1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RuntimeLibcalls.h"
37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/ManagedStatic.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/Mutex.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetOptions.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66 #include "llvm/Target/TargetSubtargetInfo.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg) {
93   DEBUG(
94     dbgs() << Msg;
95     V.dump();
96   );
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //                              ConstantFPSDNode Class
101 //===----------------------------------------------------------------------===//
102 
103 /// isExactlyValue - We don't rely on operator== working on double values, as
104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
105 /// As such, this method can be used to do an exact bit-for-bit comparison of
106 /// two floating point values.
107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
108   return getValueAPF().bitwiseIsEqual(V);
109 }
110 
111 bool ConstantFPSDNode::isValueValidForType(EVT VT,
112                                            const APFloat& Val) {
113   assert(VT.isFloatingPoint() && "Can only convert between FP types");
114 
115   // convert modifies in place, so make a copy.
116   APFloat Val2 = APFloat(Val);
117   bool losesInfo;
118   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
119                       APFloat::rmNearestTiesToEven,
120                       &losesInfo);
121   return !losesInfo;
122 }
123 
124 //===----------------------------------------------------------------------===//
125 //                              ISD Namespace
126 //===----------------------------------------------------------------------===//
127 
128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
129   auto *BV = dyn_cast<BuildVectorSDNode>(N);
130   if (!BV)
131     return false;
132 
133   APInt SplatUndef;
134   unsigned SplatBitSize;
135   bool HasUndefs;
136   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
137   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
138                              EltSize) &&
139          EltSize == SplatBitSize;
140 }
141 
142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
143 // specializations of the more general isConstantSplatVector()?
144 
145 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
146   // Look through a bit convert.
147   while (N->getOpcode() == ISD::BITCAST)
148     N = N->getOperand(0).getNode();
149 
150   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151 
152   unsigned i = 0, e = N->getNumOperands();
153 
154   // Skip over all of the undef values.
155   while (i != e && N->getOperand(i).isUndef())
156     ++i;
157 
158   // Do not accept an all-undef vector.
159   if (i == e) return false;
160 
161   // Do not accept build_vectors that aren't all constants or which have non-~0
162   // elements. We have to be a bit careful here, as the type of the constant
163   // may not be the same as the type of the vector elements due to type
164   // legalization (the elements are promoted to a legal type for the target and
165   // a vector of a type may be legal when the base element type is not).
166   // We only want to check enough bits to cover the vector elements, because
167   // we care if the resultant vector is all ones, not whether the individual
168   // constants are.
169   SDValue NotZero = N->getOperand(i);
170   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
171   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
172     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
173       return false;
174   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
175     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
176       return false;
177   } else
178     return false;
179 
180   // Okay, we have at least one ~0 value, check to see if the rest match or are
181   // undefs. Even with the above element type twiddling, this should be OK, as
182   // the same type legalization should have applied to all the elements.
183   for (++i; i != e; ++i)
184     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
185       return false;
186   return true;
187 }
188 
189 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
190   // Look through a bit convert.
191   while (N->getOpcode() == ISD::BITCAST)
192     N = N->getOperand(0).getNode();
193 
194   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
195 
196   bool IsAllUndef = true;
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     IsAllUndef = false;
201     // Do not accept build_vectors that aren't all constants or which have non-0
202     // elements. We have to be a bit careful here, as the type of the constant
203     // may not be the same as the type of the vector elements due to type
204     // legalization (the elements are promoted to a legal type for the target
205     // and a vector of a type may be legal when the base element type is not).
206     // We only want to check enough bits to cover the vector elements, because
207     // we care if the resultant vector is all zeros, not whether the individual
208     // constants are.
209     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
210     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
211       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
212         return false;
213     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
214       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
215         return false;
216     } else
217       return false;
218   }
219 
220   // Do not accept an all-undef vector.
221   if (IsAllUndef)
222     return false;
223   return true;
224 }
225 
226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
227   if (N->getOpcode() != ISD::BUILD_VECTOR)
228     return false;
229 
230   for (const SDValue &Op : N->op_values()) {
231     if (Op.isUndef())
232       continue;
233     if (!isa<ConstantSDNode>(Op))
234       return false;
235   }
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantFPSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::allOperandsUndef(const SDNode *N) {
253   // Return false if the node has no operands.
254   // This is "logically inconsistent" with the definition of "all" but
255   // is probably the desired behavior.
256   if (N->getNumOperands() == 0)
257     return false;
258 
259   for (const SDValue &Op : N->op_values())
260     if (!Op.isUndef())
261       return false;
262 
263   return true;
264 }
265 
266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
267   switch (ExtType) {
268   case ISD::EXTLOAD:
269     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
270   case ISD::SEXTLOAD:
271     return ISD::SIGN_EXTEND;
272   case ISD::ZEXTLOAD:
273     return ISD::ZERO_EXTEND;
274   default:
275     break;
276   }
277 
278   llvm_unreachable("Invalid LoadExtType");
279 }
280 
281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
282   // To perform this operation, we just need to swap the L and G bits of the
283   // operation.
284   unsigned OldL = (Operation >> 2) & 1;
285   unsigned OldG = (Operation >> 1) & 1;
286   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
287                        (OldL << 1) |       // New G bit
288                        (OldG << 2));       // New L bit.
289 }
290 
291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
292   unsigned Operation = Op;
293   if (isInteger)
294     Operation ^= 7;   // Flip L, G, E bits, but not U.
295   else
296     Operation ^= 15;  // Flip all of the condition bits.
297 
298   if (Operation > ISD::SETTRUE2)
299     Operation &= ~8;  // Don't let N and U bits get set.
300 
301   return ISD::CondCode(Operation);
302 }
303 
304 /// For an integer comparison, return 1 if the comparison is a signed operation
305 /// and 2 if the result is an unsigned comparison. Return zero if the operation
306 /// does not depend on the sign of the input (setne and seteq).
307 static int isSignedOp(ISD::CondCode Opcode) {
308   switch (Opcode) {
309   default: llvm_unreachable("Illegal integer setcc operation!");
310   case ISD::SETEQ:
311   case ISD::SETNE: return 0;
312   case ISD::SETLT:
313   case ISD::SETLE:
314   case ISD::SETGT:
315   case ISD::SETGE: return 1;
316   case ISD::SETULT:
317   case ISD::SETULE:
318   case ISD::SETUGT:
319   case ISD::SETUGE: return 2;
320   }
321 }
322 
323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
324                                        bool IsInteger) {
325   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
326     // Cannot fold a signed integer setcc with an unsigned integer setcc.
327     return ISD::SETCC_INVALID;
328 
329   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
330 
331   // If the N and U bits get set, then the resultant comparison DOES suddenly
332   // care about orderedness, and it is true when ordered.
333   if (Op > ISD::SETTRUE2)
334     Op &= ~16;     // Clear the U bit if the N bit is set.
335 
336   // Canonicalize illegal integer setcc's.
337   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
338     Op = ISD::SETNE;
339 
340   return ISD::CondCode(Op);
341 }
342 
343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
344                                         bool IsInteger) {
345   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
346     // Cannot fold a signed setcc with an unsigned setcc.
347     return ISD::SETCC_INVALID;
348 
349   // Combine all of the condition bits.
350   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
351 
352   // Canonicalize illegal integer setcc's.
353   if (IsInteger) {
354     switch (Result) {
355     default: break;
356     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
357     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
358     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
359     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
360     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
361     }
362   }
363 
364   return Result;
365 }
366 
367 //===----------------------------------------------------------------------===//
368 //                           SDNode Profile Support
369 //===----------------------------------------------------------------------===//
370 
371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
373   ID.AddInteger(OpC);
374 }
375 
376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
377 /// solely with their pointer.
378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
379   ID.AddPointer(VTList.VTs);
380 }
381 
382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
383 static void AddNodeIDOperands(FoldingSetNodeID &ID,
384                               ArrayRef<SDValue> Ops) {
385   for (auto& Op : Ops) {
386     ID.AddPointer(Op.getNode());
387     ID.AddInteger(Op.getResNo());
388   }
389 }
390 
391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
392 static void AddNodeIDOperands(FoldingSetNodeID &ID,
393                               ArrayRef<SDUse> Ops) {
394   for (auto& Op : Ops) {
395     ID.AddPointer(Op.getNode());
396     ID.AddInteger(Op.getResNo());
397   }
398 }
399 
400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
401                           SDVTList VTList, ArrayRef<SDValue> OpList) {
402   AddNodeIDOpcode(ID, OpC);
403   AddNodeIDValueTypes(ID, VTList);
404   AddNodeIDOperands(ID, OpList);
405 }
406 
407 /// If this is an SDNode with special info, add this info to the NodeID data.
408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
409   switch (N->getOpcode()) {
410   case ISD::TargetExternalSymbol:
411   case ISD::ExternalSymbol:
412   case ISD::MCSymbol:
413     llvm_unreachable("Should only be used on nodes with operands");
414   default: break;  // Normal nodes don't need extra info.
415   case ISD::TargetConstant:
416   case ISD::Constant: {
417     const ConstantSDNode *C = cast<ConstantSDNode>(N);
418     ID.AddPointer(C->getConstantIntValue());
419     ID.AddBoolean(C->isOpaque());
420     break;
421   }
422   case ISD::TargetConstantFP:
423   case ISD::ConstantFP:
424     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
425     break;
426   case ISD::TargetGlobalAddress:
427   case ISD::GlobalAddress:
428   case ISD::TargetGlobalTLSAddress:
429   case ISD::GlobalTLSAddress: {
430     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
431     ID.AddPointer(GA->getGlobal());
432     ID.AddInteger(GA->getOffset());
433     ID.AddInteger(GA->getTargetFlags());
434     break;
435   }
436   case ISD::BasicBlock:
437     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
438     break;
439   case ISD::Register:
440     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
441     break;
442   case ISD::RegisterMask:
443     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
444     break;
445   case ISD::SRCVALUE:
446     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
447     break;
448   case ISD::FrameIndex:
449   case ISD::TargetFrameIndex:
450     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
451     break;
452   case ISD::JumpTable:
453   case ISD::TargetJumpTable:
454     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
455     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
456     break;
457   case ISD::ConstantPool:
458   case ISD::TargetConstantPool: {
459     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
460     ID.AddInteger(CP->getAlignment());
461     ID.AddInteger(CP->getOffset());
462     if (CP->isMachineConstantPoolEntry())
463       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
464     else
465       ID.AddPointer(CP->getConstVal());
466     ID.AddInteger(CP->getTargetFlags());
467     break;
468   }
469   case ISD::TargetIndex: {
470     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
471     ID.AddInteger(TI->getIndex());
472     ID.AddInteger(TI->getOffset());
473     ID.AddInteger(TI->getTargetFlags());
474     break;
475   }
476   case ISD::LOAD: {
477     const LoadSDNode *LD = cast<LoadSDNode>(N);
478     ID.AddInteger(LD->getMemoryVT().getRawBits());
479     ID.AddInteger(LD->getRawSubclassData());
480     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::STORE: {
484     const StoreSDNode *ST = cast<StoreSDNode>(N);
485     ID.AddInteger(ST->getMemoryVT().getRawBits());
486     ID.AddInteger(ST->getRawSubclassData());
487     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
488     break;
489   }
490   case ISD::ATOMIC_CMP_SWAP:
491   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
492   case ISD::ATOMIC_SWAP:
493   case ISD::ATOMIC_LOAD_ADD:
494   case ISD::ATOMIC_LOAD_SUB:
495   case ISD::ATOMIC_LOAD_AND:
496   case ISD::ATOMIC_LOAD_OR:
497   case ISD::ATOMIC_LOAD_XOR:
498   case ISD::ATOMIC_LOAD_NAND:
499   case ISD::ATOMIC_LOAD_MIN:
500   case ISD::ATOMIC_LOAD_MAX:
501   case ISD::ATOMIC_LOAD_UMIN:
502   case ISD::ATOMIC_LOAD_UMAX:
503   case ISD::ATOMIC_LOAD:
504   case ISD::ATOMIC_STORE: {
505     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
506     ID.AddInteger(AT->getMemoryVT().getRawBits());
507     ID.AddInteger(AT->getRawSubclassData());
508     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
509     break;
510   }
511   case ISD::PREFETCH: {
512     const MemSDNode *PF = cast<MemSDNode>(N);
513     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
514     break;
515   }
516   case ISD::VECTOR_SHUFFLE: {
517     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
518     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
519          i != e; ++i)
520       ID.AddInteger(SVN->getMaskElt(i));
521     break;
522   }
523   case ISD::TargetBlockAddress:
524   case ISD::BlockAddress: {
525     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
526     ID.AddPointer(BA->getBlockAddress());
527     ID.AddInteger(BA->getOffset());
528     ID.AddInteger(BA->getTargetFlags());
529     break;
530   }
531   } // end switch (N->getOpcode())
532 
533   // Target specific memory nodes could also have address spaces to check.
534   if (N->isTargetMemoryOpcode())
535     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
536 }
537 
538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
539 /// data.
540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
541   AddNodeIDOpcode(ID, N->getOpcode());
542   // Add the return value info.
543   AddNodeIDValueTypes(ID, N->getVTList());
544   // Add the operand info.
545   AddNodeIDOperands(ID, N->ops());
546 
547   // Handle SDNode leafs with special info.
548   AddNodeIDCustom(ID, N);
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                              SelectionDAG Class
553 //===----------------------------------------------------------------------===//
554 
555 /// doNotCSE - Return true if CSE should not be performed for this node.
556 static bool doNotCSE(SDNode *N) {
557   if (N->getValueType(0) == MVT::Glue)
558     return true; // Never CSE anything that produces a flag.
559 
560   switch (N->getOpcode()) {
561   default: break;
562   case ISD::HANDLENODE:
563   case ISD::EH_LABEL:
564     return true;   // Never CSE these nodes.
565   }
566 
567   // Check that remaining values produced are not flags.
568   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569     if (N->getValueType(i) == MVT::Glue)
570       return true; // Never CSE anything that produces a flag.
571 
572   return false;
573 }
574 
575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
576 /// SelectionDAG.
577 void SelectionDAG::RemoveDeadNodes() {
578   // Create a dummy node (which is not added to allnodes), that adds a reference
579   // to the root node, preventing it from being deleted.
580   HandleSDNode Dummy(getRoot());
581 
582   SmallVector<SDNode*, 128> DeadNodes;
583 
584   // Add all obviously-dead nodes to the DeadNodes worklist.
585   for (SDNode &Node : allnodes())
586     if (Node.use_empty())
587       DeadNodes.push_back(&Node);
588 
589   RemoveDeadNodes(DeadNodes);
590 
591   // If the root changed (e.g. it was a dead load, update the root).
592   setRoot(Dummy.getValue());
593 }
594 
595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
596 /// given list, and any nodes that become unreachable as a result.
597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
598 
599   // Process the worklist, deleting the nodes and adding their uses to the
600   // worklist.
601   while (!DeadNodes.empty()) {
602     SDNode *N = DeadNodes.pop_back_val();
603     // Skip to next node if we've already managed to delete the node. This could
604     // happen if replacing a node causes a node previously added to the node to
605     // be deleted.
606     if (N->getOpcode() == ISD::DELETED_NODE)
607       continue;
608 
609     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
610       DUL->NodeDeleted(N, nullptr);
611 
612     // Take the node out of the appropriate CSE map.
613     RemoveNodeFromCSEMaps(N);
614 
615     // Next, brutally remove the operand list.  This is safe to do, as there are
616     // no cycles in the graph.
617     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
618       SDUse &Use = *I++;
619       SDNode *Operand = Use.getNode();
620       Use.set(SDValue());
621 
622       // Now that we removed this operand, see if there are no uses of it left.
623       if (Operand->use_empty())
624         DeadNodes.push_back(Operand);
625     }
626 
627     DeallocateNode(N);
628   }
629 }
630 
631 void SelectionDAG::RemoveDeadNode(SDNode *N){
632   SmallVector<SDNode*, 16> DeadNodes(1, N);
633 
634   // Create a dummy node that adds a reference to the root node, preventing
635   // it from being deleted.  (This matters if the root is an operand of the
636   // dead node.)
637   HandleSDNode Dummy(getRoot());
638 
639   RemoveDeadNodes(DeadNodes);
640 }
641 
642 void SelectionDAG::DeleteNode(SDNode *N) {
643   // First take this out of the appropriate CSE map.
644   RemoveNodeFromCSEMaps(N);
645 
646   // Finally, remove uses due to operands of this node, remove from the
647   // AllNodes list, and delete the node.
648   DeleteNodeNotInCSEMaps(N);
649 }
650 
651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
652   assert(N->getIterator() != AllNodes.begin() &&
653          "Cannot delete the entry node!");
654   assert(N->use_empty() && "Cannot delete a node that is not dead!");
655 
656   // Drop all of the operands and decrement used node's use counts.
657   N->DropOperands();
658 
659   DeallocateNode(N);
660 }
661 
662 void SDDbgInfo::erase(const SDNode *Node) {
663   DbgValMapType::iterator I = DbgValMap.find(Node);
664   if (I == DbgValMap.end())
665     return;
666   for (auto &Val: I->second)
667     Val->setIsInvalidated();
668   DbgValMap.erase(I);
669 }
670 
671 void SelectionDAG::DeallocateNode(SDNode *N) {
672   // If we have operands, deallocate them.
673   removeOperands(N);
674 
675   NodeAllocator.Deallocate(AllNodes.remove(N));
676 
677   // Set the opcode to DELETED_NODE to help catch bugs when node
678   // memory is reallocated.
679   // FIXME: There are places in SDag that have grown a dependency on the opcode
680   // value in the released node.
681   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
682   N->NodeType = ISD::DELETED_NODE;
683 
684   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
685   // them and forget about that node.
686   DbgInfo->erase(N);
687 }
688 
689 #ifndef NDEBUG
690 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
691 static void VerifySDNode(SDNode *N) {
692   switch (N->getOpcode()) {
693   default:
694     break;
695   case ISD::BUILD_PAIR: {
696     EVT VT = N->getValueType(0);
697     assert(N->getNumValues() == 1 && "Too many results!");
698     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
699            "Wrong return type!");
700     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
701     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
702            "Mismatched operand types!");
703     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
704            "Wrong operand type!");
705     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
706            "Wrong return type size");
707     break;
708   }
709   case ISD::BUILD_VECTOR: {
710     assert(N->getNumValues() == 1 && "Too many results!");
711     assert(N->getValueType(0).isVector() && "Wrong return type!");
712     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
713            "Wrong number of operands!");
714     EVT EltVT = N->getValueType(0).getVectorElementType();
715     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
716       assert((I->getValueType() == EltVT ||
717              (EltVT.isInteger() && I->getValueType().isInteger() &&
718               EltVT.bitsLE(I->getValueType()))) &&
719             "Wrong operand type!");
720       assert(I->getValueType() == N->getOperand(0).getValueType() &&
721              "Operands must all have the same type");
722     }
723     break;
724   }
725   }
726 }
727 #endif // NDEBUG
728 
729 /// \brief Insert a newly allocated node into the DAG.
730 ///
731 /// Handles insertion into the all nodes list and CSE map, as well as
732 /// verification and other common operations when a new node is allocated.
733 void SelectionDAG::InsertNode(SDNode *N) {
734   AllNodes.push_back(N);
735 #ifndef NDEBUG
736   N->PersistentId = NextPersistentId++;
737   VerifySDNode(N);
738 #endif
739 }
740 
741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
742 /// correspond to it.  This is useful when we're about to delete or repurpose
743 /// the node.  We don't want future request for structurally identical nodes
744 /// to return N anymore.
745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
746   bool Erased = false;
747   switch (N->getOpcode()) {
748   case ISD::HANDLENODE: return false;  // noop.
749   case ISD::CONDCODE:
750     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
751            "Cond code doesn't exist!");
752     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
753     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
754     break;
755   case ISD::ExternalSymbol:
756     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
757     break;
758   case ISD::TargetExternalSymbol: {
759     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
760     Erased = TargetExternalSymbols.erase(
761                std::pair<std::string,unsigned char>(ESN->getSymbol(),
762                                                     ESN->getTargetFlags()));
763     break;
764   }
765   case ISD::MCSymbol: {
766     auto *MCSN = cast<MCSymbolSDNode>(N);
767     Erased = MCSymbols.erase(MCSN->getMCSymbol());
768     break;
769   }
770   case ISD::VALUETYPE: {
771     EVT VT = cast<VTSDNode>(N)->getVT();
772     if (VT.isExtended()) {
773       Erased = ExtendedValueTypeNodes.erase(VT);
774     } else {
775       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
776       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
777     }
778     break;
779   }
780   default:
781     // Remove it from the CSE Map.
782     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
783     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
784     Erased = CSEMap.RemoveNode(N);
785     break;
786   }
787 #ifndef NDEBUG
788   // Verify that the node was actually in one of the CSE maps, unless it has a
789   // flag result (which cannot be CSE'd) or is one of the special cases that are
790   // not subject to CSE.
791   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
792       !N->isMachineOpcode() && !doNotCSE(N)) {
793     N->dump(this);
794     dbgs() << "\n";
795     llvm_unreachable("Node is not in map!");
796   }
797 #endif
798   return Erased;
799 }
800 
801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
802 /// maps and modified in place. Add it back to the CSE maps, unless an identical
803 /// node already exists, in which case transfer all its users to the existing
804 /// node. This transfer can potentially trigger recursive merging.
805 void
806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
807   // For node types that aren't CSE'd, just act as if no identical node
808   // already exists.
809   if (!doNotCSE(N)) {
810     SDNode *Existing = CSEMap.GetOrInsertNode(N);
811     if (Existing != N) {
812       // If there was already an existing matching node, use ReplaceAllUsesWith
813       // to replace the dead one with the existing one.  This can cause
814       // recursive merging of other unrelated nodes down the line.
815       ReplaceAllUsesWith(N, Existing);
816 
817       // N is now dead. Inform the listeners and delete it.
818       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
819         DUL->NodeDeleted(N, Existing);
820       DeleteNodeNotInCSEMaps(N);
821       return;
822     }
823   }
824 
825   // If the node doesn't already exist, we updated it.  Inform listeners.
826   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
827     DUL->NodeUpdated(N);
828 }
829 
830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
831 /// were replaced with those specified.  If this node is never memoized,
832 /// return null, otherwise return a pointer to the slot it would take.  If a
833 /// node already exists with these operands, the slot will be non-null.
834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
835                                            void *&InsertPos) {
836   if (doNotCSE(N))
837     return nullptr;
838 
839   SDValue Ops[] = { Op };
840   FoldingSetNodeID ID;
841   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
842   AddNodeIDCustom(ID, N);
843   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
844   if (Node)
845     Node->intersectFlagsWith(N->getFlags());
846   return Node;
847 }
848 
849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
850 /// were replaced with those specified.  If this node is never memoized,
851 /// return null, otherwise return a pointer to the slot it would take.  If a
852 /// node already exists with these operands, the slot will be non-null.
853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
854                                            SDValue Op1, SDValue Op2,
855                                            void *&InsertPos) {
856   if (doNotCSE(N))
857     return nullptr;
858 
859   SDValue Ops[] = { Op1, Op2 };
860   FoldingSetNodeID ID;
861   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
862   AddNodeIDCustom(ID, N);
863   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
864   if (Node)
865     Node->intersectFlagsWith(N->getFlags());
866   return Node;
867 }
868 
869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
870 /// were replaced with those specified.  If this node is never memoized,
871 /// return null, otherwise return a pointer to the slot it would take.  If a
872 /// node already exists with these operands, the slot will be non-null.
873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
874                                            void *&InsertPos) {
875   if (doNotCSE(N))
876     return nullptr;
877 
878   FoldingSetNodeID ID;
879   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
880   AddNodeIDCustom(ID, N);
881   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
882   if (Node)
883     Node->intersectFlagsWith(N->getFlags());
884   return Node;
885 }
886 
887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
888   Type *Ty = VT == MVT::iPTR ?
889                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
890                    VT.getTypeForEVT(*getContext());
891 
892   return getDataLayout().getABITypeAlignment(Ty);
893 }
894 
895 // EntryNode could meaningfully have debug info if we can find it...
896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
897     : TM(tm), OptLevel(OL),
898       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
899       Root(getEntryNode()) {
900   InsertNode(&EntryNode);
901   DbgInfo = new SDDbgInfo();
902 }
903 
904 void SelectionDAG::init(MachineFunction &NewMF,
905                         OptimizationRemarkEmitter &NewORE,
906                         Pass *PassPtr) {
907   MF = &NewMF;
908   SDAGISelPass = PassPtr;
909   ORE = &NewORE;
910   TLI = getSubtarget().getTargetLowering();
911   TSI = getSubtarget().getSelectionDAGInfo();
912   Context = &MF->getFunction()->getContext();
913 }
914 
915 SelectionDAG::~SelectionDAG() {
916   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
917   allnodes_clear();
918   OperandRecycler.clear(OperandAllocator);
919   delete DbgInfo;
920 }
921 
922 void SelectionDAG::allnodes_clear() {
923   assert(&*AllNodes.begin() == &EntryNode);
924   AllNodes.remove(AllNodes.begin());
925   while (!AllNodes.empty())
926     DeallocateNode(&AllNodes.front());
927 #ifndef NDEBUG
928   NextPersistentId = 0;
929 #endif
930 }
931 
932 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
933                                           void *&InsertPos) {
934   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
935   if (N) {
936     switch (N->getOpcode()) {
937     default: break;
938     case ISD::Constant:
939     case ISD::ConstantFP:
940       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
941                        "debug location.  Use another overload.");
942     }
943   }
944   return N;
945 }
946 
947 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
948                                           const SDLoc &DL, void *&InsertPos) {
949   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
950   if (N) {
951     switch (N->getOpcode()) {
952     case ISD::Constant:
953     case ISD::ConstantFP:
954       // Erase debug location from the node if the node is used at several
955       // different places. Do not propagate one location to all uses as it
956       // will cause a worse single stepping debugging experience.
957       if (N->getDebugLoc() != DL.getDebugLoc())
958         N->setDebugLoc(DebugLoc());
959       break;
960     default:
961       // When the node's point of use is located earlier in the instruction
962       // sequence than its prior point of use, update its debug info to the
963       // earlier location.
964       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
965         N->setDebugLoc(DL.getDebugLoc());
966       break;
967     }
968   }
969   return N;
970 }
971 
972 void SelectionDAG::clear() {
973   allnodes_clear();
974   OperandRecycler.clear(OperandAllocator);
975   OperandAllocator.Reset();
976   CSEMap.clear();
977 
978   ExtendedValueTypeNodes.clear();
979   ExternalSymbols.clear();
980   TargetExternalSymbols.clear();
981   MCSymbols.clear();
982   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
983             static_cast<CondCodeSDNode*>(nullptr));
984   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
985             static_cast<SDNode*>(nullptr));
986 
987   EntryNode.UseList = nullptr;
988   InsertNode(&EntryNode);
989   Root = getEntryNode();
990   DbgInfo->clear();
991 }
992 
993 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
994   return VT.bitsGT(Op.getValueType())
995              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
996              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
997 }
998 
999 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1000   return VT.bitsGT(Op.getValueType()) ?
1001     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1002     getNode(ISD::TRUNCATE, DL, VT, Op);
1003 }
1004 
1005 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1006   return VT.bitsGT(Op.getValueType()) ?
1007     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1008     getNode(ISD::TRUNCATE, DL, VT, Op);
1009 }
1010 
1011 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1012   return VT.bitsGT(Op.getValueType()) ?
1013     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1014     getNode(ISD::TRUNCATE, DL, VT, Op);
1015 }
1016 
1017 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1018                                         EVT OpVT) {
1019   if (VT.bitsLE(Op.getValueType()))
1020     return getNode(ISD::TRUNCATE, SL, VT, Op);
1021 
1022   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1023   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1024 }
1025 
1026 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1027   assert(!VT.isVector() &&
1028          "getZeroExtendInReg should use the vector element type instead of "
1029          "the vector type!");
1030   if (Op.getValueType() == VT) return Op;
1031   unsigned BitWidth = Op.getScalarValueSizeInBits();
1032   APInt Imm = APInt::getLowBitsSet(BitWidth,
1033                                    VT.getSizeInBits());
1034   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1035                  getConstant(Imm, DL, Op.getValueType()));
1036 }
1037 
1038 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1039                                               EVT VT) {
1040   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1041   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1042          "The sizes of the input and result must match in order to perform the "
1043          "extend in-register.");
1044   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1045          "The destination vector type must have fewer lanes than the input.");
1046   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1047 }
1048 
1049 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1050                                                EVT VT) {
1051   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1052   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1053          "The sizes of the input and result must match in order to perform the "
1054          "extend in-register.");
1055   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1056          "The destination vector type must have fewer lanes than the input.");
1057   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1058 }
1059 
1060 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1061                                                EVT VT) {
1062   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1063   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1064          "The sizes of the input and result must match in order to perform the "
1065          "extend in-register.");
1066   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1067          "The destination vector type must have fewer lanes than the input.");
1068   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1069 }
1070 
1071 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1072 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1073   EVT EltVT = VT.getScalarType();
1074   SDValue NegOne =
1075     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1076   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1077 }
1078 
1079 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1080   EVT EltVT = VT.getScalarType();
1081   SDValue TrueValue;
1082   switch (TLI->getBooleanContents(VT)) {
1083     case TargetLowering::ZeroOrOneBooleanContent:
1084     case TargetLowering::UndefinedBooleanContent:
1085       TrueValue = getConstant(1, DL, VT);
1086       break;
1087     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1088       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1089                               VT);
1090       break;
1091   }
1092   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1093 }
1094 
1095 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1096                                   bool isT, bool isO) {
1097   EVT EltVT = VT.getScalarType();
1098   assert((EltVT.getSizeInBits() >= 64 ||
1099          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1100          "getConstant with a uint64_t value that doesn't fit in the type!");
1101   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1102 }
1103 
1104 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1105                                   bool isT, bool isO) {
1106   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1107 }
1108 
1109 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1110                                   EVT VT, bool isT, bool isO) {
1111   assert(VT.isInteger() && "Cannot create FP integer constant!");
1112 
1113   EVT EltVT = VT.getScalarType();
1114   const ConstantInt *Elt = &Val;
1115 
1116   // In some cases the vector type is legal but the element type is illegal and
1117   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1118   // inserted value (the type does not need to match the vector element type).
1119   // Any extra bits introduced will be truncated away.
1120   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1121       TargetLowering::TypePromoteInteger) {
1122    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1123    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1124    Elt = ConstantInt::get(*getContext(), NewVal);
1125   }
1126   // In other cases the element type is illegal and needs to be expanded, for
1127   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1128   // the value into n parts and use a vector type with n-times the elements.
1129   // Then bitcast to the type requested.
1130   // Legalizing constants too early makes the DAGCombiner's job harder so we
1131   // only legalize if the DAG tells us we must produce legal types.
1132   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1133            TLI->getTypeAction(*getContext(), EltVT) ==
1134            TargetLowering::TypeExpandInteger) {
1135     const APInt &NewVal = Elt->getValue();
1136     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1137     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1138     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1139     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1140 
1141     // Check the temporary vector is the correct size. If this fails then
1142     // getTypeToTransformTo() probably returned a type whose size (in bits)
1143     // isn't a power-of-2 factor of the requested type size.
1144     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1145 
1146     SmallVector<SDValue, 2> EltParts;
1147     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1148       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1149                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1150                                      ViaEltVT, isT, isO));
1151     }
1152 
1153     // EltParts is currently in little endian order. If we actually want
1154     // big-endian order then reverse it now.
1155     if (getDataLayout().isBigEndian())
1156       std::reverse(EltParts.begin(), EltParts.end());
1157 
1158     // The elements must be reversed when the element order is different
1159     // to the endianness of the elements (because the BITCAST is itself a
1160     // vector shuffle in this situation). However, we do not need any code to
1161     // perform this reversal because getConstant() is producing a vector
1162     // splat.
1163     // This situation occurs in MIPS MSA.
1164 
1165     SmallVector<SDValue, 8> Ops;
1166     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1167       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1168 
1169     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1170     NewSDValueDbgMsg(V, "Creating constant: ");
1171     return V;
1172   }
1173 
1174   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1175          "APInt size does not match type size!");
1176   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1177   FoldingSetNodeID ID;
1178   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1179   ID.AddPointer(Elt);
1180   ID.AddBoolean(isO);
1181   void *IP = nullptr;
1182   SDNode *N = nullptr;
1183   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1184     if (!VT.isVector())
1185       return SDValue(N, 0);
1186 
1187   if (!N) {
1188     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1189     CSEMap.InsertNode(N, IP);
1190     InsertNode(N);
1191   }
1192 
1193   SDValue Result(N, 0);
1194   if (VT.isVector())
1195     Result = getSplatBuildVector(VT, DL, Result);
1196 
1197   NewSDValueDbgMsg(Result, "Creating constant: ");
1198   return Result;
1199 }
1200 
1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1202                                         bool isTarget) {
1203   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1204 }
1205 
1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1207                                     bool isTarget) {
1208   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1209 }
1210 
1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1212                                     EVT VT, bool isTarget) {
1213   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1214 
1215   EVT EltVT = VT.getScalarType();
1216 
1217   // Do the map lookup using the actual bit pattern for the floating point
1218   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1219   // we don't have issues with SNANs.
1220   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1221   FoldingSetNodeID ID;
1222   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1223   ID.AddPointer(&V);
1224   void *IP = nullptr;
1225   SDNode *N = nullptr;
1226   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1227     if (!VT.isVector())
1228       return SDValue(N, 0);
1229 
1230   if (!N) {
1231     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1232     CSEMap.InsertNode(N, IP);
1233     InsertNode(N);
1234   }
1235 
1236   SDValue Result(N, 0);
1237   if (VT.isVector())
1238     Result = getSplatBuildVector(VT, DL, Result);
1239   NewSDValueDbgMsg(Result, "Creating fp constant: ");
1240   return Result;
1241 }
1242 
1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1244                                     bool isTarget) {
1245   EVT EltVT = VT.getScalarType();
1246   if (EltVT == MVT::f32)
1247     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1248   else if (EltVT == MVT::f64)
1249     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1250   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1251            EltVT == MVT::f16) {
1252     bool Ignored;
1253     APFloat APF = APFloat(Val);
1254     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1255                 &Ignored);
1256     return getConstantFP(APF, DL, VT, isTarget);
1257   } else
1258     llvm_unreachable("Unsupported type in getConstantFP");
1259 }
1260 
1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1262                                        EVT VT, int64_t Offset, bool isTargetGA,
1263                                        unsigned char TargetFlags) {
1264   assert((TargetFlags == 0 || isTargetGA) &&
1265          "Cannot set target flags on target-independent globals");
1266 
1267   // Truncate (with sign-extension) the offset value to the pointer size.
1268   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1269   if (BitWidth < 64)
1270     Offset = SignExtend64(Offset, BitWidth);
1271 
1272   unsigned Opc;
1273   if (GV->isThreadLocal())
1274     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1275   else
1276     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1277 
1278   FoldingSetNodeID ID;
1279   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1280   ID.AddPointer(GV);
1281   ID.AddInteger(Offset);
1282   ID.AddInteger(TargetFlags);
1283   void *IP = nullptr;
1284   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1285     return SDValue(E, 0);
1286 
1287   auto *N = newSDNode<GlobalAddressSDNode>(
1288       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1289   CSEMap.InsertNode(N, IP);
1290     InsertNode(N);
1291   return SDValue(N, 0);
1292 }
1293 
1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1295   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1296   FoldingSetNodeID ID;
1297   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1298   ID.AddInteger(FI);
1299   void *IP = nullptr;
1300   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1301     return SDValue(E, 0);
1302 
1303   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1304   CSEMap.InsertNode(N, IP);
1305   InsertNode(N);
1306   return SDValue(N, 0);
1307 }
1308 
1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1310                                    unsigned char TargetFlags) {
1311   assert((TargetFlags == 0 || isTarget) &&
1312          "Cannot set target flags on target-independent jump tables");
1313   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1316   ID.AddInteger(JTI);
1317   ID.AddInteger(TargetFlags);
1318   void *IP = nullptr;
1319   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1320     return SDValue(E, 0);
1321 
1322   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1323   CSEMap.InsertNode(N, IP);
1324   InsertNode(N);
1325   return SDValue(N, 0);
1326 }
1327 
1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1329                                       unsigned Alignment, int Offset,
1330                                       bool isTarget,
1331                                       unsigned char TargetFlags) {
1332   assert((TargetFlags == 0 || isTarget) &&
1333          "Cannot set target flags on target-independent globals");
1334   if (Alignment == 0)
1335     Alignment = MF->getFunction()->optForSize()
1336                     ? getDataLayout().getABITypeAlignment(C->getType())
1337                     : getDataLayout().getPrefTypeAlignment(C->getType());
1338   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1339   FoldingSetNodeID ID;
1340   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1341   ID.AddInteger(Alignment);
1342   ID.AddInteger(Offset);
1343   ID.AddPointer(C);
1344   ID.AddInteger(TargetFlags);
1345   void *IP = nullptr;
1346   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1347     return SDValue(E, 0);
1348 
1349   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1350                                           TargetFlags);
1351   CSEMap.InsertNode(N, IP);
1352   InsertNode(N);
1353   return SDValue(N, 0);
1354 }
1355 
1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1357                                       unsigned Alignment, int Offset,
1358                                       bool isTarget,
1359                                       unsigned char TargetFlags) {
1360   assert((TargetFlags == 0 || isTarget) &&
1361          "Cannot set target flags on target-independent globals");
1362   if (Alignment == 0)
1363     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1364   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1365   FoldingSetNodeID ID;
1366   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1367   ID.AddInteger(Alignment);
1368   ID.AddInteger(Offset);
1369   C->addSelectionDAGCSEId(ID);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1376                                           TargetFlags);
1377   CSEMap.InsertNode(N, IP);
1378   InsertNode(N);
1379   return SDValue(N, 0);
1380 }
1381 
1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1383                                      unsigned char TargetFlags) {
1384   FoldingSetNodeID ID;
1385   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1386   ID.AddInteger(Index);
1387   ID.AddInteger(Offset);
1388   ID.AddInteger(TargetFlags);
1389   void *IP = nullptr;
1390   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1391     return SDValue(E, 0);
1392 
1393   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1394   CSEMap.InsertNode(N, IP);
1395   InsertNode(N);
1396   return SDValue(N, 0);
1397 }
1398 
1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1402   ID.AddPointer(MBB);
1403   void *IP = nullptr;
1404   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1405     return SDValue(E, 0);
1406 
1407   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1408   CSEMap.InsertNode(N, IP);
1409   InsertNode(N);
1410   return SDValue(N, 0);
1411 }
1412 
1413 SDValue SelectionDAG::getValueType(EVT VT) {
1414   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1415       ValueTypeNodes.size())
1416     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1417 
1418   SDNode *&N = VT.isExtended() ?
1419     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1420 
1421   if (N) return SDValue(N, 0);
1422   N = newSDNode<VTSDNode>(VT);
1423   InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1428   SDNode *&N = ExternalSymbols[Sym];
1429   if (N) return SDValue(N, 0);
1430   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1431   InsertNode(N);
1432   return SDValue(N, 0);
1433 }
1434 
1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1436   SDNode *&N = MCSymbols[Sym];
1437   if (N)
1438     return SDValue(N, 0);
1439   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1440   InsertNode(N);
1441   return SDValue(N, 0);
1442 }
1443 
1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1445                                               unsigned char TargetFlags) {
1446   SDNode *&N =
1447     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1448                                                                TargetFlags)];
1449   if (N) return SDValue(N, 0);
1450   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1456   if ((unsigned)Cond >= CondCodeNodes.size())
1457     CondCodeNodes.resize(Cond+1);
1458 
1459   if (!CondCodeNodes[Cond]) {
1460     auto *N = newSDNode<CondCodeSDNode>(Cond);
1461     CondCodeNodes[Cond] = N;
1462     InsertNode(N);
1463   }
1464 
1465   return SDValue(CondCodeNodes[Cond], 0);
1466 }
1467 
1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1471   std::swap(N1, N2);
1472   ShuffleVectorSDNode::commuteMask(M);
1473 }
1474 
1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1476                                        SDValue N2, ArrayRef<int> Mask) {
1477   assert(VT.getVectorNumElements() == Mask.size() &&
1478            "Must have the same number of vector elements as mask elements!");
1479   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1480          "Invalid VECTOR_SHUFFLE");
1481 
1482   // Canonicalize shuffle undef, undef -> undef
1483   if (N1.isUndef() && N2.isUndef())
1484     return getUNDEF(VT);
1485 
1486   // Validate that all indices in Mask are within the range of the elements
1487   // input to the shuffle.
1488   int NElts = Mask.size();
1489   assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1490          "Index out of range");
1491 
1492   // Copy the mask so we can do any needed cleanup.
1493   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1494 
1495   // Canonicalize shuffle v, v -> v, undef
1496   if (N1 == N2) {
1497     N2 = getUNDEF(VT);
1498     for (int i = 0; i != NElts; ++i)
1499       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1500   }
1501 
1502   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1503   if (N1.isUndef())
1504     commuteShuffle(N1, N2, MaskVec);
1505 
1506   // If shuffling a splat, try to blend the splat instead. We do this here so
1507   // that even when this arises during lowering we don't have to re-handle it.
1508   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1509     BitVector UndefElements;
1510     SDValue Splat = BV->getSplatValue(&UndefElements);
1511     if (!Splat)
1512       return;
1513 
1514     for (int i = 0; i < NElts; ++i) {
1515       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1516         continue;
1517 
1518       // If this input comes from undef, mark it as such.
1519       if (UndefElements[MaskVec[i] - Offset]) {
1520         MaskVec[i] = -1;
1521         continue;
1522       }
1523 
1524       // If we can blend a non-undef lane, use that instead.
1525       if (!UndefElements[i])
1526         MaskVec[i] = i + Offset;
1527     }
1528   };
1529   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1530     BlendSplat(N1BV, 0);
1531   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1532     BlendSplat(N2BV, NElts);
1533 
1534   // Canonicalize all index into lhs, -> shuffle lhs, undef
1535   // Canonicalize all index into rhs, -> shuffle rhs, undef
1536   bool AllLHS = true, AllRHS = true;
1537   bool N2Undef = N2.isUndef();
1538   for (int i = 0; i != NElts; ++i) {
1539     if (MaskVec[i] >= NElts) {
1540       if (N2Undef)
1541         MaskVec[i] = -1;
1542       else
1543         AllLHS = false;
1544     } else if (MaskVec[i] >= 0) {
1545       AllRHS = false;
1546     }
1547   }
1548   if (AllLHS && AllRHS)
1549     return getUNDEF(VT);
1550   if (AllLHS && !N2Undef)
1551     N2 = getUNDEF(VT);
1552   if (AllRHS) {
1553     N1 = getUNDEF(VT);
1554     commuteShuffle(N1, N2, MaskVec);
1555   }
1556   // Reset our undef status after accounting for the mask.
1557   N2Undef = N2.isUndef();
1558   // Re-check whether both sides ended up undef.
1559   if (N1.isUndef() && N2Undef)
1560     return getUNDEF(VT);
1561 
1562   // If Identity shuffle return that node.
1563   bool Identity = true, AllSame = true;
1564   for (int i = 0; i != NElts; ++i) {
1565     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1566     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1567   }
1568   if (Identity && NElts)
1569     return N1;
1570 
1571   // Shuffling a constant splat doesn't change the result.
1572   if (N2Undef) {
1573     SDValue V = N1;
1574 
1575     // Look through any bitcasts. We check that these don't change the number
1576     // (and size) of elements and just changes their types.
1577     while (V.getOpcode() == ISD::BITCAST)
1578       V = V->getOperand(0);
1579 
1580     // A splat should always show up as a build vector node.
1581     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1582       BitVector UndefElements;
1583       SDValue Splat = BV->getSplatValue(&UndefElements);
1584       // If this is a splat of an undef, shuffling it is also undef.
1585       if (Splat && Splat.isUndef())
1586         return getUNDEF(VT);
1587 
1588       bool SameNumElts =
1589           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1590 
1591       // We only have a splat which can skip shuffles if there is a splatted
1592       // value and no undef lanes rearranged by the shuffle.
1593       if (Splat && UndefElements.none()) {
1594         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1595         // number of elements match or the value splatted is a zero constant.
1596         if (SameNumElts)
1597           return N1;
1598         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1599           if (C->isNullValue())
1600             return N1;
1601       }
1602 
1603       // If the shuffle itself creates a splat, build the vector directly.
1604       if (AllSame && SameNumElts) {
1605         EVT BuildVT = BV->getValueType(0);
1606         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1607         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1608 
1609         // We may have jumped through bitcasts, so the type of the
1610         // BUILD_VECTOR may not match the type of the shuffle.
1611         if (BuildVT != VT)
1612           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1613         return NewBV;
1614       }
1615     }
1616   }
1617 
1618   FoldingSetNodeID ID;
1619   SDValue Ops[2] = { N1, N2 };
1620   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1621   for (int i = 0; i != NElts; ++i)
1622     ID.AddInteger(MaskVec[i]);
1623 
1624   void* IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1626     return SDValue(E, 0);
1627 
1628   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1629   // SDNode doesn't have access to it.  This memory will be "leaked" when
1630   // the node is deallocated, but recovered when the NodeAllocator is released.
1631   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1632   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1633 
1634   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1635                                            dl.getDebugLoc(), MaskAlloc);
1636   createOperands(N, Ops);
1637 
1638   CSEMap.InsertNode(N, IP);
1639   InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1644   MVT VT = SV.getSimpleValueType(0);
1645   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1646   ShuffleVectorSDNode::commuteMask(MaskVec);
1647 
1648   SDValue Op0 = SV.getOperand(0);
1649   SDValue Op1 = SV.getOperand(1);
1650   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1651 }
1652 
1653 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1654   FoldingSetNodeID ID;
1655   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1656   ID.AddInteger(RegNo);
1657   void *IP = nullptr;
1658   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1659     return SDValue(E, 0);
1660 
1661   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1662   CSEMap.InsertNode(N, IP);
1663   InsertNode(N);
1664   return SDValue(N, 0);
1665 }
1666 
1667 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1670   ID.AddPointer(RegMask);
1671   void *IP = nullptr;
1672   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1673     return SDValue(E, 0);
1674 
1675   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1676   CSEMap.InsertNode(N, IP);
1677   InsertNode(N);
1678   return SDValue(N, 0);
1679 }
1680 
1681 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1682                                  MCSymbol *Label) {
1683   FoldingSetNodeID ID;
1684   SDValue Ops[] = { Root };
1685   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1686   ID.AddPointer(Label);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1692   createOperands(N, Ops);
1693 
1694   CSEMap.InsertNode(N, IP);
1695   InsertNode(N);
1696   return SDValue(N, 0);
1697 }
1698 
1699 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1700                                       int64_t Offset,
1701                                       bool isTarget,
1702                                       unsigned char TargetFlags) {
1703   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1704 
1705   FoldingSetNodeID ID;
1706   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1707   ID.AddPointer(BA);
1708   ID.AddInteger(Offset);
1709   ID.AddInteger(TargetFlags);
1710   void *IP = nullptr;
1711   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1712     return SDValue(E, 0);
1713 
1714   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1715   CSEMap.InsertNode(N, IP);
1716   InsertNode(N);
1717   return SDValue(N, 0);
1718 }
1719 
1720 SDValue SelectionDAG::getSrcValue(const Value *V) {
1721   assert((!V || V->getType()->isPointerTy()) &&
1722          "SrcValue is not a pointer?");
1723 
1724   FoldingSetNodeID ID;
1725   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1726   ID.AddPointer(V);
1727 
1728   void *IP = nullptr;
1729   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1730     return SDValue(E, 0);
1731 
1732   auto *N = newSDNode<SrcValueSDNode>(V);
1733   CSEMap.InsertNode(N, IP);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1739   FoldingSetNodeID ID;
1740   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1741   ID.AddPointer(MD);
1742 
1743   void *IP = nullptr;
1744   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1745     return SDValue(E, 0);
1746 
1747   auto *N = newSDNode<MDNodeSDNode>(MD);
1748   CSEMap.InsertNode(N, IP);
1749   InsertNode(N);
1750   return SDValue(N, 0);
1751 }
1752 
1753 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1754   if (VT == V.getValueType())
1755     return V;
1756 
1757   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1758 }
1759 
1760 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1761                                        unsigned SrcAS, unsigned DestAS) {
1762   SDValue Ops[] = {Ptr};
1763   FoldingSetNodeID ID;
1764   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1765   ID.AddInteger(SrcAS);
1766   ID.AddInteger(DestAS);
1767 
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1773                                            VT, SrcAS, DestAS);
1774   createOperands(N, Ops);
1775 
1776   CSEMap.InsertNode(N, IP);
1777   InsertNode(N);
1778   return SDValue(N, 0);
1779 }
1780 
1781 /// getShiftAmountOperand - Return the specified value casted to
1782 /// the target's desired shift amount type.
1783 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1784   EVT OpTy = Op.getValueType();
1785   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1786   if (OpTy == ShTy || OpTy.isVector()) return Op;
1787 
1788   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1789 }
1790 
1791 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1792   SDLoc dl(Node);
1793   const TargetLowering &TLI = getTargetLoweringInfo();
1794   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1795   EVT VT = Node->getValueType(0);
1796   SDValue Tmp1 = Node->getOperand(0);
1797   SDValue Tmp2 = Node->getOperand(1);
1798   unsigned Align = Node->getConstantOperandVal(3);
1799 
1800   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1801                                Tmp2, MachinePointerInfo(V));
1802   SDValue VAList = VAListLoad;
1803 
1804   if (Align > TLI.getMinStackArgumentAlignment()) {
1805     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1806 
1807     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1808                      getConstant(Align - 1, dl, VAList.getValueType()));
1809 
1810     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1811                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1812   }
1813 
1814   // Increment the pointer, VAList, to the next vaarg
1815   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1816                  getConstant(getDataLayout().getTypeAllocSize(
1817                                                VT.getTypeForEVT(*getContext())),
1818                              dl, VAList.getValueType()));
1819   // Store the incremented VAList to the legalized pointer
1820   Tmp1 =
1821       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1822   // Load the actual argument out of the pointer VAList
1823   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1824 }
1825 
1826 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1827   SDLoc dl(Node);
1828   const TargetLowering &TLI = getTargetLoweringInfo();
1829   // This defaults to loading a pointer from the input and storing it to the
1830   // output, returning the chain.
1831   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1832   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1833   SDValue Tmp1 =
1834       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1835               Node->getOperand(2), MachinePointerInfo(VS));
1836   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1837                   MachinePointerInfo(VD));
1838 }
1839 
1840 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1841   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1842   unsigned ByteSize = VT.getStoreSize();
1843   Type *Ty = VT.getTypeForEVT(*getContext());
1844   unsigned StackAlign =
1845       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1846 
1847   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1848   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1849 }
1850 
1851 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1852   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1853   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1854   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1855   const DataLayout &DL = getDataLayout();
1856   unsigned Align =
1857       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1858 
1859   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1860   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1861   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1862 }
1863 
1864 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1865                                 ISD::CondCode Cond, const SDLoc &dl) {
1866   // These setcc operations always fold.
1867   switch (Cond) {
1868   default: break;
1869   case ISD::SETFALSE:
1870   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1871   case ISD::SETTRUE:
1872   case ISD::SETTRUE2: {
1873     TargetLowering::BooleanContent Cnt =
1874         TLI->getBooleanContents(N1->getValueType(0));
1875     return getConstant(
1876         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1877         VT);
1878   }
1879 
1880   case ISD::SETOEQ:
1881   case ISD::SETOGT:
1882   case ISD::SETOGE:
1883   case ISD::SETOLT:
1884   case ISD::SETOLE:
1885   case ISD::SETONE:
1886   case ISD::SETO:
1887   case ISD::SETUO:
1888   case ISD::SETUEQ:
1889   case ISD::SETUNE:
1890     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1891     break;
1892   }
1893 
1894   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1895     const APInt &C2 = N2C->getAPIntValue();
1896     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1897       const APInt &C1 = N1C->getAPIntValue();
1898 
1899       switch (Cond) {
1900       default: llvm_unreachable("Unknown integer setcc!");
1901       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1902       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1903       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1904       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1905       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1906       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1907       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1908       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1909       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1910       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1911       }
1912     }
1913   }
1914   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1915     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1916       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1917       switch (Cond) {
1918       default: break;
1919       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1920                           return getUNDEF(VT);
1921                         LLVM_FALLTHROUGH;
1922       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1923       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1924                           return getUNDEF(VT);
1925                         LLVM_FALLTHROUGH;
1926       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1927                                            R==APFloat::cmpLessThan, dl, VT);
1928       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1929                           return getUNDEF(VT);
1930                         LLVM_FALLTHROUGH;
1931       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1932       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1933                           return getUNDEF(VT);
1934                         LLVM_FALLTHROUGH;
1935       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1936       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1937                           return getUNDEF(VT);
1938                         LLVM_FALLTHROUGH;
1939       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1940                                            R==APFloat::cmpEqual, dl, VT);
1941       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1942                           return getUNDEF(VT);
1943                         LLVM_FALLTHROUGH;
1944       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1945                                            R==APFloat::cmpEqual, dl, VT);
1946       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1947       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1948       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1949                                            R==APFloat::cmpEqual, dl, VT);
1950       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1951       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1952                                            R==APFloat::cmpLessThan, dl, VT);
1953       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1954                                            R==APFloat::cmpUnordered, dl, VT);
1955       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1956       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1957       }
1958     } else {
1959       // Ensure that the constant occurs on the RHS.
1960       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1961       MVT CompVT = N1.getValueType().getSimpleVT();
1962       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1963         return SDValue();
1964 
1965       return getSetCC(dl, VT, N2, N1, SwappedCond);
1966     }
1967   }
1968 
1969   // Could not fold it.
1970   return SDValue();
1971 }
1972 
1973 /// See if the specified operand can be simplified with the knowledge that only
1974 /// the bits specified by Mask are used.
1975 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
1976   switch (V.getOpcode()) {
1977   default:
1978     break;
1979   case ISD::Constant: {
1980     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
1981     assert(CV && "Const value should be ConstSDNode.");
1982     const APInt &CVal = CV->getAPIntValue();
1983     APInt NewVal = CVal & Mask;
1984     if (NewVal != CVal)
1985       return getConstant(NewVal, SDLoc(V), V.getValueType());
1986     break;
1987   }
1988   case ISD::OR:
1989   case ISD::XOR:
1990     // If the LHS or RHS don't contribute bits to the or, drop them.
1991     if (MaskedValueIsZero(V.getOperand(0), Mask))
1992       return V.getOperand(1);
1993     if (MaskedValueIsZero(V.getOperand(1), Mask))
1994       return V.getOperand(0);
1995     break;
1996   case ISD::SRL:
1997     // Only look at single-use SRLs.
1998     if (!V.getNode()->hasOneUse())
1999       break;
2000     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2001       // See if we can recursively simplify the LHS.
2002       unsigned Amt = RHSC->getZExtValue();
2003 
2004       // Watch out for shift count overflow though.
2005       if (Amt >= Mask.getBitWidth())
2006         break;
2007       APInt NewMask = Mask << Amt;
2008       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2009         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2010                        V.getOperand(1));
2011     }
2012     break;
2013   case ISD::AND: {
2014     // X & -1 -> X (ignoring bits which aren't demanded).
2015     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2016     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2017       return V.getOperand(0);
2018     break;
2019   }
2020   case ISD::ANY_EXTEND: {
2021     SDValue Src = V.getOperand(0);
2022     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2023     // Being conservative here - only peek through if we only demand bits in the
2024     // non-extended source (even though the extended bits are technically undef).
2025     if (Mask.getActiveBits() > SrcBitWidth)
2026       break;
2027     APInt SrcMask = Mask.trunc(SrcBitWidth);
2028     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2029       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2030     break;
2031   }
2032   }
2033   return SDValue();
2034 }
2035 
2036 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2037 /// use this predicate to simplify operations downstream.
2038 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2039   unsigned BitWidth = Op.getScalarValueSizeInBits();
2040   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2041 }
2042 
2043 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2044 /// this predicate to simplify operations downstream.  Mask is known to be zero
2045 /// for bits that V cannot have.
2046 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2047                                      unsigned Depth) const {
2048   KnownBits Known;
2049   computeKnownBits(Op, Known, Depth);
2050   return Mask.isSubsetOf(Known.Zero);
2051 }
2052 
2053 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2054 /// is less than the element bit-width of the shift node, return it.
2055 static const APInt *getValidShiftAmountConstant(SDValue V) {
2056   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2057     // Shifting more than the bitwidth is not valid.
2058     const APInt &ShAmt = SA->getAPIntValue();
2059     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2060       return &ShAmt;
2061   }
2062   return nullptr;
2063 }
2064 
2065 /// Determine which bits of Op are known to be either zero or one and return
2066 /// them in Known. For vectors, the known bits are those that are shared by
2067 /// every vector element.
2068 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2069                                     unsigned Depth) const {
2070   EVT VT = Op.getValueType();
2071   APInt DemandedElts = VT.isVector()
2072                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2073                            : APInt(1, 1);
2074   computeKnownBits(Op, Known, DemandedElts, Depth);
2075 }
2076 
2077 /// Determine which bits of Op are known to be either zero or one and return
2078 /// them in Known. The DemandedElts argument allows us to only collect the known
2079 /// bits that are shared by the requested vector elements.
2080 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2081                                     const APInt &DemandedElts,
2082                                     unsigned Depth) const {
2083   unsigned BitWidth = Op.getScalarValueSizeInBits();
2084 
2085   Known = KnownBits(BitWidth);   // Don't know anything.
2086   if (Depth == 6)
2087     return;  // Limit search depth.
2088 
2089   KnownBits Known2;
2090   unsigned NumElts = DemandedElts.getBitWidth();
2091 
2092   if (!DemandedElts)
2093     return;  // No demanded elts, better to assume we don't know anything.
2094 
2095   unsigned Opcode = Op.getOpcode();
2096   switch (Opcode) {
2097   case ISD::Constant:
2098     // We know all of the bits for a constant!
2099     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
2100     Known.Zero = ~Known.One;
2101     break;
2102   case ISD::BUILD_VECTOR:
2103     // Collect the known bits that are shared by every demanded vector element.
2104     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2105            "Unexpected vector size");
2106     Known.Zero.setAllBits(); Known.One.setAllBits();
2107     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2108       if (!DemandedElts[i])
2109         continue;
2110 
2111       SDValue SrcOp = Op.getOperand(i);
2112       computeKnownBits(SrcOp, Known2, Depth + 1);
2113 
2114       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2115       if (SrcOp.getValueSizeInBits() != BitWidth) {
2116         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2117                "Expected BUILD_VECTOR implicit truncation");
2118         Known2 = Known2.trunc(BitWidth);
2119       }
2120 
2121       // Known bits are the values that are shared by every demanded element.
2122       Known.One &= Known2.One;
2123       Known.Zero &= Known2.Zero;
2124 
2125       // If we don't know any bits, early out.
2126       if (!Known.One && !Known.Zero)
2127         break;
2128     }
2129     break;
2130   case ISD::VECTOR_SHUFFLE: {
2131     // Collect the known bits that are shared by every vector element referenced
2132     // by the shuffle.
2133     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2134     Known.Zero.setAllBits(); Known.One.setAllBits();
2135     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2136     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2137     for (unsigned i = 0; i != NumElts; ++i) {
2138       if (!DemandedElts[i])
2139         continue;
2140 
2141       int M = SVN->getMaskElt(i);
2142       if (M < 0) {
2143         // For UNDEF elements, we don't know anything about the common state of
2144         // the shuffle result.
2145         Known.resetAll();
2146         DemandedLHS.clearAllBits();
2147         DemandedRHS.clearAllBits();
2148         break;
2149       }
2150 
2151       if ((unsigned)M < NumElts)
2152         DemandedLHS.setBit((unsigned)M % NumElts);
2153       else
2154         DemandedRHS.setBit((unsigned)M % NumElts);
2155     }
2156     // Known bits are the values that are shared by every demanded element.
2157     if (!!DemandedLHS) {
2158       SDValue LHS = Op.getOperand(0);
2159       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2160       Known.One &= Known2.One;
2161       Known.Zero &= Known2.Zero;
2162     }
2163     // If we don't know any bits, early out.
2164     if (!Known.One && !Known.Zero)
2165       break;
2166     if (!!DemandedRHS) {
2167       SDValue RHS = Op.getOperand(1);
2168       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2169       Known.One &= Known2.One;
2170       Known.Zero &= Known2.Zero;
2171     }
2172     break;
2173   }
2174   case ISD::CONCAT_VECTORS: {
2175     // Split DemandedElts and test each of the demanded subvectors.
2176     Known.Zero.setAllBits(); Known.One.setAllBits();
2177     EVT SubVectorVT = Op.getOperand(0).getValueType();
2178     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2179     unsigned NumSubVectors = Op.getNumOperands();
2180     for (unsigned i = 0; i != NumSubVectors; ++i) {
2181       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2182       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2183       if (!!DemandedSub) {
2184         SDValue Sub = Op.getOperand(i);
2185         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2186         Known.One &= Known2.One;
2187         Known.Zero &= Known2.Zero;
2188       }
2189       // If we don't know any bits, early out.
2190       if (!Known.One && !Known.Zero)
2191         break;
2192     }
2193     break;
2194   }
2195   case ISD::EXTRACT_SUBVECTOR: {
2196     // If we know the element index, just demand that subvector elements,
2197     // otherwise demand them all.
2198     SDValue Src = Op.getOperand(0);
2199     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2200     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2201     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2202       // Offset the demanded elts by the subvector index.
2203       uint64_t Idx = SubIdx->getZExtValue();
2204       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2205       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2206     } else {
2207       computeKnownBits(Src, Known, Depth + 1);
2208     }
2209     break;
2210   }
2211   case ISD::BITCAST: {
2212     SDValue N0 = Op.getOperand(0);
2213     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
2214 
2215     // Ignore bitcasts from floating point.
2216     if (!N0.getValueType().isInteger())
2217       break;
2218 
2219     // Fast handling of 'identity' bitcasts.
2220     if (BitWidth == SubBitWidth) {
2221       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2222       break;
2223     }
2224 
2225     // Support big-endian targets when it becomes useful.
2226     bool IsLE = getDataLayout().isLittleEndian();
2227     if (!IsLE)
2228       break;
2229 
2230     // Bitcast 'small element' vector to 'large element' scalar/vector.
2231     if ((BitWidth % SubBitWidth) == 0) {
2232       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2233 
2234       // Collect known bits for the (larger) output by collecting the known
2235       // bits from each set of sub elements and shift these into place.
2236       // We need to separately call computeKnownBits for each set of
2237       // sub elements as the knownbits for each is likely to be different.
2238       unsigned SubScale = BitWidth / SubBitWidth;
2239       APInt SubDemandedElts(NumElts * SubScale, 0);
2240       for (unsigned i = 0; i != NumElts; ++i)
2241         if (DemandedElts[i])
2242           SubDemandedElts.setBit(i * SubScale);
2243 
2244       for (unsigned i = 0; i != SubScale; ++i) {
2245         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2246                          Depth + 1);
2247         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i);
2248         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i);
2249       }
2250     }
2251 
2252     // Bitcast 'large element' scalar/vector to 'small element' vector.
2253     if ((SubBitWidth % BitWidth) == 0) {
2254       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2255 
2256       // Collect known bits for the (smaller) output by collecting the known
2257       // bits from the overlapping larger input elements and extracting the
2258       // sub sections we actually care about.
2259       unsigned SubScale = SubBitWidth / BitWidth;
2260       APInt SubDemandedElts(NumElts / SubScale, 0);
2261       for (unsigned i = 0; i != NumElts; ++i)
2262         if (DemandedElts[i])
2263           SubDemandedElts.setBit(i / SubScale);
2264 
2265       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2266 
2267       Known.Zero.setAllBits(); Known.One.setAllBits();
2268       for (unsigned i = 0; i != NumElts; ++i)
2269         if (DemandedElts[i]) {
2270           unsigned Offset = (i % SubScale) * BitWidth;
2271           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2272           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2273           // If we don't know any bits, early out.
2274           if (!Known.One && !Known.Zero)
2275             break;
2276         }
2277     }
2278     break;
2279   }
2280   case ISD::AND:
2281     // If either the LHS or the RHS are Zero, the result is zero.
2282     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2283     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2284 
2285     // Output known-1 bits are only known if set in both the LHS & RHS.
2286     Known.One &= Known2.One;
2287     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2288     Known.Zero |= Known2.Zero;
2289     break;
2290   case ISD::OR:
2291     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2292     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2293 
2294     // Output known-0 bits are only known if clear in both the LHS & RHS.
2295     Known.Zero &= Known2.Zero;
2296     // Output known-1 are known to be set if set in either the LHS | RHS.
2297     Known.One |= Known2.One;
2298     break;
2299   case ISD::XOR: {
2300     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2301     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2302 
2303     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2304     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2305     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2306     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2307     Known.Zero = KnownZeroOut;
2308     break;
2309   }
2310   case ISD::MUL: {
2311     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2312     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2313 
2314     // If low bits are zero in either operand, output low known-0 bits.
2315     // Also compute a conservative estimate for high known-0 bits.
2316     // More trickiness is possible, but this is sufficient for the
2317     // interesting case of alignment computation.
2318     unsigned TrailZ = Known.countMinTrailingZeros() +
2319                       Known2.countMinTrailingZeros();
2320     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2321                                Known2.countMinLeadingZeros(),
2322                                BitWidth) - BitWidth;
2323 
2324     Known.resetAll();
2325     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2326     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2327     break;
2328   }
2329   case ISD::UDIV: {
2330     // For the purposes of computing leading zeros we can conservatively
2331     // treat a udiv as a logical right shift by the power of 2 known to
2332     // be less than the denominator.
2333     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2334     unsigned LeadZ = Known2.countMinLeadingZeros();
2335 
2336     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2337     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2338     if (RHSMaxLeadingZeros != BitWidth)
2339       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2340 
2341     Known.Zero.setHighBits(LeadZ);
2342     break;
2343   }
2344   case ISD::SELECT:
2345     computeKnownBits(Op.getOperand(2), Known, Depth+1);
2346     // If we don't know any bits, early out.
2347     if (!Known.One && !Known.Zero)
2348       break;
2349     computeKnownBits(Op.getOperand(1), Known2, Depth+1);
2350 
2351     // Only known if known in both the LHS and RHS.
2352     Known.One &= Known2.One;
2353     Known.Zero &= Known2.Zero;
2354     break;
2355   case ISD::SELECT_CC:
2356     computeKnownBits(Op.getOperand(3), Known, Depth+1);
2357     // If we don't know any bits, early out.
2358     if (!Known.One && !Known.Zero)
2359       break;
2360     computeKnownBits(Op.getOperand(2), Known2, Depth+1);
2361 
2362     // Only known if known in both the LHS and RHS.
2363     Known.One &= Known2.One;
2364     Known.Zero &= Known2.Zero;
2365     break;
2366   case ISD::SMULO:
2367   case ISD::UMULO:
2368     if (Op.getResNo() != 1)
2369       break;
2370     // The boolean result conforms to getBooleanContents.
2371     // If we know the result of a setcc has the top bits zero, use this info.
2372     // We know that we have an integer-based boolean since these operations
2373     // are only available for integer.
2374     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2375             TargetLowering::ZeroOrOneBooleanContent &&
2376         BitWidth > 1)
2377       Known.Zero.setBitsFrom(1);
2378     break;
2379   case ISD::SETCC:
2380     // If we know the result of a setcc has the top bits zero, use this info.
2381     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2382             TargetLowering::ZeroOrOneBooleanContent &&
2383         BitWidth > 1)
2384       Known.Zero.setBitsFrom(1);
2385     break;
2386   case ISD::SHL:
2387     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2388       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2389       Known.Zero <<= *ShAmt;
2390       Known.One <<= *ShAmt;
2391       // Low bits are known zero.
2392       Known.Zero.setLowBits(ShAmt->getZExtValue());
2393     }
2394     break;
2395   case ISD::SRL:
2396     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2397       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2398       Known.Zero.lshrInPlace(*ShAmt);
2399       Known.One.lshrInPlace(*ShAmt);
2400       // High bits are known zero.
2401       Known.Zero.setHighBits(ShAmt->getZExtValue());
2402     }
2403     break;
2404   case ISD::SRA:
2405     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2406       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2407       Known.Zero.lshrInPlace(*ShAmt);
2408       Known.One.lshrInPlace(*ShAmt);
2409       // If we know the value of the sign bit, then we know it is copied across
2410       // the high bits by the shift amount.
2411       APInt SignMask = APInt::getSignMask(BitWidth);
2412       SignMask.lshrInPlace(*ShAmt);  // Adjust to where it is now in the mask.
2413       if (Known.Zero.intersects(SignMask)) {
2414         Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero.
2415       } else if (Known.One.intersects(SignMask)) {
2416         Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one.
2417       }
2418     }
2419     break;
2420   case ISD::SIGN_EXTEND_INREG: {
2421     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2422     unsigned EBits = EVT.getScalarSizeInBits();
2423 
2424     // Sign extension.  Compute the demanded bits in the result that are not
2425     // present in the input.
2426     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2427 
2428     APInt InSignMask = APInt::getSignMask(EBits);
2429     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2430 
2431     // If the sign extended bits are demanded, we know that the sign
2432     // bit is demanded.
2433     InSignMask = InSignMask.zext(BitWidth);
2434     if (NewBits.getBoolValue())
2435       InputDemandedBits |= InSignMask;
2436 
2437     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2438     Known.One &= InputDemandedBits;
2439     Known.Zero &= InputDemandedBits;
2440 
2441     // If the sign bit of the input is known set or clear, then we know the
2442     // top bits of the result.
2443     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2444       Known.Zero |= NewBits;
2445       Known.One  &= ~NewBits;
2446     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2447       Known.One  |= NewBits;
2448       Known.Zero &= ~NewBits;
2449     } else {                              // Input sign bit unknown
2450       Known.Zero &= ~NewBits;
2451       Known.One  &= ~NewBits;
2452     }
2453     break;
2454   }
2455   case ISD::CTTZ:
2456   case ISD::CTTZ_ZERO_UNDEF: {
2457     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2458     // If we have a known 1, its position is our upper bound.
2459     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2460     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2461     Known.Zero.setBitsFrom(LowBits);
2462     break;
2463   }
2464   case ISD::CTLZ:
2465   case ISD::CTLZ_ZERO_UNDEF: {
2466     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2467     // If we have a known 1, its position is our upper bound.
2468     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2469     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2470     Known.Zero.setBitsFrom(LowBits);
2471     break;
2472   }
2473   case ISD::CTPOP: {
2474     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2475     // If we know some of the bits are zero, they can't be one.
2476     unsigned PossibleOnes = Known2.countMaxPopulation();
2477     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2478     break;
2479   }
2480   case ISD::LOAD: {
2481     LoadSDNode *LD = cast<LoadSDNode>(Op);
2482     // If this is a ZEXTLoad and we are looking at the loaded value.
2483     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2484       EVT VT = LD->getMemoryVT();
2485       unsigned MemBits = VT.getScalarSizeInBits();
2486       Known.Zero.setBitsFrom(MemBits);
2487     } else if (const MDNode *Ranges = LD->getRanges()) {
2488       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2489         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2490     }
2491     break;
2492   }
2493   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2494     EVT InVT = Op.getOperand(0).getValueType();
2495     unsigned InBits = InVT.getScalarSizeInBits();
2496     Known = Known.trunc(InBits);
2497     computeKnownBits(Op.getOperand(0), Known,
2498                      DemandedElts.zext(InVT.getVectorNumElements()),
2499                      Depth + 1);
2500     Known = Known.zext(BitWidth);
2501     Known.Zero.setBitsFrom(InBits);
2502     break;
2503   }
2504   case ISD::ZERO_EXTEND: {
2505     EVT InVT = Op.getOperand(0).getValueType();
2506     unsigned InBits = InVT.getScalarSizeInBits();
2507     Known = Known.trunc(InBits);
2508     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2509     Known = Known.zext(BitWidth);
2510     Known.Zero.setBitsFrom(InBits);
2511     break;
2512   }
2513   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2514   case ISD::SIGN_EXTEND: {
2515     EVT InVT = Op.getOperand(0).getValueType();
2516     unsigned InBits = InVT.getScalarSizeInBits();
2517 
2518     Known = Known.trunc(InBits);
2519     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2520 
2521     // If the sign bit is known to be zero or one, then sext will extend
2522     // it to the top bits, else it will just zext.
2523     Known = Known.sext(BitWidth);
2524     break;
2525   }
2526   case ISD::ANY_EXTEND: {
2527     EVT InVT = Op.getOperand(0).getValueType();
2528     unsigned InBits = InVT.getScalarSizeInBits();
2529     Known = Known.trunc(InBits);
2530     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2531     Known = Known.zext(BitWidth);
2532     break;
2533   }
2534   case ISD::TRUNCATE: {
2535     EVT InVT = Op.getOperand(0).getValueType();
2536     unsigned InBits = InVT.getScalarSizeInBits();
2537     Known = Known.zext(InBits);
2538     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2539     Known = Known.trunc(BitWidth);
2540     break;
2541   }
2542   case ISD::AssertZext: {
2543     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2544     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2545     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2546     Known.Zero |= (~InMask);
2547     Known.One  &= (~Known.Zero);
2548     break;
2549   }
2550   case ISD::FGETSIGN:
2551     // All bits are zero except the low bit.
2552     Known.Zero.setBitsFrom(1);
2553     break;
2554   case ISD::USUBO:
2555   case ISD::SSUBO:
2556     if (Op.getResNo() == 1) {
2557       // If we know the result of a setcc has the top bits zero, use this info.
2558       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2559               TargetLowering::ZeroOrOneBooleanContent &&
2560           BitWidth > 1)
2561         Known.Zero.setBitsFrom(1);
2562       break;
2563     }
2564     LLVM_FALLTHROUGH;
2565   case ISD::SUB:
2566   case ISD::SUBC: {
2567     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2568       // We know that the top bits of C-X are clear if X contains less bits
2569       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2570       // positive if we can prove that X is >= 0 and < 16.
2571       if (CLHS->getAPIntValue().isNonNegative()) {
2572         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2573         // NLZ can't be BitWidth with no sign bit
2574         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2575         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2576                          Depth + 1);
2577 
2578         // If all of the MaskV bits are known to be zero, then we know the
2579         // output top bits are zero, because we now know that the output is
2580         // from [0-C].
2581         if ((Known2.Zero & MaskV) == MaskV) {
2582           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2583           // Top bits known zero.
2584           Known.Zero.setHighBits(NLZ2);
2585         }
2586       }
2587     }
2588 
2589     // If low bits are know to be zero in both operands, then we know they are
2590     // going to be 0 in the result. Both addition and complement operations
2591     // preserve the low zero bits.
2592     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2593     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2594     if (KnownZeroLow == 0)
2595       break;
2596 
2597     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2598     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2599     Known.Zero.setLowBits(KnownZeroLow);
2600     break;
2601   }
2602   case ISD::UADDO:
2603   case ISD::SADDO:
2604   case ISD::ADDCARRY:
2605     if (Op.getResNo() == 1) {
2606       // If we know the result of a setcc has the top bits zero, use this info.
2607       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2608               TargetLowering::ZeroOrOneBooleanContent &&
2609           BitWidth > 1)
2610         Known.Zero.setBitsFrom(1);
2611       break;
2612     }
2613     LLVM_FALLTHROUGH;
2614   case ISD::ADD:
2615   case ISD::ADDC:
2616   case ISD::ADDE: {
2617     // Output known-0 bits are known if clear or set in both the low clear bits
2618     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2619     // low 3 bits clear.
2620     // Output known-0 bits are also known if the top bits of each input are
2621     // known to be clear. For example, if one input has the top 10 bits clear
2622     // and the other has the top 8 bits clear, we know the top 7 bits of the
2623     // output must be clear.
2624     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2625     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2626     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2627 
2628     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2629                      Depth + 1);
2630     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2631     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2632 
2633     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2634       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2635       // use this information if we know (at least) that the low two bits are
2636       // clear. We then return to the caller that the low bit is unknown but
2637       // that other bits are known zero.
2638       if (KnownZeroLow >= 2)
2639         Known.Zero.setBits(1, KnownZeroLow);
2640       break;
2641     }
2642 
2643     Known.Zero.setLowBits(KnownZeroLow);
2644     if (KnownZeroHigh > 1)
2645       Known.Zero.setHighBits(KnownZeroHigh - 1);
2646     break;
2647   }
2648   case ISD::SREM:
2649     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2650       const APInt &RA = Rem->getAPIntValue().abs();
2651       if (RA.isPowerOf2()) {
2652         APInt LowBits = RA - 1;
2653         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2654 
2655         // The low bits of the first operand are unchanged by the srem.
2656         Known.Zero = Known2.Zero & LowBits;
2657         Known.One = Known2.One & LowBits;
2658 
2659         // If the first operand is non-negative or has all low bits zero, then
2660         // the upper bits are all zero.
2661         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2662           Known.Zero |= ~LowBits;
2663 
2664         // If the first operand is negative and not all low bits are zero, then
2665         // the upper bits are all one.
2666         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2667           Known.One |= ~LowBits;
2668         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2669       }
2670     }
2671     break;
2672   case ISD::UREM: {
2673     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2674       const APInt &RA = Rem->getAPIntValue();
2675       if (RA.isPowerOf2()) {
2676         APInt LowBits = (RA - 1);
2677         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2678 
2679         // The upper bits are all zero, the lower ones are unchanged.
2680         Known.Zero = Known2.Zero | ~LowBits;
2681         Known.One = Known2.One & LowBits;
2682         break;
2683       }
2684     }
2685 
2686     // Since the result is less than or equal to either operand, any leading
2687     // zero bits in either operand must also exist in the result.
2688     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2689     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2690 
2691     uint32_t Leaders =
2692         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2693     Known.resetAll();
2694     Known.Zero.setHighBits(Leaders);
2695     break;
2696   }
2697   case ISD::EXTRACT_ELEMENT: {
2698     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2699     const unsigned Index = Op.getConstantOperandVal(1);
2700     const unsigned BitWidth = Op.getValueSizeInBits();
2701 
2702     // Remove low part of known bits mask
2703     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2704     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2705 
2706     // Remove high part of known bit mask
2707     Known = Known.trunc(BitWidth);
2708     break;
2709   }
2710   case ISD::EXTRACT_VECTOR_ELT: {
2711     SDValue InVec = Op.getOperand(0);
2712     SDValue EltNo = Op.getOperand(1);
2713     EVT VecVT = InVec.getValueType();
2714     const unsigned BitWidth = Op.getValueSizeInBits();
2715     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2716     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2717     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2718     // anything about the extended bits.
2719     if (BitWidth > EltBitWidth)
2720       Known = Known.trunc(EltBitWidth);
2721     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2722     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2723       // If we know the element index, just demand that vector element.
2724       unsigned Idx = ConstEltNo->getZExtValue();
2725       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2726       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2727     } else {
2728       // Unknown element index, so ignore DemandedElts and demand them all.
2729       computeKnownBits(InVec, Known, Depth + 1);
2730     }
2731     if (BitWidth > EltBitWidth)
2732       Known = Known.zext(BitWidth);
2733     break;
2734   }
2735   case ISD::INSERT_VECTOR_ELT: {
2736     SDValue InVec = Op.getOperand(0);
2737     SDValue InVal = Op.getOperand(1);
2738     SDValue EltNo = Op.getOperand(2);
2739 
2740     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2741     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2742       // If we know the element index, split the demand between the
2743       // source vector and the inserted element.
2744       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2745       unsigned EltIdx = CEltNo->getZExtValue();
2746 
2747       // If we demand the inserted element then add its common known bits.
2748       if (DemandedElts[EltIdx]) {
2749         computeKnownBits(InVal, Known2, Depth + 1);
2750         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2751         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2752       }
2753 
2754       // If we demand the source vector then add its common known bits, ensuring
2755       // that we don't demand the inserted element.
2756       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2757       if (!!VectorElts) {
2758         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2759         Known.One &= Known2.One;
2760         Known.Zero &= Known2.Zero;
2761       }
2762     } else {
2763       // Unknown element index, so ignore DemandedElts and demand them all.
2764       computeKnownBits(InVec, Known, Depth + 1);
2765       computeKnownBits(InVal, Known2, Depth + 1);
2766       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2767       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2768     }
2769     break;
2770   }
2771   case ISD::BITREVERSE: {
2772     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2773     Known.Zero = Known2.Zero.reverseBits();
2774     Known.One = Known2.One.reverseBits();
2775     break;
2776   }
2777   case ISD::BSWAP: {
2778     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2779     Known.Zero = Known2.Zero.byteSwap();
2780     Known.One = Known2.One.byteSwap();
2781     break;
2782   }
2783   case ISD::ABS: {
2784     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2785 
2786     // If the source's MSB is zero then we know the rest of the bits already.
2787     if (Known2.isNonNegative()) {
2788       Known.Zero = Known2.Zero;
2789       Known.One = Known2.One;
2790       break;
2791     }
2792 
2793     // We only know that the absolute values's MSB will be zero iff there is
2794     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2795     Known2.One.clearSignBit();
2796     if (Known2.One.getBoolValue()) {
2797       Known.Zero = APInt::getSignMask(BitWidth);
2798       break;
2799     }
2800     break;
2801   }
2802   case ISD::UMIN: {
2803     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2804     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2805 
2806     // UMIN - we know that the result will have the maximum of the
2807     // known zero leading bits of the inputs.
2808     unsigned LeadZero = Known.countMinLeadingZeros();
2809     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2810 
2811     Known.Zero &= Known2.Zero;
2812     Known.One &= Known2.One;
2813     Known.Zero.setHighBits(LeadZero);
2814     break;
2815   }
2816   case ISD::UMAX: {
2817     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2818                      Depth + 1);
2819     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2820 
2821     // UMAX - we know that the result will have the maximum of the
2822     // known one leading bits of the inputs.
2823     unsigned LeadOne = Known.countMinLeadingOnes();
2824     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2825 
2826     Known.Zero &= Known2.Zero;
2827     Known.One &= Known2.One;
2828     Known.One.setHighBits(LeadOne);
2829     break;
2830   }
2831   case ISD::SMIN:
2832   case ISD::SMAX: {
2833     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2834                      Depth + 1);
2835     // If we don't know any bits, early out.
2836     if (!Known.One && !Known.Zero)
2837       break;
2838     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2839     Known.Zero &= Known2.Zero;
2840     Known.One &= Known2.One;
2841     break;
2842   }
2843   case ISD::FrameIndex:
2844   case ISD::TargetFrameIndex:
2845     if (unsigned Align = InferPtrAlignment(Op)) {
2846       // The low bits are known zero if the pointer is aligned.
2847       Known.Zero.setLowBits(Log2_32(Align));
2848       break;
2849     }
2850     break;
2851 
2852   default:
2853     if (Opcode < ISD::BUILTIN_OP_END)
2854       break;
2855     LLVM_FALLTHROUGH;
2856   case ISD::INTRINSIC_WO_CHAIN:
2857   case ISD::INTRINSIC_W_CHAIN:
2858   case ISD::INTRINSIC_VOID:
2859     // Allow the target to implement this method for its nodes.
2860     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
2861     break;
2862   }
2863 
2864   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2865 }
2866 
2867 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
2868                                                              SDValue N1) const {
2869   // X + 0 never overflow
2870   if (isNullConstant(N1))
2871     return OFK_Never;
2872 
2873   KnownBits N1Known;
2874   computeKnownBits(N1, N1Known);
2875   if (N1Known.Zero.getBoolValue()) {
2876     KnownBits N0Known;
2877     computeKnownBits(N0, N0Known);
2878 
2879     bool overflow;
2880     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
2881     if (!overflow)
2882       return OFK_Never;
2883   }
2884 
2885   // mulhi + 1 never overflow
2886   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
2887       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
2888     return OFK_Never;
2889 
2890   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
2891     KnownBits N0Known;
2892     computeKnownBits(N0, N0Known);
2893 
2894     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
2895       return OFK_Never;
2896   }
2897 
2898   return OFK_Sometime;
2899 }
2900 
2901 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2902   EVT OpVT = Val.getValueType();
2903   unsigned BitWidth = OpVT.getScalarSizeInBits();
2904 
2905   // Is the constant a known power of 2?
2906   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2907     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2908 
2909   // A left-shift of a constant one will have exactly one bit set because
2910   // shifting the bit off the end is undefined.
2911   if (Val.getOpcode() == ISD::SHL) {
2912     auto *C = isConstOrConstSplat(Val.getOperand(0));
2913     if (C && C->getAPIntValue() == 1)
2914       return true;
2915   }
2916 
2917   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2918   // one bit set.
2919   if (Val.getOpcode() == ISD::SRL) {
2920     auto *C = isConstOrConstSplat(Val.getOperand(0));
2921     if (C && C->getAPIntValue().isSignMask())
2922       return true;
2923   }
2924 
2925   // Are all operands of a build vector constant powers of two?
2926   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2927     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
2928           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
2929             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2930           return false;
2931         }))
2932       return true;
2933 
2934   // More could be done here, though the above checks are enough
2935   // to handle some common cases.
2936 
2937   // Fall back to computeKnownBits to catch other known cases.
2938   KnownBits Known;
2939   computeKnownBits(Val, Known);
2940   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
2941 }
2942 
2943 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2944   EVT VT = Op.getValueType();
2945   APInt DemandedElts = VT.isVector()
2946                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2947                            : APInt(1, 1);
2948   return ComputeNumSignBits(Op, DemandedElts, Depth);
2949 }
2950 
2951 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
2952                                           unsigned Depth) const {
2953   EVT VT = Op.getValueType();
2954   assert(VT.isInteger() && "Invalid VT!");
2955   unsigned VTBits = VT.getScalarSizeInBits();
2956   unsigned NumElts = DemandedElts.getBitWidth();
2957   unsigned Tmp, Tmp2;
2958   unsigned FirstAnswer = 1;
2959 
2960   if (Depth == 6)
2961     return 1;  // Limit search depth.
2962 
2963   if (!DemandedElts)
2964     return 1;  // No demanded elts, better to assume we don't know anything.
2965 
2966   switch (Op.getOpcode()) {
2967   default: break;
2968   case ISD::AssertSext:
2969     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2970     return VTBits-Tmp+1;
2971   case ISD::AssertZext:
2972     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2973     return VTBits-Tmp;
2974 
2975   case ISD::Constant: {
2976     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2977     return Val.getNumSignBits();
2978   }
2979 
2980   case ISD::BUILD_VECTOR:
2981     Tmp = VTBits;
2982     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
2983       if (!DemandedElts[i])
2984         continue;
2985 
2986       SDValue SrcOp = Op.getOperand(i);
2987       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
2988 
2989       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2990       if (SrcOp.getValueSizeInBits() != VTBits) {
2991         assert(SrcOp.getValueSizeInBits() > VTBits &&
2992                "Expected BUILD_VECTOR implicit truncation");
2993         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
2994         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
2995       }
2996       Tmp = std::min(Tmp, Tmp2);
2997     }
2998     return Tmp;
2999 
3000   case ISD::VECTOR_SHUFFLE: {
3001     // Collect the minimum number of sign bits that are shared by every vector
3002     // element referenced by the shuffle.
3003     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3004     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3005     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3006     for (unsigned i = 0; i != NumElts; ++i) {
3007       int M = SVN->getMaskElt(i);
3008       if (!DemandedElts[i])
3009         continue;
3010       // For UNDEF elements, we don't know anything about the common state of
3011       // the shuffle result.
3012       if (M < 0)
3013         return 1;
3014       if ((unsigned)M < NumElts)
3015         DemandedLHS.setBit((unsigned)M % NumElts);
3016       else
3017         DemandedRHS.setBit((unsigned)M % NumElts);
3018     }
3019     Tmp = std::numeric_limits<unsigned>::max();
3020     if (!!DemandedLHS)
3021       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3022     if (!!DemandedRHS) {
3023       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3024       Tmp = std::min(Tmp, Tmp2);
3025     }
3026     // If we don't know anything, early out and try computeKnownBits fall-back.
3027     if (Tmp == 1)
3028       break;
3029     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3030     return Tmp;
3031   }
3032 
3033   case ISD::SIGN_EXTEND:
3034   case ISD::SIGN_EXTEND_VECTOR_INREG:
3035     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3036     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
3037 
3038   case ISD::SIGN_EXTEND_INREG:
3039     // Max of the input and what this extends.
3040     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3041     Tmp = VTBits-Tmp+1;
3042 
3043     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3044     return std::max(Tmp, Tmp2);
3045 
3046   case ISD::SRA:
3047     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3048     // SRA X, C   -> adds C sign bits.
3049     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
3050       APInt ShiftVal = C->getAPIntValue();
3051       ShiftVal += Tmp;
3052       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3053     }
3054     return Tmp;
3055   case ISD::SHL:
3056     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
3057       // shl destroys sign bits.
3058       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3059       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3060           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3061       return Tmp - C->getZExtValue();
3062     }
3063     break;
3064   case ISD::AND:
3065   case ISD::OR:
3066   case ISD::XOR:    // NOT is handled here.
3067     // Logical binary ops preserve the number of sign bits at the worst.
3068     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3069     if (Tmp != 1) {
3070       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3071       FirstAnswer = std::min(Tmp, Tmp2);
3072       // We computed what we know about the sign bits as our first
3073       // answer. Now proceed to the generic code that uses
3074       // computeKnownBits, and pick whichever answer is better.
3075     }
3076     break;
3077 
3078   case ISD::SELECT:
3079     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3080     if (Tmp == 1) return 1;  // Early out.
3081     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
3082     return std::min(Tmp, Tmp2);
3083   case ISD::SELECT_CC:
3084     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
3085     if (Tmp == 1) return 1;  // Early out.
3086     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
3087     return std::min(Tmp, Tmp2);
3088   case ISD::SMIN:
3089   case ISD::SMAX:
3090   case ISD::UMIN:
3091   case ISD::UMAX:
3092     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3093     if (Tmp == 1)
3094       return 1;  // Early out.
3095     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3096     return std::min(Tmp, Tmp2);
3097   case ISD::SADDO:
3098   case ISD::UADDO:
3099   case ISD::SSUBO:
3100   case ISD::USUBO:
3101   case ISD::SMULO:
3102   case ISD::UMULO:
3103     if (Op.getResNo() != 1)
3104       break;
3105     // The boolean result conforms to getBooleanContents.  Fall through.
3106     // If setcc returns 0/-1, all bits are sign bits.
3107     // We know that we have an integer-based boolean since these operations
3108     // are only available for integer.
3109     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3110         TargetLowering::ZeroOrNegativeOneBooleanContent)
3111       return VTBits;
3112     break;
3113   case ISD::SETCC:
3114     // If setcc returns 0/-1, all bits are sign bits.
3115     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3116         TargetLowering::ZeroOrNegativeOneBooleanContent)
3117       return VTBits;
3118     break;
3119   case ISD::ROTL:
3120   case ISD::ROTR:
3121     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3122       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
3123 
3124       // Handle rotate right by N like a rotate left by 32-N.
3125       if (Op.getOpcode() == ISD::ROTR)
3126         RotAmt = (VTBits-RotAmt) & (VTBits-1);
3127 
3128       // If we aren't rotating out all of the known-in sign bits, return the
3129       // number that are left.  This handles rotl(sext(x), 1) for example.
3130       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3131       if (Tmp > RotAmt+1) return Tmp-RotAmt;
3132     }
3133     break;
3134   case ISD::ADD:
3135   case ISD::ADDC:
3136     // Add can have at most one carry bit.  Thus we know that the output
3137     // is, at worst, one more bit than the inputs.
3138     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3139     if (Tmp == 1) return 1;  // Early out.
3140 
3141     // Special case decrementing a value (ADD X, -1):
3142     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3143       if (CRHS->isAllOnesValue()) {
3144         KnownBits Known;
3145         computeKnownBits(Op.getOperand(0), Known, Depth+1);
3146 
3147         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3148         // sign bits set.
3149         if ((Known.Zero | 1).isAllOnesValue())
3150           return VTBits;
3151 
3152         // If we are subtracting one from a positive number, there is no carry
3153         // out of the result.
3154         if (Known.isNonNegative())
3155           return Tmp;
3156       }
3157 
3158     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3159     if (Tmp2 == 1) return 1;
3160     return std::min(Tmp, Tmp2)-1;
3161 
3162   case ISD::SUB:
3163     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3164     if (Tmp2 == 1) return 1;
3165 
3166     // Handle NEG.
3167     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3168       if (CLHS->isNullValue()) {
3169         KnownBits Known;
3170         computeKnownBits(Op.getOperand(1), Known, Depth+1);
3171         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3172         // sign bits set.
3173         if ((Known.Zero | 1).isAllOnesValue())
3174           return VTBits;
3175 
3176         // If the input is known to be positive (the sign bit is known clear),
3177         // the output of the NEG has the same number of sign bits as the input.
3178         if (Known.isNonNegative())
3179           return Tmp2;
3180 
3181         // Otherwise, we treat this like a SUB.
3182       }
3183 
3184     // Sub can have at most one carry bit.  Thus we know that the output
3185     // is, at worst, one more bit than the inputs.
3186     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3187     if (Tmp == 1) return 1;  // Early out.
3188     return std::min(Tmp, Tmp2)-1;
3189   case ISD::TRUNCATE: {
3190     // Check if the sign bits of source go down as far as the truncated value.
3191     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3192     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3193     if (NumSrcSignBits > (NumSrcBits - VTBits))
3194       return NumSrcSignBits - (NumSrcBits - VTBits);
3195     break;
3196   }
3197   case ISD::EXTRACT_ELEMENT: {
3198     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3199     const int BitWidth = Op.getValueSizeInBits();
3200     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3201 
3202     // Get reverse index (starting from 1), Op1 value indexes elements from
3203     // little end. Sign starts at big end.
3204     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3205 
3206     // If the sign portion ends in our element the subtraction gives correct
3207     // result. Otherwise it gives either negative or > bitwidth result
3208     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3209   }
3210   case ISD::INSERT_VECTOR_ELT: {
3211     SDValue InVec = Op.getOperand(0);
3212     SDValue InVal = Op.getOperand(1);
3213     SDValue EltNo = Op.getOperand(2);
3214     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3215 
3216     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3217     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3218       // If we know the element index, split the demand between the
3219       // source vector and the inserted element.
3220       unsigned EltIdx = CEltNo->getZExtValue();
3221 
3222       // If we demand the inserted element then get its sign bits.
3223       Tmp = std::numeric_limits<unsigned>::max();
3224       if (DemandedElts[EltIdx]) {
3225         // TODO - handle implicit truncation of inserted elements.
3226         if (InVal.getScalarValueSizeInBits() != VTBits)
3227           break;
3228         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3229       }
3230 
3231       // If we demand the source vector then get its sign bits, and determine
3232       // the minimum.
3233       APInt VectorElts = DemandedElts;
3234       VectorElts.clearBit(EltIdx);
3235       if (!!VectorElts) {
3236         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3237         Tmp = std::min(Tmp, Tmp2);
3238       }
3239     } else {
3240       // Unknown element index, so ignore DemandedElts and demand them all.
3241       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3242       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3243       Tmp = std::min(Tmp, Tmp2);
3244     }
3245     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3246     return Tmp;
3247   }
3248   case ISD::EXTRACT_VECTOR_ELT: {
3249     SDValue InVec = Op.getOperand(0);
3250     SDValue EltNo = Op.getOperand(1);
3251     EVT VecVT = InVec.getValueType();
3252     const unsigned BitWidth = Op.getValueSizeInBits();
3253     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3254     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3255 
3256     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3257     // anything about sign bits. But if the sizes match we can derive knowledge
3258     // about sign bits from the vector operand.
3259     if (BitWidth != EltBitWidth)
3260       break;
3261 
3262     // If we know the element index, just demand that vector element, else for
3263     // an unknown element index, ignore DemandedElts and demand them all.
3264     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3265     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3266     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3267       DemandedSrcElts =
3268           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3269 
3270     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3271   }
3272   case ISD::EXTRACT_SUBVECTOR: {
3273     // If we know the element index, just demand that subvector elements,
3274     // otherwise demand them all.
3275     SDValue Src = Op.getOperand(0);
3276     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3277     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3278     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3279       // Offset the demanded elts by the subvector index.
3280       uint64_t Idx = SubIdx->getZExtValue();
3281       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
3282       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3283     }
3284     return ComputeNumSignBits(Src, Depth + 1);
3285   }
3286   case ISD::CONCAT_VECTORS:
3287     // Determine the minimum number of sign bits across all demanded
3288     // elts of the input vectors. Early out if the result is already 1.
3289     Tmp = std::numeric_limits<unsigned>::max();
3290     EVT SubVectorVT = Op.getOperand(0).getValueType();
3291     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3292     unsigned NumSubVectors = Op.getNumOperands();
3293     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3294       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3295       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3296       if (!DemandedSub)
3297         continue;
3298       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3299       Tmp = std::min(Tmp, Tmp2);
3300     }
3301     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3302     return Tmp;
3303   }
3304 
3305   // If we are looking at the loaded value of the SDNode.
3306   if (Op.getResNo() == 0) {
3307     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3308     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3309       unsigned ExtType = LD->getExtensionType();
3310       switch (ExtType) {
3311         default: break;
3312         case ISD::SEXTLOAD:    // '17' bits known
3313           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3314           return VTBits-Tmp+1;
3315         case ISD::ZEXTLOAD:    // '16' bits known
3316           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3317           return VTBits-Tmp;
3318       }
3319     }
3320   }
3321 
3322   // Allow the target to implement this method for its nodes.
3323   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3324       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3325       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3326       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3327     unsigned NumBits =
3328         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3329     if (NumBits > 1)
3330       FirstAnswer = std::max(FirstAnswer, NumBits);
3331   }
3332 
3333   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3334   // use this information.
3335   KnownBits Known;
3336   computeKnownBits(Op, Known, DemandedElts, Depth);
3337 
3338   APInt Mask;
3339   if (Known.isNonNegative()) {        // sign bit is 0
3340     Mask = Known.Zero;
3341   } else if (Known.isNegative()) {  // sign bit is 1;
3342     Mask = Known.One;
3343   } else {
3344     // Nothing known.
3345     return FirstAnswer;
3346   }
3347 
3348   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3349   // the number of identical bits in the top of the input value.
3350   Mask = ~Mask;
3351   Mask <<= Mask.getBitWidth()-VTBits;
3352   // Return # leading zeros.  We use 'min' here in case Val was zero before
3353   // shifting.  We don't want to return '64' as for an i32 "0".
3354   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3355 }
3356 
3357 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3358   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3359       !isa<ConstantSDNode>(Op.getOperand(1)))
3360     return false;
3361 
3362   if (Op.getOpcode() == ISD::OR &&
3363       !MaskedValueIsZero(Op.getOperand(0),
3364                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3365     return false;
3366 
3367   return true;
3368 }
3369 
3370 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3371   // If we're told that NaNs won't happen, assume they won't.
3372   if (getTarget().Options.NoNaNsFPMath)
3373     return true;
3374 
3375   if (Op->getFlags().hasNoNaNs())
3376     return true;
3377 
3378   // If the value is a constant, we can obviously see if it is a NaN or not.
3379   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3380     return !C->getValueAPF().isNaN();
3381 
3382   // TODO: Recognize more cases here.
3383 
3384   return false;
3385 }
3386 
3387 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3388   // If the value is a constant, we can obviously see if it is a zero or not.
3389   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3390     return !C->isZero();
3391 
3392   // TODO: Recognize more cases here.
3393   switch (Op.getOpcode()) {
3394   default: break;
3395   case ISD::OR:
3396     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3397       return !C->isNullValue();
3398     break;
3399   }
3400 
3401   return false;
3402 }
3403 
3404 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3405   // Check the obvious case.
3406   if (A == B) return true;
3407 
3408   // For for negative and positive zero.
3409   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3410     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3411       if (CA->isZero() && CB->isZero()) return true;
3412 
3413   // Otherwise they may not be equal.
3414   return false;
3415 }
3416 
3417 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3418   assert(A.getValueType() == B.getValueType() &&
3419          "Values must have the same type");
3420   KnownBits AKnown, BKnown;
3421   computeKnownBits(A, AKnown);
3422   computeKnownBits(B, BKnown);
3423   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3424 }
3425 
3426 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3427                                   ArrayRef<SDValue> Ops,
3428                                   SelectionDAG &DAG) {
3429   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3430   assert(llvm::all_of(Ops,
3431                       [Ops](SDValue Op) {
3432                         return Ops[0].getValueType() == Op.getValueType();
3433                       }) &&
3434          "Concatenation of vectors with inconsistent value types!");
3435   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3436              VT.getVectorNumElements() &&
3437          "Incorrect element count in vector concatenation!");
3438 
3439   if (Ops.size() == 1)
3440     return Ops[0];
3441 
3442   // Concat of UNDEFs is UNDEF.
3443   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3444     return DAG.getUNDEF(VT);
3445 
3446   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3447   // simplified to one big BUILD_VECTOR.
3448   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3449   EVT SVT = VT.getScalarType();
3450   SmallVector<SDValue, 16> Elts;
3451   for (SDValue Op : Ops) {
3452     EVT OpVT = Op.getValueType();
3453     if (Op.isUndef())
3454       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3455     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3456       Elts.append(Op->op_begin(), Op->op_end());
3457     else
3458       return SDValue();
3459   }
3460 
3461   // BUILD_VECTOR requires all inputs to be of the same type, find the
3462   // maximum type and extend them all.
3463   for (SDValue Op : Elts)
3464     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3465 
3466   if (SVT.bitsGT(VT.getScalarType()))
3467     for (SDValue &Op : Elts)
3468       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3469                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3470                : DAG.getSExtOrTrunc(Op, DL, SVT);
3471 
3472   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3473   NewSDValueDbgMsg(V, "New node fold concat vectors: ");
3474   return V;
3475 }
3476 
3477 /// Gets or creates the specified node.
3478 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3479   FoldingSetNodeID ID;
3480   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3481   void *IP = nullptr;
3482   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3483     return SDValue(E, 0);
3484 
3485   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3486                               getVTList(VT));
3487   CSEMap.InsertNode(N, IP);
3488 
3489   InsertNode(N);
3490   SDValue V = SDValue(N, 0);
3491   NewSDValueDbgMsg(V, "Creating new node: ");
3492   return V;
3493 }
3494 
3495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3496                               SDValue Operand, const SDNodeFlags Flags) {
3497   // Constant fold unary operations with an integer constant operand. Even
3498   // opaque constant will be folded, because the folding of unary operations
3499   // doesn't create new constants with different values. Nevertheless, the
3500   // opaque flag is preserved during folding to prevent future folding with
3501   // other constants.
3502   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3503     const APInt &Val = C->getAPIntValue();
3504     switch (Opcode) {
3505     default: break;
3506     case ISD::SIGN_EXTEND:
3507       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3508                          C->isTargetOpcode(), C->isOpaque());
3509     case ISD::ANY_EXTEND:
3510     case ISD::ZERO_EXTEND:
3511     case ISD::TRUNCATE:
3512       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3513                          C->isTargetOpcode(), C->isOpaque());
3514     case ISD::UINT_TO_FP:
3515     case ISD::SINT_TO_FP: {
3516       APFloat apf(EVTToAPFloatSemantics(VT),
3517                   APInt::getNullValue(VT.getSizeInBits()));
3518       (void)apf.convertFromAPInt(Val,
3519                                  Opcode==ISD::SINT_TO_FP,
3520                                  APFloat::rmNearestTiesToEven);
3521       return getConstantFP(apf, DL, VT);
3522     }
3523     case ISD::BITCAST:
3524       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3525         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3526       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3527         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3528       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3529         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3530       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3531         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3532       break;
3533     case ISD::ABS:
3534       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3535                          C->isOpaque());
3536     case ISD::BITREVERSE:
3537       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3538                          C->isOpaque());
3539     case ISD::BSWAP:
3540       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3541                          C->isOpaque());
3542     case ISD::CTPOP:
3543       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3544                          C->isOpaque());
3545     case ISD::CTLZ:
3546     case ISD::CTLZ_ZERO_UNDEF:
3547       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3548                          C->isOpaque());
3549     case ISD::CTTZ:
3550     case ISD::CTTZ_ZERO_UNDEF:
3551       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3552                          C->isOpaque());
3553     case ISD::FP16_TO_FP: {
3554       bool Ignored;
3555       APFloat FPV(APFloat::IEEEhalf(),
3556                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3557 
3558       // This can return overflow, underflow, or inexact; we don't care.
3559       // FIXME need to be more flexible about rounding mode.
3560       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3561                         APFloat::rmNearestTiesToEven, &Ignored);
3562       return getConstantFP(FPV, DL, VT);
3563     }
3564     }
3565   }
3566 
3567   // Constant fold unary operations with a floating point constant operand.
3568   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3569     APFloat V = C->getValueAPF();    // make copy
3570     switch (Opcode) {
3571     case ISD::FNEG:
3572       V.changeSign();
3573       return getConstantFP(V, DL, VT);
3574     case ISD::FABS:
3575       V.clearSign();
3576       return getConstantFP(V, DL, VT);
3577     case ISD::FCEIL: {
3578       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3579       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3580         return getConstantFP(V, DL, VT);
3581       break;
3582     }
3583     case ISD::FTRUNC: {
3584       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3585       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3586         return getConstantFP(V, DL, VT);
3587       break;
3588     }
3589     case ISD::FFLOOR: {
3590       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3591       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3592         return getConstantFP(V, DL, VT);
3593       break;
3594     }
3595     case ISD::FP_EXTEND: {
3596       bool ignored;
3597       // This can return overflow, underflow, or inexact; we don't care.
3598       // FIXME need to be more flexible about rounding mode.
3599       (void)V.convert(EVTToAPFloatSemantics(VT),
3600                       APFloat::rmNearestTiesToEven, &ignored);
3601       return getConstantFP(V, DL, VT);
3602     }
3603     case ISD::FP_TO_SINT:
3604     case ISD::FP_TO_UINT: {
3605       bool ignored;
3606       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3607       // FIXME need to be more flexible about rounding mode.
3608       APFloat::opStatus s =
3609           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3610       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3611         break;
3612       return getConstant(IntVal, DL, VT);
3613     }
3614     case ISD::BITCAST:
3615       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3616         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3617       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3618         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3619       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3620         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3621       break;
3622     case ISD::FP_TO_FP16: {
3623       bool Ignored;
3624       // This can return overflow, underflow, or inexact; we don't care.
3625       // FIXME need to be more flexible about rounding mode.
3626       (void)V.convert(APFloat::IEEEhalf(),
3627                       APFloat::rmNearestTiesToEven, &Ignored);
3628       return getConstant(V.bitcastToAPInt(), DL, VT);
3629     }
3630     }
3631   }
3632 
3633   // Constant fold unary operations with a vector integer or float operand.
3634   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3635     if (BV->isConstant()) {
3636       switch (Opcode) {
3637       default:
3638         // FIXME: Entirely reasonable to perform folding of other unary
3639         // operations here as the need arises.
3640         break;
3641       case ISD::FNEG:
3642       case ISD::FABS:
3643       case ISD::FCEIL:
3644       case ISD::FTRUNC:
3645       case ISD::FFLOOR:
3646       case ISD::FP_EXTEND:
3647       case ISD::FP_TO_SINT:
3648       case ISD::FP_TO_UINT:
3649       case ISD::TRUNCATE:
3650       case ISD::UINT_TO_FP:
3651       case ISD::SINT_TO_FP:
3652       case ISD::ABS:
3653       case ISD::BITREVERSE:
3654       case ISD::BSWAP:
3655       case ISD::CTLZ:
3656       case ISD::CTLZ_ZERO_UNDEF:
3657       case ISD::CTTZ:
3658       case ISD::CTTZ_ZERO_UNDEF:
3659       case ISD::CTPOP: {
3660         SDValue Ops = { Operand };
3661         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3662           return Fold;
3663       }
3664       }
3665     }
3666   }
3667 
3668   unsigned OpOpcode = Operand.getNode()->getOpcode();
3669   switch (Opcode) {
3670   case ISD::TokenFactor:
3671   case ISD::MERGE_VALUES:
3672   case ISD::CONCAT_VECTORS:
3673     return Operand;         // Factor, merge or concat of one node?  No need.
3674   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3675   case ISD::FP_EXTEND:
3676     assert(VT.isFloatingPoint() &&
3677            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3678     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3679     assert((!VT.isVector() ||
3680             VT.getVectorNumElements() ==
3681             Operand.getValueType().getVectorNumElements()) &&
3682            "Vector element count mismatch!");
3683     assert(Operand.getValueType().bitsLT(VT) &&
3684            "Invalid fpext node, dst < src!");
3685     if (Operand.isUndef())
3686       return getUNDEF(VT);
3687     break;
3688   case ISD::SIGN_EXTEND:
3689     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3690            "Invalid SIGN_EXTEND!");
3691     if (Operand.getValueType() == VT) return Operand;   // noop extension
3692     assert((!VT.isVector() ||
3693             VT.getVectorNumElements() ==
3694             Operand.getValueType().getVectorNumElements()) &&
3695            "Vector element count mismatch!");
3696     assert(Operand.getValueType().bitsLT(VT) &&
3697            "Invalid sext node, dst < src!");
3698     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3699       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3700     else if (OpOpcode == ISD::UNDEF)
3701       // sext(undef) = 0, because the top bits will all be the same.
3702       return getConstant(0, DL, VT);
3703     break;
3704   case ISD::ZERO_EXTEND:
3705     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3706            "Invalid ZERO_EXTEND!");
3707     if (Operand.getValueType() == VT) return Operand;   // noop extension
3708     assert((!VT.isVector() ||
3709             VT.getVectorNumElements() ==
3710             Operand.getValueType().getVectorNumElements()) &&
3711            "Vector element count mismatch!");
3712     assert(Operand.getValueType().bitsLT(VT) &&
3713            "Invalid zext node, dst < src!");
3714     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3715       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3716     else if (OpOpcode == ISD::UNDEF)
3717       // zext(undef) = 0, because the top bits will be zero.
3718       return getConstant(0, DL, VT);
3719     break;
3720   case ISD::ANY_EXTEND:
3721     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3722            "Invalid ANY_EXTEND!");
3723     if (Operand.getValueType() == VT) return Operand;   // noop extension
3724     assert((!VT.isVector() ||
3725             VT.getVectorNumElements() ==
3726             Operand.getValueType().getVectorNumElements()) &&
3727            "Vector element count mismatch!");
3728     assert(Operand.getValueType().bitsLT(VT) &&
3729            "Invalid anyext node, dst < src!");
3730 
3731     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3732         OpOpcode == ISD::ANY_EXTEND)
3733       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3734       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3735     else if (OpOpcode == ISD::UNDEF)
3736       return getUNDEF(VT);
3737 
3738     // (ext (trunx x)) -> x
3739     if (OpOpcode == ISD::TRUNCATE) {
3740       SDValue OpOp = Operand.getOperand(0);
3741       if (OpOp.getValueType() == VT)
3742         return OpOp;
3743     }
3744     break;
3745   case ISD::TRUNCATE:
3746     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3747            "Invalid TRUNCATE!");
3748     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3749     assert((!VT.isVector() ||
3750             VT.getVectorNumElements() ==
3751             Operand.getValueType().getVectorNumElements()) &&
3752            "Vector element count mismatch!");
3753     assert(Operand.getValueType().bitsGT(VT) &&
3754            "Invalid truncate node, src < dst!");
3755     if (OpOpcode == ISD::TRUNCATE)
3756       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3757     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3758         OpOpcode == ISD::ANY_EXTEND) {
3759       // If the source is smaller than the dest, we still need an extend.
3760       if (Operand.getOperand(0).getValueType().getScalarType()
3761             .bitsLT(VT.getScalarType()))
3762         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3763       if (Operand.getOperand(0).getValueType().bitsGT(VT))
3764         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3765       return Operand.getOperand(0);
3766     }
3767     if (OpOpcode == ISD::UNDEF)
3768       return getUNDEF(VT);
3769     break;
3770   case ISD::ABS:
3771     assert(VT.isInteger() && VT == Operand.getValueType() &&
3772            "Invalid ABS!");
3773     if (OpOpcode == ISD::UNDEF)
3774       return getUNDEF(VT);
3775     break;
3776   case ISD::BSWAP:
3777     assert(VT.isInteger() && VT == Operand.getValueType() &&
3778            "Invalid BSWAP!");
3779     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3780            "BSWAP types must be a multiple of 16 bits!");
3781     if (OpOpcode == ISD::UNDEF)
3782       return getUNDEF(VT);
3783     break;
3784   case ISD::BITREVERSE:
3785     assert(VT.isInteger() && VT == Operand.getValueType() &&
3786            "Invalid BITREVERSE!");
3787     if (OpOpcode == ISD::UNDEF)
3788       return getUNDEF(VT);
3789     break;
3790   case ISD::BITCAST:
3791     // Basic sanity checking.
3792     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3793            "Cannot BITCAST between types of different sizes!");
3794     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3795     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3796       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3797     if (OpOpcode == ISD::UNDEF)
3798       return getUNDEF(VT);
3799     break;
3800   case ISD::SCALAR_TO_VECTOR:
3801     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3802            (VT.getVectorElementType() == Operand.getValueType() ||
3803             (VT.getVectorElementType().isInteger() &&
3804              Operand.getValueType().isInteger() &&
3805              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3806            "Illegal SCALAR_TO_VECTOR node!");
3807     if (OpOpcode == ISD::UNDEF)
3808       return getUNDEF(VT);
3809     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3810     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3811         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3812         Operand.getConstantOperandVal(1) == 0 &&
3813         Operand.getOperand(0).getValueType() == VT)
3814       return Operand.getOperand(0);
3815     break;
3816   case ISD::FNEG:
3817     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3818     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3819       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3820       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
3821                      Operand.getOperand(0), Operand.getNode()->getFlags());
3822     if (OpOpcode == ISD::FNEG)  // --X -> X
3823       return Operand.getOperand(0);
3824     break;
3825   case ISD::FABS:
3826     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3827       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
3828     break;
3829   }
3830 
3831   SDNode *N;
3832   SDVTList VTs = getVTList(VT);
3833   SDValue Ops[] = {Operand};
3834   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3835     FoldingSetNodeID ID;
3836     AddNodeIDNode(ID, Opcode, VTs, Ops);
3837     void *IP = nullptr;
3838     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
3839       E->intersectFlagsWith(Flags);
3840       return SDValue(E, 0);
3841     }
3842 
3843     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3844     N->setFlags(Flags);
3845     createOperands(N, Ops);
3846     CSEMap.InsertNode(N, IP);
3847   } else {
3848     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3849     createOperands(N, Ops);
3850   }
3851 
3852   InsertNode(N);
3853   SDValue V = SDValue(N, 0);
3854   NewSDValueDbgMsg(V, "Creating new node: ");
3855   return V;
3856 }
3857 
3858 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3859                                         const APInt &C2) {
3860   switch (Opcode) {
3861   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3862   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3863   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3864   case ISD::AND:  return std::make_pair(C1 & C2, true);
3865   case ISD::OR:   return std::make_pair(C1 | C2, true);
3866   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3867   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3868   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3869   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3870   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3871   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3872   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3873   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3874   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3875   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3876   case ISD::UDIV:
3877     if (!C2.getBoolValue())
3878       break;
3879     return std::make_pair(C1.udiv(C2), true);
3880   case ISD::UREM:
3881     if (!C2.getBoolValue())
3882       break;
3883     return std::make_pair(C1.urem(C2), true);
3884   case ISD::SDIV:
3885     if (!C2.getBoolValue())
3886       break;
3887     return std::make_pair(C1.sdiv(C2), true);
3888   case ISD::SREM:
3889     if (!C2.getBoolValue())
3890       break;
3891     return std::make_pair(C1.srem(C2), true);
3892   }
3893   return std::make_pair(APInt(1, 0), false);
3894 }
3895 
3896 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3897                                              EVT VT, const ConstantSDNode *Cst1,
3898                                              const ConstantSDNode *Cst2) {
3899   if (Cst1->isOpaque() || Cst2->isOpaque())
3900     return SDValue();
3901 
3902   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3903                                             Cst2->getAPIntValue());
3904   if (!Folded.second)
3905     return SDValue();
3906   return getConstant(Folded.first, DL, VT);
3907 }
3908 
3909 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3910                                        const GlobalAddressSDNode *GA,
3911                                        const SDNode *N2) {
3912   if (GA->getOpcode() != ISD::GlobalAddress)
3913     return SDValue();
3914   if (!TLI->isOffsetFoldingLegal(GA))
3915     return SDValue();
3916   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3917   if (!Cst2)
3918     return SDValue();
3919   int64_t Offset = Cst2->getSExtValue();
3920   switch (Opcode) {
3921   case ISD::ADD: break;
3922   case ISD::SUB: Offset = -uint64_t(Offset); break;
3923   default: return SDValue();
3924   }
3925   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3926                           GA->getOffset() + uint64_t(Offset));
3927 }
3928 
3929 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
3930   switch (Opcode) {
3931   case ISD::SDIV:
3932   case ISD::UDIV:
3933   case ISD::SREM:
3934   case ISD::UREM: {
3935     // If a divisor is zero/undef or any element of a divisor vector is
3936     // zero/undef, the whole op is undef.
3937     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
3938     SDValue Divisor = Ops[1];
3939     if (Divisor.isUndef() || isNullConstant(Divisor))
3940       return true;
3941 
3942     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
3943            llvm::any_of(Divisor->op_values(),
3944                         [](SDValue V) { return V.isUndef() ||
3945                                         isNullConstant(V); });
3946     // TODO: Handle signed overflow.
3947   }
3948   // TODO: Handle oversized shifts.
3949   default:
3950     return false;
3951   }
3952 }
3953 
3954 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3955                                              EVT VT, SDNode *Cst1,
3956                                              SDNode *Cst2) {
3957   // If the opcode is a target-specific ISD node, there's nothing we can
3958   // do here and the operand rules may not line up with the below, so
3959   // bail early.
3960   if (Opcode >= ISD::BUILTIN_OP_END)
3961     return SDValue();
3962 
3963   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
3964     return getUNDEF(VT);
3965 
3966   // Handle the case of two scalars.
3967   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3968     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3969       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3970       assert((!Folded || !VT.isVector()) &&
3971              "Can't fold vectors ops with scalar operands");
3972       return Folded;
3973     }
3974   }
3975 
3976   // fold (add Sym, c) -> Sym+c
3977   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3978     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3979   if (TLI->isCommutativeBinOp(Opcode))
3980     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3981       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3982 
3983   // For vectors extract each constant element into Inputs so we can constant
3984   // fold them individually.
3985   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3986   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3987   if (!BV1 || !BV2)
3988     return SDValue();
3989 
3990   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3991 
3992   EVT SVT = VT.getScalarType();
3993   EVT LegalSVT = SVT;
3994   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
3995     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3996     if (LegalSVT.bitsLT(SVT))
3997       return SDValue();
3998   }
3999   SmallVector<SDValue, 4> Outputs;
4000   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4001     SDValue V1 = BV1->getOperand(I);
4002     SDValue V2 = BV2->getOperand(I);
4003 
4004     if (SVT.isInteger()) {
4005         if (V1->getValueType(0).bitsGT(SVT))
4006           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4007         if (V2->getValueType(0).bitsGT(SVT))
4008           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4009     }
4010 
4011     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4012       return SDValue();
4013 
4014     // Fold one vector element.
4015     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4016     if (LegalSVT != SVT)
4017       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4018 
4019     // Scalar folding only succeeded if the result is a constant or UNDEF.
4020     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4021         ScalarResult.getOpcode() != ISD::ConstantFP)
4022       return SDValue();
4023     Outputs.push_back(ScalarResult);
4024   }
4025 
4026   assert(VT.getVectorNumElements() == Outputs.size() &&
4027          "Vector size mismatch!");
4028 
4029   // We may have a vector type but a scalar result. Create a splat.
4030   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4031 
4032   // Build a big vector out of the scalar elements we generated.
4033   return getBuildVector(VT, SDLoc(), Outputs);
4034 }
4035 
4036 // TODO: Merge with FoldConstantArithmetic
4037 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4038                                                    const SDLoc &DL, EVT VT,
4039                                                    ArrayRef<SDValue> Ops,
4040                                                    const SDNodeFlags Flags) {
4041   // If the opcode is a target-specific ISD node, there's nothing we can
4042   // do here and the operand rules may not line up with the below, so
4043   // bail early.
4044   if (Opcode >= ISD::BUILTIN_OP_END)
4045     return SDValue();
4046 
4047   if (isUndef(Opcode, Ops))
4048     return getUNDEF(VT);
4049 
4050   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4051   if (!VT.isVector())
4052     return SDValue();
4053 
4054   unsigned NumElts = VT.getVectorNumElements();
4055 
4056   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4057     return !Op.getValueType().isVector() ||
4058            Op.getValueType().getVectorNumElements() == NumElts;
4059   };
4060 
4061   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4062     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4063     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4064            (BV && BV->isConstant());
4065   };
4066 
4067   // All operands must be vector types with the same number of elements as
4068   // the result type and must be either UNDEF or a build vector of constant
4069   // or UNDEF scalars.
4070   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4071       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4072     return SDValue();
4073 
4074   // If we are comparing vectors, then the result needs to be a i1 boolean
4075   // that is then sign-extended back to the legal result type.
4076   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4077 
4078   // Find legal integer scalar type for constant promotion and
4079   // ensure that its scalar size is at least as large as source.
4080   EVT LegalSVT = VT.getScalarType();
4081   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4082     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4083     if (LegalSVT.bitsLT(VT.getScalarType()))
4084       return SDValue();
4085   }
4086 
4087   // Constant fold each scalar lane separately.
4088   SmallVector<SDValue, 4> ScalarResults;
4089   for (unsigned i = 0; i != NumElts; i++) {
4090     SmallVector<SDValue, 4> ScalarOps;
4091     for (SDValue Op : Ops) {
4092       EVT InSVT = Op.getValueType().getScalarType();
4093       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4094       if (!InBV) {
4095         // We've checked that this is UNDEF or a constant of some kind.
4096         if (Op.isUndef())
4097           ScalarOps.push_back(getUNDEF(InSVT));
4098         else
4099           ScalarOps.push_back(Op);
4100         continue;
4101       }
4102 
4103       SDValue ScalarOp = InBV->getOperand(i);
4104       EVT ScalarVT = ScalarOp.getValueType();
4105 
4106       // Build vector (integer) scalar operands may need implicit
4107       // truncation - do this before constant folding.
4108       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4109         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4110 
4111       ScalarOps.push_back(ScalarOp);
4112     }
4113 
4114     // Constant fold the scalar operands.
4115     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4116 
4117     // Legalize the (integer) scalar constant if necessary.
4118     if (LegalSVT != SVT)
4119       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4120 
4121     // Scalar folding only succeeded if the result is a constant or UNDEF.
4122     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4123         ScalarResult.getOpcode() != ISD::ConstantFP)
4124       return SDValue();
4125     ScalarResults.push_back(ScalarResult);
4126   }
4127 
4128   SDValue V = getBuildVector(VT, DL, ScalarResults);
4129   NewSDValueDbgMsg(V, "New node fold constant vector: ");
4130   return V;
4131 }
4132 
4133 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4134                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4135   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4136   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4137   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4138   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4139 
4140   // Canonicalize constant to RHS if commutative.
4141   if (TLI->isCommutativeBinOp(Opcode)) {
4142     if (N1C && !N2C) {
4143       std::swap(N1C, N2C);
4144       std::swap(N1, N2);
4145     } else if (N1CFP && !N2CFP) {
4146       std::swap(N1CFP, N2CFP);
4147       std::swap(N1, N2);
4148     }
4149   }
4150 
4151   switch (Opcode) {
4152   default: break;
4153   case ISD::TokenFactor:
4154     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4155            N2.getValueType() == MVT::Other && "Invalid token factor!");
4156     // Fold trivial token factors.
4157     if (N1.getOpcode() == ISD::EntryToken) return N2;
4158     if (N2.getOpcode() == ISD::EntryToken) return N1;
4159     if (N1 == N2) return N1;
4160     break;
4161   case ISD::CONCAT_VECTORS: {
4162     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4163     SDValue Ops[] = {N1, N2};
4164     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4165       return V;
4166     break;
4167   }
4168   case ISD::AND:
4169     assert(VT.isInteger() && "This operator does not apply to FP types!");
4170     assert(N1.getValueType() == N2.getValueType() &&
4171            N1.getValueType() == VT && "Binary operator types must match!");
4172     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4173     // worth handling here.
4174     if (N2C && N2C->isNullValue())
4175       return N2;
4176     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4177       return N1;
4178     break;
4179   case ISD::OR:
4180   case ISD::XOR:
4181   case ISD::ADD:
4182   case ISD::SUB:
4183     assert(VT.isInteger() && "This operator does not apply to FP types!");
4184     assert(N1.getValueType() == N2.getValueType() &&
4185            N1.getValueType() == VT && "Binary operator types must match!");
4186     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4187     // it's worth handling here.
4188     if (N2C && N2C->isNullValue())
4189       return N1;
4190     break;
4191   case ISD::UDIV:
4192   case ISD::UREM:
4193   case ISD::MULHU:
4194   case ISD::MULHS:
4195   case ISD::MUL:
4196   case ISD::SDIV:
4197   case ISD::SREM:
4198   case ISD::SMIN:
4199   case ISD::SMAX:
4200   case ISD::UMIN:
4201   case ISD::UMAX:
4202     assert(VT.isInteger() && "This operator does not apply to FP types!");
4203     assert(N1.getValueType() == N2.getValueType() &&
4204            N1.getValueType() == VT && "Binary operator types must match!");
4205     break;
4206   case ISD::FADD:
4207   case ISD::FSUB:
4208   case ISD::FMUL:
4209   case ISD::FDIV:
4210   case ISD::FREM:
4211     if (getTarget().Options.UnsafeFPMath) {
4212       if (Opcode == ISD::FADD) {
4213         // x+0 --> x
4214         if (N2CFP && N2CFP->getValueAPF().isZero())
4215           return N1;
4216       } else if (Opcode == ISD::FSUB) {
4217         // x-0 --> x
4218         if (N2CFP && N2CFP->getValueAPF().isZero())
4219           return N1;
4220       } else if (Opcode == ISD::FMUL) {
4221         // x*0 --> 0
4222         if (N2CFP && N2CFP->isZero())
4223           return N2;
4224         // x*1 --> x
4225         if (N2CFP && N2CFP->isExactlyValue(1.0))
4226           return N1;
4227       }
4228     }
4229     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4230     assert(N1.getValueType() == N2.getValueType() &&
4231            N1.getValueType() == VT && "Binary operator types must match!");
4232     break;
4233   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4234     assert(N1.getValueType() == VT &&
4235            N1.getValueType().isFloatingPoint() &&
4236            N2.getValueType().isFloatingPoint() &&
4237            "Invalid FCOPYSIGN!");
4238     break;
4239   case ISD::SHL:
4240   case ISD::SRA:
4241   case ISD::SRL:
4242   case ISD::ROTL:
4243   case ISD::ROTR:
4244     assert(VT == N1.getValueType() &&
4245            "Shift operators return type must be the same as their first arg");
4246     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4247            "Shifts only work on integers");
4248     assert((!VT.isVector() || VT == N2.getValueType()) &&
4249            "Vector shift amounts must be in the same as their first arg");
4250     // Verify that the shift amount VT is bit enough to hold valid shift
4251     // amounts.  This catches things like trying to shift an i1024 value by an
4252     // i8, which is easy to fall into in generic code that uses
4253     // TLI.getShiftAmount().
4254     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4255            "Invalid use of small shift amount with oversized value!");
4256 
4257     // Always fold shifts of i1 values so the code generator doesn't need to
4258     // handle them.  Since we know the size of the shift has to be less than the
4259     // size of the value, the shift/rotate count is guaranteed to be zero.
4260     if (VT == MVT::i1)
4261       return N1;
4262     if (N2C && N2C->isNullValue())
4263       return N1;
4264     break;
4265   case ISD::FP_ROUND_INREG: {
4266     EVT EVT = cast<VTSDNode>(N2)->getVT();
4267     assert(VT == N1.getValueType() && "Not an inreg round!");
4268     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4269            "Cannot FP_ROUND_INREG integer types");
4270     assert(EVT.isVector() == VT.isVector() &&
4271            "FP_ROUND_INREG type should be vector iff the operand "
4272            "type is vector!");
4273     assert((!EVT.isVector() ||
4274             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4275            "Vector element counts must match in FP_ROUND_INREG");
4276     assert(EVT.bitsLE(VT) && "Not rounding down!");
4277     (void)EVT;
4278     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4279     break;
4280   }
4281   case ISD::FP_ROUND:
4282     assert(VT.isFloatingPoint() &&
4283            N1.getValueType().isFloatingPoint() &&
4284            VT.bitsLE(N1.getValueType()) &&
4285            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4286            "Invalid FP_ROUND!");
4287     if (N1.getValueType() == VT) return N1;  // noop conversion.
4288     break;
4289   case ISD::AssertSext:
4290   case ISD::AssertZext: {
4291     EVT EVT = cast<VTSDNode>(N2)->getVT();
4292     assert(VT == N1.getValueType() && "Not an inreg extend!");
4293     assert(VT.isInteger() && EVT.isInteger() &&
4294            "Cannot *_EXTEND_INREG FP types");
4295     assert(!EVT.isVector() &&
4296            "AssertSExt/AssertZExt type should be the vector element type "
4297            "rather than the vector type!");
4298     assert(EVT.bitsLE(VT) && "Not extending!");
4299     if (VT == EVT) return N1; // noop assertion.
4300     break;
4301   }
4302   case ISD::SIGN_EXTEND_INREG: {
4303     EVT EVT = cast<VTSDNode>(N2)->getVT();
4304     assert(VT == N1.getValueType() && "Not an inreg extend!");
4305     assert(VT.isInteger() && EVT.isInteger() &&
4306            "Cannot *_EXTEND_INREG FP types");
4307     assert(EVT.isVector() == VT.isVector() &&
4308            "SIGN_EXTEND_INREG type should be vector iff the operand "
4309            "type is vector!");
4310     assert((!EVT.isVector() ||
4311             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4312            "Vector element counts must match in SIGN_EXTEND_INREG");
4313     assert(EVT.bitsLE(VT) && "Not extending!");
4314     if (EVT == VT) return N1;  // Not actually extending
4315 
4316     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4317       unsigned FromBits = EVT.getScalarSizeInBits();
4318       Val <<= Val.getBitWidth() - FromBits;
4319       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4320       return getConstant(Val, DL, ConstantVT);
4321     };
4322 
4323     if (N1C) {
4324       const APInt &Val = N1C->getAPIntValue();
4325       return SignExtendInReg(Val, VT);
4326     }
4327     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4328       SmallVector<SDValue, 8> Ops;
4329       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4330       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4331         SDValue Op = N1.getOperand(i);
4332         if (Op.isUndef()) {
4333           Ops.push_back(getUNDEF(OpVT));
4334           continue;
4335         }
4336         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4337         APInt Val = C->getAPIntValue();
4338         Ops.push_back(SignExtendInReg(Val, OpVT));
4339       }
4340       return getBuildVector(VT, DL, Ops);
4341     }
4342     break;
4343   }
4344   case ISD::EXTRACT_VECTOR_ELT:
4345     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4346     if (N1.isUndef())
4347       return getUNDEF(VT);
4348 
4349     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4350     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4351       return getUNDEF(VT);
4352 
4353     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4354     // expanding copies of large vectors from registers.
4355     if (N2C &&
4356         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4357         N1.getNumOperands() > 0) {
4358       unsigned Factor =
4359         N1.getOperand(0).getValueType().getVectorNumElements();
4360       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4361                      N1.getOperand(N2C->getZExtValue() / Factor),
4362                      getConstant(N2C->getZExtValue() % Factor, DL,
4363                                  N2.getValueType()));
4364     }
4365 
4366     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4367     // expanding large vector constants.
4368     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4369       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4370 
4371       if (VT != Elt.getValueType())
4372         // If the vector element type is not legal, the BUILD_VECTOR operands
4373         // are promoted and implicitly truncated, and the result implicitly
4374         // extended. Make that explicit here.
4375         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4376 
4377       return Elt;
4378     }
4379 
4380     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4381     // operations are lowered to scalars.
4382     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4383       // If the indices are the same, return the inserted element else
4384       // if the indices are known different, extract the element from
4385       // the original vector.
4386       SDValue N1Op2 = N1.getOperand(2);
4387       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4388 
4389       if (N1Op2C && N2C) {
4390         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4391           if (VT == N1.getOperand(1).getValueType())
4392             return N1.getOperand(1);
4393           else
4394             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4395         }
4396 
4397         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4398       }
4399     }
4400 
4401     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4402     // when vector types are scalarized and v1iX is legal.
4403     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4404     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4405         N1.getValueType().getVectorNumElements() == 1) {
4406       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4407                      N1.getOperand(1));
4408     }
4409     break;
4410   case ISD::EXTRACT_ELEMENT:
4411     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4412     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4413            (N1.getValueType().isInteger() == VT.isInteger()) &&
4414            N1.getValueType() != VT &&
4415            "Wrong types for EXTRACT_ELEMENT!");
4416 
4417     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4418     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4419     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4420     if (N1.getOpcode() == ISD::BUILD_PAIR)
4421       return N1.getOperand(N2C->getZExtValue());
4422 
4423     // EXTRACT_ELEMENT of a constant int is also very common.
4424     if (N1C) {
4425       unsigned ElementSize = VT.getSizeInBits();
4426       unsigned Shift = ElementSize * N2C->getZExtValue();
4427       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4428       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4429     }
4430     break;
4431   case ISD::EXTRACT_SUBVECTOR:
4432     if (VT.isSimple() && N1.getValueType().isSimple()) {
4433       assert(VT.isVector() && N1.getValueType().isVector() &&
4434              "Extract subvector VTs must be a vectors!");
4435       assert(VT.getVectorElementType() ==
4436              N1.getValueType().getVectorElementType() &&
4437              "Extract subvector VTs must have the same element type!");
4438       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4439              "Extract subvector must be from larger vector to smaller vector!");
4440 
4441       if (N2C) {
4442         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4443                 <= N1.getValueType().getVectorNumElements())
4444                && "Extract subvector overflow!");
4445       }
4446 
4447       // Trivial extraction.
4448       if (VT.getSimpleVT() == N1.getSimpleValueType())
4449         return N1;
4450 
4451       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4452       if (N1.isUndef())
4453         return getUNDEF(VT);
4454 
4455       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4456       // the concat have the same type as the extract.
4457       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4458           N1.getNumOperands() > 0 &&
4459           VT == N1.getOperand(0).getValueType()) {
4460         unsigned Factor = VT.getVectorNumElements();
4461         return N1.getOperand(N2C->getZExtValue() / Factor);
4462       }
4463 
4464       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4465       // during shuffle legalization.
4466       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4467           VT == N1.getOperand(1).getValueType())
4468         return N1.getOperand(1);
4469     }
4470     break;
4471   }
4472 
4473   // Perform trivial constant folding.
4474   if (SDValue SV =
4475           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4476     return SV;
4477 
4478   // Constant fold FP operations.
4479   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4480   if (N1CFP) {
4481     if (N2CFP) {
4482       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4483       APFloat::opStatus s;
4484       switch (Opcode) {
4485       case ISD::FADD:
4486         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4487         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4488           return getConstantFP(V1, DL, VT);
4489         break;
4490       case ISD::FSUB:
4491         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4492         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4493           return getConstantFP(V1, DL, VT);
4494         break;
4495       case ISD::FMUL:
4496         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4497         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4498           return getConstantFP(V1, DL, VT);
4499         break;
4500       case ISD::FDIV:
4501         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4502         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4503                                  s!=APFloat::opDivByZero)) {
4504           return getConstantFP(V1, DL, VT);
4505         }
4506         break;
4507       case ISD::FREM :
4508         s = V1.mod(V2);
4509         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4510                                  s!=APFloat::opDivByZero)) {
4511           return getConstantFP(V1, DL, VT);
4512         }
4513         break;
4514       case ISD::FCOPYSIGN:
4515         V1.copySign(V2);
4516         return getConstantFP(V1, DL, VT);
4517       default: break;
4518       }
4519     }
4520 
4521     if (Opcode == ISD::FP_ROUND) {
4522       APFloat V = N1CFP->getValueAPF();    // make copy
4523       bool ignored;
4524       // This can return overflow, underflow, or inexact; we don't care.
4525       // FIXME need to be more flexible about rounding mode.
4526       (void)V.convert(EVTToAPFloatSemantics(VT),
4527                       APFloat::rmNearestTiesToEven, &ignored);
4528       return getConstantFP(V, DL, VT);
4529     }
4530   }
4531 
4532   // Canonicalize an UNDEF to the RHS, even over a constant.
4533   if (N1.isUndef()) {
4534     if (TLI->isCommutativeBinOp(Opcode)) {
4535       std::swap(N1, N2);
4536     } else {
4537       switch (Opcode) {
4538       case ISD::FP_ROUND_INREG:
4539       case ISD::SIGN_EXTEND_INREG:
4540       case ISD::SUB:
4541       case ISD::FSUB:
4542       case ISD::FDIV:
4543       case ISD::FREM:
4544       case ISD::SRA:
4545         return N1;     // fold op(undef, arg2) -> undef
4546       case ISD::UDIV:
4547       case ISD::SDIV:
4548       case ISD::UREM:
4549       case ISD::SREM:
4550       case ISD::SRL:
4551       case ISD::SHL:
4552         if (!VT.isVector())
4553           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4554         // For vectors, we can't easily build an all zero vector, just return
4555         // the LHS.
4556         return N2;
4557       }
4558     }
4559   }
4560 
4561   // Fold a bunch of operators when the RHS is undef.
4562   if (N2.isUndef()) {
4563     switch (Opcode) {
4564     case ISD::XOR:
4565       if (N1.isUndef())
4566         // Handle undef ^ undef -> 0 special case. This is a common
4567         // idiom (misuse).
4568         return getConstant(0, DL, VT);
4569       LLVM_FALLTHROUGH;
4570     case ISD::ADD:
4571     case ISD::ADDC:
4572     case ISD::ADDE:
4573     case ISD::SUB:
4574     case ISD::UDIV:
4575     case ISD::SDIV:
4576     case ISD::UREM:
4577     case ISD::SREM:
4578       return N2;       // fold op(arg1, undef) -> undef
4579     case ISD::FADD:
4580     case ISD::FSUB:
4581     case ISD::FMUL:
4582     case ISD::FDIV:
4583     case ISD::FREM:
4584       if (getTarget().Options.UnsafeFPMath)
4585         return N2;
4586       break;
4587     case ISD::MUL:
4588     case ISD::AND:
4589     case ISD::SRL:
4590     case ISD::SHL:
4591       if (!VT.isVector())
4592         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4593       // For vectors, we can't easily build an all zero vector, just return
4594       // the LHS.
4595       return N1;
4596     case ISD::OR:
4597       if (!VT.isVector())
4598         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4599       // For vectors, we can't easily build an all one vector, just return
4600       // the LHS.
4601       return N1;
4602     case ISD::SRA:
4603       return N1;
4604     }
4605   }
4606 
4607   // Memoize this node if possible.
4608   SDNode *N;
4609   SDVTList VTs = getVTList(VT);
4610   SDValue Ops[] = {N1, N2};
4611   if (VT != MVT::Glue) {
4612     FoldingSetNodeID ID;
4613     AddNodeIDNode(ID, Opcode, VTs, Ops);
4614     void *IP = nullptr;
4615     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4616       E->intersectFlagsWith(Flags);
4617       return SDValue(E, 0);
4618     }
4619 
4620     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4621     N->setFlags(Flags);
4622     createOperands(N, Ops);
4623     CSEMap.InsertNode(N, IP);
4624   } else {
4625     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4626     createOperands(N, Ops);
4627   }
4628 
4629   InsertNode(N);
4630   SDValue V = SDValue(N, 0);
4631   NewSDValueDbgMsg(V, "Creating new node: ");
4632   return V;
4633 }
4634 
4635 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4636                               SDValue N1, SDValue N2, SDValue N3) {
4637   // Perform various simplifications.
4638   switch (Opcode) {
4639   case ISD::FMA: {
4640     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4641     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4642     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4643     if (N1CFP && N2CFP && N3CFP) {
4644       APFloat  V1 = N1CFP->getValueAPF();
4645       const APFloat &V2 = N2CFP->getValueAPF();
4646       const APFloat &V3 = N3CFP->getValueAPF();
4647       APFloat::opStatus s =
4648         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4649       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4650         return getConstantFP(V1, DL, VT);
4651     }
4652     break;
4653   }
4654   case ISD::CONCAT_VECTORS: {
4655     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4656     SDValue Ops[] = {N1, N2, N3};
4657     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4658       return V;
4659     break;
4660   }
4661   case ISD::SETCC: {
4662     // Use FoldSetCC to simplify SETCC's.
4663     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4664       return V;
4665     // Vector constant folding.
4666     SDValue Ops[] = {N1, N2, N3};
4667     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4668       NewSDValueDbgMsg(V, "New node vector constant folding: ");
4669       return V;
4670     }
4671     break;
4672   }
4673   case ISD::SELECT:
4674     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4675      if (N1C->getZExtValue())
4676        return N2;             // select true, X, Y -> X
4677      return N3;             // select false, X, Y -> Y
4678     }
4679 
4680     if (N2 == N3) return N2;   // select C, X, X -> X
4681     break;
4682   case ISD::VECTOR_SHUFFLE:
4683     llvm_unreachable("should use getVectorShuffle constructor!");
4684   case ISD::INSERT_VECTOR_ELT: {
4685     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4686     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4687     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4688       return getUNDEF(VT);
4689     break;
4690   }
4691   case ISD::INSERT_SUBVECTOR: {
4692     SDValue Index = N3;
4693     if (VT.isSimple() && N1.getValueType().isSimple()
4694         && N2.getValueType().isSimple()) {
4695       assert(VT.isVector() && N1.getValueType().isVector() &&
4696              N2.getValueType().isVector() &&
4697              "Insert subvector VTs must be a vectors");
4698       assert(VT == N1.getValueType() &&
4699              "Dest and insert subvector source types must match!");
4700       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4701              "Insert subvector must be from smaller vector to larger vector!");
4702       if (isa<ConstantSDNode>(Index)) {
4703         assert((N2.getValueType().getVectorNumElements() +
4704                 cast<ConstantSDNode>(Index)->getZExtValue()
4705                 <= VT.getVectorNumElements())
4706                && "Insert subvector overflow!");
4707       }
4708 
4709       // Trivial insertion.
4710       if (VT.getSimpleVT() == N2.getSimpleValueType())
4711         return N2;
4712     }
4713     break;
4714   }
4715   case ISD::BITCAST:
4716     // Fold bit_convert nodes from a type to themselves.
4717     if (N1.getValueType() == VT)
4718       return N1;
4719     break;
4720   }
4721 
4722   // Memoize node if it doesn't produce a flag.
4723   SDNode *N;
4724   SDVTList VTs = getVTList(VT);
4725   SDValue Ops[] = {N1, N2, N3};
4726   if (VT != MVT::Glue) {
4727     FoldingSetNodeID ID;
4728     AddNodeIDNode(ID, Opcode, VTs, Ops);
4729     void *IP = nullptr;
4730     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4731       return SDValue(E, 0);
4732 
4733     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4734     createOperands(N, Ops);
4735     CSEMap.InsertNode(N, IP);
4736   } else {
4737     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4738     createOperands(N, Ops);
4739   }
4740 
4741   InsertNode(N);
4742   SDValue V = SDValue(N, 0);
4743   NewSDValueDbgMsg(V, "Creating new node: ");
4744   return V;
4745 }
4746 
4747 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4748                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4749   SDValue Ops[] = { N1, N2, N3, N4 };
4750   return getNode(Opcode, DL, VT, Ops);
4751 }
4752 
4753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4754                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4755                               SDValue N5) {
4756   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4757   return getNode(Opcode, DL, VT, Ops);
4758 }
4759 
4760 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4761 /// the incoming stack arguments to be loaded from the stack.
4762 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4763   SmallVector<SDValue, 8> ArgChains;
4764 
4765   // Include the original chain at the beginning of the list. When this is
4766   // used by target LowerCall hooks, this helps legalize find the
4767   // CALLSEQ_BEGIN node.
4768   ArgChains.push_back(Chain);
4769 
4770   // Add a chain value for each stack argument.
4771   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4772        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4773     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4774       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4775         if (FI->getIndex() < 0)
4776           ArgChains.push_back(SDValue(L, 1));
4777 
4778   // Build a tokenfactor for all the chains.
4779   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4780 }
4781 
4782 /// getMemsetValue - Vectorized representation of the memset value
4783 /// operand.
4784 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4785                               const SDLoc &dl) {
4786   assert(!Value.isUndef());
4787 
4788   unsigned NumBits = VT.getScalarSizeInBits();
4789   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4790     assert(C->getAPIntValue().getBitWidth() == 8);
4791     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4792     if (VT.isInteger())
4793       return DAG.getConstant(Val, dl, VT);
4794     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4795                              VT);
4796   }
4797 
4798   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4799   EVT IntVT = VT.getScalarType();
4800   if (!IntVT.isInteger())
4801     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4802 
4803   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4804   if (NumBits > 8) {
4805     // Use a multiplication with 0x010101... to extend the input to the
4806     // required length.
4807     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4808     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4809                         DAG.getConstant(Magic, dl, IntVT));
4810   }
4811 
4812   if (VT != Value.getValueType() && !VT.isInteger())
4813     Value = DAG.getBitcast(VT.getScalarType(), Value);
4814   if (VT != Value.getValueType())
4815     Value = DAG.getSplatBuildVector(VT, dl, Value);
4816 
4817   return Value;
4818 }
4819 
4820 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4821 /// used when a memcpy is turned into a memset when the source is a constant
4822 /// string ptr.
4823 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4824                                   const TargetLowering &TLI,
4825                                   const ConstantDataArraySlice &Slice) {
4826   // Handle vector with all elements zero.
4827   if (Slice.Array == nullptr) {
4828     if (VT.isInteger())
4829       return DAG.getConstant(0, dl, VT);
4830     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4831       return DAG.getConstantFP(0.0, dl, VT);
4832     else if (VT.isVector()) {
4833       unsigned NumElts = VT.getVectorNumElements();
4834       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4835       return DAG.getNode(ISD::BITCAST, dl, VT,
4836                          DAG.getConstant(0, dl,
4837                                          EVT::getVectorVT(*DAG.getContext(),
4838                                                           EltVT, NumElts)));
4839     } else
4840       llvm_unreachable("Expected type!");
4841   }
4842 
4843   assert(!VT.isVector() && "Can't handle vector type here!");
4844   unsigned NumVTBits = VT.getSizeInBits();
4845   unsigned NumVTBytes = NumVTBits / 8;
4846   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
4847 
4848   APInt Val(NumVTBits, 0);
4849   if (DAG.getDataLayout().isLittleEndian()) {
4850     for (unsigned i = 0; i != NumBytes; ++i)
4851       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
4852   } else {
4853     for (unsigned i = 0; i != NumBytes; ++i)
4854       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
4855   }
4856 
4857   // If the "cost" of materializing the integer immediate is less than the cost
4858   // of a load, then it is cost effective to turn the load into the immediate.
4859   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4860   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4861     return DAG.getConstant(Val, dl, VT);
4862   return SDValue(nullptr, 0);
4863 }
4864 
4865 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4866                                            const SDLoc &DL) {
4867   EVT VT = Base.getValueType();
4868   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4869 }
4870 
4871 /// Returns true if memcpy source is constant data.
4872 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
4873   uint64_t SrcDelta = 0;
4874   GlobalAddressSDNode *G = nullptr;
4875   if (Src.getOpcode() == ISD::GlobalAddress)
4876     G = cast<GlobalAddressSDNode>(Src);
4877   else if (Src.getOpcode() == ISD::ADD &&
4878            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4879            Src.getOperand(1).getOpcode() == ISD::Constant) {
4880     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4881     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4882   }
4883   if (!G)
4884     return false;
4885 
4886   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
4887                                   SrcDelta + G->getOffset());
4888 }
4889 
4890 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4891 /// Return true if the number of memory ops is below the threshold (Limit).
4892 /// It returns the types of the sequence of memory ops to perform
4893 /// memset / memcpy by reference.
4894 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4895                                      unsigned Limit, uint64_t Size,
4896                                      unsigned DstAlign, unsigned SrcAlign,
4897                                      bool IsMemset,
4898                                      bool ZeroMemset,
4899                                      bool MemcpyStrSrc,
4900                                      bool AllowOverlap,
4901                                      unsigned DstAS, unsigned SrcAS,
4902                                      SelectionDAG &DAG,
4903                                      const TargetLowering &TLI) {
4904   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4905          "Expecting memcpy / memset source to meet alignment requirement!");
4906   // If 'SrcAlign' is zero, that means the memory operation does not need to
4907   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4908   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4909   // is the specified alignment of the memory operation. If it is zero, that
4910   // means it's possible to change the alignment of the destination.
4911   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4912   // not need to be loaded.
4913   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4914                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4915                                    DAG.getMachineFunction());
4916 
4917   if (VT == MVT::Other) {
4918     // Use the largest integer type whose alignment constraints are satisfied.
4919     // We only need to check DstAlign here as SrcAlign is always greater or
4920     // equal to DstAlign (or zero).
4921     VT = MVT::i64;
4922     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
4923            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
4924       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
4925     assert(VT.isInteger());
4926 
4927     // Find the largest legal integer type.
4928     MVT LVT = MVT::i64;
4929     while (!TLI.isTypeLegal(LVT))
4930       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4931     assert(LVT.isInteger());
4932 
4933     // If the type we've chosen is larger than the largest legal integer type
4934     // then use that instead.
4935     if (VT.bitsGT(LVT))
4936       VT = LVT;
4937   }
4938 
4939   unsigned NumMemOps = 0;
4940   while (Size != 0) {
4941     unsigned VTSize = VT.getSizeInBits() / 8;
4942     while (VTSize > Size) {
4943       // For now, only use non-vector load / store's for the left-over pieces.
4944       EVT NewVT = VT;
4945       unsigned NewVTSize;
4946 
4947       bool Found = false;
4948       if (VT.isVector() || VT.isFloatingPoint()) {
4949         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4950         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4951             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4952           Found = true;
4953         else if (NewVT == MVT::i64 &&
4954                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4955                  TLI.isSafeMemOpType(MVT::f64)) {
4956           // i64 is usually not legal on 32-bit targets, but f64 may be.
4957           NewVT = MVT::f64;
4958           Found = true;
4959         }
4960       }
4961 
4962       if (!Found) {
4963         do {
4964           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4965           if (NewVT == MVT::i8)
4966             break;
4967         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4968       }
4969       NewVTSize = NewVT.getSizeInBits() / 8;
4970 
4971       // If the new VT cannot cover all of the remaining bits, then consider
4972       // issuing a (or a pair of) unaligned and overlapping load / store.
4973       // FIXME: Only does this for 64-bit or more since we don't have proper
4974       // cost model for unaligned load / store.
4975       bool Fast;
4976       if (NumMemOps && AllowOverlap &&
4977           VTSize >= 8 && NewVTSize < Size &&
4978           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4979         VTSize = Size;
4980       else {
4981         VT = NewVT;
4982         VTSize = NewVTSize;
4983       }
4984     }
4985 
4986     if (++NumMemOps > Limit)
4987       return false;
4988 
4989     MemOps.push_back(VT);
4990     Size -= VTSize;
4991   }
4992 
4993   return true;
4994 }
4995 
4996 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4997   // On Darwin, -Os means optimize for size without hurting performance, so
4998   // only really optimize for size when -Oz (MinSize) is used.
4999   if (MF.getTarget().getTargetTriple().isOSDarwin())
5000     return MF.getFunction()->optForMinSize();
5001   return MF.getFunction()->optForSize();
5002 }
5003 
5004 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5005                                        SDValue Chain, SDValue Dst, SDValue Src,
5006                                        uint64_t Size, unsigned Align,
5007                                        bool isVol, bool AlwaysInline,
5008                                        MachinePointerInfo DstPtrInfo,
5009                                        MachinePointerInfo SrcPtrInfo) {
5010   // Turn a memcpy of undef to nop.
5011   if (Src.isUndef())
5012     return Chain;
5013 
5014   // Expand memcpy to a series of load and store ops if the size operand falls
5015   // below a certain threshold.
5016   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5017   // rather than maybe a humongous number of loads and stores.
5018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5019   const DataLayout &DL = DAG.getDataLayout();
5020   LLVMContext &C = *DAG.getContext();
5021   std::vector<EVT> MemOps;
5022   bool DstAlignCanChange = false;
5023   MachineFunction &MF = DAG.getMachineFunction();
5024   MachineFrameInfo &MFI = MF.getFrameInfo();
5025   bool OptSize = shouldLowerMemFuncForSize(MF);
5026   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5027   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5028     DstAlignCanChange = true;
5029   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5030   if (Align > SrcAlign)
5031     SrcAlign = Align;
5032   ConstantDataArraySlice Slice;
5033   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5034   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5035   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5036 
5037   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5038                                 (DstAlignCanChange ? 0 : Align),
5039                                 (isZeroConstant ? 0 : SrcAlign),
5040                                 false, false, CopyFromConstant, true,
5041                                 DstPtrInfo.getAddrSpace(),
5042                                 SrcPtrInfo.getAddrSpace(),
5043                                 DAG, TLI))
5044     return SDValue();
5045 
5046   if (DstAlignCanChange) {
5047     Type *Ty = MemOps[0].getTypeForEVT(C);
5048     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5049 
5050     // Don't promote to an alignment that would require dynamic stack
5051     // realignment.
5052     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5053     if (!TRI->needsStackRealignment(MF))
5054       while (NewAlign > Align &&
5055              DL.exceedsNaturalStackAlignment(NewAlign))
5056           NewAlign /= 2;
5057 
5058     if (NewAlign > Align) {
5059       // Give the stack frame object a larger alignment if needed.
5060       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5061         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5062       Align = NewAlign;
5063     }
5064   }
5065 
5066   MachineMemOperand::Flags MMOFlags =
5067       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5068   SmallVector<SDValue, 8> OutChains;
5069   unsigned NumMemOps = MemOps.size();
5070   uint64_t SrcOff = 0, DstOff = 0;
5071   for (unsigned i = 0; i != NumMemOps; ++i) {
5072     EVT VT = MemOps[i];
5073     unsigned VTSize = VT.getSizeInBits() / 8;
5074     SDValue Value, Store;
5075 
5076     if (VTSize > Size) {
5077       // Issuing an unaligned load / store pair  that overlaps with the previous
5078       // pair. Adjust the offset accordingly.
5079       assert(i == NumMemOps-1 && i != 0);
5080       SrcOff -= VTSize - Size;
5081       DstOff -= VTSize - Size;
5082     }
5083 
5084     if (CopyFromConstant &&
5085         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5086       // It's unlikely a store of a vector immediate can be done in a single
5087       // instruction. It would require a load from a constantpool first.
5088       // We only handle zero vectors here.
5089       // FIXME: Handle other cases where store of vector immediate is done in
5090       // a single instruction.
5091       ConstantDataArraySlice SubSlice;
5092       if (SrcOff < Slice.Length) {
5093         SubSlice = Slice;
5094         SubSlice.move(SrcOff);
5095       } else {
5096         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5097         SubSlice.Array = nullptr;
5098         SubSlice.Offset = 0;
5099         SubSlice.Length = VTSize;
5100       }
5101       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5102       if (Value.getNode())
5103         Store = DAG.getStore(Chain, dl, Value,
5104                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5105                              DstPtrInfo.getWithOffset(DstOff), Align,
5106                              MMOFlags);
5107     }
5108 
5109     if (!Store.getNode()) {
5110       // The type might not be legal for the target.  This should only happen
5111       // if the type is smaller than a legal type, as on PPC, so the right
5112       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5113       // to Load/Store if NVT==VT.
5114       // FIXME does the case above also need this?
5115       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5116       assert(NVT.bitsGE(VT));
5117 
5118       bool isDereferenceable =
5119         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5120       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5121       if (isDereferenceable)
5122         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5123 
5124       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5125                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5126                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5127                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5128       OutChains.push_back(Value.getValue(1));
5129       Store = DAG.getTruncStore(
5130           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5131           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5132     }
5133     OutChains.push_back(Store);
5134     SrcOff += VTSize;
5135     DstOff += VTSize;
5136     Size -= VTSize;
5137   }
5138 
5139   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5140 }
5141 
5142 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5143                                         SDValue Chain, SDValue Dst, SDValue Src,
5144                                         uint64_t Size, unsigned Align,
5145                                         bool isVol, bool AlwaysInline,
5146                                         MachinePointerInfo DstPtrInfo,
5147                                         MachinePointerInfo SrcPtrInfo) {
5148   // Turn a memmove of undef to nop.
5149   if (Src.isUndef())
5150     return Chain;
5151 
5152   // Expand memmove to a series of load and store ops if the size operand falls
5153   // below a certain threshold.
5154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5155   const DataLayout &DL = DAG.getDataLayout();
5156   LLVMContext &C = *DAG.getContext();
5157   std::vector<EVT> MemOps;
5158   bool DstAlignCanChange = false;
5159   MachineFunction &MF = DAG.getMachineFunction();
5160   MachineFrameInfo &MFI = MF.getFrameInfo();
5161   bool OptSize = shouldLowerMemFuncForSize(MF);
5162   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5163   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5164     DstAlignCanChange = true;
5165   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5166   if (Align > SrcAlign)
5167     SrcAlign = Align;
5168   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5169 
5170   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5171                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5172                                 false, false, false, false,
5173                                 DstPtrInfo.getAddrSpace(),
5174                                 SrcPtrInfo.getAddrSpace(),
5175                                 DAG, TLI))
5176     return SDValue();
5177 
5178   if (DstAlignCanChange) {
5179     Type *Ty = MemOps[0].getTypeForEVT(C);
5180     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5181     if (NewAlign > Align) {
5182       // Give the stack frame object a larger alignment if needed.
5183       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5184         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5185       Align = NewAlign;
5186     }
5187   }
5188 
5189   MachineMemOperand::Flags MMOFlags =
5190       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5191   uint64_t SrcOff = 0, DstOff = 0;
5192   SmallVector<SDValue, 8> LoadValues;
5193   SmallVector<SDValue, 8> LoadChains;
5194   SmallVector<SDValue, 8> OutChains;
5195   unsigned NumMemOps = MemOps.size();
5196   for (unsigned i = 0; i < NumMemOps; i++) {
5197     EVT VT = MemOps[i];
5198     unsigned VTSize = VT.getSizeInBits() / 8;
5199     SDValue Value;
5200 
5201     bool isDereferenceable =
5202       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5203     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5204     if (isDereferenceable)
5205       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5206 
5207     Value =
5208         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5209                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5210     LoadValues.push_back(Value);
5211     LoadChains.push_back(Value.getValue(1));
5212     SrcOff += VTSize;
5213   }
5214   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5215   OutChains.clear();
5216   for (unsigned i = 0; i < NumMemOps; i++) {
5217     EVT VT = MemOps[i];
5218     unsigned VTSize = VT.getSizeInBits() / 8;
5219     SDValue Store;
5220 
5221     Store = DAG.getStore(Chain, dl, LoadValues[i],
5222                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5223                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5224     OutChains.push_back(Store);
5225     DstOff += VTSize;
5226   }
5227 
5228   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5229 }
5230 
5231 /// \brief Lower the call to 'memset' intrinsic function into a series of store
5232 /// operations.
5233 ///
5234 /// \param DAG Selection DAG where lowered code is placed.
5235 /// \param dl Link to corresponding IR location.
5236 /// \param Chain Control flow dependency.
5237 /// \param Dst Pointer to destination memory location.
5238 /// \param Src Value of byte to write into the memory.
5239 /// \param Size Number of bytes to write.
5240 /// \param Align Alignment of the destination in bytes.
5241 /// \param isVol True if destination is volatile.
5242 /// \param DstPtrInfo IR information on the memory pointer.
5243 /// \returns New head in the control flow, if lowering was successful, empty
5244 /// SDValue otherwise.
5245 ///
5246 /// The function tries to replace 'llvm.memset' intrinsic with several store
5247 /// operations and value calculation code. This is usually profitable for small
5248 /// memory size.
5249 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5250                                SDValue Chain, SDValue Dst, SDValue Src,
5251                                uint64_t Size, unsigned Align, bool isVol,
5252                                MachinePointerInfo DstPtrInfo) {
5253   // Turn a memset of undef to nop.
5254   if (Src.isUndef())
5255     return Chain;
5256 
5257   // Expand memset to a series of load/store ops if the size operand
5258   // falls below a certain threshold.
5259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5260   std::vector<EVT> MemOps;
5261   bool DstAlignCanChange = false;
5262   MachineFunction &MF = DAG.getMachineFunction();
5263   MachineFrameInfo &MFI = MF.getFrameInfo();
5264   bool OptSize = shouldLowerMemFuncForSize(MF);
5265   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5266   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5267     DstAlignCanChange = true;
5268   bool IsZeroVal =
5269     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5270   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5271                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5272                                 true, IsZeroVal, false, true,
5273                                 DstPtrInfo.getAddrSpace(), ~0u,
5274                                 DAG, TLI))
5275     return SDValue();
5276 
5277   if (DstAlignCanChange) {
5278     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5279     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5280     if (NewAlign > Align) {
5281       // Give the stack frame object a larger alignment if needed.
5282       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5283         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5284       Align = NewAlign;
5285     }
5286   }
5287 
5288   SmallVector<SDValue, 8> OutChains;
5289   uint64_t DstOff = 0;
5290   unsigned NumMemOps = MemOps.size();
5291 
5292   // Find the largest store and generate the bit pattern for it.
5293   EVT LargestVT = MemOps[0];
5294   for (unsigned i = 1; i < NumMemOps; i++)
5295     if (MemOps[i].bitsGT(LargestVT))
5296       LargestVT = MemOps[i];
5297   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5298 
5299   for (unsigned i = 0; i < NumMemOps; i++) {
5300     EVT VT = MemOps[i];
5301     unsigned VTSize = VT.getSizeInBits() / 8;
5302     if (VTSize > Size) {
5303       // Issuing an unaligned load / store pair  that overlaps with the previous
5304       // pair. Adjust the offset accordingly.
5305       assert(i == NumMemOps-1 && i != 0);
5306       DstOff -= VTSize - Size;
5307     }
5308 
5309     // If this store is smaller than the largest store see whether we can get
5310     // the smaller value for free with a truncate.
5311     SDValue Value = MemSetValue;
5312     if (VT.bitsLT(LargestVT)) {
5313       if (!LargestVT.isVector() && !VT.isVector() &&
5314           TLI.isTruncateFree(LargestVT, VT))
5315         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5316       else
5317         Value = getMemsetValue(Src, VT, DAG, dl);
5318     }
5319     assert(Value.getValueType() == VT && "Value with wrong type.");
5320     SDValue Store = DAG.getStore(
5321         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5322         DstPtrInfo.getWithOffset(DstOff), Align,
5323         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5324     OutChains.push_back(Store);
5325     DstOff += VT.getSizeInBits() / 8;
5326     Size -= VTSize;
5327   }
5328 
5329   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5330 }
5331 
5332 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5333                                             unsigned AS) {
5334   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5335   // pointer operands can be losslessly bitcasted to pointers of address space 0
5336   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5337     report_fatal_error("cannot lower memory intrinsic in address space " +
5338                        Twine(AS));
5339   }
5340 }
5341 
5342 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5343                                 SDValue Src, SDValue Size, unsigned Align,
5344                                 bool isVol, bool AlwaysInline, bool isTailCall,
5345                                 MachinePointerInfo DstPtrInfo,
5346                                 MachinePointerInfo SrcPtrInfo) {
5347   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5348 
5349   // Check to see if we should lower the memcpy to loads and stores first.
5350   // For cases within the target-specified limits, this is the best choice.
5351   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5352   if (ConstantSize) {
5353     // Memcpy with size zero? Just return the original chain.
5354     if (ConstantSize->isNullValue())
5355       return Chain;
5356 
5357     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5358                                              ConstantSize->getZExtValue(),Align,
5359                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5360     if (Result.getNode())
5361       return Result;
5362   }
5363 
5364   // Then check to see if we should lower the memcpy with target-specific
5365   // code. If the target chooses to do this, this is the next best.
5366   if (TSI) {
5367     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5368         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5369         DstPtrInfo, SrcPtrInfo);
5370     if (Result.getNode())
5371       return Result;
5372   }
5373 
5374   // If we really need inline code and the target declined to provide it,
5375   // use a (potentially long) sequence of loads and stores.
5376   if (AlwaysInline) {
5377     assert(ConstantSize && "AlwaysInline requires a constant size!");
5378     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5379                                    ConstantSize->getZExtValue(), Align, isVol,
5380                                    true, DstPtrInfo, SrcPtrInfo);
5381   }
5382 
5383   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5384   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5385 
5386   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5387   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5388   // respect volatile, so they may do things like read or write memory
5389   // beyond the given memory regions. But fixing this isn't easy, and most
5390   // people don't care.
5391 
5392   // Emit a library call.
5393   TargetLowering::ArgListTy Args;
5394   TargetLowering::ArgListEntry Entry;
5395   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5396   Entry.Node = Dst; Args.push_back(Entry);
5397   Entry.Node = Src; Args.push_back(Entry);
5398   Entry.Node = Size; Args.push_back(Entry);
5399   // FIXME: pass in SDLoc
5400   TargetLowering::CallLoweringInfo CLI(*this);
5401   CLI.setDebugLoc(dl)
5402       .setChain(Chain)
5403       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5404                     Dst.getValueType().getTypeForEVT(*getContext()),
5405                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5406                                       TLI->getPointerTy(getDataLayout())),
5407                     std::move(Args))
5408       .setDiscardResult()
5409       .setTailCall(isTailCall);
5410 
5411   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5412   return CallResult.second;
5413 }
5414 
5415 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5416                                  SDValue Src, SDValue Size, unsigned Align,
5417                                  bool isVol, bool isTailCall,
5418                                  MachinePointerInfo DstPtrInfo,
5419                                  MachinePointerInfo SrcPtrInfo) {
5420   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5421 
5422   // Check to see if we should lower the memmove to loads and stores first.
5423   // For cases within the target-specified limits, this is the best choice.
5424   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5425   if (ConstantSize) {
5426     // Memmove with size zero? Just return the original chain.
5427     if (ConstantSize->isNullValue())
5428       return Chain;
5429 
5430     SDValue Result =
5431       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5432                                ConstantSize->getZExtValue(), Align, isVol,
5433                                false, DstPtrInfo, SrcPtrInfo);
5434     if (Result.getNode())
5435       return Result;
5436   }
5437 
5438   // Then check to see if we should lower the memmove with target-specific
5439   // code. If the target chooses to do this, this is the next best.
5440   if (TSI) {
5441     SDValue Result = TSI->EmitTargetCodeForMemmove(
5442         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5443     if (Result.getNode())
5444       return Result;
5445   }
5446 
5447   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5448   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5449 
5450   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5451   // not be safe.  See memcpy above for more details.
5452 
5453   // Emit a library call.
5454   TargetLowering::ArgListTy Args;
5455   TargetLowering::ArgListEntry Entry;
5456   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5457   Entry.Node = Dst; Args.push_back(Entry);
5458   Entry.Node = Src; Args.push_back(Entry);
5459   Entry.Node = Size; Args.push_back(Entry);
5460   // FIXME:  pass in SDLoc
5461   TargetLowering::CallLoweringInfo CLI(*this);
5462   CLI.setDebugLoc(dl)
5463       .setChain(Chain)
5464       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5465                     Dst.getValueType().getTypeForEVT(*getContext()),
5466                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5467                                       TLI->getPointerTy(getDataLayout())),
5468                     std::move(Args))
5469       .setDiscardResult()
5470       .setTailCall(isTailCall);
5471 
5472   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5473   return CallResult.second;
5474 }
5475 
5476 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5477                                 SDValue Src, SDValue Size, unsigned Align,
5478                                 bool isVol, bool isTailCall,
5479                                 MachinePointerInfo DstPtrInfo) {
5480   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5481 
5482   // Check to see if we should lower the memset to stores first.
5483   // For cases within the target-specified limits, this is the best choice.
5484   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5485   if (ConstantSize) {
5486     // Memset with size zero? Just return the original chain.
5487     if (ConstantSize->isNullValue())
5488       return Chain;
5489 
5490     SDValue Result =
5491       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5492                       Align, isVol, DstPtrInfo);
5493 
5494     if (Result.getNode())
5495       return Result;
5496   }
5497 
5498   // Then check to see if we should lower the memset with target-specific
5499   // code. If the target chooses to do this, this is the next best.
5500   if (TSI) {
5501     SDValue Result = TSI->EmitTargetCodeForMemset(
5502         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5503     if (Result.getNode())
5504       return Result;
5505   }
5506 
5507   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5508 
5509   // Emit a library call.
5510   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5511   TargetLowering::ArgListTy Args;
5512   TargetLowering::ArgListEntry Entry;
5513   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5514   Args.push_back(Entry);
5515   Entry.Node = Src;
5516   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5517   Args.push_back(Entry);
5518   Entry.Node = Size;
5519   Entry.Ty = IntPtrTy;
5520   Args.push_back(Entry);
5521 
5522   // FIXME: pass in SDLoc
5523   TargetLowering::CallLoweringInfo CLI(*this);
5524   CLI.setDebugLoc(dl)
5525       .setChain(Chain)
5526       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5527                     Dst.getValueType().getTypeForEVT(*getContext()),
5528                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5529                                       TLI->getPointerTy(getDataLayout())),
5530                     std::move(Args))
5531       .setDiscardResult()
5532       .setTailCall(isTailCall);
5533 
5534   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5535   return CallResult.second;
5536 }
5537 
5538 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5539                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5540                                 MachineMemOperand *MMO) {
5541   FoldingSetNodeID ID;
5542   ID.AddInteger(MemVT.getRawBits());
5543   AddNodeIDNode(ID, Opcode, VTList, Ops);
5544   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5545   void* IP = nullptr;
5546   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5547     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5548     return SDValue(E, 0);
5549   }
5550 
5551   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5552                                     VTList, MemVT, MMO);
5553   createOperands(N, Ops);
5554 
5555   CSEMap.InsertNode(N, IP);
5556   InsertNode(N);
5557   return SDValue(N, 0);
5558 }
5559 
5560 SDValue SelectionDAG::getAtomicCmpSwap(
5561     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5562     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5563     unsigned Alignment, AtomicOrdering SuccessOrdering,
5564     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
5565   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5566          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5567   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5568 
5569   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5570     Alignment = getEVTAlignment(MemVT);
5571 
5572   MachineFunction &MF = getMachineFunction();
5573 
5574   // FIXME: Volatile isn't really correct; we should keep track of atomic
5575   // orderings in the memoperand.
5576   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5577                MachineMemOperand::MOStore;
5578   MachineMemOperand *MMO =
5579     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5580                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
5581                             FailureOrdering);
5582 
5583   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5584 }
5585 
5586 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5587                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5588                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5589                                        MachineMemOperand *MMO) {
5590   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5591          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5592   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5593 
5594   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5595   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5596 }
5597 
5598 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5599                                 SDValue Chain, SDValue Ptr, SDValue Val,
5600                                 const Value *PtrVal, unsigned Alignment,
5601                                 AtomicOrdering Ordering,
5602                                 SyncScope::ID SSID) {
5603   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5604     Alignment = getEVTAlignment(MemVT);
5605 
5606   MachineFunction &MF = getMachineFunction();
5607   // An atomic store does not load. An atomic load does not store.
5608   // (An atomicrmw obviously both loads and stores.)
5609   // For now, atomics are considered to be volatile always, and they are
5610   // chained as such.
5611   // FIXME: Volatile isn't really correct; we should keep track of atomic
5612   // orderings in the memoperand.
5613   auto Flags = MachineMemOperand::MOVolatile;
5614   if (Opcode != ISD::ATOMIC_STORE)
5615     Flags |= MachineMemOperand::MOLoad;
5616   if (Opcode != ISD::ATOMIC_LOAD)
5617     Flags |= MachineMemOperand::MOStore;
5618 
5619   MachineMemOperand *MMO =
5620     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5621                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5622                             nullptr, SSID, Ordering);
5623 
5624   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5625 }
5626 
5627 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5628                                 SDValue Chain, SDValue Ptr, SDValue Val,
5629                                 MachineMemOperand *MMO) {
5630   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5631           Opcode == ISD::ATOMIC_LOAD_SUB ||
5632           Opcode == ISD::ATOMIC_LOAD_AND ||
5633           Opcode == ISD::ATOMIC_LOAD_OR ||
5634           Opcode == ISD::ATOMIC_LOAD_XOR ||
5635           Opcode == ISD::ATOMIC_LOAD_NAND ||
5636           Opcode == ISD::ATOMIC_LOAD_MIN ||
5637           Opcode == ISD::ATOMIC_LOAD_MAX ||
5638           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5639           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5640           Opcode == ISD::ATOMIC_SWAP ||
5641           Opcode == ISD::ATOMIC_STORE) &&
5642          "Invalid Atomic Op");
5643 
5644   EVT VT = Val.getValueType();
5645 
5646   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5647                                                getVTList(VT, MVT::Other);
5648   SDValue Ops[] = {Chain, Ptr, Val};
5649   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5650 }
5651 
5652 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5653                                 EVT VT, SDValue Chain, SDValue Ptr,
5654                                 MachineMemOperand *MMO) {
5655   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5656 
5657   SDVTList VTs = getVTList(VT, MVT::Other);
5658   SDValue Ops[] = {Chain, Ptr};
5659   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5660 }
5661 
5662 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5663 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5664   if (Ops.size() == 1)
5665     return Ops[0];
5666 
5667   SmallVector<EVT, 4> VTs;
5668   VTs.reserve(Ops.size());
5669   for (unsigned i = 0; i < Ops.size(); ++i)
5670     VTs.push_back(Ops[i].getValueType());
5671   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5672 }
5673 
5674 SDValue SelectionDAG::getMemIntrinsicNode(
5675     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5676     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5677     bool ReadMem, bool WriteMem, unsigned Size) {
5678   if (Align == 0)  // Ensure that codegen never sees alignment 0
5679     Align = getEVTAlignment(MemVT);
5680 
5681   MachineFunction &MF = getMachineFunction();
5682   auto Flags = MachineMemOperand::MONone;
5683   if (WriteMem)
5684     Flags |= MachineMemOperand::MOStore;
5685   if (ReadMem)
5686     Flags |= MachineMemOperand::MOLoad;
5687   if (Vol)
5688     Flags |= MachineMemOperand::MOVolatile;
5689   if (!Size)
5690     Size = MemVT.getStoreSize();
5691   MachineMemOperand *MMO =
5692     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5693 
5694   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5695 }
5696 
5697 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5698                                           SDVTList VTList,
5699                                           ArrayRef<SDValue> Ops, EVT MemVT,
5700                                           MachineMemOperand *MMO) {
5701   assert((Opcode == ISD::INTRINSIC_VOID ||
5702           Opcode == ISD::INTRINSIC_W_CHAIN ||
5703           Opcode == ISD::PREFETCH ||
5704           Opcode == ISD::LIFETIME_START ||
5705           Opcode == ISD::LIFETIME_END ||
5706           ((int)Opcode <= std::numeric_limits<int>::max() &&
5707            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5708          "Opcode is not a memory-accessing opcode!");
5709 
5710   // Memoize the node unless it returns a flag.
5711   MemIntrinsicSDNode *N;
5712   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5713     FoldingSetNodeID ID;
5714     AddNodeIDNode(ID, Opcode, VTList, Ops);
5715     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5716     void *IP = nullptr;
5717     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5718       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5719       return SDValue(E, 0);
5720     }
5721 
5722     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5723                                       VTList, MemVT, MMO);
5724     createOperands(N, Ops);
5725 
5726   CSEMap.InsertNode(N, IP);
5727   } else {
5728     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5729                                       VTList, MemVT, MMO);
5730     createOperands(N, Ops);
5731   }
5732   InsertNode(N);
5733   return SDValue(N, 0);
5734 }
5735 
5736 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5737 /// MachinePointerInfo record from it.  This is particularly useful because the
5738 /// code generator has many cases where it doesn't bother passing in a
5739 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5740 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5741                                            int64_t Offset = 0) {
5742   // If this is FI+Offset, we can model it.
5743   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5744     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5745                                              FI->getIndex(), Offset);
5746 
5747   // If this is (FI+Offset1)+Offset2, we can model it.
5748   if (Ptr.getOpcode() != ISD::ADD ||
5749       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5750       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5751     return MachinePointerInfo();
5752 
5753   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5754   return MachinePointerInfo::getFixedStack(
5755       DAG.getMachineFunction(), FI,
5756       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5757 }
5758 
5759 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5760 /// MachinePointerInfo record from it.  This is particularly useful because the
5761 /// code generator has many cases where it doesn't bother passing in a
5762 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5763 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5764                                            SDValue OffsetOp) {
5765   // If the 'Offset' value isn't a constant, we can't handle this.
5766   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5767     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5768   if (OffsetOp.isUndef())
5769     return InferPointerInfo(DAG, Ptr);
5770   return MachinePointerInfo();
5771 }
5772 
5773 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5774                               EVT VT, const SDLoc &dl, SDValue Chain,
5775                               SDValue Ptr, SDValue Offset,
5776                               MachinePointerInfo PtrInfo, EVT MemVT,
5777                               unsigned Alignment,
5778                               MachineMemOperand::Flags MMOFlags,
5779                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5780   assert(Chain.getValueType() == MVT::Other &&
5781         "Invalid chain type");
5782   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5783     Alignment = getEVTAlignment(MemVT);
5784 
5785   MMOFlags |= MachineMemOperand::MOLoad;
5786   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5787   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5788   // clients.
5789   if (PtrInfo.V.isNull())
5790     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5791 
5792   MachineFunction &MF = getMachineFunction();
5793   MachineMemOperand *MMO = MF.getMachineMemOperand(
5794       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5795   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5796 }
5797 
5798 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5799                               EVT VT, const SDLoc &dl, SDValue Chain,
5800                               SDValue Ptr, SDValue Offset, EVT MemVT,
5801                               MachineMemOperand *MMO) {
5802   if (VT == MemVT) {
5803     ExtType = ISD::NON_EXTLOAD;
5804   } else if (ExtType == ISD::NON_EXTLOAD) {
5805     assert(VT == MemVT && "Non-extending load from different memory type!");
5806   } else {
5807     // Extending load.
5808     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5809            "Should only be an extending load, not truncating!");
5810     assert(VT.isInteger() == MemVT.isInteger() &&
5811            "Cannot convert from FP to Int or Int -> FP!");
5812     assert(VT.isVector() == MemVT.isVector() &&
5813            "Cannot use an ext load to convert to or from a vector!");
5814     assert((!VT.isVector() ||
5815             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5816            "Cannot use an ext load to change the number of vector elements!");
5817   }
5818 
5819   bool Indexed = AM != ISD::UNINDEXED;
5820   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5821 
5822   SDVTList VTs = Indexed ?
5823     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5824   SDValue Ops[] = { Chain, Ptr, Offset };
5825   FoldingSetNodeID ID;
5826   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5827   ID.AddInteger(MemVT.getRawBits());
5828   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5829       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5830   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5831   void *IP = nullptr;
5832   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5833     cast<LoadSDNode>(E)->refineAlignment(MMO);
5834     return SDValue(E, 0);
5835   }
5836   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5837                                   ExtType, MemVT, MMO);
5838   createOperands(N, Ops);
5839 
5840   CSEMap.InsertNode(N, IP);
5841   InsertNode(N);
5842   return SDValue(N, 0);
5843 }
5844 
5845 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5846                               SDValue Ptr, MachinePointerInfo PtrInfo,
5847                               unsigned Alignment,
5848                               MachineMemOperand::Flags MMOFlags,
5849                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5850   SDValue Undef = getUNDEF(Ptr.getValueType());
5851   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5852                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5853 }
5854 
5855 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5856                               SDValue Ptr, MachineMemOperand *MMO) {
5857   SDValue Undef = getUNDEF(Ptr.getValueType());
5858   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5859                  VT, MMO);
5860 }
5861 
5862 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5863                                  EVT VT, SDValue Chain, SDValue Ptr,
5864                                  MachinePointerInfo PtrInfo, EVT MemVT,
5865                                  unsigned Alignment,
5866                                  MachineMemOperand::Flags MMOFlags,
5867                                  const AAMDNodes &AAInfo) {
5868   SDValue Undef = getUNDEF(Ptr.getValueType());
5869   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5870                  MemVT, Alignment, MMOFlags, AAInfo);
5871 }
5872 
5873 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5874                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5875                                  MachineMemOperand *MMO) {
5876   SDValue Undef = getUNDEF(Ptr.getValueType());
5877   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5878                  MemVT, MMO);
5879 }
5880 
5881 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5882                                      SDValue Base, SDValue Offset,
5883                                      ISD::MemIndexedMode AM) {
5884   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5885   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5886   // Don't propagate the invariant or dereferenceable flags.
5887   auto MMOFlags =
5888       LD->getMemOperand()->getFlags() &
5889       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5890   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5891                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5892                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5893                  LD->getAAInfo());
5894 }
5895 
5896 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5897                                SDValue Ptr, MachinePointerInfo PtrInfo,
5898                                unsigned Alignment,
5899                                MachineMemOperand::Flags MMOFlags,
5900                                const AAMDNodes &AAInfo) {
5901   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5902   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5903     Alignment = getEVTAlignment(Val.getValueType());
5904 
5905   MMOFlags |= MachineMemOperand::MOStore;
5906   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5907 
5908   if (PtrInfo.V.isNull())
5909     PtrInfo = InferPointerInfo(*this, Ptr);
5910 
5911   MachineFunction &MF = getMachineFunction();
5912   MachineMemOperand *MMO = MF.getMachineMemOperand(
5913       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5914   return getStore(Chain, dl, Val, Ptr, MMO);
5915 }
5916 
5917 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5918                                SDValue Ptr, MachineMemOperand *MMO) {
5919   assert(Chain.getValueType() == MVT::Other &&
5920         "Invalid chain type");
5921   EVT VT = Val.getValueType();
5922   SDVTList VTs = getVTList(MVT::Other);
5923   SDValue Undef = getUNDEF(Ptr.getValueType());
5924   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5925   FoldingSetNodeID ID;
5926   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5927   ID.AddInteger(VT.getRawBits());
5928   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5929       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5930   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5931   void *IP = nullptr;
5932   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5933     cast<StoreSDNode>(E)->refineAlignment(MMO);
5934     return SDValue(E, 0);
5935   }
5936   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5937                                    ISD::UNINDEXED, false, VT, MMO);
5938   createOperands(N, Ops);
5939 
5940   CSEMap.InsertNode(N, IP);
5941   InsertNode(N);
5942   return SDValue(N, 0);
5943 }
5944 
5945 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5946                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5947                                     EVT SVT, unsigned Alignment,
5948                                     MachineMemOperand::Flags MMOFlags,
5949                                     const AAMDNodes &AAInfo) {
5950   assert(Chain.getValueType() == MVT::Other &&
5951         "Invalid chain type");
5952   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5953     Alignment = getEVTAlignment(SVT);
5954 
5955   MMOFlags |= MachineMemOperand::MOStore;
5956   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5957 
5958   if (PtrInfo.V.isNull())
5959     PtrInfo = InferPointerInfo(*this, Ptr);
5960 
5961   MachineFunction &MF = getMachineFunction();
5962   MachineMemOperand *MMO = MF.getMachineMemOperand(
5963       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5964   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5965 }
5966 
5967 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5968                                     SDValue Ptr, EVT SVT,
5969                                     MachineMemOperand *MMO) {
5970   EVT VT = Val.getValueType();
5971 
5972   assert(Chain.getValueType() == MVT::Other &&
5973         "Invalid chain type");
5974   if (VT == SVT)
5975     return getStore(Chain, dl, Val, Ptr, MMO);
5976 
5977   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5978          "Should only be a truncating store, not extending!");
5979   assert(VT.isInteger() == SVT.isInteger() &&
5980          "Can't do FP-INT conversion!");
5981   assert(VT.isVector() == SVT.isVector() &&
5982          "Cannot use trunc store to convert to or from a vector!");
5983   assert((!VT.isVector() ||
5984           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5985          "Cannot use trunc store to change the number of vector elements!");
5986 
5987   SDVTList VTs = getVTList(MVT::Other);
5988   SDValue Undef = getUNDEF(Ptr.getValueType());
5989   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5990   FoldingSetNodeID ID;
5991   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5992   ID.AddInteger(SVT.getRawBits());
5993   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5994       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5995   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5996   void *IP = nullptr;
5997   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5998     cast<StoreSDNode>(E)->refineAlignment(MMO);
5999     return SDValue(E, 0);
6000   }
6001   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6002                                    ISD::UNINDEXED, true, SVT, MMO);
6003   createOperands(N, Ops);
6004 
6005   CSEMap.InsertNode(N, IP);
6006   InsertNode(N);
6007   return SDValue(N, 0);
6008 }
6009 
6010 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6011                                       SDValue Base, SDValue Offset,
6012                                       ISD::MemIndexedMode AM) {
6013   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6014   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6015   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6016   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6017   FoldingSetNodeID ID;
6018   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6019   ID.AddInteger(ST->getMemoryVT().getRawBits());
6020   ID.AddInteger(ST->getRawSubclassData());
6021   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6022   void *IP = nullptr;
6023   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6024     return SDValue(E, 0);
6025 
6026   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6027                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6028                                    ST->getMemOperand());
6029   createOperands(N, Ops);
6030 
6031   CSEMap.InsertNode(N, IP);
6032   InsertNode(N);
6033   return SDValue(N, 0);
6034 }
6035 
6036 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6037                                     SDValue Ptr, SDValue Mask, SDValue Src0,
6038                                     EVT MemVT, MachineMemOperand *MMO,
6039                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6040   SDVTList VTs = getVTList(VT, MVT::Other);
6041   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6042   FoldingSetNodeID ID;
6043   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6044   ID.AddInteger(VT.getRawBits());
6045   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6046       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6047   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6048   void *IP = nullptr;
6049   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6050     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6051     return SDValue(E, 0);
6052   }
6053   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6054                                         ExtTy, isExpanding, MemVT, MMO);
6055   createOperands(N, Ops);
6056 
6057   CSEMap.InsertNode(N, IP);
6058   InsertNode(N);
6059   return SDValue(N, 0);
6060 }
6061 
6062 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6063                                      SDValue Val, SDValue Ptr, SDValue Mask,
6064                                      EVT MemVT, MachineMemOperand *MMO,
6065                                      bool IsTruncating, bool IsCompressing) {
6066   assert(Chain.getValueType() == MVT::Other &&
6067         "Invalid chain type");
6068   EVT VT = Val.getValueType();
6069   SDVTList VTs = getVTList(MVT::Other);
6070   SDValue Ops[] = { Chain, Ptr, Mask, Val };
6071   FoldingSetNodeID ID;
6072   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6073   ID.AddInteger(VT.getRawBits());
6074   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6075       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6076   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6077   void *IP = nullptr;
6078   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6079     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6080     return SDValue(E, 0);
6081   }
6082   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6083                                          IsTruncating, IsCompressing, MemVT, MMO);
6084   createOperands(N, Ops);
6085 
6086   CSEMap.InsertNode(N, IP);
6087   InsertNode(N);
6088   return SDValue(N, 0);
6089 }
6090 
6091 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6092                                       ArrayRef<SDValue> Ops,
6093                                       MachineMemOperand *MMO) {
6094   assert(Ops.size() == 5 && "Incompatible number of operands");
6095 
6096   FoldingSetNodeID ID;
6097   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6098   ID.AddInteger(VT.getRawBits());
6099   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6100       dl.getIROrder(), VTs, VT, MMO));
6101   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6102   void *IP = nullptr;
6103   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6104     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6105     return SDValue(E, 0);
6106   }
6107 
6108   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6109                                           VTs, VT, MMO);
6110   createOperands(N, Ops);
6111 
6112   assert(N->getValue().getValueType() == N->getValueType(0) &&
6113          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6114   assert(N->getMask().getValueType().getVectorNumElements() ==
6115              N->getValueType(0).getVectorNumElements() &&
6116          "Vector width mismatch between mask and data");
6117   assert(N->getIndex().getValueType().getVectorNumElements() ==
6118              N->getValueType(0).getVectorNumElements() &&
6119          "Vector width mismatch between index and data");
6120 
6121   CSEMap.InsertNode(N, IP);
6122   InsertNode(N);
6123   return SDValue(N, 0);
6124 }
6125 
6126 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6127                                        ArrayRef<SDValue> Ops,
6128                                        MachineMemOperand *MMO) {
6129   assert(Ops.size() == 5 && "Incompatible number of operands");
6130 
6131   FoldingSetNodeID ID;
6132   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6133   ID.AddInteger(VT.getRawBits());
6134   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6135       dl.getIROrder(), VTs, VT, MMO));
6136   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6137   void *IP = nullptr;
6138   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6139     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6140     return SDValue(E, 0);
6141   }
6142   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6143                                            VTs, VT, MMO);
6144   createOperands(N, Ops);
6145 
6146   assert(N->getMask().getValueType().getVectorNumElements() ==
6147              N->getValue().getValueType().getVectorNumElements() &&
6148          "Vector width mismatch between mask and data");
6149   assert(N->getIndex().getValueType().getVectorNumElements() ==
6150              N->getValue().getValueType().getVectorNumElements() &&
6151          "Vector width mismatch between index and data");
6152 
6153   CSEMap.InsertNode(N, IP);
6154   InsertNode(N);
6155   return SDValue(N, 0);
6156 }
6157 
6158 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6159                                SDValue Ptr, SDValue SV, unsigned Align) {
6160   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6161   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6162 }
6163 
6164 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6165                               ArrayRef<SDUse> Ops) {
6166   switch (Ops.size()) {
6167   case 0: return getNode(Opcode, DL, VT);
6168   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6169   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6170   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6171   default: break;
6172   }
6173 
6174   // Copy from an SDUse array into an SDValue array for use with
6175   // the regular getNode logic.
6176   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6177   return getNode(Opcode, DL, VT, NewOps);
6178 }
6179 
6180 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6181                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6182   unsigned NumOps = Ops.size();
6183   switch (NumOps) {
6184   case 0: return getNode(Opcode, DL, VT);
6185   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6186   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6187   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6188   default: break;
6189   }
6190 
6191   switch (Opcode) {
6192   default: break;
6193   case ISD::CONCAT_VECTORS:
6194     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6195     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6196       return V;
6197     break;
6198   case ISD::SELECT_CC:
6199     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6200     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6201            "LHS and RHS of condition must have same type!");
6202     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6203            "True and False arms of SelectCC must have same type!");
6204     assert(Ops[2].getValueType() == VT &&
6205            "select_cc node must be of same type as true and false value!");
6206     break;
6207   case ISD::BR_CC:
6208     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6209     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6210            "LHS/RHS of comparison should match types!");
6211     break;
6212   }
6213 
6214   // Memoize nodes.
6215   SDNode *N;
6216   SDVTList VTs = getVTList(VT);
6217 
6218   if (VT != MVT::Glue) {
6219     FoldingSetNodeID ID;
6220     AddNodeIDNode(ID, Opcode, VTs, Ops);
6221     void *IP = nullptr;
6222 
6223     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6224       return SDValue(E, 0);
6225 
6226     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6227     createOperands(N, Ops);
6228 
6229     CSEMap.InsertNode(N, IP);
6230   } else {
6231     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6232     createOperands(N, Ops);
6233   }
6234 
6235   InsertNode(N);
6236   return SDValue(N, 0);
6237 }
6238 
6239 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6240                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6241   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6242 }
6243 
6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6245                               ArrayRef<SDValue> Ops) {
6246   if (VTList.NumVTs == 1)
6247     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6248 
6249 #if 0
6250   switch (Opcode) {
6251   // FIXME: figure out how to safely handle things like
6252   // int foo(int x) { return 1 << (x & 255); }
6253   // int bar() { return foo(256); }
6254   case ISD::SRA_PARTS:
6255   case ISD::SRL_PARTS:
6256   case ISD::SHL_PARTS:
6257     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6258         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6259       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6260     else if (N3.getOpcode() == ISD::AND)
6261       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6262         // If the and is only masking out bits that cannot effect the shift,
6263         // eliminate the and.
6264         unsigned NumBits = VT.getScalarSizeInBits()*2;
6265         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6266           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6267       }
6268     break;
6269   }
6270 #endif
6271 
6272   // Memoize the node unless it returns a flag.
6273   SDNode *N;
6274   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6275     FoldingSetNodeID ID;
6276     AddNodeIDNode(ID, Opcode, VTList, Ops);
6277     void *IP = nullptr;
6278     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6279       return SDValue(E, 0);
6280 
6281     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6282     createOperands(N, Ops);
6283     CSEMap.InsertNode(N, IP);
6284   } else {
6285     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6286     createOperands(N, Ops);
6287   }
6288   InsertNode(N);
6289   return SDValue(N, 0);
6290 }
6291 
6292 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6293                               SDVTList VTList) {
6294   return getNode(Opcode, DL, VTList, None);
6295 }
6296 
6297 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6298                               SDValue N1) {
6299   SDValue Ops[] = { N1 };
6300   return getNode(Opcode, DL, VTList, Ops);
6301 }
6302 
6303 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6304                               SDValue N1, SDValue N2) {
6305   SDValue Ops[] = { N1, N2 };
6306   return getNode(Opcode, DL, VTList, Ops);
6307 }
6308 
6309 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6310                               SDValue N1, SDValue N2, SDValue N3) {
6311   SDValue Ops[] = { N1, N2, N3 };
6312   return getNode(Opcode, DL, VTList, Ops);
6313 }
6314 
6315 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6316                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6317   SDValue Ops[] = { N1, N2, N3, N4 };
6318   return getNode(Opcode, DL, VTList, Ops);
6319 }
6320 
6321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6322                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6323                               SDValue N5) {
6324   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6325   return getNode(Opcode, DL, VTList, Ops);
6326 }
6327 
6328 SDVTList SelectionDAG::getVTList(EVT VT) {
6329   return makeVTList(SDNode::getValueTypeList(VT), 1);
6330 }
6331 
6332 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6333   FoldingSetNodeID ID;
6334   ID.AddInteger(2U);
6335   ID.AddInteger(VT1.getRawBits());
6336   ID.AddInteger(VT2.getRawBits());
6337 
6338   void *IP = nullptr;
6339   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6340   if (!Result) {
6341     EVT *Array = Allocator.Allocate<EVT>(2);
6342     Array[0] = VT1;
6343     Array[1] = VT2;
6344     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6345     VTListMap.InsertNode(Result, IP);
6346   }
6347   return Result->getSDVTList();
6348 }
6349 
6350 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6351   FoldingSetNodeID ID;
6352   ID.AddInteger(3U);
6353   ID.AddInteger(VT1.getRawBits());
6354   ID.AddInteger(VT2.getRawBits());
6355   ID.AddInteger(VT3.getRawBits());
6356 
6357   void *IP = nullptr;
6358   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6359   if (!Result) {
6360     EVT *Array = Allocator.Allocate<EVT>(3);
6361     Array[0] = VT1;
6362     Array[1] = VT2;
6363     Array[2] = VT3;
6364     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6365     VTListMap.InsertNode(Result, IP);
6366   }
6367   return Result->getSDVTList();
6368 }
6369 
6370 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6371   FoldingSetNodeID ID;
6372   ID.AddInteger(4U);
6373   ID.AddInteger(VT1.getRawBits());
6374   ID.AddInteger(VT2.getRawBits());
6375   ID.AddInteger(VT3.getRawBits());
6376   ID.AddInteger(VT4.getRawBits());
6377 
6378   void *IP = nullptr;
6379   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6380   if (!Result) {
6381     EVT *Array = Allocator.Allocate<EVT>(4);
6382     Array[0] = VT1;
6383     Array[1] = VT2;
6384     Array[2] = VT3;
6385     Array[3] = VT4;
6386     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6387     VTListMap.InsertNode(Result, IP);
6388   }
6389   return Result->getSDVTList();
6390 }
6391 
6392 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6393   unsigned NumVTs = VTs.size();
6394   FoldingSetNodeID ID;
6395   ID.AddInteger(NumVTs);
6396   for (unsigned index = 0; index < NumVTs; index++) {
6397     ID.AddInteger(VTs[index].getRawBits());
6398   }
6399 
6400   void *IP = nullptr;
6401   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6402   if (!Result) {
6403     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6404     std::copy(VTs.begin(), VTs.end(), Array);
6405     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6406     VTListMap.InsertNode(Result, IP);
6407   }
6408   return Result->getSDVTList();
6409 }
6410 
6411 
6412 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6413 /// specified operands.  If the resultant node already exists in the DAG,
6414 /// this does not modify the specified node, instead it returns the node that
6415 /// already exists.  If the resultant node does not exist in the DAG, the
6416 /// input node is returned.  As a degenerate case, if you specify the same
6417 /// input operands as the node already has, the input node is returned.
6418 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6419   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6420 
6421   // Check to see if there is no change.
6422   if (Op == N->getOperand(0)) return N;
6423 
6424   // See if the modified node already exists.
6425   void *InsertPos = nullptr;
6426   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6427     return Existing;
6428 
6429   // Nope it doesn't.  Remove the node from its current place in the maps.
6430   if (InsertPos)
6431     if (!RemoveNodeFromCSEMaps(N))
6432       InsertPos = nullptr;
6433 
6434   // Now we update the operands.
6435   N->OperandList[0].set(Op);
6436 
6437   // If this gets put into a CSE map, add it.
6438   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6439   return N;
6440 }
6441 
6442 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6443   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6444 
6445   // Check to see if there is no change.
6446   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6447     return N;   // No operands changed, just return the input node.
6448 
6449   // See if the modified node already exists.
6450   void *InsertPos = nullptr;
6451   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6452     return Existing;
6453 
6454   // Nope it doesn't.  Remove the node from its current place in the maps.
6455   if (InsertPos)
6456     if (!RemoveNodeFromCSEMaps(N))
6457       InsertPos = nullptr;
6458 
6459   // Now we update the operands.
6460   if (N->OperandList[0] != Op1)
6461     N->OperandList[0].set(Op1);
6462   if (N->OperandList[1] != Op2)
6463     N->OperandList[1].set(Op2);
6464 
6465   // If this gets put into a CSE map, add it.
6466   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6467   return N;
6468 }
6469 
6470 SDNode *SelectionDAG::
6471 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6472   SDValue Ops[] = { Op1, Op2, Op3 };
6473   return UpdateNodeOperands(N, Ops);
6474 }
6475 
6476 SDNode *SelectionDAG::
6477 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6478                    SDValue Op3, SDValue Op4) {
6479   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6480   return UpdateNodeOperands(N, Ops);
6481 }
6482 
6483 SDNode *SelectionDAG::
6484 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6485                    SDValue Op3, SDValue Op4, SDValue Op5) {
6486   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6487   return UpdateNodeOperands(N, Ops);
6488 }
6489 
6490 SDNode *SelectionDAG::
6491 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6492   unsigned NumOps = Ops.size();
6493   assert(N->getNumOperands() == NumOps &&
6494          "Update with wrong number of operands");
6495 
6496   // If no operands changed just return the input node.
6497   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6498     return N;
6499 
6500   // See if the modified node already exists.
6501   void *InsertPos = nullptr;
6502   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6503     return Existing;
6504 
6505   // Nope it doesn't.  Remove the node from its current place in the maps.
6506   if (InsertPos)
6507     if (!RemoveNodeFromCSEMaps(N))
6508       InsertPos = nullptr;
6509 
6510   // Now we update the operands.
6511   for (unsigned i = 0; i != NumOps; ++i)
6512     if (N->OperandList[i] != Ops[i])
6513       N->OperandList[i].set(Ops[i]);
6514 
6515   // If this gets put into a CSE map, add it.
6516   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6517   return N;
6518 }
6519 
6520 /// DropOperands - Release the operands and set this node to have
6521 /// zero operands.
6522 void SDNode::DropOperands() {
6523   // Unlike the code in MorphNodeTo that does this, we don't need to
6524   // watch for dead nodes here.
6525   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6526     SDUse &Use = *I++;
6527     Use.set(SDValue());
6528   }
6529 }
6530 
6531 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6532 /// machine opcode.
6533 ///
6534 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6535                                    EVT VT) {
6536   SDVTList VTs = getVTList(VT);
6537   return SelectNodeTo(N, MachineOpc, VTs, None);
6538 }
6539 
6540 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6541                                    EVT VT, SDValue Op1) {
6542   SDVTList VTs = getVTList(VT);
6543   SDValue Ops[] = { Op1 };
6544   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6545 }
6546 
6547 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6548                                    EVT VT, SDValue Op1,
6549                                    SDValue Op2) {
6550   SDVTList VTs = getVTList(VT);
6551   SDValue Ops[] = { Op1, Op2 };
6552   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6553 }
6554 
6555 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6556                                    EVT VT, SDValue Op1,
6557                                    SDValue Op2, SDValue Op3) {
6558   SDVTList VTs = getVTList(VT);
6559   SDValue Ops[] = { Op1, Op2, Op3 };
6560   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6561 }
6562 
6563 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6564                                    EVT VT, ArrayRef<SDValue> Ops) {
6565   SDVTList VTs = getVTList(VT);
6566   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6567 }
6568 
6569 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6570                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6571   SDVTList VTs = getVTList(VT1, VT2);
6572   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6573 }
6574 
6575 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6576                                    EVT VT1, EVT VT2) {
6577   SDVTList VTs = getVTList(VT1, VT2);
6578   return SelectNodeTo(N, MachineOpc, VTs, None);
6579 }
6580 
6581 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6582                                    EVT VT1, EVT VT2, EVT VT3,
6583                                    ArrayRef<SDValue> Ops) {
6584   SDVTList VTs = getVTList(VT1, VT2, VT3);
6585   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6586 }
6587 
6588 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6589                                    EVT VT1, EVT VT2,
6590                                    SDValue Op1, SDValue Op2) {
6591   SDVTList VTs = getVTList(VT1, VT2);
6592   SDValue Ops[] = { Op1, Op2 };
6593   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6594 }
6595 
6596 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6597                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6598   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6599   // Reset the NodeID to -1.
6600   New->setNodeId(-1);
6601   if (New != N) {
6602     ReplaceAllUsesWith(N, New);
6603     RemoveDeadNode(N);
6604   }
6605   return New;
6606 }
6607 
6608 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6609 /// the line number information on the merged node since it is not possible to
6610 /// preserve the information that operation is associated with multiple lines.
6611 /// This will make the debugger working better at -O0, were there is a higher
6612 /// probability having other instructions associated with that line.
6613 ///
6614 /// For IROrder, we keep the smaller of the two
6615 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6616   DebugLoc NLoc = N->getDebugLoc();
6617   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6618     N->setDebugLoc(DebugLoc());
6619   }
6620   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6621   N->setIROrder(Order);
6622   return N;
6623 }
6624 
6625 /// MorphNodeTo - This *mutates* the specified node to have the specified
6626 /// return type, opcode, and operands.
6627 ///
6628 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6629 /// node of the specified opcode and operands, it returns that node instead of
6630 /// the current one.  Note that the SDLoc need not be the same.
6631 ///
6632 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6633 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6634 /// node, and because it doesn't require CSE recalculation for any of
6635 /// the node's users.
6636 ///
6637 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6638 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6639 /// the legalizer which maintain worklists that would need to be updated when
6640 /// deleting things.
6641 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6642                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6643   // If an identical node already exists, use it.
6644   void *IP = nullptr;
6645   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6646     FoldingSetNodeID ID;
6647     AddNodeIDNode(ID, Opc, VTs, Ops);
6648     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6649       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6650   }
6651 
6652   if (!RemoveNodeFromCSEMaps(N))
6653     IP = nullptr;
6654 
6655   // Start the morphing.
6656   N->NodeType = Opc;
6657   N->ValueList = VTs.VTs;
6658   N->NumValues = VTs.NumVTs;
6659 
6660   // Clear the operands list, updating used nodes to remove this from their
6661   // use list.  Keep track of any operands that become dead as a result.
6662   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6663   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6664     SDUse &Use = *I++;
6665     SDNode *Used = Use.getNode();
6666     Use.set(SDValue());
6667     if (Used->use_empty())
6668       DeadNodeSet.insert(Used);
6669   }
6670 
6671   // For MachineNode, initialize the memory references information.
6672   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6673     MN->setMemRefs(nullptr, nullptr);
6674 
6675   // Swap for an appropriately sized array from the recycler.
6676   removeOperands(N);
6677   createOperands(N, Ops);
6678 
6679   // Delete any nodes that are still dead after adding the uses for the
6680   // new operands.
6681   if (!DeadNodeSet.empty()) {
6682     SmallVector<SDNode *, 16> DeadNodes;
6683     for (SDNode *N : DeadNodeSet)
6684       if (N->use_empty())
6685         DeadNodes.push_back(N);
6686     RemoveDeadNodes(DeadNodes);
6687   }
6688 
6689   if (IP)
6690     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6691   return N;
6692 }
6693 
6694 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
6695   unsigned OrigOpc = Node->getOpcode();
6696   unsigned NewOpc;
6697   bool IsUnary = false;
6698   bool IsTernary = false;
6699   switch (OrigOpc) {
6700   default:
6701     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
6702   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
6703   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
6704   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
6705   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
6706   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
6707   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
6708   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
6709   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
6710   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
6711   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
6712   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
6713   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
6714   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
6715   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
6716   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
6717   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
6718   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
6719   case ISD::STRICT_FNEARBYINT:
6720     NewOpc = ISD::FNEARBYINT;
6721     IsUnary = true;
6722     break;
6723   }
6724 
6725   // We're taking this node out of the chain, so we need to re-link things.
6726   SDValue InputChain = Node->getOperand(0);
6727   SDValue OutputChain = SDValue(Node, 1);
6728   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
6729 
6730   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
6731   SDNode *Res = nullptr;
6732   if (IsUnary)
6733     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
6734   else if (IsTernary)
6735     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6736                                            Node->getOperand(2),
6737                                            Node->getOperand(3)});
6738   else
6739     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6740                                            Node->getOperand(2) });
6741 
6742   // MorphNodeTo can operate in two ways: if an existing node with the
6743   // specified operands exists, it can just return it.  Otherwise, it
6744   // updates the node in place to have the requested operands.
6745   if (Res == Node) {
6746     // If we updated the node in place, reset the node ID.  To the isel,
6747     // this should be just like a newly allocated machine node.
6748     Res->setNodeId(-1);
6749   } else {
6750     ReplaceAllUsesWith(Node, Res);
6751     RemoveDeadNode(Node);
6752   }
6753 
6754   return Res;
6755 }
6756 
6757 /// getMachineNode - These are used for target selectors to create a new node
6758 /// with specified return type(s), MachineInstr opcode, and operands.
6759 ///
6760 /// Note that getMachineNode returns the resultant node.  If there is already a
6761 /// node of the specified opcode and operands, it returns that node instead of
6762 /// the current one.
6763 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6764                                             EVT VT) {
6765   SDVTList VTs = getVTList(VT);
6766   return getMachineNode(Opcode, dl, VTs, None);
6767 }
6768 
6769 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6770                                             EVT VT, SDValue Op1) {
6771   SDVTList VTs = getVTList(VT);
6772   SDValue Ops[] = { Op1 };
6773   return getMachineNode(Opcode, dl, VTs, Ops);
6774 }
6775 
6776 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6777                                             EVT VT, SDValue Op1, SDValue Op2) {
6778   SDVTList VTs = getVTList(VT);
6779   SDValue Ops[] = { Op1, Op2 };
6780   return getMachineNode(Opcode, dl, VTs, Ops);
6781 }
6782 
6783 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6784                                             EVT VT, SDValue Op1, SDValue Op2,
6785                                             SDValue Op3) {
6786   SDVTList VTs = getVTList(VT);
6787   SDValue Ops[] = { Op1, Op2, Op3 };
6788   return getMachineNode(Opcode, dl, VTs, Ops);
6789 }
6790 
6791 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6792                                             EVT VT, ArrayRef<SDValue> Ops) {
6793   SDVTList VTs = getVTList(VT);
6794   return getMachineNode(Opcode, dl, VTs, Ops);
6795 }
6796 
6797 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6798                                             EVT VT1, EVT VT2, SDValue Op1,
6799                                             SDValue Op2) {
6800   SDVTList VTs = getVTList(VT1, VT2);
6801   SDValue Ops[] = { Op1, Op2 };
6802   return getMachineNode(Opcode, dl, VTs, Ops);
6803 }
6804 
6805 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6806                                             EVT VT1, EVT VT2, SDValue Op1,
6807                                             SDValue Op2, SDValue Op3) {
6808   SDVTList VTs = getVTList(VT1, VT2);
6809   SDValue Ops[] = { Op1, Op2, Op3 };
6810   return getMachineNode(Opcode, dl, VTs, Ops);
6811 }
6812 
6813 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6814                                             EVT VT1, EVT VT2,
6815                                             ArrayRef<SDValue> Ops) {
6816   SDVTList VTs = getVTList(VT1, VT2);
6817   return getMachineNode(Opcode, dl, VTs, Ops);
6818 }
6819 
6820 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6821                                             EVT VT1, EVT VT2, EVT VT3,
6822                                             SDValue Op1, SDValue Op2) {
6823   SDVTList VTs = getVTList(VT1, VT2, VT3);
6824   SDValue Ops[] = { Op1, Op2 };
6825   return getMachineNode(Opcode, dl, VTs, Ops);
6826 }
6827 
6828 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6829                                             EVT VT1, EVT VT2, EVT VT3,
6830                                             SDValue Op1, SDValue Op2,
6831                                             SDValue Op3) {
6832   SDVTList VTs = getVTList(VT1, VT2, VT3);
6833   SDValue Ops[] = { Op1, Op2, Op3 };
6834   return getMachineNode(Opcode, dl, VTs, Ops);
6835 }
6836 
6837 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6838                                             EVT VT1, EVT VT2, EVT VT3,
6839                                             ArrayRef<SDValue> Ops) {
6840   SDVTList VTs = getVTList(VT1, VT2, VT3);
6841   return getMachineNode(Opcode, dl, VTs, Ops);
6842 }
6843 
6844 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6845                                             ArrayRef<EVT> ResultTys,
6846                                             ArrayRef<SDValue> Ops) {
6847   SDVTList VTs = getVTList(ResultTys);
6848   return getMachineNode(Opcode, dl, VTs, Ops);
6849 }
6850 
6851 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6852                                             SDVTList VTs,
6853                                             ArrayRef<SDValue> Ops) {
6854   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6855   MachineSDNode *N;
6856   void *IP = nullptr;
6857 
6858   if (DoCSE) {
6859     FoldingSetNodeID ID;
6860     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6861     IP = nullptr;
6862     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6863       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6864     }
6865   }
6866 
6867   // Allocate a new MachineSDNode.
6868   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6869   createOperands(N, Ops);
6870 
6871   if (DoCSE)
6872     CSEMap.InsertNode(N, IP);
6873 
6874   InsertNode(N);
6875   return N;
6876 }
6877 
6878 /// getTargetExtractSubreg - A convenience function for creating
6879 /// TargetOpcode::EXTRACT_SUBREG nodes.
6880 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6881                                              SDValue Operand) {
6882   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6883   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6884                                   VT, Operand, SRIdxVal);
6885   return SDValue(Subreg, 0);
6886 }
6887 
6888 /// getTargetInsertSubreg - A convenience function for creating
6889 /// TargetOpcode::INSERT_SUBREG nodes.
6890 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6891                                             SDValue Operand, SDValue Subreg) {
6892   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6893   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6894                                   VT, Operand, Subreg, SRIdxVal);
6895   return SDValue(Result, 0);
6896 }
6897 
6898 /// getNodeIfExists - Get the specified node if it's already available, or
6899 /// else return NULL.
6900 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6901                                       ArrayRef<SDValue> Ops,
6902                                       const SDNodeFlags Flags) {
6903   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6904     FoldingSetNodeID ID;
6905     AddNodeIDNode(ID, Opcode, VTList, Ops);
6906     void *IP = nullptr;
6907     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6908       E->intersectFlagsWith(Flags);
6909       return E;
6910     }
6911   }
6912   return nullptr;
6913 }
6914 
6915 /// getDbgValue - Creates a SDDbgValue node.
6916 ///
6917 /// SDNode
6918 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
6919                                       SDNode *N, unsigned R, bool IsIndirect,
6920                                       const DebugLoc &DL, unsigned O) {
6921   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6922          "Expected inlined-at fields to agree");
6923   return new (DbgInfo->getAlloc())
6924       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
6925 }
6926 
6927 /// Constant
6928 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
6929                                               DIExpression *Expr,
6930                                               const Value *C,
6931                                               const DebugLoc &DL, unsigned O) {
6932   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6933          "Expected inlined-at fields to agree");
6934   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
6935 }
6936 
6937 /// FrameIndex
6938 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
6939                                                 DIExpression *Expr, unsigned FI,
6940                                                 const DebugLoc &DL,
6941                                                 unsigned O) {
6942   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6943          "Expected inlined-at fields to agree");
6944   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O);
6945 }
6946 
6947 namespace {
6948 
6949 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6950 /// pointed to by a use iterator is deleted, increment the use iterator
6951 /// so that it doesn't dangle.
6952 ///
6953 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6954   SDNode::use_iterator &UI;
6955   SDNode::use_iterator &UE;
6956 
6957   void NodeDeleted(SDNode *N, SDNode *E) override {
6958     // Increment the iterator as needed.
6959     while (UI != UE && N == *UI)
6960       ++UI;
6961   }
6962 
6963 public:
6964   RAUWUpdateListener(SelectionDAG &d,
6965                      SDNode::use_iterator &ui,
6966                      SDNode::use_iterator &ue)
6967     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6968 };
6969 
6970 } // end anonymous namespace
6971 
6972 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6973 /// This can cause recursive merging of nodes in the DAG.
6974 ///
6975 /// This version assumes From has a single result value.
6976 ///
6977 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6978   SDNode *From = FromN.getNode();
6979   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6980          "Cannot replace with this method!");
6981   assert(From != To.getNode() && "Cannot replace uses of with self");
6982 
6983   // Preserve Debug Values
6984   TransferDbgValues(FromN, To);
6985 
6986   // Iterate over all the existing uses of From. New uses will be added
6987   // to the beginning of the use list, which we avoid visiting.
6988   // This specifically avoids visiting uses of From that arise while the
6989   // replacement is happening, because any such uses would be the result
6990   // of CSE: If an existing node looks like From after one of its operands
6991   // is replaced by To, we don't want to replace of all its users with To
6992   // too. See PR3018 for more info.
6993   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6994   RAUWUpdateListener Listener(*this, UI, UE);
6995   while (UI != UE) {
6996     SDNode *User = *UI;
6997 
6998     // This node is about to morph, remove its old self from the CSE maps.
6999     RemoveNodeFromCSEMaps(User);
7000 
7001     // A user can appear in a use list multiple times, and when this
7002     // happens the uses are usually next to each other in the list.
7003     // To help reduce the number of CSE recomputations, process all
7004     // the uses of this user that we can find this way.
7005     do {
7006       SDUse &Use = UI.getUse();
7007       ++UI;
7008       Use.set(To);
7009     } while (UI != UE && *UI == User);
7010 
7011     // Now that we have modified User, add it back to the CSE maps.  If it
7012     // already exists there, recursively merge the results together.
7013     AddModifiedNodeToCSEMaps(User);
7014   }
7015 
7016   // If we just RAUW'd the root, take note.
7017   if (FromN == getRoot())
7018     setRoot(To);
7019 }
7020 
7021 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7022 /// This can cause recursive merging of nodes in the DAG.
7023 ///
7024 /// This version assumes that for each value of From, there is a
7025 /// corresponding value in To in the same position with the same type.
7026 ///
7027 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7028 #ifndef NDEBUG
7029   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7030     assert((!From->hasAnyUseOfValue(i) ||
7031             From->getValueType(i) == To->getValueType(i)) &&
7032            "Cannot use this version of ReplaceAllUsesWith!");
7033 #endif
7034 
7035   // Handle the trivial case.
7036   if (From == To)
7037     return;
7038 
7039   // Preserve Debug Info. Only do this if there's a use.
7040   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7041     if (From->hasAnyUseOfValue(i)) {
7042       assert((i < To->getNumValues()) && "Invalid To location");
7043       TransferDbgValues(SDValue(From, i), SDValue(To, i));
7044     }
7045 
7046   // Iterate over just the existing users of From. See the comments in
7047   // the ReplaceAllUsesWith above.
7048   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7049   RAUWUpdateListener Listener(*this, UI, UE);
7050   while (UI != UE) {
7051     SDNode *User = *UI;
7052 
7053     // This node is about to morph, remove its old self from the CSE maps.
7054     RemoveNodeFromCSEMaps(User);
7055 
7056     // A user can appear in a use list multiple times, and when this
7057     // happens the uses are usually next to each other in the list.
7058     // To help reduce the number of CSE recomputations, process all
7059     // the uses of this user that we can find this way.
7060     do {
7061       SDUse &Use = UI.getUse();
7062       ++UI;
7063       Use.setNode(To);
7064     } while (UI != UE && *UI == User);
7065 
7066     // Now that we have modified User, add it back to the CSE maps.  If it
7067     // already exists there, recursively merge the results together.
7068     AddModifiedNodeToCSEMaps(User);
7069   }
7070 
7071   // If we just RAUW'd the root, take note.
7072   if (From == getRoot().getNode())
7073     setRoot(SDValue(To, getRoot().getResNo()));
7074 }
7075 
7076 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7077 /// This can cause recursive merging of nodes in the DAG.
7078 ///
7079 /// This version can replace From with any result values.  To must match the
7080 /// number and types of values returned by From.
7081 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7082   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7083     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7084 
7085   // Preserve Debug Info.
7086   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7087     TransferDbgValues(SDValue(From, i), *To);
7088 
7089   // Iterate over just the existing users of From. See the comments in
7090   // the ReplaceAllUsesWith above.
7091   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7092   RAUWUpdateListener Listener(*this, UI, UE);
7093   while (UI != UE) {
7094     SDNode *User = *UI;
7095 
7096     // This node is about to morph, remove its old self from the CSE maps.
7097     RemoveNodeFromCSEMaps(User);
7098 
7099     // A user can appear in a use list multiple times, and when this
7100     // happens the uses are usually next to each other in the list.
7101     // To help reduce the number of CSE recomputations, process all
7102     // the uses of this user that we can find this way.
7103     do {
7104       SDUse &Use = UI.getUse();
7105       const SDValue &ToOp = To[Use.getResNo()];
7106       ++UI;
7107       Use.set(ToOp);
7108     } while (UI != UE && *UI == User);
7109 
7110     // Now that we have modified User, add it back to the CSE maps.  If it
7111     // already exists there, recursively merge the results together.
7112     AddModifiedNodeToCSEMaps(User);
7113   }
7114 
7115   // If we just RAUW'd the root, take note.
7116   if (From == getRoot().getNode())
7117     setRoot(SDValue(To[getRoot().getResNo()]));
7118 }
7119 
7120 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7121 /// uses of other values produced by From.getNode() alone.  The Deleted
7122 /// vector is handled the same way as for ReplaceAllUsesWith.
7123 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7124   // Handle the really simple, really trivial case efficiently.
7125   if (From == To) return;
7126 
7127   // Handle the simple, trivial, case efficiently.
7128   if (From.getNode()->getNumValues() == 1) {
7129     ReplaceAllUsesWith(From, To);
7130     return;
7131   }
7132 
7133   // Preserve Debug Info.
7134   TransferDbgValues(From, To);
7135 
7136   // Iterate over just the existing users of From. See the comments in
7137   // the ReplaceAllUsesWith above.
7138   SDNode::use_iterator UI = From.getNode()->use_begin(),
7139                        UE = From.getNode()->use_end();
7140   RAUWUpdateListener Listener(*this, UI, UE);
7141   while (UI != UE) {
7142     SDNode *User = *UI;
7143     bool UserRemovedFromCSEMaps = false;
7144 
7145     // A user can appear in a use list multiple times, and when this
7146     // happens the uses are usually next to each other in the list.
7147     // To help reduce the number of CSE recomputations, process all
7148     // the uses of this user that we can find this way.
7149     do {
7150       SDUse &Use = UI.getUse();
7151 
7152       // Skip uses of different values from the same node.
7153       if (Use.getResNo() != From.getResNo()) {
7154         ++UI;
7155         continue;
7156       }
7157 
7158       // If this node hasn't been modified yet, it's still in the CSE maps,
7159       // so remove its old self from the CSE maps.
7160       if (!UserRemovedFromCSEMaps) {
7161         RemoveNodeFromCSEMaps(User);
7162         UserRemovedFromCSEMaps = true;
7163       }
7164 
7165       ++UI;
7166       Use.set(To);
7167     } while (UI != UE && *UI == User);
7168 
7169     // We are iterating over all uses of the From node, so if a use
7170     // doesn't use the specific value, no changes are made.
7171     if (!UserRemovedFromCSEMaps)
7172       continue;
7173 
7174     // Now that we have modified User, add it back to the CSE maps.  If it
7175     // already exists there, recursively merge the results together.
7176     AddModifiedNodeToCSEMaps(User);
7177   }
7178 
7179   // If we just RAUW'd the root, take note.
7180   if (From == getRoot())
7181     setRoot(To);
7182 }
7183 
7184 namespace {
7185 
7186   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7187   /// to record information about a use.
7188   struct UseMemo {
7189     SDNode *User;
7190     unsigned Index;
7191     SDUse *Use;
7192   };
7193 
7194   /// operator< - Sort Memos by User.
7195   bool operator<(const UseMemo &L, const UseMemo &R) {
7196     return (intptr_t)L.User < (intptr_t)R.User;
7197   }
7198 
7199 } // end anonymous namespace
7200 
7201 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7202 /// uses of other values produced by From.getNode() alone.  The same value
7203 /// may appear in both the From and To list.  The Deleted vector is
7204 /// handled the same way as for ReplaceAllUsesWith.
7205 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7206                                               const SDValue *To,
7207                                               unsigned Num){
7208   // Handle the simple, trivial case efficiently.
7209   if (Num == 1)
7210     return ReplaceAllUsesOfValueWith(*From, *To);
7211 
7212   TransferDbgValues(*From, *To);
7213 
7214   // Read up all the uses and make records of them. This helps
7215   // processing new uses that are introduced during the
7216   // replacement process.
7217   SmallVector<UseMemo, 4> Uses;
7218   for (unsigned i = 0; i != Num; ++i) {
7219     unsigned FromResNo = From[i].getResNo();
7220     SDNode *FromNode = From[i].getNode();
7221     for (SDNode::use_iterator UI = FromNode->use_begin(),
7222          E = FromNode->use_end(); UI != E; ++UI) {
7223       SDUse &Use = UI.getUse();
7224       if (Use.getResNo() == FromResNo) {
7225         UseMemo Memo = { *UI, i, &Use };
7226         Uses.push_back(Memo);
7227       }
7228     }
7229   }
7230 
7231   // Sort the uses, so that all the uses from a given User are together.
7232   std::sort(Uses.begin(), Uses.end());
7233 
7234   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7235        UseIndex != UseIndexEnd; ) {
7236     // We know that this user uses some value of From.  If it is the right
7237     // value, update it.
7238     SDNode *User = Uses[UseIndex].User;
7239 
7240     // This node is about to morph, remove its old self from the CSE maps.
7241     RemoveNodeFromCSEMaps(User);
7242 
7243     // The Uses array is sorted, so all the uses for a given User
7244     // are next to each other in the list.
7245     // To help reduce the number of CSE recomputations, process all
7246     // the uses of this user that we can find this way.
7247     do {
7248       unsigned i = Uses[UseIndex].Index;
7249       SDUse &Use = *Uses[UseIndex].Use;
7250       ++UseIndex;
7251 
7252       Use.set(To[i]);
7253     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7254 
7255     // Now that we have modified User, add it back to the CSE maps.  If it
7256     // already exists there, recursively merge the results together.
7257     AddModifiedNodeToCSEMaps(User);
7258   }
7259 }
7260 
7261 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7262 /// based on their topological order. It returns the maximum id and a vector
7263 /// of the SDNodes* in assigned order by reference.
7264 unsigned SelectionDAG::AssignTopologicalOrder() {
7265   unsigned DAGSize = 0;
7266 
7267   // SortedPos tracks the progress of the algorithm. Nodes before it are
7268   // sorted, nodes after it are unsorted. When the algorithm completes
7269   // it is at the end of the list.
7270   allnodes_iterator SortedPos = allnodes_begin();
7271 
7272   // Visit all the nodes. Move nodes with no operands to the front of
7273   // the list immediately. Annotate nodes that do have operands with their
7274   // operand count. Before we do this, the Node Id fields of the nodes
7275   // may contain arbitrary values. After, the Node Id fields for nodes
7276   // before SortedPos will contain the topological sort index, and the
7277   // Node Id fields for nodes At SortedPos and after will contain the
7278   // count of outstanding operands.
7279   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7280     SDNode *N = &*I++;
7281     checkForCycles(N, this);
7282     unsigned Degree = N->getNumOperands();
7283     if (Degree == 0) {
7284       // A node with no uses, add it to the result array immediately.
7285       N->setNodeId(DAGSize++);
7286       allnodes_iterator Q(N);
7287       if (Q != SortedPos)
7288         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7289       assert(SortedPos != AllNodes.end() && "Overran node list");
7290       ++SortedPos;
7291     } else {
7292       // Temporarily use the Node Id as scratch space for the degree count.
7293       N->setNodeId(Degree);
7294     }
7295   }
7296 
7297   // Visit all the nodes. As we iterate, move nodes into sorted order,
7298   // such that by the time the end is reached all nodes will be sorted.
7299   for (SDNode &Node : allnodes()) {
7300     SDNode *N = &Node;
7301     checkForCycles(N, this);
7302     // N is in sorted position, so all its uses have one less operand
7303     // that needs to be sorted.
7304     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7305          UI != UE; ++UI) {
7306       SDNode *P = *UI;
7307       unsigned Degree = P->getNodeId();
7308       assert(Degree != 0 && "Invalid node degree");
7309       --Degree;
7310       if (Degree == 0) {
7311         // All of P's operands are sorted, so P may sorted now.
7312         P->setNodeId(DAGSize++);
7313         if (P->getIterator() != SortedPos)
7314           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7315         assert(SortedPos != AllNodes.end() && "Overran node list");
7316         ++SortedPos;
7317       } else {
7318         // Update P's outstanding operand count.
7319         P->setNodeId(Degree);
7320       }
7321     }
7322     if (Node.getIterator() == SortedPos) {
7323 #ifndef NDEBUG
7324       allnodes_iterator I(N);
7325       SDNode *S = &*++I;
7326       dbgs() << "Overran sorted position:\n";
7327       S->dumprFull(this); dbgs() << "\n";
7328       dbgs() << "Checking if this is due to cycles\n";
7329       checkForCycles(this, true);
7330 #endif
7331       llvm_unreachable(nullptr);
7332     }
7333   }
7334 
7335   assert(SortedPos == AllNodes.end() &&
7336          "Topological sort incomplete!");
7337   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
7338          "First node in topological sort is not the entry token!");
7339   assert(AllNodes.front().getNodeId() == 0 &&
7340          "First node in topological sort has non-zero id!");
7341   assert(AllNodes.front().getNumOperands() == 0 &&
7342          "First node in topological sort has operands!");
7343   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
7344          "Last node in topologic sort has unexpected id!");
7345   assert(AllNodes.back().use_empty() &&
7346          "Last node in topologic sort has users!");
7347   assert(DAGSize == allnodes_size() && "Node count mismatch!");
7348   return DAGSize;
7349 }
7350 
7351 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
7352 /// value is produced by SD.
7353 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
7354   if (SD) {
7355     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
7356     SD->setHasDebugValue(true);
7357   }
7358   DbgInfo->add(DB, SD, isParameter);
7359 }
7360 
7361 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
7362 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
7363   if (From == To || !From.getNode()->getHasDebugValue())
7364     return;
7365   SDNode *FromNode = From.getNode();
7366   SDNode *ToNode = To.getNode();
7367   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
7368   SmallVector<SDDbgValue *, 2> ClonedDVs;
7369   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
7370        I != E; ++I) {
7371     SDDbgValue *Dbg = *I;
7372     // Only add Dbgvalues attached to same ResNo.
7373     if (Dbg->getKind() == SDDbgValue::SDNODE &&
7374         Dbg->getSDNode() == From.getNode() &&
7375         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
7376       assert(FromNode != ToNode &&
7377              "Should not transfer Debug Values intranode");
7378       SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(),
7379                                       ToNode, To.getResNo(), Dbg->isIndirect(),
7380                                       Dbg->getDebugLoc(), Dbg->getOrder());
7381       ClonedDVs.push_back(Clone);
7382       Dbg->setIsInvalidated();
7383     }
7384   }
7385   for (SDDbgValue *I : ClonedDVs)
7386     AddDbgValue(I, ToNode, false);
7387 }
7388 
7389 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
7390                                                    SDValue NewMemOp) {
7391   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
7392   // The new memory operation must have the same position as the old load in
7393   // terms of memory dependency. Create a TokenFactor for the old load and new
7394   // memory operation and update uses of the old load's output chain to use that
7395   // TokenFactor.
7396   SDValue OldChain = SDValue(OldLoad, 1);
7397   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
7398   if (!OldLoad->hasAnyUseOfValue(1))
7399     return NewChain;
7400 
7401   SDValue TokenFactor =
7402       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
7403   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
7404   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
7405   return TokenFactor;
7406 }
7407 
7408 //===----------------------------------------------------------------------===//
7409 //                              SDNode Class
7410 //===----------------------------------------------------------------------===//
7411 
7412 bool llvm::isNullConstant(SDValue V) {
7413   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7414   return Const != nullptr && Const->isNullValue();
7415 }
7416 
7417 bool llvm::isNullFPConstant(SDValue V) {
7418   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
7419   return Const != nullptr && Const->isZero() && !Const->isNegative();
7420 }
7421 
7422 bool llvm::isAllOnesConstant(SDValue V) {
7423   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7424   return Const != nullptr && Const->isAllOnesValue();
7425 }
7426 
7427 bool llvm::isOneConstant(SDValue V) {
7428   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7429   return Const != nullptr && Const->isOne();
7430 }
7431 
7432 bool llvm::isBitwiseNot(SDValue V) {
7433   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
7434 }
7435 
7436 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
7437   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
7438     return CN;
7439 
7440   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7441     BitVector UndefElements;
7442     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
7443 
7444     // BuildVectors can truncate their operands. Ignore that case here.
7445     // FIXME: We blindly ignore splats which include undef which is overly
7446     // pessimistic.
7447     if (CN && UndefElements.none() &&
7448         CN->getValueType(0) == N.getValueType().getScalarType())
7449       return CN;
7450   }
7451 
7452   return nullptr;
7453 }
7454 
7455 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
7456   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7457     return CN;
7458 
7459   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7460     BitVector UndefElements;
7461     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7462 
7463     if (CN && UndefElements.none())
7464       return CN;
7465   }
7466 
7467   return nullptr;
7468 }
7469 
7470 HandleSDNode::~HandleSDNode() {
7471   DropOperands();
7472 }
7473 
7474 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7475                                          const DebugLoc &DL,
7476                                          const GlobalValue *GA, EVT VT,
7477                                          int64_t o, unsigned char TF)
7478     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7479   TheGlobal = GA;
7480 }
7481 
7482 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7483                                          EVT VT, unsigned SrcAS,
7484                                          unsigned DestAS)
7485     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7486       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7487 
7488 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7489                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7490     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7491   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7492   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7493   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7494   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7495 
7496   // We check here that the size of the memory operand fits within the size of
7497   // the MMO. This is because the MMO might indicate only a possible address
7498   // range instead of specifying the affected memory addresses precisely.
7499   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7500 }
7501 
7502 /// Profile - Gather unique data for the node.
7503 ///
7504 void SDNode::Profile(FoldingSetNodeID &ID) const {
7505   AddNodeIDNode(ID, this);
7506 }
7507 
7508 namespace {
7509 
7510   struct EVTArray {
7511     std::vector<EVT> VTs;
7512 
7513     EVTArray() {
7514       VTs.reserve(MVT::LAST_VALUETYPE);
7515       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7516         VTs.push_back(MVT((MVT::SimpleValueType)i));
7517     }
7518   };
7519 
7520 } // end anonymous namespace
7521 
7522 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
7523 static ManagedStatic<EVTArray> SimpleVTArray;
7524 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
7525 
7526 /// getValueTypeList - Return a pointer to the specified value type.
7527 ///
7528 const EVT *SDNode::getValueTypeList(EVT VT) {
7529   if (VT.isExtended()) {
7530     sys::SmartScopedLock<true> Lock(*VTMutex);
7531     return &(*EVTs->insert(VT).first);
7532   } else {
7533     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7534            "Value type out of range!");
7535     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7536   }
7537 }
7538 
7539 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7540 /// indicated value.  This method ignores uses of other values defined by this
7541 /// operation.
7542 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7543   assert(Value < getNumValues() && "Bad value!");
7544 
7545   // TODO: Only iterate over uses of a given value of the node
7546   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7547     if (UI.getUse().getResNo() == Value) {
7548       if (NUses == 0)
7549         return false;
7550       --NUses;
7551     }
7552   }
7553 
7554   // Found exactly the right number of uses?
7555   return NUses == 0;
7556 }
7557 
7558 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7559 /// value. This method ignores uses of other values defined by this operation.
7560 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7561   assert(Value < getNumValues() && "Bad value!");
7562 
7563   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7564     if (UI.getUse().getResNo() == Value)
7565       return true;
7566 
7567   return false;
7568 }
7569 
7570 /// isOnlyUserOf - Return true if this node is the only use of N.
7571 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7572   bool Seen = false;
7573   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7574     SDNode *User = *I;
7575     if (User == this)
7576       Seen = true;
7577     else
7578       return false;
7579   }
7580 
7581   return Seen;
7582 }
7583 
7584 /// Return true if the only users of N are contained in Nodes.
7585 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
7586   bool Seen = false;
7587   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7588     SDNode *User = *I;
7589     if (llvm::any_of(Nodes,
7590                      [&User](const SDNode *Node) { return User == Node; }))
7591       Seen = true;
7592     else
7593       return false;
7594   }
7595 
7596   return Seen;
7597 }
7598 
7599 /// isOperand - Return true if this node is an operand of N.
7600 bool SDValue::isOperandOf(const SDNode *N) const {
7601   for (const SDValue &Op : N->op_values())
7602     if (*this == Op)
7603       return true;
7604   return false;
7605 }
7606 
7607 bool SDNode::isOperandOf(const SDNode *N) const {
7608   for (const SDValue &Op : N->op_values())
7609     if (this == Op.getNode())
7610       return true;
7611   return false;
7612 }
7613 
7614 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7615 /// be a chain) reaches the specified operand without crossing any
7616 /// side-effecting instructions on any chain path.  In practice, this looks
7617 /// through token factors and non-volatile loads.  In order to remain efficient,
7618 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7619 ///
7620 /// Note that we only need to examine chains when we're searching for
7621 /// side-effects; SelectionDAG requires that all side-effects are represented
7622 /// by chains, even if another operand would force a specific ordering. This
7623 /// constraint is necessary to allow transformations like splitting loads.
7624 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7625                                              unsigned Depth) const {
7626   if (*this == Dest) return true;
7627 
7628   // Don't search too deeply, we just want to be able to see through
7629   // TokenFactor's etc.
7630   if (Depth == 0) return false;
7631 
7632   // If this is a token factor, all inputs to the TF happen in parallel.
7633   if (getOpcode() == ISD::TokenFactor) {
7634     // First, try a shallow search.
7635     if (is_contained((*this)->ops(), Dest)) {
7636       // We found the chain we want as an operand of this TokenFactor.
7637       // Essentially, we reach the chain without side-effects if we could
7638       // serialize the TokenFactor into a simple chain of operations with
7639       // Dest as the last operation. This is automatically true if the
7640       // chain has one use: there are no other ordering constraints.
7641       // If the chain has more than one use, we give up: some other
7642       // use of Dest might force a side-effect between Dest and the current
7643       // node.
7644       if (Dest.hasOneUse())
7645         return true;
7646     }
7647     // Next, try a deep search: check whether every operand of the TokenFactor
7648     // reaches Dest.
7649     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
7650       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
7651     });
7652   }
7653 
7654   // Loads don't have side effects, look through them.
7655   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7656     if (!Ld->isVolatile())
7657       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7658   }
7659   return false;
7660 }
7661 
7662 bool SDNode::hasPredecessor(const SDNode *N) const {
7663   SmallPtrSet<const SDNode *, 32> Visited;
7664   SmallVector<const SDNode *, 16> Worklist;
7665   Worklist.push_back(this);
7666   return hasPredecessorHelper(N, Visited, Worklist);
7667 }
7668 
7669 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
7670   this->Flags.intersectWith(Flags);
7671 }
7672 
7673 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7674   assert(N->getNumValues() == 1 &&
7675          "Can't unroll a vector with multiple results!");
7676 
7677   EVT VT = N->getValueType(0);
7678   unsigned NE = VT.getVectorNumElements();
7679   EVT EltVT = VT.getVectorElementType();
7680   SDLoc dl(N);
7681 
7682   SmallVector<SDValue, 8> Scalars;
7683   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7684 
7685   // If ResNE is 0, fully unroll the vector op.
7686   if (ResNE == 0)
7687     ResNE = NE;
7688   else if (NE > ResNE)
7689     NE = ResNE;
7690 
7691   unsigned i;
7692   for (i= 0; i != NE; ++i) {
7693     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7694       SDValue Operand = N->getOperand(j);
7695       EVT OperandVT = Operand.getValueType();
7696       if (OperandVT.isVector()) {
7697         // A vector operand; extract a single element.
7698         EVT OperandEltVT = OperandVT.getVectorElementType();
7699         Operands[j] =
7700             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7701                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7702       } else {
7703         // A scalar operand; just use it as is.
7704         Operands[j] = Operand;
7705       }
7706     }
7707 
7708     switch (N->getOpcode()) {
7709     default: {
7710       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7711                                 N->getFlags()));
7712       break;
7713     }
7714     case ISD::VSELECT:
7715       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7716       break;
7717     case ISD::SHL:
7718     case ISD::SRA:
7719     case ISD::SRL:
7720     case ISD::ROTL:
7721     case ISD::ROTR:
7722       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7723                                getShiftAmountOperand(Operands[0].getValueType(),
7724                                                      Operands[1])));
7725       break;
7726     case ISD::SIGN_EXTEND_INREG:
7727     case ISD::FP_ROUND_INREG: {
7728       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7729       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7730                                 Operands[0],
7731                                 getValueType(ExtVT)));
7732     }
7733     }
7734   }
7735 
7736   for (; i < ResNE; ++i)
7737     Scalars.push_back(getUNDEF(EltVT));
7738 
7739   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7740   return getBuildVector(VecVT, dl, Scalars);
7741 }
7742 
7743 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7744                                                   LoadSDNode *Base,
7745                                                   unsigned Bytes,
7746                                                   int Dist) const {
7747   if (LD->isVolatile() || Base->isVolatile())
7748     return false;
7749   if (LD->isIndexed() || Base->isIndexed())
7750     return false;
7751   if (LD->getChain() != Base->getChain())
7752     return false;
7753   EVT VT = LD->getValueType(0);
7754   if (VT.getSizeInBits() / 8 != Bytes)
7755     return false;
7756 
7757   SDValue Loc = LD->getOperand(1);
7758   SDValue BaseLoc = Base->getOperand(1);
7759 
7760   auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this);
7761   auto LocDecomp = BaseIndexOffset::match(Loc, *this);
7762 
7763   int64_t Offset = 0;
7764   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
7765     return (Dist * Bytes == Offset);
7766   return false;
7767 }
7768 
7769 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7770 /// it cannot be inferred.
7771 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7772   // If this is a GlobalAddress + cst, return the alignment.
7773   const GlobalValue *GV;
7774   int64_t GVOffset = 0;
7775   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7776     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7777     KnownBits Known(PtrWidth);
7778     llvm::computeKnownBits(GV, Known, getDataLayout());
7779     unsigned AlignBits = Known.countMinTrailingZeros();
7780     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7781     if (Align)
7782       return MinAlign(Align, GVOffset);
7783   }
7784 
7785   // If this is a direct reference to a stack slot, use information about the
7786   // stack slot's alignment.
7787   int FrameIdx = 1 << 31;
7788   int64_t FrameOffset = 0;
7789   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7790     FrameIdx = FI->getIndex();
7791   } else if (isBaseWithConstantOffset(Ptr) &&
7792              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7793     // Handle FI+Cst
7794     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7795     FrameOffset = Ptr.getConstantOperandVal(1);
7796   }
7797 
7798   if (FrameIdx != (1 << 31)) {
7799     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7800     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7801                                     FrameOffset);
7802     return FIInfoAlign;
7803   }
7804 
7805   return 0;
7806 }
7807 
7808 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7809 /// which is split (or expanded) into two not necessarily identical pieces.
7810 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7811   // Currently all types are split in half.
7812   EVT LoVT, HiVT;
7813   if (!VT.isVector())
7814     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7815   else
7816     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
7817 
7818   return std::make_pair(LoVT, HiVT);
7819 }
7820 
7821 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7822 /// low/high part.
7823 std::pair<SDValue, SDValue>
7824 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7825                           const EVT &HiVT) {
7826   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7827          N.getValueType().getVectorNumElements() &&
7828          "More vector elements requested than available!");
7829   SDValue Lo, Hi;
7830   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7831                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7832   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7833                getConstant(LoVT.getVectorNumElements(), DL,
7834                            TLI->getVectorIdxTy(getDataLayout())));
7835   return std::make_pair(Lo, Hi);
7836 }
7837 
7838 void SelectionDAG::ExtractVectorElements(SDValue Op,
7839                                          SmallVectorImpl<SDValue> &Args,
7840                                          unsigned Start, unsigned Count) {
7841   EVT VT = Op.getValueType();
7842   if (Count == 0)
7843     Count = VT.getVectorNumElements();
7844 
7845   EVT EltVT = VT.getVectorElementType();
7846   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7847   SDLoc SL(Op);
7848   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7849     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7850                            Op, getConstant(i, SL, IdxTy)));
7851   }
7852 }
7853 
7854 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7855 unsigned GlobalAddressSDNode::getAddressSpace() const {
7856   return getGlobal()->getType()->getAddressSpace();
7857 }
7858 
7859 Type *ConstantPoolSDNode::getType() const {
7860   if (isMachineConstantPoolEntry())
7861     return Val.MachineCPVal->getType();
7862   return Val.ConstVal->getType();
7863 }
7864 
7865 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
7866                                         unsigned &SplatBitSize,
7867                                         bool &HasAnyUndefs,
7868                                         unsigned MinSplatBits,
7869                                         bool IsBigEndian) const {
7870   EVT VT = getValueType(0);
7871   assert(VT.isVector() && "Expected a vector type");
7872   unsigned VecWidth = VT.getSizeInBits();
7873   if (MinSplatBits > VecWidth)
7874     return false;
7875 
7876   // FIXME: The widths are based on this node's type, but build vectors can
7877   // truncate their operands.
7878   SplatValue = APInt(VecWidth, 0);
7879   SplatUndef = APInt(VecWidth, 0);
7880 
7881   // Get the bits. Bits with undefined values (when the corresponding element
7882   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7883   // in SplatValue. If any of the values are not constant, give up and return
7884   // false.
7885   unsigned int NumOps = getNumOperands();
7886   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
7887   unsigned EltWidth = VT.getScalarSizeInBits();
7888 
7889   for (unsigned j = 0; j < NumOps; ++j) {
7890     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
7891     SDValue OpVal = getOperand(i);
7892     unsigned BitPos = j * EltWidth;
7893 
7894     if (OpVal.isUndef())
7895       SplatUndef.setBits(BitPos, BitPos + EltWidth);
7896     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
7897       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
7898     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7899       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
7900     else
7901       return false;
7902   }
7903 
7904   // The build_vector is all constants or undefs. Find the smallest element
7905   // size that splats the vector.
7906   HasAnyUndefs = (SplatUndef != 0);
7907 
7908   // FIXME: This does not work for vectors with elements less than 8 bits.
7909   while (VecWidth > 8) {
7910     unsigned HalfSize = VecWidth / 2;
7911     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7912     APInt LowValue = SplatValue.trunc(HalfSize);
7913     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7914     APInt LowUndef = SplatUndef.trunc(HalfSize);
7915 
7916     // If the two halves do not match (ignoring undef bits), stop here.
7917     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7918         MinSplatBits > HalfSize)
7919       break;
7920 
7921     SplatValue = HighValue | LowValue;
7922     SplatUndef = HighUndef & LowUndef;
7923 
7924     VecWidth = HalfSize;
7925   }
7926 
7927   SplatBitSize = VecWidth;
7928   return true;
7929 }
7930 
7931 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7932   if (UndefElements) {
7933     UndefElements->clear();
7934     UndefElements->resize(getNumOperands());
7935   }
7936   SDValue Splatted;
7937   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7938     SDValue Op = getOperand(i);
7939     if (Op.isUndef()) {
7940       if (UndefElements)
7941         (*UndefElements)[i] = true;
7942     } else if (!Splatted) {
7943       Splatted = Op;
7944     } else if (Splatted != Op) {
7945       return SDValue();
7946     }
7947   }
7948 
7949   if (!Splatted) {
7950     assert(getOperand(0).isUndef() &&
7951            "Can only have a splat without a constant for all undefs.");
7952     return getOperand(0);
7953   }
7954 
7955   return Splatted;
7956 }
7957 
7958 ConstantSDNode *
7959 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7960   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7961 }
7962 
7963 ConstantFPSDNode *
7964 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7965   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7966 }
7967 
7968 int32_t
7969 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7970                                                    uint32_t BitWidth) const {
7971   if (ConstantFPSDNode *CN =
7972           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7973     bool IsExact;
7974     APSInt IntVal(BitWidth);
7975     const APFloat &APF = CN->getValueAPF();
7976     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7977             APFloat::opOK ||
7978         !IsExact)
7979       return -1;
7980 
7981     return IntVal.exactLogBase2();
7982   }
7983   return -1;
7984 }
7985 
7986 bool BuildVectorSDNode::isConstant() const {
7987   for (const SDValue &Op : op_values()) {
7988     unsigned Opc = Op.getOpcode();
7989     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7990       return false;
7991   }
7992   return true;
7993 }
7994 
7995 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7996   // Find the first non-undef value in the shuffle mask.
7997   unsigned i, e;
7998   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7999     /* search */;
8000 
8001   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8002 
8003   // Make sure all remaining elements are either undef or the same as the first
8004   // non-undef value.
8005   for (int Idx = Mask[i]; i != e; ++i)
8006     if (Mask[i] >= 0 && Mask[i] != Idx)
8007       return false;
8008   return true;
8009 }
8010 
8011 // \brief Returns the SDNode if it is a constant integer BuildVector
8012 // or constant integer.
8013 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8014   if (isa<ConstantSDNode>(N))
8015     return N.getNode();
8016   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8017     return N.getNode();
8018   // Treat a GlobalAddress supporting constant offset folding as a
8019   // constant integer.
8020   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8021     if (GA->getOpcode() == ISD::GlobalAddress &&
8022         TLI->isOffsetFoldingLegal(GA))
8023       return GA;
8024   return nullptr;
8025 }
8026 
8027 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8028   if (isa<ConstantFPSDNode>(N))
8029     return N.getNode();
8030 
8031   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8032     return N.getNode();
8033 
8034   return nullptr;
8035 }
8036 
8037 #ifndef NDEBUG
8038 static void checkForCyclesHelper(const SDNode *N,
8039                                  SmallPtrSetImpl<const SDNode*> &Visited,
8040                                  SmallPtrSetImpl<const SDNode*> &Checked,
8041                                  const llvm::SelectionDAG *DAG) {
8042   // If this node has already been checked, don't check it again.
8043   if (Checked.count(N))
8044     return;
8045 
8046   // If a node has already been visited on this depth-first walk, reject it as
8047   // a cycle.
8048   if (!Visited.insert(N).second) {
8049     errs() << "Detected cycle in SelectionDAG\n";
8050     dbgs() << "Offending node:\n";
8051     N->dumprFull(DAG); dbgs() << "\n";
8052     abort();
8053   }
8054 
8055   for (const SDValue &Op : N->op_values())
8056     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8057 
8058   Checked.insert(N);
8059   Visited.erase(N);
8060 }
8061 #endif
8062 
8063 void llvm::checkForCycles(const llvm::SDNode *N,
8064                           const llvm::SelectionDAG *DAG,
8065                           bool force) {
8066 #ifndef NDEBUG
8067   bool check = force;
8068 #ifdef EXPENSIVE_CHECKS
8069   check = true;
8070 #endif  // EXPENSIVE_CHECKS
8071   if (check) {
8072     assert(N && "Checking nonexistent SDNode");
8073     SmallPtrSet<const SDNode*, 32> visited;
8074     SmallPtrSet<const SDNode*, 32> checked;
8075     checkForCyclesHelper(N, visited, checked, DAG);
8076   }
8077 #endif  // !NDEBUG
8078 }
8079 
8080 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8081   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8082 }
8083