1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   SDCallSiteDbgInfo.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isVector())
1283     Result = getSplatBuildVector(VT, DL, Result);
1284 
1285   return Result;
1286 }
1287 
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289                                         bool isTarget) {
1290   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1291 }
1292 
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294                                              const SDLoc &DL, bool LegalTypes) {
1295   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296   return getConstant(Val, DL, ShiftVT);
1297 }
1298 
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300                                     bool isTarget) {
1301   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1302 }
1303 
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305                                     EVT VT, bool isTarget) {
1306   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1307 
1308   EVT EltVT = VT.getScalarType();
1309 
1310   // Do the map lookup using the actual bit pattern for the floating point
1311   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312   // we don't have issues with SNANs.
1313   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316   ID.AddPointer(&V);
1317   void *IP = nullptr;
1318   SDNode *N = nullptr;
1319   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320     if (!VT.isVector())
1321       return SDValue(N, 0);
1322 
1323   if (!N) {
1324     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325     CSEMap.InsertNode(N, IP);
1326     InsertNode(N);
1327   }
1328 
1329   SDValue Result(N, 0);
1330   if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337                                     bool isTarget) {
1338   EVT EltVT = VT.getScalarType();
1339   if (EltVT == MVT::f32)
1340     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341   else if (EltVT == MVT::f64)
1342     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344            EltVT == MVT::f16) {
1345     bool Ignored;
1346     APFloat APF = APFloat(Val);
1347     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348                 &Ignored);
1349     return getConstantFP(APF, DL, VT, isTarget);
1350   } else
1351     llvm_unreachable("Unsupported type in getConstantFP");
1352 }
1353 
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355                                        EVT VT, int64_t Offset, bool isTargetGA,
1356                                        unsigned TargetFlags) {
1357   assert((TargetFlags == 0 || isTargetGA) &&
1358          "Cannot set target flags on target-independent globals");
1359 
1360   // Truncate (with sign-extension) the offset value to the pointer size.
1361   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362   if (BitWidth < 64)
1363     Offset = SignExtend64(Offset, BitWidth);
1364 
1365   unsigned Opc;
1366   if (GV->isThreadLocal())
1367     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368   else
1369     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1370 
1371   FoldingSetNodeID ID;
1372   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373   ID.AddPointer(GV);
1374   ID.AddInteger(Offset);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<GlobalAddressSDNode>(
1381       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382   CSEMap.InsertNode(N, IP);
1383     InsertNode(N);
1384   return SDValue(N, 0);
1385 }
1386 
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389   FoldingSetNodeID ID;
1390   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391   ID.AddInteger(FI);
1392   void *IP = nullptr;
1393   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394     return SDValue(E, 0);
1395 
1396   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397   CSEMap.InsertNode(N, IP);
1398   InsertNode(N);
1399   return SDValue(N, 0);
1400 }
1401 
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403                                    unsigned TargetFlags) {
1404   assert((TargetFlags == 0 || isTarget) &&
1405          "Cannot set target flags on target-independent jump tables");
1406   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407   FoldingSetNodeID ID;
1408   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409   ID.AddInteger(JTI);
1410   ID.AddInteger(TargetFlags);
1411   void *IP = nullptr;
1412   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413     return SDValue(E, 0);
1414 
1415   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416   CSEMap.InsertNode(N, IP);
1417   InsertNode(N);
1418   return SDValue(N, 0);
1419 }
1420 
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422                                       unsigned Alignment, int Offset,
1423                                       bool isTarget,
1424                                       unsigned TargetFlags) {
1425   assert((TargetFlags == 0 || isTarget) &&
1426          "Cannot set target flags on target-independent globals");
1427   if (Alignment == 0)
1428     Alignment = MF->getFunction().hasOptSize()
1429                     ? getDataLayout().getABITypeAlignment(C->getType())
1430                     : getDataLayout().getPrefTypeAlignment(C->getType());
1431   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432   FoldingSetNodeID ID;
1433   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434   ID.AddInteger(Alignment);
1435   ID.AddInteger(Offset);
1436   ID.AddPointer(C);
1437   ID.AddInteger(TargetFlags);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443                                           TargetFlags);
1444   CSEMap.InsertNode(N, IP);
1445   InsertNode(N);
1446   return SDValue(N, 0);
1447 }
1448 
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450                                       unsigned Alignment, int Offset,
1451                                       bool isTarget,
1452                                       unsigned TargetFlags) {
1453   assert((TargetFlags == 0 || isTarget) &&
1454          "Cannot set target flags on target-independent globals");
1455   if (Alignment == 0)
1456     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460   ID.AddInteger(Alignment);
1461   ID.AddInteger(Offset);
1462   C->addSelectionDAGCSEId(ID);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469                                           TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476                                      unsigned TargetFlags) {
1477   FoldingSetNodeID ID;
1478   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479   ID.AddInteger(Index);
1480   ID.AddInteger(Offset);
1481   ID.AddInteger(TargetFlags);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493   FoldingSetNodeID ID;
1494   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495   ID.AddPointer(MBB);
1496   void *IP = nullptr;
1497   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498     return SDValue(E, 0);
1499 
1500   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501   CSEMap.InsertNode(N, IP);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505 
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508       ValueTypeNodes.size())
1509     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1510 
1511   SDNode *&N = VT.isExtended() ?
1512     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1513 
1514   if (N) return SDValue(N, 0);
1515   N = newSDNode<VTSDNode>(VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521   SDNode *&N = ExternalSymbols[Sym];
1522   if (N) return SDValue(N, 0);
1523   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529   SDNode *&N = MCSymbols[Sym];
1530   if (N)
1531     return SDValue(N, 0);
1532   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533   InsertNode(N);
1534   return SDValue(N, 0);
1535 }
1536 
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538                                               unsigned TargetFlags) {
1539   SDNode *&N =
1540       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1541   if (N) return SDValue(N, 0);
1542   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1543   InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1548   if ((unsigned)Cond >= CondCodeNodes.size())
1549     CondCodeNodes.resize(Cond+1);
1550 
1551   if (!CondCodeNodes[Cond]) {
1552     auto *N = newSDNode<CondCodeSDNode>(Cond);
1553     CondCodeNodes[Cond] = N;
1554     InsertNode(N);
1555   }
1556 
1557   return SDValue(CondCodeNodes[Cond], 0);
1558 }
1559 
1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1563   std::swap(N1, N2);
1564   ShuffleVectorSDNode::commuteMask(M);
1565 }
1566 
1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1568                                        SDValue N2, ArrayRef<int> Mask) {
1569   assert(VT.getVectorNumElements() == Mask.size() &&
1570            "Must have the same number of vector elements as mask elements!");
1571   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1572          "Invalid VECTOR_SHUFFLE");
1573 
1574   // Canonicalize shuffle undef, undef -> undef
1575   if (N1.isUndef() && N2.isUndef())
1576     return getUNDEF(VT);
1577 
1578   // Validate that all indices in Mask are within the range of the elements
1579   // input to the shuffle.
1580   int NElts = Mask.size();
1581   assert(llvm::all_of(Mask,
1582                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1583          "Index out of range");
1584 
1585   // Copy the mask so we can do any needed cleanup.
1586   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1587 
1588   // Canonicalize shuffle v, v -> v, undef
1589   if (N1 == N2) {
1590     N2 = getUNDEF(VT);
1591     for (int i = 0; i != NElts; ++i)
1592       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1593   }
1594 
1595   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1596   if (N1.isUndef())
1597     commuteShuffle(N1, N2, MaskVec);
1598 
1599   if (TLI->hasVectorBlend()) {
1600     // If shuffling a splat, try to blend the splat instead. We do this here so
1601     // that even when this arises during lowering we don't have to re-handle it.
1602     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1603       BitVector UndefElements;
1604       SDValue Splat = BV->getSplatValue(&UndefElements);
1605       if (!Splat)
1606         return;
1607 
1608       for (int i = 0; i < NElts; ++i) {
1609         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1610           continue;
1611 
1612         // If this input comes from undef, mark it as such.
1613         if (UndefElements[MaskVec[i] - Offset]) {
1614           MaskVec[i] = -1;
1615           continue;
1616         }
1617 
1618         // If we can blend a non-undef lane, use that instead.
1619         if (!UndefElements[i])
1620           MaskVec[i] = i + Offset;
1621       }
1622     };
1623     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1624       BlendSplat(N1BV, 0);
1625     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1626       BlendSplat(N2BV, NElts);
1627   }
1628 
1629   // Canonicalize all index into lhs, -> shuffle lhs, undef
1630   // Canonicalize all index into rhs, -> shuffle rhs, undef
1631   bool AllLHS = true, AllRHS = true;
1632   bool N2Undef = N2.isUndef();
1633   for (int i = 0; i != NElts; ++i) {
1634     if (MaskVec[i] >= NElts) {
1635       if (N2Undef)
1636         MaskVec[i] = -1;
1637       else
1638         AllLHS = false;
1639     } else if (MaskVec[i] >= 0) {
1640       AllRHS = false;
1641     }
1642   }
1643   if (AllLHS && AllRHS)
1644     return getUNDEF(VT);
1645   if (AllLHS && !N2Undef)
1646     N2 = getUNDEF(VT);
1647   if (AllRHS) {
1648     N1 = getUNDEF(VT);
1649     commuteShuffle(N1, N2, MaskVec);
1650   }
1651   // Reset our undef status after accounting for the mask.
1652   N2Undef = N2.isUndef();
1653   // Re-check whether both sides ended up undef.
1654   if (N1.isUndef() && N2Undef)
1655     return getUNDEF(VT);
1656 
1657   // If Identity shuffle return that node.
1658   bool Identity = true, AllSame = true;
1659   for (int i = 0; i != NElts; ++i) {
1660     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1661     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1662   }
1663   if (Identity && NElts)
1664     return N1;
1665 
1666   // Shuffling a constant splat doesn't change the result.
1667   if (N2Undef) {
1668     SDValue V = N1;
1669 
1670     // Look through any bitcasts. We check that these don't change the number
1671     // (and size) of elements and just changes their types.
1672     while (V.getOpcode() == ISD::BITCAST)
1673       V = V->getOperand(0);
1674 
1675     // A splat should always show up as a build vector node.
1676     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1677       BitVector UndefElements;
1678       SDValue Splat = BV->getSplatValue(&UndefElements);
1679       // If this is a splat of an undef, shuffling it is also undef.
1680       if (Splat && Splat.isUndef())
1681         return getUNDEF(VT);
1682 
1683       bool SameNumElts =
1684           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1685 
1686       // We only have a splat which can skip shuffles if there is a splatted
1687       // value and no undef lanes rearranged by the shuffle.
1688       if (Splat && UndefElements.none()) {
1689         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1690         // number of elements match or the value splatted is a zero constant.
1691         if (SameNumElts)
1692           return N1;
1693         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1694           if (C->isNullValue())
1695             return N1;
1696       }
1697 
1698       // If the shuffle itself creates a splat, build the vector directly.
1699       if (AllSame && SameNumElts) {
1700         EVT BuildVT = BV->getValueType(0);
1701         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1702         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1703 
1704         // We may have jumped through bitcasts, so the type of the
1705         // BUILD_VECTOR may not match the type of the shuffle.
1706         if (BuildVT != VT)
1707           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1708         return NewBV;
1709       }
1710     }
1711   }
1712 
1713   FoldingSetNodeID ID;
1714   SDValue Ops[2] = { N1, N2 };
1715   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1716   for (int i = 0; i != NElts; ++i)
1717     ID.AddInteger(MaskVec[i]);
1718 
1719   void* IP = nullptr;
1720   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1721     return SDValue(E, 0);
1722 
1723   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1724   // SDNode doesn't have access to it.  This memory will be "leaked" when
1725   // the node is deallocated, but recovered when the NodeAllocator is released.
1726   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1727   llvm::copy(MaskVec, MaskAlloc);
1728 
1729   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1730                                            dl.getDebugLoc(), MaskAlloc);
1731   createOperands(N, Ops);
1732 
1733   CSEMap.InsertNode(N, IP);
1734   InsertNode(N);
1735   SDValue V = SDValue(N, 0);
1736   NewSDValueDbgMsg(V, "Creating new node: ", this);
1737   return V;
1738 }
1739 
1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1741   EVT VT = SV.getValueType(0);
1742   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1743   ShuffleVectorSDNode::commuteMask(MaskVec);
1744 
1745   SDValue Op0 = SV.getOperand(0);
1746   SDValue Op1 = SV.getOperand(1);
1747   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1748 }
1749 
1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1751   FoldingSetNodeID ID;
1752   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1753   ID.AddInteger(RegNo);
1754   void *IP = nullptr;
1755   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1756     return SDValue(E, 0);
1757 
1758   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1759   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1760   CSEMap.InsertNode(N, IP);
1761   InsertNode(N);
1762   return SDValue(N, 0);
1763 }
1764 
1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1766   FoldingSetNodeID ID;
1767   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1768   ID.AddPointer(RegMask);
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1771     return SDValue(E, 0);
1772 
1773   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1774   CSEMap.InsertNode(N, IP);
1775   InsertNode(N);
1776   return SDValue(N, 0);
1777 }
1778 
1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1780                                  MCSymbol *Label) {
1781   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1782 }
1783 
1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1785                                    SDValue Root, MCSymbol *Label) {
1786   FoldingSetNodeID ID;
1787   SDValue Ops[] = { Root };
1788   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1789   ID.AddPointer(Label);
1790   void *IP = nullptr;
1791   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1792     return SDValue(E, 0);
1793 
1794   auto *N =
1795       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1796   createOperands(N, Ops);
1797 
1798   CSEMap.InsertNode(N, IP);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1804                                       int64_t Offset, bool isTarget,
1805                                       unsigned TargetFlags) {
1806   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1807 
1808   FoldingSetNodeID ID;
1809   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1810   ID.AddPointer(BA);
1811   ID.AddInteger(Offset);
1812   ID.AddInteger(TargetFlags);
1813   void *IP = nullptr;
1814   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1815     return SDValue(E, 0);
1816 
1817   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1818   CSEMap.InsertNode(N, IP);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getSrcValue(const Value *V) {
1824   assert((!V || V->getType()->isPointerTy()) &&
1825          "SrcValue is not a pointer?");
1826 
1827   FoldingSetNodeID ID;
1828   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1829   ID.AddPointer(V);
1830 
1831   void *IP = nullptr;
1832   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1833     return SDValue(E, 0);
1834 
1835   auto *N = newSDNode<SrcValueSDNode>(V);
1836   CSEMap.InsertNode(N, IP);
1837   InsertNode(N);
1838   return SDValue(N, 0);
1839 }
1840 
1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1842   FoldingSetNodeID ID;
1843   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1844   ID.AddPointer(MD);
1845 
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N = newSDNode<MDNodeSDNode>(MD);
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1857   if (VT == V.getValueType())
1858     return V;
1859 
1860   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1861 }
1862 
1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1864                                        unsigned SrcAS, unsigned DestAS) {
1865   SDValue Ops[] = {Ptr};
1866   FoldingSetNodeID ID;
1867   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1868   ID.AddInteger(SrcAS);
1869   ID.AddInteger(DestAS);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1876                                            VT, SrcAS, DestAS);
1877   createOperands(N, Ops);
1878 
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 /// getShiftAmountOperand - Return the specified value casted to
1885 /// the target's desired shift amount type.
1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1887   EVT OpTy = Op.getValueType();
1888   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1889   if (OpTy == ShTy || OpTy.isVector()) return Op;
1890 
1891   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1892 }
1893 
1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1895   SDLoc dl(Node);
1896   const TargetLowering &TLI = getTargetLoweringInfo();
1897   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1898   EVT VT = Node->getValueType(0);
1899   SDValue Tmp1 = Node->getOperand(0);
1900   SDValue Tmp2 = Node->getOperand(1);
1901   const llvm::MaybeAlign MA(Node->getConstantOperandVal(3));
1902 
1903   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1904                                Tmp2, MachinePointerInfo(V));
1905   SDValue VAList = VAListLoad;
1906 
1907   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1908     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1909                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1910 
1911     VAList =
1912         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1913                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1914   }
1915 
1916   // Increment the pointer, VAList, to the next vaarg
1917   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1918                  getConstant(getDataLayout().getTypeAllocSize(
1919                                                VT.getTypeForEVT(*getContext())),
1920                              dl, VAList.getValueType()));
1921   // Store the incremented VAList to the legalized pointer
1922   Tmp1 =
1923       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1924   // Load the actual argument out of the pointer VAList
1925   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1926 }
1927 
1928 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1929   SDLoc dl(Node);
1930   const TargetLowering &TLI = getTargetLoweringInfo();
1931   // This defaults to loading a pointer from the input and storing it to the
1932   // output, returning the chain.
1933   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1934   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1935   SDValue Tmp1 =
1936       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1937               Node->getOperand(2), MachinePointerInfo(VS));
1938   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1939                   MachinePointerInfo(VD));
1940 }
1941 
1942 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1943   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1944   unsigned ByteSize = VT.getStoreSize();
1945   Type *Ty = VT.getTypeForEVT(*getContext());
1946   unsigned StackAlign =
1947       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1948 
1949   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1950   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1951 }
1952 
1953 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1954   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1955   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1956   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1957   const DataLayout &DL = getDataLayout();
1958   unsigned Align =
1959       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1960 
1961   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1962   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1963   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1964 }
1965 
1966 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1967                                 ISD::CondCode Cond, const SDLoc &dl) {
1968   EVT OpVT = N1.getValueType();
1969 
1970   // These setcc operations always fold.
1971   switch (Cond) {
1972   default: break;
1973   case ISD::SETFALSE:
1974   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1975   case ISD::SETTRUE:
1976   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1977 
1978   case ISD::SETOEQ:
1979   case ISD::SETOGT:
1980   case ISD::SETOGE:
1981   case ISD::SETOLT:
1982   case ISD::SETOLE:
1983   case ISD::SETONE:
1984   case ISD::SETO:
1985   case ISD::SETUO:
1986   case ISD::SETUEQ:
1987   case ISD::SETUNE:
1988     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1989     break;
1990   }
1991 
1992   if (OpVT.isInteger()) {
1993     // For EQ and NE, we can always pick a value for the undef to make the
1994     // predicate pass or fail, so we can return undef.
1995     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1996     // icmp eq/ne X, undef -> undef.
1997     if ((N1.isUndef() || N2.isUndef()) &&
1998         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
1999       return getUNDEF(VT);
2000 
2001     // If both operands are undef, we can return undef for int comparison.
2002     // icmp undef, undef -> undef.
2003     if (N1.isUndef() && N2.isUndef())
2004       return getUNDEF(VT);
2005 
2006     // icmp X, X -> true/false
2007     // icmp X, undef -> true/false because undef could be X.
2008     if (N1 == N2)
2009       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2010   }
2011 
2012   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2013     const APInt &C2 = N2C->getAPIntValue();
2014     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2015       const APInt &C1 = N1C->getAPIntValue();
2016 
2017       switch (Cond) {
2018       default: llvm_unreachable("Unknown integer setcc!");
2019       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2020       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2021       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2022       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2023       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2024       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2025       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2026       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2027       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2028       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2029       }
2030     }
2031   }
2032 
2033   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2034   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2035 
2036   if (N1CFP && N2CFP) {
2037     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2038     switch (Cond) {
2039     default: break;
2040     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2041                         return getUNDEF(VT);
2042                       LLVM_FALLTHROUGH;
2043     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2044                                              OpVT);
2045     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2046                         return getUNDEF(VT);
2047                       LLVM_FALLTHROUGH;
2048     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2049                                              R==APFloat::cmpLessThan, dl, VT,
2050                                              OpVT);
2051     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2052                         return getUNDEF(VT);
2053                       LLVM_FALLTHROUGH;
2054     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2055                                              OpVT);
2056     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2057                         return getUNDEF(VT);
2058                       LLVM_FALLTHROUGH;
2059     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2060                                              VT, OpVT);
2061     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2062                         return getUNDEF(VT);
2063                       LLVM_FALLTHROUGH;
2064     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2065                                              R==APFloat::cmpEqual, dl, VT,
2066                                              OpVT);
2067     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2068                         return getUNDEF(VT);
2069                       LLVM_FALLTHROUGH;
2070     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2071                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2072     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2073                                              OpVT);
2074     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2075                                              OpVT);
2076     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2077                                              R==APFloat::cmpEqual, dl, VT,
2078                                              OpVT);
2079     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2080                                              OpVT);
2081     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2082                                              R==APFloat::cmpLessThan, dl, VT,
2083                                              OpVT);
2084     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2085                                              R==APFloat::cmpUnordered, dl, VT,
2086                                              OpVT);
2087     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2088                                              VT, OpVT);
2089     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2090                                              OpVT);
2091     }
2092   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2093     // Ensure that the constant occurs on the RHS.
2094     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2095     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2096       return SDValue();
2097     return getSetCC(dl, VT, N2, N1, SwappedCond);
2098   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2099              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2100     // If an operand is known to be a nan (or undef that could be a nan), we can
2101     // fold it.
2102     // Choosing NaN for the undef will always make unordered comparison succeed
2103     // and ordered comparison fails.
2104     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2105     switch (ISD::getUnorderedFlavor(Cond)) {
2106     default:
2107       llvm_unreachable("Unknown flavor!");
2108     case 0: // Known false.
2109       return getBoolConstant(false, dl, VT, OpVT);
2110     case 1: // Known true.
2111       return getBoolConstant(true, dl, VT, OpVT);
2112     case 2: // Undefined.
2113       return getUNDEF(VT);
2114     }
2115   }
2116 
2117   // Could not fold it.
2118   return SDValue();
2119 }
2120 
2121 /// See if the specified operand can be simplified with the knowledge that only
2122 /// the bits specified by DemandedBits are used.
2123 /// TODO: really we should be making this into the DAG equivalent of
2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2126   EVT VT = V.getValueType();
2127   APInt DemandedElts = VT.isVector()
2128                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2129                            : APInt(1, 1);
2130   return GetDemandedBits(V, DemandedBits, DemandedElts);
2131 }
2132 
2133 /// See if the specified operand can be simplified with the knowledge that only
2134 /// the bits specified by DemandedBits are used in the elements specified by
2135 /// DemandedElts.
2136 /// TODO: really we should be making this into the DAG equivalent of
2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2138 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2139                                       const APInt &DemandedElts) {
2140   switch (V.getOpcode()) {
2141   default:
2142     break;
2143   case ISD::Constant: {
2144     auto *CV = cast<ConstantSDNode>(V.getNode());
2145     assert(CV && "Const value should be ConstSDNode.");
2146     const APInt &CVal = CV->getAPIntValue();
2147     APInt NewVal = CVal & DemandedBits;
2148     if (NewVal != CVal)
2149       return getConstant(NewVal, SDLoc(V), V.getValueType());
2150     break;
2151   }
2152   case ISD::OR:
2153   case ISD::XOR:
2154   case ISD::SIGN_EXTEND_INREG:
2155     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2156                                                 *this, 0);
2157   case ISD::SRL:
2158     // Only look at single-use SRLs.
2159     if (!V.getNode()->hasOneUse())
2160       break;
2161     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2162       // See if we can recursively simplify the LHS.
2163       unsigned Amt = RHSC->getZExtValue();
2164 
2165       // Watch out for shift count overflow though.
2166       if (Amt >= DemandedBits.getBitWidth())
2167         break;
2168       APInt SrcDemandedBits = DemandedBits << Amt;
2169       if (SDValue SimplifyLHS =
2170               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2171         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2172                        V.getOperand(1));
2173     }
2174     break;
2175   case ISD::AND: {
2176     // X & -1 -> X (ignoring bits which aren't demanded).
2177     // Also handle the case where masked out bits in X are known to be zero.
2178     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2179       const APInt &AndVal = RHSC->getAPIntValue();
2180       if (DemandedBits.isSubsetOf(AndVal) ||
2181           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2182                                   AndVal))
2183         return V.getOperand(0);
2184     }
2185     break;
2186   }
2187   case ISD::ANY_EXTEND: {
2188     SDValue Src = V.getOperand(0);
2189     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2190     // Being conservative here - only peek through if we only demand bits in the
2191     // non-extended source (even though the extended bits are technically
2192     // undef).
2193     if (DemandedBits.getActiveBits() > SrcBitWidth)
2194       break;
2195     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2196     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2197       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2198     break;
2199   }
2200   }
2201   return SDValue();
2202 }
2203 
2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2205 /// use this predicate to simplify operations downstream.
2206 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2207   unsigned BitWidth = Op.getScalarValueSizeInBits();
2208   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2209 }
2210 
2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2212 /// this predicate to simplify operations downstream.  Mask is known to be zero
2213 /// for bits that V cannot have.
2214 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2215                                      unsigned Depth) const {
2216   EVT VT = V.getValueType();
2217   APInt DemandedElts = VT.isVector()
2218                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2219                            : APInt(1, 1);
2220   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2221 }
2222 
2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2224 /// DemandedElts.  We use this predicate to simplify operations downstream.
2225 /// Mask is known to be zero for bits that V cannot have.
2226 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2227                                      const APInt &DemandedElts,
2228                                      unsigned Depth) const {
2229   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2230 }
2231 
2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2234                                         unsigned Depth) const {
2235   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2236 }
2237 
2238 /// isSplatValue - Return true if the vector V has the same value
2239 /// across all DemandedElts.
2240 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2241                                 APInt &UndefElts) {
2242   if (!DemandedElts)
2243     return false; // No demanded elts, better to assume we don't know anything.
2244 
2245   EVT VT = V.getValueType();
2246   assert(VT.isVector() && "Vector type expected");
2247 
2248   unsigned NumElts = VT.getVectorNumElements();
2249   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2250   UndefElts = APInt::getNullValue(NumElts);
2251 
2252   switch (V.getOpcode()) {
2253   case ISD::BUILD_VECTOR: {
2254     SDValue Scl;
2255     for (unsigned i = 0; i != NumElts; ++i) {
2256       SDValue Op = V.getOperand(i);
2257       if (Op.isUndef()) {
2258         UndefElts.setBit(i);
2259         continue;
2260       }
2261       if (!DemandedElts[i])
2262         continue;
2263       if (Scl && Scl != Op)
2264         return false;
2265       Scl = Op;
2266     }
2267     return true;
2268   }
2269   case ISD::VECTOR_SHUFFLE: {
2270     // Check if this is a shuffle node doing a splat.
2271     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2272     int SplatIndex = -1;
2273     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2274     for (int i = 0; i != (int)NumElts; ++i) {
2275       int M = Mask[i];
2276       if (M < 0) {
2277         UndefElts.setBit(i);
2278         continue;
2279       }
2280       if (!DemandedElts[i])
2281         continue;
2282       if (0 <= SplatIndex && SplatIndex != M)
2283         return false;
2284       SplatIndex = M;
2285     }
2286     return true;
2287   }
2288   case ISD::EXTRACT_SUBVECTOR: {
2289     SDValue Src = V.getOperand(0);
2290     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2291     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2292     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2293       // Offset the demanded elts by the subvector index.
2294       uint64_t Idx = SubIdx->getZExtValue();
2295       APInt UndefSrcElts;
2296       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2297       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2298         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2299         return true;
2300       }
2301     }
2302     break;
2303   }
2304   case ISD::ADD:
2305   case ISD::SUB:
2306   case ISD::AND: {
2307     APInt UndefLHS, UndefRHS;
2308     SDValue LHS = V.getOperand(0);
2309     SDValue RHS = V.getOperand(1);
2310     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2311         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2312       UndefElts = UndefLHS | UndefRHS;
2313       return true;
2314     }
2315     break;
2316   }
2317   }
2318 
2319   return false;
2320 }
2321 
2322 /// Helper wrapper to main isSplatValue function.
2323 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2324   EVT VT = V.getValueType();
2325   assert(VT.isVector() && "Vector type expected");
2326   unsigned NumElts = VT.getVectorNumElements();
2327 
2328   APInt UndefElts;
2329   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2330   return isSplatValue(V, DemandedElts, UndefElts) &&
2331          (AllowUndefs || !UndefElts);
2332 }
2333 
2334 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2335   V = peekThroughExtractSubvectors(V);
2336 
2337   EVT VT = V.getValueType();
2338   unsigned Opcode = V.getOpcode();
2339   switch (Opcode) {
2340   default: {
2341     APInt UndefElts;
2342     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2343     if (isSplatValue(V, DemandedElts, UndefElts)) {
2344       // Handle case where all demanded elements are UNDEF.
2345       if (DemandedElts.isSubsetOf(UndefElts)) {
2346         SplatIdx = 0;
2347         return getUNDEF(VT);
2348       }
2349       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2350       return V;
2351     }
2352     break;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2357     // getTargetVShiftNode currently struggles without the splat source.
2358     auto *SVN = cast<ShuffleVectorSDNode>(V);
2359     if (!SVN->isSplat())
2360       break;
2361     int Idx = SVN->getSplatIndex();
2362     int NumElts = V.getValueType().getVectorNumElements();
2363     SplatIdx = Idx % NumElts;
2364     return V.getOperand(Idx / NumElts);
2365   }
2366   }
2367 
2368   return SDValue();
2369 }
2370 
2371 SDValue SelectionDAG::getSplatValue(SDValue V) {
2372   int SplatIdx;
2373   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2374     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2375                    SrcVector.getValueType().getScalarType(), SrcVector,
2376                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2377   return SDValue();
2378 }
2379 
2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2381 /// is less than the element bit-width of the shift node, return it.
2382 static const APInt *getValidShiftAmountConstant(SDValue V) {
2383   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2384     // Shifting more than the bitwidth is not valid.
2385     const APInt &ShAmt = SA->getAPIntValue();
2386     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2387       return &ShAmt;
2388   }
2389   return nullptr;
2390 }
2391 
2392 /// Determine which bits of Op are known to be either zero or one and return
2393 /// them in Known. For vectors, the known bits are those that are shared by
2394 /// every vector element.
2395 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2396   EVT VT = Op.getValueType();
2397   APInt DemandedElts = VT.isVector()
2398                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2399                            : APInt(1, 1);
2400   return computeKnownBits(Op, DemandedElts, Depth);
2401 }
2402 
2403 /// Determine which bits of Op are known to be either zero or one and return
2404 /// them in Known. The DemandedElts argument allows us to only collect the known
2405 /// bits that are shared by the requested vector elements.
2406 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2407                                          unsigned Depth) const {
2408   unsigned BitWidth = Op.getScalarValueSizeInBits();
2409 
2410   KnownBits Known(BitWidth);   // Don't know anything.
2411 
2412   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2413     // We know all of the bits for a constant!
2414     Known.One = C->getAPIntValue();
2415     Known.Zero = ~Known.One;
2416     return Known;
2417   }
2418   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2419     // We know all of the bits for a constant fp!
2420     Known.One = C->getValueAPF().bitcastToAPInt();
2421     Known.Zero = ~Known.One;
2422     return Known;
2423   }
2424 
2425   if (Depth >= MaxRecursionDepth)
2426     return Known;  // Limit search depth.
2427 
2428   KnownBits Known2;
2429   unsigned NumElts = DemandedElts.getBitWidth();
2430   assert((!Op.getValueType().isVector() ||
2431           NumElts == Op.getValueType().getVectorNumElements()) &&
2432          "Unexpected vector size");
2433 
2434   if (!DemandedElts)
2435     return Known;  // No demanded elts, better to assume we don't know anything.
2436 
2437   unsigned Opcode = Op.getOpcode();
2438   switch (Opcode) {
2439   case ISD::BUILD_VECTOR:
2440     // Collect the known bits that are shared by every demanded vector element.
2441     Known.Zero.setAllBits(); Known.One.setAllBits();
2442     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2443       if (!DemandedElts[i])
2444         continue;
2445 
2446       SDValue SrcOp = Op.getOperand(i);
2447       Known2 = computeKnownBits(SrcOp, Depth + 1);
2448 
2449       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2450       if (SrcOp.getValueSizeInBits() != BitWidth) {
2451         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2452                "Expected BUILD_VECTOR implicit truncation");
2453         Known2 = Known2.trunc(BitWidth);
2454       }
2455 
2456       // Known bits are the values that are shared by every demanded element.
2457       Known.One &= Known2.One;
2458       Known.Zero &= Known2.Zero;
2459 
2460       // If we don't know any bits, early out.
2461       if (Known.isUnknown())
2462         break;
2463     }
2464     break;
2465   case ISD::VECTOR_SHUFFLE: {
2466     // Collect the known bits that are shared by every vector element referenced
2467     // by the shuffle.
2468     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2469     Known.Zero.setAllBits(); Known.One.setAllBits();
2470     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2471     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2472     for (unsigned i = 0; i != NumElts; ++i) {
2473       if (!DemandedElts[i])
2474         continue;
2475 
2476       int M = SVN->getMaskElt(i);
2477       if (M < 0) {
2478         // For UNDEF elements, we don't know anything about the common state of
2479         // the shuffle result.
2480         Known.resetAll();
2481         DemandedLHS.clearAllBits();
2482         DemandedRHS.clearAllBits();
2483         break;
2484       }
2485 
2486       if ((unsigned)M < NumElts)
2487         DemandedLHS.setBit((unsigned)M % NumElts);
2488       else
2489         DemandedRHS.setBit((unsigned)M % NumElts);
2490     }
2491     // Known bits are the values that are shared by every demanded element.
2492     if (!!DemandedLHS) {
2493       SDValue LHS = Op.getOperand(0);
2494       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2495       Known.One &= Known2.One;
2496       Known.Zero &= Known2.Zero;
2497     }
2498     // If we don't know any bits, early out.
2499     if (Known.isUnknown())
2500       break;
2501     if (!!DemandedRHS) {
2502       SDValue RHS = Op.getOperand(1);
2503       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2504       Known.One &= Known2.One;
2505       Known.Zero &= Known2.Zero;
2506     }
2507     break;
2508   }
2509   case ISD::CONCAT_VECTORS: {
2510     // Split DemandedElts and test each of the demanded subvectors.
2511     Known.Zero.setAllBits(); Known.One.setAllBits();
2512     EVT SubVectorVT = Op.getOperand(0).getValueType();
2513     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2514     unsigned NumSubVectors = Op.getNumOperands();
2515     for (unsigned i = 0; i != NumSubVectors; ++i) {
2516       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2517       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2518       if (!!DemandedSub) {
2519         SDValue Sub = Op.getOperand(i);
2520         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2521         Known.One &= Known2.One;
2522         Known.Zero &= Known2.Zero;
2523       }
2524       // If we don't know any bits, early out.
2525       if (Known.isUnknown())
2526         break;
2527     }
2528     break;
2529   }
2530   case ISD::INSERT_SUBVECTOR: {
2531     // If we know the element index, demand any elements from the subvector and
2532     // the remainder from the src its inserted into, otherwise demand them all.
2533     SDValue Src = Op.getOperand(0);
2534     SDValue Sub = Op.getOperand(1);
2535     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2536     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2537     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2538       Known.One.setAllBits();
2539       Known.Zero.setAllBits();
2540       uint64_t Idx = SubIdx->getZExtValue();
2541       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2542       if (!!DemandedSubElts) {
2543         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2544         if (Known.isUnknown())
2545           break; // early-out.
2546       }
2547       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2548       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2549       if (!!DemandedSrcElts) {
2550         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2551         Known.One &= Known2.One;
2552         Known.Zero &= Known2.Zero;
2553       }
2554     } else {
2555       Known = computeKnownBits(Sub, Depth + 1);
2556       if (Known.isUnknown())
2557         break; // early-out.
2558       Known2 = computeKnownBits(Src, Depth + 1);
2559       Known.One &= Known2.One;
2560       Known.Zero &= Known2.Zero;
2561     }
2562     break;
2563   }
2564   case ISD::EXTRACT_SUBVECTOR: {
2565     // If we know the element index, just demand that subvector elements,
2566     // otherwise demand them all.
2567     SDValue Src = Op.getOperand(0);
2568     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2569     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2570     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2571       // Offset the demanded elts by the subvector index.
2572       uint64_t Idx = SubIdx->getZExtValue();
2573       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2574       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2575     } else {
2576       Known = computeKnownBits(Src, Depth + 1);
2577     }
2578     break;
2579   }
2580   case ISD::SCALAR_TO_VECTOR: {
2581     // We know about scalar_to_vector as much as we know about it source,
2582     // which becomes the first element of otherwise unknown vector.
2583     if (DemandedElts != 1)
2584       break;
2585 
2586     SDValue N0 = Op.getOperand(0);
2587     Known = computeKnownBits(N0, Depth + 1);
2588     if (N0.getValueSizeInBits() != BitWidth)
2589       Known = Known.trunc(BitWidth);
2590 
2591     break;
2592   }
2593   case ISD::BITCAST: {
2594     SDValue N0 = Op.getOperand(0);
2595     EVT SubVT = N0.getValueType();
2596     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2597 
2598     // Ignore bitcasts from unsupported types.
2599     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2600       break;
2601 
2602     // Fast handling of 'identity' bitcasts.
2603     if (BitWidth == SubBitWidth) {
2604       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2605       break;
2606     }
2607 
2608     bool IsLE = getDataLayout().isLittleEndian();
2609 
2610     // Bitcast 'small element' vector to 'large element' scalar/vector.
2611     if ((BitWidth % SubBitWidth) == 0) {
2612       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2613 
2614       // Collect known bits for the (larger) output by collecting the known
2615       // bits from each set of sub elements and shift these into place.
2616       // We need to separately call computeKnownBits for each set of
2617       // sub elements as the knownbits for each is likely to be different.
2618       unsigned SubScale = BitWidth / SubBitWidth;
2619       APInt SubDemandedElts(NumElts * SubScale, 0);
2620       for (unsigned i = 0; i != NumElts; ++i)
2621         if (DemandedElts[i])
2622           SubDemandedElts.setBit(i * SubScale);
2623 
2624       for (unsigned i = 0; i != SubScale; ++i) {
2625         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2626                          Depth + 1);
2627         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2628         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2629         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2630       }
2631     }
2632 
2633     // Bitcast 'large element' scalar/vector to 'small element' vector.
2634     if ((SubBitWidth % BitWidth) == 0) {
2635       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2636 
2637       // Collect known bits for the (smaller) output by collecting the known
2638       // bits from the overlapping larger input elements and extracting the
2639       // sub sections we actually care about.
2640       unsigned SubScale = SubBitWidth / BitWidth;
2641       APInt SubDemandedElts(NumElts / SubScale, 0);
2642       for (unsigned i = 0; i != NumElts; ++i)
2643         if (DemandedElts[i])
2644           SubDemandedElts.setBit(i / SubScale);
2645 
2646       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2647 
2648       Known.Zero.setAllBits(); Known.One.setAllBits();
2649       for (unsigned i = 0; i != NumElts; ++i)
2650         if (DemandedElts[i]) {
2651           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2652           unsigned Offset = (Shifts % SubScale) * BitWidth;
2653           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2654           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2655           // If we don't know any bits, early out.
2656           if (Known.isUnknown())
2657             break;
2658         }
2659     }
2660     break;
2661   }
2662   case ISD::AND:
2663     // If either the LHS or the RHS are Zero, the result is zero.
2664     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2665     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2666 
2667     // Output known-1 bits are only known if set in both the LHS & RHS.
2668     Known.One &= Known2.One;
2669     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2670     Known.Zero |= Known2.Zero;
2671     break;
2672   case ISD::OR:
2673     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2674     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2675 
2676     // Output known-0 bits are only known if clear in both the LHS & RHS.
2677     Known.Zero &= Known2.Zero;
2678     // Output known-1 are known to be set if set in either the LHS | RHS.
2679     Known.One |= Known2.One;
2680     break;
2681   case ISD::XOR: {
2682     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2683     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2684 
2685     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2686     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2687     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2688     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2689     Known.Zero = KnownZeroOut;
2690     break;
2691   }
2692   case ISD::MUL: {
2693     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2694     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2695 
2696     // If low bits are zero in either operand, output low known-0 bits.
2697     // Also compute a conservative estimate for high known-0 bits.
2698     // More trickiness is possible, but this is sufficient for the
2699     // interesting case of alignment computation.
2700     unsigned TrailZ = Known.countMinTrailingZeros() +
2701                       Known2.countMinTrailingZeros();
2702     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2703                                Known2.countMinLeadingZeros(),
2704                                BitWidth) - BitWidth;
2705 
2706     Known.resetAll();
2707     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2708     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2709     break;
2710   }
2711   case ISD::UDIV: {
2712     // For the purposes of computing leading zeros we can conservatively
2713     // treat a udiv as a logical right shift by the power of 2 known to
2714     // be less than the denominator.
2715     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2716     unsigned LeadZ = Known2.countMinLeadingZeros();
2717 
2718     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2719     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2720     if (RHSMaxLeadingZeros != BitWidth)
2721       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2722 
2723     Known.Zero.setHighBits(LeadZ);
2724     break;
2725   }
2726   case ISD::SELECT:
2727   case ISD::VSELECT:
2728     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2729     // If we don't know any bits, early out.
2730     if (Known.isUnknown())
2731       break;
2732     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2733 
2734     // Only known if known in both the LHS and RHS.
2735     Known.One &= Known2.One;
2736     Known.Zero &= Known2.Zero;
2737     break;
2738   case ISD::SELECT_CC:
2739     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2740     // If we don't know any bits, early out.
2741     if (Known.isUnknown())
2742       break;
2743     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2744 
2745     // Only known if known in both the LHS and RHS.
2746     Known.One &= Known2.One;
2747     Known.Zero &= Known2.Zero;
2748     break;
2749   case ISD::SMULO:
2750   case ISD::UMULO:
2751   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2752     if (Op.getResNo() != 1)
2753       break;
2754     // The boolean result conforms to getBooleanContents.
2755     // If we know the result of a setcc has the top bits zero, use this info.
2756     // We know that we have an integer-based boolean since these operations
2757     // are only available for integer.
2758     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2759             TargetLowering::ZeroOrOneBooleanContent &&
2760         BitWidth > 1)
2761       Known.Zero.setBitsFrom(1);
2762     break;
2763   case ISD::SETCC:
2764     // If we know the result of a setcc has the top bits zero, use this info.
2765     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2766             TargetLowering::ZeroOrOneBooleanContent &&
2767         BitWidth > 1)
2768       Known.Zero.setBitsFrom(1);
2769     break;
2770   case ISD::SHL:
2771     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2772       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2773       unsigned Shift = ShAmt->getZExtValue();
2774       Known.Zero <<= Shift;
2775       Known.One <<= Shift;
2776       // Low bits are known zero.
2777       Known.Zero.setLowBits(Shift);
2778     }
2779     break;
2780   case ISD::SRL:
2781     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2782       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2783       unsigned Shift = ShAmt->getZExtValue();
2784       Known.Zero.lshrInPlace(Shift);
2785       Known.One.lshrInPlace(Shift);
2786       // High bits are known zero.
2787       Known.Zero.setHighBits(Shift);
2788     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2789       // If the shift amount is a vector of constants see if we can bound
2790       // the number of upper zero bits.
2791       unsigned ShiftAmountMin = BitWidth;
2792       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2793         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2794           const APInt &ShAmt = C->getAPIntValue();
2795           if (ShAmt.ult(BitWidth)) {
2796             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2797                                                 ShAmt.getZExtValue());
2798             continue;
2799           }
2800         }
2801         // Don't know anything.
2802         ShiftAmountMin = 0;
2803         break;
2804       }
2805 
2806       Known.Zero.setHighBits(ShiftAmountMin);
2807     }
2808     break;
2809   case ISD::SRA:
2810     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2811       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2812       unsigned Shift = ShAmt->getZExtValue();
2813       // Sign extend known zero/one bit (else is unknown).
2814       Known.Zero.ashrInPlace(Shift);
2815       Known.One.ashrInPlace(Shift);
2816     }
2817     break;
2818   case ISD::FSHL:
2819   case ISD::FSHR:
2820     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2821       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2822 
2823       // For fshl, 0-shift returns the 1st arg.
2824       // For fshr, 0-shift returns the 2nd arg.
2825       if (Amt == 0) {
2826         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2827                                  DemandedElts, Depth + 1);
2828         break;
2829       }
2830 
2831       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2832       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2833       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2834       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2835       if (Opcode == ISD::FSHL) {
2836         Known.One <<= Amt;
2837         Known.Zero <<= Amt;
2838         Known2.One.lshrInPlace(BitWidth - Amt);
2839         Known2.Zero.lshrInPlace(BitWidth - Amt);
2840       } else {
2841         Known.One <<= BitWidth - Amt;
2842         Known.Zero <<= BitWidth - Amt;
2843         Known2.One.lshrInPlace(Amt);
2844         Known2.Zero.lshrInPlace(Amt);
2845       }
2846       Known.One |= Known2.One;
2847       Known.Zero |= Known2.Zero;
2848     }
2849     break;
2850   case ISD::SIGN_EXTEND_INREG: {
2851     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2852     unsigned EBits = EVT.getScalarSizeInBits();
2853 
2854     // Sign extension.  Compute the demanded bits in the result that are not
2855     // present in the input.
2856     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2857 
2858     APInt InSignMask = APInt::getSignMask(EBits);
2859     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2860 
2861     // If the sign extended bits are demanded, we know that the sign
2862     // bit is demanded.
2863     InSignMask = InSignMask.zext(BitWidth);
2864     if (NewBits.getBoolValue())
2865       InputDemandedBits |= InSignMask;
2866 
2867     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2868     Known.One &= InputDemandedBits;
2869     Known.Zero &= InputDemandedBits;
2870 
2871     // If the sign bit of the input is known set or clear, then we know the
2872     // top bits of the result.
2873     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2874       Known.Zero |= NewBits;
2875       Known.One  &= ~NewBits;
2876     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2877       Known.One  |= NewBits;
2878       Known.Zero &= ~NewBits;
2879     } else {                              // Input sign bit unknown
2880       Known.Zero &= ~NewBits;
2881       Known.One  &= ~NewBits;
2882     }
2883     break;
2884   }
2885   case ISD::CTTZ:
2886   case ISD::CTTZ_ZERO_UNDEF: {
2887     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2888     // If we have a known 1, its position is our upper bound.
2889     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2890     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2891     Known.Zero.setBitsFrom(LowBits);
2892     break;
2893   }
2894   case ISD::CTLZ:
2895   case ISD::CTLZ_ZERO_UNDEF: {
2896     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2897     // If we have a known 1, its position is our upper bound.
2898     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2899     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2900     Known.Zero.setBitsFrom(LowBits);
2901     break;
2902   }
2903   case ISD::CTPOP: {
2904     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2905     // If we know some of the bits are zero, they can't be one.
2906     unsigned PossibleOnes = Known2.countMaxPopulation();
2907     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2908     break;
2909   }
2910   case ISD::LOAD: {
2911     LoadSDNode *LD = cast<LoadSDNode>(Op);
2912     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2913     if (ISD::isNON_EXTLoad(LD) && Cst) {
2914       // Determine any common known bits from the loaded constant pool value.
2915       Type *CstTy = Cst->getType();
2916       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2917         // If its a vector splat, then we can (quickly) reuse the scalar path.
2918         // NOTE: We assume all elements match and none are UNDEF.
2919         if (CstTy->isVectorTy()) {
2920           if (const Constant *Splat = Cst->getSplatValue()) {
2921             Cst = Splat;
2922             CstTy = Cst->getType();
2923           }
2924         }
2925         // TODO - do we need to handle different bitwidths?
2926         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2927           // Iterate across all vector elements finding common known bits.
2928           Known.One.setAllBits();
2929           Known.Zero.setAllBits();
2930           for (unsigned i = 0; i != NumElts; ++i) {
2931             if (!DemandedElts[i])
2932               continue;
2933             if (Constant *Elt = Cst->getAggregateElement(i)) {
2934               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2935                 const APInt &Value = CInt->getValue();
2936                 Known.One &= Value;
2937                 Known.Zero &= ~Value;
2938                 continue;
2939               }
2940               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2941                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2942                 Known.One &= Value;
2943                 Known.Zero &= ~Value;
2944                 continue;
2945               }
2946             }
2947             Known.One.clearAllBits();
2948             Known.Zero.clearAllBits();
2949             break;
2950           }
2951         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2952           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2953             const APInt &Value = CInt->getValue();
2954             Known.One = Value;
2955             Known.Zero = ~Value;
2956           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2957             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2958             Known.One = Value;
2959             Known.Zero = ~Value;
2960           }
2961         }
2962       }
2963     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2964       // If this is a ZEXTLoad and we are looking at the loaded value.
2965       EVT VT = LD->getMemoryVT();
2966       unsigned MemBits = VT.getScalarSizeInBits();
2967       Known.Zero.setBitsFrom(MemBits);
2968     } else if (const MDNode *Ranges = LD->getRanges()) {
2969       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2970         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2971     }
2972     break;
2973   }
2974   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2975     EVT InVT = Op.getOperand(0).getValueType();
2976     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2977     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2978     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2979     break;
2980   }
2981   case ISD::ZERO_EXTEND: {
2982     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2984     break;
2985   }
2986   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2987     EVT InVT = Op.getOperand(0).getValueType();
2988     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2989     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2990     // If the sign bit is known to be zero or one, then sext will extend
2991     // it to the top bits, else it will just zext.
2992     Known = Known.sext(BitWidth);
2993     break;
2994   }
2995   case ISD::SIGN_EXTEND: {
2996     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997     // If the sign bit is known to be zero or one, then sext will extend
2998     // it to the top bits, else it will just zext.
2999     Known = Known.sext(BitWidth);
3000     break;
3001   }
3002   case ISD::ANY_EXTEND: {
3003     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3004     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3005     break;
3006   }
3007   case ISD::TRUNCATE: {
3008     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3009     Known = Known.trunc(BitWidth);
3010     break;
3011   }
3012   case ISD::AssertZext: {
3013     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3014     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3015     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3016     Known.Zero |= (~InMask);
3017     Known.One  &= (~Known.Zero);
3018     break;
3019   }
3020   case ISD::FGETSIGN:
3021     // All bits are zero except the low bit.
3022     Known.Zero.setBitsFrom(1);
3023     break;
3024   case ISD::USUBO:
3025   case ISD::SSUBO:
3026     if (Op.getResNo() == 1) {
3027       // If we know the result of a setcc has the top bits zero, use this info.
3028       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3029               TargetLowering::ZeroOrOneBooleanContent &&
3030           BitWidth > 1)
3031         Known.Zero.setBitsFrom(1);
3032       break;
3033     }
3034     LLVM_FALLTHROUGH;
3035   case ISD::SUB:
3036   case ISD::SUBC: {
3037     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3039     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3040                                         Known, Known2);
3041     break;
3042   }
3043   case ISD::UADDO:
3044   case ISD::SADDO:
3045   case ISD::ADDCARRY:
3046     if (Op.getResNo() == 1) {
3047       // If we know the result of a setcc has the top bits zero, use this info.
3048       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3049               TargetLowering::ZeroOrOneBooleanContent &&
3050           BitWidth > 1)
3051         Known.Zero.setBitsFrom(1);
3052       break;
3053     }
3054     LLVM_FALLTHROUGH;
3055   case ISD::ADD:
3056   case ISD::ADDC:
3057   case ISD::ADDE: {
3058     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3059 
3060     // With ADDE and ADDCARRY, a carry bit may be added in.
3061     KnownBits Carry(1);
3062     if (Opcode == ISD::ADDE)
3063       // Can't track carry from glue, set carry to unknown.
3064       Carry.resetAll();
3065     else if (Opcode == ISD::ADDCARRY)
3066       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3067       // the trouble (how often will we find a known carry bit). And I haven't
3068       // tested this very much yet, but something like this might work:
3069       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3070       //   Carry = Carry.zextOrTrunc(1, false);
3071       Carry.resetAll();
3072     else
3073       Carry.setAllZero();
3074 
3075     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3076     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3078     break;
3079   }
3080   case ISD::SREM:
3081     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3082       const APInt &RA = Rem->getAPIntValue().abs();
3083       if (RA.isPowerOf2()) {
3084         APInt LowBits = RA - 1;
3085         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3086 
3087         // The low bits of the first operand are unchanged by the srem.
3088         Known.Zero = Known2.Zero & LowBits;
3089         Known.One = Known2.One & LowBits;
3090 
3091         // If the first operand is non-negative or has all low bits zero, then
3092         // the upper bits are all zero.
3093         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3094           Known.Zero |= ~LowBits;
3095 
3096         // If the first operand is negative and not all low bits are zero, then
3097         // the upper bits are all one.
3098         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3099           Known.One |= ~LowBits;
3100         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3101       }
3102     }
3103     break;
3104   case ISD::UREM: {
3105     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3106       const APInt &RA = Rem->getAPIntValue();
3107       if (RA.isPowerOf2()) {
3108         APInt LowBits = (RA - 1);
3109         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3110 
3111         // The upper bits are all zero, the lower ones are unchanged.
3112         Known.Zero = Known2.Zero | ~LowBits;
3113         Known.One = Known2.One & LowBits;
3114         break;
3115       }
3116     }
3117 
3118     // Since the result is less than or equal to either operand, any leading
3119     // zero bits in either operand must also exist in the result.
3120     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3121     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3122 
3123     uint32_t Leaders =
3124         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3125     Known.resetAll();
3126     Known.Zero.setHighBits(Leaders);
3127     break;
3128   }
3129   case ISD::EXTRACT_ELEMENT: {
3130     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3131     const unsigned Index = Op.getConstantOperandVal(1);
3132     const unsigned EltBitWidth = Op.getValueSizeInBits();
3133 
3134     // Remove low part of known bits mask
3135     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3136     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3137 
3138     // Remove high part of known bit mask
3139     Known = Known.trunc(EltBitWidth);
3140     break;
3141   }
3142   case ISD::EXTRACT_VECTOR_ELT: {
3143     SDValue InVec = Op.getOperand(0);
3144     SDValue EltNo = Op.getOperand(1);
3145     EVT VecVT = InVec.getValueType();
3146     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3147     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3148     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3149     // anything about the extended bits.
3150     if (BitWidth > EltBitWidth)
3151       Known = Known.trunc(EltBitWidth);
3152     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3153     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3154       // If we know the element index, just demand that vector element.
3155       unsigned Idx = ConstEltNo->getZExtValue();
3156       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3157       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3158     } else {
3159       // Unknown element index, so ignore DemandedElts and demand them all.
3160       Known = computeKnownBits(InVec, Depth + 1);
3161     }
3162     if (BitWidth > EltBitWidth)
3163       Known = Known.zext(BitWidth, false /* => any extend */);
3164     break;
3165   }
3166   case ISD::INSERT_VECTOR_ELT: {
3167     SDValue InVec = Op.getOperand(0);
3168     SDValue InVal = Op.getOperand(1);
3169     SDValue EltNo = Op.getOperand(2);
3170 
3171     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3172     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3173       // If we know the element index, split the demand between the
3174       // source vector and the inserted element.
3175       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3176       unsigned EltIdx = CEltNo->getZExtValue();
3177 
3178       // If we demand the inserted element then add its common known bits.
3179       if (DemandedElts[EltIdx]) {
3180         Known2 = computeKnownBits(InVal, Depth + 1);
3181         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3182         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3183       }
3184 
3185       // If we demand the source vector then add its common known bits, ensuring
3186       // that we don't demand the inserted element.
3187       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3188       if (!!VectorElts) {
3189         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3190         Known.One &= Known2.One;
3191         Known.Zero &= Known2.Zero;
3192       }
3193     } else {
3194       // Unknown element index, so ignore DemandedElts and demand them all.
3195       Known = computeKnownBits(InVec, Depth + 1);
3196       Known2 = computeKnownBits(InVal, Depth + 1);
3197       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3198       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3199     }
3200     break;
3201   }
3202   case ISD::BITREVERSE: {
3203     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3204     Known.Zero = Known2.Zero.reverseBits();
3205     Known.One = Known2.One.reverseBits();
3206     break;
3207   }
3208   case ISD::BSWAP: {
3209     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210     Known.Zero = Known2.Zero.byteSwap();
3211     Known.One = Known2.One.byteSwap();
3212     break;
3213   }
3214   case ISD::ABS: {
3215     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216 
3217     // If the source's MSB is zero then we know the rest of the bits already.
3218     if (Known2.isNonNegative()) {
3219       Known.Zero = Known2.Zero;
3220       Known.One = Known2.One;
3221       break;
3222     }
3223 
3224     // We only know that the absolute values's MSB will be zero iff there is
3225     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3226     Known2.One.clearSignBit();
3227     if (Known2.One.getBoolValue()) {
3228       Known.Zero = APInt::getSignMask(BitWidth);
3229       break;
3230     }
3231     break;
3232   }
3233   case ISD::UMIN: {
3234     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3235     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3236 
3237     // UMIN - we know that the result will have the maximum of the
3238     // known zero leading bits of the inputs.
3239     unsigned LeadZero = Known.countMinLeadingZeros();
3240     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3241 
3242     Known.Zero &= Known2.Zero;
3243     Known.One &= Known2.One;
3244     Known.Zero.setHighBits(LeadZero);
3245     break;
3246   }
3247   case ISD::UMAX: {
3248     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3249     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3250 
3251     // UMAX - we know that the result will have the maximum of the
3252     // known one leading bits of the inputs.
3253     unsigned LeadOne = Known.countMinLeadingOnes();
3254     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3255 
3256     Known.Zero &= Known2.Zero;
3257     Known.One &= Known2.One;
3258     Known.One.setHighBits(LeadOne);
3259     break;
3260   }
3261   case ISD::SMIN:
3262   case ISD::SMAX: {
3263     // If we have a clamp pattern, we know that the number of sign bits will be
3264     // the minimum of the clamp min/max range.
3265     bool IsMax = (Opcode == ISD::SMAX);
3266     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3267     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3268       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3269         CstHigh =
3270             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3271     if (CstLow && CstHigh) {
3272       if (!IsMax)
3273         std::swap(CstLow, CstHigh);
3274 
3275       const APInt &ValueLow = CstLow->getAPIntValue();
3276       const APInt &ValueHigh = CstHigh->getAPIntValue();
3277       if (ValueLow.sle(ValueHigh)) {
3278         unsigned LowSignBits = ValueLow.getNumSignBits();
3279         unsigned HighSignBits = ValueHigh.getNumSignBits();
3280         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3281         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3282           Known.One.setHighBits(MinSignBits);
3283           break;
3284         }
3285         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3286           Known.Zero.setHighBits(MinSignBits);
3287           break;
3288         }
3289       }
3290     }
3291 
3292     // Fallback - just get the shared known bits of the operands.
3293     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3294     if (Known.isUnknown()) break; // Early-out
3295     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3296     Known.Zero &= Known2.Zero;
3297     Known.One &= Known2.One;
3298     break;
3299   }
3300   case ISD::FrameIndex:
3301   case ISD::TargetFrameIndex:
3302     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3303     break;
3304 
3305   default:
3306     if (Opcode < ISD::BUILTIN_OP_END)
3307       break;
3308     LLVM_FALLTHROUGH;
3309   case ISD::INTRINSIC_WO_CHAIN:
3310   case ISD::INTRINSIC_W_CHAIN:
3311   case ISD::INTRINSIC_VOID:
3312     // Allow the target to implement this method for its nodes.
3313     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3314     break;
3315   }
3316 
3317   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3318   return Known;
3319 }
3320 
3321 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3322                                                              SDValue N1) const {
3323   // X + 0 never overflow
3324   if (isNullConstant(N1))
3325     return OFK_Never;
3326 
3327   KnownBits N1Known = computeKnownBits(N1);
3328   if (N1Known.Zero.getBoolValue()) {
3329     KnownBits N0Known = computeKnownBits(N0);
3330 
3331     bool overflow;
3332     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3333     if (!overflow)
3334       return OFK_Never;
3335   }
3336 
3337   // mulhi + 1 never overflow
3338   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3339       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3340     return OFK_Never;
3341 
3342   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3343     KnownBits N0Known = computeKnownBits(N0);
3344 
3345     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3346       return OFK_Never;
3347   }
3348 
3349   return OFK_Sometime;
3350 }
3351 
3352 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3353   EVT OpVT = Val.getValueType();
3354   unsigned BitWidth = OpVT.getScalarSizeInBits();
3355 
3356   // Is the constant a known power of 2?
3357   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3358     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3359 
3360   // A left-shift of a constant one will have exactly one bit set because
3361   // shifting the bit off the end is undefined.
3362   if (Val.getOpcode() == ISD::SHL) {
3363     auto *C = isConstOrConstSplat(Val.getOperand(0));
3364     if (C && C->getAPIntValue() == 1)
3365       return true;
3366   }
3367 
3368   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3369   // one bit set.
3370   if (Val.getOpcode() == ISD::SRL) {
3371     auto *C = isConstOrConstSplat(Val.getOperand(0));
3372     if (C && C->getAPIntValue().isSignMask())
3373       return true;
3374   }
3375 
3376   // Are all operands of a build vector constant powers of two?
3377   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3378     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3379           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3380             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3381           return false;
3382         }))
3383       return true;
3384 
3385   // More could be done here, though the above checks are enough
3386   // to handle some common cases.
3387 
3388   // Fall back to computeKnownBits to catch other known cases.
3389   KnownBits Known = computeKnownBits(Val);
3390   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3391 }
3392 
3393 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3394   EVT VT = Op.getValueType();
3395   APInt DemandedElts = VT.isVector()
3396                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3397                            : APInt(1, 1);
3398   return ComputeNumSignBits(Op, DemandedElts, Depth);
3399 }
3400 
3401 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3402                                           unsigned Depth) const {
3403   EVT VT = Op.getValueType();
3404   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3405   unsigned VTBits = VT.getScalarSizeInBits();
3406   unsigned NumElts = DemandedElts.getBitWidth();
3407   unsigned Tmp, Tmp2;
3408   unsigned FirstAnswer = 1;
3409 
3410   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3411     const APInt &Val = C->getAPIntValue();
3412     return Val.getNumSignBits();
3413   }
3414 
3415   if (Depth >= MaxRecursionDepth)
3416     return 1;  // Limit search depth.
3417 
3418   if (!DemandedElts)
3419     return 1;  // No demanded elts, better to assume we don't know anything.
3420 
3421   unsigned Opcode = Op.getOpcode();
3422   switch (Opcode) {
3423   default: break;
3424   case ISD::AssertSext:
3425     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3426     return VTBits-Tmp+1;
3427   case ISD::AssertZext:
3428     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3429     return VTBits-Tmp;
3430 
3431   case ISD::BUILD_VECTOR:
3432     Tmp = VTBits;
3433     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3434       if (!DemandedElts[i])
3435         continue;
3436 
3437       SDValue SrcOp = Op.getOperand(i);
3438       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3439 
3440       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3441       if (SrcOp.getValueSizeInBits() != VTBits) {
3442         assert(SrcOp.getValueSizeInBits() > VTBits &&
3443                "Expected BUILD_VECTOR implicit truncation");
3444         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3445         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3446       }
3447       Tmp = std::min(Tmp, Tmp2);
3448     }
3449     return Tmp;
3450 
3451   case ISD::VECTOR_SHUFFLE: {
3452     // Collect the minimum number of sign bits that are shared by every vector
3453     // element referenced by the shuffle.
3454     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3455     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3456     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3457     for (unsigned i = 0; i != NumElts; ++i) {
3458       int M = SVN->getMaskElt(i);
3459       if (!DemandedElts[i])
3460         continue;
3461       // For UNDEF elements, we don't know anything about the common state of
3462       // the shuffle result.
3463       if (M < 0)
3464         return 1;
3465       if ((unsigned)M < NumElts)
3466         DemandedLHS.setBit((unsigned)M % NumElts);
3467       else
3468         DemandedRHS.setBit((unsigned)M % NumElts);
3469     }
3470     Tmp = std::numeric_limits<unsigned>::max();
3471     if (!!DemandedLHS)
3472       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3473     if (!!DemandedRHS) {
3474       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3475       Tmp = std::min(Tmp, Tmp2);
3476     }
3477     // If we don't know anything, early out and try computeKnownBits fall-back.
3478     if (Tmp == 1)
3479       break;
3480     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3481     return Tmp;
3482   }
3483 
3484   case ISD::BITCAST: {
3485     SDValue N0 = Op.getOperand(0);
3486     EVT SrcVT = N0.getValueType();
3487     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3488 
3489     // Ignore bitcasts from unsupported types..
3490     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3491       break;
3492 
3493     // Fast handling of 'identity' bitcasts.
3494     if (VTBits == SrcBits)
3495       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3496 
3497     bool IsLE = getDataLayout().isLittleEndian();
3498 
3499     // Bitcast 'large element' scalar/vector to 'small element' vector.
3500     if ((SrcBits % VTBits) == 0) {
3501       assert(VT.isVector() && "Expected bitcast to vector");
3502 
3503       unsigned Scale = SrcBits / VTBits;
3504       APInt SrcDemandedElts(NumElts / Scale, 0);
3505       for (unsigned i = 0; i != NumElts; ++i)
3506         if (DemandedElts[i])
3507           SrcDemandedElts.setBit(i / Scale);
3508 
3509       // Fast case - sign splat can be simply split across the small elements.
3510       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3511       if (Tmp == SrcBits)
3512         return VTBits;
3513 
3514       // Slow case - determine how far the sign extends into each sub-element.
3515       Tmp2 = VTBits;
3516       for (unsigned i = 0; i != NumElts; ++i)
3517         if (DemandedElts[i]) {
3518           unsigned SubOffset = i % Scale;
3519           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3520           SubOffset = SubOffset * VTBits;
3521           if (Tmp <= SubOffset)
3522             return 1;
3523           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3524         }
3525       return Tmp2;
3526     }
3527     break;
3528   }
3529 
3530   case ISD::SIGN_EXTEND:
3531     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3532     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3533   case ISD::SIGN_EXTEND_INREG:
3534     // Max of the input and what this extends.
3535     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3536     Tmp = VTBits-Tmp+1;
3537     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3538     return std::max(Tmp, Tmp2);
3539   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3540     SDValue Src = Op.getOperand(0);
3541     EVT SrcVT = Src.getValueType();
3542     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3543     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3544     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3545   }
3546 
3547   case ISD::SRA:
3548     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3549     // SRA X, C   -> adds C sign bits.
3550     if (ConstantSDNode *C =
3551             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3552       APInt ShiftVal = C->getAPIntValue();
3553       ShiftVal += Tmp;
3554       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3555     }
3556     return Tmp;
3557   case ISD::SHL:
3558     if (ConstantSDNode *C =
3559             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3560       // shl destroys sign bits.
3561       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3562       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3563           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3564       return Tmp - C->getZExtValue();
3565     }
3566     break;
3567   case ISD::AND:
3568   case ISD::OR:
3569   case ISD::XOR:    // NOT is handled here.
3570     // Logical binary ops preserve the number of sign bits at the worst.
3571     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3572     if (Tmp != 1) {
3573       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3574       FirstAnswer = std::min(Tmp, Tmp2);
3575       // We computed what we know about the sign bits as our first
3576       // answer. Now proceed to the generic code that uses
3577       // computeKnownBits, and pick whichever answer is better.
3578     }
3579     break;
3580 
3581   case ISD::SELECT:
3582   case ISD::VSELECT:
3583     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3584     if (Tmp == 1) return 1;  // Early out.
3585     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3586     return std::min(Tmp, Tmp2);
3587   case ISD::SELECT_CC:
3588     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3589     if (Tmp == 1) return 1;  // Early out.
3590     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3591     return std::min(Tmp, Tmp2);
3592 
3593   case ISD::SMIN:
3594   case ISD::SMAX: {
3595     // If we have a clamp pattern, we know that the number of sign bits will be
3596     // the minimum of the clamp min/max range.
3597     bool IsMax = (Opcode == ISD::SMAX);
3598     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3599     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3600       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3601         CstHigh =
3602             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3603     if (CstLow && CstHigh) {
3604       if (!IsMax)
3605         std::swap(CstLow, CstHigh);
3606       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3607         Tmp = CstLow->getAPIntValue().getNumSignBits();
3608         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3609         return std::min(Tmp, Tmp2);
3610       }
3611     }
3612 
3613     // Fallback - just get the minimum number of sign bits of the operands.
3614     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3615     if (Tmp == 1)
3616       return 1;  // Early out.
3617     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3618     return std::min(Tmp, Tmp2);
3619   }
3620   case ISD::UMIN:
3621   case ISD::UMAX:
3622     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3623     if (Tmp == 1)
3624       return 1;  // Early out.
3625     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3626     return std::min(Tmp, Tmp2);
3627   case ISD::SADDO:
3628   case ISD::UADDO:
3629   case ISD::SSUBO:
3630   case ISD::USUBO:
3631   case ISD::SMULO:
3632   case ISD::UMULO:
3633     if (Op.getResNo() != 1)
3634       break;
3635     // The boolean result conforms to getBooleanContents.  Fall through.
3636     // If setcc returns 0/-1, all bits are sign bits.
3637     // We know that we have an integer-based boolean since these operations
3638     // are only available for integer.
3639     if (TLI->getBooleanContents(VT.isVector(), false) ==
3640         TargetLowering::ZeroOrNegativeOneBooleanContent)
3641       return VTBits;
3642     break;
3643   case ISD::SETCC:
3644     // If setcc returns 0/-1, all bits are sign bits.
3645     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3646         TargetLowering::ZeroOrNegativeOneBooleanContent)
3647       return VTBits;
3648     break;
3649   case ISD::ROTL:
3650   case ISD::ROTR:
3651     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3652       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3653 
3654       // Handle rotate right by N like a rotate left by 32-N.
3655       if (Opcode == ISD::ROTR)
3656         RotAmt = (VTBits - RotAmt) % VTBits;
3657 
3658       // If we aren't rotating out all of the known-in sign bits, return the
3659       // number that are left.  This handles rotl(sext(x), 1) for example.
3660       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3661       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3662     }
3663     break;
3664   case ISD::ADD:
3665   case ISD::ADDC:
3666     // Add can have at most one carry bit.  Thus we know that the output
3667     // is, at worst, one more bit than the inputs.
3668     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3669     if (Tmp == 1) return 1;  // Early out.
3670 
3671     // Special case decrementing a value (ADD X, -1):
3672     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3673       if (CRHS->isAllOnesValue()) {
3674         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3675 
3676         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3677         // sign bits set.
3678         if ((Known.Zero | 1).isAllOnesValue())
3679           return VTBits;
3680 
3681         // If we are subtracting one from a positive number, there is no carry
3682         // out of the result.
3683         if (Known.isNonNegative())
3684           return Tmp;
3685       }
3686 
3687     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3688     if (Tmp2 == 1) return 1;
3689     return std::min(Tmp, Tmp2)-1;
3690 
3691   case ISD::SUB:
3692     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3693     if (Tmp2 == 1) return 1;
3694 
3695     // Handle NEG.
3696     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3697       if (CLHS->isNullValue()) {
3698         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3699         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3700         // sign bits set.
3701         if ((Known.Zero | 1).isAllOnesValue())
3702           return VTBits;
3703 
3704         // If the input is known to be positive (the sign bit is known clear),
3705         // the output of the NEG has the same number of sign bits as the input.
3706         if (Known.isNonNegative())
3707           return Tmp2;
3708 
3709         // Otherwise, we treat this like a SUB.
3710       }
3711 
3712     // Sub can have at most one carry bit.  Thus we know that the output
3713     // is, at worst, one more bit than the inputs.
3714     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3715     if (Tmp == 1) return 1;  // Early out.
3716     return std::min(Tmp, Tmp2)-1;
3717   case ISD::MUL: {
3718     // The output of the Mul can be at most twice the valid bits in the inputs.
3719     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3720     if (SignBitsOp0 == 1)
3721       break;
3722     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3723     if (SignBitsOp1 == 1)
3724       break;
3725     unsigned OutValidBits =
3726         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3727     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3728   }
3729   case ISD::TRUNCATE: {
3730     // Check if the sign bits of source go down as far as the truncated value.
3731     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3732     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3733     if (NumSrcSignBits > (NumSrcBits - VTBits))
3734       return NumSrcSignBits - (NumSrcBits - VTBits);
3735     break;
3736   }
3737   case ISD::EXTRACT_ELEMENT: {
3738     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3739     const int BitWidth = Op.getValueSizeInBits();
3740     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3741 
3742     // Get reverse index (starting from 1), Op1 value indexes elements from
3743     // little end. Sign starts at big end.
3744     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3745 
3746     // If the sign portion ends in our element the subtraction gives correct
3747     // result. Otherwise it gives either negative or > bitwidth result
3748     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3749   }
3750   case ISD::INSERT_VECTOR_ELT: {
3751     SDValue InVec = Op.getOperand(0);
3752     SDValue InVal = Op.getOperand(1);
3753     SDValue EltNo = Op.getOperand(2);
3754 
3755     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3756     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3757       // If we know the element index, split the demand between the
3758       // source vector and the inserted element.
3759       unsigned EltIdx = CEltNo->getZExtValue();
3760 
3761       // If we demand the inserted element then get its sign bits.
3762       Tmp = std::numeric_limits<unsigned>::max();
3763       if (DemandedElts[EltIdx]) {
3764         // TODO - handle implicit truncation of inserted elements.
3765         if (InVal.getScalarValueSizeInBits() != VTBits)
3766           break;
3767         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3768       }
3769 
3770       // If we demand the source vector then get its sign bits, and determine
3771       // the minimum.
3772       APInt VectorElts = DemandedElts;
3773       VectorElts.clearBit(EltIdx);
3774       if (!!VectorElts) {
3775         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3776         Tmp = std::min(Tmp, Tmp2);
3777       }
3778     } else {
3779       // Unknown element index, so ignore DemandedElts and demand them all.
3780       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3781       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3782       Tmp = std::min(Tmp, Tmp2);
3783     }
3784     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3785     return Tmp;
3786   }
3787   case ISD::EXTRACT_VECTOR_ELT: {
3788     SDValue InVec = Op.getOperand(0);
3789     SDValue EltNo = Op.getOperand(1);
3790     EVT VecVT = InVec.getValueType();
3791     const unsigned BitWidth = Op.getValueSizeInBits();
3792     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3793     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3794 
3795     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3796     // anything about sign bits. But if the sizes match we can derive knowledge
3797     // about sign bits from the vector operand.
3798     if (BitWidth != EltBitWidth)
3799       break;
3800 
3801     // If we know the element index, just demand that vector element, else for
3802     // an unknown element index, ignore DemandedElts and demand them all.
3803     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3804     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3805     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3806       DemandedSrcElts =
3807           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3808 
3809     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3810   }
3811   case ISD::EXTRACT_SUBVECTOR: {
3812     // If we know the element index, just demand that subvector elements,
3813     // otherwise demand them all.
3814     SDValue Src = Op.getOperand(0);
3815     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3816     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3817     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3818       // Offset the demanded elts by the subvector index.
3819       uint64_t Idx = SubIdx->getZExtValue();
3820       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3821       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3822     }
3823     return ComputeNumSignBits(Src, Depth + 1);
3824   }
3825   case ISD::CONCAT_VECTORS: {
3826     // Determine the minimum number of sign bits across all demanded
3827     // elts of the input vectors. Early out if the result is already 1.
3828     Tmp = std::numeric_limits<unsigned>::max();
3829     EVT SubVectorVT = Op.getOperand(0).getValueType();
3830     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3831     unsigned NumSubVectors = Op.getNumOperands();
3832     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3833       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3834       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3835       if (!DemandedSub)
3836         continue;
3837       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3838       Tmp = std::min(Tmp, Tmp2);
3839     }
3840     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3841     return Tmp;
3842   }
3843   case ISD::INSERT_SUBVECTOR: {
3844     // If we know the element index, demand any elements from the subvector and
3845     // the remainder from the src its inserted into, otherwise demand them all.
3846     SDValue Src = Op.getOperand(0);
3847     SDValue Sub = Op.getOperand(1);
3848     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3849     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3850     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3851       Tmp = std::numeric_limits<unsigned>::max();
3852       uint64_t Idx = SubIdx->getZExtValue();
3853       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3854       if (!!DemandedSubElts) {
3855         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3856         if (Tmp == 1) return 1; // early-out
3857       }
3858       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3859       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3860       if (!!DemandedSrcElts) {
3861         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3862         Tmp = std::min(Tmp, Tmp2);
3863       }
3864       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3865       return Tmp;
3866     }
3867 
3868     // Not able to determine the index so just assume worst case.
3869     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3870     if (Tmp == 1) return 1; // early-out
3871     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3872     Tmp = std::min(Tmp, Tmp2);
3873     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3874     return Tmp;
3875   }
3876   }
3877 
3878   // If we are looking at the loaded value of the SDNode.
3879   if (Op.getResNo() == 0) {
3880     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3881     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3882       unsigned ExtType = LD->getExtensionType();
3883       switch (ExtType) {
3884       default: break;
3885       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3886         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3887         return VTBits - Tmp + 1;
3888       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3889         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3890         return VTBits - Tmp;
3891       case ISD::NON_EXTLOAD:
3892         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3893           // We only need to handle vectors - computeKnownBits should handle
3894           // scalar cases.
3895           Type *CstTy = Cst->getType();
3896           if (CstTy->isVectorTy() &&
3897               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3898             Tmp = VTBits;
3899             for (unsigned i = 0; i != NumElts; ++i) {
3900               if (!DemandedElts[i])
3901                 continue;
3902               if (Constant *Elt = Cst->getAggregateElement(i)) {
3903                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3904                   const APInt &Value = CInt->getValue();
3905                   Tmp = std::min(Tmp, Value.getNumSignBits());
3906                   continue;
3907                 }
3908                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3909                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3910                   Tmp = std::min(Tmp, Value.getNumSignBits());
3911                   continue;
3912                 }
3913               }
3914               // Unknown type. Conservatively assume no bits match sign bit.
3915               return 1;
3916             }
3917             return Tmp;
3918           }
3919         }
3920         break;
3921       }
3922     }
3923   }
3924 
3925   // Allow the target to implement this method for its nodes.
3926   if (Opcode >= ISD::BUILTIN_OP_END ||
3927       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3928       Opcode == ISD::INTRINSIC_W_CHAIN ||
3929       Opcode == ISD::INTRINSIC_VOID) {
3930     unsigned NumBits =
3931         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3932     if (NumBits > 1)
3933       FirstAnswer = std::max(FirstAnswer, NumBits);
3934   }
3935 
3936   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3937   // use this information.
3938   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3939 
3940   APInt Mask;
3941   if (Known.isNonNegative()) {        // sign bit is 0
3942     Mask = Known.Zero;
3943   } else if (Known.isNegative()) {  // sign bit is 1;
3944     Mask = Known.One;
3945   } else {
3946     // Nothing known.
3947     return FirstAnswer;
3948   }
3949 
3950   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3951   // the number of identical bits in the top of the input value.
3952   Mask = ~Mask;
3953   Mask <<= Mask.getBitWidth()-VTBits;
3954   // Return # leading zeros.  We use 'min' here in case Val was zero before
3955   // shifting.  We don't want to return '64' as for an i32 "0".
3956   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3957 }
3958 
3959 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3960   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3961       !isa<ConstantSDNode>(Op.getOperand(1)))
3962     return false;
3963 
3964   if (Op.getOpcode() == ISD::OR &&
3965       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3966     return false;
3967 
3968   return true;
3969 }
3970 
3971 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3972   // If we're told that NaNs won't happen, assume they won't.
3973   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3974     return true;
3975 
3976   if (Depth >= MaxRecursionDepth)
3977     return false; // Limit search depth.
3978 
3979   // TODO: Handle vectors.
3980   // If the value is a constant, we can obviously see if it is a NaN or not.
3981   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3982     return !C->getValueAPF().isNaN() ||
3983            (SNaN && !C->getValueAPF().isSignaling());
3984   }
3985 
3986   unsigned Opcode = Op.getOpcode();
3987   switch (Opcode) {
3988   case ISD::FADD:
3989   case ISD::FSUB:
3990   case ISD::FMUL:
3991   case ISD::FDIV:
3992   case ISD::FREM:
3993   case ISD::FSIN:
3994   case ISD::FCOS: {
3995     if (SNaN)
3996       return true;
3997     // TODO: Need isKnownNeverInfinity
3998     return false;
3999   }
4000   case ISD::FCANONICALIZE:
4001   case ISD::FEXP:
4002   case ISD::FEXP2:
4003   case ISD::FTRUNC:
4004   case ISD::FFLOOR:
4005   case ISD::FCEIL:
4006   case ISD::FROUND:
4007   case ISD::FRINT:
4008   case ISD::FNEARBYINT: {
4009     if (SNaN)
4010       return true;
4011     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4012   }
4013   case ISD::FABS:
4014   case ISD::FNEG:
4015   case ISD::FCOPYSIGN: {
4016     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4017   }
4018   case ISD::SELECT:
4019     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4020            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4021   case ISD::FP_EXTEND:
4022   case ISD::FP_ROUND: {
4023     if (SNaN)
4024       return true;
4025     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4026   }
4027   case ISD::SINT_TO_FP:
4028   case ISD::UINT_TO_FP:
4029     return true;
4030   case ISD::FMA:
4031   case ISD::FMAD: {
4032     if (SNaN)
4033       return true;
4034     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4035            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4036            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4037   }
4038   case ISD::FSQRT: // Need is known positive
4039   case ISD::FLOG:
4040   case ISD::FLOG2:
4041   case ISD::FLOG10:
4042   case ISD::FPOWI:
4043   case ISD::FPOW: {
4044     if (SNaN)
4045       return true;
4046     // TODO: Refine on operand
4047     return false;
4048   }
4049   case ISD::FMINNUM:
4050   case ISD::FMAXNUM: {
4051     // Only one needs to be known not-nan, since it will be returned if the
4052     // other ends up being one.
4053     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4054            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4055   }
4056   case ISD::FMINNUM_IEEE:
4057   case ISD::FMAXNUM_IEEE: {
4058     if (SNaN)
4059       return true;
4060     // This can return a NaN if either operand is an sNaN, or if both operands
4061     // are NaN.
4062     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4063             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4064            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4065             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4066   }
4067   case ISD::FMINIMUM:
4068   case ISD::FMAXIMUM: {
4069     // TODO: Does this quiet or return the origina NaN as-is?
4070     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4071            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4072   }
4073   case ISD::EXTRACT_VECTOR_ELT: {
4074     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4075   }
4076   default:
4077     if (Opcode >= ISD::BUILTIN_OP_END ||
4078         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4079         Opcode == ISD::INTRINSIC_W_CHAIN ||
4080         Opcode == ISD::INTRINSIC_VOID) {
4081       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4082     }
4083 
4084     return false;
4085   }
4086 }
4087 
4088 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4089   assert(Op.getValueType().isFloatingPoint() &&
4090          "Floating point type expected");
4091 
4092   // If the value is a constant, we can obviously see if it is a zero or not.
4093   // TODO: Add BuildVector support.
4094   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4095     return !C->isZero();
4096   return false;
4097 }
4098 
4099 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4100   assert(!Op.getValueType().isFloatingPoint() &&
4101          "Floating point types unsupported - use isKnownNeverZeroFloat");
4102 
4103   // If the value is a constant, we can obviously see if it is a zero or not.
4104   if (ISD::matchUnaryPredicate(
4105           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4106     return true;
4107 
4108   // TODO: Recognize more cases here.
4109   switch (Op.getOpcode()) {
4110   default: break;
4111   case ISD::OR:
4112     if (isKnownNeverZero(Op.getOperand(1)) ||
4113         isKnownNeverZero(Op.getOperand(0)))
4114       return true;
4115     break;
4116   }
4117 
4118   return false;
4119 }
4120 
4121 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4122   // Check the obvious case.
4123   if (A == B) return true;
4124 
4125   // For for negative and positive zero.
4126   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4127     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4128       if (CA->isZero() && CB->isZero()) return true;
4129 
4130   // Otherwise they may not be equal.
4131   return false;
4132 }
4133 
4134 // FIXME: unify with llvm::haveNoCommonBitsSet.
4135 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4136 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4137   assert(A.getValueType() == B.getValueType() &&
4138          "Values must have the same type");
4139   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4140 }
4141 
4142 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4143                                 ArrayRef<SDValue> Ops,
4144                                 SelectionDAG &DAG) {
4145   int NumOps = Ops.size();
4146   assert(NumOps != 0 && "Can't build an empty vector!");
4147   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4148          "Incorrect element count in BUILD_VECTOR!");
4149 
4150   // BUILD_VECTOR of UNDEFs is UNDEF.
4151   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4152     return DAG.getUNDEF(VT);
4153 
4154   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4155   SDValue IdentitySrc;
4156   bool IsIdentity = true;
4157   for (int i = 0; i != NumOps; ++i) {
4158     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4159         Ops[i].getOperand(0).getValueType() != VT ||
4160         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4161         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4162         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4163       IsIdentity = false;
4164       break;
4165     }
4166     IdentitySrc = Ops[i].getOperand(0);
4167   }
4168   if (IsIdentity)
4169     return IdentitySrc;
4170 
4171   return SDValue();
4172 }
4173 
4174 /// Try to simplify vector concatenation to an input value, undef, or build
4175 /// vector.
4176 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4177                                   ArrayRef<SDValue> Ops,
4178                                   SelectionDAG &DAG) {
4179   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4180   assert(llvm::all_of(Ops,
4181                       [Ops](SDValue Op) {
4182                         return Ops[0].getValueType() == Op.getValueType();
4183                       }) &&
4184          "Concatenation of vectors with inconsistent value types!");
4185   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4186              VT.getVectorNumElements() &&
4187          "Incorrect element count in vector concatenation!");
4188 
4189   if (Ops.size() == 1)
4190     return Ops[0];
4191 
4192   // Concat of UNDEFs is UNDEF.
4193   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4194     return DAG.getUNDEF(VT);
4195 
4196   // Scan the operands and look for extract operations from a single source
4197   // that correspond to insertion at the same location via this concatenation:
4198   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4199   SDValue IdentitySrc;
4200   bool IsIdentity = true;
4201   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4202     SDValue Op = Ops[i];
4203     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4204     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4205         Op.getOperand(0).getValueType() != VT ||
4206         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4207         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4208         Op.getConstantOperandVal(1) != IdentityIndex) {
4209       IsIdentity = false;
4210       break;
4211     }
4212     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4213            "Unexpected identity source vector for concat of extracts");
4214     IdentitySrc = Op.getOperand(0);
4215   }
4216   if (IsIdentity) {
4217     assert(IdentitySrc && "Failed to set source vector of extracts");
4218     return IdentitySrc;
4219   }
4220 
4221   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4222   // simplified to one big BUILD_VECTOR.
4223   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4224   EVT SVT = VT.getScalarType();
4225   SmallVector<SDValue, 16> Elts;
4226   for (SDValue Op : Ops) {
4227     EVT OpVT = Op.getValueType();
4228     if (Op.isUndef())
4229       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4230     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4231       Elts.append(Op->op_begin(), Op->op_end());
4232     else
4233       return SDValue();
4234   }
4235 
4236   // BUILD_VECTOR requires all inputs to be of the same type, find the
4237   // maximum type and extend them all.
4238   for (SDValue Op : Elts)
4239     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4240 
4241   if (SVT.bitsGT(VT.getScalarType()))
4242     for (SDValue &Op : Elts)
4243       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4244                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4245                : DAG.getSExtOrTrunc(Op, DL, SVT);
4246 
4247   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4248   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4249   return V;
4250 }
4251 
4252 /// Gets or creates the specified node.
4253 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4254   FoldingSetNodeID ID;
4255   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4256   void *IP = nullptr;
4257   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4258     return SDValue(E, 0);
4259 
4260   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4261                               getVTList(VT));
4262   CSEMap.InsertNode(N, IP);
4263 
4264   InsertNode(N);
4265   SDValue V = SDValue(N, 0);
4266   NewSDValueDbgMsg(V, "Creating new node: ", this);
4267   return V;
4268 }
4269 
4270 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4271                               SDValue Operand, const SDNodeFlags Flags) {
4272   // Constant fold unary operations with an integer constant operand. Even
4273   // opaque constant will be folded, because the folding of unary operations
4274   // doesn't create new constants with different values. Nevertheless, the
4275   // opaque flag is preserved during folding to prevent future folding with
4276   // other constants.
4277   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4278     const APInt &Val = C->getAPIntValue();
4279     switch (Opcode) {
4280     default: break;
4281     case ISD::SIGN_EXTEND:
4282       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4283                          C->isTargetOpcode(), C->isOpaque());
4284     case ISD::TRUNCATE:
4285       if (C->isOpaque())
4286         break;
4287       LLVM_FALLTHROUGH;
4288     case ISD::ANY_EXTEND:
4289     case ISD::ZERO_EXTEND:
4290       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4291                          C->isTargetOpcode(), C->isOpaque());
4292     case ISD::UINT_TO_FP:
4293     case ISD::SINT_TO_FP: {
4294       APFloat apf(EVTToAPFloatSemantics(VT),
4295                   APInt::getNullValue(VT.getSizeInBits()));
4296       (void)apf.convertFromAPInt(Val,
4297                                  Opcode==ISD::SINT_TO_FP,
4298                                  APFloat::rmNearestTiesToEven);
4299       return getConstantFP(apf, DL, VT);
4300     }
4301     case ISD::BITCAST:
4302       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4303         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4304       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4305         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4306       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4307         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4308       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4309         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4310       break;
4311     case ISD::ABS:
4312       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4313                          C->isOpaque());
4314     case ISD::BITREVERSE:
4315       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4316                          C->isOpaque());
4317     case ISD::BSWAP:
4318       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4319                          C->isOpaque());
4320     case ISD::CTPOP:
4321       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4322                          C->isOpaque());
4323     case ISD::CTLZ:
4324     case ISD::CTLZ_ZERO_UNDEF:
4325       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4326                          C->isOpaque());
4327     case ISD::CTTZ:
4328     case ISD::CTTZ_ZERO_UNDEF:
4329       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4330                          C->isOpaque());
4331     case ISD::FP16_TO_FP: {
4332       bool Ignored;
4333       APFloat FPV(APFloat::IEEEhalf(),
4334                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4335 
4336       // This can return overflow, underflow, or inexact; we don't care.
4337       // FIXME need to be more flexible about rounding mode.
4338       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4339                         APFloat::rmNearestTiesToEven, &Ignored);
4340       return getConstantFP(FPV, DL, VT);
4341     }
4342     }
4343   }
4344 
4345   // Constant fold unary operations with a floating point constant operand.
4346   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4347     APFloat V = C->getValueAPF();    // make copy
4348     switch (Opcode) {
4349     case ISD::FNEG:
4350       V.changeSign();
4351       return getConstantFP(V, DL, VT);
4352     case ISD::FABS:
4353       V.clearSign();
4354       return getConstantFP(V, DL, VT);
4355     case ISD::FCEIL: {
4356       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4357       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4358         return getConstantFP(V, DL, VT);
4359       break;
4360     }
4361     case ISD::FTRUNC: {
4362       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4363       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4364         return getConstantFP(V, DL, VT);
4365       break;
4366     }
4367     case ISD::FFLOOR: {
4368       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4369       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4370         return getConstantFP(V, DL, VT);
4371       break;
4372     }
4373     case ISD::FP_EXTEND: {
4374       bool ignored;
4375       // This can return overflow, underflow, or inexact; we don't care.
4376       // FIXME need to be more flexible about rounding mode.
4377       (void)V.convert(EVTToAPFloatSemantics(VT),
4378                       APFloat::rmNearestTiesToEven, &ignored);
4379       return getConstantFP(V, DL, VT);
4380     }
4381     case ISD::FP_TO_SINT:
4382     case ISD::FP_TO_UINT: {
4383       bool ignored;
4384       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4385       // FIXME need to be more flexible about rounding mode.
4386       APFloat::opStatus s =
4387           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4388       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4389         break;
4390       return getConstant(IntVal, DL, VT);
4391     }
4392     case ISD::BITCAST:
4393       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4394         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4395       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4396         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4397       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4398         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4399       break;
4400     case ISD::FP_TO_FP16: {
4401       bool Ignored;
4402       // This can return overflow, underflow, or inexact; we don't care.
4403       // FIXME need to be more flexible about rounding mode.
4404       (void)V.convert(APFloat::IEEEhalf(),
4405                       APFloat::rmNearestTiesToEven, &Ignored);
4406       return getConstant(V.bitcastToAPInt(), DL, VT);
4407     }
4408     }
4409   }
4410 
4411   // Constant fold unary operations with a vector integer or float operand.
4412   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4413     if (BV->isConstant()) {
4414       switch (Opcode) {
4415       default:
4416         // FIXME: Entirely reasonable to perform folding of other unary
4417         // operations here as the need arises.
4418         break;
4419       case ISD::FNEG:
4420       case ISD::FABS:
4421       case ISD::FCEIL:
4422       case ISD::FTRUNC:
4423       case ISD::FFLOOR:
4424       case ISD::FP_EXTEND:
4425       case ISD::FP_TO_SINT:
4426       case ISD::FP_TO_UINT:
4427       case ISD::TRUNCATE:
4428       case ISD::ANY_EXTEND:
4429       case ISD::ZERO_EXTEND:
4430       case ISD::SIGN_EXTEND:
4431       case ISD::UINT_TO_FP:
4432       case ISD::SINT_TO_FP:
4433       case ISD::ABS:
4434       case ISD::BITREVERSE:
4435       case ISD::BSWAP:
4436       case ISD::CTLZ:
4437       case ISD::CTLZ_ZERO_UNDEF:
4438       case ISD::CTTZ:
4439       case ISD::CTTZ_ZERO_UNDEF:
4440       case ISD::CTPOP: {
4441         SDValue Ops = { Operand };
4442         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4443           return Fold;
4444       }
4445       }
4446     }
4447   }
4448 
4449   unsigned OpOpcode = Operand.getNode()->getOpcode();
4450   switch (Opcode) {
4451   case ISD::TokenFactor:
4452   case ISD::MERGE_VALUES:
4453   case ISD::CONCAT_VECTORS:
4454     return Operand;         // Factor, merge or concat of one node?  No need.
4455   case ISD::BUILD_VECTOR: {
4456     // Attempt to simplify BUILD_VECTOR.
4457     SDValue Ops[] = {Operand};
4458     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4459       return V;
4460     break;
4461   }
4462   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4463   case ISD::FP_EXTEND:
4464     assert(VT.isFloatingPoint() &&
4465            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4466     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4467     assert((!VT.isVector() ||
4468             VT.getVectorNumElements() ==
4469             Operand.getValueType().getVectorNumElements()) &&
4470            "Vector element count mismatch!");
4471     assert(Operand.getValueType().bitsLT(VT) &&
4472            "Invalid fpext node, dst < src!");
4473     if (Operand.isUndef())
4474       return getUNDEF(VT);
4475     break;
4476   case ISD::FP_TO_SINT:
4477   case ISD::FP_TO_UINT:
4478     if (Operand.isUndef())
4479       return getUNDEF(VT);
4480     break;
4481   case ISD::SINT_TO_FP:
4482   case ISD::UINT_TO_FP:
4483     // [us]itofp(undef) = 0, because the result value is bounded.
4484     if (Operand.isUndef())
4485       return getConstantFP(0.0, DL, VT);
4486     break;
4487   case ISD::SIGN_EXTEND:
4488     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4489            "Invalid SIGN_EXTEND!");
4490     assert(VT.isVector() == Operand.getValueType().isVector() &&
4491            "SIGN_EXTEND result type type should be vector iff the operand "
4492            "type is vector!");
4493     if (Operand.getValueType() == VT) return Operand;   // noop extension
4494     assert((!VT.isVector() ||
4495             VT.getVectorNumElements() ==
4496             Operand.getValueType().getVectorNumElements()) &&
4497            "Vector element count mismatch!");
4498     assert(Operand.getValueType().bitsLT(VT) &&
4499            "Invalid sext node, dst < src!");
4500     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4501       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4502     else if (OpOpcode == ISD::UNDEF)
4503       // sext(undef) = 0, because the top bits will all be the same.
4504       return getConstant(0, DL, VT);
4505     break;
4506   case ISD::ZERO_EXTEND:
4507     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4508            "Invalid ZERO_EXTEND!");
4509     assert(VT.isVector() == Operand.getValueType().isVector() &&
4510            "ZERO_EXTEND result type type should be vector iff the operand "
4511            "type is vector!");
4512     if (Operand.getValueType() == VT) return Operand;   // noop extension
4513     assert((!VT.isVector() ||
4514             VT.getVectorNumElements() ==
4515             Operand.getValueType().getVectorNumElements()) &&
4516            "Vector element count mismatch!");
4517     assert(Operand.getValueType().bitsLT(VT) &&
4518            "Invalid zext node, dst < src!");
4519     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4520       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4521     else if (OpOpcode == ISD::UNDEF)
4522       // zext(undef) = 0, because the top bits will be zero.
4523       return getConstant(0, DL, VT);
4524     break;
4525   case ISD::ANY_EXTEND:
4526     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4527            "Invalid ANY_EXTEND!");
4528     assert(VT.isVector() == Operand.getValueType().isVector() &&
4529            "ANY_EXTEND result type type should be vector iff the operand "
4530            "type is vector!");
4531     if (Operand.getValueType() == VT) return Operand;   // noop extension
4532     assert((!VT.isVector() ||
4533             VT.getVectorNumElements() ==
4534             Operand.getValueType().getVectorNumElements()) &&
4535            "Vector element count mismatch!");
4536     assert(Operand.getValueType().bitsLT(VT) &&
4537            "Invalid anyext node, dst < src!");
4538 
4539     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4540         OpOpcode == ISD::ANY_EXTEND)
4541       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4542       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4543     else if (OpOpcode == ISD::UNDEF)
4544       return getUNDEF(VT);
4545 
4546     // (ext (trunc x)) -> x
4547     if (OpOpcode == ISD::TRUNCATE) {
4548       SDValue OpOp = Operand.getOperand(0);
4549       if (OpOp.getValueType() == VT) {
4550         transferDbgValues(Operand, OpOp);
4551         return OpOp;
4552       }
4553     }
4554     break;
4555   case ISD::TRUNCATE:
4556     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4557            "Invalid TRUNCATE!");
4558     assert(VT.isVector() == Operand.getValueType().isVector() &&
4559            "TRUNCATE result type type should be vector iff the operand "
4560            "type is vector!");
4561     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4562     assert((!VT.isVector() ||
4563             VT.getVectorNumElements() ==
4564             Operand.getValueType().getVectorNumElements()) &&
4565            "Vector element count mismatch!");
4566     assert(Operand.getValueType().bitsGT(VT) &&
4567            "Invalid truncate node, src < dst!");
4568     if (OpOpcode == ISD::TRUNCATE)
4569       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4570     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4571         OpOpcode == ISD::ANY_EXTEND) {
4572       // If the source is smaller than the dest, we still need an extend.
4573       if (Operand.getOperand(0).getValueType().getScalarType()
4574             .bitsLT(VT.getScalarType()))
4575         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4576       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4577         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4578       return Operand.getOperand(0);
4579     }
4580     if (OpOpcode == ISD::UNDEF)
4581       return getUNDEF(VT);
4582     break;
4583   case ISD::ANY_EXTEND_VECTOR_INREG:
4584   case ISD::ZERO_EXTEND_VECTOR_INREG:
4585   case ISD::SIGN_EXTEND_VECTOR_INREG:
4586     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4587     assert(Operand.getValueType().bitsLE(VT) &&
4588            "The input must be the same size or smaller than the result.");
4589     assert(VT.getVectorNumElements() <
4590              Operand.getValueType().getVectorNumElements() &&
4591            "The destination vector type must have fewer lanes than the input.");
4592     break;
4593   case ISD::ABS:
4594     assert(VT.isInteger() && VT == Operand.getValueType() &&
4595            "Invalid ABS!");
4596     if (OpOpcode == ISD::UNDEF)
4597       return getUNDEF(VT);
4598     break;
4599   case ISD::BSWAP:
4600     assert(VT.isInteger() && VT == Operand.getValueType() &&
4601            "Invalid BSWAP!");
4602     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4603            "BSWAP types must be a multiple of 16 bits!");
4604     if (OpOpcode == ISD::UNDEF)
4605       return getUNDEF(VT);
4606     break;
4607   case ISD::BITREVERSE:
4608     assert(VT.isInteger() && VT == Operand.getValueType() &&
4609            "Invalid BITREVERSE!");
4610     if (OpOpcode == ISD::UNDEF)
4611       return getUNDEF(VT);
4612     break;
4613   case ISD::BITCAST:
4614     // Basic sanity checking.
4615     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4616            "Cannot BITCAST between types of different sizes!");
4617     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4618     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4619       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4620     if (OpOpcode == ISD::UNDEF)
4621       return getUNDEF(VT);
4622     break;
4623   case ISD::SCALAR_TO_VECTOR:
4624     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4625            (VT.getVectorElementType() == Operand.getValueType() ||
4626             (VT.getVectorElementType().isInteger() &&
4627              Operand.getValueType().isInteger() &&
4628              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4629            "Illegal SCALAR_TO_VECTOR node!");
4630     if (OpOpcode == ISD::UNDEF)
4631       return getUNDEF(VT);
4632     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4633     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4634         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4635         Operand.getConstantOperandVal(1) == 0 &&
4636         Operand.getOperand(0).getValueType() == VT)
4637       return Operand.getOperand(0);
4638     break;
4639   case ISD::FNEG:
4640     // Negation of an unknown bag of bits is still completely undefined.
4641     if (OpOpcode == ISD::UNDEF)
4642       return getUNDEF(VT);
4643 
4644     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4645     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4646         OpOpcode == ISD::FSUB)
4647       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4648                      Operand.getOperand(0), Flags);
4649     if (OpOpcode == ISD::FNEG)  // --X -> X
4650       return Operand.getOperand(0);
4651     break;
4652   case ISD::FABS:
4653     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4654       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4655     break;
4656   }
4657 
4658   SDNode *N;
4659   SDVTList VTs = getVTList(VT);
4660   SDValue Ops[] = {Operand};
4661   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4662     FoldingSetNodeID ID;
4663     AddNodeIDNode(ID, Opcode, VTs, Ops);
4664     void *IP = nullptr;
4665     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4666       E->intersectFlagsWith(Flags);
4667       return SDValue(E, 0);
4668     }
4669 
4670     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4671     N->setFlags(Flags);
4672     createOperands(N, Ops);
4673     CSEMap.InsertNode(N, IP);
4674   } else {
4675     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4676     createOperands(N, Ops);
4677   }
4678 
4679   InsertNode(N);
4680   SDValue V = SDValue(N, 0);
4681   NewSDValueDbgMsg(V, "Creating new node: ", this);
4682   return V;
4683 }
4684 
4685 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4686                                         const APInt &C2) {
4687   switch (Opcode) {
4688   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4689   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4690   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4691   case ISD::AND:  return std::make_pair(C1 & C2, true);
4692   case ISD::OR:   return std::make_pair(C1 | C2, true);
4693   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4694   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4695   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4696   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4697   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4698   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4699   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4700   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4701   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4702   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4703   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4704   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4705   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4706   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4707   case ISD::UDIV:
4708     if (!C2.getBoolValue())
4709       break;
4710     return std::make_pair(C1.udiv(C2), true);
4711   case ISD::UREM:
4712     if (!C2.getBoolValue())
4713       break;
4714     return std::make_pair(C1.urem(C2), true);
4715   case ISD::SDIV:
4716     if (!C2.getBoolValue())
4717       break;
4718     return std::make_pair(C1.sdiv(C2), true);
4719   case ISD::SREM:
4720     if (!C2.getBoolValue())
4721       break;
4722     return std::make_pair(C1.srem(C2), true);
4723   }
4724   return std::make_pair(APInt(1, 0), false);
4725 }
4726 
4727 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4728                                              EVT VT, const ConstantSDNode *C1,
4729                                              const ConstantSDNode *C2) {
4730   if (C1->isOpaque() || C2->isOpaque())
4731     return SDValue();
4732 
4733   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4734                                             C2->getAPIntValue());
4735   if (!Folded.second)
4736     return SDValue();
4737   return getConstant(Folded.first, DL, VT);
4738 }
4739 
4740 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4741                                        const GlobalAddressSDNode *GA,
4742                                        const SDNode *N2) {
4743   if (GA->getOpcode() != ISD::GlobalAddress)
4744     return SDValue();
4745   if (!TLI->isOffsetFoldingLegal(GA))
4746     return SDValue();
4747   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4748   if (!C2)
4749     return SDValue();
4750   int64_t Offset = C2->getSExtValue();
4751   switch (Opcode) {
4752   case ISD::ADD: break;
4753   case ISD::SUB: Offset = -uint64_t(Offset); break;
4754   default: return SDValue();
4755   }
4756   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4757                           GA->getOffset() + uint64_t(Offset));
4758 }
4759 
4760 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4761   switch (Opcode) {
4762   case ISD::SDIV:
4763   case ISD::UDIV:
4764   case ISD::SREM:
4765   case ISD::UREM: {
4766     // If a divisor is zero/undef or any element of a divisor vector is
4767     // zero/undef, the whole op is undef.
4768     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4769     SDValue Divisor = Ops[1];
4770     if (Divisor.isUndef() || isNullConstant(Divisor))
4771       return true;
4772 
4773     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4774            llvm::any_of(Divisor->op_values(),
4775                         [](SDValue V) { return V.isUndef() ||
4776                                         isNullConstant(V); });
4777     // TODO: Handle signed overflow.
4778   }
4779   // TODO: Handle oversized shifts.
4780   default:
4781     return false;
4782   }
4783 }
4784 
4785 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4786                                              EVT VT, SDNode *N1, SDNode *N2) {
4787   // If the opcode is a target-specific ISD node, there's nothing we can
4788   // do here and the operand rules may not line up with the below, so
4789   // bail early.
4790   if (Opcode >= ISD::BUILTIN_OP_END)
4791     return SDValue();
4792 
4793   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4794     return getUNDEF(VT);
4795 
4796   // Handle the case of two scalars.
4797   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4798     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4799       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4800       assert((!Folded || !VT.isVector()) &&
4801              "Can't fold vectors ops with scalar operands");
4802       return Folded;
4803     }
4804   }
4805 
4806   // fold (add Sym, c) -> Sym+c
4807   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4808     return FoldSymbolOffset(Opcode, VT, GA, N2);
4809   if (TLI->isCommutativeBinOp(Opcode))
4810     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4811       return FoldSymbolOffset(Opcode, VT, GA, N1);
4812 
4813   // For vectors, extract each constant element and fold them individually.
4814   // Either input may be an undef value.
4815   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4816   if (!BV1 && !N1->isUndef())
4817     return SDValue();
4818   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4819   if (!BV2 && !N2->isUndef())
4820     return SDValue();
4821   // If both operands are undef, that's handled the same way as scalars.
4822   if (!BV1 && !BV2)
4823     return SDValue();
4824 
4825   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4826          "Vector binop with different number of elements in operands?");
4827 
4828   EVT SVT = VT.getScalarType();
4829   EVT LegalSVT = SVT;
4830   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4831     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4832     if (LegalSVT.bitsLT(SVT))
4833       return SDValue();
4834   }
4835   SmallVector<SDValue, 4> Outputs;
4836   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4837   for (unsigned I = 0; I != NumOps; ++I) {
4838     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4839     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4840     if (SVT.isInteger()) {
4841       if (V1->getValueType(0).bitsGT(SVT))
4842         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4843       if (V2->getValueType(0).bitsGT(SVT))
4844         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4845     }
4846 
4847     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4848       return SDValue();
4849 
4850     // Fold one vector element.
4851     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4852     if (LegalSVT != SVT)
4853       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4854 
4855     // Scalar folding only succeeded if the result is a constant or UNDEF.
4856     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4857         ScalarResult.getOpcode() != ISD::ConstantFP)
4858       return SDValue();
4859     Outputs.push_back(ScalarResult);
4860   }
4861 
4862   assert(VT.getVectorNumElements() == Outputs.size() &&
4863          "Vector size mismatch!");
4864 
4865   // We may have a vector type but a scalar result. Create a splat.
4866   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4867 
4868   // Build a big vector out of the scalar elements we generated.
4869   return getBuildVector(VT, SDLoc(), Outputs);
4870 }
4871 
4872 // TODO: Merge with FoldConstantArithmetic
4873 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4874                                                    const SDLoc &DL, EVT VT,
4875                                                    ArrayRef<SDValue> Ops,
4876                                                    const SDNodeFlags Flags) {
4877   // If the opcode is a target-specific ISD node, there's nothing we can
4878   // do here and the operand rules may not line up with the below, so
4879   // bail early.
4880   if (Opcode >= ISD::BUILTIN_OP_END)
4881     return SDValue();
4882 
4883   if (isUndef(Opcode, Ops))
4884     return getUNDEF(VT);
4885 
4886   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4887   if (!VT.isVector())
4888     return SDValue();
4889 
4890   unsigned NumElts = VT.getVectorNumElements();
4891 
4892   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4893     return !Op.getValueType().isVector() ||
4894            Op.getValueType().getVectorNumElements() == NumElts;
4895   };
4896 
4897   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4898     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4899     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4900            (BV && BV->isConstant());
4901   };
4902 
4903   // All operands must be vector types with the same number of elements as
4904   // the result type and must be either UNDEF or a build vector of constant
4905   // or UNDEF scalars.
4906   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4907       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4908     return SDValue();
4909 
4910   // If we are comparing vectors, then the result needs to be a i1 boolean
4911   // that is then sign-extended back to the legal result type.
4912   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4913 
4914   // Find legal integer scalar type for constant promotion and
4915   // ensure that its scalar size is at least as large as source.
4916   EVT LegalSVT = VT.getScalarType();
4917   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4918     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4919     if (LegalSVT.bitsLT(VT.getScalarType()))
4920       return SDValue();
4921   }
4922 
4923   // Constant fold each scalar lane separately.
4924   SmallVector<SDValue, 4> ScalarResults;
4925   for (unsigned i = 0; i != NumElts; i++) {
4926     SmallVector<SDValue, 4> ScalarOps;
4927     for (SDValue Op : Ops) {
4928       EVT InSVT = Op.getValueType().getScalarType();
4929       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4930       if (!InBV) {
4931         // We've checked that this is UNDEF or a constant of some kind.
4932         if (Op.isUndef())
4933           ScalarOps.push_back(getUNDEF(InSVT));
4934         else
4935           ScalarOps.push_back(Op);
4936         continue;
4937       }
4938 
4939       SDValue ScalarOp = InBV->getOperand(i);
4940       EVT ScalarVT = ScalarOp.getValueType();
4941 
4942       // Build vector (integer) scalar operands may need implicit
4943       // truncation - do this before constant folding.
4944       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4945         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4946 
4947       ScalarOps.push_back(ScalarOp);
4948     }
4949 
4950     // Constant fold the scalar operands.
4951     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4952 
4953     // Legalize the (integer) scalar constant if necessary.
4954     if (LegalSVT != SVT)
4955       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4956 
4957     // Scalar folding only succeeded if the result is a constant or UNDEF.
4958     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4959         ScalarResult.getOpcode() != ISD::ConstantFP)
4960       return SDValue();
4961     ScalarResults.push_back(ScalarResult);
4962   }
4963 
4964   SDValue V = getBuildVector(VT, DL, ScalarResults);
4965   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4966   return V;
4967 }
4968 
4969 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4970                                          EVT VT, SDValue N1, SDValue N2) {
4971   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4972   //       should. That will require dealing with a potentially non-default
4973   //       rounding mode, checking the "opStatus" return value from the APFloat
4974   //       math calculations, and possibly other variations.
4975   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4976   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4977   if (N1CFP && N2CFP) {
4978     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4979     switch (Opcode) {
4980     case ISD::FADD:
4981       C1.add(C2, APFloat::rmNearestTiesToEven);
4982       return getConstantFP(C1, DL, VT);
4983     case ISD::FSUB:
4984       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4985       return getConstantFP(C1, DL, VT);
4986     case ISD::FMUL:
4987       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4988       return getConstantFP(C1, DL, VT);
4989     case ISD::FDIV:
4990       C1.divide(C2, APFloat::rmNearestTiesToEven);
4991       return getConstantFP(C1, DL, VT);
4992     case ISD::FREM:
4993       C1.mod(C2);
4994       return getConstantFP(C1, DL, VT);
4995     case ISD::FCOPYSIGN:
4996       C1.copySign(C2);
4997       return getConstantFP(C1, DL, VT);
4998     default: break;
4999     }
5000   }
5001   if (N1CFP && Opcode == ISD::FP_ROUND) {
5002     APFloat C1 = N1CFP->getValueAPF();    // make copy
5003     bool Unused;
5004     // This can return overflow, underflow, or inexact; we don't care.
5005     // FIXME need to be more flexible about rounding mode.
5006     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5007                       &Unused);
5008     return getConstantFP(C1, DL, VT);
5009   }
5010 
5011   switch (Opcode) {
5012   case ISD::FADD:
5013   case ISD::FSUB:
5014   case ISD::FMUL:
5015   case ISD::FDIV:
5016   case ISD::FREM:
5017     // If both operands are undef, the result is undef. If 1 operand is undef,
5018     // the result is NaN. This should match the behavior of the IR optimizer.
5019     if (N1.isUndef() && N2.isUndef())
5020       return getUNDEF(VT);
5021     if (N1.isUndef() || N2.isUndef())
5022       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5023   }
5024   return SDValue();
5025 }
5026 
5027 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5028                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5029   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5030   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5031   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5032   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5033 
5034   // Canonicalize constant to RHS if commutative.
5035   if (TLI->isCommutativeBinOp(Opcode)) {
5036     if (N1C && !N2C) {
5037       std::swap(N1C, N2C);
5038       std::swap(N1, N2);
5039     } else if (N1CFP && !N2CFP) {
5040       std::swap(N1CFP, N2CFP);
5041       std::swap(N1, N2);
5042     }
5043   }
5044 
5045   switch (Opcode) {
5046   default: break;
5047   case ISD::TokenFactor:
5048     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5049            N2.getValueType() == MVT::Other && "Invalid token factor!");
5050     // Fold trivial token factors.
5051     if (N1.getOpcode() == ISD::EntryToken) return N2;
5052     if (N2.getOpcode() == ISD::EntryToken) return N1;
5053     if (N1 == N2) return N1;
5054     break;
5055   case ISD::BUILD_VECTOR: {
5056     // Attempt to simplify BUILD_VECTOR.
5057     SDValue Ops[] = {N1, N2};
5058     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5059       return V;
5060     break;
5061   }
5062   case ISD::CONCAT_VECTORS: {
5063     SDValue Ops[] = {N1, N2};
5064     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5065       return V;
5066     break;
5067   }
5068   case ISD::AND:
5069     assert(VT.isInteger() && "This operator does not apply to FP types!");
5070     assert(N1.getValueType() == N2.getValueType() &&
5071            N1.getValueType() == VT && "Binary operator types must match!");
5072     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5073     // worth handling here.
5074     if (N2C && N2C->isNullValue())
5075       return N2;
5076     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5077       return N1;
5078     break;
5079   case ISD::OR:
5080   case ISD::XOR:
5081   case ISD::ADD:
5082   case ISD::SUB:
5083     assert(VT.isInteger() && "This operator does not apply to FP types!");
5084     assert(N1.getValueType() == N2.getValueType() &&
5085            N1.getValueType() == VT && "Binary operator types must match!");
5086     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5087     // it's worth handling here.
5088     if (N2C && N2C->isNullValue())
5089       return N1;
5090     break;
5091   case ISD::UDIV:
5092   case ISD::UREM:
5093   case ISD::MULHU:
5094   case ISD::MULHS:
5095   case ISD::MUL:
5096   case ISD::SDIV:
5097   case ISD::SREM:
5098   case ISD::SMIN:
5099   case ISD::SMAX:
5100   case ISD::UMIN:
5101   case ISD::UMAX:
5102   case ISD::SADDSAT:
5103   case ISD::SSUBSAT:
5104   case ISD::UADDSAT:
5105   case ISD::USUBSAT:
5106     assert(VT.isInteger() && "This operator does not apply to FP types!");
5107     assert(N1.getValueType() == N2.getValueType() &&
5108            N1.getValueType() == VT && "Binary operator types must match!");
5109     break;
5110   case ISD::FADD:
5111   case ISD::FSUB:
5112   case ISD::FMUL:
5113   case ISD::FDIV:
5114   case ISD::FREM:
5115     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5116     assert(N1.getValueType() == N2.getValueType() &&
5117            N1.getValueType() == VT && "Binary operator types must match!");
5118     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5119       return V;
5120     break;
5121   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5122     assert(N1.getValueType() == VT &&
5123            N1.getValueType().isFloatingPoint() &&
5124            N2.getValueType().isFloatingPoint() &&
5125            "Invalid FCOPYSIGN!");
5126     break;
5127   case ISD::SHL:
5128   case ISD::SRA:
5129   case ISD::SRL:
5130     if (SDValue V = simplifyShift(N1, N2))
5131       return V;
5132     LLVM_FALLTHROUGH;
5133   case ISD::ROTL:
5134   case ISD::ROTR:
5135     assert(VT == N1.getValueType() &&
5136            "Shift operators return type must be the same as their first arg");
5137     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5138            "Shifts only work on integers");
5139     assert((!VT.isVector() || VT == N2.getValueType()) &&
5140            "Vector shift amounts must be in the same as their first arg");
5141     // Verify that the shift amount VT is big enough to hold valid shift
5142     // amounts.  This catches things like trying to shift an i1024 value by an
5143     // i8, which is easy to fall into in generic code that uses
5144     // TLI.getShiftAmount().
5145     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5146            "Invalid use of small shift amount with oversized value!");
5147 
5148     // Always fold shifts of i1 values so the code generator doesn't need to
5149     // handle them.  Since we know the size of the shift has to be less than the
5150     // size of the value, the shift/rotate count is guaranteed to be zero.
5151     if (VT == MVT::i1)
5152       return N1;
5153     if (N2C && N2C->isNullValue())
5154       return N1;
5155     break;
5156   case ISD::FP_ROUND:
5157     assert(VT.isFloatingPoint() &&
5158            N1.getValueType().isFloatingPoint() &&
5159            VT.bitsLE(N1.getValueType()) &&
5160            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5161            "Invalid FP_ROUND!");
5162     if (N1.getValueType() == VT) return N1;  // noop conversion.
5163     break;
5164   case ISD::AssertSext:
5165   case ISD::AssertZext: {
5166     EVT EVT = cast<VTSDNode>(N2)->getVT();
5167     assert(VT == N1.getValueType() && "Not an inreg extend!");
5168     assert(VT.isInteger() && EVT.isInteger() &&
5169            "Cannot *_EXTEND_INREG FP types");
5170     assert(!EVT.isVector() &&
5171            "AssertSExt/AssertZExt type should be the vector element type "
5172            "rather than the vector type!");
5173     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5174     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5175     break;
5176   }
5177   case ISD::SIGN_EXTEND_INREG: {
5178     EVT EVT = cast<VTSDNode>(N2)->getVT();
5179     assert(VT == N1.getValueType() && "Not an inreg extend!");
5180     assert(VT.isInteger() && EVT.isInteger() &&
5181            "Cannot *_EXTEND_INREG FP types");
5182     assert(EVT.isVector() == VT.isVector() &&
5183            "SIGN_EXTEND_INREG type should be vector iff the operand "
5184            "type is vector!");
5185     assert((!EVT.isVector() ||
5186             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5187            "Vector element counts must match in SIGN_EXTEND_INREG");
5188     assert(EVT.bitsLE(VT) && "Not extending!");
5189     if (EVT == VT) return N1;  // Not actually extending
5190 
5191     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5192       unsigned FromBits = EVT.getScalarSizeInBits();
5193       Val <<= Val.getBitWidth() - FromBits;
5194       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5195       return getConstant(Val, DL, ConstantVT);
5196     };
5197 
5198     if (N1C) {
5199       const APInt &Val = N1C->getAPIntValue();
5200       return SignExtendInReg(Val, VT);
5201     }
5202     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5203       SmallVector<SDValue, 8> Ops;
5204       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5205       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5206         SDValue Op = N1.getOperand(i);
5207         if (Op.isUndef()) {
5208           Ops.push_back(getUNDEF(OpVT));
5209           continue;
5210         }
5211         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5212         APInt Val = C->getAPIntValue();
5213         Ops.push_back(SignExtendInReg(Val, OpVT));
5214       }
5215       return getBuildVector(VT, DL, Ops);
5216     }
5217     break;
5218   }
5219   case ISD::EXTRACT_VECTOR_ELT:
5220     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5221            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5222              element type of the vector.");
5223 
5224     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5225     if (N1.isUndef())
5226       return getUNDEF(VT);
5227 
5228     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5229     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5230       return getUNDEF(VT);
5231 
5232     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5233     // expanding copies of large vectors from registers.
5234     if (N2C &&
5235         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5236         N1.getNumOperands() > 0) {
5237       unsigned Factor =
5238         N1.getOperand(0).getValueType().getVectorNumElements();
5239       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5240                      N1.getOperand(N2C->getZExtValue() / Factor),
5241                      getConstant(N2C->getZExtValue() % Factor, DL,
5242                                  N2.getValueType()));
5243     }
5244 
5245     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5246     // expanding large vector constants.
5247     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5248       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5249 
5250       if (VT != Elt.getValueType())
5251         // If the vector element type is not legal, the BUILD_VECTOR operands
5252         // are promoted and implicitly truncated, and the result implicitly
5253         // extended. Make that explicit here.
5254         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5255 
5256       return Elt;
5257     }
5258 
5259     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5260     // operations are lowered to scalars.
5261     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5262       // If the indices are the same, return the inserted element else
5263       // if the indices are known different, extract the element from
5264       // the original vector.
5265       SDValue N1Op2 = N1.getOperand(2);
5266       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5267 
5268       if (N1Op2C && N2C) {
5269         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5270           if (VT == N1.getOperand(1).getValueType())
5271             return N1.getOperand(1);
5272           else
5273             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5274         }
5275 
5276         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5277       }
5278     }
5279 
5280     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5281     // when vector types are scalarized and v1iX is legal.
5282     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5283     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5284         N1.getValueType().getVectorNumElements() == 1) {
5285       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5286                      N1.getOperand(1));
5287     }
5288     break;
5289   case ISD::EXTRACT_ELEMENT:
5290     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5291     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5292            (N1.getValueType().isInteger() == VT.isInteger()) &&
5293            N1.getValueType() != VT &&
5294            "Wrong types for EXTRACT_ELEMENT!");
5295 
5296     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5297     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5298     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5299     if (N1.getOpcode() == ISD::BUILD_PAIR)
5300       return N1.getOperand(N2C->getZExtValue());
5301 
5302     // EXTRACT_ELEMENT of a constant int is also very common.
5303     if (N1C) {
5304       unsigned ElementSize = VT.getSizeInBits();
5305       unsigned Shift = ElementSize * N2C->getZExtValue();
5306       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5307       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5308     }
5309     break;
5310   case ISD::EXTRACT_SUBVECTOR:
5311     if (VT.isSimple() && N1.getValueType().isSimple()) {
5312       assert(VT.isVector() && N1.getValueType().isVector() &&
5313              "Extract subvector VTs must be a vectors!");
5314       assert(VT.getVectorElementType() ==
5315              N1.getValueType().getVectorElementType() &&
5316              "Extract subvector VTs must have the same element type!");
5317       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5318              "Extract subvector must be from larger vector to smaller vector!");
5319 
5320       if (N2C) {
5321         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5322                 <= N1.getValueType().getVectorNumElements())
5323                && "Extract subvector overflow!");
5324       }
5325 
5326       // Trivial extraction.
5327       if (VT.getSimpleVT() == N1.getSimpleValueType())
5328         return N1;
5329 
5330       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5331       if (N1.isUndef())
5332         return getUNDEF(VT);
5333 
5334       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5335       // the concat have the same type as the extract.
5336       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5337           N1.getNumOperands() > 0 &&
5338           VT == N1.getOperand(0).getValueType()) {
5339         unsigned Factor = VT.getVectorNumElements();
5340         return N1.getOperand(N2C->getZExtValue() / Factor);
5341       }
5342 
5343       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5344       // during shuffle legalization.
5345       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5346           VT == N1.getOperand(1).getValueType())
5347         return N1.getOperand(1);
5348     }
5349     break;
5350   }
5351 
5352   // Perform trivial constant folding.
5353   if (SDValue SV =
5354           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5355     return SV;
5356 
5357   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5358     return V;
5359 
5360   // Canonicalize an UNDEF to the RHS, even over a constant.
5361   if (N1.isUndef()) {
5362     if (TLI->isCommutativeBinOp(Opcode)) {
5363       std::swap(N1, N2);
5364     } else {
5365       switch (Opcode) {
5366       case ISD::SIGN_EXTEND_INREG:
5367       case ISD::SUB:
5368         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5369       case ISD::UDIV:
5370       case ISD::SDIV:
5371       case ISD::UREM:
5372       case ISD::SREM:
5373       case ISD::SSUBSAT:
5374       case ISD::USUBSAT:
5375         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5376       }
5377     }
5378   }
5379 
5380   // Fold a bunch of operators when the RHS is undef.
5381   if (N2.isUndef()) {
5382     switch (Opcode) {
5383     case ISD::XOR:
5384       if (N1.isUndef())
5385         // Handle undef ^ undef -> 0 special case. This is a common
5386         // idiom (misuse).
5387         return getConstant(0, DL, VT);
5388       LLVM_FALLTHROUGH;
5389     case ISD::ADD:
5390     case ISD::SUB:
5391     case ISD::UDIV:
5392     case ISD::SDIV:
5393     case ISD::UREM:
5394     case ISD::SREM:
5395       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5396     case ISD::MUL:
5397     case ISD::AND:
5398     case ISD::SSUBSAT:
5399     case ISD::USUBSAT:
5400       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5401     case ISD::OR:
5402     case ISD::SADDSAT:
5403     case ISD::UADDSAT:
5404       return getAllOnesConstant(DL, VT);
5405     }
5406   }
5407 
5408   // Memoize this node if possible.
5409   SDNode *N;
5410   SDVTList VTs = getVTList(VT);
5411   SDValue Ops[] = {N1, N2};
5412   if (VT != MVT::Glue) {
5413     FoldingSetNodeID ID;
5414     AddNodeIDNode(ID, Opcode, VTs, Ops);
5415     void *IP = nullptr;
5416     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5417       E->intersectFlagsWith(Flags);
5418       return SDValue(E, 0);
5419     }
5420 
5421     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5422     N->setFlags(Flags);
5423     createOperands(N, Ops);
5424     CSEMap.InsertNode(N, IP);
5425   } else {
5426     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5427     createOperands(N, Ops);
5428   }
5429 
5430   InsertNode(N);
5431   SDValue V = SDValue(N, 0);
5432   NewSDValueDbgMsg(V, "Creating new node: ", this);
5433   return V;
5434 }
5435 
5436 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5437                               SDValue N1, SDValue N2, SDValue N3,
5438                               const SDNodeFlags Flags) {
5439   // Perform various simplifications.
5440   switch (Opcode) {
5441   case ISD::FMA: {
5442     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5443     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5444            N3.getValueType() == VT && "FMA types must match!");
5445     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5446     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5447     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5448     if (N1CFP && N2CFP && N3CFP) {
5449       APFloat  V1 = N1CFP->getValueAPF();
5450       const APFloat &V2 = N2CFP->getValueAPF();
5451       const APFloat &V3 = N3CFP->getValueAPF();
5452       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5453       return getConstantFP(V1, DL, VT);
5454     }
5455     break;
5456   }
5457   case ISD::BUILD_VECTOR: {
5458     // Attempt to simplify BUILD_VECTOR.
5459     SDValue Ops[] = {N1, N2, N3};
5460     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5461       return V;
5462     break;
5463   }
5464   case ISD::CONCAT_VECTORS: {
5465     SDValue Ops[] = {N1, N2, N3};
5466     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5467       return V;
5468     break;
5469   }
5470   case ISD::SETCC: {
5471     assert(VT.isInteger() && "SETCC result type must be an integer!");
5472     assert(N1.getValueType() == N2.getValueType() &&
5473            "SETCC operands must have the same type!");
5474     assert(VT.isVector() == N1.getValueType().isVector() &&
5475            "SETCC type should be vector iff the operand type is vector!");
5476     assert((!VT.isVector() ||
5477             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5478            "SETCC vector element counts must match!");
5479     // Use FoldSetCC to simplify SETCC's.
5480     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5481       return V;
5482     // Vector constant folding.
5483     SDValue Ops[] = {N1, N2, N3};
5484     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5485       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5486       return V;
5487     }
5488     break;
5489   }
5490   case ISD::SELECT:
5491   case ISD::VSELECT:
5492     if (SDValue V = simplifySelect(N1, N2, N3))
5493       return V;
5494     break;
5495   case ISD::VECTOR_SHUFFLE:
5496     llvm_unreachable("should use getVectorShuffle constructor!");
5497   case ISD::INSERT_VECTOR_ELT: {
5498     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5499     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5500     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5501       return getUNDEF(VT);
5502     break;
5503   }
5504   case ISD::INSERT_SUBVECTOR: {
5505     // Inserting undef into undef is still undef.
5506     if (N1.isUndef() && N2.isUndef())
5507       return getUNDEF(VT);
5508     SDValue Index = N3;
5509     if (VT.isSimple() && N1.getValueType().isSimple()
5510         && N2.getValueType().isSimple()) {
5511       assert(VT.isVector() && N1.getValueType().isVector() &&
5512              N2.getValueType().isVector() &&
5513              "Insert subvector VTs must be a vectors");
5514       assert(VT == N1.getValueType() &&
5515              "Dest and insert subvector source types must match!");
5516       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5517              "Insert subvector must be from smaller vector to larger vector!");
5518       if (isa<ConstantSDNode>(Index)) {
5519         assert((N2.getValueType().getVectorNumElements() +
5520                 cast<ConstantSDNode>(Index)->getZExtValue()
5521                 <= VT.getVectorNumElements())
5522                && "Insert subvector overflow!");
5523       }
5524 
5525       // Trivial insertion.
5526       if (VT.getSimpleVT() == N2.getSimpleValueType())
5527         return N2;
5528 
5529       // If this is an insert of an extracted vector into an undef vector, we
5530       // can just use the input to the extract.
5531       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5532           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5533         return N2.getOperand(0);
5534     }
5535     break;
5536   }
5537   case ISD::BITCAST:
5538     // Fold bit_convert nodes from a type to themselves.
5539     if (N1.getValueType() == VT)
5540       return N1;
5541     break;
5542   }
5543 
5544   // Memoize node if it doesn't produce a flag.
5545   SDNode *N;
5546   SDVTList VTs = getVTList(VT);
5547   SDValue Ops[] = {N1, N2, N3};
5548   if (VT != MVT::Glue) {
5549     FoldingSetNodeID ID;
5550     AddNodeIDNode(ID, Opcode, VTs, Ops);
5551     void *IP = nullptr;
5552     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5553       E->intersectFlagsWith(Flags);
5554       return SDValue(E, 0);
5555     }
5556 
5557     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5558     N->setFlags(Flags);
5559     createOperands(N, Ops);
5560     CSEMap.InsertNode(N, IP);
5561   } else {
5562     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5563     createOperands(N, Ops);
5564   }
5565 
5566   InsertNode(N);
5567   SDValue V = SDValue(N, 0);
5568   NewSDValueDbgMsg(V, "Creating new node: ", this);
5569   return V;
5570 }
5571 
5572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5573                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5574   SDValue Ops[] = { N1, N2, N3, N4 };
5575   return getNode(Opcode, DL, VT, Ops);
5576 }
5577 
5578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5579                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5580                               SDValue N5) {
5581   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5582   return getNode(Opcode, DL, VT, Ops);
5583 }
5584 
5585 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5586 /// the incoming stack arguments to be loaded from the stack.
5587 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5588   SmallVector<SDValue, 8> ArgChains;
5589 
5590   // Include the original chain at the beginning of the list. When this is
5591   // used by target LowerCall hooks, this helps legalize find the
5592   // CALLSEQ_BEGIN node.
5593   ArgChains.push_back(Chain);
5594 
5595   // Add a chain value for each stack argument.
5596   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5597        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5598     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5599       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5600         if (FI->getIndex() < 0)
5601           ArgChains.push_back(SDValue(L, 1));
5602 
5603   // Build a tokenfactor for all the chains.
5604   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5605 }
5606 
5607 /// getMemsetValue - Vectorized representation of the memset value
5608 /// operand.
5609 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5610                               const SDLoc &dl) {
5611   assert(!Value.isUndef());
5612 
5613   unsigned NumBits = VT.getScalarSizeInBits();
5614   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5615     assert(C->getAPIntValue().getBitWidth() == 8);
5616     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5617     if (VT.isInteger()) {
5618       bool IsOpaque = VT.getSizeInBits() > 64 ||
5619           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5620       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5621     }
5622     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5623                              VT);
5624   }
5625 
5626   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5627   EVT IntVT = VT.getScalarType();
5628   if (!IntVT.isInteger())
5629     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5630 
5631   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5632   if (NumBits > 8) {
5633     // Use a multiplication with 0x010101... to extend the input to the
5634     // required length.
5635     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5636     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5637                         DAG.getConstant(Magic, dl, IntVT));
5638   }
5639 
5640   if (VT != Value.getValueType() && !VT.isInteger())
5641     Value = DAG.getBitcast(VT.getScalarType(), Value);
5642   if (VT != Value.getValueType())
5643     Value = DAG.getSplatBuildVector(VT, dl, Value);
5644 
5645   return Value;
5646 }
5647 
5648 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5649 /// used when a memcpy is turned into a memset when the source is a constant
5650 /// string ptr.
5651 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5652                                   const TargetLowering &TLI,
5653                                   const ConstantDataArraySlice &Slice) {
5654   // Handle vector with all elements zero.
5655   if (Slice.Array == nullptr) {
5656     if (VT.isInteger())
5657       return DAG.getConstant(0, dl, VT);
5658     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5659       return DAG.getConstantFP(0.0, dl, VT);
5660     else if (VT.isVector()) {
5661       unsigned NumElts = VT.getVectorNumElements();
5662       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5663       return DAG.getNode(ISD::BITCAST, dl, VT,
5664                          DAG.getConstant(0, dl,
5665                                          EVT::getVectorVT(*DAG.getContext(),
5666                                                           EltVT, NumElts)));
5667     } else
5668       llvm_unreachable("Expected type!");
5669   }
5670 
5671   assert(!VT.isVector() && "Can't handle vector type here!");
5672   unsigned NumVTBits = VT.getSizeInBits();
5673   unsigned NumVTBytes = NumVTBits / 8;
5674   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5675 
5676   APInt Val(NumVTBits, 0);
5677   if (DAG.getDataLayout().isLittleEndian()) {
5678     for (unsigned i = 0; i != NumBytes; ++i)
5679       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5680   } else {
5681     for (unsigned i = 0; i != NumBytes; ++i)
5682       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5683   }
5684 
5685   // If the "cost" of materializing the integer immediate is less than the cost
5686   // of a load, then it is cost effective to turn the load into the immediate.
5687   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5688   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5689     return DAG.getConstant(Val, dl, VT);
5690   return SDValue(nullptr, 0);
5691 }
5692 
5693 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5694                                            const SDLoc &DL) {
5695   EVT VT = Base.getValueType();
5696   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5697 }
5698 
5699 /// Returns true if memcpy source is constant data.
5700 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5701   uint64_t SrcDelta = 0;
5702   GlobalAddressSDNode *G = nullptr;
5703   if (Src.getOpcode() == ISD::GlobalAddress)
5704     G = cast<GlobalAddressSDNode>(Src);
5705   else if (Src.getOpcode() == ISD::ADD &&
5706            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5707            Src.getOperand(1).getOpcode() == ISD::Constant) {
5708     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5709     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5710   }
5711   if (!G)
5712     return false;
5713 
5714   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5715                                   SrcDelta + G->getOffset());
5716 }
5717 
5718 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5719   // On Darwin, -Os means optimize for size without hurting performance, so
5720   // only really optimize for size when -Oz (MinSize) is used.
5721   if (MF.getTarget().getTargetTriple().isOSDarwin())
5722     return MF.getFunction().hasMinSize();
5723   return MF.getFunction().hasOptSize();
5724 }
5725 
5726 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5727                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5728                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5729                           SmallVector<SDValue, 16> &OutStoreChains) {
5730   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5731   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5732   SmallVector<SDValue, 16> GluedLoadChains;
5733   for (unsigned i = From; i < To; ++i) {
5734     OutChains.push_back(OutLoadChains[i]);
5735     GluedLoadChains.push_back(OutLoadChains[i]);
5736   }
5737 
5738   // Chain for all loads.
5739   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5740                                   GluedLoadChains);
5741 
5742   for (unsigned i = From; i < To; ++i) {
5743     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5744     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5745                                   ST->getBasePtr(), ST->getMemoryVT(),
5746                                   ST->getMemOperand());
5747     OutChains.push_back(NewStore);
5748   }
5749 }
5750 
5751 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5752                                        SDValue Chain, SDValue Dst, SDValue Src,
5753                                        uint64_t Size, unsigned Align,
5754                                        bool isVol, bool AlwaysInline,
5755                                        MachinePointerInfo DstPtrInfo,
5756                                        MachinePointerInfo SrcPtrInfo) {
5757   // Turn a memcpy of undef to nop.
5758   // FIXME: We need to honor volatile even is Src is undef.
5759   if (Src.isUndef())
5760     return Chain;
5761 
5762   // Expand memcpy to a series of load and store ops if the size operand falls
5763   // below a certain threshold.
5764   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5765   // rather than maybe a humongous number of loads and stores.
5766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5767   const DataLayout &DL = DAG.getDataLayout();
5768   LLVMContext &C = *DAG.getContext();
5769   std::vector<EVT> MemOps;
5770   bool DstAlignCanChange = false;
5771   MachineFunction &MF = DAG.getMachineFunction();
5772   MachineFrameInfo &MFI = MF.getFrameInfo();
5773   bool OptSize = shouldLowerMemFuncForSize(MF);
5774   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5775   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5776     DstAlignCanChange = true;
5777   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5778   if (Align > SrcAlign)
5779     SrcAlign = Align;
5780   ConstantDataArraySlice Slice;
5781   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5782   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5783   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5784 
5785   if (!TLI.findOptimalMemOpLowering(
5786           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align),
5787           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5788           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5789           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5790           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5791     return SDValue();
5792 
5793   if (DstAlignCanChange) {
5794     Type *Ty = MemOps[0].getTypeForEVT(C);
5795     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5796 
5797     // Don't promote to an alignment that would require dynamic stack
5798     // realignment.
5799     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5800     if (!TRI->needsStackRealignment(MF))
5801       while (NewAlign > Align &&
5802              DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign)))
5803           NewAlign /= 2;
5804 
5805     if (NewAlign > Align) {
5806       // Give the stack frame object a larger alignment if needed.
5807       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5808         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5809       Align = NewAlign;
5810     }
5811   }
5812 
5813   MachineMemOperand::Flags MMOFlags =
5814       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5815   SmallVector<SDValue, 16> OutLoadChains;
5816   SmallVector<SDValue, 16> OutStoreChains;
5817   SmallVector<SDValue, 32> OutChains;
5818   unsigned NumMemOps = MemOps.size();
5819   uint64_t SrcOff = 0, DstOff = 0;
5820   for (unsigned i = 0; i != NumMemOps; ++i) {
5821     EVT VT = MemOps[i];
5822     unsigned VTSize = VT.getSizeInBits() / 8;
5823     SDValue Value, Store;
5824 
5825     if (VTSize > Size) {
5826       // Issuing an unaligned load / store pair  that overlaps with the previous
5827       // pair. Adjust the offset accordingly.
5828       assert(i == NumMemOps-1 && i != 0);
5829       SrcOff -= VTSize - Size;
5830       DstOff -= VTSize - Size;
5831     }
5832 
5833     if (CopyFromConstant &&
5834         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5835       // It's unlikely a store of a vector immediate can be done in a single
5836       // instruction. It would require a load from a constantpool first.
5837       // We only handle zero vectors here.
5838       // FIXME: Handle other cases where store of vector immediate is done in
5839       // a single instruction.
5840       ConstantDataArraySlice SubSlice;
5841       if (SrcOff < Slice.Length) {
5842         SubSlice = Slice;
5843         SubSlice.move(SrcOff);
5844       } else {
5845         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5846         SubSlice.Array = nullptr;
5847         SubSlice.Offset = 0;
5848         SubSlice.Length = VTSize;
5849       }
5850       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5851       if (Value.getNode()) {
5852         Store = DAG.getStore(Chain, dl, Value,
5853                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5854                              DstPtrInfo.getWithOffset(DstOff), Align,
5855                              MMOFlags);
5856         OutChains.push_back(Store);
5857       }
5858     }
5859 
5860     if (!Store.getNode()) {
5861       // The type might not be legal for the target.  This should only happen
5862       // if the type is smaller than a legal type, as on PPC, so the right
5863       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5864       // to Load/Store if NVT==VT.
5865       // FIXME does the case above also need this?
5866       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5867       assert(NVT.bitsGE(VT));
5868 
5869       bool isDereferenceable =
5870         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5871       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5872       if (isDereferenceable)
5873         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5874 
5875       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5876                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5877                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5878                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5879       OutLoadChains.push_back(Value.getValue(1));
5880 
5881       Store = DAG.getTruncStore(
5882           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5883           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5884       OutStoreChains.push_back(Store);
5885     }
5886     SrcOff += VTSize;
5887     DstOff += VTSize;
5888     Size -= VTSize;
5889   }
5890 
5891   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5892                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5893   unsigned NumLdStInMemcpy = OutStoreChains.size();
5894 
5895   if (NumLdStInMemcpy) {
5896     // It may be that memcpy might be converted to memset if it's memcpy
5897     // of constants. In such a case, we won't have loads and stores, but
5898     // just stores. In the absence of loads, there is nothing to gang up.
5899     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5900       // If target does not care, just leave as it.
5901       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5902         OutChains.push_back(OutLoadChains[i]);
5903         OutChains.push_back(OutStoreChains[i]);
5904       }
5905     } else {
5906       // Ld/St less than/equal limit set by target.
5907       if (NumLdStInMemcpy <= GluedLdStLimit) {
5908           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5909                                         NumLdStInMemcpy, OutLoadChains,
5910                                         OutStoreChains);
5911       } else {
5912         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5913         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5914         unsigned GlueIter = 0;
5915 
5916         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5917           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5918           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5919 
5920           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5921                                        OutLoadChains, OutStoreChains);
5922           GlueIter += GluedLdStLimit;
5923         }
5924 
5925         // Residual ld/st.
5926         if (RemainingLdStInMemcpy) {
5927           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5928                                         RemainingLdStInMemcpy, OutLoadChains,
5929                                         OutStoreChains);
5930         }
5931       }
5932     }
5933   }
5934   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5935 }
5936 
5937 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5938                                         SDValue Chain, SDValue Dst, SDValue Src,
5939                                         uint64_t Size, unsigned Align,
5940                                         bool isVol, bool AlwaysInline,
5941                                         MachinePointerInfo DstPtrInfo,
5942                                         MachinePointerInfo SrcPtrInfo) {
5943   // Turn a memmove of undef to nop.
5944   // FIXME: We need to honor volatile even is Src is undef.
5945   if (Src.isUndef())
5946     return Chain;
5947 
5948   // Expand memmove to a series of load and store ops if the size operand falls
5949   // below a certain threshold.
5950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5951   const DataLayout &DL = DAG.getDataLayout();
5952   LLVMContext &C = *DAG.getContext();
5953   std::vector<EVT> MemOps;
5954   bool DstAlignCanChange = false;
5955   MachineFunction &MF = DAG.getMachineFunction();
5956   MachineFrameInfo &MFI = MF.getFrameInfo();
5957   bool OptSize = shouldLowerMemFuncForSize(MF);
5958   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5959   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5960     DstAlignCanChange = true;
5961   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5962   if (Align > SrcAlign)
5963     SrcAlign = Align;
5964   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5965   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5966   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5967   // correct code.
5968   bool AllowOverlap = false;
5969   if (!TLI.findOptimalMemOpLowering(
5970           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5971           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5972           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5973           MF.getFunction().getAttributes()))
5974     return SDValue();
5975 
5976   if (DstAlignCanChange) {
5977     Type *Ty = MemOps[0].getTypeForEVT(C);
5978     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5979     if (NewAlign > Align) {
5980       // Give the stack frame object a larger alignment if needed.
5981       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5982         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5983       Align = NewAlign;
5984     }
5985   }
5986 
5987   MachineMemOperand::Flags MMOFlags =
5988       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5989   uint64_t SrcOff = 0, DstOff = 0;
5990   SmallVector<SDValue, 8> LoadValues;
5991   SmallVector<SDValue, 8> LoadChains;
5992   SmallVector<SDValue, 8> OutChains;
5993   unsigned NumMemOps = MemOps.size();
5994   for (unsigned i = 0; i < NumMemOps; i++) {
5995     EVT VT = MemOps[i];
5996     unsigned VTSize = VT.getSizeInBits() / 8;
5997     SDValue Value;
5998 
5999     bool isDereferenceable =
6000       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6001     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6002     if (isDereferenceable)
6003       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6004 
6005     Value =
6006         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6007                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6008     LoadValues.push_back(Value);
6009     LoadChains.push_back(Value.getValue(1));
6010     SrcOff += VTSize;
6011   }
6012   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6013   OutChains.clear();
6014   for (unsigned i = 0; i < NumMemOps; i++) {
6015     EVT VT = MemOps[i];
6016     unsigned VTSize = VT.getSizeInBits() / 8;
6017     SDValue Store;
6018 
6019     Store = DAG.getStore(Chain, dl, LoadValues[i],
6020                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6021                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6022     OutChains.push_back(Store);
6023     DstOff += VTSize;
6024   }
6025 
6026   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6027 }
6028 
6029 /// Lower the call to 'memset' intrinsic function into a series of store
6030 /// operations.
6031 ///
6032 /// \param DAG Selection DAG where lowered code is placed.
6033 /// \param dl Link to corresponding IR location.
6034 /// \param Chain Control flow dependency.
6035 /// \param Dst Pointer to destination memory location.
6036 /// \param Src Value of byte to write into the memory.
6037 /// \param Size Number of bytes to write.
6038 /// \param Align Alignment of the destination in bytes.
6039 /// \param isVol True if destination is volatile.
6040 /// \param DstPtrInfo IR information on the memory pointer.
6041 /// \returns New head in the control flow, if lowering was successful, empty
6042 /// SDValue otherwise.
6043 ///
6044 /// The function tries to replace 'llvm.memset' intrinsic with several store
6045 /// operations and value calculation code. This is usually profitable for small
6046 /// memory size.
6047 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6048                                SDValue Chain, SDValue Dst, SDValue Src,
6049                                uint64_t Size, unsigned Align, bool isVol,
6050                                MachinePointerInfo DstPtrInfo) {
6051   // Turn a memset of undef to nop.
6052   // FIXME: We need to honor volatile even is Src is undef.
6053   if (Src.isUndef())
6054     return Chain;
6055 
6056   // Expand memset to a series of load/store ops if the size operand
6057   // falls below a certain threshold.
6058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6059   std::vector<EVT> MemOps;
6060   bool DstAlignCanChange = false;
6061   MachineFunction &MF = DAG.getMachineFunction();
6062   MachineFrameInfo &MFI = MF.getFrameInfo();
6063   bool OptSize = shouldLowerMemFuncForSize(MF);
6064   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6065   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6066     DstAlignCanChange = true;
6067   bool IsZeroVal =
6068     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6069   if (!TLI.findOptimalMemOpLowering(
6070           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6071           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6072           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6073           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6074           MF.getFunction().getAttributes()))
6075     return SDValue();
6076 
6077   if (DstAlignCanChange) {
6078     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6079     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6080     if (NewAlign > Align) {
6081       // Give the stack frame object a larger alignment if needed.
6082       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6083         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6084       Align = NewAlign;
6085     }
6086   }
6087 
6088   SmallVector<SDValue, 8> OutChains;
6089   uint64_t DstOff = 0;
6090   unsigned NumMemOps = MemOps.size();
6091 
6092   // Find the largest store and generate the bit pattern for it.
6093   EVT LargestVT = MemOps[0];
6094   for (unsigned i = 1; i < NumMemOps; i++)
6095     if (MemOps[i].bitsGT(LargestVT))
6096       LargestVT = MemOps[i];
6097   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6098 
6099   for (unsigned i = 0; i < NumMemOps; i++) {
6100     EVT VT = MemOps[i];
6101     unsigned VTSize = VT.getSizeInBits() / 8;
6102     if (VTSize > Size) {
6103       // Issuing an unaligned load / store pair  that overlaps with the previous
6104       // pair. Adjust the offset accordingly.
6105       assert(i == NumMemOps-1 && i != 0);
6106       DstOff -= VTSize - Size;
6107     }
6108 
6109     // If this store is smaller than the largest store see whether we can get
6110     // the smaller value for free with a truncate.
6111     SDValue Value = MemSetValue;
6112     if (VT.bitsLT(LargestVT)) {
6113       if (!LargestVT.isVector() && !VT.isVector() &&
6114           TLI.isTruncateFree(LargestVT, VT))
6115         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6116       else
6117         Value = getMemsetValue(Src, VT, DAG, dl);
6118     }
6119     assert(Value.getValueType() == VT && "Value with wrong type.");
6120     SDValue Store = DAG.getStore(
6121         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6122         DstPtrInfo.getWithOffset(DstOff), Align,
6123         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6124     OutChains.push_back(Store);
6125     DstOff += VT.getSizeInBits() / 8;
6126     Size -= VTSize;
6127   }
6128 
6129   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6130 }
6131 
6132 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6133                                             unsigned AS) {
6134   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6135   // pointer operands can be losslessly bitcasted to pointers of address space 0
6136   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6137     report_fatal_error("cannot lower memory intrinsic in address space " +
6138                        Twine(AS));
6139   }
6140 }
6141 
6142 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6143                                 SDValue Src, SDValue Size, unsigned Align,
6144                                 bool isVol, bool AlwaysInline, bool isTailCall,
6145                                 MachinePointerInfo DstPtrInfo,
6146                                 MachinePointerInfo SrcPtrInfo) {
6147   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6148 
6149   // Check to see if we should lower the memcpy to loads and stores first.
6150   // For cases within the target-specified limits, this is the best choice.
6151   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6152   if (ConstantSize) {
6153     // Memcpy with size zero? Just return the original chain.
6154     if (ConstantSize->isNullValue())
6155       return Chain;
6156 
6157     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6158                                              ConstantSize->getZExtValue(),Align,
6159                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6160     if (Result.getNode())
6161       return Result;
6162   }
6163 
6164   // Then check to see if we should lower the memcpy with target-specific
6165   // code. If the target chooses to do this, this is the next best.
6166   if (TSI) {
6167     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6168         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6169         DstPtrInfo, SrcPtrInfo);
6170     if (Result.getNode())
6171       return Result;
6172   }
6173 
6174   // If we really need inline code and the target declined to provide it,
6175   // use a (potentially long) sequence of loads and stores.
6176   if (AlwaysInline) {
6177     assert(ConstantSize && "AlwaysInline requires a constant size!");
6178     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6179                                    ConstantSize->getZExtValue(), Align, isVol,
6180                                    true, DstPtrInfo, SrcPtrInfo);
6181   }
6182 
6183   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6184   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6185 
6186   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6187   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6188   // respect volatile, so they may do things like read or write memory
6189   // beyond the given memory regions. But fixing this isn't easy, and most
6190   // people don't care.
6191 
6192   // Emit a library call.
6193   TargetLowering::ArgListTy Args;
6194   TargetLowering::ArgListEntry Entry;
6195   Entry.Ty = Type::getInt8PtrTy(*getContext());
6196   Entry.Node = Dst; Args.push_back(Entry);
6197   Entry.Node = Src; Args.push_back(Entry);
6198 
6199   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6200   Entry.Node = Size; Args.push_back(Entry);
6201   // FIXME: pass in SDLoc
6202   TargetLowering::CallLoweringInfo CLI(*this);
6203   CLI.setDebugLoc(dl)
6204       .setChain(Chain)
6205       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6206                     Dst.getValueType().getTypeForEVT(*getContext()),
6207                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6208                                       TLI->getPointerTy(getDataLayout())),
6209                     std::move(Args))
6210       .setDiscardResult()
6211       .setTailCall(isTailCall);
6212 
6213   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6214   return CallResult.second;
6215 }
6216 
6217 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6218                                       SDValue Dst, unsigned DstAlign,
6219                                       SDValue Src, unsigned SrcAlign,
6220                                       SDValue Size, Type *SizeTy,
6221                                       unsigned ElemSz, bool isTailCall,
6222                                       MachinePointerInfo DstPtrInfo,
6223                                       MachinePointerInfo SrcPtrInfo) {
6224   // Emit a library call.
6225   TargetLowering::ArgListTy Args;
6226   TargetLowering::ArgListEntry Entry;
6227   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6228   Entry.Node = Dst;
6229   Args.push_back(Entry);
6230 
6231   Entry.Node = Src;
6232   Args.push_back(Entry);
6233 
6234   Entry.Ty = SizeTy;
6235   Entry.Node = Size;
6236   Args.push_back(Entry);
6237 
6238   RTLIB::Libcall LibraryCall =
6239       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6240   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6241     report_fatal_error("Unsupported element size");
6242 
6243   TargetLowering::CallLoweringInfo CLI(*this);
6244   CLI.setDebugLoc(dl)
6245       .setChain(Chain)
6246       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6247                     Type::getVoidTy(*getContext()),
6248                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6249                                       TLI->getPointerTy(getDataLayout())),
6250                     std::move(Args))
6251       .setDiscardResult()
6252       .setTailCall(isTailCall);
6253 
6254   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6255   return CallResult.second;
6256 }
6257 
6258 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6259                                  SDValue Src, SDValue Size, unsigned Align,
6260                                  bool isVol, bool isTailCall,
6261                                  MachinePointerInfo DstPtrInfo,
6262                                  MachinePointerInfo SrcPtrInfo) {
6263   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6264 
6265   // Check to see if we should lower the memmove to loads and stores first.
6266   // For cases within the target-specified limits, this is the best choice.
6267   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6268   if (ConstantSize) {
6269     // Memmove with size zero? Just return the original chain.
6270     if (ConstantSize->isNullValue())
6271       return Chain;
6272 
6273     SDValue Result =
6274       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6275                                ConstantSize->getZExtValue(), Align, isVol,
6276                                false, DstPtrInfo, SrcPtrInfo);
6277     if (Result.getNode())
6278       return Result;
6279   }
6280 
6281   // Then check to see if we should lower the memmove with target-specific
6282   // code. If the target chooses to do this, this is the next best.
6283   if (TSI) {
6284     SDValue Result = TSI->EmitTargetCodeForMemmove(
6285         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6286     if (Result.getNode())
6287       return Result;
6288   }
6289 
6290   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6291   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6292 
6293   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6294   // not be safe.  See memcpy above for more details.
6295 
6296   // Emit a library call.
6297   TargetLowering::ArgListTy Args;
6298   TargetLowering::ArgListEntry Entry;
6299   Entry.Ty = Type::getInt8PtrTy(*getContext());
6300   Entry.Node = Dst; Args.push_back(Entry);
6301   Entry.Node = Src; Args.push_back(Entry);
6302 
6303   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6304   Entry.Node = Size; Args.push_back(Entry);
6305   // FIXME:  pass in SDLoc
6306   TargetLowering::CallLoweringInfo CLI(*this);
6307   CLI.setDebugLoc(dl)
6308       .setChain(Chain)
6309       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6310                     Dst.getValueType().getTypeForEVT(*getContext()),
6311                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6312                                       TLI->getPointerTy(getDataLayout())),
6313                     std::move(Args))
6314       .setDiscardResult()
6315       .setTailCall(isTailCall);
6316 
6317   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6318   return CallResult.second;
6319 }
6320 
6321 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6322                                        SDValue Dst, unsigned DstAlign,
6323                                        SDValue Src, unsigned SrcAlign,
6324                                        SDValue Size, Type *SizeTy,
6325                                        unsigned ElemSz, bool isTailCall,
6326                                        MachinePointerInfo DstPtrInfo,
6327                                        MachinePointerInfo SrcPtrInfo) {
6328   // Emit a library call.
6329   TargetLowering::ArgListTy Args;
6330   TargetLowering::ArgListEntry Entry;
6331   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6332   Entry.Node = Dst;
6333   Args.push_back(Entry);
6334 
6335   Entry.Node = Src;
6336   Args.push_back(Entry);
6337 
6338   Entry.Ty = SizeTy;
6339   Entry.Node = Size;
6340   Args.push_back(Entry);
6341 
6342   RTLIB::Libcall LibraryCall =
6343       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6344   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6345     report_fatal_error("Unsupported element size");
6346 
6347   TargetLowering::CallLoweringInfo CLI(*this);
6348   CLI.setDebugLoc(dl)
6349       .setChain(Chain)
6350       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6351                     Type::getVoidTy(*getContext()),
6352                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6353                                       TLI->getPointerTy(getDataLayout())),
6354                     std::move(Args))
6355       .setDiscardResult()
6356       .setTailCall(isTailCall);
6357 
6358   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6359   return CallResult.second;
6360 }
6361 
6362 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6363                                 SDValue Src, SDValue Size, unsigned Align,
6364                                 bool isVol, bool isTailCall,
6365                                 MachinePointerInfo DstPtrInfo) {
6366   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6367 
6368   // Check to see if we should lower the memset to stores first.
6369   // For cases within the target-specified limits, this is the best choice.
6370   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6371   if (ConstantSize) {
6372     // Memset with size zero? Just return the original chain.
6373     if (ConstantSize->isNullValue())
6374       return Chain;
6375 
6376     SDValue Result =
6377       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6378                       Align, isVol, DstPtrInfo);
6379 
6380     if (Result.getNode())
6381       return Result;
6382   }
6383 
6384   // Then check to see if we should lower the memset with target-specific
6385   // code. If the target chooses to do this, this is the next best.
6386   if (TSI) {
6387     SDValue Result = TSI->EmitTargetCodeForMemset(
6388         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6389     if (Result.getNode())
6390       return Result;
6391   }
6392 
6393   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6394 
6395   // Emit a library call.
6396   TargetLowering::ArgListTy Args;
6397   TargetLowering::ArgListEntry Entry;
6398   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6399   Args.push_back(Entry);
6400   Entry.Node = Src;
6401   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6402   Args.push_back(Entry);
6403   Entry.Node = Size;
6404   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6405   Args.push_back(Entry);
6406 
6407   // FIXME: pass in SDLoc
6408   TargetLowering::CallLoweringInfo CLI(*this);
6409   CLI.setDebugLoc(dl)
6410       .setChain(Chain)
6411       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6412                     Dst.getValueType().getTypeForEVT(*getContext()),
6413                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6414                                       TLI->getPointerTy(getDataLayout())),
6415                     std::move(Args))
6416       .setDiscardResult()
6417       .setTailCall(isTailCall);
6418 
6419   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6420   return CallResult.second;
6421 }
6422 
6423 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6424                                       SDValue Dst, unsigned DstAlign,
6425                                       SDValue Value, SDValue Size, Type *SizeTy,
6426                                       unsigned ElemSz, bool isTailCall,
6427                                       MachinePointerInfo DstPtrInfo) {
6428   // Emit a library call.
6429   TargetLowering::ArgListTy Args;
6430   TargetLowering::ArgListEntry Entry;
6431   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6432   Entry.Node = Dst;
6433   Args.push_back(Entry);
6434 
6435   Entry.Ty = Type::getInt8Ty(*getContext());
6436   Entry.Node = Value;
6437   Args.push_back(Entry);
6438 
6439   Entry.Ty = SizeTy;
6440   Entry.Node = Size;
6441   Args.push_back(Entry);
6442 
6443   RTLIB::Libcall LibraryCall =
6444       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6445   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6446     report_fatal_error("Unsupported element size");
6447 
6448   TargetLowering::CallLoweringInfo CLI(*this);
6449   CLI.setDebugLoc(dl)
6450       .setChain(Chain)
6451       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6452                     Type::getVoidTy(*getContext()),
6453                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6454                                       TLI->getPointerTy(getDataLayout())),
6455                     std::move(Args))
6456       .setDiscardResult()
6457       .setTailCall(isTailCall);
6458 
6459   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6460   return CallResult.second;
6461 }
6462 
6463 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6464                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6465                                 MachineMemOperand *MMO) {
6466   FoldingSetNodeID ID;
6467   ID.AddInteger(MemVT.getRawBits());
6468   AddNodeIDNode(ID, Opcode, VTList, Ops);
6469   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6470   void* IP = nullptr;
6471   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6472     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6473     return SDValue(E, 0);
6474   }
6475 
6476   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6477                                     VTList, MemVT, MMO);
6478   createOperands(N, Ops);
6479 
6480   CSEMap.InsertNode(N, IP);
6481   InsertNode(N);
6482   return SDValue(N, 0);
6483 }
6484 
6485 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6486                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6487                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6488                                        MachineMemOperand *MMO) {
6489   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6490          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6491   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6492 
6493   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6494   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6495 }
6496 
6497 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6498                                 SDValue Chain, SDValue Ptr, SDValue Val,
6499                                 MachineMemOperand *MMO) {
6500   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6501           Opcode == ISD::ATOMIC_LOAD_SUB ||
6502           Opcode == ISD::ATOMIC_LOAD_AND ||
6503           Opcode == ISD::ATOMIC_LOAD_CLR ||
6504           Opcode == ISD::ATOMIC_LOAD_OR ||
6505           Opcode == ISD::ATOMIC_LOAD_XOR ||
6506           Opcode == ISD::ATOMIC_LOAD_NAND ||
6507           Opcode == ISD::ATOMIC_LOAD_MIN ||
6508           Opcode == ISD::ATOMIC_LOAD_MAX ||
6509           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6510           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6511           Opcode == ISD::ATOMIC_LOAD_FADD ||
6512           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6513           Opcode == ISD::ATOMIC_SWAP ||
6514           Opcode == ISD::ATOMIC_STORE) &&
6515          "Invalid Atomic Op");
6516 
6517   EVT VT = Val.getValueType();
6518 
6519   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6520                                                getVTList(VT, MVT::Other);
6521   SDValue Ops[] = {Chain, Ptr, Val};
6522   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6523 }
6524 
6525 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6526                                 EVT VT, SDValue Chain, SDValue Ptr,
6527                                 MachineMemOperand *MMO) {
6528   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6529 
6530   SDVTList VTs = getVTList(VT, MVT::Other);
6531   SDValue Ops[] = {Chain, Ptr};
6532   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6533 }
6534 
6535 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6536 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6537   if (Ops.size() == 1)
6538     return Ops[0];
6539 
6540   SmallVector<EVT, 4> VTs;
6541   VTs.reserve(Ops.size());
6542   for (unsigned i = 0; i < Ops.size(); ++i)
6543     VTs.push_back(Ops[i].getValueType());
6544   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6545 }
6546 
6547 SDValue SelectionDAG::getMemIntrinsicNode(
6548     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6549     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6550     MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
6551   if (Align == 0)  // Ensure that codegen never sees alignment 0
6552     Align = getEVTAlignment(MemVT);
6553 
6554   if (!Size)
6555     Size = MemVT.getStoreSize();
6556 
6557   MachineFunction &MF = getMachineFunction();
6558   MachineMemOperand *MMO =
6559       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6560 
6561   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6562 }
6563 
6564 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6565                                           SDVTList VTList,
6566                                           ArrayRef<SDValue> Ops, EVT MemVT,
6567                                           MachineMemOperand *MMO) {
6568   assert((Opcode == ISD::INTRINSIC_VOID ||
6569           Opcode == ISD::INTRINSIC_W_CHAIN ||
6570           Opcode == ISD::PREFETCH ||
6571           Opcode == ISD::LIFETIME_START ||
6572           Opcode == ISD::LIFETIME_END ||
6573           ((int)Opcode <= std::numeric_limits<int>::max() &&
6574            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6575          "Opcode is not a memory-accessing opcode!");
6576 
6577   // Memoize the node unless it returns a flag.
6578   MemIntrinsicSDNode *N;
6579   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6580     FoldingSetNodeID ID;
6581     AddNodeIDNode(ID, Opcode, VTList, Ops);
6582     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6583         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6584     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6585     void *IP = nullptr;
6586     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6587       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6588       return SDValue(E, 0);
6589     }
6590 
6591     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6592                                       VTList, MemVT, MMO);
6593     createOperands(N, Ops);
6594 
6595   CSEMap.InsertNode(N, IP);
6596   } else {
6597     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6598                                       VTList, MemVT, MMO);
6599     createOperands(N, Ops);
6600   }
6601   InsertNode(N);
6602   SDValue V(N, 0);
6603   NewSDValueDbgMsg(V, "Creating new node: ", this);
6604   return V;
6605 }
6606 
6607 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6608                                       SDValue Chain, int FrameIndex,
6609                                       int64_t Size, int64_t Offset) {
6610   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6611   const auto VTs = getVTList(MVT::Other);
6612   SDValue Ops[2] = {
6613       Chain,
6614       getFrameIndex(FrameIndex,
6615                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6616                     true)};
6617 
6618   FoldingSetNodeID ID;
6619   AddNodeIDNode(ID, Opcode, VTs, Ops);
6620   ID.AddInteger(FrameIndex);
6621   ID.AddInteger(Size);
6622   ID.AddInteger(Offset);
6623   void *IP = nullptr;
6624   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6625     return SDValue(E, 0);
6626 
6627   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6628       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6629   createOperands(N, Ops);
6630   CSEMap.InsertNode(N, IP);
6631   InsertNode(N);
6632   SDValue V(N, 0);
6633   NewSDValueDbgMsg(V, "Creating new node: ", this);
6634   return V;
6635 }
6636 
6637 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6638 /// MachinePointerInfo record from it.  This is particularly useful because the
6639 /// code generator has many cases where it doesn't bother passing in a
6640 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6641 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6642                                            SelectionDAG &DAG, SDValue Ptr,
6643                                            int64_t Offset = 0) {
6644   // If this is FI+Offset, we can model it.
6645   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6646     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6647                                              FI->getIndex(), Offset);
6648 
6649   // If this is (FI+Offset1)+Offset2, we can model it.
6650   if (Ptr.getOpcode() != ISD::ADD ||
6651       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6652       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6653     return Info;
6654 
6655   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6656   return MachinePointerInfo::getFixedStack(
6657       DAG.getMachineFunction(), FI,
6658       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6659 }
6660 
6661 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6662 /// MachinePointerInfo record from it.  This is particularly useful because the
6663 /// code generator has many cases where it doesn't bother passing in a
6664 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6665 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6666                                            SelectionDAG &DAG, SDValue Ptr,
6667                                            SDValue OffsetOp) {
6668   // If the 'Offset' value isn't a constant, we can't handle this.
6669   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6670     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6671   if (OffsetOp.isUndef())
6672     return InferPointerInfo(Info, DAG, Ptr);
6673   return Info;
6674 }
6675 
6676 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6677                               EVT VT, const SDLoc &dl, SDValue Chain,
6678                               SDValue Ptr, SDValue Offset,
6679                               MachinePointerInfo PtrInfo, EVT MemVT,
6680                               unsigned Alignment,
6681                               MachineMemOperand::Flags MMOFlags,
6682                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6683   assert(Chain.getValueType() == MVT::Other &&
6684         "Invalid chain type");
6685   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6686     Alignment = getEVTAlignment(MemVT);
6687 
6688   MMOFlags |= MachineMemOperand::MOLoad;
6689   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6690   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6691   // clients.
6692   if (PtrInfo.V.isNull())
6693     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6694 
6695   MachineFunction &MF = getMachineFunction();
6696   MachineMemOperand *MMO = MF.getMachineMemOperand(
6697       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6698   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6699 }
6700 
6701 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6702                               EVT VT, const SDLoc &dl, SDValue Chain,
6703                               SDValue Ptr, SDValue Offset, EVT MemVT,
6704                               MachineMemOperand *MMO) {
6705   if (VT == MemVT) {
6706     ExtType = ISD::NON_EXTLOAD;
6707   } else if (ExtType == ISD::NON_EXTLOAD) {
6708     assert(VT == MemVT && "Non-extending load from different memory type!");
6709   } else {
6710     // Extending load.
6711     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6712            "Should only be an extending load, not truncating!");
6713     assert(VT.isInteger() == MemVT.isInteger() &&
6714            "Cannot convert from FP to Int or Int -> FP!");
6715     assert(VT.isVector() == MemVT.isVector() &&
6716            "Cannot use an ext load to convert to or from a vector!");
6717     assert((!VT.isVector() ||
6718             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6719            "Cannot use an ext load to change the number of vector elements!");
6720   }
6721 
6722   bool Indexed = AM != ISD::UNINDEXED;
6723   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6724 
6725   SDVTList VTs = Indexed ?
6726     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6727   SDValue Ops[] = { Chain, Ptr, Offset };
6728   FoldingSetNodeID ID;
6729   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6730   ID.AddInteger(MemVT.getRawBits());
6731   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6732       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6733   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6734   void *IP = nullptr;
6735   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6736     cast<LoadSDNode>(E)->refineAlignment(MMO);
6737     return SDValue(E, 0);
6738   }
6739   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6740                                   ExtType, MemVT, MMO);
6741   createOperands(N, Ops);
6742 
6743   CSEMap.InsertNode(N, IP);
6744   InsertNode(N);
6745   SDValue V(N, 0);
6746   NewSDValueDbgMsg(V, "Creating new node: ", this);
6747   return V;
6748 }
6749 
6750 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6751                               SDValue Ptr, MachinePointerInfo PtrInfo,
6752                               unsigned Alignment,
6753                               MachineMemOperand::Flags MMOFlags,
6754                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6755   SDValue Undef = getUNDEF(Ptr.getValueType());
6756   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6757                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6758 }
6759 
6760 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6761                               SDValue Ptr, MachineMemOperand *MMO) {
6762   SDValue Undef = getUNDEF(Ptr.getValueType());
6763   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6764                  VT, MMO);
6765 }
6766 
6767 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6768                                  EVT VT, SDValue Chain, SDValue Ptr,
6769                                  MachinePointerInfo PtrInfo, EVT MemVT,
6770                                  unsigned Alignment,
6771                                  MachineMemOperand::Flags MMOFlags,
6772                                  const AAMDNodes &AAInfo) {
6773   SDValue Undef = getUNDEF(Ptr.getValueType());
6774   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6775                  MemVT, Alignment, MMOFlags, AAInfo);
6776 }
6777 
6778 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6779                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6780                                  MachineMemOperand *MMO) {
6781   SDValue Undef = getUNDEF(Ptr.getValueType());
6782   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6783                  MemVT, MMO);
6784 }
6785 
6786 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6787                                      SDValue Base, SDValue Offset,
6788                                      ISD::MemIndexedMode AM) {
6789   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6790   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6791   // Don't propagate the invariant or dereferenceable flags.
6792   auto MMOFlags =
6793       LD->getMemOperand()->getFlags() &
6794       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6795   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6796                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6797                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6798                  LD->getAAInfo());
6799 }
6800 
6801 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6802                                SDValue Ptr, MachinePointerInfo PtrInfo,
6803                                unsigned Alignment,
6804                                MachineMemOperand::Flags MMOFlags,
6805                                const AAMDNodes &AAInfo) {
6806   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6807   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6808     Alignment = getEVTAlignment(Val.getValueType());
6809 
6810   MMOFlags |= MachineMemOperand::MOStore;
6811   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6812 
6813   if (PtrInfo.V.isNull())
6814     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6815 
6816   MachineFunction &MF = getMachineFunction();
6817   MachineMemOperand *MMO = MF.getMachineMemOperand(
6818       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6819   return getStore(Chain, dl, Val, Ptr, MMO);
6820 }
6821 
6822 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6823                                SDValue Ptr, MachineMemOperand *MMO) {
6824   assert(Chain.getValueType() == MVT::Other &&
6825         "Invalid chain type");
6826   EVT VT = Val.getValueType();
6827   SDVTList VTs = getVTList(MVT::Other);
6828   SDValue Undef = getUNDEF(Ptr.getValueType());
6829   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6830   FoldingSetNodeID ID;
6831   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6832   ID.AddInteger(VT.getRawBits());
6833   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6834       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6835   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6836   void *IP = nullptr;
6837   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6838     cast<StoreSDNode>(E)->refineAlignment(MMO);
6839     return SDValue(E, 0);
6840   }
6841   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6842                                    ISD::UNINDEXED, false, VT, MMO);
6843   createOperands(N, Ops);
6844 
6845   CSEMap.InsertNode(N, IP);
6846   InsertNode(N);
6847   SDValue V(N, 0);
6848   NewSDValueDbgMsg(V, "Creating new node: ", this);
6849   return V;
6850 }
6851 
6852 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6853                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6854                                     EVT SVT, unsigned Alignment,
6855                                     MachineMemOperand::Flags MMOFlags,
6856                                     const AAMDNodes &AAInfo) {
6857   assert(Chain.getValueType() == MVT::Other &&
6858         "Invalid chain type");
6859   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6860     Alignment = getEVTAlignment(SVT);
6861 
6862   MMOFlags |= MachineMemOperand::MOStore;
6863   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6864 
6865   if (PtrInfo.V.isNull())
6866     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6867 
6868   MachineFunction &MF = getMachineFunction();
6869   MachineMemOperand *MMO = MF.getMachineMemOperand(
6870       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6871   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6872 }
6873 
6874 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6875                                     SDValue Ptr, EVT SVT,
6876                                     MachineMemOperand *MMO) {
6877   EVT VT = Val.getValueType();
6878 
6879   assert(Chain.getValueType() == MVT::Other &&
6880         "Invalid chain type");
6881   if (VT == SVT)
6882     return getStore(Chain, dl, Val, Ptr, MMO);
6883 
6884   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6885          "Should only be a truncating store, not extending!");
6886   assert(VT.isInteger() == SVT.isInteger() &&
6887          "Can't do FP-INT conversion!");
6888   assert(VT.isVector() == SVT.isVector() &&
6889          "Cannot use trunc store to convert to or from a vector!");
6890   assert((!VT.isVector() ||
6891           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6892          "Cannot use trunc store to change the number of vector elements!");
6893 
6894   SDVTList VTs = getVTList(MVT::Other);
6895   SDValue Undef = getUNDEF(Ptr.getValueType());
6896   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6897   FoldingSetNodeID ID;
6898   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6899   ID.AddInteger(SVT.getRawBits());
6900   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6901       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6902   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6903   void *IP = nullptr;
6904   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6905     cast<StoreSDNode>(E)->refineAlignment(MMO);
6906     return SDValue(E, 0);
6907   }
6908   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6909                                    ISD::UNINDEXED, true, SVT, MMO);
6910   createOperands(N, Ops);
6911 
6912   CSEMap.InsertNode(N, IP);
6913   InsertNode(N);
6914   SDValue V(N, 0);
6915   NewSDValueDbgMsg(V, "Creating new node: ", this);
6916   return V;
6917 }
6918 
6919 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6920                                       SDValue Base, SDValue Offset,
6921                                       ISD::MemIndexedMode AM) {
6922   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6923   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6924   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6925   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6926   FoldingSetNodeID ID;
6927   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6928   ID.AddInteger(ST->getMemoryVT().getRawBits());
6929   ID.AddInteger(ST->getRawSubclassData());
6930   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6931   void *IP = nullptr;
6932   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6933     return SDValue(E, 0);
6934 
6935   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6936                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6937                                    ST->getMemOperand());
6938   createOperands(N, Ops);
6939 
6940   CSEMap.InsertNode(N, IP);
6941   InsertNode(N);
6942   SDValue V(N, 0);
6943   NewSDValueDbgMsg(V, "Creating new node: ", this);
6944   return V;
6945 }
6946 
6947 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6948                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6949                                     EVT MemVT, MachineMemOperand *MMO,
6950                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6951   SDVTList VTs = getVTList(VT, MVT::Other);
6952   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6953   FoldingSetNodeID ID;
6954   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6955   ID.AddInteger(MemVT.getRawBits());
6956   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6957       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6958   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6959   void *IP = nullptr;
6960   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6961     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6962     return SDValue(E, 0);
6963   }
6964   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6965                                         ExtTy, isExpanding, MemVT, MMO);
6966   createOperands(N, Ops);
6967 
6968   CSEMap.InsertNode(N, IP);
6969   InsertNode(N);
6970   SDValue V(N, 0);
6971   NewSDValueDbgMsg(V, "Creating new node: ", this);
6972   return V;
6973 }
6974 
6975 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6976                                      SDValue Val, SDValue Ptr, SDValue Mask,
6977                                      EVT MemVT, MachineMemOperand *MMO,
6978                                      bool IsTruncating, bool IsCompressing) {
6979   assert(Chain.getValueType() == MVT::Other &&
6980         "Invalid chain type");
6981   SDVTList VTs = getVTList(MVT::Other);
6982   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6983   FoldingSetNodeID ID;
6984   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6985   ID.AddInteger(MemVT.getRawBits());
6986   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6987       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6988   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6989   void *IP = nullptr;
6990   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6991     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6992     return SDValue(E, 0);
6993   }
6994   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6995                                          IsTruncating, IsCompressing, MemVT, MMO);
6996   createOperands(N, Ops);
6997 
6998   CSEMap.InsertNode(N, IP);
6999   InsertNode(N);
7000   SDValue V(N, 0);
7001   NewSDValueDbgMsg(V, "Creating new node: ", this);
7002   return V;
7003 }
7004 
7005 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7006                                       ArrayRef<SDValue> Ops,
7007                                       MachineMemOperand *MMO,
7008                                       ISD::MemIndexType IndexType) {
7009   assert(Ops.size() == 6 && "Incompatible number of operands");
7010 
7011   FoldingSetNodeID ID;
7012   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7013   ID.AddInteger(VT.getRawBits());
7014   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7015       dl.getIROrder(), VTs, VT, MMO, IndexType));
7016   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7017   void *IP = nullptr;
7018   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7019     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7020     return SDValue(E, 0);
7021   }
7022 
7023   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7024                                           VTs, VT, MMO, IndexType);
7025   createOperands(N, Ops);
7026 
7027   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7028          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7029   assert(N->getMask().getValueType().getVectorNumElements() ==
7030              N->getValueType(0).getVectorNumElements() &&
7031          "Vector width mismatch between mask and data");
7032   assert(N->getIndex().getValueType().getVectorNumElements() >=
7033              N->getValueType(0).getVectorNumElements() &&
7034          "Vector width mismatch between index and data");
7035   assert(isa<ConstantSDNode>(N->getScale()) &&
7036          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7037          "Scale should be a constant power of 2");
7038 
7039   CSEMap.InsertNode(N, IP);
7040   InsertNode(N);
7041   SDValue V(N, 0);
7042   NewSDValueDbgMsg(V, "Creating new node: ", this);
7043   return V;
7044 }
7045 
7046 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7047                                        ArrayRef<SDValue> Ops,
7048                                        MachineMemOperand *MMO,
7049                                        ISD::MemIndexType IndexType) {
7050   assert(Ops.size() == 6 && "Incompatible number of operands");
7051 
7052   FoldingSetNodeID ID;
7053   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7054   ID.AddInteger(VT.getRawBits());
7055   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7056       dl.getIROrder(), VTs, VT, MMO, IndexType));
7057   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7058   void *IP = nullptr;
7059   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7060     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7061     return SDValue(E, 0);
7062   }
7063   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7064                                            VTs, VT, MMO, IndexType);
7065   createOperands(N, Ops);
7066 
7067   assert(N->getMask().getValueType().getVectorNumElements() ==
7068              N->getValue().getValueType().getVectorNumElements() &&
7069          "Vector width mismatch between mask and data");
7070   assert(N->getIndex().getValueType().getVectorNumElements() >=
7071              N->getValue().getValueType().getVectorNumElements() &&
7072          "Vector width mismatch between index and data");
7073   assert(isa<ConstantSDNode>(N->getScale()) &&
7074          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7075          "Scale should be a constant power of 2");
7076 
7077   CSEMap.InsertNode(N, IP);
7078   InsertNode(N);
7079   SDValue V(N, 0);
7080   NewSDValueDbgMsg(V, "Creating new node: ", this);
7081   return V;
7082 }
7083 
7084 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7085   // select undef, T, F --> T (if T is a constant), otherwise F
7086   // select, ?, undef, F --> F
7087   // select, ?, T, undef --> T
7088   if (Cond.isUndef())
7089     return isConstantValueOfAnyType(T) ? T : F;
7090   if (T.isUndef())
7091     return F;
7092   if (F.isUndef())
7093     return T;
7094 
7095   // select true, T, F --> T
7096   // select false, T, F --> F
7097   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7098     return CondC->isNullValue() ? F : T;
7099 
7100   // TODO: This should simplify VSELECT with constant condition using something
7101   // like this (but check boolean contents to be complete?):
7102   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7103   //    return T;
7104   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7105   //    return F;
7106 
7107   // select ?, T, T --> T
7108   if (T == F)
7109     return T;
7110 
7111   return SDValue();
7112 }
7113 
7114 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7115   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7116   if (X.isUndef())
7117     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7118   // shift X, undef --> undef (because it may shift by the bitwidth)
7119   if (Y.isUndef())
7120     return getUNDEF(X.getValueType());
7121 
7122   // shift 0, Y --> 0
7123   // shift X, 0 --> X
7124   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7125     return X;
7126 
7127   // shift X, C >= bitwidth(X) --> undef
7128   // All vector elements must be too big (or undef) to avoid partial undefs.
7129   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7130     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7131   };
7132   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7133     return getUNDEF(X.getValueType());
7134 
7135   return SDValue();
7136 }
7137 
7138 // TODO: Use fast-math-flags to enable more simplifications.
7139 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7140   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7141   if (!YC)
7142     return SDValue();
7143 
7144   // X + -0.0 --> X
7145   if (Opcode == ISD::FADD)
7146     if (YC->getValueAPF().isNegZero())
7147       return X;
7148 
7149   // X - +0.0 --> X
7150   if (Opcode == ISD::FSUB)
7151     if (YC->getValueAPF().isPosZero())
7152       return X;
7153 
7154   // X * 1.0 --> X
7155   // X / 1.0 --> X
7156   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7157     if (YC->getValueAPF().isExactlyValue(1.0))
7158       return X;
7159 
7160   return SDValue();
7161 }
7162 
7163 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7164                                SDValue Ptr, SDValue SV, unsigned Align) {
7165   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7166   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7167 }
7168 
7169 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7170                               ArrayRef<SDUse> Ops) {
7171   switch (Ops.size()) {
7172   case 0: return getNode(Opcode, DL, VT);
7173   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7174   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7175   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7176   default: break;
7177   }
7178 
7179   // Copy from an SDUse array into an SDValue array for use with
7180   // the regular getNode logic.
7181   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7182   return getNode(Opcode, DL, VT, NewOps);
7183 }
7184 
7185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7186                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7187   unsigned NumOps = Ops.size();
7188   switch (NumOps) {
7189   case 0: return getNode(Opcode, DL, VT);
7190   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7191   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7192   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7193   default: break;
7194   }
7195 
7196   switch (Opcode) {
7197   default: break;
7198   case ISD::BUILD_VECTOR:
7199     // Attempt to simplify BUILD_VECTOR.
7200     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7201       return V;
7202     break;
7203   case ISD::CONCAT_VECTORS:
7204     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7205       return V;
7206     break;
7207   case ISD::SELECT_CC:
7208     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7209     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7210            "LHS and RHS of condition must have same type!");
7211     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7212            "True and False arms of SelectCC must have same type!");
7213     assert(Ops[2].getValueType() == VT &&
7214            "select_cc node must be of same type as true and false value!");
7215     break;
7216   case ISD::BR_CC:
7217     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7218     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7219            "LHS/RHS of comparison should match types!");
7220     break;
7221   }
7222 
7223   // Memoize nodes.
7224   SDNode *N;
7225   SDVTList VTs = getVTList(VT);
7226 
7227   if (VT != MVT::Glue) {
7228     FoldingSetNodeID ID;
7229     AddNodeIDNode(ID, Opcode, VTs, Ops);
7230     void *IP = nullptr;
7231 
7232     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7233       return SDValue(E, 0);
7234 
7235     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7236     createOperands(N, Ops);
7237 
7238     CSEMap.InsertNode(N, IP);
7239   } else {
7240     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7241     createOperands(N, Ops);
7242   }
7243 
7244   InsertNode(N);
7245   SDValue V(N, 0);
7246   NewSDValueDbgMsg(V, "Creating new node: ", this);
7247   return V;
7248 }
7249 
7250 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7251                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7252   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7253 }
7254 
7255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7256                               ArrayRef<SDValue> Ops) {
7257   if (VTList.NumVTs == 1)
7258     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7259 
7260 #if 0
7261   switch (Opcode) {
7262   // FIXME: figure out how to safely handle things like
7263   // int foo(int x) { return 1 << (x & 255); }
7264   // int bar() { return foo(256); }
7265   case ISD::SRA_PARTS:
7266   case ISD::SRL_PARTS:
7267   case ISD::SHL_PARTS:
7268     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7269         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7270       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7271     else if (N3.getOpcode() == ISD::AND)
7272       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7273         // If the and is only masking out bits that cannot effect the shift,
7274         // eliminate the and.
7275         unsigned NumBits = VT.getScalarSizeInBits()*2;
7276         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7277           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7278       }
7279     break;
7280   }
7281 #endif
7282 
7283   // Memoize the node unless it returns a flag.
7284   SDNode *N;
7285   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7286     FoldingSetNodeID ID;
7287     AddNodeIDNode(ID, Opcode, VTList, Ops);
7288     void *IP = nullptr;
7289     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7290       return SDValue(E, 0);
7291 
7292     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7293     createOperands(N, Ops);
7294     CSEMap.InsertNode(N, IP);
7295   } else {
7296     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7297     createOperands(N, Ops);
7298   }
7299   InsertNode(N);
7300   SDValue V(N, 0);
7301   NewSDValueDbgMsg(V, "Creating new node: ", this);
7302   return V;
7303 }
7304 
7305 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7306                               SDVTList VTList) {
7307   return getNode(Opcode, DL, VTList, None);
7308 }
7309 
7310 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7311                               SDValue N1) {
7312   SDValue Ops[] = { N1 };
7313   return getNode(Opcode, DL, VTList, Ops);
7314 }
7315 
7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7317                               SDValue N1, SDValue N2) {
7318   SDValue Ops[] = { N1, N2 };
7319   return getNode(Opcode, DL, VTList, Ops);
7320 }
7321 
7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7323                               SDValue N1, SDValue N2, SDValue N3) {
7324   SDValue Ops[] = { N1, N2, N3 };
7325   return getNode(Opcode, DL, VTList, Ops);
7326 }
7327 
7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7329                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7330   SDValue Ops[] = { N1, N2, N3, N4 };
7331   return getNode(Opcode, DL, VTList, Ops);
7332 }
7333 
7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7335                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7336                               SDValue N5) {
7337   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7338   return getNode(Opcode, DL, VTList, Ops);
7339 }
7340 
7341 SDVTList SelectionDAG::getVTList(EVT VT) {
7342   return makeVTList(SDNode::getValueTypeList(VT), 1);
7343 }
7344 
7345 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7346   FoldingSetNodeID ID;
7347   ID.AddInteger(2U);
7348   ID.AddInteger(VT1.getRawBits());
7349   ID.AddInteger(VT2.getRawBits());
7350 
7351   void *IP = nullptr;
7352   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7353   if (!Result) {
7354     EVT *Array = Allocator.Allocate<EVT>(2);
7355     Array[0] = VT1;
7356     Array[1] = VT2;
7357     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7358     VTListMap.InsertNode(Result, IP);
7359   }
7360   return Result->getSDVTList();
7361 }
7362 
7363 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7364   FoldingSetNodeID ID;
7365   ID.AddInteger(3U);
7366   ID.AddInteger(VT1.getRawBits());
7367   ID.AddInteger(VT2.getRawBits());
7368   ID.AddInteger(VT3.getRawBits());
7369 
7370   void *IP = nullptr;
7371   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7372   if (!Result) {
7373     EVT *Array = Allocator.Allocate<EVT>(3);
7374     Array[0] = VT1;
7375     Array[1] = VT2;
7376     Array[2] = VT3;
7377     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7378     VTListMap.InsertNode(Result, IP);
7379   }
7380   return Result->getSDVTList();
7381 }
7382 
7383 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7384   FoldingSetNodeID ID;
7385   ID.AddInteger(4U);
7386   ID.AddInteger(VT1.getRawBits());
7387   ID.AddInteger(VT2.getRawBits());
7388   ID.AddInteger(VT3.getRawBits());
7389   ID.AddInteger(VT4.getRawBits());
7390 
7391   void *IP = nullptr;
7392   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7393   if (!Result) {
7394     EVT *Array = Allocator.Allocate<EVT>(4);
7395     Array[0] = VT1;
7396     Array[1] = VT2;
7397     Array[2] = VT3;
7398     Array[3] = VT4;
7399     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7400     VTListMap.InsertNode(Result, IP);
7401   }
7402   return Result->getSDVTList();
7403 }
7404 
7405 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7406   unsigned NumVTs = VTs.size();
7407   FoldingSetNodeID ID;
7408   ID.AddInteger(NumVTs);
7409   for (unsigned index = 0; index < NumVTs; index++) {
7410     ID.AddInteger(VTs[index].getRawBits());
7411   }
7412 
7413   void *IP = nullptr;
7414   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7415   if (!Result) {
7416     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7417     llvm::copy(VTs, Array);
7418     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7419     VTListMap.InsertNode(Result, IP);
7420   }
7421   return Result->getSDVTList();
7422 }
7423 
7424 
7425 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7426 /// specified operands.  If the resultant node already exists in the DAG,
7427 /// this does not modify the specified node, instead it returns the node that
7428 /// already exists.  If the resultant node does not exist in the DAG, the
7429 /// input node is returned.  As a degenerate case, if you specify the same
7430 /// input operands as the node already has, the input node is returned.
7431 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7432   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7433 
7434   // Check to see if there is no change.
7435   if (Op == N->getOperand(0)) return N;
7436 
7437   // See if the modified node already exists.
7438   void *InsertPos = nullptr;
7439   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7440     return Existing;
7441 
7442   // Nope it doesn't.  Remove the node from its current place in the maps.
7443   if (InsertPos)
7444     if (!RemoveNodeFromCSEMaps(N))
7445       InsertPos = nullptr;
7446 
7447   // Now we update the operands.
7448   N->OperandList[0].set(Op);
7449 
7450   updateDivergence(N);
7451   // If this gets put into a CSE map, add it.
7452   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7453   return N;
7454 }
7455 
7456 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7457   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7458 
7459   // Check to see if there is no change.
7460   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7461     return N;   // No operands changed, just return the input node.
7462 
7463   // See if the modified node already exists.
7464   void *InsertPos = nullptr;
7465   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7466     return Existing;
7467 
7468   // Nope it doesn't.  Remove the node from its current place in the maps.
7469   if (InsertPos)
7470     if (!RemoveNodeFromCSEMaps(N))
7471       InsertPos = nullptr;
7472 
7473   // Now we update the operands.
7474   if (N->OperandList[0] != Op1)
7475     N->OperandList[0].set(Op1);
7476   if (N->OperandList[1] != Op2)
7477     N->OperandList[1].set(Op2);
7478 
7479   updateDivergence(N);
7480   // If this gets put into a CSE map, add it.
7481   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7482   return N;
7483 }
7484 
7485 SDNode *SelectionDAG::
7486 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7487   SDValue Ops[] = { Op1, Op2, Op3 };
7488   return UpdateNodeOperands(N, Ops);
7489 }
7490 
7491 SDNode *SelectionDAG::
7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7493                    SDValue Op3, SDValue Op4) {
7494   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7495   return UpdateNodeOperands(N, Ops);
7496 }
7497 
7498 SDNode *SelectionDAG::
7499 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7500                    SDValue Op3, SDValue Op4, SDValue Op5) {
7501   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7502   return UpdateNodeOperands(N, Ops);
7503 }
7504 
7505 SDNode *SelectionDAG::
7506 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7507   unsigned NumOps = Ops.size();
7508   assert(N->getNumOperands() == NumOps &&
7509          "Update with wrong number of operands");
7510 
7511   // If no operands changed just return the input node.
7512   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7513     return N;
7514 
7515   // See if the modified node already exists.
7516   void *InsertPos = nullptr;
7517   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7518     return Existing;
7519 
7520   // Nope it doesn't.  Remove the node from its current place in the maps.
7521   if (InsertPos)
7522     if (!RemoveNodeFromCSEMaps(N))
7523       InsertPos = nullptr;
7524 
7525   // Now we update the operands.
7526   for (unsigned i = 0; i != NumOps; ++i)
7527     if (N->OperandList[i] != Ops[i])
7528       N->OperandList[i].set(Ops[i]);
7529 
7530   updateDivergence(N);
7531   // If this gets put into a CSE map, add it.
7532   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7533   return N;
7534 }
7535 
7536 /// DropOperands - Release the operands and set this node to have
7537 /// zero operands.
7538 void SDNode::DropOperands() {
7539   // Unlike the code in MorphNodeTo that does this, we don't need to
7540   // watch for dead nodes here.
7541   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7542     SDUse &Use = *I++;
7543     Use.set(SDValue());
7544   }
7545 }
7546 
7547 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7548                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7549   if (NewMemRefs.empty()) {
7550     N->clearMemRefs();
7551     return;
7552   }
7553 
7554   // Check if we can avoid allocating by storing a single reference directly.
7555   if (NewMemRefs.size() == 1) {
7556     N->MemRefs = NewMemRefs[0];
7557     N->NumMemRefs = 1;
7558     return;
7559   }
7560 
7561   MachineMemOperand **MemRefsBuffer =
7562       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7563   llvm::copy(NewMemRefs, MemRefsBuffer);
7564   N->MemRefs = MemRefsBuffer;
7565   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7566 }
7567 
7568 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7569 /// machine opcode.
7570 ///
7571 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7572                                    EVT VT) {
7573   SDVTList VTs = getVTList(VT);
7574   return SelectNodeTo(N, MachineOpc, VTs, None);
7575 }
7576 
7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7578                                    EVT VT, SDValue Op1) {
7579   SDVTList VTs = getVTList(VT);
7580   SDValue Ops[] = { Op1 };
7581   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7582 }
7583 
7584 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7585                                    EVT VT, SDValue Op1,
7586                                    SDValue Op2) {
7587   SDVTList VTs = getVTList(VT);
7588   SDValue Ops[] = { Op1, Op2 };
7589   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7590 }
7591 
7592 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7593                                    EVT VT, SDValue Op1,
7594                                    SDValue Op2, SDValue Op3) {
7595   SDVTList VTs = getVTList(VT);
7596   SDValue Ops[] = { Op1, Op2, Op3 };
7597   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7598 }
7599 
7600 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7601                                    EVT VT, ArrayRef<SDValue> Ops) {
7602   SDVTList VTs = getVTList(VT);
7603   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7604 }
7605 
7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7607                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7608   SDVTList VTs = getVTList(VT1, VT2);
7609   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7610 }
7611 
7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7613                                    EVT VT1, EVT VT2) {
7614   SDVTList VTs = getVTList(VT1, VT2);
7615   return SelectNodeTo(N, MachineOpc, VTs, None);
7616 }
7617 
7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7619                                    EVT VT1, EVT VT2, EVT VT3,
7620                                    ArrayRef<SDValue> Ops) {
7621   SDVTList VTs = getVTList(VT1, VT2, VT3);
7622   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7623 }
7624 
7625 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7626                                    EVT VT1, EVT VT2,
7627                                    SDValue Op1, SDValue Op2) {
7628   SDVTList VTs = getVTList(VT1, VT2);
7629   SDValue Ops[] = { Op1, Op2 };
7630   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7631 }
7632 
7633 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7634                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7635   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7636   // Reset the NodeID to -1.
7637   New->setNodeId(-1);
7638   if (New != N) {
7639     ReplaceAllUsesWith(N, New);
7640     RemoveDeadNode(N);
7641   }
7642   return New;
7643 }
7644 
7645 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7646 /// the line number information on the merged node since it is not possible to
7647 /// preserve the information that operation is associated with multiple lines.
7648 /// This will make the debugger working better at -O0, were there is a higher
7649 /// probability having other instructions associated with that line.
7650 ///
7651 /// For IROrder, we keep the smaller of the two
7652 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7653   DebugLoc NLoc = N->getDebugLoc();
7654   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7655     N->setDebugLoc(DebugLoc());
7656   }
7657   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7658   N->setIROrder(Order);
7659   return N;
7660 }
7661 
7662 /// MorphNodeTo - This *mutates* the specified node to have the specified
7663 /// return type, opcode, and operands.
7664 ///
7665 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7666 /// node of the specified opcode and operands, it returns that node instead of
7667 /// the current one.  Note that the SDLoc need not be the same.
7668 ///
7669 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7670 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7671 /// node, and because it doesn't require CSE recalculation for any of
7672 /// the node's users.
7673 ///
7674 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7675 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7676 /// the legalizer which maintain worklists that would need to be updated when
7677 /// deleting things.
7678 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7679                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7680   // If an identical node already exists, use it.
7681   void *IP = nullptr;
7682   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7683     FoldingSetNodeID ID;
7684     AddNodeIDNode(ID, Opc, VTs, Ops);
7685     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7686       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7687   }
7688 
7689   if (!RemoveNodeFromCSEMaps(N))
7690     IP = nullptr;
7691 
7692   // Start the morphing.
7693   N->NodeType = Opc;
7694   N->ValueList = VTs.VTs;
7695   N->NumValues = VTs.NumVTs;
7696 
7697   // Clear the operands list, updating used nodes to remove this from their
7698   // use list.  Keep track of any operands that become dead as a result.
7699   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7700   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7701     SDUse &Use = *I++;
7702     SDNode *Used = Use.getNode();
7703     Use.set(SDValue());
7704     if (Used->use_empty())
7705       DeadNodeSet.insert(Used);
7706   }
7707 
7708   // For MachineNode, initialize the memory references information.
7709   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7710     MN->clearMemRefs();
7711 
7712   // Swap for an appropriately sized array from the recycler.
7713   removeOperands(N);
7714   createOperands(N, Ops);
7715 
7716   // Delete any nodes that are still dead after adding the uses for the
7717   // new operands.
7718   if (!DeadNodeSet.empty()) {
7719     SmallVector<SDNode *, 16> DeadNodes;
7720     for (SDNode *N : DeadNodeSet)
7721       if (N->use_empty())
7722         DeadNodes.push_back(N);
7723     RemoveDeadNodes(DeadNodes);
7724   }
7725 
7726   if (IP)
7727     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7728   return N;
7729 }
7730 
7731 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7732   unsigned OrigOpc = Node->getOpcode();
7733   unsigned NewOpc;
7734   switch (OrigOpc) {
7735   default:
7736     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7737   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7738   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7739   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7740   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7741   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7742   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7743   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7744   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7745   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7746   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7747   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7748   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7749   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7750   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7751   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7752   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7753   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7754   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7755   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7756   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7757   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7758   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7759   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7760   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7761   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7762   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7763   case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break;
7764   case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break;
7765   }
7766 
7767   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7768 
7769   // We're taking this node out of the chain, so we need to re-link things.
7770   SDValue InputChain = Node->getOperand(0);
7771   SDValue OutputChain = SDValue(Node, 1);
7772   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7773 
7774   SmallVector<SDValue, 3> Ops;
7775   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7776     Ops.push_back(Node->getOperand(i));
7777 
7778   SDVTList VTs = getVTList(Node->getValueType(0));
7779   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7780 
7781   // MorphNodeTo can operate in two ways: if an existing node with the
7782   // specified operands exists, it can just return it.  Otherwise, it
7783   // updates the node in place to have the requested operands.
7784   if (Res == Node) {
7785     // If we updated the node in place, reset the node ID.  To the isel,
7786     // this should be just like a newly allocated machine node.
7787     Res->setNodeId(-1);
7788   } else {
7789     ReplaceAllUsesWith(Node, Res);
7790     RemoveDeadNode(Node);
7791   }
7792 
7793   return Res;
7794 }
7795 
7796 /// getMachineNode - These are used for target selectors to create a new node
7797 /// with specified return type(s), MachineInstr opcode, and operands.
7798 ///
7799 /// Note that getMachineNode returns the resultant node.  If there is already a
7800 /// node of the specified opcode and operands, it returns that node instead of
7801 /// the current one.
7802 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7803                                             EVT VT) {
7804   SDVTList VTs = getVTList(VT);
7805   return getMachineNode(Opcode, dl, VTs, None);
7806 }
7807 
7808 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7809                                             EVT VT, SDValue Op1) {
7810   SDVTList VTs = getVTList(VT);
7811   SDValue Ops[] = { Op1 };
7812   return getMachineNode(Opcode, dl, VTs, Ops);
7813 }
7814 
7815 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7816                                             EVT VT, SDValue Op1, SDValue Op2) {
7817   SDVTList VTs = getVTList(VT);
7818   SDValue Ops[] = { Op1, Op2 };
7819   return getMachineNode(Opcode, dl, VTs, Ops);
7820 }
7821 
7822 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7823                                             EVT VT, SDValue Op1, SDValue Op2,
7824                                             SDValue Op3) {
7825   SDVTList VTs = getVTList(VT);
7826   SDValue Ops[] = { Op1, Op2, Op3 };
7827   return getMachineNode(Opcode, dl, VTs, Ops);
7828 }
7829 
7830 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7831                                             EVT VT, ArrayRef<SDValue> Ops) {
7832   SDVTList VTs = getVTList(VT);
7833   return getMachineNode(Opcode, dl, VTs, Ops);
7834 }
7835 
7836 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7837                                             EVT VT1, EVT VT2, SDValue Op1,
7838                                             SDValue Op2) {
7839   SDVTList VTs = getVTList(VT1, VT2);
7840   SDValue Ops[] = { Op1, Op2 };
7841   return getMachineNode(Opcode, dl, VTs, Ops);
7842 }
7843 
7844 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7845                                             EVT VT1, EVT VT2, SDValue Op1,
7846                                             SDValue Op2, SDValue Op3) {
7847   SDVTList VTs = getVTList(VT1, VT2);
7848   SDValue Ops[] = { Op1, Op2, Op3 };
7849   return getMachineNode(Opcode, dl, VTs, Ops);
7850 }
7851 
7852 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7853                                             EVT VT1, EVT VT2,
7854                                             ArrayRef<SDValue> Ops) {
7855   SDVTList VTs = getVTList(VT1, VT2);
7856   return getMachineNode(Opcode, dl, VTs, Ops);
7857 }
7858 
7859 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7860                                             EVT VT1, EVT VT2, EVT VT3,
7861                                             SDValue Op1, SDValue Op2) {
7862   SDVTList VTs = getVTList(VT1, VT2, VT3);
7863   SDValue Ops[] = { Op1, Op2 };
7864   return getMachineNode(Opcode, dl, VTs, Ops);
7865 }
7866 
7867 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7868                                             EVT VT1, EVT VT2, EVT VT3,
7869                                             SDValue Op1, SDValue Op2,
7870                                             SDValue Op3) {
7871   SDVTList VTs = getVTList(VT1, VT2, VT3);
7872   SDValue Ops[] = { Op1, Op2, Op3 };
7873   return getMachineNode(Opcode, dl, VTs, Ops);
7874 }
7875 
7876 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7877                                             EVT VT1, EVT VT2, EVT VT3,
7878                                             ArrayRef<SDValue> Ops) {
7879   SDVTList VTs = getVTList(VT1, VT2, VT3);
7880   return getMachineNode(Opcode, dl, VTs, Ops);
7881 }
7882 
7883 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7884                                             ArrayRef<EVT> ResultTys,
7885                                             ArrayRef<SDValue> Ops) {
7886   SDVTList VTs = getVTList(ResultTys);
7887   return getMachineNode(Opcode, dl, VTs, Ops);
7888 }
7889 
7890 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7891                                             SDVTList VTs,
7892                                             ArrayRef<SDValue> Ops) {
7893   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7894   MachineSDNode *N;
7895   void *IP = nullptr;
7896 
7897   if (DoCSE) {
7898     FoldingSetNodeID ID;
7899     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7900     IP = nullptr;
7901     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7902       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7903     }
7904   }
7905 
7906   // Allocate a new MachineSDNode.
7907   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7908   createOperands(N, Ops);
7909 
7910   if (DoCSE)
7911     CSEMap.InsertNode(N, IP);
7912 
7913   InsertNode(N);
7914   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
7915   return N;
7916 }
7917 
7918 /// getTargetExtractSubreg - A convenience function for creating
7919 /// TargetOpcode::EXTRACT_SUBREG nodes.
7920 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7921                                              SDValue Operand) {
7922   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7923   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7924                                   VT, Operand, SRIdxVal);
7925   return SDValue(Subreg, 0);
7926 }
7927 
7928 /// getTargetInsertSubreg - A convenience function for creating
7929 /// TargetOpcode::INSERT_SUBREG nodes.
7930 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7931                                             SDValue Operand, SDValue Subreg) {
7932   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7933   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7934                                   VT, Operand, Subreg, SRIdxVal);
7935   return SDValue(Result, 0);
7936 }
7937 
7938 /// getNodeIfExists - Get the specified node if it's already available, or
7939 /// else return NULL.
7940 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7941                                       ArrayRef<SDValue> Ops,
7942                                       const SDNodeFlags Flags) {
7943   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7944     FoldingSetNodeID ID;
7945     AddNodeIDNode(ID, Opcode, VTList, Ops);
7946     void *IP = nullptr;
7947     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7948       E->intersectFlagsWith(Flags);
7949       return E;
7950     }
7951   }
7952   return nullptr;
7953 }
7954 
7955 /// getDbgValue - Creates a SDDbgValue node.
7956 ///
7957 /// SDNode
7958 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7959                                       SDNode *N, unsigned R, bool IsIndirect,
7960                                       const DebugLoc &DL, unsigned O) {
7961   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7962          "Expected inlined-at fields to agree");
7963   return new (DbgInfo->getAlloc())
7964       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7965 }
7966 
7967 /// Constant
7968 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7969                                               DIExpression *Expr,
7970                                               const Value *C,
7971                                               const DebugLoc &DL, unsigned O) {
7972   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7973          "Expected inlined-at fields to agree");
7974   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7975 }
7976 
7977 /// FrameIndex
7978 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7979                                                 DIExpression *Expr, unsigned FI,
7980                                                 bool IsIndirect,
7981                                                 const DebugLoc &DL,
7982                                                 unsigned O) {
7983   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7984          "Expected inlined-at fields to agree");
7985   return new (DbgInfo->getAlloc())
7986       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7987 }
7988 
7989 /// VReg
7990 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7991                                           DIExpression *Expr,
7992                                           unsigned VReg, bool IsIndirect,
7993                                           const DebugLoc &DL, unsigned O) {
7994   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7995          "Expected inlined-at fields to agree");
7996   return new (DbgInfo->getAlloc())
7997       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7998 }
7999 
8000 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8001                                      unsigned OffsetInBits, unsigned SizeInBits,
8002                                      bool InvalidateDbg) {
8003   SDNode *FromNode = From.getNode();
8004   SDNode *ToNode = To.getNode();
8005   assert(FromNode && ToNode && "Can't modify dbg values");
8006 
8007   // PR35338
8008   // TODO: assert(From != To && "Redundant dbg value transfer");
8009   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8010   if (From == To || FromNode == ToNode)
8011     return;
8012 
8013   if (!FromNode->getHasDebugValue())
8014     return;
8015 
8016   SmallVector<SDDbgValue *, 2> ClonedDVs;
8017   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8018     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8019       continue;
8020 
8021     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8022 
8023     // Just transfer the dbg value attached to From.
8024     if (Dbg->getResNo() != From.getResNo())
8025       continue;
8026 
8027     DIVariable *Var = Dbg->getVariable();
8028     auto *Expr = Dbg->getExpression();
8029     // If a fragment is requested, update the expression.
8030     if (SizeInBits) {
8031       // When splitting a larger (e.g., sign-extended) value whose
8032       // lower bits are described with an SDDbgValue, do not attempt
8033       // to transfer the SDDbgValue to the upper bits.
8034       if (auto FI = Expr->getFragmentInfo())
8035         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8036           continue;
8037       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8038                                                              SizeInBits);
8039       if (!Fragment)
8040         continue;
8041       Expr = *Fragment;
8042     }
8043     // Clone the SDDbgValue and move it to To.
8044     SDDbgValue *Clone =
8045         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8046                     Dbg->getDebugLoc(), Dbg->getOrder());
8047     ClonedDVs.push_back(Clone);
8048 
8049     if (InvalidateDbg) {
8050       // Invalidate value and indicate the SDDbgValue should not be emitted.
8051       Dbg->setIsInvalidated();
8052       Dbg->setIsEmitted();
8053     }
8054   }
8055 
8056   for (SDDbgValue *Dbg : ClonedDVs)
8057     AddDbgValue(Dbg, ToNode, false);
8058 }
8059 
8060 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8061   if (!N.getHasDebugValue())
8062     return;
8063 
8064   SmallVector<SDDbgValue *, 2> ClonedDVs;
8065   for (auto DV : GetDbgValues(&N)) {
8066     if (DV->isInvalidated())
8067       continue;
8068     switch (N.getOpcode()) {
8069     default:
8070       break;
8071     case ISD::ADD:
8072       SDValue N0 = N.getOperand(0);
8073       SDValue N1 = N.getOperand(1);
8074       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8075           isConstantIntBuildVectorOrConstantInt(N1)) {
8076         uint64_t Offset = N.getConstantOperandVal(1);
8077         // Rewrite an ADD constant node into a DIExpression. Since we are
8078         // performing arithmetic to compute the variable's *value* in the
8079         // DIExpression, we need to mark the expression with a
8080         // DW_OP_stack_value.
8081         auto *DIExpr = DV->getExpression();
8082         DIExpr =
8083             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8084         SDDbgValue *Clone =
8085             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8086                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8087         ClonedDVs.push_back(Clone);
8088         DV->setIsInvalidated();
8089         DV->setIsEmitted();
8090         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8091                    N0.getNode()->dumprFull(this);
8092                    dbgs() << " into " << *DIExpr << '\n');
8093       }
8094     }
8095   }
8096 
8097   for (SDDbgValue *Dbg : ClonedDVs)
8098     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8099 }
8100 
8101 /// Creates a SDDbgLabel node.
8102 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8103                                       const DebugLoc &DL, unsigned O) {
8104   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8105          "Expected inlined-at fields to agree");
8106   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8107 }
8108 
8109 namespace {
8110 
8111 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8112 /// pointed to by a use iterator is deleted, increment the use iterator
8113 /// so that it doesn't dangle.
8114 ///
8115 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8116   SDNode::use_iterator &UI;
8117   SDNode::use_iterator &UE;
8118 
8119   void NodeDeleted(SDNode *N, SDNode *E) override {
8120     // Increment the iterator as needed.
8121     while (UI != UE && N == *UI)
8122       ++UI;
8123   }
8124 
8125 public:
8126   RAUWUpdateListener(SelectionDAG &d,
8127                      SDNode::use_iterator &ui,
8128                      SDNode::use_iterator &ue)
8129     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8130 };
8131 
8132 } // end anonymous namespace
8133 
8134 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8135 /// This can cause recursive merging of nodes in the DAG.
8136 ///
8137 /// This version assumes From has a single result value.
8138 ///
8139 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8140   SDNode *From = FromN.getNode();
8141   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8142          "Cannot replace with this method!");
8143   assert(From != To.getNode() && "Cannot replace uses of with self");
8144 
8145   // Preserve Debug Values
8146   transferDbgValues(FromN, To);
8147 
8148   // Iterate over all the existing uses of From. New uses will be added
8149   // to the beginning of the use list, which we avoid visiting.
8150   // This specifically avoids visiting uses of From that arise while the
8151   // replacement is happening, because any such uses would be the result
8152   // of CSE: If an existing node looks like From after one of its operands
8153   // is replaced by To, we don't want to replace of all its users with To
8154   // too. See PR3018 for more info.
8155   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8156   RAUWUpdateListener Listener(*this, UI, UE);
8157   while (UI != UE) {
8158     SDNode *User = *UI;
8159 
8160     // This node is about to morph, remove its old self from the CSE maps.
8161     RemoveNodeFromCSEMaps(User);
8162 
8163     // A user can appear in a use list multiple times, and when this
8164     // happens the uses are usually next to each other in the list.
8165     // To help reduce the number of CSE recomputations, process all
8166     // the uses of this user that we can find this way.
8167     do {
8168       SDUse &Use = UI.getUse();
8169       ++UI;
8170       Use.set(To);
8171       if (To->isDivergent() != From->isDivergent())
8172         updateDivergence(User);
8173     } while (UI != UE && *UI == User);
8174     // Now that we have modified User, add it back to the CSE maps.  If it
8175     // already exists there, recursively merge the results together.
8176     AddModifiedNodeToCSEMaps(User);
8177   }
8178 
8179   // If we just RAUW'd the root, take note.
8180   if (FromN == getRoot())
8181     setRoot(To);
8182 }
8183 
8184 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8185 /// This can cause recursive merging of nodes in the DAG.
8186 ///
8187 /// This version assumes that for each value of From, there is a
8188 /// corresponding value in To in the same position with the same type.
8189 ///
8190 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8191 #ifndef NDEBUG
8192   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8193     assert((!From->hasAnyUseOfValue(i) ||
8194             From->getValueType(i) == To->getValueType(i)) &&
8195            "Cannot use this version of ReplaceAllUsesWith!");
8196 #endif
8197 
8198   // Handle the trivial case.
8199   if (From == To)
8200     return;
8201 
8202   // Preserve Debug Info. Only do this if there's a use.
8203   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8204     if (From->hasAnyUseOfValue(i)) {
8205       assert((i < To->getNumValues()) && "Invalid To location");
8206       transferDbgValues(SDValue(From, i), SDValue(To, i));
8207     }
8208 
8209   // Iterate over just the existing users of From. See the comments in
8210   // the ReplaceAllUsesWith above.
8211   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8212   RAUWUpdateListener Listener(*this, UI, UE);
8213   while (UI != UE) {
8214     SDNode *User = *UI;
8215 
8216     // This node is about to morph, remove its old self from the CSE maps.
8217     RemoveNodeFromCSEMaps(User);
8218 
8219     // A user can appear in a use list multiple times, and when this
8220     // happens the uses are usually next to each other in the list.
8221     // To help reduce the number of CSE recomputations, process all
8222     // the uses of this user that we can find this way.
8223     do {
8224       SDUse &Use = UI.getUse();
8225       ++UI;
8226       Use.setNode(To);
8227       if (To->isDivergent() != From->isDivergent())
8228         updateDivergence(User);
8229     } while (UI != UE && *UI == User);
8230 
8231     // Now that we have modified User, add it back to the CSE maps.  If it
8232     // already exists there, recursively merge the results together.
8233     AddModifiedNodeToCSEMaps(User);
8234   }
8235 
8236   // If we just RAUW'd the root, take note.
8237   if (From == getRoot().getNode())
8238     setRoot(SDValue(To, getRoot().getResNo()));
8239 }
8240 
8241 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8242 /// This can cause recursive merging of nodes in the DAG.
8243 ///
8244 /// This version can replace From with any result values.  To must match the
8245 /// number and types of values returned by From.
8246 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8247   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8248     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8249 
8250   // Preserve Debug Info.
8251   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8252     transferDbgValues(SDValue(From, i), To[i]);
8253 
8254   // Iterate over just the existing users of From. See the comments in
8255   // the ReplaceAllUsesWith above.
8256   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8257   RAUWUpdateListener Listener(*this, UI, UE);
8258   while (UI != UE) {
8259     SDNode *User = *UI;
8260 
8261     // This node is about to morph, remove its old self from the CSE maps.
8262     RemoveNodeFromCSEMaps(User);
8263 
8264     // A user can appear in a use list multiple times, and when this happens the
8265     // uses are usually next to each other in the list.  To help reduce the
8266     // number of CSE and divergence recomputations, process all the uses of this
8267     // user that we can find this way.
8268     bool To_IsDivergent = false;
8269     do {
8270       SDUse &Use = UI.getUse();
8271       const SDValue &ToOp = To[Use.getResNo()];
8272       ++UI;
8273       Use.set(ToOp);
8274       To_IsDivergent |= ToOp->isDivergent();
8275     } while (UI != UE && *UI == User);
8276 
8277     if (To_IsDivergent != From->isDivergent())
8278       updateDivergence(User);
8279 
8280     // Now that we have modified User, add it back to the CSE maps.  If it
8281     // already exists there, recursively merge the results together.
8282     AddModifiedNodeToCSEMaps(User);
8283   }
8284 
8285   // If we just RAUW'd the root, take note.
8286   if (From == getRoot().getNode())
8287     setRoot(SDValue(To[getRoot().getResNo()]));
8288 }
8289 
8290 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8291 /// uses of other values produced by From.getNode() alone.  The Deleted
8292 /// vector is handled the same way as for ReplaceAllUsesWith.
8293 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8294   // Handle the really simple, really trivial case efficiently.
8295   if (From == To) return;
8296 
8297   // Handle the simple, trivial, case efficiently.
8298   if (From.getNode()->getNumValues() == 1) {
8299     ReplaceAllUsesWith(From, To);
8300     return;
8301   }
8302 
8303   // Preserve Debug Info.
8304   transferDbgValues(From, To);
8305 
8306   // Iterate over just the existing users of From. See the comments in
8307   // the ReplaceAllUsesWith above.
8308   SDNode::use_iterator UI = From.getNode()->use_begin(),
8309                        UE = From.getNode()->use_end();
8310   RAUWUpdateListener Listener(*this, UI, UE);
8311   while (UI != UE) {
8312     SDNode *User = *UI;
8313     bool UserRemovedFromCSEMaps = false;
8314 
8315     // A user can appear in a use list multiple times, and when this
8316     // happens the uses are usually next to each other in the list.
8317     // To help reduce the number of CSE recomputations, process all
8318     // the uses of this user that we can find this way.
8319     do {
8320       SDUse &Use = UI.getUse();
8321 
8322       // Skip uses of different values from the same node.
8323       if (Use.getResNo() != From.getResNo()) {
8324         ++UI;
8325         continue;
8326       }
8327 
8328       // If this node hasn't been modified yet, it's still in the CSE maps,
8329       // so remove its old self from the CSE maps.
8330       if (!UserRemovedFromCSEMaps) {
8331         RemoveNodeFromCSEMaps(User);
8332         UserRemovedFromCSEMaps = true;
8333       }
8334 
8335       ++UI;
8336       Use.set(To);
8337       if (To->isDivergent() != From->isDivergent())
8338         updateDivergence(User);
8339     } while (UI != UE && *UI == User);
8340     // We are iterating over all uses of the From node, so if a use
8341     // doesn't use the specific value, no changes are made.
8342     if (!UserRemovedFromCSEMaps)
8343       continue;
8344 
8345     // Now that we have modified User, add it back to the CSE maps.  If it
8346     // already exists there, recursively merge the results together.
8347     AddModifiedNodeToCSEMaps(User);
8348   }
8349 
8350   // If we just RAUW'd the root, take note.
8351   if (From == getRoot())
8352     setRoot(To);
8353 }
8354 
8355 namespace {
8356 
8357   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8358   /// to record information about a use.
8359   struct UseMemo {
8360     SDNode *User;
8361     unsigned Index;
8362     SDUse *Use;
8363   };
8364 
8365   /// operator< - Sort Memos by User.
8366   bool operator<(const UseMemo &L, const UseMemo &R) {
8367     return (intptr_t)L.User < (intptr_t)R.User;
8368   }
8369 
8370 } // end anonymous namespace
8371 
8372 void SelectionDAG::updateDivergence(SDNode * N)
8373 {
8374   if (TLI->isSDNodeAlwaysUniform(N))
8375     return;
8376   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8377   for (auto &Op : N->ops()) {
8378     if (Op.Val.getValueType() != MVT::Other)
8379       IsDivergent |= Op.getNode()->isDivergent();
8380   }
8381   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8382     N->SDNodeBits.IsDivergent = IsDivergent;
8383     for (auto U : N->uses()) {
8384       updateDivergence(U);
8385     }
8386   }
8387 }
8388 
8389 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8390   DenseMap<SDNode *, unsigned> Degree;
8391   Order.reserve(AllNodes.size());
8392   for (auto &N : allnodes()) {
8393     unsigned NOps = N.getNumOperands();
8394     Degree[&N] = NOps;
8395     if (0 == NOps)
8396       Order.push_back(&N);
8397   }
8398   for (size_t I = 0; I != Order.size(); ++I) {
8399     SDNode *N = Order[I];
8400     for (auto U : N->uses()) {
8401       unsigned &UnsortedOps = Degree[U];
8402       if (0 == --UnsortedOps)
8403         Order.push_back(U);
8404     }
8405   }
8406 }
8407 
8408 #ifndef NDEBUG
8409 void SelectionDAG::VerifyDAGDiverence() {
8410   std::vector<SDNode *> TopoOrder;
8411   CreateTopologicalOrder(TopoOrder);
8412   const TargetLowering &TLI = getTargetLoweringInfo();
8413   DenseMap<const SDNode *, bool> DivergenceMap;
8414   for (auto &N : allnodes()) {
8415     DivergenceMap[&N] = false;
8416   }
8417   for (auto N : TopoOrder) {
8418     bool IsDivergent = DivergenceMap[N];
8419     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8420     for (auto &Op : N->ops()) {
8421       if (Op.Val.getValueType() != MVT::Other)
8422         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8423     }
8424     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8425       DivergenceMap[N] = true;
8426     }
8427   }
8428   for (auto &N : allnodes()) {
8429     (void)N;
8430     assert(DivergenceMap[&N] == N.isDivergent() &&
8431            "Divergence bit inconsistency detected\n");
8432   }
8433 }
8434 #endif
8435 
8436 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8437 /// uses of other values produced by From.getNode() alone.  The same value
8438 /// may appear in both the From and To list.  The Deleted vector is
8439 /// handled the same way as for ReplaceAllUsesWith.
8440 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8441                                               const SDValue *To,
8442                                               unsigned Num){
8443   // Handle the simple, trivial case efficiently.
8444   if (Num == 1)
8445     return ReplaceAllUsesOfValueWith(*From, *To);
8446 
8447   transferDbgValues(*From, *To);
8448 
8449   // Read up all the uses and make records of them. This helps
8450   // processing new uses that are introduced during the
8451   // replacement process.
8452   SmallVector<UseMemo, 4> Uses;
8453   for (unsigned i = 0; i != Num; ++i) {
8454     unsigned FromResNo = From[i].getResNo();
8455     SDNode *FromNode = From[i].getNode();
8456     for (SDNode::use_iterator UI = FromNode->use_begin(),
8457          E = FromNode->use_end(); UI != E; ++UI) {
8458       SDUse &Use = UI.getUse();
8459       if (Use.getResNo() == FromResNo) {
8460         UseMemo Memo = { *UI, i, &Use };
8461         Uses.push_back(Memo);
8462       }
8463     }
8464   }
8465 
8466   // Sort the uses, so that all the uses from a given User are together.
8467   llvm::sort(Uses);
8468 
8469   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8470        UseIndex != UseIndexEnd; ) {
8471     // We know that this user uses some value of From.  If it is the right
8472     // value, update it.
8473     SDNode *User = Uses[UseIndex].User;
8474 
8475     // This node is about to morph, remove its old self from the CSE maps.
8476     RemoveNodeFromCSEMaps(User);
8477 
8478     // The Uses array is sorted, so all the uses for a given User
8479     // are next to each other in the list.
8480     // To help reduce the number of CSE recomputations, process all
8481     // the uses of this user that we can find this way.
8482     do {
8483       unsigned i = Uses[UseIndex].Index;
8484       SDUse &Use = *Uses[UseIndex].Use;
8485       ++UseIndex;
8486 
8487       Use.set(To[i]);
8488     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8489 
8490     // Now that we have modified User, add it back to the CSE maps.  If it
8491     // already exists there, recursively merge the results together.
8492     AddModifiedNodeToCSEMaps(User);
8493   }
8494 }
8495 
8496 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8497 /// based on their topological order. It returns the maximum id and a vector
8498 /// of the SDNodes* in assigned order by reference.
8499 unsigned SelectionDAG::AssignTopologicalOrder() {
8500   unsigned DAGSize = 0;
8501 
8502   // SortedPos tracks the progress of the algorithm. Nodes before it are
8503   // sorted, nodes after it are unsorted. When the algorithm completes
8504   // it is at the end of the list.
8505   allnodes_iterator SortedPos = allnodes_begin();
8506 
8507   // Visit all the nodes. Move nodes with no operands to the front of
8508   // the list immediately. Annotate nodes that do have operands with their
8509   // operand count. Before we do this, the Node Id fields of the nodes
8510   // may contain arbitrary values. After, the Node Id fields for nodes
8511   // before SortedPos will contain the topological sort index, and the
8512   // Node Id fields for nodes At SortedPos and after will contain the
8513   // count of outstanding operands.
8514   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8515     SDNode *N = &*I++;
8516     checkForCycles(N, this);
8517     unsigned Degree = N->getNumOperands();
8518     if (Degree == 0) {
8519       // A node with no uses, add it to the result array immediately.
8520       N->setNodeId(DAGSize++);
8521       allnodes_iterator Q(N);
8522       if (Q != SortedPos)
8523         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8524       assert(SortedPos != AllNodes.end() && "Overran node list");
8525       ++SortedPos;
8526     } else {
8527       // Temporarily use the Node Id as scratch space for the degree count.
8528       N->setNodeId(Degree);
8529     }
8530   }
8531 
8532   // Visit all the nodes. As we iterate, move nodes into sorted order,
8533   // such that by the time the end is reached all nodes will be sorted.
8534   for (SDNode &Node : allnodes()) {
8535     SDNode *N = &Node;
8536     checkForCycles(N, this);
8537     // N is in sorted position, so all its uses have one less operand
8538     // that needs to be sorted.
8539     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8540          UI != UE; ++UI) {
8541       SDNode *P = *UI;
8542       unsigned Degree = P->getNodeId();
8543       assert(Degree != 0 && "Invalid node degree");
8544       --Degree;
8545       if (Degree == 0) {
8546         // All of P's operands are sorted, so P may sorted now.
8547         P->setNodeId(DAGSize++);
8548         if (P->getIterator() != SortedPos)
8549           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8550         assert(SortedPos != AllNodes.end() && "Overran node list");
8551         ++SortedPos;
8552       } else {
8553         // Update P's outstanding operand count.
8554         P->setNodeId(Degree);
8555       }
8556     }
8557     if (Node.getIterator() == SortedPos) {
8558 #ifndef NDEBUG
8559       allnodes_iterator I(N);
8560       SDNode *S = &*++I;
8561       dbgs() << "Overran sorted position:\n";
8562       S->dumprFull(this); dbgs() << "\n";
8563       dbgs() << "Checking if this is due to cycles\n";
8564       checkForCycles(this, true);
8565 #endif
8566       llvm_unreachable(nullptr);
8567     }
8568   }
8569 
8570   assert(SortedPos == AllNodes.end() &&
8571          "Topological sort incomplete!");
8572   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8573          "First node in topological sort is not the entry token!");
8574   assert(AllNodes.front().getNodeId() == 0 &&
8575          "First node in topological sort has non-zero id!");
8576   assert(AllNodes.front().getNumOperands() == 0 &&
8577          "First node in topological sort has operands!");
8578   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8579          "Last node in topologic sort has unexpected id!");
8580   assert(AllNodes.back().use_empty() &&
8581          "Last node in topologic sort has users!");
8582   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8583   return DAGSize;
8584 }
8585 
8586 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8587 /// value is produced by SD.
8588 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8589   if (SD) {
8590     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8591     SD->setHasDebugValue(true);
8592   }
8593   DbgInfo->add(DB, SD, isParameter);
8594 }
8595 
8596 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8597   DbgInfo->add(DB);
8598 }
8599 
8600 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8601                                                    SDValue NewMemOp) {
8602   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8603   // The new memory operation must have the same position as the old load in
8604   // terms of memory dependency. Create a TokenFactor for the old load and new
8605   // memory operation and update uses of the old load's output chain to use that
8606   // TokenFactor.
8607   SDValue OldChain = SDValue(OldLoad, 1);
8608   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8609   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8610     return NewChain;
8611 
8612   SDValue TokenFactor =
8613       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8614   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8615   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8616   return TokenFactor;
8617 }
8618 
8619 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8620                                                      Function **OutFunction) {
8621   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8622 
8623   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8624   auto *Module = MF->getFunction().getParent();
8625   auto *Function = Module->getFunction(Symbol);
8626 
8627   if (OutFunction != nullptr)
8628       *OutFunction = Function;
8629 
8630   if (Function != nullptr) {
8631     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8632     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8633   }
8634 
8635   std::string ErrorStr;
8636   raw_string_ostream ErrorFormatter(ErrorStr);
8637 
8638   ErrorFormatter << "Undefined external symbol ";
8639   ErrorFormatter << '"' << Symbol << '"';
8640   ErrorFormatter.flush();
8641 
8642   report_fatal_error(ErrorStr);
8643 }
8644 
8645 //===----------------------------------------------------------------------===//
8646 //                              SDNode Class
8647 //===----------------------------------------------------------------------===//
8648 
8649 bool llvm::isNullConstant(SDValue V) {
8650   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8651   return Const != nullptr && Const->isNullValue();
8652 }
8653 
8654 bool llvm::isNullFPConstant(SDValue V) {
8655   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8656   return Const != nullptr && Const->isZero() && !Const->isNegative();
8657 }
8658 
8659 bool llvm::isAllOnesConstant(SDValue V) {
8660   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8661   return Const != nullptr && Const->isAllOnesValue();
8662 }
8663 
8664 bool llvm::isOneConstant(SDValue V) {
8665   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8666   return Const != nullptr && Const->isOne();
8667 }
8668 
8669 SDValue llvm::peekThroughBitcasts(SDValue V) {
8670   while (V.getOpcode() == ISD::BITCAST)
8671     V = V.getOperand(0);
8672   return V;
8673 }
8674 
8675 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8676   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8677     V = V.getOperand(0);
8678   return V;
8679 }
8680 
8681 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8682   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8683     V = V.getOperand(0);
8684   return V;
8685 }
8686 
8687 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8688   if (V.getOpcode() != ISD::XOR)
8689     return false;
8690   V = peekThroughBitcasts(V.getOperand(1));
8691   unsigned NumBits = V.getScalarValueSizeInBits();
8692   ConstantSDNode *C =
8693       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8694   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8695 }
8696 
8697 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8698                                           bool AllowTruncation) {
8699   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8700     return CN;
8701 
8702   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8703     BitVector UndefElements;
8704     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8705 
8706     // BuildVectors can truncate their operands. Ignore that case here unless
8707     // AllowTruncation is set.
8708     if (CN && (UndefElements.none() || AllowUndefs)) {
8709       EVT CVT = CN->getValueType(0);
8710       EVT NSVT = N.getValueType().getScalarType();
8711       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8712       if (AllowTruncation || (CVT == NSVT))
8713         return CN;
8714     }
8715   }
8716 
8717   return nullptr;
8718 }
8719 
8720 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8721                                           bool AllowUndefs,
8722                                           bool AllowTruncation) {
8723   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8724     return CN;
8725 
8726   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8727     BitVector UndefElements;
8728     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8729 
8730     // BuildVectors can truncate their operands. Ignore that case here unless
8731     // AllowTruncation is set.
8732     if (CN && (UndefElements.none() || AllowUndefs)) {
8733       EVT CVT = CN->getValueType(0);
8734       EVT NSVT = N.getValueType().getScalarType();
8735       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8736       if (AllowTruncation || (CVT == NSVT))
8737         return CN;
8738     }
8739   }
8740 
8741   return nullptr;
8742 }
8743 
8744 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8745   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8746     return CN;
8747 
8748   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8749     BitVector UndefElements;
8750     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8751     if (CN && (UndefElements.none() || AllowUndefs))
8752       return CN;
8753   }
8754 
8755   return nullptr;
8756 }
8757 
8758 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8759                                               const APInt &DemandedElts,
8760                                               bool AllowUndefs) {
8761   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8762     return CN;
8763 
8764   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8765     BitVector UndefElements;
8766     ConstantFPSDNode *CN =
8767         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8768     if (CN && (UndefElements.none() || AllowUndefs))
8769       return CN;
8770   }
8771 
8772   return nullptr;
8773 }
8774 
8775 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8776   // TODO: may want to use peekThroughBitcast() here.
8777   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8778   return C && C->isNullValue();
8779 }
8780 
8781 bool llvm::isOneOrOneSplat(SDValue N) {
8782   // TODO: may want to use peekThroughBitcast() here.
8783   unsigned BitWidth = N.getScalarValueSizeInBits();
8784   ConstantSDNode *C = isConstOrConstSplat(N);
8785   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8786 }
8787 
8788 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8789   N = peekThroughBitcasts(N);
8790   unsigned BitWidth = N.getScalarValueSizeInBits();
8791   ConstantSDNode *C = isConstOrConstSplat(N);
8792   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8793 }
8794 
8795 HandleSDNode::~HandleSDNode() {
8796   DropOperands();
8797 }
8798 
8799 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8800                                          const DebugLoc &DL,
8801                                          const GlobalValue *GA, EVT VT,
8802                                          int64_t o, unsigned TF)
8803     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8804   TheGlobal = GA;
8805 }
8806 
8807 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8808                                          EVT VT, unsigned SrcAS,
8809                                          unsigned DestAS)
8810     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8811       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8812 
8813 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8814                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8815     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8816   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8817   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8818   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8819   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8820 
8821   // We check here that the size of the memory operand fits within the size of
8822   // the MMO. This is because the MMO might indicate only a possible address
8823   // range instead of specifying the affected memory addresses precisely.
8824   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8825 }
8826 
8827 /// Profile - Gather unique data for the node.
8828 ///
8829 void SDNode::Profile(FoldingSetNodeID &ID) const {
8830   AddNodeIDNode(ID, this);
8831 }
8832 
8833 namespace {
8834 
8835   struct EVTArray {
8836     std::vector<EVT> VTs;
8837 
8838     EVTArray() {
8839       VTs.reserve(MVT::LAST_VALUETYPE);
8840       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8841         VTs.push_back(MVT((MVT::SimpleValueType)i));
8842     }
8843   };
8844 
8845 } // end anonymous namespace
8846 
8847 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8848 static ManagedStatic<EVTArray> SimpleVTArray;
8849 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8850 
8851 /// getValueTypeList - Return a pointer to the specified value type.
8852 ///
8853 const EVT *SDNode::getValueTypeList(EVT VT) {
8854   if (VT.isExtended()) {
8855     sys::SmartScopedLock<true> Lock(*VTMutex);
8856     return &(*EVTs->insert(VT).first);
8857   } else {
8858     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8859            "Value type out of range!");
8860     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8861   }
8862 }
8863 
8864 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8865 /// indicated value.  This method ignores uses of other values defined by this
8866 /// operation.
8867 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8868   assert(Value < getNumValues() && "Bad value!");
8869 
8870   // TODO: Only iterate over uses of a given value of the node
8871   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8872     if (UI.getUse().getResNo() == Value) {
8873       if (NUses == 0)
8874         return false;
8875       --NUses;
8876     }
8877   }
8878 
8879   // Found exactly the right number of uses?
8880   return NUses == 0;
8881 }
8882 
8883 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8884 /// value. This method ignores uses of other values defined by this operation.
8885 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8886   assert(Value < getNumValues() && "Bad value!");
8887 
8888   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8889     if (UI.getUse().getResNo() == Value)
8890       return true;
8891 
8892   return false;
8893 }
8894 
8895 /// isOnlyUserOf - Return true if this node is the only use of N.
8896 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8897   bool Seen = false;
8898   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8899     SDNode *User = *I;
8900     if (User == this)
8901       Seen = true;
8902     else
8903       return false;
8904   }
8905 
8906   return Seen;
8907 }
8908 
8909 /// Return true if the only users of N are contained in Nodes.
8910 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8911   bool Seen = false;
8912   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8913     SDNode *User = *I;
8914     if (llvm::any_of(Nodes,
8915                      [&User](const SDNode *Node) { return User == Node; }))
8916       Seen = true;
8917     else
8918       return false;
8919   }
8920 
8921   return Seen;
8922 }
8923 
8924 /// isOperand - Return true if this node is an operand of N.
8925 bool SDValue::isOperandOf(const SDNode *N) const {
8926   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8927 }
8928 
8929 bool SDNode::isOperandOf(const SDNode *N) const {
8930   return any_of(N->op_values(),
8931                 [this](SDValue Op) { return this == Op.getNode(); });
8932 }
8933 
8934 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8935 /// be a chain) reaches the specified operand without crossing any
8936 /// side-effecting instructions on any chain path.  In practice, this looks
8937 /// through token factors and non-volatile loads.  In order to remain efficient,
8938 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8939 ///
8940 /// Note that we only need to examine chains when we're searching for
8941 /// side-effects; SelectionDAG requires that all side-effects are represented
8942 /// by chains, even if another operand would force a specific ordering. This
8943 /// constraint is necessary to allow transformations like splitting loads.
8944 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8945                                              unsigned Depth) const {
8946   if (*this == Dest) return true;
8947 
8948   // Don't search too deeply, we just want to be able to see through
8949   // TokenFactor's etc.
8950   if (Depth == 0) return false;
8951 
8952   // If this is a token factor, all inputs to the TF happen in parallel.
8953   if (getOpcode() == ISD::TokenFactor) {
8954     // First, try a shallow search.
8955     if (is_contained((*this)->ops(), Dest)) {
8956       // We found the chain we want as an operand of this TokenFactor.
8957       // Essentially, we reach the chain without side-effects if we could
8958       // serialize the TokenFactor into a simple chain of operations with
8959       // Dest as the last operation. This is automatically true if the
8960       // chain has one use: there are no other ordering constraints.
8961       // If the chain has more than one use, we give up: some other
8962       // use of Dest might force a side-effect between Dest and the current
8963       // node.
8964       if (Dest.hasOneUse())
8965         return true;
8966     }
8967     // Next, try a deep search: check whether every operand of the TokenFactor
8968     // reaches Dest.
8969     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8970       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8971     });
8972   }
8973 
8974   // Loads don't have side effects, look through them.
8975   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8976     if (Ld->isUnordered())
8977       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8978   }
8979   return false;
8980 }
8981 
8982 bool SDNode::hasPredecessor(const SDNode *N) const {
8983   SmallPtrSet<const SDNode *, 32> Visited;
8984   SmallVector<const SDNode *, 16> Worklist;
8985   Worklist.push_back(this);
8986   return hasPredecessorHelper(N, Visited, Worklist);
8987 }
8988 
8989 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8990   this->Flags.intersectWith(Flags);
8991 }
8992 
8993 SDValue
8994 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8995                                   ArrayRef<ISD::NodeType> CandidateBinOps,
8996                                   bool AllowPartials) {
8997   // The pattern must end in an extract from index 0.
8998   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8999       !isNullConstant(Extract->getOperand(1)))
9000     return SDValue();
9001 
9002   // Match against one of the candidate binary ops.
9003   SDValue Op = Extract->getOperand(0);
9004   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9005         return Op.getOpcode() == unsigned(BinOp);
9006       }))
9007     return SDValue();
9008 
9009   // Floating-point reductions may require relaxed constraints on the final step
9010   // of the reduction because they may reorder intermediate operations.
9011   unsigned CandidateBinOp = Op.getOpcode();
9012   if (Op.getValueType().isFloatingPoint()) {
9013     SDNodeFlags Flags = Op->getFlags();
9014     switch (CandidateBinOp) {
9015     case ISD::FADD:
9016       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9017         return SDValue();
9018       break;
9019     default:
9020       llvm_unreachable("Unhandled FP opcode for binop reduction");
9021     }
9022   }
9023 
9024   // Matching failed - attempt to see if we did enough stages that a partial
9025   // reduction from a subvector is possible.
9026   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9027     if (!AllowPartials || !Op)
9028       return SDValue();
9029     EVT OpVT = Op.getValueType();
9030     EVT OpSVT = OpVT.getScalarType();
9031     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9032     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9033       return SDValue();
9034     BinOp = (ISD::NodeType)CandidateBinOp;
9035     return getNode(
9036         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9037         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9038   };
9039 
9040   // At each stage, we're looking for something that looks like:
9041   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9042   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9043   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9044   // %a = binop <8 x i32> %op, %s
9045   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9046   // we expect something like:
9047   // <4,5,6,7,u,u,u,u>
9048   // <2,3,u,u,u,u,u,u>
9049   // <1,u,u,u,u,u,u,u>
9050   // While a partial reduction match would be:
9051   // <2,3,u,u,u,u,u,u>
9052   // <1,u,u,u,u,u,u,u>
9053   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9054   SDValue PrevOp;
9055   for (unsigned i = 0; i < Stages; ++i) {
9056     unsigned MaskEnd = (1 << i);
9057 
9058     if (Op.getOpcode() != CandidateBinOp)
9059       return PartialReduction(PrevOp, MaskEnd);
9060 
9061     SDValue Op0 = Op.getOperand(0);
9062     SDValue Op1 = Op.getOperand(1);
9063 
9064     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9065     if (Shuffle) {
9066       Op = Op1;
9067     } else {
9068       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9069       Op = Op0;
9070     }
9071 
9072     // The first operand of the shuffle should be the same as the other operand
9073     // of the binop.
9074     if (!Shuffle || Shuffle->getOperand(0) != Op)
9075       return PartialReduction(PrevOp, MaskEnd);
9076 
9077     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9078     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9079       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9080         return PartialReduction(PrevOp, MaskEnd);
9081 
9082     PrevOp = Op;
9083   }
9084 
9085   BinOp = (ISD::NodeType)CandidateBinOp;
9086   return Op;
9087 }
9088 
9089 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9090   assert(N->getNumValues() == 1 &&
9091          "Can't unroll a vector with multiple results!");
9092 
9093   EVT VT = N->getValueType(0);
9094   unsigned NE = VT.getVectorNumElements();
9095   EVT EltVT = VT.getVectorElementType();
9096   SDLoc dl(N);
9097 
9098   SmallVector<SDValue, 8> Scalars;
9099   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9100 
9101   // If ResNE is 0, fully unroll the vector op.
9102   if (ResNE == 0)
9103     ResNE = NE;
9104   else if (NE > ResNE)
9105     NE = ResNE;
9106 
9107   unsigned i;
9108   for (i= 0; i != NE; ++i) {
9109     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9110       SDValue Operand = N->getOperand(j);
9111       EVT OperandVT = Operand.getValueType();
9112       if (OperandVT.isVector()) {
9113         // A vector operand; extract a single element.
9114         EVT OperandEltVT = OperandVT.getVectorElementType();
9115         Operands[j] =
9116             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9117                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9118       } else {
9119         // A scalar operand; just use it as is.
9120         Operands[j] = Operand;
9121       }
9122     }
9123 
9124     switch (N->getOpcode()) {
9125     default: {
9126       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9127                                 N->getFlags()));
9128       break;
9129     }
9130     case ISD::VSELECT:
9131       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9132       break;
9133     case ISD::SHL:
9134     case ISD::SRA:
9135     case ISD::SRL:
9136     case ISD::ROTL:
9137     case ISD::ROTR:
9138       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9139                                getShiftAmountOperand(Operands[0].getValueType(),
9140                                                      Operands[1])));
9141       break;
9142     case ISD::SIGN_EXTEND_INREG: {
9143       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9144       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9145                                 Operands[0],
9146                                 getValueType(ExtVT)));
9147     }
9148     }
9149   }
9150 
9151   for (; i < ResNE; ++i)
9152     Scalars.push_back(getUNDEF(EltVT));
9153 
9154   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9155   return getBuildVector(VecVT, dl, Scalars);
9156 }
9157 
9158 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9159     SDNode *N, unsigned ResNE) {
9160   unsigned Opcode = N->getOpcode();
9161   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9162           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9163           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9164          "Expected an overflow opcode");
9165 
9166   EVT ResVT = N->getValueType(0);
9167   EVT OvVT = N->getValueType(1);
9168   EVT ResEltVT = ResVT.getVectorElementType();
9169   EVT OvEltVT = OvVT.getVectorElementType();
9170   SDLoc dl(N);
9171 
9172   // If ResNE is 0, fully unroll the vector op.
9173   unsigned NE = ResVT.getVectorNumElements();
9174   if (ResNE == 0)
9175     ResNE = NE;
9176   else if (NE > ResNE)
9177     NE = ResNE;
9178 
9179   SmallVector<SDValue, 8> LHSScalars;
9180   SmallVector<SDValue, 8> RHSScalars;
9181   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9182   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9183 
9184   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9185   SDVTList VTs = getVTList(ResEltVT, SVT);
9186   SmallVector<SDValue, 8> ResScalars;
9187   SmallVector<SDValue, 8> OvScalars;
9188   for (unsigned i = 0; i < NE; ++i) {
9189     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9190     SDValue Ov =
9191         getSelect(dl, OvEltVT, Res.getValue(1),
9192                   getBoolConstant(true, dl, OvEltVT, ResVT),
9193                   getConstant(0, dl, OvEltVT));
9194 
9195     ResScalars.push_back(Res);
9196     OvScalars.push_back(Ov);
9197   }
9198 
9199   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9200   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9201 
9202   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9203   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9204   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9205                         getBuildVector(NewOvVT, dl, OvScalars));
9206 }
9207 
9208 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9209                                                   LoadSDNode *Base,
9210                                                   unsigned Bytes,
9211                                                   int Dist) const {
9212   if (LD->isVolatile() || Base->isVolatile())
9213     return false;
9214   // TODO: probably too restrictive for atomics, revisit
9215   if (!LD->isSimple())
9216     return false;
9217   if (LD->isIndexed() || Base->isIndexed())
9218     return false;
9219   if (LD->getChain() != Base->getChain())
9220     return false;
9221   EVT VT = LD->getValueType(0);
9222   if (VT.getSizeInBits() / 8 != Bytes)
9223     return false;
9224 
9225   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9226   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9227 
9228   int64_t Offset = 0;
9229   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9230     return (Dist * Bytes == Offset);
9231   return false;
9232 }
9233 
9234 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9235 /// it cannot be inferred.
9236 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9237   // If this is a GlobalAddress + cst, return the alignment.
9238   const GlobalValue *GV;
9239   int64_t GVOffset = 0;
9240   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9241     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9242     KnownBits Known(IdxWidth);
9243     llvm::computeKnownBits(GV, Known, getDataLayout());
9244     unsigned AlignBits = Known.countMinTrailingZeros();
9245     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9246     if (Align)
9247       return MinAlign(Align, GVOffset);
9248   }
9249 
9250   // If this is a direct reference to a stack slot, use information about the
9251   // stack slot's alignment.
9252   int FrameIdx = INT_MIN;
9253   int64_t FrameOffset = 0;
9254   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9255     FrameIdx = FI->getIndex();
9256   } else if (isBaseWithConstantOffset(Ptr) &&
9257              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9258     // Handle FI+Cst
9259     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9260     FrameOffset = Ptr.getConstantOperandVal(1);
9261   }
9262 
9263   if (FrameIdx != INT_MIN) {
9264     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9265     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9266                                     FrameOffset);
9267     return FIInfoAlign;
9268   }
9269 
9270   return 0;
9271 }
9272 
9273 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9274 /// which is split (or expanded) into two not necessarily identical pieces.
9275 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9276   // Currently all types are split in half.
9277   EVT LoVT, HiVT;
9278   if (!VT.isVector())
9279     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9280   else
9281     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9282 
9283   return std::make_pair(LoVT, HiVT);
9284 }
9285 
9286 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9287 /// low/high part.
9288 std::pair<SDValue, SDValue>
9289 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9290                           const EVT &HiVT) {
9291   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9292          N.getValueType().getVectorNumElements() &&
9293          "More vector elements requested than available!");
9294   SDValue Lo, Hi;
9295   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9296                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9297   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9298                getConstant(LoVT.getVectorNumElements(), DL,
9299                            TLI->getVectorIdxTy(getDataLayout())));
9300   return std::make_pair(Lo, Hi);
9301 }
9302 
9303 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9304 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9305   EVT VT = N.getValueType();
9306   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9307                                 NextPowerOf2(VT.getVectorNumElements()));
9308   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9309                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9310 }
9311 
9312 void SelectionDAG::ExtractVectorElements(SDValue Op,
9313                                          SmallVectorImpl<SDValue> &Args,
9314                                          unsigned Start, unsigned Count) {
9315   EVT VT = Op.getValueType();
9316   if (Count == 0)
9317     Count = VT.getVectorNumElements();
9318 
9319   EVT EltVT = VT.getVectorElementType();
9320   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9321   SDLoc SL(Op);
9322   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9323     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9324                            Op, getConstant(i, SL, IdxTy)));
9325   }
9326 }
9327 
9328 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9329 unsigned GlobalAddressSDNode::getAddressSpace() const {
9330   return getGlobal()->getType()->getAddressSpace();
9331 }
9332 
9333 Type *ConstantPoolSDNode::getType() const {
9334   if (isMachineConstantPoolEntry())
9335     return Val.MachineCPVal->getType();
9336   return Val.ConstVal->getType();
9337 }
9338 
9339 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9340                                         unsigned &SplatBitSize,
9341                                         bool &HasAnyUndefs,
9342                                         unsigned MinSplatBits,
9343                                         bool IsBigEndian) const {
9344   EVT VT = getValueType(0);
9345   assert(VT.isVector() && "Expected a vector type");
9346   unsigned VecWidth = VT.getSizeInBits();
9347   if (MinSplatBits > VecWidth)
9348     return false;
9349 
9350   // FIXME: The widths are based on this node's type, but build vectors can
9351   // truncate their operands.
9352   SplatValue = APInt(VecWidth, 0);
9353   SplatUndef = APInt(VecWidth, 0);
9354 
9355   // Get the bits. Bits with undefined values (when the corresponding element
9356   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9357   // in SplatValue. If any of the values are not constant, give up and return
9358   // false.
9359   unsigned int NumOps = getNumOperands();
9360   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9361   unsigned EltWidth = VT.getScalarSizeInBits();
9362 
9363   for (unsigned j = 0; j < NumOps; ++j) {
9364     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9365     SDValue OpVal = getOperand(i);
9366     unsigned BitPos = j * EltWidth;
9367 
9368     if (OpVal.isUndef())
9369       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9370     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9371       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9372     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9373       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9374     else
9375       return false;
9376   }
9377 
9378   // The build_vector is all constants or undefs. Find the smallest element
9379   // size that splats the vector.
9380   HasAnyUndefs = (SplatUndef != 0);
9381 
9382   // FIXME: This does not work for vectors with elements less than 8 bits.
9383   while (VecWidth > 8) {
9384     unsigned HalfSize = VecWidth / 2;
9385     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9386     APInt LowValue = SplatValue.trunc(HalfSize);
9387     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9388     APInt LowUndef = SplatUndef.trunc(HalfSize);
9389 
9390     // If the two halves do not match (ignoring undef bits), stop here.
9391     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9392         MinSplatBits > HalfSize)
9393       break;
9394 
9395     SplatValue = HighValue | LowValue;
9396     SplatUndef = HighUndef & LowUndef;
9397 
9398     VecWidth = HalfSize;
9399   }
9400 
9401   SplatBitSize = VecWidth;
9402   return true;
9403 }
9404 
9405 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9406                                          BitVector *UndefElements) const {
9407   if (UndefElements) {
9408     UndefElements->clear();
9409     UndefElements->resize(getNumOperands());
9410   }
9411   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9412          "Unexpected vector size");
9413   if (!DemandedElts)
9414     return SDValue();
9415   SDValue Splatted;
9416   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9417     if (!DemandedElts[i])
9418       continue;
9419     SDValue Op = getOperand(i);
9420     if (Op.isUndef()) {
9421       if (UndefElements)
9422         (*UndefElements)[i] = true;
9423     } else if (!Splatted) {
9424       Splatted = Op;
9425     } else if (Splatted != Op) {
9426       return SDValue();
9427     }
9428   }
9429 
9430   if (!Splatted) {
9431     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9432     assert(getOperand(FirstDemandedIdx).isUndef() &&
9433            "Can only have a splat without a constant for all undefs.");
9434     return getOperand(FirstDemandedIdx);
9435   }
9436 
9437   return Splatted;
9438 }
9439 
9440 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9441   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9442   return getSplatValue(DemandedElts, UndefElements);
9443 }
9444 
9445 ConstantSDNode *
9446 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9447                                         BitVector *UndefElements) const {
9448   return dyn_cast_or_null<ConstantSDNode>(
9449       getSplatValue(DemandedElts, UndefElements));
9450 }
9451 
9452 ConstantSDNode *
9453 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9454   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9455 }
9456 
9457 ConstantFPSDNode *
9458 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9459                                           BitVector *UndefElements) const {
9460   return dyn_cast_or_null<ConstantFPSDNode>(
9461       getSplatValue(DemandedElts, UndefElements));
9462 }
9463 
9464 ConstantFPSDNode *
9465 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9466   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9467 }
9468 
9469 int32_t
9470 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9471                                                    uint32_t BitWidth) const {
9472   if (ConstantFPSDNode *CN =
9473           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9474     bool IsExact;
9475     APSInt IntVal(BitWidth);
9476     const APFloat &APF = CN->getValueAPF();
9477     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9478             APFloat::opOK ||
9479         !IsExact)
9480       return -1;
9481 
9482     return IntVal.exactLogBase2();
9483   }
9484   return -1;
9485 }
9486 
9487 bool BuildVectorSDNode::isConstant() const {
9488   for (const SDValue &Op : op_values()) {
9489     unsigned Opc = Op.getOpcode();
9490     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9491       return false;
9492   }
9493   return true;
9494 }
9495 
9496 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9497   // Find the first non-undef value in the shuffle mask.
9498   unsigned i, e;
9499   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9500     /* search */;
9501 
9502   // If all elements are undefined, this shuffle can be considered a splat
9503   // (although it should eventually get simplified away completely).
9504   if (i == e)
9505     return true;
9506 
9507   // Make sure all remaining elements are either undef or the same as the first
9508   // non-undef value.
9509   for (int Idx = Mask[i]; i != e; ++i)
9510     if (Mask[i] >= 0 && Mask[i] != Idx)
9511       return false;
9512   return true;
9513 }
9514 
9515 // Returns the SDNode if it is a constant integer BuildVector
9516 // or constant integer.
9517 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9518   if (isa<ConstantSDNode>(N))
9519     return N.getNode();
9520   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9521     return N.getNode();
9522   // Treat a GlobalAddress supporting constant offset folding as a
9523   // constant integer.
9524   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9525     if (GA->getOpcode() == ISD::GlobalAddress &&
9526         TLI->isOffsetFoldingLegal(GA))
9527       return GA;
9528   return nullptr;
9529 }
9530 
9531 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9532   if (isa<ConstantFPSDNode>(N))
9533     return N.getNode();
9534 
9535   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9536     return N.getNode();
9537 
9538   return nullptr;
9539 }
9540 
9541 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9542   assert(!Node->OperandList && "Node already has operands");
9543   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9544          "too many operands to fit into SDNode");
9545   SDUse *Ops = OperandRecycler.allocate(
9546       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9547 
9548   bool IsDivergent = false;
9549   for (unsigned I = 0; I != Vals.size(); ++I) {
9550     Ops[I].setUser(Node);
9551     Ops[I].setInitial(Vals[I]);
9552     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9553       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9554   }
9555   Node->NumOperands = Vals.size();
9556   Node->OperandList = Ops;
9557   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9558   if (!TLI->isSDNodeAlwaysUniform(Node))
9559     Node->SDNodeBits.IsDivergent = IsDivergent;
9560   checkForCycles(Node);
9561 }
9562 
9563 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9564                                      SmallVectorImpl<SDValue> &Vals) {
9565   size_t Limit = SDNode::getMaxNumOperands();
9566   while (Vals.size() > Limit) {
9567     unsigned SliceIdx = Vals.size() - Limit;
9568     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9569     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9570     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9571     Vals.emplace_back(NewTF);
9572   }
9573   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9574 }
9575 
9576 #ifndef NDEBUG
9577 static void checkForCyclesHelper(const SDNode *N,
9578                                  SmallPtrSetImpl<const SDNode*> &Visited,
9579                                  SmallPtrSetImpl<const SDNode*> &Checked,
9580                                  const llvm::SelectionDAG *DAG) {
9581   // If this node has already been checked, don't check it again.
9582   if (Checked.count(N))
9583     return;
9584 
9585   // If a node has already been visited on this depth-first walk, reject it as
9586   // a cycle.
9587   if (!Visited.insert(N).second) {
9588     errs() << "Detected cycle in SelectionDAG\n";
9589     dbgs() << "Offending node:\n";
9590     N->dumprFull(DAG); dbgs() << "\n";
9591     abort();
9592   }
9593 
9594   for (const SDValue &Op : N->op_values())
9595     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9596 
9597   Checked.insert(N);
9598   Visited.erase(N);
9599 }
9600 #endif
9601 
9602 void llvm::checkForCycles(const llvm::SDNode *N,
9603                           const llvm::SelectionDAG *DAG,
9604                           bool force) {
9605 #ifndef NDEBUG
9606   bool check = force;
9607 #ifdef EXPENSIVE_CHECKS
9608   check = true;
9609 #endif  // EXPENSIVE_CHECKS
9610   if (check) {
9611     assert(N && "Checking nonexistent SDNode");
9612     SmallPtrSet<const SDNode*, 32> visited;
9613     SmallPtrSet<const SDNode*, 32> checked;
9614     checkForCyclesHelper(N, visited, checked, DAG);
9615   }
9616 #endif  // !NDEBUG
9617 }
9618 
9619 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9620   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9621 }
9622