ISD::ANY_EXTEND: { 2451 EVT InVT = Op.getOperand(0).getValueType(); 2452 unsigned InBits = InVT.getScalarSizeInBits(); 2453 KnownZero = KnownZero.trunc(InBits); 2454 KnownOne = KnownOne.trunc(InBits); 2455 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2456 KnownZero = KnownZero.zext(BitWidth); 2457 KnownOne = KnownOne.zext(BitWidth); 2458 break; 2459 } 2460 case ISD::TRUNCATE: { 2461 EVT InVT = Op.getOperand(0).getValueType(); 2462 unsigned InBits = InVT.getScalarSizeInBits(); 2463 KnownZero = KnownZero.zext(InBits); 2464 KnownOne = KnownOne.zext(InBits); 2465 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2466 Depth + 1); 2467 KnownZero = KnownZero.trunc(BitWidth); 2468 KnownOne = KnownOne.trunc(BitWidth); 2469 break; 2470 } 2471 case ISD::AssertZext: { 2472 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2473 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2474 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2475 KnownZero |= (~InMask); 2476 KnownOne &= (~KnownZero); 2477 break; 2478 } 2479 case ISD::FGETSIGN: 2480 // All bits are zero except the low bit. 2481 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2482 break; 2483 2484 case ISD::SUB: { 2485 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2486 // We know that the top bits of C-X are clear if X contains less bits 2487 // than C (i.e. no wrap-around can happen). For example, 20-X is 2488 // positive if we can prove that X is >= 0 and < 16. 2489 if (CLHS->getAPIntValue().isNonNegative()) { 2490 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2491 // NLZ can't be BitWidth with no sign bit 2492 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2493 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2494 Depth + 1); 2495 2496 // If all of the MaskV bits are known to be zero, then we know the 2497 // output top bits are zero, because we now know that the output is 2498 // from [0-C]. 2499 if ((KnownZero2 & MaskV) == MaskV) { 2500 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2501 // Top bits known zero. 2502 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2503 } 2504 } 2505 } 2506 LLVM_FALLTHROUGH; 2507 } 2508 case ISD::ADD: 2509 case ISD::ADDE: { 2510 // Output known-0 bits are known if clear or set in both the low clear bits 2511 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2512 // low 3 bits clear. 2513 // Output known-0 bits are also known if the top bits of each input are 2514 // known to be clear. For example, if one input has the top 10 bits clear 2515 // and the other has the top 8 bits clear, we know the top 7 bits of the 2516 // output must be clear. 2517 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2518 Depth + 1); 2519 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2520 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2521 2522 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2523 Depth + 1); 2524 KnownZeroHigh = std::min(KnownZeroHigh, 2525 KnownZero2.countLeadingOnes()); 2526 KnownZeroLow = std::min(KnownZeroLow, 2527 KnownZero2.countTrailingOnes()); 2528 2529 if (Opcode == ISD::ADD) { 2530 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2531 if (KnownZeroHigh > 1) 2532 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2533 break; 2534 } 2535 2536 // With ADDE, a carry bit may be added in, so we can only use this 2537 // information if we know (at least) that the low two bits are clear. We 2538 // then return to the caller that the low bit is unknown but that other bits 2539 // are known zero. 2540 if (KnownZeroLow >= 2) // ADDE 2541 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2542 break; 2543 } 2544 case ISD::SREM: 2545 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2546 const APInt &RA = Rem->getAPIntValue().abs(); 2547 if (RA.isPowerOf2()) { 2548 APInt LowBits = RA - 1; 2549 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2550 Depth + 1); 2551 2552 // The low bits of the first operand are unchanged by the srem. 2553 KnownZero = KnownZero2 & LowBits; 2554 KnownOne = KnownOne2 & LowBits; 2555 2556 // If the first operand is non-negative or has all low bits zero, then 2557 // the upper bits are all zero. 2558 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2559 KnownZero |= ~LowBits; 2560 2561 // If the first operand is negative and not all low bits are zero, then 2562 // the upper bits are all one. 2563 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2564 KnownOne |= ~LowBits; 2565 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2566 } 2567 } 2568 break; 2569 case ISD::UREM: { 2570 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2571 const APInt &RA = Rem->getAPIntValue(); 2572 if (RA.isPowerOf2()) { 2573 APInt LowBits = (RA - 1); 2574 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2575 Depth + 1); 2576 2577 // The upper bits are all zero, the lower ones are unchanged. 2578 KnownZero = KnownZero2 | ~LowBits; 2579 KnownOne = KnownOne2 & LowBits; 2580 break; 2581 } 2582 } 2583 2584 // Since the result is less than or equal to either operand, any leading 2585 // zero bits in either operand must also exist in the result. 2586 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2587 Depth + 1); 2588 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2589 Depth + 1); 2590 2591 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2592 KnownZero2.countLeadingOnes()); 2593 KnownOne.clearAllBits(); 2594 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2595 break; 2596 } 2597 case ISD::EXTRACT_ELEMENT: { 2598 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2599 const unsigned Index = Op.getConstantOperandVal(1); 2600 const unsigned BitWidth = Op.getValueSizeInBits(); 2601 2602 // Remove low part of known bits mask 2603 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2604 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2605 2606 // Remove high part of known bit mask 2607 KnownZero = KnownZero.trunc(BitWidth); 2608 KnownOne = KnownOne.trunc(BitWidth); 2609 break; 2610 } 2611 case ISD::EXTRACT_VECTOR_ELT: { 2612 SDValue InVec = Op.getOperand(0); 2613 SDValue EltNo = Op.getOperand(1); 2614 EVT VecVT = InVec.getValueType(); 2615 const unsigned BitWidth = Op.getValueSizeInBits(); 2616 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2617 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2618 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2619 // anything about the extended bits. 2620 if (BitWidth > EltBitWidth) { 2621 KnownZero = KnownZero.trunc(EltBitWidth); 2622 KnownOne = KnownOne.trunc(EltBitWidth); 2623 } 2624 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2625 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2626 // If we know the element index, just demand that vector element. 2627 unsigned Idx = ConstEltNo->getZExtValue(); 2628 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2629 computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); 2630 } else { 2631 // Unknown element index, so ignore DemandedElts and demand them all. 2632 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2633 } 2634 if (BitWidth > EltBitWidth) { 2635 KnownZero = KnownZero.zext(BitWidth); 2636 KnownOne = KnownOne.zext(BitWidth); 2637 } 2638 break; 2639 } 2640 case ISD::INSERT_VECTOR_ELT: { 2641 SDValue InVec = Op.getOperand(0); 2642 SDValue InVal = Op.getOperand(1); 2643 SDValue EltNo = Op.getOperand(2); 2644 2645 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2646 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2647 // If we know the element index, split the demand between the 2648 // source vector and the inserted element. 2649 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2650 unsigned EltIdx = CEltNo->getZExtValue(); 2651 2652 // If we demand the inserted element then add its common known bits. 2653 if (DemandedElts[EltIdx]) { 2654 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2655 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2656 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2657 } 2658 2659 // If we demand the source vector then add its common known bits, ensuring 2660 // that we don't demand the inserted element. 2661 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2662 if (!!VectorElts) { 2663 computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1); 2664 KnownOne &= KnownOne2; 2665 KnownZero &= KnownZero2; 2666 } 2667 } else { 2668 // Unknown element index, so ignore DemandedElts and demand them all. 2669 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2670 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2671 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2672 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2673 } 2674 break; 2675 } 2676 case ISD::BITREVERSE: { 2677 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2678 Depth + 1); 2679 KnownZero = KnownZero2.reverseBits(); 2680 KnownOne = KnownOne2.reverseBits(); 2681 break; 2682 } 2683 case ISD::BSWAP: { 2684 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2685 Depth + 1); 2686 KnownZero = KnownZero2.byteSwap(); 2687 KnownOne = KnownOne2.byteSwap(); 2688 break; 2689 } 2690 case ISD::UMIN: { 2691 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2692 Depth + 1); 2693 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2694 Depth + 1); 2695 2696 // UMIN - we know that the result will have the maximum of the 2697 // known zero leading bits of the inputs. 2698 unsigned LeadZero = KnownZero.countLeadingOnes(); 2699 LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes()); 2700 2701 KnownZero &= KnownZero2; 2702 KnownOne &= KnownOne2; 2703 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadZero); 2704 break; 2705 } 2706 case ISD::UMAX: { 2707 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2708 Depth + 1); 2709 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2710 Depth + 1); 2711 2712 // UMAX - we know that the result will have the maximum of the 2713 // known one leading bits of the inputs. 2714 unsigned LeadOne = KnownOne.countLeadingOnes(); 2715 LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes()); 2716 2717 KnownZero &= KnownZero2; 2718 KnownOne &= KnownOne2; 2719 KnownOne |= APInt::getHighBitsSet(BitWidth, LeadOne); 2720 break; 2721 } 2722 case ISD::SMIN: 2723 case ISD::SMAX: { 2724 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2725 Depth + 1); 2726 // If we don't know any bits, early out. 2727 if (!KnownOne && !KnownZero) 2728 break; 2729 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2730 Depth + 1); 2731 KnownZero &= KnownZero2; 2732 KnownOne &= KnownOne2; 2733 break; 2734 } 2735 case ISD::FrameIndex: 2736 case ISD::TargetFrameIndex: 2737 if (unsigned Align = InferPtrAlignment(Op)) { 2738 // The low bits are known zero if the pointer is aligned. 2739 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2740 break; 2741 } 2742 break; 2743 2744 default: 2745 if (Opcode < ISD::BUILTIN_OP_END) 2746 break; 2747 LLVM_FALLTHROUGH; 2748 case ISD::INTRINSIC_WO_CHAIN: 2749 case ISD::INTRINSIC_W_CHAIN: 2750 case ISD::INTRINSIC_VOID: 2751 // Allow the target to implement this method for its nodes. 2752 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2753 break; 2754 } 2755 2756 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2757 } 2758 2759 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2760 EVT OpVT = Val.getValueType(); 2761 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2762 2763 // Is the constant a known power of 2? 2764 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2765 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2766 2767 // A left-shift of a constant one will have exactly one bit set because 2768 // shifting the bit off the end is undefined. 2769 if (Val.getOpcode() == ISD::SHL) { 2770 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2771 if (C && C->getAPIntValue() == 1) 2772 return true; 2773 } 2774 2775 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2776 // one bit set. 2777 if (Val.getOpcode() == ISD::SRL) { 2778 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2779 if (C && C->getAPIntValue().isSignBit()) 2780 return true; 2781 } 2782 2783 // Are all operands of a build vector constant powers of two? 2784 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2785 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2786 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2787 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2788 return false; 2789 })) 2790 return true; 2791 2792 // More could be done here, though the above checks are enough 2793 // to handle some common cases. 2794 2795 // Fall back to computeKnownBits to catch other known cases. 2796 APInt KnownZero, KnownOne; 2797 computeKnownBits(Val, KnownZero, KnownOne); 2798 return (KnownZero.countPopulation() == BitWidth - 1) && 2799 (KnownOne.countPopulation() == 1); 2800 } 2801 2802 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2803 EVT VT = Op.getValueType(); 2804 assert(VT.isInteger() && "Invalid VT!"); 2805 unsigned VTBits = VT.getScalarSizeInBits(); 2806 unsigned Tmp, Tmp2; 2807 unsigned FirstAnswer = 1; 2808 2809 if (Depth == 6) 2810 return 1; // Limit search depth. 2811 2812 switch (Op.getOpcode()) { 2813 default: break; 2814 case ISD::AssertSext: 2815 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2816 return VTBits-Tmp+1; 2817 case ISD::AssertZext: 2818 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2819 return VTBits-Tmp; 2820 2821 case ISD::Constant: { 2822 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2823 return Val.getNumSignBits(); 2824 } 2825 2826 case ISD::SIGN_EXTEND: 2827 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2828 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2829 2830 case ISD::SIGN_EXTEND_INREG: 2831 // Max of the input and what this extends. 2832 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2833 Tmp = VTBits-Tmp+1; 2834 2835 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2836 return std::max(Tmp, Tmp2); 2837 2838 case ISD::SRA: 2839 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2840 // SRA X, C -> adds C sign bits. 2841 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2842 APInt ShiftVal = C->getAPIntValue(); 2843 ShiftVal += Tmp; 2844 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 2845 } 2846 return Tmp; 2847 case ISD::SHL: 2848 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2849 // shl destroys sign bits. 2850 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2851 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 2852 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 2853 return Tmp - C->getZExtValue(); 2854 } 2855 break; 2856 case ISD::AND: 2857 case ISD::OR: 2858 case ISD::XOR: // NOT is handled here. 2859 // Logical binary ops preserve the number of sign bits at the worst. 2860 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2861 if (Tmp != 1) { 2862 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2863 FirstAnswer = std::min(Tmp, Tmp2); 2864 // We computed what we know about the sign bits as our first 2865 // answer. Now proceed to the generic code that uses 2866 // computeKnownBits, and pick whichever answer is better. 2867 } 2868 break; 2869 2870 case ISD::SELECT: 2871 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2872 if (Tmp == 1) return 1; // Early out. 2873 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2874 return std::min(Tmp, Tmp2); 2875 case ISD::SELECT_CC: 2876 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2877 if (Tmp == 1) return 1; // Early out. 2878 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2879 return std::min(Tmp, Tmp2); 2880 case ISD::SMIN: 2881 case ISD::SMAX: 2882 case ISD::UMIN: 2883 case ISD::UMAX: 2884 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2885 if (Tmp == 1) 2886 return 1; // Early out. 2887 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2888 return std::min(Tmp, Tmp2); 2889 case ISD::SADDO: 2890 case ISD::UADDO: 2891 case ISD::SSUBO: 2892 case ISD::USUBO: 2893 case ISD::SMULO: 2894 case ISD::UMULO: 2895 if (Op.getResNo() != 1) 2896 break; 2897 // The boolean result conforms to getBooleanContents. Fall through. 2898 // If setcc returns 0/-1, all bits are sign bits. 2899 // We know that we have an integer-based boolean since these operations 2900 // are only available for integer. 2901 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2902 TargetLowering::ZeroOrNegativeOneBooleanContent) 2903 return VTBits; 2904 break; 2905 case ISD::SETCC: 2906 // If setcc returns 0/-1, all bits are sign bits. 2907 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2908 TargetLowering::ZeroOrNegativeOneBooleanContent) 2909 return VTBits; 2910 break; 2911 case ISD::ROTL: 2912 case ISD::ROTR: 2913 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2914 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2915 2916 // Handle rotate right by N like a rotate left by 32-N. 2917 if (Op.getOpcode() == ISD::ROTR) 2918 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2919 2920 // If we aren't rotating out all of the known-in sign bits, return the 2921 // number that are left. This handles rotl(sext(x), 1) for example. 2922 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2923 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2924 } 2925 break; 2926 case ISD::ADD: 2927 // Add can have at most one carry bit. Thus we know that the output 2928 // is, at worst, one more bit than the inputs. 2929 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2930 if (Tmp == 1) return 1; // Early out. 2931 2932 // Special case decrementing a value (ADD X, -1): 2933 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2934 if (CRHS->isAllOnesValue()) { 2935 APInt KnownZero, KnownOne; 2936 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2937 2938 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2939 // sign bits set. 2940 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2941 return VTBits; 2942 2943 // If we are subtracting one from a positive number, there is no carry 2944 // out of the result. 2945 if (KnownZero.isNegative()) 2946 return Tmp; 2947 } 2948 2949 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2950 if (Tmp2 == 1) return 1; 2951 return std::min(Tmp, Tmp2)-1; 2952 2953 case ISD::SUB: 2954 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2955 if (Tmp2 == 1) return 1; 2956 2957 // Handle NEG. 2958 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 2959 if (CLHS->isNullValue()) { 2960 APInt KnownZero, KnownOne; 2961 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2962 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2963 // sign bits set. 2964 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2965 return VTBits; 2966 2967 // If the input is known to be positive (the sign bit is known clear), 2968 // the output of the NEG has the same number of sign bits as the input. 2969 if (KnownZero.isNegative()) 2970 return Tmp2; 2971 2972 // Otherwise, we treat this like a SUB. 2973 } 2974 2975 // Sub can have at most one carry bit. Thus we know that the output 2976 // is, at worst, one more bit than the inputs. 2977 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2978 if (Tmp == 1) return 1; // Early out. 2979 return std::min(Tmp, Tmp2)-1; 2980 case ISD::TRUNCATE: { 2981 // Check if the sign bits of source go down as far as the truncated value. 2982 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 2983 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2984 if (NumSrcSignBits > (NumSrcBits - VTBits)) 2985 return NumSrcSignBits - (NumSrcBits - VTBits); 2986 break; 2987 } 2988 case ISD::EXTRACT_ELEMENT: { 2989 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2990 const int BitWidth = Op.getValueSizeInBits(); 2991 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 2992 2993 // Get reverse index (starting from 1), Op1 value indexes elements from 2994 // little end. Sign starts at big end. 2995 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 2996 2997 // If the sign portion ends in our element the subtraction gives correct 2998 // result. Otherwise it gives either negative or > bitwidth result 2999 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3000 } 3001 case ISD::EXTRACT_VECTOR_ELT: { 3002 // At the moment we keep this simple and skip tracking the specific 3003 // element. This way we get the lowest common denominator for all elements 3004 // of the vector. 3005 // TODO: get information for given vector element 3006 const unsigned BitWidth = Op.getValueSizeInBits(); 3007 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3008 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3009 // anything about sign bits. But if the sizes match we can derive knowledge 3010 // about sign bits from the vector operand. 3011 if (BitWidth == EltBitWidth) 3012 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 3013 break; 3014 } 3015 case ISD::EXTRACT_SUBVECTOR: 3016 return ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3017 case ISD::CONCAT_VECTORS: 3018 // Determine the minimum number of sign bits across all input vectors. 3019 // Early out if the result is already 1. 3020 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3021 for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) 3022 Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1)); 3023 return Tmp; 3024 } 3025 3026 // If we are looking at the loaded value of the SDNode. 3027 if (Op.getResNo() == 0) { 3028 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3029 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3030 unsigned ExtType = LD->getExtensionType(); 3031 switch (ExtType) { 3032 default: break; 3033 case ISD::SEXTLOAD: // '17' bits known 3034 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3035 return VTBits-Tmp+1; 3036 case ISD::ZEXTLOAD: // '16' bits known 3037 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3038 return VTBits-Tmp; 3039 } 3040 } 3041 } 3042 3043 // Allow the target to implement this method for its nodes. 3044 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3045 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3046 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3047 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3048 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 3049 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 3050 } 3051 3052 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3053 // use this information. 3054 APInt KnownZero, KnownOne; 3055 computeKnownBits(Op, KnownZero, KnownOne, Depth); 3056 3057 APInt Mask; 3058 if (KnownZero.isNegative()) { // sign bit is 0 3059 Mask = KnownZero; 3060 } else if (KnownOne.isNegative()) { // sign bit is 1; 3061 Mask = KnownOne; 3062 } else { 3063 // Nothing known. 3064 return FirstAnswer; 3065 } 3066 3067 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3068 // the number of identical bits in the top of the input value. 3069 Mask = ~Mask; 3070 Mask <<= Mask.getBitWidth()-VTBits; 3071 // Return # leading zeros. We use 'min' here in case Val was zero before 3072 // shifting. We don't want to return '64' as for an i32 "0". 3073 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3074 } 3075 3076 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3077 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3078 !isa<ConstantSDNode>(Op.getOperand(1))) 3079 return false; 3080 3081 if (Op.getOpcode() == ISD::OR && 3082 !MaskedValueIsZero(Op.getOperand(0), 3083 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3084 return false; 3085 3086 return true; 3087 } 3088 3089 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3090 // If we're told that NaNs won't happen, assume they won't. 3091 if (getTarget().Options.NoNaNsFPMath) 3092 return true; 3093 3094 if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op)) 3095 return BF->Flags.hasNoNaNs(); 3096 3097 // If the value is a constant, we can obviously see if it is a NaN or not. 3098 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3099 return !C->getValueAPF().isNaN(); 3100 3101 // TODO: Recognize more cases here. 3102 3103 return false; 3104 } 3105 3106 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3107 // If the value is a constant, we can obviously see if it is a zero or not. 3108 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3109 return !C->isZero(); 3110 3111 // TODO: Recognize more cases here. 3112 switch (Op.getOpcode()) { 3113 default: break; 3114 case ISD::OR: 3115 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3116 return !C->isNullValue(); 3117 break; 3118 } 3119 3120 return false; 3121 } 3122 3123 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3124 // Check the obvious case. 3125 if (A == B) return true; 3126 3127 // For for negative and positive zero. 3128 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3129 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3130 if (CA->isZero() && CB->isZero()) return true; 3131 3132 // Otherwise they may not be equal. 3133 return false; 3134 } 3135 3136 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3137 assert(A.getValueType() == B.getValueType() && 3138 "Values must have the same type"); 3139 APInt AZero, AOne; 3140 APInt BZero, BOne; 3141 computeKnownBits(A, AZero, AOne); 3142 computeKnownBits(B, BZero, BOne); 3143 return (AZero | BZero).isAllOnesValue(); 3144 } 3145 3146 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3147 ArrayRef<SDValue> Ops, 3148 llvm::SelectionDAG &DAG) { 3149 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3150 assert(llvm::all_of(Ops, 3151 [Ops](SDValue Op) { 3152 return Ops[0].getValueType() == Op.getValueType(); 3153 }) && 3154 "Concatenation of vectors with inconsistent value types!"); 3155 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3156 VT.getVectorNumElements() && 3157 "Incorrect element count in vector concatenation!"); 3158 3159 if (Ops.size() == 1) 3160 return Ops[0]; 3161 3162 // Concat of UNDEFs is UNDEF. 3163 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3164 return DAG.getUNDEF(VT); 3165 3166 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3167 // simplified to one big BUILD_VECTOR. 3168 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3169 EVT SVT = VT.getScalarType(); 3170 SmallVector<SDValue, 16> Elts; 3171 for (SDValue Op : Ops) { 3172 EVT OpVT = Op.getValueType(); 3173 if (Op.isUndef()) 3174 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3175 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3176 Elts.append(Op->op_begin(), Op->op_end()); 3177 else 3178 return SDValue(); 3179 } 3180 3181 // BUILD_VECTOR requires all inputs to be of the same type, find the 3182 // maximum type and extend them all. 3183 for (SDValue Op : Elts) 3184 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3185 3186 if (SVT.bitsGT(VT.getScalarType())) 3187 for (SDValue &Op : Elts) 3188 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3189 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3190 : DAG.getSExtOrTrunc(Op, DL, SVT); 3191 3192 return DAG.getBuildVector(VT, DL, Elts); 3193 } 3194 3195 /// Gets or creates the specified node. 3196 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3197 FoldingSetNodeID ID; 3198 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3199 void *IP = nullptr; 3200 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3201 return SDValue(E, 0); 3202 3203 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3204 getVTList(VT)); 3205 CSEMap.InsertNode(N, IP); 3206 3207 InsertNode(N); 3208 return SDValue(N, 0); 3209 } 3210 3211 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3212 SDValue Operand) { 3213 // Constant fold unary operations with an integer constant operand. Even 3214 // opaque constant will be folded, because the folding of unary operations 3215 // doesn't create new constants with different values. Nevertheless, the 3216 // opaque flag is preserved during folding to prevent future folding with 3217 // other constants. 3218 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3219 const APInt &Val = C->getAPIntValue(); 3220 switch (Opcode) { 3221 default: break; 3222 case ISD::SIGN_EXTEND: 3223 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3224 C->isTargetOpcode(), C->isOpaque()); 3225 case ISD::ANY_EXTEND: 3226 case ISD::ZERO_EXTEND: 3227 case ISD::TRUNCATE: 3228 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3229 C->isTargetOpcode(), C->isOpaque()); 3230 case ISD::UINT_TO_FP: 3231 case ISD::SINT_TO_FP: { 3232 APFloat apf(EVTToAPFloatSemantics(VT), 3233 APInt::getNullValue(VT.getSizeInBits())); 3234 (void)apf.convertFromAPInt(Val, 3235 Opcode==ISD::SINT_TO_FP, 3236 APFloat::rmNearestTiesToEven); 3237 return getConstantFP(apf, DL, VT); 3238 } 3239 case ISD::BITCAST: 3240 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3241 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3242 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3243 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3244 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3245 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3246 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3247 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3248 break; 3249 case ISD::BITREVERSE: 3250 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3251 C->isOpaque()); 3252 case ISD::BSWAP: 3253 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3254 C->isOpaque()); 3255 case ISD::CTPOP: 3256 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3257 C->isOpaque()); 3258 case ISD::CTLZ: 3259 case ISD::CTLZ_ZERO_UNDEF: 3260 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3261 C->isOpaque()); 3262 case ISD::CTTZ: 3263 case ISD::CTTZ_ZERO_UNDEF: 3264 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3265 C->isOpaque()); 3266 case ISD::FP16_TO_FP: { 3267 bool Ignored; 3268 APFloat FPV(APFloat::IEEEhalf(), 3269 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3270 3271 // This can return overflow, underflow, or inexact; we don't care. 3272 // FIXME need to be more flexible about rounding mode. 3273 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3274 APFloat::rmNearestTiesToEven, &Ignored); 3275 return getConstantFP(FPV, DL, VT); 3276 } 3277 } 3278 } 3279 3280 // Constant fold unary operations with a floating point constant operand. 3281 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3282 APFloat V = C->getValueAPF(); // make copy 3283 switch (Opcode) { 3284 case ISD::FNEG: 3285 V.changeSign(); 3286 return getConstantFP(V, DL, VT); 3287 case ISD::FABS: 3288 V.clearSign(); 3289 return getConstantFP(V, DL, VT); 3290 case ISD::FCEIL: { 3291 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3292 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3293 return getConstantFP(V, DL, VT); 3294 break; 3295 } 3296 case ISD::FTRUNC: { 3297 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3298 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3299 return getConstantFP(V, DL, VT); 3300 break; 3301 } 3302 case ISD::FFLOOR: { 3303 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3304 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3305 return getConstantFP(V, DL, VT); 3306 break; 3307 } 3308 case ISD::FP_EXTEND: { 3309 bool ignored; 3310 // This can return overflow, underflow, or inexact; we don't care. 3311 // FIXME need to be more flexible about rounding mode. 3312 (void)V.convert(EVTToAPFloatSemantics(VT), 3313 APFloat::rmNearestTiesToEven, &ignored); 3314 return getConstantFP(V, DL, VT); 3315 } 3316 case ISD::FP_TO_SINT: 3317 case ISD::FP_TO_UINT: { 3318 integerPart x[2]; 3319 bool ignored; 3320 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3321 // FIXME need to be more flexible about rounding mode. 3322 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3323 Opcode==ISD::FP_TO_SINT, 3324 APFloat::rmTowardZero, &ignored); 3325 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3326 break; 3327 APInt api(VT.getSizeInBits(), x); 3328 return getConstant(api, DL, VT); 3329 } 3330 case ISD::BITCAST: 3331 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3332 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3333 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3334 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3335 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3336 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3337 break; 3338 case ISD::FP_TO_FP16: { 3339 bool Ignored; 3340 // This can return overflow, underflow, or inexact; we don't care. 3341 // FIXME need to be more flexible about rounding mode. 3342 (void)V.convert(APFloat::IEEEhalf(), 3343 APFloat::rmNearestTiesToEven, &Ignored); 3344 return getConstant(V.bitcastToAPInt(), DL, VT); 3345 } 3346 } 3347 } 3348 3349 // Constant fold unary operations with a vector integer or float operand. 3350 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3351 if (BV->isConstant()) { 3352 switch (Opcode) { 3353 default: 3354 // FIXME: Entirely reasonable to perform folding of other unary 3355 // operations here as the need arises. 3356 break; 3357 case ISD::FNEG: 3358 case ISD::FABS: 3359 case ISD::FCEIL: 3360 case ISD::FTRUNC: 3361 case ISD::FFLOOR: 3362 case ISD::FP_EXTEND: 3363 case ISD::FP_TO_SINT: 3364 case ISD::FP_TO_UINT: 3365 case ISD::TRUNCATE: 3366 case ISD::UINT_TO_FP: 3367 case ISD::SINT_TO_FP: 3368 case ISD::BITREVERSE: 3369 case ISD::BSWAP: 3370 case ISD::CTLZ: 3371 case ISD::CTLZ_ZERO_UNDEF: 3372 case ISD::CTTZ: 3373 case ISD::CTTZ_ZERO_UNDEF: 3374 case ISD::CTPOP: { 3375 SDValue Ops = { Operand }; 3376 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3377 return Fold; 3378 } 3379 } 3380 } 3381 } 3382 3383 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3384 switch (Opcode) { 3385 case ISD::TokenFactor: 3386 case ISD::MERGE_VALUES: 3387 case ISD::CONCAT_VECTORS: 3388 return Operand; // Factor, merge or concat of one node? No need. 3389 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3390 case ISD::FP_EXTEND: 3391 assert(VT.isFloatingPoint() && 3392 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3393 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3394 assert((!VT.isVector() || 3395 VT.getVectorNumElements() == 3396 Operand.getValueType().getVectorNumElements()) && 3397 "Vector element count mismatch!"); 3398 assert(Operand.getValueType().bitsLT(VT) && 3399 "Invalid fpext node, dst < src!"); 3400 if (Operand.isUndef()) 3401 return getUNDEF(VT); 3402 break; 3403 case ISD::SIGN_EXTEND: 3404 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3405 "Invalid SIGN_EXTEND!"); 3406 if (Operand.getValueType() == VT) return Operand; // noop extension 3407 assert((!VT.isVector() || 3408 VT.getVectorNumElements() == 3409 Operand.getValueType().getVectorNumElements()) && 3410 "Vector element count mismatch!"); 3411 assert(Operand.getValueType().bitsLT(VT) && 3412 "Invalid sext node, dst < src!"); 3413 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3414 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3415 else if (OpOpcode == ISD::UNDEF) 3416 // sext(undef) = 0, because the top bits will all be the same. 3417 return getConstant(0, DL, VT); 3418 break; 3419 case ISD::ZERO_EXTEND: 3420 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3421 "Invalid ZERO_EXTEND!"); 3422 if (Operand.getValueType() == VT) return Operand; // noop extension 3423 assert((!VT.isVector() || 3424 VT.getVectorNumElements() == 3425 Operand.getValueType().getVectorNumElements()) && 3426 "Vector element count mismatch!"); 3427 assert(Operand.getValueType().bitsLT(VT) && 3428 "Invalid zext node, dst < src!"); 3429 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3430 return getNode(ISD::ZERO_EXTEND, DL, VT, 3431 Operand.getNode()->getOperand(0)); 3432 else if (OpOpcode == ISD::UNDEF) 3433 // zext(undef) = 0, because the top bits will be zero. 3434 return getConstant(0, DL, VT); 3435 break; 3436 case ISD::ANY_EXTEND: 3437 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3438 "Invalid ANY_EXTEND!"); 3439 if (Operand.getValueType() == VT) return Operand; // noop extension 3440 assert((!VT.isVector() || 3441 VT.getVectorNumElements() == 3442 Operand.getValueType().getVectorNumElements()) && 3443 "Vector element count mismatch!"); 3444 assert(Operand.getValueType().bitsLT(VT) && 3445 "Invalid anyext node, dst < src!"); 3446 3447 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3448 OpOpcode == ISD::ANY_EXTEND) 3449 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3450 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3451 else if (OpOpcode == ISD::UNDEF) 3452 return getUNDEF(VT); 3453 3454 // (ext (trunx x)) -> x 3455 if (OpOpcode == ISD::TRUNCATE) { 3456 SDValue OpOp = Operand.getNode()->getOperand(0); 3457 if (OpOp.getValueType() == VT) 3458 return OpOp; 3459 } 3460 break; 3461 case ISD::TRUNCATE: 3462 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3463 "Invalid TRUNCATE!"); 3464 if (Operand.getValueType() == VT) return Operand; // noop truncate 3465 assert((!VT.isVector() || 3466 VT.getVectorNumElements() == 3467 Operand.getValueType().getVectorNumElements()) && 3468 "Vector element count mismatch!"); 3469 assert(Operand.getValueType().bitsGT(VT) && 3470 "Invalid truncate node, src < dst!"); 3471 if (OpOpcode == ISD::TRUNCATE) 3472 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3473 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3474 OpOpcode == ISD::ANY_EXTEND) { 3475 // If the source is smaller than the dest, we still need an extend. 3476 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3477 .bitsLT(VT.getScalarType())) 3478 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3479 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3480 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3481 return Operand.getNode()->getOperand(0); 3482 } 3483 if (OpOpcode == ISD::UNDEF) 3484 return getUNDEF(VT); 3485 break; 3486 case ISD::BSWAP: 3487 assert(VT.isInteger() && VT == Operand.getValueType() && 3488 "Invalid BSWAP!"); 3489 assert((VT.getScalarSizeInBits() % 16 == 0) && 3490 "BSWAP types must be a multiple of 16 bits!"); 3491 if (OpOpcode == ISD::UNDEF) 3492 return getUNDEF(VT); 3493 break; 3494 case ISD::BITREVERSE: 3495 assert(VT.isInteger() && VT == Operand.getValueType() && 3496 "Invalid BITREVERSE!"); 3497 if (OpOpcode == ISD::UNDEF) 3498 return getUNDEF(VT); 3499 break; 3500 case ISD::BITCAST: 3501 // Basic sanity checking. 3502 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3503 "Cannot BITCAST between types of different sizes!"); 3504 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3505 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3506 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3507 if (OpOpcode == ISD::UNDEF) 3508 return getUNDEF(VT); 3509 break; 3510 case ISD::SCALAR_TO_VECTOR: 3511 assert(VT.isVector() && !Operand.getValueType().isVector() && 3512 (VT.getVectorElementType() == Operand.getValueType() || 3513 (VT.getVectorElementType().isInteger() && 3514 Operand.getValueType().isInteger() && 3515 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3516 "Illegal SCALAR_TO_VECTOR node!"); 3517 if (OpOpcode == ISD::UNDEF) 3518 return getUNDEF(VT); 3519 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3520 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3521 isa<ConstantSDNode>(Operand.getOperand(1)) && 3522 Operand.getConstantOperandVal(1) == 0 && 3523 Operand.getOperand(0).getValueType() == VT) 3524 return Operand.getOperand(0); 3525 break; 3526 case ISD::FNEG: 3527 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3528 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3529 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3530 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3531 Operand.getNode()->getOperand(0), 3532 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3533 if (OpOpcode == ISD::FNEG) // --X -> X 3534 return Operand.getNode()->getOperand(0); 3535 break; 3536 case ISD::FABS: 3537 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3538 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3539 break; 3540 } 3541 3542 SDNode *N; 3543 SDVTList VTs = getVTList(VT); 3544 SDValue Ops[] = {Operand}; 3545 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3546 FoldingSetNodeID ID; 3547 AddNodeIDNode(ID, Opcode, VTs, Ops); 3548 void *IP = nullptr; 3549 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3550 return SDValue(E, 0); 3551 3552 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3553 createOperands(N, Ops); 3554 CSEMap.InsertNode(N, IP); 3555 } else { 3556 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3557 createOperands(N, Ops); 3558 } 3559 3560 InsertNode(N); 3561 return SDValue(N, 0); 3562 } 3563 3564 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3565 const APInt &C2) { 3566 switch (Opcode) { 3567 case ISD::ADD: return std::make_pair(C1 + C2, true); 3568 case ISD::SUB: return std::make_pair(C1 - C2, true); 3569 case ISD::MUL: return std::make_pair(C1 * C2, true); 3570 case ISD::AND: return std::make_pair(C1 & C2, true); 3571 case ISD::OR: return std::make_pair(C1 | C2, true); 3572 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3573 case ISD::SHL: return std::make_pair(C1 << C2, true); 3574 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3575 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3576 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3577 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3578 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3579 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3580 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3581 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3582 case ISD::UDIV: 3583 if (!C2.getBoolValue()) 3584 break; 3585 return std::make_pair(C1.udiv(C2), true); 3586 case ISD::UREM: 3587 if (!C2.getBoolValue()) 3588 break; 3589 return std::make_pair(C1.urem(C2), true); 3590 case ISD::SDIV: 3591 if (!C2.getBoolValue()) 3592 break; 3593 return std::make_pair(C1.sdiv(C2), true); 3594 case ISD::SREM: 3595 if (!C2.getBoolValue()) 3596 break; 3597 return std::make_pair(C1.srem(C2), true); 3598 } 3599 return std::make_pair(APInt(1, 0), false); 3600 } 3601 3602 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3603 EVT VT, const ConstantSDNode *Cst1, 3604 const ConstantSDNode *Cst2) { 3605 if (Cst1->isOpaque() || Cst2->isOpaque()) 3606 return SDValue(); 3607 3608 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3609 Cst2->getAPIntValue()); 3610 if (!Folded.second) 3611 return SDValue(); 3612 return getConstant(Folded.first, DL, VT); 3613 } 3614 3615 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3616 const GlobalAddressSDNode *GA, 3617 const SDNode *N2) { 3618 if (GA->getOpcode() != ISD::GlobalAddress) 3619 return SDValue(); 3620 if (!TLI->isOffsetFoldingLegal(GA)) 3621 return SDValue(); 3622 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3623 if (!Cst2) 3624 return SDValue(); 3625 int64_t Offset = Cst2->getSExtValue(); 3626 switch (Opcode) { 3627 case ISD::ADD: break; 3628 case ISD::SUB: Offset = -uint64_t(Offset); break; 3629 default: return SDValue(); 3630 } 3631 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3632 GA->getOffset() + uint64_t(Offset)); 3633 } 3634 3635 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3636 EVT VT, SDNode *Cst1, 3637 SDNode *Cst2) { 3638 // If the opcode is a target-specific ISD node, there's nothing we can 3639 // do here and the operand rules may not line up with the below, so 3640 // bail early. 3641 if (Opcode >= ISD::BUILTIN_OP_END) 3642 return SDValue(); 3643 3644 // Handle the case of two scalars. 3645 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3646 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3647 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3648 assert((!Folded || !VT.isVector()) && 3649 "Can't fold vectors ops with scalar operands"); 3650 return Folded; 3651 } 3652 } 3653 3654 // fold (add Sym, c) -> Sym+c 3655 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3656 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3657 if (isCommutativeBinOp(Opcode)) 3658 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3659 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3660 3661 // For vectors extract each constant element into Inputs so we can constant 3662 // fold them individually. 3663 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3664 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3665 if (!BV1 || !BV2) 3666 return SDValue(); 3667 3668 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3669 3670 EVT SVT = VT.getScalarType(); 3671 SmallVector<SDValue, 4> Outputs; 3672 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3673 SDValue V1 = BV1->getOperand(I); 3674 SDValue V2 = BV2->getOperand(I); 3675 3676 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3677 // FIXME: This is valid and could be handled by truncation. 3678 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3679 return SDValue(); 3680 3681 // Fold one vector element. 3682 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 3683 3684 // Scalar folding only succeeded if the result is a constant or UNDEF. 3685 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3686 ScalarResult.getOpcode() != ISD::ConstantFP) 3687 return SDValue(); 3688 Outputs.push_back(ScalarResult); 3689 } 3690 3691 assert(VT.getVectorNumElements() == Outputs.size() && 3692 "Vector size mismatch!"); 3693 3694 // We may have a vector type but a scalar result. Create a splat. 3695 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3696 3697 // Build a big vector out of the scalar elements we generated. 3698 return getBuildVector(VT, SDLoc(), Outputs); 3699 } 3700 3701 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3702 const SDLoc &DL, EVT VT, 3703 ArrayRef<SDValue> Ops, 3704 const SDNodeFlags *Flags) { 3705 // If the opcode is a target-specific ISD node, there's nothing we can 3706 // do here and the operand rules may not line up with the below, so 3707 // bail early. 3708 if (Opcode >= ISD::BUILTIN_OP_END) 3709 return SDValue(); 3710 3711 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3712 if (!VT.isVector()) 3713 return SDValue(); 3714 3715 unsigned NumElts = VT.getVectorNumElements(); 3716 3717 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3718 return !Op.getValueType().isVector() || 3719 Op.getValueType().getVectorNumElements() == NumElts; 3720 }; 3721 3722 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3723 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3724 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3725 (BV && BV->isConstant()); 3726 }; 3727 3728 // All operands must be vector types with the same number of elements as 3729 // the result type and must be either UNDEF or a build vector of constant 3730 // or UNDEF scalars. 3731 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3732 !all_of(Ops, IsScalarOrSameVectorSize)) 3733 return SDValue(); 3734 3735 // If we are comparing vectors, then the result needs to be a i1 boolean 3736 // that is then sign-extended back to the legal result type. 3737 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3738 3739 // Find legal integer scalar type for constant promotion and 3740 // ensure that its scalar size is at least as large as source. 3741 EVT LegalSVT = VT.getScalarType(); 3742 if (LegalSVT.isInteger()) { 3743 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3744 if (LegalSVT.bitsLT(VT.getScalarType())) 3745 return SDValue(); 3746 } 3747 3748 // Constant fold each scalar lane separately. 3749 SmallVector<SDValue, 4> ScalarResults; 3750 for (unsigned i = 0; i != NumElts; i++) { 3751 SmallVector<SDValue, 4> ScalarOps; 3752 for (SDValue Op : Ops) { 3753 EVT InSVT = Op.getValueType().getScalarType(); 3754 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3755 if (!InBV) { 3756 // We've checked that this is UNDEF or a constant of some kind. 3757 if (Op.isUndef()) 3758 ScalarOps.push_back(getUNDEF(InSVT)); 3759 else 3760 ScalarOps.push_back(Op); 3761 continue; 3762 } 3763 3764 SDValue ScalarOp = InBV->getOperand(i); 3765 EVT ScalarVT = ScalarOp.getValueType(); 3766 3767 // Build vector (integer) scalar operands may need implicit 3768 // truncation - do this before constant folding. 3769 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3770 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3771 3772 ScalarOps.push_back(ScalarOp); 3773 } 3774 3775 // Constant fold the scalar operands. 3776 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3777 3778 // Legalize the (integer) scalar constant if necessary. 3779 if (LegalSVT != SVT) 3780 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3781 3782 // Scalar folding only succeeded if the result is a constant or UNDEF. 3783 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3784 ScalarResult.getOpcode() != ISD::ConstantFP) 3785 return SDValue(); 3786 ScalarResults.push_back(ScalarResult); 3787 } 3788 3789 return getBuildVector(VT, DL, ScalarResults); 3790 } 3791 3792 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3793 SDValue N1, SDValue N2, 3794 const SDNodeFlags *Flags) { 3795 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3796 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3797 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3798 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3799 3800 // Canonicalize constant to RHS if commutative. 3801 if (isCommutativeBinOp(Opcode)) { 3802 if (N1C && !N2C) { 3803 std::swap(N1C, N2C); 3804 std::swap(N1, N2); 3805 } else if (N1CFP && !N2CFP) { 3806 std::swap(N1CFP, N2CFP); 3807 std::swap(N1, N2); 3808 } 3809 } 3810 3811 switch (Opcode) { 3812 default: break; 3813 case ISD::TokenFactor: 3814 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3815 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3816 // Fold trivial token factors. 3817 if (N1.getOpcode() == ISD::EntryToken) return N2; 3818 if (N2.getOpcode() == ISD::EntryToken) return N1; 3819 if (N1 == N2) return N1; 3820 break; 3821 case ISD::CONCAT_VECTORS: { 3822 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3823 SDValue Ops[] = {N1, N2}; 3824 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3825 return V; 3826 break; 3827 } 3828 case ISD::AND: 3829 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3830 assert(N1.getValueType() == N2.getValueType() && 3831 N1.getValueType() == VT && "Binary operator types must match!"); 3832 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3833 // worth handling here. 3834 if (N2C && N2C->isNullValue()) 3835 return N2; 3836 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3837 return N1; 3838 break; 3839 case ISD::OR: 3840 case ISD::XOR: 3841 case ISD::ADD: 3842 case ISD::SUB: 3843 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3844 assert(N1.getValueType() == N2.getValueType() && 3845 N1.getValueType() == VT && "Binary operator types must match!"); 3846 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3847 // it's worth handling here. 3848 if (N2C && N2C->isNullValue()) 3849 return N1; 3850 break; 3851 case ISD::UDIV: 3852 case ISD::UREM: 3853 case ISD::MULHU: 3854 case ISD::MULHS: 3855 case ISD::MUL: 3856 case ISD::SDIV: 3857 case ISD::SREM: 3858 case ISD::SMIN: 3859 case ISD::SMAX: 3860 case ISD::UMIN: 3861 case ISD::UMAX: 3862 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3863 assert(N1.getValueType() == N2.getValueType() && 3864 N1.getValueType() == VT && "Binary operator types must match!"); 3865 break; 3866 case ISD::FADD: 3867 case ISD::FSUB: 3868 case ISD::FMUL: 3869 case ISD::FDIV: 3870 case ISD::FREM: 3871 if (getTarget().Options.UnsafeFPMath) { 3872 if (Opcode == ISD::FADD) { 3873 // x+0 --> x 3874 if (N2CFP && N2CFP->getValueAPF().isZero()) 3875 return N1; 3876 } else if (Opcode == ISD::FSUB) { 3877 // x-0 --> x 3878 if (N2CFP && N2CFP->getValueAPF().isZero()) 3879 return N1; 3880 } else if (Opcode == ISD::FMUL) { 3881 // x*0 --> 0 3882 if (N2CFP && N2CFP->isZero()) 3883 return N2; 3884 // x*1 --> x 3885 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3886 return N1; 3887 } 3888 } 3889 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3890 assert(N1.getValueType() == N2.getValueType() && 3891 N1.getValueType() == VT && "Binary operator types must match!"); 3892 break; 3893 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3894 assert(N1.getValueType() == VT && 3895 N1.getValueType().isFloatingPoint() && 3896 N2.getValueType().isFloatingPoint() && 3897 "Invalid FCOPYSIGN!"); 3898 break; 3899 case ISD::SHL: 3900 case ISD::SRA: 3901 case ISD::SRL: 3902 case ISD::ROTL: 3903 case ISD::ROTR: 3904 assert(VT == N1.getValueType() && 3905 "Shift operators return type must be the same as their first arg"); 3906 assert(VT.isInteger() && N2.getValueType().isInteger() && 3907 "Shifts only work on integers"); 3908 assert((!VT.isVector() || VT == N2.getValueType()) && 3909 "Vector shift amounts must be in the same as their first arg"); 3910 // Verify that the shift amount VT is bit enough to hold valid shift 3911 // amounts. This catches things like trying to shift an i1024 value by an 3912 // i8, which is easy to fall into in generic code that uses 3913 // TLI.getShiftAmount(). 3914 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 3915 "Invalid use of small shift amount with oversized value!"); 3916 3917 // Always fold shifts of i1 values so the code generator doesn't need to 3918 // handle them. Since we know the size of the shift has to be less than the 3919 // size of the value, the shift/rotate count is guaranteed to be zero. 3920 if (VT == MVT::i1) 3921 return N1; 3922 if (N2C && N2C->isNullValue()) 3923 return N1; 3924 break; 3925 case ISD::FP_ROUND_INREG: { 3926 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3927 assert(VT == N1.getValueType() && "Not an inreg round!"); 3928 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3929 "Cannot FP_ROUND_INREG integer types"); 3930 assert(EVT.isVector() == VT.isVector() && 3931 "FP_ROUND_INREG type should be vector iff the operand " 3932 "type is vector!"); 3933 assert((!EVT.isVector() || 3934 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3935 "Vector element counts must match in FP_ROUND_INREG"); 3936 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3937 (void)EVT; 3938 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3939 break; 3940 } 3941 case ISD::FP_ROUND: 3942 assert(VT.isFloatingPoint() && 3943 N1.getValueType().isFloatingPoint() && 3944 VT.bitsLE(N1.getValueType()) && 3945 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 3946 "Invalid FP_ROUND!"); 3947 if (N1.getValueType() == VT) return N1; // noop conversion. 3948 break; 3949 case ISD::AssertSext: 3950 case ISD::AssertZext: { 3951 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3952 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3953 assert(VT.isInteger() && EVT.isInteger() && 3954 "Cannot *_EXTEND_INREG FP types"); 3955 assert(!EVT.isVector() && 3956 "AssertSExt/AssertZExt type should be the vector element type " 3957 "rather than the vector type!"); 3958 assert(EVT.bitsLE(VT) && "Not extending!"); 3959 if (VT == EVT) return N1; // noop assertion. 3960 break; 3961 } 3962 case ISD::SIGN_EXTEND_INREG: { 3963 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3964 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3965 assert(VT.isInteger() && EVT.isInteger() && 3966 "Cannot *_EXTEND_INREG FP types"); 3967 assert(EVT.isVector() == VT.isVector() && 3968 "SIGN_EXTEND_INREG type should be vector iff the operand " 3969 "type is vector!"); 3970 assert((!EVT.isVector() || 3971 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3972 "Vector element counts must match in SIGN_EXTEND_INREG"); 3973 assert(EVT.bitsLE(VT) && "Not extending!"); 3974 if (EVT == VT) return N1; // Not actually extending 3975 3976 auto SignExtendInReg = [&](APInt Val) { 3977 unsigned FromBits = EVT.getScalarSizeInBits(); 3978 Val <<= Val.getBitWidth() - FromBits; 3979 Val = Val.ashr(Val.getBitWidth() - FromBits); 3980 return getConstant(Val, DL, VT.getScalarType()); 3981 }; 3982 3983 if (N1C) { 3984 const APInt &Val = N1C->getAPIntValue(); 3985 return SignExtendInReg(Val); 3986 } 3987 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3988 SmallVector<SDValue, 8> Ops; 3989 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3990 SDValue Op = N1.getOperand(i); 3991 if (Op.isUndef()) { 3992 Ops.push_back(getUNDEF(VT.getScalarType())); 3993 continue; 3994 } 3995 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3996 APInt Val = C->getAPIntValue(); 3997 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3998 Ops.push_back(SignExtendInReg(Val)); 3999 continue; 4000 } 4001 break; 4002 } 4003 if (Ops.size() == VT.getVectorNumElements()) 4004 return getBuildVector(VT, DL, Ops); 4005 } 4006 break; 4007 } 4008 case ISD::EXTRACT_VECTOR_ELT: 4009 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4010 if (N1.isUndef()) 4011 return getUNDEF(VT); 4012 4013 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4014 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4015 return getUNDEF(VT); 4016 4017 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4018 // expanding copies of large vectors from registers. 4019 if (N2C && 4020 N1.getOpcode() == ISD::CONCAT_VECTORS && 4021 N1.getNumOperands() > 0) { 4022 unsigned Factor = 4023 N1.getOperand(0).getValueType().getVectorNumElements(); 4024 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4025 N1.getOperand(N2C->getZExtValue() / Factor), 4026 getConstant(N2C->getZExtValue() % Factor, DL, 4027 N2.getValueType())); 4028 } 4029 4030 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4031 // expanding large vector constants. 4032 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4033 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4034 4035 if (VT != Elt.getValueType()) 4036 // If the vector element type is not legal, the BUILD_VECTOR operands 4037 // are promoted and implicitly truncated, and the result implicitly 4038 // extended. Make that explicit here. 4039 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4040 4041 return Elt; 4042 } 4043 4044 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4045 // operations are lowered to scalars. 4046 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4047 // If the indices are the same, return the inserted element else 4048 // if the indices are known different, extract the element from 4049 // the original vector. 4050 SDValue N1Op2 = N1.getOperand(2); 4051 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4052 4053 if (N1Op2C && N2C) { 4054 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4055 if (VT == N1.getOperand(1).getValueType()) 4056 return N1.getOperand(1); 4057 else 4058 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4059 } 4060 4061 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4062 } 4063 } 4064 break; 4065 case ISD::EXTRACT_ELEMENT: 4066 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4067 assert(!N1.getValueType().isVector() && !VT.isVector() && 4068 (N1.getValueType().isInteger() == VT.isInteger()) && 4069 N1.getValueType() != VT && 4070 "Wrong types for EXTRACT_ELEMENT!"); 4071 4072 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4073 // 64-bit integers into 32-bit parts. Instead of building the extract of 4074 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4075 if (N1.getOpcode() == ISD::BUILD_PAIR) 4076 return N1.getOperand(N2C->getZExtValue()); 4077 4078 // EXTRACT_ELEMENT of a constant int is also very common. 4079 if (N1C) { 4080 unsigned ElementSize = VT.getSizeInBits(); 4081 unsigned Shift = ElementSize * N2C->getZExtValue(); 4082 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4083 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4084 } 4085 break; 4086 case ISD::EXTRACT_SUBVECTOR: 4087 if (VT.isSimple() && N1.getValueType().isSimple()) { 4088 assert(VT.isVector() && N1.getValueType().isVector() && 4089 "Extract subvector VTs must be a vectors!"); 4090 assert(VT.getVectorElementType() == 4091 N1.getValueType().getVectorElementType() && 4092 "Extract subvector VTs must have the same element type!"); 4093 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4094 "Extract subvector must be from larger vector to smaller vector!"); 4095 4096 if (N2C) { 4097 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4098 <= N1.getValueType().getVectorNumElements()) 4099 && "Extract subvector overflow!"); 4100 } 4101 4102 // Trivial extraction. 4103 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4104 return N1; 4105 4106 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4107 if (N1.isUndef()) 4108 return getUNDEF(VT); 4109 4110 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4111 // the concat have the same type as the extract. 4112 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4113 N1.getNumOperands() > 0 && 4114 VT == N1.getOperand(0).getValueType()) { 4115 unsigned Factor = VT.getVectorNumElements(); 4116 return N1.getOperand(N2C->getZExtValue() / Factor); 4117 } 4118 4119 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4120 // during shuffle legalization. 4121 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4122 VT == N1.getOperand(1).getValueType()) 4123 return N1.getOperand(1); 4124 } 4125 break; 4126 } 4127 4128 // Perform trivial constant folding. 4129 if (SDValue SV = 4130 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4131 return SV; 4132 4133 // Constant fold FP operations. 4134 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4135 if (N1CFP) { 4136 if (N2CFP) { 4137 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4138 APFloat::opStatus s; 4139 switch (Opcode) { 4140 case ISD::FADD: 4141 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4142 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4143 return getConstantFP(V1, DL, VT); 4144 break; 4145 case ISD::FSUB: 4146 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4147 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4148 return getConstantFP(V1, DL, VT); 4149 break; 4150 case ISD::FMUL: 4151 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4152 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4153 return getConstantFP(V1, DL, VT); 4154 break; 4155 case ISD::FDIV: 4156 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4157 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4158 s!=APFloat::opDivByZero)) { 4159 return getConstantFP(V1, DL, VT); 4160 } 4161 break; 4162 case ISD::FREM : 4163 s = V1.mod(V2); 4164 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4165 s!=APFloat::opDivByZero)) { 4166 return getConstantFP(V1, DL, VT); 4167 } 4168 break; 4169 case ISD::FCOPYSIGN: 4170 V1.copySign(V2); 4171 return getConstantFP(V1, DL, VT); 4172 default: break; 4173 } 4174 } 4175 4176 if (Opcode == ISD::FP_ROUND) { 4177 APFloat V = N1CFP->getValueAPF(); // make copy 4178 bool ignored; 4179 // This can return overflow, underflow, or inexact; we don't care. 4180 // FIXME need to be more flexible about rounding mode. 4181 (void)V.convert(EVTToAPFloatSemantics(VT), 4182 APFloat::rmNearestTiesToEven, &ignored); 4183 return getConstantFP(V, DL, VT); 4184 } 4185 } 4186 4187 // Canonicalize an UNDEF to the RHS, even over a constant. 4188 if (N1.isUndef()) { 4189 if (isCommutativeBinOp(Opcode)) { 4190 std::swap(N1, N2); 4191 } else { 4192 switch (Opcode) { 4193 case ISD::FP_ROUND_INREG: 4194 case ISD::SIGN_EXTEND_INREG: 4195 case ISD::SUB: 4196 case ISD::FSUB: 4197 case ISD::FDIV: 4198 case ISD::FREM: 4199 case ISD::SRA: 4200 return N1; // fold op(undef, arg2) -> undef 4201 case ISD::UDIV: 4202 case ISD::SDIV: 4203 case ISD::UREM: 4204 case ISD::SREM: 4205 case ISD::SRL: 4206 case ISD::SHL: 4207 if (!VT.isVector()) 4208 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4209 // For vectors, we can't easily build an all zero vector, just return 4210 // the LHS. 4211 return N2; 4212 } 4213 } 4214 } 4215 4216 // Fold a bunch of operators when the RHS is undef. 4217 if (N2.isUndef()) { 4218 switch (Opcode) { 4219 case ISD::XOR: 4220 if (N1.isUndef()) 4221 // Handle undef ^ undef -> 0 special case. This is a common 4222 // idiom (misuse). 4223 return getConstant(0, DL, VT); 4224 LLVM_FALLTHROUGH; 4225 case ISD::ADD: 4226 case ISD::ADDC: 4227 case ISD::ADDE: 4228 case ISD::SUB: 4229 case ISD::UDIV: 4230 case ISD::SDIV: 4231 case ISD::UREM: 4232 case ISD::SREM: 4233 return N2; // fold op(arg1, undef) -> undef 4234 case ISD::FADD: 4235 case ISD::FSUB: 4236 case ISD::FMUL: 4237 case ISD::FDIV: 4238 case ISD::FREM: 4239 if (getTarget().Options.UnsafeFPMath) 4240 return N2; 4241 break; 4242 case ISD::MUL: 4243 case ISD::AND: 4244 case ISD::SRL: 4245 case ISD::SHL: 4246 if (!VT.isVector()) 4247 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4248 // For vectors, we can't easily build an all zero vector, just return 4249 // the LHS. 4250 return N1; 4251 case ISD::OR: 4252 if (!VT.isVector()) 4253 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4254 // For vectors, we can't easily build an all one vector, just return 4255 // the LHS. 4256 return N1; 4257 case ISD::SRA: 4258 return N1; 4259 } 4260 } 4261 4262 // Memoize this node if possible. 4263 SDNode *N; 4264 SDVTList VTs = getVTList(VT); 4265 if (VT != MVT::Glue) { 4266 SDValue Ops[] = {N1, N2}; 4267 FoldingSetNodeID ID; 4268 AddNodeIDNode(ID, Opcode, VTs, Ops); 4269 void *IP = nullptr; 4270 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4271 if (Flags) 4272 E->intersectFlagsWith(Flags); 4273 return SDValue(E, 0); 4274 } 4275 4276 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4277 CSEMap.InsertNode(N, IP); 4278 } else { 4279 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4280 } 4281 4282 InsertNode(N); 4283 return SDValue(N, 0); 4284 } 4285 4286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4287 SDValue N1, SDValue N2, SDValue N3) { 4288 // Perform various simplifications. 4289 switch (Opcode) { 4290 case ISD::FMA: { 4291 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4292 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4293 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4294 if (N1CFP && N2CFP && N3CFP) { 4295 APFloat V1 = N1CFP->getValueAPF(); 4296 const APFloat &V2 = N2CFP->getValueAPF(); 4297 const APFloat &V3 = N3CFP->getValueAPF(); 4298 APFloat::opStatus s = 4299 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4300 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4301 return getConstantFP(V1, DL, VT); 4302 } 4303 break; 4304 } 4305 case ISD::CONCAT_VECTORS: { 4306 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4307 SDValue Ops[] = {N1, N2, N3}; 4308 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4309 return V; 4310 break; 4311 } 4312 case ISD::SETCC: { 4313 // Use FoldSetCC to simplify SETCC's. 4314 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4315 return V; 4316 // Vector constant folding. 4317 SDValue Ops[] = {N1, N2, N3}; 4318 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4319 return V; 4320 break; 4321 } 4322 case ISD::SELECT: 4323 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4324 if (N1C->getZExtValue()) 4325 return N2; // select true, X, Y -> X 4326 return N3; // select false, X, Y -> Y 4327 } 4328 4329 if (N2 == N3) return N2; // select C, X, X -> X 4330 break; 4331 case ISD::VECTOR_SHUFFLE: 4332 llvm_unreachable("should use getVectorShuffle constructor!"); 4333 case ISD::INSERT_VECTOR_ELT: { 4334 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4335 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4336 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4337 return getUNDEF(VT); 4338 break; 4339 } 4340 case ISD::INSERT_SUBVECTOR: { 4341 SDValue Index = N3; 4342 if (VT.isSimple() && N1.getValueType().isSimple() 4343 && N2.getValueType().isSimple()) { 4344 assert(VT.isVector() && N1.getValueType().isVector() && 4345 N2.getValueType().isVector() && 4346 "Insert subvector VTs must be a vectors"); 4347 assert(VT == N1.getValueType() && 4348 "Dest and insert subvector source types must match!"); 4349 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4350 "Insert subvector must be from smaller vector to larger vector!"); 4351 if (isa<ConstantSDNode>(Index)) { 4352 assert((N2.getValueType().getVectorNumElements() + 4353 cast<ConstantSDNode>(Index)->getZExtValue() 4354 <= VT.getVectorNumElements()) 4355 && "Insert subvector overflow!"); 4356 } 4357 4358 // Trivial insertion. 4359 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4360 return N2; 4361 } 4362 break; 4363 } 4364 case ISD::BITCAST: 4365 // Fold bit_convert nodes from a type to themselves. 4366 if (N1.getValueType() == VT) 4367 return N1; 4368 break; 4369 } 4370 4371 // Memoize node if it doesn't produce a flag. 4372 SDNode *N; 4373 SDVTList VTs = getVTList(VT); 4374 SDValue Ops[] = {N1, N2, N3}; 4375 if (VT != MVT::Glue) { 4376 FoldingSetNodeID ID; 4377 AddNodeIDNode(ID, Opcode, VTs, Ops); 4378 void *IP = nullptr; 4379 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4380 return SDValue(E, 0); 4381 4382 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4383 createOperands(N, Ops); 4384 CSEMap.InsertNode(N, IP); 4385 } else { 4386 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4387 createOperands(N, Ops); 4388 } 4389 4390 InsertNode(N); 4391 return SDValue(N, 0); 4392 } 4393 4394 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4395 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4396 SDValue Ops[] = { N1, N2, N3, N4 }; 4397 return getNode(Opcode, DL, VT, Ops); 4398 } 4399 4400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4401 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4402 SDValue N5) { 4403 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4404 return getNode(Opcode, DL, VT, Ops); 4405 } 4406 4407 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4408 /// the incoming stack arguments to be loaded from the stack. 4409 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4410 SmallVector<SDValue, 8> ArgChains; 4411 4412 // Include the original chain at the beginning of the list. When this is 4413 // used by target LowerCall hooks, this helps legalize find the 4414 // CALLSEQ_BEGIN node. 4415 ArgChains.push_back(Chain); 4416 4417 // Add a chain value for each stack argument. 4418 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4419 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4420 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4421 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4422 if (FI->getIndex() < 0) 4423 ArgChains.push_back(SDValue(L, 1)); 4424 4425 // Build a tokenfactor for all the chains. 4426 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4427 } 4428 4429 /// getMemsetValue - Vectorized representation of the memset value 4430 /// operand. 4431 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4432 const SDLoc &dl) { 4433 assert(!Value.isUndef()); 4434 4435 unsigned NumBits = VT.getScalarSizeInBits(); 4436 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4437 assert(C->getAPIntValue().getBitWidth() == 8); 4438 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4439 if (VT.isInteger()) 4440 return DAG.getConstant(Val, dl, VT); 4441 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4442 VT); 4443 } 4444 4445 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4446 EVT IntVT = VT.getScalarType(); 4447 if (!IntVT.isInteger()) 4448 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4449 4450 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4451 if (NumBits > 8) { 4452 // Use a multiplication with 0x010101... to extend the input to the 4453 // required length. 4454 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4455 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4456 DAG.getConstant(Magic, dl, IntVT)); 4457 } 4458 4459 if (VT != Value.getValueType() && !VT.isInteger()) 4460 Value = DAG.getBitcast(VT.getScalarType(), Value); 4461 if (VT != Value.getValueType()) 4462 Value = DAG.getSplatBuildVector(VT, dl, Value); 4463 4464 return Value; 4465 } 4466 4467 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4468 /// used when a memcpy is turned into a memset when the source is a constant 4469 /// string ptr. 4470 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4471 const TargetLowering &TLI, StringRef Str) { 4472 // Handle vector with all elements zero. 4473 if (Str.empty()) { 4474 if (VT.isInteger()) 4475 return DAG.getConstant(0, dl, VT); 4476 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4477 return DAG.getConstantFP(0.0, dl, VT); 4478 else if (VT.isVector()) { 4479 unsigned NumElts = VT.getVectorNumElements(); 4480 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4481 return DAG.getNode(ISD::BITCAST, dl, VT, 4482 DAG.getConstant(0, dl, 4483 EVT::getVectorVT(*DAG.getContext(), 4484 EltVT, NumElts))); 4485 } else 4486 llvm_unreachable("Expected type!"); 4487 } 4488 4489 assert(!VT.isVector() && "Can't handle vector type here!"); 4490 unsigned NumVTBits = VT.getSizeInBits(); 4491 unsigned NumVTBytes = NumVTBits / 8; 4492 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4493 4494 APInt Val(NumVTBits, 0); 4495 if (DAG.getDataLayout().isLittleEndian()) { 4496 for (unsigned i = 0; i != NumBytes; ++i) 4497 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4498 } else { 4499 for (unsigned i = 0; i != NumBytes; ++i) 4500 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4501 } 4502 4503 // If the "cost" of materializing the integer immediate is less than the cost 4504 // of a load, then it is cost effective to turn the load into the immediate. 4505 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4506 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4507 return DAG.getConstant(Val, dl, VT); 4508 return SDValue(nullptr, 0); 4509 } 4510 4511 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4512 const SDLoc &DL) { 4513 EVT VT = Base.getValueType(); 4514 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4515 } 4516 4517 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4518 /// 4519 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4520 uint64_t SrcDelta = 0; 4521 GlobalAddressSDNode *G = nullptr; 4522 if (Src.getOpcode() == ISD::GlobalAddress) 4523 G = cast<GlobalAddressSDNode>(Src); 4524 else if (Src.getOpcode() == ISD::ADD && 4525 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4526 Src.getOperand(1).getOpcode() == ISD::Constant) { 4527 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4528 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4529 } 4530 if (!G) 4531 return false; 4532 4533 return getConstantStringInfo(G->getGlobal(), Str, 4534 SrcDelta + G->getOffset(), false); 4535 } 4536 4537 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4538 /// Return true if the number of memory ops is below the threshold (Limit). 4539 /// It returns the types of the sequence of memory ops to perform 4540 /// memset / memcpy by reference. 4541 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4542 unsigned Limit, uint64_t Size, 4543 unsigned DstAlign, unsigned SrcAlign, 4544 bool IsMemset, 4545 bool ZeroMemset, 4546 bool MemcpyStrSrc, 4547 bool AllowOverlap, 4548 unsigned DstAS, unsigned SrcAS, 4549 SelectionDAG &DAG, 4550 const TargetLowering &TLI) { 4551 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4552 "Expecting memcpy / memset source to meet alignment requirement!"); 4553 // If 'SrcAlign' is zero, that means the memory operation does not need to 4554 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4555 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4556 // is the specified alignment of the memory operation. If it is zero, that 4557 // means it's possible to change the alignment of the destination. 4558 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4559 // not need to be loaded. 4560 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4561 IsMemset, ZeroMemset, MemcpyStrSrc, 4562 DAG.getMachineFunction()); 4563 4564 if (VT == MVT::Other) { 4565 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4566 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4567 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4568 } else { 4569 switch (DstAlign & 7) { 4570 case 0: VT = MVT::i64; break; 4571 case 4: VT = MVT::i32; break; 4572 case 2: VT = MVT::i16; break; 4573 default: VT = MVT::i8; break; 4574 } 4575 } 4576 4577 MVT LVT = MVT::i64; 4578 while (!TLI.isTypeLegal(LVT)) 4579 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4580 assert(LVT.isInteger()); 4581 4582 if (VT.bitsGT(LVT)) 4583 VT = LVT; 4584 } 4585 4586 unsigned NumMemOps = 0; 4587 while (Size != 0) { 4588 unsigned VTSize = VT.getSizeInBits() / 8; 4589 while (VTSize > Size) { 4590 // For now, only use non-vector load / store's for the left-over pieces. 4591 EVT NewVT = VT; 4592 unsigned NewVTSize; 4593 4594 bool Found = false; 4595 if (VT.isVector() || VT.isFloatingPoint()) { 4596 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4597 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4598 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4599 Found = true; 4600 else if (NewVT == MVT::i64 && 4601 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4602 TLI.isSafeMemOpType(MVT::f64)) { 4603 // i64 is usually not legal on 32-bit targets, but f64 may be. 4604 NewVT = MVT::f64; 4605 Found = true; 4606 } 4607 } 4608 4609 if (!Found) { 4610 do { 4611 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4612 if (NewVT == MVT::i8) 4613 break; 4614 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4615 } 4616 NewVTSize = NewVT.getSizeInBits() / 8; 4617 4618 // If the new VT cannot cover all of the remaining bits, then consider 4619 // issuing a (or a pair of) unaligned and overlapping load / store. 4620 // FIXME: Only does this for 64-bit or more since we don't have proper 4621 // cost model for unaligned load / store. 4622 bool Fast; 4623 if (NumMemOps && AllowOverlap && 4624 VTSize >= 8 && NewVTSize < Size && 4625 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4626 VTSize = Size; 4627 else { 4628 VT = NewVT; 4629 VTSize = NewVTSize; 4630 } 4631 } 4632 4633 if (++NumMemOps > Limit) 4634 return false; 4635 4636 MemOps.push_back(VT); 4637 Size -= VTSize; 4638 } 4639 4640 return true; 4641 } 4642 4643 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4644 // On Darwin, -Os means optimize for size without hurting performance, so 4645 // only really optimize for size when -Oz (MinSize) is used. 4646 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4647 return MF.getFunction()->optForMinSize(); 4648 return MF.getFunction()->optForSize(); 4649 } 4650 4651 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4652 SDValue Chain, SDValue Dst, SDValue Src, 4653 uint64_t Size, unsigned Align, 4654 bool isVol, bool AlwaysInline, 4655 MachinePointerInfo DstPtrInfo, 4656 MachinePointerInfo SrcPtrInfo) { 4657 // Turn a memcpy of undef to nop. 4658 if (Src.isUndef()) 4659 return Chain; 4660 4661 // Expand memcpy to a series of load and store ops if the size operand falls 4662 // below a certain threshold. 4663 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4664 // rather than maybe a humongous number of loads and stores. 4665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4666 std::vector<EVT> MemOps; 4667 bool DstAlignCanChange = false; 4668 MachineFunction &MF = DAG.getMachineFunction(); 4669 MachineFrameInfo &MFI = MF.getFrameInfo(); 4670 bool OptSize = shouldLowerMemFuncForSize(MF); 4671 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4672 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4673 DstAlignCanChange = true; 4674 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4675 if (Align > SrcAlign) 4676 SrcAlign = Align; 4677 StringRef Str; 4678 bool CopyFromStr = isMemSrcFromString(Src, Str); 4679 bool isZeroStr = CopyFromStr && Str.empty(); 4680 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4681 4682 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4683 (DstAlignCanChange ? 0 : Align), 4684 (isZeroStr ? 0 : SrcAlign), 4685 false, false, CopyFromStr, true, 4686 DstPtrInfo.getAddrSpace(), 4687 SrcPtrInfo.getAddrSpace(), 4688 DAG, TLI)) 4689 return SDValue(); 4690 4691 if (DstAlignCanChange) { 4692 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4693 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4694 4695 // Don't promote to an alignment that would require dynamic stack 4696 // realignment. 4697 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4698 if (!TRI->needsStackRealignment(MF)) 4699 while (NewAlign > Align && 4700 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4701 NewAlign /= 2; 4702 4703 if (NewAlign > Align) { 4704 // Give the stack frame object a larger alignment if needed. 4705 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4706 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4707 Align = NewAlign; 4708 } 4709 } 4710 4711 MachineMemOperand::Flags MMOFlags = 4712 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4713 SmallVector<SDValue, 8> OutChains; 4714 unsigned NumMemOps = MemOps.size(); 4715 uint64_t SrcOff = 0, DstOff = 0; 4716 for (unsigned i = 0; i != NumMemOps; ++i) { 4717 EVT VT = MemOps[i]; 4718 unsigned VTSize = VT.getSizeInBits() / 8; 4719 SDValue Value, Store; 4720 4721 if (VTSize > Size) { 4722 // Issuing an unaligned load / store pair that overlaps with the previous 4723 // pair. Adjust the offset accordingly. 4724 assert(i == NumMemOps-1 && i != 0); 4725 SrcOff -= VTSize - Size; 4726 DstOff -= VTSize - Size; 4727 } 4728 4729 if (CopyFromStr && 4730 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4731 // It's unlikely a store of a vector immediate can be done in a single 4732 // instruction. It would require a load from a constantpool first. 4733 // We only handle zero vectors here. 4734 // FIXME: Handle other cases where store of vector immediate is done in 4735 // a single instruction. 4736 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4737 if (Value.getNode()) 4738 Store = DAG.getStore(Chain, dl, Value, 4739 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4740 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4741 } 4742 4743 if (!Store.getNode()) { 4744 // The type might not be legal for the target. This should only happen 4745 // if the type is smaller than a legal type, as on PPC, so the right 4746 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4747 // to Load/Store if NVT==VT. 4748 // FIXME does the case above also need this? 4749 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4750 assert(NVT.bitsGE(VT)); 4751 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4752 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4753 SrcPtrInfo.getWithOffset(SrcOff), VT, 4754 MinAlign(SrcAlign, SrcOff), MMOFlags); 4755 OutChains.push_back(Value.getValue(1)); 4756 Store = DAG.getTruncStore( 4757 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4758 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4759 } 4760 OutChains.push_back(Store); 4761 SrcOff += VTSize; 4762 DstOff += VTSize; 4763 Size -= VTSize; 4764 } 4765 4766 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4767 } 4768 4769 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4770 SDValue Chain, SDValue Dst, SDValue Src, 4771 uint64_t Size, unsigned Align, 4772 bool isVol, bool AlwaysInline, 4773 MachinePointerInfo DstPtrInfo, 4774 MachinePointerInfo SrcPtrInfo) { 4775 // Turn a memmove of undef to nop. 4776 if (Src.isUndef()) 4777 return Chain; 4778 4779 // Expand memmove to a series of load and store ops if the size operand falls 4780 // below a certain threshold. 4781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4782 std::vector<EVT> MemOps; 4783 bool DstAlignCanChange = false; 4784 MachineFunction &MF = DAG.getMachineFunction(); 4785 MachineFrameInfo &MFI = MF.getFrameInfo(); 4786 bool OptSize = shouldLowerMemFuncForSize(MF); 4787 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4788 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4789 DstAlignCanChange = true; 4790 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4791 if (Align > SrcAlign) 4792 SrcAlign = Align; 4793 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4794 4795 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4796 (DstAlignCanChange ? 0 : Align), SrcAlign, 4797 false, false, false, false, 4798 DstPtrInfo.getAddrSpace(), 4799 SrcPtrInfo.getAddrSpace(), 4800 DAG, TLI)) 4801 return SDValue(); 4802 4803 if (DstAlignCanChange) { 4804 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4805 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4806 if (NewAlign > Align) { 4807 // Give the stack frame object a larger alignment if needed. 4808 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4809 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4810 Align = NewAlign; 4811 } 4812 } 4813 4814 MachineMemOperand::Flags MMOFlags = 4815 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4816 uint64_t SrcOff = 0, DstOff = 0; 4817 SmallVector<SDValue, 8> LoadValues; 4818 SmallVector<SDValue, 8> LoadChains; 4819 SmallVector<SDValue, 8> OutChains; 4820 unsigned NumMemOps = MemOps.size(); 4821 for (unsigned i = 0; i < NumMemOps; i++) { 4822 EVT VT = MemOps[i]; 4823 unsigned VTSize = VT.getSizeInBits() / 8; 4824 SDValue Value; 4825 4826 Value = 4827 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4828 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4829 LoadValues.push_back(Value); 4830 LoadChains.push_back(Value.getValue(1)); 4831 SrcOff += VTSize; 4832 } 4833 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4834 OutChains.clear(); 4835 for (unsigned i = 0; i < NumMemOps; i++) { 4836 EVT VT = MemOps[i]; 4837 unsigned VTSize = VT.getSizeInBits() / 8; 4838 SDValue Store; 4839 4840 Store = DAG.getStore(Chain, dl, LoadValues[i], 4841 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4842 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4843 OutChains.push_back(Store); 4844 DstOff += VTSize; 4845 } 4846 4847 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4848 } 4849 4850 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4851 /// operations. 4852 /// 4853 /// \param DAG Selection DAG where lowered code is placed. 4854 /// \param dl Link to corresponding IR location. 4855 /// \param Chain Control flow dependency. 4856 /// \param Dst Pointer to destination memory location. 4857 /// \param Src Value of byte to write into the memory. 4858 /// \param Size Number of bytes to write. 4859 /// \param Align Alignment of the destination in bytes. 4860 /// \param isVol True if destination is volatile. 4861 /// \param DstPtrInfo IR information on the memory pointer. 4862 /// \returns New head in the control flow, if lowering was successful, empty 4863 /// SDValue otherwise. 4864 /// 4865 /// The function tries to replace 'llvm.memset' intrinsic with several store 4866 /// operations and value calculation code. This is usually profitable for small 4867 /// memory size. 4868 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4869 SDValue Chain, SDValue Dst, SDValue Src, 4870 uint64_t Size, unsigned Align, bool isVol, 4871 MachinePointerInfo DstPtrInfo) { 4872 // Turn a memset of undef to nop. 4873 if (Src.isUndef()) 4874 return Chain; 4875 4876 // Expand memset to a series of load/store ops if the size operand 4877 // falls below a certain threshold. 4878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4879 std::vector<EVT> MemOps; 4880 bool DstAlignCanChange = false; 4881 MachineFunction &MF = DAG.getMachineFunction(); 4882 MachineFrameInfo &MFI = MF.getFrameInfo(); 4883 bool OptSize = shouldLowerMemFuncForSize(MF); 4884 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4885 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4886 DstAlignCanChange = true; 4887 bool IsZeroVal = 4888 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4889 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4890 Size, (DstAlignCanChange ? 0 : Align), 0, 4891 true, IsZeroVal, false, true, 4892 DstPtrInfo.getAddrSpace(), ~0u, 4893 DAG, TLI)) 4894 return SDValue(); 4895 4896 if (DstAlignCanChange) { 4897 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4898 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4899 if (NewAlign > Align) { 4900 // Give the stack frame object a larger alignment if needed. 4901 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4902 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4903 Align = NewAlign; 4904 } 4905 } 4906 4907 SmallVector<SDValue, 8> OutChains; 4908 uint64_t DstOff = 0; 4909 unsigned NumMemOps = MemOps.size(); 4910 4911 // Find the largest store and generate the bit pattern for it. 4912 EVT LargestVT = MemOps[0]; 4913 for (unsigned i = 1; i < NumMemOps; i++) 4914 if (MemOps[i].bitsGT(LargestVT)) 4915 LargestVT = MemOps[i]; 4916 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4917 4918 for (unsigned i = 0; i < NumMemOps; i++) { 4919 EVT VT = MemOps[i]; 4920 unsigned VTSize = VT.getSizeInBits() / 8; 4921 if (VTSize > Size) { 4922 // Issuing an unaligned load / store pair that overlaps with the previous 4923 // pair. Adjust the offset accordingly. 4924 assert(i == NumMemOps-1 && i != 0); 4925 DstOff -= VTSize - Size; 4926 } 4927 4928 // If this store is smaller than the largest store see whether we can get 4929 // the smaller value for free with a truncate. 4930 SDValue Value = MemSetValue; 4931 if (VT.bitsLT(LargestVT)) { 4932 if (!LargestVT.isVector() && !VT.isVector() && 4933 TLI.isTruncateFree(LargestVT, VT)) 4934 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4935 else 4936 Value = getMemsetValue(Src, VT, DAG, dl); 4937 } 4938 assert(Value.getValueType() == VT && "Value with wrong type."); 4939 SDValue Store = DAG.getStore( 4940 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4941 DstPtrInfo.getWithOffset(DstOff), Align, 4942 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 4943 OutChains.push_back(Store); 4944 DstOff += VT.getSizeInBits() / 8; 4945 Size -= VTSize; 4946 } 4947 4948 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4949 } 4950 4951 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4952 unsigned AS) { 4953 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4954 // pointer operands can be losslessly bitcasted to pointers of address space 0 4955 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4956 report_fatal_error("cannot lower memory intrinsic in address space " + 4957 Twine(AS)); 4958 } 4959 } 4960 4961 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4962 SDValue Src, SDValue Size, unsigned Align, 4963 bool isVol, bool AlwaysInline, bool isTailCall, 4964 MachinePointerInfo DstPtrInfo, 4965 MachinePointerInfo SrcPtrInfo) { 4966 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4967 4968 // Check to see if we should lower the memcpy to loads and stores first. 4969 // For cases within the target-specified limits, this is the best choice. 4970 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4971 if (ConstantSize) { 4972 // Memcpy with size zero? Just return the original chain. 4973 if (ConstantSize->isNullValue()) 4974 return Chain; 4975 4976 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4977 ConstantSize->getZExtValue(),Align, 4978 isVol, false, DstPtrInfo, SrcPtrInfo); 4979 if (Result.getNode()) 4980 return Result; 4981 } 4982 4983 // Then check to see if we should lower the memcpy with target-specific 4984 // code. If the target chooses to do this, this is the next best. 4985 if (TSI) { 4986 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4987 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4988 DstPtrInfo, SrcPtrInfo); 4989 if (Result.getNode()) 4990 return Result; 4991 } 4992 4993 // If we really need inline code and the target declined to provide it, 4994 // use a (potentially long) sequence of loads and stores. 4995 if (AlwaysInline) { 4996 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4997 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4998 ConstantSize->getZExtValue(), Align, isVol, 4999 true, DstPtrInfo, SrcPtrInfo); 5000 } 5001 5002 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5003 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5004 5005 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5006 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5007 // respect volatile, so they may do things like read or write memory 5008 // beyond the given memory regions. But fixing this isn't easy, and most 5009 // people don't care. 5010 5011 // Emit a library call. 5012 TargetLowering::ArgListTy Args; 5013 TargetLowering::ArgListEntry Entry; 5014 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5015 Entry.Node = Dst; Args.push_back(Entry); 5016 Entry.Node = Src; Args.push_back(Entry); 5017 Entry.Node = Size; Args.push_back(Entry); 5018 // FIXME: pass in SDLoc 5019 TargetLowering::CallLoweringInfo CLI(*this); 5020 CLI.setDebugLoc(dl) 5021 .setChain(Chain) 5022 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5023 Dst.getValueType().getTypeForEVT(*getContext()), 5024 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5025 TLI->getPointerTy(getDataLayout())), 5026 std::move(Args)) 5027 .setDiscardResult() 5028 .setTailCall(isTailCall); 5029 5030 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5031 return CallResult.second; 5032 } 5033 5034 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5035 SDValue Src, SDValue Size, unsigned Align, 5036 bool isVol, bool isTailCall, 5037 MachinePointerInfo DstPtrInfo, 5038 MachinePointerInfo SrcPtrInfo) { 5039 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5040 5041 // Check to see if we should lower the memmove to loads and stores first. 5042 // For cases within the target-specified limits, this is the best choice. 5043 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5044 if (ConstantSize) { 5045 // Memmove with size zero? Just return the original chain. 5046 if (ConstantSize->isNullValue()) 5047 return Chain; 5048 5049 SDValue Result = 5050 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5051 ConstantSize->getZExtValue(), Align, isVol, 5052 false, DstPtrInfo, SrcPtrInfo); 5053 if (Result.getNode()) 5054 return Result; 5055 } 5056 5057 // Then check to see if we should lower the memmove with target-specific 5058 // code. If the target chooses to do this, this is the next best. 5059 if (TSI) { 5060 SDValue Result = TSI->EmitTargetCodeForMemmove( 5061 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5062 if (Result.getNode()) 5063 return Result; 5064 } 5065 5066 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5067 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5068 5069 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5070 // not be safe. See memcpy above for more details. 5071 5072 // Emit a library call. 5073 TargetLowering::ArgListTy Args; 5074 TargetLowering::ArgListEntry Entry; 5075 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5076 Entry.Node = Dst; Args.push_back(Entry); 5077 Entry.Node = Src; Args.push_back(Entry); 5078 Entry.Node = Size; Args.push_back(Entry); 5079 // FIXME: pass in SDLoc 5080 TargetLowering::CallLoweringInfo CLI(*this); 5081 CLI.setDebugLoc(dl) 5082 .setChain(Chain) 5083 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5084 Dst.getValueType().getTypeForEVT(*getContext()), 5085 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5086 TLI->getPointerTy(getDataLayout())), 5087 std::move(Args)) 5088 .setDiscardResult() 5089 .setTailCall(isTailCall); 5090 5091 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5092 return CallResult.second; 5093 } 5094 5095 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5096 SDValue Src, SDValue Size, unsigned Align, 5097 bool isVol, bool isTailCall, 5098 MachinePointerInfo DstPtrInfo) { 5099 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5100 5101 // Check to see if we should lower the memset to stores first. 5102 // For cases within the target-specified limits, this is the best choice. 5103 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5104 if (ConstantSize) { 5105 // Memset with size zero? Just return the original chain. 5106 if (ConstantSize->isNullValue()) 5107 return Chain; 5108 5109 SDValue Result = 5110 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5111 Align, isVol, DstPtrInfo); 5112 5113 if (Result.getNode()) 5114 return Result; 5115 } 5116 5117 // Then check to see if we should lower the memset with target-specific 5118 // code. If the target chooses to do this, this is the next best. 5119 if (TSI) { 5120 SDValue Result = TSI->EmitTargetCodeForMemset( 5121 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5122 if (Result.getNode()) 5123 return Result; 5124 } 5125 5126 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5127 5128 // Emit a library call. 5129 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5130 TargetLowering::ArgListTy Args; 5131 TargetLowering::ArgListEntry Entry; 5132 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5133 Args.push_back(Entry); 5134 Entry.Node = Src; 5135 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5136 Args.push_back(Entry); 5137 Entry.Node = Size; 5138 Entry.Ty = IntPtrTy; 5139 Args.push_back(Entry); 5140 5141 // FIXME: pass in SDLoc 5142 TargetLowering::CallLoweringInfo CLI(*this); 5143 CLI.setDebugLoc(dl) 5144 .setChain(Chain) 5145 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5146 Dst.getValueType().getTypeForEVT(*getContext()), 5147 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5148 TLI->getPointerTy(getDataLayout())), 5149 std::move(Args)) 5150 .setDiscardResult() 5151 .setTailCall(isTailCall); 5152 5153 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5154 return CallResult.second; 5155 } 5156 5157 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5158 SDVTList VTList, ArrayRef<SDValue> Ops, 5159 MachineMemOperand *MMO) { 5160 FoldingSetNodeID ID; 5161 ID.AddInteger(MemVT.getRawBits()); 5162 AddNodeIDNode(ID, Opcode, VTList, Ops); 5163 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5164 void* IP = nullptr; 5165 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5166 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5167 return SDValue(E, 0); 5168 } 5169 5170 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5171 VTList, MemVT, MMO); 5172 createOperands(N, Ops); 5173 5174 CSEMap.InsertNode(N, IP); 5175 InsertNode(N); 5176 return SDValue(N, 0); 5177 } 5178 5179 SDValue SelectionDAG::getAtomicCmpSwap( 5180 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5181 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5182 unsigned Alignment, AtomicOrdering SuccessOrdering, 5183 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 5184 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5185 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5186 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5187 5188 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5189 Alignment = getEVTAlignment(MemVT); 5190 5191 MachineFunction &MF = getMachineFunction(); 5192 5193 // FIXME: Volatile isn't really correct; we should keep track of atomic 5194 // orderings in the memoperand. 5195 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5196 MachineMemOperand::MOStore; 5197 MachineMemOperand *MMO = 5198 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5199 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 5200 FailureOrdering); 5201 5202 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5203 } 5204 5205 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5206 EVT MemVT, SDVTList VTs, SDValue Chain, 5207 SDValue Ptr, SDValue Cmp, SDValue Swp, 5208 MachineMemOperand *MMO) { 5209 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5210 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5211 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5212 5213 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5214 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5215 } 5216 5217 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5218 SDValue Chain, SDValue Ptr, SDValue Val, 5219 const Value *PtrVal, unsigned Alignment, 5220 AtomicOrdering Ordering, 5221 SynchronizationScope SynchScope) { 5222 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5223 Alignment = getEVTAlignment(MemVT); 5224 5225 MachineFunction &MF = getMachineFunction(); 5226 // An atomic store does not load. An atomic load does not store. 5227 // (An atomicrmw obviously both loads and stores.) 5228 // For now, atomics are considered to be volatile always, and they are 5229 // chained as such. 5230 // FIXME: Volatile isn't really correct; we should keep track of atomic 5231 // orderings in the memoperand. 5232 auto Flags = MachineMemOperand::MOVolatile; 5233 if (Opcode != ISD::ATOMIC_STORE) 5234 Flags |= MachineMemOperand::MOLoad; 5235 if (Opcode != ISD::ATOMIC_LOAD) 5236 Flags |= MachineMemOperand::MOStore; 5237 5238 MachineMemOperand *MMO = 5239 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5240 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5241 nullptr, SynchScope, Ordering); 5242 5243 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5244 } 5245 5246 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5247 SDValue Chain, SDValue Ptr, SDValue Val, 5248 MachineMemOperand *MMO) { 5249 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5250 Opcode == ISD::ATOMIC_LOAD_SUB || 5251 Opcode == ISD::ATOMIC_LOAD_AND || 5252 Opcode == ISD::ATOMIC_LOAD_OR || 5253 Opcode == ISD::ATOMIC_LOAD_XOR || 5254 Opcode == ISD::ATOMIC_LOAD_NAND || 5255 Opcode == ISD::ATOMIC_LOAD_MIN || 5256 Opcode == ISD::ATOMIC_LOAD_MAX || 5257 Opcode == ISD::ATOMIC_LOAD_UMIN || 5258 Opcode == ISD::ATOMIC_LOAD_UMAX || 5259 Opcode == ISD::ATOMIC_SWAP || 5260 Opcode == ISD::ATOMIC_STORE) && 5261 "Invalid Atomic Op"); 5262 5263 EVT VT = Val.getValueType(); 5264 5265 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5266 getVTList(VT, MVT::Other); 5267 SDValue Ops[] = {Chain, Ptr, Val}; 5268 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5269 } 5270 5271 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5272 EVT VT, SDValue Chain, SDValue Ptr, 5273 MachineMemOperand *MMO) { 5274 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5275 5276 SDVTList VTs = getVTList(VT, MVT::Other); 5277 SDValue Ops[] = {Chain, Ptr}; 5278 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5279 } 5280 5281 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5282 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5283 if (Ops.size() == 1) 5284 return Ops[0]; 5285 5286 SmallVector<EVT, 4> VTs; 5287 VTs.reserve(Ops.size()); 5288 for (unsigned i = 0; i < Ops.size(); ++i) 5289 VTs.push_back(Ops[i].getValueType()); 5290 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5291 } 5292 5293 SDValue SelectionDAG::getMemIntrinsicNode( 5294 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5295 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5296 bool ReadMem, bool WriteMem, unsigned Size) { 5297 if (Align == 0) // Ensure that codegen never sees alignment 0 5298 Align = getEVTAlignment(MemVT); 5299 5300 MachineFunction &MF = getMachineFunction(); 5301 auto Flags = MachineMemOperand::MONone; 5302 if (WriteMem) 5303 Flags |= MachineMemOperand::MOStore; 5304 if (ReadMem) 5305 Flags |= MachineMemOperand::MOLoad; 5306 if (Vol) 5307 Flags |= MachineMemOperand::MOVolatile; 5308 if (!Size) 5309 Size = MemVT.getStoreSize(); 5310 MachineMemOperand *MMO = 5311 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5312 5313 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5314 } 5315 5316 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5317 SDVTList VTList, 5318 ArrayRef<SDValue> Ops, EVT MemVT, 5319 MachineMemOperand *MMO) { 5320 assert((Opcode == ISD::INTRINSIC_VOID || 5321 Opcode == ISD::INTRINSIC_W_CHAIN || 5322 Opcode == ISD::PREFETCH || 5323 Opcode == ISD::LIFETIME_START || 5324 Opcode == ISD::LIFETIME_END || 5325 (Opcode <= INT_MAX && 5326 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5327 "Opcode is not a memory-accessing opcode!"); 5328 5329 // Memoize the node unless it returns a flag. 5330 MemIntrinsicSDNode *N; 5331 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5332 FoldingSetNodeID ID; 5333 AddNodeIDNode(ID, Opcode, VTList, Ops); 5334 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5335 void *IP = nullptr; 5336 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5337 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5338 return SDValue(E, 0); 5339 } 5340 5341 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5342 VTList, MemVT, MMO); 5343 createOperands(N, Ops); 5344 5345 CSEMap.InsertNode(N, IP); 5346 } else { 5347 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5348 VTList, MemVT, MMO); 5349 createOperands(N, Ops); 5350 } 5351 InsertNode(N); 5352 return SDValue(N, 0); 5353 } 5354 5355 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5356 /// MachinePointerInfo record from it. This is particularly useful because the 5357 /// code generator has many cases where it doesn't bother passing in a 5358 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5359 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5360 int64_t Offset = 0) { 5361 // If this is FI+Offset, we can model it. 5362 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5363 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5364 FI->getIndex(), Offset); 5365 5366 // If this is (FI+Offset1)+Offset2, we can model it. 5367 if (Ptr.getOpcode() != ISD::ADD || 5368 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5369 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5370 return MachinePointerInfo(); 5371 5372 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5373 return MachinePointerInfo::getFixedStack( 5374 DAG.getMachineFunction(), FI, 5375 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5376 } 5377 5378 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5379 /// MachinePointerInfo record from it. This is particularly useful because the 5380 /// code generator has many cases where it doesn't bother passing in a 5381 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5382 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5383 SDValue OffsetOp) { 5384 // If the 'Offset' value isn't a constant, we can't handle this. 5385 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5386 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5387 if (OffsetOp.isUndef()) 5388 return InferPointerInfo(DAG, Ptr); 5389 return MachinePointerInfo(); 5390 } 5391 5392 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5393 EVT VT, const SDLoc &dl, SDValue Chain, 5394 SDValue Ptr, SDValue Offset, 5395 MachinePointerInfo PtrInfo, EVT MemVT, 5396 unsigned Alignment, 5397 MachineMemOperand::Flags MMOFlags, 5398 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5399 assert(Chain.getValueType() == MVT::Other && 5400 "Invalid chain type"); 5401 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5402 Alignment = getEVTAlignment(MemVT); 5403 5404 MMOFlags |= MachineMemOperand::MOLoad; 5405 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5406 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5407 // clients. 5408 if (PtrInfo.V.isNull()) 5409 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5410 5411 MachineFunction &MF = getMachineFunction(); 5412 MachineMemOperand *MMO = MF.getMachineMemOperand( 5413 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5414 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5415 } 5416 5417 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5418 EVT VT, const SDLoc &dl, SDValue Chain, 5419 SDValue Ptr, SDValue Offset, EVT MemVT, 5420 MachineMemOperand *MMO) { 5421 if (VT == MemVT) { 5422 ExtType = ISD::NON_EXTLOAD; 5423 } else if (ExtType == ISD::NON_EXTLOAD) { 5424 assert(VT == MemVT && "Non-extending load from different memory type!"); 5425 } else { 5426 // Extending load. 5427 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5428 "Should only be an extending load, not truncating!"); 5429 assert(VT.isInteger() == MemVT.isInteger() && 5430 "Cannot convert from FP to Int or Int -> FP!"); 5431 assert(VT.isVector() == MemVT.isVector() && 5432 "Cannot use an ext load to convert to or from a vector!"); 5433 assert((!VT.isVector() || 5434 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5435 "Cannot use an ext load to change the number of vector elements!"); 5436 } 5437 5438 bool Indexed = AM != ISD::UNINDEXED; 5439 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5440 5441 SDVTList VTs = Indexed ? 5442 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5443 SDValue Ops[] = { Chain, Ptr, Offset }; 5444 FoldingSetNodeID ID; 5445 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5446 ID.AddInteger(MemVT.getRawBits()); 5447 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5448 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5449 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5450 void *IP = nullptr; 5451 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5452 cast<LoadSDNode>(E)->refineAlignment(MMO); 5453 return SDValue(E, 0); 5454 } 5455 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5456 ExtType, MemVT, MMO); 5457 createOperands(N, Ops); 5458 5459 CSEMap.InsertNode(N, IP); 5460 InsertNode(N); 5461 return SDValue(N, 0); 5462 } 5463 5464 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5465 SDValue Ptr, MachinePointerInfo PtrInfo, 5466 unsigned Alignment, 5467 MachineMemOperand::Flags MMOFlags, 5468 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5469 SDValue Undef = getUNDEF(Ptr.getValueType()); 5470 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5471 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5472 } 5473 5474 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5475 SDValue Ptr, MachineMemOperand *MMO) { 5476 SDValue Undef = getUNDEF(Ptr.getValueType()); 5477 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5478 VT, MMO); 5479 } 5480 5481 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5482 EVT VT, SDValue Chain, SDValue Ptr, 5483 MachinePointerInfo PtrInfo, EVT MemVT, 5484 unsigned Alignment, 5485 MachineMemOperand::Flags MMOFlags, 5486 const AAMDNodes &AAInfo) { 5487 SDValue Undef = getUNDEF(Ptr.getValueType()); 5488 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5489 MemVT, Alignment, MMOFlags, AAInfo); 5490 } 5491 5492 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5493 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5494 MachineMemOperand *MMO) { 5495 SDValue Undef = getUNDEF(Ptr.getValueType()); 5496 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5497 MemVT, MMO); 5498 } 5499 5500 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5501 SDValue Base, SDValue Offset, 5502 ISD::MemIndexedMode AM) { 5503 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5504 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5505 // Don't propagate the invariant or dereferenceable flags. 5506 auto MMOFlags = 5507 LD->getMemOperand()->getFlags() & 5508 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5509 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5510 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5511 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5512 LD->getAAInfo()); 5513 } 5514 5515 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5516 SDValue Ptr, MachinePointerInfo PtrInfo, 5517 unsigned Alignment, 5518 MachineMemOperand::Flags MMOFlags, 5519 const AAMDNodes &AAInfo) { 5520 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5521 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5522 Alignment = getEVTAlignment(Val.getValueType()); 5523 5524 MMOFlags |= MachineMemOperand::MOStore; 5525 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5526 5527 if (PtrInfo.V.isNull()) 5528 PtrInfo = InferPointerInfo(*this, Ptr); 5529 5530 MachineFunction &MF = getMachineFunction(); 5531 MachineMemOperand *MMO = MF.getMachineMemOperand( 5532 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5533 return getStore(Chain, dl, Val, Ptr, MMO); 5534 } 5535 5536 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5537 SDValue Ptr, MachineMemOperand *MMO) { 5538 assert(Chain.getValueType() == MVT::Other && 5539 "Invalid chain type"); 5540 EVT VT = Val.getValueType(); 5541 SDVTList VTs = getVTList(MVT::Other); 5542 SDValue Undef = getUNDEF(Ptr.getValueType()); 5543 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5544 FoldingSetNodeID ID; 5545 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5546 ID.AddInteger(VT.getRawBits()); 5547 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5548 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5549 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5550 void *IP = nullptr; 5551 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5552 cast<StoreSDNode>(E)->refineAlignment(MMO); 5553 return SDValue(E, 0); 5554 } 5555 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5556 ISD::UNINDEXED, false, VT, MMO); 5557 createOperands(N, Ops); 5558 5559 CSEMap.InsertNode(N, IP); 5560 InsertNode(N); 5561 return SDValue(N, 0); 5562 } 5563 5564 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5565 SDValue Ptr, MachinePointerInfo PtrInfo, 5566 EVT SVT, unsigned Alignment, 5567 MachineMemOperand::Flags MMOFlags, 5568 const AAMDNodes &AAInfo) { 5569 assert(Chain.getValueType() == MVT::Other && 5570 "Invalid chain type"); 5571 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5572 Alignment = getEVTAlignment(SVT); 5573 5574 MMOFlags |= MachineMemOperand::MOStore; 5575 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5576 5577 if (PtrInfo.V.isNull()) 5578 PtrInfo = InferPointerInfo(*this, Ptr); 5579 5580 MachineFunction &MF = getMachineFunction(); 5581 MachineMemOperand *MMO = MF.getMachineMemOperand( 5582 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5583 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5584 } 5585 5586 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5587 SDValue Ptr, EVT SVT, 5588 MachineMemOperand *MMO) { 5589 EVT VT = Val.getValueType(); 5590 5591 assert(Chain.getValueType() == MVT::Other && 5592 "Invalid chain type"); 5593 if (VT == SVT) 5594 return getStore(Chain, dl, Val, Ptr, MMO); 5595 5596 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5597 "Should only be a truncating store, not extending!"); 5598 assert(VT.isInteger() == SVT.isInteger() && 5599 "Can't do FP-INT conversion!"); 5600 assert(VT.isVector() == SVT.isVector() && 5601 "Cannot use trunc store to convert to or from a vector!"); 5602 assert((!VT.isVector() || 5603 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5604 "Cannot use trunc store to change the number of vector elements!"); 5605 5606 SDVTList VTs = getVTList(MVT::Other); 5607 SDValue Undef = getUNDEF(Ptr.getValueType()); 5608 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5609 FoldingSetNodeID ID; 5610 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5611 ID.AddInteger(SVT.getRawBits()); 5612 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5613 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5614 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5615 void *IP = nullptr; 5616 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5617 cast<StoreSDNode>(E)->refineAlignment(MMO); 5618 return SDValue(E, 0); 5619 } 5620 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5621 ISD::UNINDEXED, true, SVT, MMO); 5622 createOperands(N, Ops); 5623 5624 CSEMap.InsertNode(N, IP); 5625 InsertNode(N); 5626 return SDValue(N, 0); 5627 } 5628 5629 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5630 SDValue Base, SDValue Offset, 5631 ISD::MemIndexedMode AM) { 5632 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5633 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5634 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5635 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5636 FoldingSetNodeID ID; 5637 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5638 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5639 ID.AddInteger(ST->getRawSubclassData()); 5640 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5641 void *IP = nullptr; 5642 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5643 return SDValue(E, 0); 5644 5645 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5646 ST->isTruncatingStore(), ST->getMemoryVT(), 5647 ST->getMemOperand()); 5648 createOperands(N, Ops); 5649 5650 CSEMap.InsertNode(N, IP); 5651 InsertNode(N); 5652 return SDValue(N, 0); 5653 } 5654 5655 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5656 SDValue Ptr, SDValue Mask, SDValue Src0, 5657 EVT MemVT, MachineMemOperand *MMO, 5658 ISD::LoadExtType ExtTy, bool isExpanding) { 5659 5660 SDVTList VTs = getVTList(VT, MVT::Other); 5661 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5662 FoldingSetNodeID ID; 5663 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5664 ID.AddInteger(VT.getRawBits()); 5665 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5666 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5667 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5668 void *IP = nullptr; 5669 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5670 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5671 return SDValue(E, 0); 5672 } 5673 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5674 ExtTy, isExpanding, MemVT, MMO); 5675 createOperands(N, Ops); 5676 5677 CSEMap.InsertNode(N, IP); 5678 InsertNode(N); 5679 return SDValue(N, 0); 5680 } 5681 5682 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5683 SDValue Val, SDValue Ptr, SDValue Mask, 5684 EVT MemVT, MachineMemOperand *MMO, 5685 bool IsTruncating, bool IsCompressing) { 5686 assert(Chain.getValueType() == MVT::Other && 5687 "Invalid chain type"); 5688 EVT VT = Val.getValueType(); 5689 SDVTList VTs = getVTList(MVT::Other); 5690 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5691 FoldingSetNodeID ID; 5692 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5693 ID.AddInteger(VT.getRawBits()); 5694 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5695 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5696 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5697 void *IP = nullptr; 5698 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5699 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5700 return SDValue(E, 0); 5701 } 5702 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5703 IsTruncating, IsCompressing, MemVT, MMO); 5704 createOperands(N, Ops); 5705 5706 CSEMap.InsertNode(N, IP); 5707 InsertNode(N); 5708 return SDValue(N, 0); 5709 } 5710 5711 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5712 ArrayRef<SDValue> Ops, 5713 MachineMemOperand *MMO) { 5714 assert(Ops.size() == 5 && "Incompatible number of operands"); 5715 5716 FoldingSetNodeID ID; 5717 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5718 ID.AddInteger(VT.getRawBits()); 5719 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5720 dl.getIROrder(), VTs, VT, MMO)); 5721 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5722 void *IP = nullptr; 5723 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5724 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5725 return SDValue(E, 0); 5726 } 5727 5728 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5729 VTs, VT, MMO); 5730 createOperands(N, Ops); 5731 5732 assert(N->getValue().getValueType() == N->getValueType(0) && 5733 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5734 assert(N->getMask().getValueType().getVectorNumElements() == 5735 N->getValueType(0).getVectorNumElements() && 5736 "Vector width mismatch between mask and data"); 5737 assert(N->getIndex().getValueType().getVectorNumElements() == 5738 N->getValueType(0).getVectorNumElements() && 5739 "Vector width mismatch between index and data"); 5740 5741 CSEMap.InsertNode(N, IP); 5742 InsertNode(N); 5743 return SDValue(N, 0); 5744 } 5745 5746 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5747 ArrayRef<SDValue> Ops, 5748 MachineMemOperand *MMO) { 5749 assert(Ops.size() == 5 && "Incompatible number of operands"); 5750 5751 FoldingSetNodeID ID; 5752 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5753 ID.AddInteger(VT.getRawBits()); 5754 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5755 dl.getIROrder(), VTs, VT, MMO)); 5756 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5757 void *IP = nullptr; 5758 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5759 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5760 return SDValue(E, 0); 5761 } 5762 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5763 VTs, VT, MMO); 5764 createOperands(N, Ops); 5765 5766 assert(N->getMask().getValueType().getVectorNumElements() == 5767 N->getValue().getValueType().getVectorNumElements() && 5768 "Vector width mismatch between mask and data"); 5769 assert(N->getIndex().getValueType().getVectorNumElements() == 5770 N->getValue().getValueType().getVectorNumElements() && 5771 "Vector width mismatch between index and data"); 5772 5773 CSEMap.InsertNode(N, IP); 5774 InsertNode(N); 5775 return SDValue(N, 0); 5776 } 5777 5778 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5779 SDValue Ptr, SDValue SV, unsigned Align) { 5780 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5781 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5782 } 5783 5784 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5785 ArrayRef<SDUse> Ops) { 5786 switch (Ops.size()) { 5787 case 0: return getNode(Opcode, DL, VT); 5788 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5789 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5790 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5791 default: break; 5792 } 5793 5794 // Copy from an SDUse array into an SDValue array for use with 5795 // the regular getNode logic. 5796 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5797 return getNode(Opcode, DL, VT, NewOps); 5798 } 5799 5800 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5801 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5802 unsigned NumOps = Ops.size(); 5803 switch (NumOps) { 5804 case 0: return getNode(Opcode, DL, VT); 5805 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5806 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5807 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5808 default: break; 5809 } 5810 5811 switch (Opcode) { 5812 default: break; 5813 case ISD::CONCAT_VECTORS: { 5814 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5815 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5816 return V; 5817 break; 5818 } 5819 case ISD::SELECT_CC: { 5820 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5821 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5822 "LHS and RHS of condition must have same type!"); 5823 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5824 "True and False arms of SelectCC must have same type!"); 5825 assert(Ops[2].getValueType() == VT && 5826 "select_cc node must be of same type as true and false value!"); 5827 break; 5828 } 5829 case ISD::BR_CC: { 5830 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5831 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5832 "LHS/RHS of comparison should match types!"); 5833 break; 5834 } 5835 } 5836 5837 // Memoize nodes. 5838 SDNode *N; 5839 SDVTList VTs = getVTList(VT); 5840 5841 if (VT != MVT::Glue) { 5842 FoldingSetNodeID ID; 5843 AddNodeIDNode(ID, Opcode, VTs, Ops); 5844 void *IP = nullptr; 5845 5846 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5847 return SDValue(E, 0); 5848 5849 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5850 createOperands(N, Ops); 5851 5852 CSEMap.InsertNode(N, IP); 5853 } else { 5854 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5855 createOperands(N, Ops); 5856 } 5857 5858 InsertNode(N); 5859 return SDValue(N, 0); 5860 } 5861 5862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5863 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5864 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5865 } 5866 5867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5868 ArrayRef<SDValue> Ops) { 5869 if (VTList.NumVTs == 1) 5870 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5871 5872 #if 0 5873 switch (Opcode) { 5874 // FIXME: figure out how to safely handle things like 5875 // int foo(int x) { return 1 << (x & 255); } 5876 // int bar() { return foo(256); } 5877 case ISD::SRA_PARTS: 5878 case ISD::SRL_PARTS: 5879 case ISD::SHL_PARTS: 5880 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5881 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5882 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5883 else if (N3.getOpcode() == ISD::AND) 5884 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5885 // If the and is only masking out bits that cannot effect the shift, 5886 // eliminate the and. 5887 unsigned NumBits = VT.getScalarSizeInBits()*2; 5888 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5889 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5890 } 5891 break; 5892 } 5893 #endif 5894 5895 // Memoize the node unless it returns a flag. 5896 SDNode *N; 5897 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5898 FoldingSetNodeID ID; 5899 AddNodeIDNode(ID, Opcode, VTList, Ops); 5900 void *IP = nullptr; 5901 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5902 return SDValue(E, 0); 5903 5904 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5905 createOperands(N, Ops); 5906 CSEMap.InsertNode(N, IP); 5907 } else { 5908 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5909 createOperands(N, Ops); 5910 } 5911 InsertNode(N); 5912 return SDValue(N, 0); 5913 } 5914 5915 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5916 SDVTList VTList) { 5917 return getNode(Opcode, DL, VTList, None); 5918 } 5919 5920 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5921 SDValue N1) { 5922 SDValue Ops[] = { N1 }; 5923 return getNode(Opcode, DL, VTList, Ops); 5924 } 5925 5926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5927 SDValue N1, SDValue N2) { 5928 SDValue Ops[] = { N1, N2 }; 5929 return getNode(Opcode, DL, VTList, Ops); 5930 } 5931 5932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5933 SDValue N1, SDValue N2, SDValue N3) { 5934 SDValue Ops[] = { N1, N2, N3 }; 5935 return getNode(Opcode, DL, VTList, Ops); 5936 } 5937 5938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5939 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5940 SDValue Ops[] = { N1, N2, N3, N4 }; 5941 return getNode(Opcode, DL, VTList, Ops); 5942 } 5943 5944 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5945 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5946 SDValue N5) { 5947 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5948 return getNode(Opcode, DL, VTList, Ops); 5949 } 5950 5951 SDVTList SelectionDAG::getVTList(EVT VT) { 5952 return makeVTList(SDNode::getValueTypeList(VT), 1); 5953 } 5954 5955 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5956 FoldingSetNodeID ID; 5957 ID.AddInteger(2U); 5958 ID.AddInteger(VT1.getRawBits()); 5959 ID.AddInteger(VT2.getRawBits()); 5960 5961 void *IP = nullptr; 5962 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5963 if (!Result) { 5964 EVT *Array = Allocator.Allocate<EVT>(2); 5965 Array[0] = VT1; 5966 Array[1] = VT2; 5967 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5968 VTListMap.InsertNode(Result, IP); 5969 } 5970 return Result->getSDVTList(); 5971 } 5972 5973 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5974 FoldingSetNodeID ID; 5975 ID.AddInteger(3U); 5976 ID.AddInteger(VT1.getRawBits()); 5977 ID.AddInteger(VT2.getRawBits()); 5978 ID.AddInteger(VT3.getRawBits()); 5979 5980 void *IP = nullptr; 5981 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5982 if (!Result) { 5983 EVT *Array = Allocator.Allocate<EVT>(3); 5984 Array[0] = VT1; 5985 Array[1] = VT2; 5986 Array[2] = VT3; 5987 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5988 VTListMap.InsertNode(Result, IP); 5989 } 5990 return Result->getSDVTList(); 5991 } 5992 5993 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5994 FoldingSetNodeID ID; 5995 ID.AddInteger(4U); 5996 ID.AddInteger(VT1.getRawBits()); 5997 ID.AddInteger(VT2.getRawBits()); 5998 ID.AddInteger(VT3.getRawBits()); 5999 ID.AddInteger(VT4.getRawBits()); 6000 6001 void *IP = nullptr; 6002 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6003 if (!Result) { 6004 EVT *Array = Allocator.Allocate<EVT>(4); 6005 Array[0] = VT1; 6006 Array[1] = VT2; 6007 Array[2] = VT3; 6008 Array[3] = VT4; 6009 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6010 VTListMap.InsertNode(Result, IP); 6011 } 6012 return Result->getSDVTList(); 6013 } 6014 6015 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6016 unsigned NumVTs = VTs.size(); 6017 FoldingSetNodeID ID; 6018 ID.AddInteger(NumVTs); 6019 for (unsigned index = 0; index < NumVTs; index++) { 6020 ID.AddInteger(VTs[index].getRawBits()); 6021 } 6022 6023 void *IP = nullptr; 6024 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6025 if (!Result) { 6026 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6027 std::copy(VTs.begin(), VTs.end(), Array); 6028 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6029 VTListMap.InsertNode(Result, IP); 6030 } 6031 return Result->getSDVTList(); 6032 } 6033 6034 6035 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6036 /// specified operands. If the resultant node already exists in the DAG, 6037 /// this does not modify the specified node, instead it returns the node that 6038 /// already exists. If the resultant node does not exist in the DAG, the 6039 /// input node is returned. As a degenerate case, if you specify the same 6040 /// input operands as the node already has, the input node is returned. 6041 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6042 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6043 6044 // Check to see if there is no change. 6045 if (Op == N->getOperand(0)) return N; 6046 6047 // See if the modified node already exists. 6048 void *InsertPos = nullptr; 6049 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6050 return Existing; 6051 6052 // Nope it doesn't. Remove the node from its current place in the maps. 6053 if (InsertPos) 6054 if (!RemoveNodeFromCSEMaps(N)) 6055 InsertPos = nullptr; 6056 6057 // Now we update the operands. 6058 N->OperandList[0].set(Op); 6059 6060 // If this gets put into a CSE map, add it. 6061 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6062 return N; 6063 } 6064 6065 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6066 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6067 6068 // Check to see if there is no change. 6069 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6070 return N; // No operands changed, just return the input node. 6071 6072 // See if the modified node already exists. 6073 void *InsertPos = nullptr; 6074 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6075 return Existing; 6076 6077 // Nope it doesn't. Remove the node from its current place in the maps. 6078 if (InsertPos) 6079 if (!RemoveNodeFromCSEMaps(N)) 6080 InsertPos = nullptr; 6081 6082 // Now we update the operands. 6083 if (N->OperandList[0] != Op1) 6084 N->OperandList[0].set(Op1); 6085 if (N->OperandList[1] != Op2) 6086 N->OperandList[1].set(Op2); 6087 6088 // If this gets put into a CSE map, add it. 6089 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6090 return N; 6091 } 6092 6093 SDNode *SelectionDAG:: 6094 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6095 SDValue Ops[] = { Op1, Op2, Op3 }; 6096 return UpdateNodeOperands(N, Ops); 6097 } 6098 6099 SDNode *SelectionDAG:: 6100 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6101 SDValue Op3, SDValue Op4) { 6102 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6103 return UpdateNodeOperands(N, Ops); 6104 } 6105 6106 SDNode *SelectionDAG:: 6107 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6108 SDValue Op3, SDValue Op4, SDValue Op5) { 6109 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6110 return UpdateNodeOperands(N, Ops); 6111 } 6112 6113 SDNode *SelectionDAG:: 6114 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6115 unsigned NumOps = Ops.size(); 6116 assert(N->getNumOperands() == NumOps && 6117 "Update with wrong number of operands"); 6118 6119 // If no operands changed just return the input node. 6120 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6121 return N; 6122 6123 // See if the modified node already exists. 6124 void *InsertPos = nullptr; 6125 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6126 return Existing; 6127 6128 // Nope it doesn't. Remove the node from its current place in the maps. 6129 if (InsertPos) 6130 if (!RemoveNodeFromCSEMaps(N)) 6131 InsertPos = nullptr; 6132 6133 // Now we update the operands. 6134 for (unsigned i = 0; i != NumOps; ++i) 6135 if (N->OperandList[i] != Ops[i]) 6136 N->OperandList[i].set(Ops[i]); 6137 6138 // If this gets put into a CSE map, add it. 6139 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6140 return N; 6141 } 6142 6143 /// DropOperands - Release the operands and set this node to have 6144 /// zero operands. 6145 void SDNode::DropOperands() { 6146 // Unlike the code in MorphNodeTo that does this, we don't need to 6147 // watch for dead nodes here. 6148 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6149 SDUse &Use = *I++; 6150 Use.set(SDValue()); 6151 } 6152 } 6153 6154 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6155 /// machine opcode. 6156 /// 6157 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6158 EVT VT) { 6159 SDVTList VTs = getVTList(VT); 6160 return SelectNodeTo(N, MachineOpc, VTs, None); 6161 } 6162 6163 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6164 EVT VT, SDValue Op1) { 6165 SDVTList VTs = getVTList(VT); 6166 SDValue Ops[] = { Op1 }; 6167 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6168 } 6169 6170 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6171 EVT VT, SDValue Op1, 6172 SDValue Op2) { 6173 SDVTList VTs = getVTList(VT); 6174 SDValue Ops[] = { Op1, Op2 }; 6175 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6176 } 6177 6178 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6179 EVT VT, SDValue Op1, 6180 SDValue Op2, SDValue Op3) { 6181 SDVTList VTs = getVTList(VT); 6182 SDValue Ops[] = { Op1, Op2, Op3 }; 6183 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6184 } 6185 6186 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6187 EVT VT, ArrayRef<SDValue> Ops) { 6188 SDVTList VTs = getVTList(VT); 6189 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6190 } 6191 6192 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6193 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6194 SDVTList VTs = getVTList(VT1, VT2); 6195 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6196 } 6197 6198 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6199 EVT VT1, EVT VT2) { 6200 SDVTList VTs = getVTList(VT1, VT2); 6201 return SelectNodeTo(N, MachineOpc, VTs, None); 6202 } 6203 6204 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6205 EVT VT1, EVT VT2, EVT VT3, 6206 ArrayRef<SDValue> Ops) { 6207 SDVTList VTs = getVTList(VT1, VT2, VT3); 6208 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6209 } 6210 6211 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6212 EVT VT1, EVT VT2, 6213 SDValue Op1, SDValue Op2) { 6214 SDVTList VTs = getVTList(VT1, VT2); 6215 SDValue Ops[] = { Op1, Op2 }; 6216 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6217 } 6218 6219 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6220 SDVTList VTs,ArrayRef<SDValue> Ops) { 6221 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6222 // Reset the NodeID to -1. 6223 New->setNodeId(-1); 6224 if (New != N) { 6225 ReplaceAllUsesWith(N, New); 6226 RemoveDeadNode(N); 6227 } 6228 return New; 6229 } 6230 6231 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6232 /// the line number information on the merged node since it is not possible to 6233 /// preserve the information that operation is associated with multiple lines. 6234 /// This will make the debugger working better at -O0, were there is a higher 6235 /// probability having other instructions associated with that line. 6236 /// 6237 /// For IROrder, we keep the smaller of the two 6238 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6239 DebugLoc NLoc = N->getDebugLoc(); 6240 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6241 N->setDebugLoc(DebugLoc()); 6242 } 6243 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6244 N->setIROrder(Order); 6245 return N; 6246 } 6247 6248 /// MorphNodeTo - This *mutates* the specified node to have the specified 6249 /// return type, opcode, and operands. 6250 /// 6251 /// Note that MorphNodeTo returns the resultant node. If there is already a 6252 /// node of the specified opcode and operands, it returns that node instead of 6253 /// the current one. Note that the SDLoc need not be the same. 6254 /// 6255 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6256 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6257 /// node, and because it doesn't require CSE recalculation for any of 6258 /// the node's users. 6259 /// 6260 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6261 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6262 /// the legalizer which maintain worklists that would need to be updated when 6263 /// deleting things. 6264 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6265 SDVTList VTs, ArrayRef<SDValue> Ops) { 6266 // If an identical node already exists, use it. 6267 void *IP = nullptr; 6268 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6269 FoldingSetNodeID ID; 6270 AddNodeIDNode(ID, Opc, VTs, Ops); 6271 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6272 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6273 } 6274 6275 if (!RemoveNodeFromCSEMaps(N)) 6276 IP = nullptr; 6277 6278 // Start the morphing. 6279 N->NodeType = Opc; 6280 N->ValueList = VTs.VTs; 6281 N->NumValues = VTs.NumVTs; 6282 6283 // Clear the operands list, updating used nodes to remove this from their 6284 // use list. Keep track of any operands that become dead as a result. 6285 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6286 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6287 SDUse &Use = *I++; 6288 SDNode *Used = Use.getNode(); 6289 Use.set(SDValue()); 6290 if (Used->use_empty()) 6291 DeadNodeSet.insert(Used); 6292 } 6293 6294 // For MachineNode, initialize the memory references information. 6295 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6296 MN->setMemRefs(nullptr, nullptr); 6297 6298 // Swap for an appropriately sized array from the recycler. 6299 removeOperands(N); 6300 createOperands(N, Ops); 6301 6302 // Delete any nodes that are still dead after adding the uses for the 6303 // new operands. 6304 if (!DeadNodeSet.empty()) { 6305 SmallVector<SDNode *, 16> DeadNodes; 6306 for (SDNode *N : DeadNodeSet) 6307 if (N->use_empty()) 6308 DeadNodes.push_back(N); 6309 RemoveDeadNodes(DeadNodes); 6310 } 6311 6312 if (IP) 6313 CSEMap.InsertNode(N, IP); // Memoize the new node. 6314 return N; 6315 } 6316 6317 6318 /// getMachineNode - These are used for target selectors to create a new node 6319 /// with specified return type(s), MachineInstr opcode, and operands. 6320 /// 6321 /// Note that getMachineNode returns the resultant node. If there is already a 6322 /// node of the specified opcode and operands, it returns that node instead of 6323 /// the current one. 6324 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6325 EVT VT) { 6326 SDVTList VTs = getVTList(VT); 6327 return getMachineNode(Opcode, dl, VTs, None); 6328 } 6329 6330 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6331 EVT VT, SDValue Op1) { 6332 SDVTList VTs = getVTList(VT); 6333 SDValue Ops[] = { Op1 }; 6334 return getMachineNode(Opcode, dl, VTs, Ops); 6335 } 6336 6337 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6338 EVT VT, SDValue Op1, SDValue Op2) { 6339 SDVTList VTs = getVTList(VT); 6340 SDValue Ops[] = { Op1, Op2 }; 6341 return getMachineNode(Opcode, dl, VTs, Ops); 6342 } 6343 6344 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6345 EVT VT, SDValue Op1, SDValue Op2, 6346 SDValue Op3) { 6347 SDVTList VTs = getVTList(VT); 6348 SDValue Ops[] = { Op1, Op2, Op3 }; 6349 return getMachineNode(Opcode, dl, VTs, Ops); 6350 } 6351 6352 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6353 EVT VT, ArrayRef<SDValue> Ops) { 6354 SDVTList VTs = getVTList(VT); 6355 return getMachineNode(Opcode, dl, VTs, Ops); 6356 } 6357 6358 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6359 EVT VT1, EVT VT2, SDValue Op1, 6360 SDValue Op2) { 6361 SDVTList VTs = getVTList(VT1, VT2); 6362 SDValue Ops[] = { Op1, Op2 }; 6363 return getMachineNode(Opcode, dl, VTs, Ops); 6364 } 6365 6366 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6367 EVT VT1, EVT VT2, SDValue Op1, 6368 SDValue Op2, SDValue Op3) { 6369 SDVTList VTs = getVTList(VT1, VT2); 6370 SDValue Ops[] = { Op1, Op2, Op3 }; 6371 return getMachineNode(Opcode, dl, VTs, Ops); 6372 } 6373 6374 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6375 EVT VT1, EVT VT2, 6376 ArrayRef<SDValue> Ops) { 6377 SDVTList VTs = getVTList(VT1, VT2); 6378 return getMachineNode(Opcode, dl, VTs, Ops); 6379 } 6380 6381 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6382 EVT VT1, EVT VT2, EVT VT3, 6383 SDValue Op1, SDValue Op2) { 6384 SDVTList VTs = getVTList(VT1, VT2, VT3); 6385 SDValue Ops[] = { Op1, Op2 }; 6386 return getMachineNode(Opcode, dl, VTs, Ops); 6387 } 6388 6389 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6390 EVT VT1, EVT VT2, EVT VT3, 6391 SDValue Op1, SDValue Op2, 6392 SDValue Op3) { 6393 SDVTList VTs = getVTList(VT1, VT2, VT3); 6394 SDValue Ops[] = { Op1, Op2, Op3 }; 6395 return getMachineNode(Opcode, dl, VTs, Ops); 6396 } 6397 6398 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6399 EVT VT1, EVT VT2, EVT VT3, 6400 ArrayRef<SDValue> Ops) { 6401 SDVTList VTs = getVTList(VT1, VT2, VT3); 6402 return getMachineNode(Opcode, dl, VTs, Ops); 6403 } 6404 6405 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6406 ArrayRef<EVT> ResultTys, 6407 ArrayRef<SDValue> Ops) { 6408 SDVTList VTs = getVTList(ResultTys); 6409 return getMachineNode(Opcode, dl, VTs, Ops); 6410 } 6411 6412 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6413 SDVTList VTs, 6414 ArrayRef<SDValue> Ops) { 6415 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6416 MachineSDNode *N; 6417 void *IP = nullptr; 6418 6419 if (DoCSE) { 6420 FoldingSetNodeID ID; 6421 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6422 IP = nullptr; 6423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6424 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6425 } 6426 } 6427 6428 // Allocate a new MachineSDNode. 6429 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6430 createOperands(N, Ops); 6431 6432 if (DoCSE) 6433 CSEMap.InsertNode(N, IP); 6434 6435 InsertNode(N); 6436 return N; 6437 } 6438 6439 /// getTargetExtractSubreg - A convenience function for creating 6440 /// TargetOpcode::EXTRACT_SUBREG nodes. 6441 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6442 SDValue Operand) { 6443 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6444 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6445 VT, Operand, SRIdxVal); 6446 return SDValue(Subreg, 0); 6447 } 6448 6449 /// getTargetInsertSubreg - A convenience function for creating 6450 /// TargetOpcode::INSERT_SUBREG nodes. 6451 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6452 SDValue Operand, SDValue Subreg) { 6453 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6454 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6455 VT, Operand, Subreg, SRIdxVal); 6456 return SDValue(Result, 0); 6457 } 6458 6459 /// getNodeIfExists - Get the specified node if it's already available, or 6460 /// else return NULL. 6461 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6462 ArrayRef<SDValue> Ops, 6463 const SDNodeFlags *Flags) { 6464 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6465 FoldingSetNodeID ID; 6466 AddNodeIDNode(ID, Opcode, VTList, Ops); 6467 void *IP = nullptr; 6468 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6469 if (Flags) 6470 E->intersectFlagsWith(Flags); 6471 return E; 6472 } 6473 } 6474 return nullptr; 6475 } 6476 6477 /// getDbgValue - Creates a SDDbgValue node. 6478 /// 6479 /// SDNode 6480 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6481 unsigned R, bool IsIndirect, uint64_t Off, 6482 const DebugLoc &DL, unsigned O) { 6483 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6484 "Expected inlined-at fields to agree"); 6485 return new (DbgInfo->getAlloc()) 6486 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6487 } 6488 6489 /// Constant 6490 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6491 const Value *C, uint64_t Off, 6492 const DebugLoc &DL, unsigned O) { 6493 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6494 "Expected inlined-at fields to agree"); 6495 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6496 } 6497 6498 /// FrameIndex 6499 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6500 unsigned FI, uint64_t Off, 6501 const DebugLoc &DL, 6502 unsigned O) { 6503 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6504 "Expected inlined-at fields to agree"); 6505 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6506 } 6507 6508 namespace { 6509 6510 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6511 /// pointed to by a use iterator is deleted, increment the use iterator 6512 /// so that it doesn't dangle. 6513 /// 6514 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6515 SDNode::use_iterator &UI; 6516 SDNode::use_iterator &UE; 6517 6518 void NodeDeleted(SDNode *N, SDNode *E) override { 6519 // Increment the iterator as needed. 6520 while (UI != UE && N == *UI) 6521 ++UI; 6522 } 6523 6524 public: 6525 RAUWUpdateListener(SelectionDAG &d, 6526 SDNode::use_iterator &ui, 6527 SDNode::use_iterator &ue) 6528 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6529 }; 6530 6531 } 6532 6533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6534 /// This can cause recursive merging of nodes in the DAG. 6535 /// 6536 /// This version assumes From has a single result value. 6537 /// 6538 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6539 SDNode *From = FromN.getNode(); 6540 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6541 "Cannot replace with this method!"); 6542 assert(From != To.getNode() && "Cannot replace uses of with self"); 6543 6544 // Preserve Debug Values 6545 TransferDbgValues(FromN, To); 6546 6547 // Iterate over all the existing uses of From. New uses will be added 6548 // to the beginning of the use list, which we avoid visiting. 6549 // This specifically avoids visiting uses of From that arise while the 6550 // replacement is happening, because any such uses would be the result 6551 // of CSE: If an existing node looks like From after one of its operands 6552 // is replaced by To, we don't want to replace of all its users with To 6553 // too. See PR3018 for more info. 6554 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6555 RAUWUpdateListener Listener(*this, UI, UE); 6556 while (UI != UE) { 6557 SDNode *User = *UI; 6558 6559 // This node is about to morph, remove its old self from the CSE maps. 6560 RemoveNodeFromCSEMaps(User); 6561 6562 // A user can appear in a use list multiple times, and when this 6563 // happens the uses are usually next to each other in the list. 6564 // To help reduce the number of CSE recomputations, process all 6565 // the uses of this user that we can find this way. 6566 do { 6567 SDUse &Use = UI.getUse(); 6568 ++UI; 6569 Use.set(To); 6570 } while (UI != UE && *UI == User); 6571 6572 // Now that we have modified User, add it back to the CSE maps. If it 6573 // already exists there, recursively merge the results together. 6574 AddModifiedNodeToCSEMaps(User); 6575 } 6576 6577 6578 // If we just RAUW'd the root, take note. 6579 if (FromN == getRoot()) 6580 setRoot(To); 6581 } 6582 6583 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6584 /// This can cause recursive merging of nodes in the DAG. 6585 /// 6586 /// This version assumes that for each value of From, there is a 6587 /// corresponding value in To in the same position with the same type. 6588 /// 6589 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6590 #ifndef NDEBUG 6591 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6592 assert((!From->hasAnyUseOfValue(i) || 6593 From->getValueType(i) == To->getValueType(i)) && 6594 "Cannot use this version of ReplaceAllUsesWith!"); 6595 #endif 6596 6597 // Handle the trivial case. 6598 if (From == To) 6599 return; 6600 6601 // Preserve Debug Info. Only do this if there's a use. 6602 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6603 if (From->hasAnyUseOfValue(i)) { 6604 assert((i < To->getNumValues()) && "Invalid To location"); 6605 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6606 } 6607 6608 // Iterate over just the existing users of From. See the comments in 6609 // the ReplaceAllUsesWith above. 6610 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6611 RAUWUpdateListener Listener(*this, UI, UE); 6612 while (UI != UE) { 6613 SDNode *User = *UI; 6614 6615 // This node is about to morph, remove its old self from the CSE maps. 6616 RemoveNodeFromCSEMaps(User); 6617 6618 // A user can appear in a use list multiple times, and when this 6619 // happens the uses are usually next to each other in the list. 6620 // To help reduce the number of CSE recomputations, process all 6621 // the uses of this user that we can find this way. 6622 do { 6623 SDUse &Use = UI.getUse(); 6624 ++UI; 6625 Use.setNode(To); 6626 } while (UI != UE && *UI == User); 6627 6628 // Now that we have modified User, add it back to the CSE maps. If it 6629 // already exists there, recursively merge the results together. 6630 AddModifiedNodeToCSEMaps(User); 6631 } 6632 6633 // If we just RAUW'd the root, take note. 6634 if (From == getRoot().getNode()) 6635 setRoot(SDValue(To, getRoot().getResNo())); 6636 } 6637 6638 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6639 /// This can cause recursive merging of nodes in the DAG. 6640 /// 6641 /// This version can replace From with any result values. To must match the 6642 /// number and types of values returned by From. 6643 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6644 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6645 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6646 6647 // Preserve Debug Info. 6648 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6649 TransferDbgValues(SDValue(From, i), *To); 6650 6651 // Iterate over just the existing users of From. See the comments in 6652 // the ReplaceAllUsesWith above. 6653 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6654 RAUWUpdateListener Listener(*this, UI, UE); 6655 while (UI != UE) { 6656 SDNode *User = *UI; 6657 6658 // This node is about to morph, remove its old self from the CSE maps. 6659 RemoveNodeFromCSEMaps(User); 6660 6661 // A user can appear in a use list multiple times, and when this 6662 // happens the uses are usually next to each other in the list. 6663 // To help reduce the number of CSE recomputations, process all 6664 // the uses of this user that we can find this way. 6665 do { 6666 SDUse &Use = UI.getUse(); 6667 const SDValue &ToOp = To[Use.getResNo()]; 6668 ++UI; 6669 Use.set(ToOp); 6670 } while (UI != UE && *UI == User); 6671 6672 // Now that we have modified User, add it back to the CSE maps. If it 6673 // already exists there, recursively merge the results together. 6674 AddModifiedNodeToCSEMaps(User); 6675 } 6676 6677 // If we just RAUW'd the root, take note. 6678 if (From == getRoot().getNode()) 6679 setRoot(SDValue(To[getRoot().getResNo()])); 6680 } 6681 6682 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6683 /// uses of other values produced by From.getNode() alone. The Deleted 6684 /// vector is handled the same way as for ReplaceAllUsesWith. 6685 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6686 // Handle the really simple, really trivial case efficiently. 6687 if (From == To) return; 6688 6689 // Handle the simple, trivial, case efficiently. 6690 if (From.getNode()->getNumValues() == 1) { 6691 ReplaceAllUsesWith(From, To); 6692 return; 6693 } 6694 6695 // Preserve Debug Info. 6696 TransferDbgValues(From, To); 6697 6698 // Iterate over just the existing users of From. See the comments in 6699 // the ReplaceAllUsesWith above. 6700 SDNode::use_iterator UI = From.getNode()->use_begin(), 6701 UE = From.getNode()->use_end(); 6702 RAUWUpdateListener Listener(*this, UI, UE); 6703 while (UI != UE) { 6704 SDNode *User = *UI; 6705 bool UserRemovedFromCSEMaps = false; 6706 6707 // A user can appear in a use list multiple times, and when this 6708 // happens the uses are usually next to each other in the list. 6709 // To help reduce the number of CSE recomputations, process all 6710 // the uses of this user that we can find this way. 6711 do { 6712 SDUse &Use = UI.getUse(); 6713 6714 // Skip uses of different values from the same node. 6715 if (Use.getResNo() != From.getResNo()) { 6716 ++UI; 6717 continue; 6718 } 6719 6720 // If this node hasn't been modified yet, it's still in the CSE maps, 6721 // so remove its old self from the CSE maps. 6722 if (!UserRemovedFromCSEMaps) { 6723 RemoveNodeFromCSEMaps(User); 6724 UserRemovedFromCSEMaps = true; 6725 } 6726 6727 ++UI; 6728 Use.set(To); 6729 } while (UI != UE && *UI == User); 6730 6731 // We are iterating over all uses of the From node, so if a use 6732 // doesn't use the specific value, no changes are made. 6733 if (!UserRemovedFromCSEMaps) 6734 continue; 6735 6736 // Now that we have modified User, add it back to the CSE maps. If it 6737 // already exists there, recursively merge the results together. 6738 AddModifiedNodeToCSEMaps(User); 6739 } 6740 6741 // If we just RAUW'd the root, take note. 6742 if (From == getRoot()) 6743 setRoot(To); 6744 } 6745 6746 namespace { 6747 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6748 /// to record information about a use. 6749 struct UseMemo { 6750 SDNode *User; 6751 unsigned Index; 6752 SDUse *Use; 6753 }; 6754 6755 /// operator< - Sort Memos by User. 6756 bool operator<(const UseMemo &L, const UseMemo &R) { 6757 return (intptr_t)L.User < (intptr_t)R.User; 6758 } 6759 } 6760 6761 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6762 /// uses of other values produced by From.getNode() alone. The same value 6763 /// may appear in both the From and To list. The Deleted vector is 6764 /// handled the same way as for ReplaceAllUsesWith. 6765 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6766 const SDValue *To, 6767 unsigned Num){ 6768 // Handle the simple, trivial case efficiently. 6769 if (Num == 1) 6770 return ReplaceAllUsesOfValueWith(*From, *To); 6771 6772 TransferDbgValues(*From, *To); 6773 6774 // Read up all the uses and make records of them. This helps 6775 // processing new uses that are introduced during the 6776 // replacement process. 6777 SmallVector<UseMemo, 4> Uses; 6778 for (unsigned i = 0; i != Num; ++i) { 6779 unsigned FromResNo = From[i].getResNo(); 6780 SDNode *FromNode = From[i].getNode(); 6781 for (SDNode::use_iterator UI = FromNode->use_begin(), 6782 E = FromNode->use_end(); UI != E; ++UI) { 6783 SDUse &Use = UI.getUse(); 6784 if (Use.getResNo() == FromResNo) { 6785 UseMemo Memo = { *UI, i, &Use }; 6786 Uses.push_back(Memo); 6787 } 6788 } 6789 } 6790 6791 // Sort the uses, so that all the uses from a given User are together. 6792 std::sort(Uses.begin(), Uses.end()); 6793 6794 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6795 UseIndex != UseIndexEnd; ) { 6796 // We know that this user uses some value of From. If it is the right 6797 // value, update it. 6798 SDNode *User = Uses[UseIndex].User; 6799 6800 // This node is about to morph, remove its old self from the CSE maps. 6801 RemoveNodeFromCSEMaps(User); 6802 6803 // The Uses array is sorted, so all the uses for a given User 6804 // are next to each other in the list. 6805 // To help reduce the number of CSE recomputations, process all 6806 // the uses of this user that we can find this way. 6807 do { 6808 unsigned i = Uses[UseIndex].Index; 6809 SDUse &Use = *Uses[UseIndex].Use; 6810 ++UseIndex; 6811 6812 Use.set(To[i]); 6813 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6814 6815 // Now that we have modified User, add it back to the CSE maps. If it 6816 // already exists there, recursively merge the results together. 6817 AddModifiedNodeToCSEMaps(User); 6818 } 6819 } 6820 6821 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6822 /// based on their topological order. It returns the maximum id and a vector 6823 /// of the SDNodes* in assigned order by reference. 6824 unsigned SelectionDAG::AssignTopologicalOrder() { 6825 6826 unsigned DAGSize = 0; 6827 6828 // SortedPos tracks the progress of the algorithm. Nodes before it are 6829 // sorted, nodes after it are unsorted. When the algorithm completes 6830 // it is at the end of the list. 6831 allnodes_iterator SortedPos = allnodes_begin(); 6832 6833 // Visit all the nodes. Move nodes with no operands to the front of 6834 // the list immediately. Annotate nodes that do have operands with their 6835 // operand count. Before we do this, the Node Id fields of the nodes 6836 // may contain arbitrary values. After, the Node Id fields for nodes 6837 // before SortedPos will contain the topological sort index, and the 6838 // Node Id fields for nodes At SortedPos and after will contain the 6839 // count of outstanding operands. 6840 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6841 SDNode *N = &*I++; 6842 checkForCycles(N, this); 6843 unsigned Degree = N->getNumOperands(); 6844 if (Degree == 0) { 6845 // A node with no uses, add it to the result array immediately. 6846 N->setNodeId(DAGSize++); 6847 allnodes_iterator Q(N); 6848 if (Q != SortedPos) 6849 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6850 assert(SortedPos != AllNodes.end() && "Overran node list"); 6851 ++SortedPos; 6852 } else { 6853 // Temporarily use the Node Id as scratch space for the degree count. 6854 N->setNodeId(Degree); 6855 } 6856 } 6857 6858 // Visit all the nodes. As we iterate, move nodes into sorted order, 6859 // such that by the time the end is reached all nodes will be sorted. 6860 for (SDNode &Node : allnodes()) { 6861 SDNode *N = &Node; 6862 checkForCycles(N, this); 6863 // N is in sorted position, so all its uses have one less operand 6864 // that needs to be sorted. 6865 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6866 UI != UE; ++UI) { 6867 SDNode *P = *UI; 6868 unsigned Degree = P->getNodeId(); 6869 assert(Degree != 0 && "Invalid node degree"); 6870 --Degree; 6871 if (Degree == 0) { 6872 // All of P's operands are sorted, so P may sorted now. 6873 P->setNodeId(DAGSize++); 6874 if (P->getIterator() != SortedPos) 6875 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6876 assert(SortedPos != AllNodes.end() && "Overran node list"); 6877 ++SortedPos; 6878 } else { 6879 // Update P's outstanding operand count. 6880 P->setNodeId(Degree); 6881 } 6882 } 6883 if (Node.getIterator() == SortedPos) { 6884 #ifndef NDEBUG 6885 allnodes_iterator I(N); 6886 SDNode *S = &*++I; 6887 dbgs() << "Overran sorted position:\n"; 6888 S->dumprFull(this); dbgs() << "\n"; 6889 dbgs() << "Checking if this is due to cycles\n"; 6890 checkForCycles(this, true); 6891 #endif 6892 llvm_unreachable(nullptr); 6893 } 6894 } 6895 6896 assert(SortedPos == AllNodes.end() && 6897 "Topological sort incomplete!"); 6898 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6899 "First node in topological sort is not the entry token!"); 6900 assert(AllNodes.front().getNodeId() == 0 && 6901 "First node in topological sort has non-zero id!"); 6902 assert(AllNodes.front().getNumOperands() == 0 && 6903 "First node in topological sort has operands!"); 6904 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6905 "Last node in topologic sort has unexpected id!"); 6906 assert(AllNodes.back().use_empty() && 6907 "Last node in topologic sort has users!"); 6908 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6909 return DAGSize; 6910 } 6911 6912 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6913 /// value is produced by SD. 6914 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6915 if (SD) { 6916 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6917 SD->setHasDebugValue(true); 6918 } 6919 DbgInfo->add(DB, SD, isParameter); 6920 } 6921 6922 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6923 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6924 if (From == To || !From.getNode()->getHasDebugValue()) 6925 return; 6926 SDNode *FromNode = From.getNode(); 6927 SDNode *ToNode = To.getNode(); 6928 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6929 SmallVector<SDDbgValue *, 2> ClonedDVs; 6930 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6931 I != E; ++I) { 6932 SDDbgValue *Dbg = *I; 6933 // Only add Dbgvalues attached to same ResNo. 6934 if (Dbg->getKind() == SDDbgValue::SDNODE && 6935 Dbg->getSDNode() == From.getNode() && 6936 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 6937 assert(FromNode != ToNode && 6938 "Should not transfer Debug Values intranode"); 6939 SDDbgValue *Clone = 6940 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6941 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6942 Dbg->getDebugLoc(), Dbg->getOrder()); 6943 ClonedDVs.push_back(Clone); 6944 Dbg->setIsInvalidated(); 6945 } 6946 } 6947 for (SDDbgValue *I : ClonedDVs) 6948 AddDbgValue(I, ToNode, false); 6949 } 6950 6951 //===----------------------------------------------------------------------===// 6952 // SDNode Class 6953 //===----------------------------------------------------------------------===// 6954 6955 bool llvm::isNullConstant(SDValue V) { 6956 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6957 return Const != nullptr && Const->isNullValue(); 6958 } 6959 6960 bool llvm::isNullFPConstant(SDValue V) { 6961 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6962 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6963 } 6964 6965 bool llvm::isAllOnesConstant(SDValue V) { 6966 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6967 return Const != nullptr && Const->isAllOnesValue(); 6968 } 6969 6970 bool llvm::isOneConstant(SDValue V) { 6971 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6972 return Const != nullptr && Const->isOne(); 6973 } 6974 6975 bool llvm::isBitwiseNot(SDValue V) { 6976 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6977 } 6978 6979 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 6980 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 6981 return CN; 6982 6983 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6984 BitVector UndefElements; 6985 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 6986 6987 // BuildVectors can truncate their operands. Ignore that case here. 6988 // FIXME: We blindly ignore splats which include undef which is overly 6989 // pessimistic. 6990 if (CN && UndefElements.none() && 6991 CN->getValueType(0) == N.getValueType().getScalarType()) 6992 return CN; 6993 } 6994 6995 return nullptr; 6996 } 6997 6998 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 6999 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7000 return CN; 7001 7002 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7003 BitVector UndefElements; 7004 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7005 7006 if (CN && UndefElements.none()) 7007 return CN; 7008 } 7009 7010 return nullptr; 7011 } 7012 7013 HandleSDNode::~HandleSDNode() { 7014 DropOperands(); 7015 } 7016 7017 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7018 const DebugLoc &DL, 7019 const GlobalValue *GA, EVT VT, 7020 int64_t o, unsigned char TF) 7021 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7022 TheGlobal = GA; 7023 } 7024 7025 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7026 EVT VT, unsigned SrcAS, 7027 unsigned DestAS) 7028 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7029 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7030 7031 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7032 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7033 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7034 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7035 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7036 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7037 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7038 7039 // We check here that the size of the memory operand fits within the size of 7040 // the MMO. This is because the MMO might indicate only a possible address 7041 // range instead of specifying the affected memory addresses precisely. 7042 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7043 } 7044 7045 /// Profile - Gather unique data for the node. 7046 /// 7047 void SDNode::Profile(FoldingSetNodeID &ID) const { 7048 AddNodeIDNode(ID, this); 7049 } 7050 7051 namespace { 7052 struct EVTArray { 7053 std::vector<EVT> VTs; 7054 7055 EVTArray() { 7056 VTs.reserve(MVT::LAST_VALUETYPE); 7057 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7058 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7059 } 7060 }; 7061 } 7062 7063 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 7064 static ManagedStatic<EVTArray> SimpleVTArray; 7065 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 7066 7067 /// getValueTypeList - Return a pointer to the specified value type. 7068 /// 7069 const EVT *SDNode::getValueTypeList(EVT VT) { 7070 if (VT.isExtended()) { 7071 sys::SmartScopedLock<true> Lock(*VTMutex); 7072 return &(*EVTs->insert(VT).first); 7073 } else { 7074 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7075 "Value type out of range!"); 7076 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7077 } 7078 } 7079 7080 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7081 /// indicated value. This method ignores uses of other values defined by this 7082 /// operation. 7083 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7084 assert(Value < getNumValues() && "Bad value!"); 7085 7086 // TODO: Only iterate over uses of a given value of the node 7087 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7088 if (UI.getUse().getResNo() == Value) { 7089 if (NUses == 0) 7090 return false; 7091 --NUses; 7092 } 7093 } 7094 7095 // Found exactly the right number of uses? 7096 return NUses == 0; 7097 } 7098 7099 7100 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7101 /// value. This method ignores uses of other values defined by this operation. 7102 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7103 assert(Value < getNumValues() && "Bad value!"); 7104 7105 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7106 if (UI.getUse().getResNo() == Value) 7107 return true; 7108 7109 return false; 7110 } 7111 7112 7113 /// isOnlyUserOf - Return true if this node is the only use of N. 7114 /// 7115 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7116 bool Seen = false; 7117 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7118 SDNode *User = *I; 7119 if (User == this) 7120 Seen = true; 7121 else 7122 return false; 7123 } 7124 7125 return Seen; 7126 } 7127 7128 /// isOperand - Return true if this node is an operand of N. 7129 /// 7130 bool SDValue::isOperandOf(const SDNode *N) const { 7131 for (const SDValue &Op : N->op_values()) 7132 if (*this == Op) 7133 return true; 7134 return false; 7135 } 7136 7137 bool SDNode::isOperandOf(const SDNode *N) const { 7138 for (const SDValue &Op : N->op_values()) 7139 if (this == Op.getNode()) 7140 return true; 7141 return false; 7142 } 7143 7144 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7145 /// be a chain) reaches the specified operand without crossing any 7146 /// side-effecting instructions on any chain path. In practice, this looks 7147 /// through token factors and non-volatile loads. In order to remain efficient, 7148 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7149 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7150 unsigned Depth) const { 7151 if (*this == Dest) return true; 7152 7153 // Don't search too deeply, we just want to be able to see through 7154 // TokenFactor's etc. 7155 if (Depth == 0) return false; 7156 7157 // If this is a token factor, all inputs to the TF happen in parallel. If any 7158 // of the operands of the TF does not reach dest, then we cannot do the xform. 7159 if (getOpcode() == ISD::TokenFactor) { 7160 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7161 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 7162 return false; 7163 return true; 7164 } 7165 7166 // Loads don't have side effects, look through them. 7167 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7168 if (!Ld->isVolatile()) 7169 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7170 } 7171 return false; 7172 } 7173 7174 bool SDNode::hasPredecessor(const SDNode *N) const { 7175 SmallPtrSet<const SDNode *, 32> Visited; 7176 SmallVector<const SDNode *, 16> Worklist; 7177 Worklist.push_back(this); 7178 return hasPredecessorHelper(N, Visited, Worklist); 7179 } 7180 7181 const SDNodeFlags *SDNode::getFlags() const { 7182 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7183 return &FlagsNode->Flags; 7184 return nullptr; 7185 } 7186 7187 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 7188 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7189 FlagsNode->Flags.intersectWith(Flags); 7190 } 7191 7192 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7193 assert(N->getNumValues() == 1 && 7194 "Can't unroll a vector with multiple results!"); 7195 7196 EVT VT = N->getValueType(0); 7197 unsigned NE = VT.getVectorNumElements(); 7198 EVT EltVT = VT.getVectorElementType(); 7199 SDLoc dl(N); 7200 7201 SmallVector<SDValue, 8> Scalars; 7202 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7203 7204 // If ResNE is 0, fully unroll the vector op. 7205 if (ResNE == 0) 7206 ResNE = NE; 7207 else if (NE > ResNE) 7208 NE = ResNE; 7209 7210 unsigned i; 7211 for (i= 0; i != NE; ++i) { 7212 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7213 SDValue Operand = N->getOperand(j); 7214 EVT OperandVT = Operand.getValueType(); 7215 if (OperandVT.isVector()) { 7216 // A vector operand; extract a single element. 7217 EVT OperandEltVT = OperandVT.getVectorElementType(); 7218 Operands[j] = 7219 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7220 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7221 } else { 7222 // A scalar operand; just use it as is. 7223 Operands[j] = Operand; 7224 } 7225 } 7226 7227 switch (N->getOpcode()) { 7228 default: { 7229 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7230 N->getFlags())); 7231 break; 7232 } 7233 case ISD::VSELECT: 7234 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7235 break; 7236 case ISD::SHL: 7237 case ISD::SRA: 7238 case ISD::SRL: 7239 case ISD::ROTL: 7240 case ISD::ROTR: 7241 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7242 getShiftAmountOperand(Operands[0].getValueType(), 7243 Operands[1]))); 7244 break; 7245 case ISD::SIGN_EXTEND_INREG: 7246 case ISD::FP_ROUND_INREG: { 7247 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7248 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7249 Operands[0], 7250 getValueType(ExtVT))); 7251 } 7252 } 7253 } 7254 7255 for (; i < ResNE; ++i) 7256 Scalars.push_back(getUNDEF(EltVT)); 7257 7258 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7259 return getBuildVector(VecVT, dl, Scalars); 7260 } 7261 7262 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7263 LoadSDNode *Base, 7264 unsigned Bytes, 7265 int Dist) const { 7266 if (LD->isVolatile() || Base->isVolatile()) 7267 return false; 7268 if (LD->isIndexed() || Base->isIndexed()) 7269 return false; 7270 if (LD->getChain() != Base->getChain()) 7271 return false; 7272 EVT VT = LD->getValueType(0); 7273 if (VT.getSizeInBits() / 8 != Bytes) 7274 return false; 7275 7276 SDValue Loc = LD->getOperand(1); 7277 SDValue BaseLoc = Base->getOperand(1); 7278 if (Loc.getOpcode() == ISD::FrameIndex) { 7279 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7280 return false; 7281 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7282 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7283 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7284 int FS = MFI.getObjectSize(FI); 7285 int BFS = MFI.getObjectSize(BFI); 7286 if (FS != BFS || FS != (int)Bytes) return false; 7287 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 7288 } 7289 7290 // Handle X + C. 7291 if (isBaseWithConstantOffset(Loc)) { 7292 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7293 if (Loc.getOperand(0) == BaseLoc) { 7294 // If the base location is a simple address with no offset itself, then 7295 // the second load's first add operand should be the base address. 7296 if (LocOffset == Dist * (int)Bytes) 7297 return true; 7298 } else if (isBaseWithConstantOffset(BaseLoc)) { 7299 // The base location itself has an offset, so subtract that value from the 7300 // second load's offset before comparing to distance * size. 7301 int64_t BOffset = 7302 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7303 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7304 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7305 return true; 7306 } 7307 } 7308 } 7309 const GlobalValue *GV1 = nullptr; 7310 const GlobalValue *GV2 = nullptr; 7311 int64_t Offset1 = 0; 7312 int64_t Offset2 = 0; 7313 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7314 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7315 if (isGA1 && isGA2 && GV1 == GV2) 7316 return Offset1 == (Offset2 + Dist*Bytes); 7317 return false; 7318 } 7319 7320 7321 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7322 /// it cannot be inferred. 7323 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7324 // If this is a GlobalAddress + cst, return the alignment. 7325 const GlobalValue *GV; 7326 int64_t GVOffset = 0; 7327 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7328 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7329 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7330 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7331 getDataLayout()); 7332 unsigned AlignBits = KnownZero.countTrailingOnes(); 7333 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7334 if (Align) 7335 return MinAlign(Align, GVOffset); 7336 } 7337 7338 // If this is a direct reference to a stack slot, use information about the 7339 // stack slot's alignment. 7340 int FrameIdx = 1 << 31; 7341 int64_t FrameOffset = 0; 7342 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7343 FrameIdx = FI->getIndex(); 7344 } else if (isBaseWithConstantOffset(Ptr) && 7345 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7346 // Handle FI+Cst 7347 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7348 FrameOffset = Ptr.getConstantOperandVal(1); 7349 } 7350 7351 if (FrameIdx != (1 << 31)) { 7352 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7353 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7354 FrameOffset); 7355 return FIInfoAlign; 7356 } 7357 7358 return 0; 7359 } 7360 7361 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7362 /// which is split (or expanded) into two not necessarily identical pieces. 7363 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7364 // Currently all types are split in half. 7365 EVT LoVT, HiVT; 7366 if (!VT.isVector()) { 7367 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7368 } else { 7369 unsigned NumElements = VT.getVectorNumElements(); 7370 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7371 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7372 NumElements/2); 7373 } 7374 return std::make_pair(LoVT, HiVT); 7375 } 7376 7377 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7378 /// low/high part. 7379 std::pair<SDValue, SDValue> 7380 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7381 const EVT &HiVT) { 7382 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7383 N.getValueType().getVectorNumElements() && 7384 "More vector elements requested than available!"); 7385 SDValue Lo, Hi; 7386 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7387 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7388 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7389 getConstant(LoVT.getVectorNumElements(), DL, 7390 TLI->getVectorIdxTy(getDataLayout()))); 7391 return std::make_pair(Lo, Hi); 7392 } 7393 7394 void SelectionDAG::ExtractVectorElements(SDValue Op, 7395 SmallVectorImpl<SDValue> &Args, 7396 unsigned Start, unsigned Count) { 7397 EVT VT = Op.getValueType(); 7398 if (Count == 0) 7399 Count = VT.getVectorNumElements(); 7400 7401 EVT EltVT = VT.getVectorElementType(); 7402 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7403 SDLoc SL(Op); 7404 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7405 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7406 Op, getConstant(i, SL, IdxTy))); 7407 } 7408 } 7409 7410 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7411 unsigned GlobalAddressSDNode::getAddressSpace() const { 7412 return getGlobal()->getType()->getAddressSpace(); 7413 } 7414 7415 7416 Type *ConstantPoolSDNode::getType() const { 7417 if (isMachineConstantPoolEntry()) 7418 return Val.MachineCPVal->getType(); 7419 return Val.ConstVal->getType(); 7420 } 7421 7422 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7423 APInt &SplatUndef, 7424 unsigned &SplatBitSize, 7425 bool &HasAnyUndefs, 7426 unsigned MinSplatBits, 7427 bool isBigEndian) const { 7428 EVT VT = getValueType(0); 7429 assert(VT.isVector() && "Expected a vector type"); 7430 unsigned sz = VT.getSizeInBits(); 7431 if (MinSplatBits > sz) 7432 return false; 7433 7434 SplatValue = APInt(sz, 0); 7435 SplatUndef = APInt(sz, 0); 7436 7437 // Get the bits. Bits with undefined values (when the corresponding element 7438 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7439 // in SplatValue. If any of the values are not constant, give up and return 7440 // false. 7441 unsigned int nOps = getNumOperands(); 7442 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7443 unsigned EltBitSize = VT.getScalarSizeInBits(); 7444 7445 for (unsigned j = 0; j < nOps; ++j) { 7446 unsigned i = isBigEndian ? nOps-1-j : j; 7447 SDValue OpVal = getOperand(i); 7448 unsigned BitPos = j * EltBitSize; 7449 7450 if (OpVal.isUndef()) 7451 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7452 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7453 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7454 zextOrTrunc(sz) << BitPos; 7455 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7456 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7457 else 7458 return false; 7459 } 7460 7461 // The build_vector is all constants or undefs. Find the smallest element 7462 // size that splats the vector. 7463 7464 HasAnyUndefs = (SplatUndef != 0); 7465 while (sz > 8) { 7466 7467 unsigned HalfSize = sz / 2; 7468 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7469 APInt LowValue = SplatValue.trunc(HalfSize); 7470 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7471 APInt LowUndef = SplatUndef.trunc(HalfSize); 7472 7473 // If the two halves do not match (ignoring undef bits), stop here. 7474 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7475 MinSplatBits > HalfSize) 7476 break; 7477 7478 SplatValue = HighValue | LowValue; 7479 SplatUndef = HighUndef & LowUndef; 7480 7481 sz = HalfSize; 7482 } 7483 7484 SplatBitSize = sz; 7485 return true; 7486 } 7487 7488 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7489 if (UndefElements) { 7490 UndefElements->clear(); 7491 UndefElements->resize(getNumOperands()); 7492 } 7493 SDValue Splatted; 7494 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7495 SDValue Op = getOperand(i); 7496 if (Op.isUndef()) { 7497 if (UndefElements) 7498 (*UndefElements)[i] = true; 7499 } else if (!Splatted) { 7500 Splatted = Op; 7501 } else if (Splatted != Op) { 7502 return SDValue(); 7503 } 7504 } 7505 7506 if (!Splatted) { 7507 assert(getOperand(0).isUndef() && 7508 "Can only have a splat without a constant for all undefs."); 7509 return getOperand(0); 7510 } 7511 7512 return Splatted; 7513 } 7514 7515 ConstantSDNode * 7516 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7517 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7518 } 7519 7520 ConstantFPSDNode * 7521 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7522 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7523 } 7524 7525 int32_t 7526 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7527 uint32_t BitWidth) const { 7528 if (ConstantFPSDNode *CN = 7529 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7530 bool IsExact; 7531 APSInt IntVal(BitWidth); 7532 const APFloat &APF = CN->getValueAPF(); 7533 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7534 APFloat::opOK || 7535 !IsExact) 7536 return -1; 7537 7538 return IntVal.exactLogBase2(); 7539 } 7540 return -1; 7541 } 7542 7543 bool BuildVectorSDNode::isConstant() const { 7544 for (const SDValue &Op : op_values()) { 7545 unsigned Opc = Op.getOpcode(); 7546 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7547 return false; 7548 } 7549 return true; 7550 } 7551 7552 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7553 // Find the first non-undef value in the shuffle mask. 7554 unsigned i, e; 7555 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7556 /* search */; 7557 7558 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7559 7560 // Make sure all remaining elements are either undef or the same as the first 7561 // non-undef value. 7562 for (int Idx = Mask[i]; i != e; ++i) 7563 if (Mask[i] >= 0 && Mask[i] != Idx) 7564 return false; 7565 return true; 7566 } 7567 7568 // \brief Returns the SDNode if it is a constant integer BuildVector 7569 // or constant integer. 7570 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7571 if (isa<ConstantSDNode>(N)) 7572 return N.getNode(); 7573 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7574 return N.getNode(); 7575 // Treat a GlobalAddress supporting constant offset folding as a 7576 // constant integer. 7577 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7578 if (GA->getOpcode() == ISD::GlobalAddress && 7579 TLI->isOffsetFoldingLegal(GA)) 7580 return GA; 7581 return nullptr; 7582 } 7583 7584 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 7585 if (isa<ConstantFPSDNode>(N)) 7586 return N.getNode(); 7587 7588 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 7589 return N.getNode(); 7590 7591 return nullptr; 7592 } 7593 7594 #ifndef NDEBUG 7595 static void checkForCyclesHelper(const SDNode *N, 7596 SmallPtrSetImpl<const SDNode*> &Visited, 7597 SmallPtrSetImpl<const SDNode*> &Checked, 7598 const llvm::SelectionDAG *DAG) { 7599 // If this node has already been checked, don't check it again. 7600 if (Checked.count(N)) 7601 return; 7602 7603 // If a node has already been visited on this depth-first walk, reject it as 7604 // a cycle. 7605 if (!Visited.insert(N).second) { 7606 errs() << "Detected cycle in SelectionDAG\n"; 7607 dbgs() << "Offending node:\n"; 7608 N->dumprFull(DAG); dbgs() << "\n"; 7609 abort(); 7610 } 7611 7612 for (const SDValue &Op : N->op_values()) 7613 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7614 7615 Checked.insert(N); 7616 Visited.erase(N); 7617 } 7618 #endif 7619 7620 void llvm::checkForCycles(const llvm::SDNode *N, 7621 const llvm::SelectionDAG *DAG, 7622 bool force) { 7623 #ifndef NDEBUG 7624 bool check = force; 7625 #ifdef EXPENSIVE_CHECKS 7626 check = true; 7627 #endif // EXPENSIVE_CHECKS 7628 if (check) { 7629 assert(N && "Checking nonexistent SDNode"); 7630 SmallPtrSet<const SDNode*, 32> visited; 7631 SmallPtrSet<const SDNode*, 32> checked; 7632 checkForCyclesHelper(N, visited, checked, DAG); 7633 } 7634 #endif // !NDEBUG 7635 } 7636 7637 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7638 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7639 } 7640