1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs, bool AllowTypeMismatch) { 298 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType())) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 863 ESN->getSymbol(), ESN->getTargetFlags())); 864 break; 865 } 866 case ISD::MCSymbol: { 867 auto *MCSN = cast<MCSymbolSDNode>(N); 868 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 869 break; 870 } 871 case ISD::VALUETYPE: { 872 EVT VT = cast<VTSDNode>(N)->getVT(); 873 if (VT.isExtended()) { 874 Erased = ExtendedValueTypeNodes.erase(VT); 875 } else { 876 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 877 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 878 } 879 break; 880 } 881 default: 882 // Remove it from the CSE Map. 883 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 884 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 885 Erased = CSEMap.RemoveNode(N); 886 break; 887 } 888 #ifndef NDEBUG 889 // Verify that the node was actually in one of the CSE maps, unless it has a 890 // flag result (which cannot be CSE'd) or is one of the special cases that are 891 // not subject to CSE. 892 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 893 !N->isMachineOpcode() && !doNotCSE(N)) { 894 N->dump(this); 895 dbgs() << "\n"; 896 llvm_unreachable("Node is not in map!"); 897 } 898 #endif 899 return Erased; 900 } 901 902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 903 /// maps and modified in place. Add it back to the CSE maps, unless an identical 904 /// node already exists, in which case transfer all its users to the existing 905 /// node. This transfer can potentially trigger recursive merging. 906 void 907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 908 // For node types that aren't CSE'd, just act as if no identical node 909 // already exists. 910 if (!doNotCSE(N)) { 911 SDNode *Existing = CSEMap.GetOrInsertNode(N); 912 if (Existing != N) { 913 // If there was already an existing matching node, use ReplaceAllUsesWith 914 // to replace the dead one with the existing one. This can cause 915 // recursive merging of other unrelated nodes down the line. 916 ReplaceAllUsesWith(N, Existing); 917 918 // N is now dead. Inform the listeners and delete it. 919 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 920 DUL->NodeDeleted(N, Existing); 921 DeleteNodeNotInCSEMaps(N); 922 return; 923 } 924 } 925 926 // If the node doesn't already exist, we updated it. Inform listeners. 927 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 928 DUL->NodeUpdated(N); 929 } 930 931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 932 /// were replaced with those specified. If this node is never memoized, 933 /// return null, otherwise return a pointer to the slot it would take. If a 934 /// node already exists with these operands, the slot will be non-null. 935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 936 void *&InsertPos) { 937 if (doNotCSE(N)) 938 return nullptr; 939 940 SDValue Ops[] = { Op }; 941 FoldingSetNodeID ID; 942 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 943 AddNodeIDCustom(ID, N); 944 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 945 if (Node) 946 Node->intersectFlagsWith(N->getFlags()); 947 return Node; 948 } 949 950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 951 /// were replaced with those specified. If this node is never memoized, 952 /// return null, otherwise return a pointer to the slot it would take. If a 953 /// node already exists with these operands, the slot will be non-null. 954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 955 SDValue Op1, SDValue Op2, 956 void *&InsertPos) { 957 if (doNotCSE(N)) 958 return nullptr; 959 960 SDValue Ops[] = { Op1, Op2 }; 961 FoldingSetNodeID ID; 962 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 963 AddNodeIDCustom(ID, N); 964 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 965 if (Node) 966 Node->intersectFlagsWith(N->getFlags()); 967 return Node; 968 } 969 970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 971 /// were replaced with those specified. If this node is never memoized, 972 /// return null, otherwise return a pointer to the slot it would take. If a 973 /// node already exists with these operands, the slot will be non-null. 974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 975 void *&InsertPos) { 976 if (doNotCSE(N)) 977 return nullptr; 978 979 FoldingSetNodeID ID; 980 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 981 AddNodeIDCustom(ID, N); 982 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 983 if (Node) 984 Node->intersectFlagsWith(N->getFlags()); 985 return Node; 986 } 987 988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 989 Type *Ty = VT == MVT::iPTR ? 990 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 991 VT.getTypeForEVT(*getContext()); 992 993 return getDataLayout().getABITypeAlignment(Ty); 994 } 995 996 // EntryNode could meaningfully have debug info if we can find it... 997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 998 : TM(tm), OptLevel(OL), 999 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1000 Root(getEntryNode()) { 1001 InsertNode(&EntryNode); 1002 DbgInfo = new SDDbgInfo(); 1003 } 1004 1005 void SelectionDAG::init(MachineFunction &NewMF, 1006 OptimizationRemarkEmitter &NewORE, 1007 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1008 LegacyDivergenceAnalysis * Divergence) { 1009 MF = &NewMF; 1010 SDAGISelPass = PassPtr; 1011 ORE = &NewORE; 1012 TLI = getSubtarget().getTargetLowering(); 1013 TSI = getSubtarget().getSelectionDAGInfo(); 1014 LibInfo = LibraryInfo; 1015 Context = &MF->getFunction().getContext(); 1016 DA = Divergence; 1017 } 1018 1019 SelectionDAG::~SelectionDAG() { 1020 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1021 allnodes_clear(); 1022 OperandRecycler.clear(OperandAllocator); 1023 delete DbgInfo; 1024 } 1025 1026 void SelectionDAG::allnodes_clear() { 1027 assert(&*AllNodes.begin() == &EntryNode); 1028 AllNodes.remove(AllNodes.begin()); 1029 while (!AllNodes.empty()) 1030 DeallocateNode(&AllNodes.front()); 1031 #ifndef NDEBUG 1032 NextPersistentId = 0; 1033 #endif 1034 } 1035 1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1037 void *&InsertPos) { 1038 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1039 if (N) { 1040 switch (N->getOpcode()) { 1041 default: break; 1042 case ISD::Constant: 1043 case ISD::ConstantFP: 1044 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1045 "debug location. Use another overload."); 1046 } 1047 } 1048 return N; 1049 } 1050 1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1052 const SDLoc &DL, void *&InsertPos) { 1053 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1054 if (N) { 1055 switch (N->getOpcode()) { 1056 case ISD::Constant: 1057 case ISD::ConstantFP: 1058 // Erase debug location from the node if the node is used at several 1059 // different places. Do not propagate one location to all uses as it 1060 // will cause a worse single stepping debugging experience. 1061 if (N->getDebugLoc() != DL.getDebugLoc()) 1062 N->setDebugLoc(DebugLoc()); 1063 break; 1064 default: 1065 // When the node's point of use is located earlier in the instruction 1066 // sequence than its prior point of use, update its debug info to the 1067 // earlier location. 1068 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1069 N->setDebugLoc(DL.getDebugLoc()); 1070 break; 1071 } 1072 } 1073 return N; 1074 } 1075 1076 void SelectionDAG::clear() { 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 OperandAllocator.Reset(); 1080 CSEMap.clear(); 1081 1082 ExtendedValueTypeNodes.clear(); 1083 ExternalSymbols.clear(); 1084 TargetExternalSymbols.clear(); 1085 MCSymbols.clear(); 1086 SDCallSiteDbgInfo.clear(); 1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1088 static_cast<CondCodeSDNode*>(nullptr)); 1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1090 static_cast<SDNode*>(nullptr)); 1091 1092 EntryNode.UseList = nullptr; 1093 InsertNode(&EntryNode); 1094 Root = getEntryNode(); 1095 DbgInfo->clear(); 1096 } 1097 1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) 1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1102 } 1103 1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1123 EVT OpVT) { 1124 if (VT.bitsLE(Op.getValueType())) 1125 return getNode(ISD::TRUNCATE, SL, VT, Op); 1126 1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1129 } 1130 1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1132 assert(!VT.isVector() && 1133 "getZeroExtendInReg should use the vector element type instead of " 1134 "the vector type!"); 1135 if (Op.getValueType().getScalarType() == VT) return Op; 1136 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1137 APInt Imm = APInt::getLowBitsSet(BitWidth, 1138 VT.getSizeInBits()); 1139 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1140 getConstant(Imm, DL, Op.getValueType())); 1141 } 1142 1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 // Only unsigned pointer semantics are supported right now. In the future this 1145 // might delegate to TLI to check pointer signedness. 1146 return getZExtOrTrunc(Op, DL, VT); 1147 } 1148 1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1150 // Only unsigned pointer semantics are supported right now. In the future this 1151 // might delegate to TLI to check pointer signedness. 1152 return getZeroExtendInReg(Op, DL, VT); 1153 } 1154 1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 EVT EltVT = VT.getScalarType(); 1158 SDValue NegOne = 1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1160 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1161 } 1162 1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1166 } 1167 1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1169 EVT OpVT) { 1170 if (!V) 1171 return getConstant(0, DL, VT); 1172 1173 switch (TLI->getBooleanContents(OpVT)) { 1174 case TargetLowering::ZeroOrOneBooleanContent: 1175 case TargetLowering::UndefinedBooleanContent: 1176 return getConstant(1, DL, VT); 1177 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1178 return getAllOnesConstant(DL, VT); 1179 } 1180 llvm_unreachable("Unexpected boolean content enum!"); 1181 } 1182 1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1184 bool isT, bool isO) { 1185 EVT EltVT = VT.getScalarType(); 1186 assert((EltVT.getSizeInBits() >= 64 || 1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1188 "getConstant with a uint64_t value that doesn't fit in the type!"); 1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1190 } 1191 1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1193 bool isT, bool isO) { 1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1195 } 1196 1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1198 EVT VT, bool isT, bool isO) { 1199 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1200 1201 EVT EltVT = VT.getScalarType(); 1202 const ConstantInt *Elt = &Val; 1203 1204 // In some cases the vector type is legal but the element type is illegal and 1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1206 // inserted value (the type does not need to match the vector element type). 1207 // Any extra bits introduced will be truncated away. 1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1209 TargetLowering::TypePromoteInteger) { 1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1212 Elt = ConstantInt::get(*getContext(), NewVal); 1213 } 1214 // In other cases the element type is illegal and needs to be expanded, for 1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1216 // the value into n parts and use a vector type with n-times the elements. 1217 // Then bitcast to the type requested. 1218 // Legalizing constants too early makes the DAGCombiner's job harder so we 1219 // only legalize if the DAG tells us we must produce legal types. 1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1221 TLI->getTypeAction(*getContext(), EltVT) == 1222 TargetLowering::TypeExpandInteger) { 1223 const APInt &NewVal = Elt->getValue(); 1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1228 1229 // Check the temporary vector is the correct size. If this fails then 1230 // getTypeToTransformTo() probably returned a type whose size (in bits) 1231 // isn't a power-of-2 factor of the requested type size. 1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1233 1234 SmallVector<SDValue, 2> EltParts; 1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1237 .zextOrTrunc(ViaEltSizeInBits), DL, 1238 ViaEltVT, isT, isO)); 1239 } 1240 1241 // EltParts is currently in little endian order. If we actually want 1242 // big-endian order then reverse it now. 1243 if (getDataLayout().isBigEndian()) 1244 std::reverse(EltParts.begin(), EltParts.end()); 1245 1246 // The elements must be reversed when the element order is different 1247 // to the endianness of the elements (because the BITCAST is itself a 1248 // vector shuffle in this situation). However, we do not need any code to 1249 // perform this reversal because getConstant() is producing a vector 1250 // splat. 1251 // This situation occurs in MIPS MSA. 1252 1253 SmallVector<SDValue, 8> Ops; 1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1256 1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1258 return V; 1259 } 1260 1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1262 "APInt size does not match type size!"); 1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1264 FoldingSetNodeID ID; 1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1266 ID.AddPointer(Elt); 1267 ID.AddBoolean(isO); 1268 void *IP = nullptr; 1269 SDNode *N = nullptr; 1270 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1271 if (!VT.isVector()) 1272 return SDValue(N, 0); 1273 1274 if (!N) { 1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1276 CSEMap.InsertNode(N, IP); 1277 InsertNode(N); 1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1279 } 1280 1281 SDValue Result(N, 0); 1282 if (VT.isVector()) 1283 Result = getSplatBuildVector(VT, DL, Result); 1284 1285 return Result; 1286 } 1287 1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1289 bool isTarget) { 1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1291 } 1292 1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1294 const SDLoc &DL, bool LegalTypes) { 1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1296 return getConstant(Val, DL, ShiftVT); 1297 } 1298 1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1300 bool isTarget) { 1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1302 } 1303 1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1305 EVT VT, bool isTarget) { 1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1307 1308 EVT EltVT = VT.getScalarType(); 1309 1310 // Do the map lookup using the actual bit pattern for the floating point 1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1312 // we don't have issues with SNANs. 1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1316 ID.AddPointer(&V); 1317 void *IP = nullptr; 1318 SDNode *N = nullptr; 1319 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1320 if (!VT.isVector()) 1321 return SDValue(N, 0); 1322 1323 if (!N) { 1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1325 CSEMap.InsertNode(N, IP); 1326 InsertNode(N); 1327 } 1328 1329 SDValue Result(N, 0); 1330 if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1337 bool isTarget) { 1338 EVT EltVT = VT.getScalarType(); 1339 if (EltVT == MVT::f32) 1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1341 else if (EltVT == MVT::f64) 1342 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1344 EltVT == MVT::f16) { 1345 bool Ignored; 1346 APFloat APF = APFloat(Val); 1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1348 &Ignored); 1349 return getConstantFP(APF, DL, VT, isTarget); 1350 } else 1351 llvm_unreachable("Unsupported type in getConstantFP"); 1352 } 1353 1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1355 EVT VT, int64_t Offset, bool isTargetGA, 1356 unsigned TargetFlags) { 1357 assert((TargetFlags == 0 || isTargetGA) && 1358 "Cannot set target flags on target-independent globals"); 1359 1360 // Truncate (with sign-extension) the offset value to the pointer size. 1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1362 if (BitWidth < 64) 1363 Offset = SignExtend64(Offset, BitWidth); 1364 1365 unsigned Opc; 1366 if (GV->isThreadLocal()) 1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1368 else 1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1370 1371 FoldingSetNodeID ID; 1372 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1373 ID.AddPointer(GV); 1374 ID.AddInteger(Offset); 1375 ID.AddInteger(TargetFlags); 1376 void *IP = nullptr; 1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1378 return SDValue(E, 0); 1379 1380 auto *N = newSDNode<GlobalAddressSDNode>( 1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1382 CSEMap.InsertNode(N, IP); 1383 InsertNode(N); 1384 return SDValue(N, 0); 1385 } 1386 1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1389 FoldingSetNodeID ID; 1390 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1391 ID.AddInteger(FI); 1392 void *IP = nullptr; 1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1394 return SDValue(E, 0); 1395 1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1397 CSEMap.InsertNode(N, IP); 1398 InsertNode(N); 1399 return SDValue(N, 0); 1400 } 1401 1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1403 unsigned TargetFlags) { 1404 assert((TargetFlags == 0 || isTarget) && 1405 "Cannot set target flags on target-independent jump tables"); 1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1407 FoldingSetNodeID ID; 1408 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1409 ID.AddInteger(JTI); 1410 ID.AddInteger(TargetFlags); 1411 void *IP = nullptr; 1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1413 return SDValue(E, 0); 1414 1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1416 CSEMap.InsertNode(N, IP); 1417 InsertNode(N); 1418 return SDValue(N, 0); 1419 } 1420 1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1422 unsigned Alignment, int Offset, 1423 bool isTarget, 1424 unsigned TargetFlags) { 1425 assert((TargetFlags == 0 || isTarget) && 1426 "Cannot set target flags on target-independent globals"); 1427 if (Alignment == 0) 1428 Alignment = MF->getFunction().hasOptSize() 1429 ? getDataLayout().getABITypeAlignment(C->getType()) 1430 : getDataLayout().getPrefTypeAlignment(C->getType()); 1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1432 FoldingSetNodeID ID; 1433 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1434 ID.AddInteger(Alignment); 1435 ID.AddInteger(Offset); 1436 ID.AddPointer(C); 1437 ID.AddInteger(TargetFlags); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1443 TargetFlags); 1444 CSEMap.InsertNode(N, IP); 1445 InsertNode(N); 1446 return SDValue(N, 0); 1447 } 1448 1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1450 unsigned Alignment, int Offset, 1451 bool isTarget, 1452 unsigned TargetFlags) { 1453 assert((TargetFlags == 0 || isTarget) && 1454 "Cannot set target flags on target-independent globals"); 1455 if (Alignment == 0) 1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1458 FoldingSetNodeID ID; 1459 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1460 ID.AddInteger(Alignment); 1461 ID.AddInteger(Offset); 1462 C->addSelectionDAGCSEId(ID); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1469 TargetFlags); 1470 CSEMap.InsertNode(N, IP); 1471 InsertNode(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1476 unsigned TargetFlags) { 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1479 ID.AddInteger(Index); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1495 ID.AddPointer(MBB); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getValueType(EVT VT) { 1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1508 ValueTypeNodes.size()) 1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1510 1511 SDNode *&N = VT.isExtended() ? 1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1513 1514 if (N) return SDValue(N, 0); 1515 N = newSDNode<VTSDNode>(VT); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1521 SDNode *&N = ExternalSymbols[Sym]; 1522 if (N) return SDValue(N, 0); 1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1529 SDNode *&N = MCSymbols[Sym]; 1530 if (N) 1531 return SDValue(N, 0); 1532 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1533 InsertNode(N); 1534 return SDValue(N, 0); 1535 } 1536 1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1538 unsigned TargetFlags) { 1539 SDNode *&N = 1540 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1541 if (N) return SDValue(N, 0); 1542 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1548 if ((unsigned)Cond >= CondCodeNodes.size()) 1549 CondCodeNodes.resize(Cond+1); 1550 1551 if (!CondCodeNodes[Cond]) { 1552 auto *N = newSDNode<CondCodeSDNode>(Cond); 1553 CondCodeNodes[Cond] = N; 1554 InsertNode(N); 1555 } 1556 1557 return SDValue(CondCodeNodes[Cond], 0); 1558 } 1559 1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1563 std::swap(N1, N2); 1564 ShuffleVectorSDNode::commuteMask(M); 1565 } 1566 1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1568 SDValue N2, ArrayRef<int> Mask) { 1569 assert(VT.getVectorNumElements() == Mask.size() && 1570 "Must have the same number of vector elements as mask elements!"); 1571 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1572 "Invalid VECTOR_SHUFFLE"); 1573 1574 // Canonicalize shuffle undef, undef -> undef 1575 if (N1.isUndef() && N2.isUndef()) 1576 return getUNDEF(VT); 1577 1578 // Validate that all indices in Mask are within the range of the elements 1579 // input to the shuffle. 1580 int NElts = Mask.size(); 1581 assert(llvm::all_of(Mask, 1582 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1583 "Index out of range"); 1584 1585 // Copy the mask so we can do any needed cleanup. 1586 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1587 1588 // Canonicalize shuffle v, v -> v, undef 1589 if (N1 == N2) { 1590 N2 = getUNDEF(VT); 1591 for (int i = 0; i != NElts; ++i) 1592 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1593 } 1594 1595 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1596 if (N1.isUndef()) 1597 commuteShuffle(N1, N2, MaskVec); 1598 1599 if (TLI->hasVectorBlend()) { 1600 // If shuffling a splat, try to blend the splat instead. We do this here so 1601 // that even when this arises during lowering we don't have to re-handle it. 1602 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1603 BitVector UndefElements; 1604 SDValue Splat = BV->getSplatValue(&UndefElements); 1605 if (!Splat) 1606 return; 1607 1608 for (int i = 0; i < NElts; ++i) { 1609 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1610 continue; 1611 1612 // If this input comes from undef, mark it as such. 1613 if (UndefElements[MaskVec[i] - Offset]) { 1614 MaskVec[i] = -1; 1615 continue; 1616 } 1617 1618 // If we can blend a non-undef lane, use that instead. 1619 if (!UndefElements[i]) 1620 MaskVec[i] = i + Offset; 1621 } 1622 }; 1623 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1624 BlendSplat(N1BV, 0); 1625 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1626 BlendSplat(N2BV, NElts); 1627 } 1628 1629 // Canonicalize all index into lhs, -> shuffle lhs, undef 1630 // Canonicalize all index into rhs, -> shuffle rhs, undef 1631 bool AllLHS = true, AllRHS = true; 1632 bool N2Undef = N2.isUndef(); 1633 for (int i = 0; i != NElts; ++i) { 1634 if (MaskVec[i] >= NElts) { 1635 if (N2Undef) 1636 MaskVec[i] = -1; 1637 else 1638 AllLHS = false; 1639 } else if (MaskVec[i] >= 0) { 1640 AllRHS = false; 1641 } 1642 } 1643 if (AllLHS && AllRHS) 1644 return getUNDEF(VT); 1645 if (AllLHS && !N2Undef) 1646 N2 = getUNDEF(VT); 1647 if (AllRHS) { 1648 N1 = getUNDEF(VT); 1649 commuteShuffle(N1, N2, MaskVec); 1650 } 1651 // Reset our undef status after accounting for the mask. 1652 N2Undef = N2.isUndef(); 1653 // Re-check whether both sides ended up undef. 1654 if (N1.isUndef() && N2Undef) 1655 return getUNDEF(VT); 1656 1657 // If Identity shuffle return that node. 1658 bool Identity = true, AllSame = true; 1659 for (int i = 0; i != NElts; ++i) { 1660 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1661 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1662 } 1663 if (Identity && NElts) 1664 return N1; 1665 1666 // Shuffling a constant splat doesn't change the result. 1667 if (N2Undef) { 1668 SDValue V = N1; 1669 1670 // Look through any bitcasts. We check that these don't change the number 1671 // (and size) of elements and just changes their types. 1672 while (V.getOpcode() == ISD::BITCAST) 1673 V = V->getOperand(0); 1674 1675 // A splat should always show up as a build vector node. 1676 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1677 BitVector UndefElements; 1678 SDValue Splat = BV->getSplatValue(&UndefElements); 1679 // If this is a splat of an undef, shuffling it is also undef. 1680 if (Splat && Splat.isUndef()) 1681 return getUNDEF(VT); 1682 1683 bool SameNumElts = 1684 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1685 1686 // We only have a splat which can skip shuffles if there is a splatted 1687 // value and no undef lanes rearranged by the shuffle. 1688 if (Splat && UndefElements.none()) { 1689 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1690 // number of elements match or the value splatted is a zero constant. 1691 if (SameNumElts) 1692 return N1; 1693 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1694 if (C->isNullValue()) 1695 return N1; 1696 } 1697 1698 // If the shuffle itself creates a splat, build the vector directly. 1699 if (AllSame && SameNumElts) { 1700 EVT BuildVT = BV->getValueType(0); 1701 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1702 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1703 1704 // We may have jumped through bitcasts, so the type of the 1705 // BUILD_VECTOR may not match the type of the shuffle. 1706 if (BuildVT != VT) 1707 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1708 return NewBV; 1709 } 1710 } 1711 } 1712 1713 FoldingSetNodeID ID; 1714 SDValue Ops[2] = { N1, N2 }; 1715 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1716 for (int i = 0; i != NElts; ++i) 1717 ID.AddInteger(MaskVec[i]); 1718 1719 void* IP = nullptr; 1720 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1721 return SDValue(E, 0); 1722 1723 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1724 // SDNode doesn't have access to it. This memory will be "leaked" when 1725 // the node is deallocated, but recovered when the NodeAllocator is released. 1726 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1727 llvm::copy(MaskVec, MaskAlloc); 1728 1729 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1730 dl.getDebugLoc(), MaskAlloc); 1731 createOperands(N, Ops); 1732 1733 CSEMap.InsertNode(N, IP); 1734 InsertNode(N); 1735 SDValue V = SDValue(N, 0); 1736 NewSDValueDbgMsg(V, "Creating new node: ", this); 1737 return V; 1738 } 1739 1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1741 EVT VT = SV.getValueType(0); 1742 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1743 ShuffleVectorSDNode::commuteMask(MaskVec); 1744 1745 SDValue Op0 = SV.getOperand(0); 1746 SDValue Op1 = SV.getOperand(1); 1747 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1748 } 1749 1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1751 FoldingSetNodeID ID; 1752 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1753 ID.AddInteger(RegNo); 1754 void *IP = nullptr; 1755 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1756 return SDValue(E, 0); 1757 1758 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1759 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1760 CSEMap.InsertNode(N, IP); 1761 InsertNode(N); 1762 return SDValue(N, 0); 1763 } 1764 1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1766 FoldingSetNodeID ID; 1767 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1768 ID.AddPointer(RegMask); 1769 void *IP = nullptr; 1770 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1771 return SDValue(E, 0); 1772 1773 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1780 MCSymbol *Label) { 1781 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1782 } 1783 1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1785 SDValue Root, MCSymbol *Label) { 1786 FoldingSetNodeID ID; 1787 SDValue Ops[] = { Root }; 1788 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1789 ID.AddPointer(Label); 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = 1795 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1796 createOperands(N, Ops); 1797 1798 CSEMap.InsertNode(N, IP); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1804 int64_t Offset, bool isTarget, 1805 unsigned TargetFlags) { 1806 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1807 1808 FoldingSetNodeID ID; 1809 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1810 ID.AddPointer(BA); 1811 ID.AddInteger(Offset); 1812 ID.AddInteger(TargetFlags); 1813 void *IP = nullptr; 1814 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1815 return SDValue(E, 0); 1816 1817 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1818 CSEMap.InsertNode(N, IP); 1819 InsertNode(N); 1820 return SDValue(N, 0); 1821 } 1822 1823 SDValue SelectionDAG::getSrcValue(const Value *V) { 1824 assert((!V || V->getType()->isPointerTy()) && 1825 "SrcValue is not a pointer?"); 1826 1827 FoldingSetNodeID ID; 1828 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1829 ID.AddPointer(V); 1830 1831 void *IP = nullptr; 1832 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1833 return SDValue(E, 0); 1834 1835 auto *N = newSDNode<SrcValueSDNode>(V); 1836 CSEMap.InsertNode(N, IP); 1837 InsertNode(N); 1838 return SDValue(N, 0); 1839 } 1840 1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1844 ID.AddPointer(MD); 1845 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = newSDNode<MDNodeSDNode>(MD); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1857 if (VT == V.getValueType()) 1858 return V; 1859 1860 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1861 } 1862 1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1864 unsigned SrcAS, unsigned DestAS) { 1865 SDValue Ops[] = {Ptr}; 1866 FoldingSetNodeID ID; 1867 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1868 ID.AddInteger(SrcAS); 1869 ID.AddInteger(DestAS); 1870 1871 void *IP = nullptr; 1872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1873 return SDValue(E, 0); 1874 1875 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1876 VT, SrcAS, DestAS); 1877 createOperands(N, Ops); 1878 1879 CSEMap.InsertNode(N, IP); 1880 InsertNode(N); 1881 return SDValue(N, 0); 1882 } 1883 1884 /// getShiftAmountOperand - Return the specified value casted to 1885 /// the target's desired shift amount type. 1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1887 EVT OpTy = Op.getValueType(); 1888 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1889 if (OpTy == ShTy || OpTy.isVector()) return Op; 1890 1891 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1892 } 1893 1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1895 SDLoc dl(Node); 1896 const TargetLowering &TLI = getTargetLoweringInfo(); 1897 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1898 EVT VT = Node->getValueType(0); 1899 SDValue Tmp1 = Node->getOperand(0); 1900 SDValue Tmp2 = Node->getOperand(1); 1901 const llvm::MaybeAlign MA(Node->getConstantOperandVal(3)); 1902 1903 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1904 Tmp2, MachinePointerInfo(V)); 1905 SDValue VAList = VAListLoad; 1906 1907 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1908 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1909 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1910 1911 VAList = 1912 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1913 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1914 } 1915 1916 // Increment the pointer, VAList, to the next vaarg 1917 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1918 getConstant(getDataLayout().getTypeAllocSize( 1919 VT.getTypeForEVT(*getContext())), 1920 dl, VAList.getValueType())); 1921 // Store the incremented VAList to the legalized pointer 1922 Tmp1 = 1923 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1924 // Load the actual argument out of the pointer VAList 1925 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1926 } 1927 1928 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1929 SDLoc dl(Node); 1930 const TargetLowering &TLI = getTargetLoweringInfo(); 1931 // This defaults to loading a pointer from the input and storing it to the 1932 // output, returning the chain. 1933 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1934 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1935 SDValue Tmp1 = 1936 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1937 Node->getOperand(2), MachinePointerInfo(VS)); 1938 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1939 MachinePointerInfo(VD)); 1940 } 1941 1942 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1943 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1944 unsigned ByteSize = VT.getStoreSize(); 1945 Type *Ty = VT.getTypeForEVT(*getContext()); 1946 unsigned StackAlign = 1947 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1948 1949 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1950 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1951 } 1952 1953 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1954 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1955 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1956 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1957 const DataLayout &DL = getDataLayout(); 1958 unsigned Align = 1959 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1960 1961 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1962 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1963 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1964 } 1965 1966 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1967 ISD::CondCode Cond, const SDLoc &dl) { 1968 EVT OpVT = N1.getValueType(); 1969 1970 // These setcc operations always fold. 1971 switch (Cond) { 1972 default: break; 1973 case ISD::SETFALSE: 1974 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1975 case ISD::SETTRUE: 1976 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1977 1978 case ISD::SETOEQ: 1979 case ISD::SETOGT: 1980 case ISD::SETOGE: 1981 case ISD::SETOLT: 1982 case ISD::SETOLE: 1983 case ISD::SETONE: 1984 case ISD::SETO: 1985 case ISD::SETUO: 1986 case ISD::SETUEQ: 1987 case ISD::SETUNE: 1988 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1989 break; 1990 } 1991 1992 if (OpVT.isInteger()) { 1993 // For EQ and NE, we can always pick a value for the undef to make the 1994 // predicate pass or fail, so we can return undef. 1995 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1996 // icmp eq/ne X, undef -> undef. 1997 if ((N1.isUndef() || N2.isUndef()) && 1998 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 1999 return getUNDEF(VT); 2000 2001 // If both operands are undef, we can return undef for int comparison. 2002 // icmp undef, undef -> undef. 2003 if (N1.isUndef() && N2.isUndef()) 2004 return getUNDEF(VT); 2005 2006 // icmp X, X -> true/false 2007 // icmp X, undef -> true/false because undef could be X. 2008 if (N1 == N2) 2009 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2010 } 2011 2012 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2013 const APInt &C2 = N2C->getAPIntValue(); 2014 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2015 const APInt &C1 = N1C->getAPIntValue(); 2016 2017 switch (Cond) { 2018 default: llvm_unreachable("Unknown integer setcc!"); 2019 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2020 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2021 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2022 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2023 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2024 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2025 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2026 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2027 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2028 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2029 } 2030 } 2031 } 2032 2033 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2034 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2035 2036 if (N1CFP && N2CFP) { 2037 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2038 switch (Cond) { 2039 default: break; 2040 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2041 return getUNDEF(VT); 2042 LLVM_FALLTHROUGH; 2043 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2044 OpVT); 2045 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2046 return getUNDEF(VT); 2047 LLVM_FALLTHROUGH; 2048 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2049 R==APFloat::cmpLessThan, dl, VT, 2050 OpVT); 2051 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2052 return getUNDEF(VT); 2053 LLVM_FALLTHROUGH; 2054 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2055 OpVT); 2056 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2057 return getUNDEF(VT); 2058 LLVM_FALLTHROUGH; 2059 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2060 VT, OpVT); 2061 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2062 return getUNDEF(VT); 2063 LLVM_FALLTHROUGH; 2064 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2065 R==APFloat::cmpEqual, dl, VT, 2066 OpVT); 2067 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2068 return getUNDEF(VT); 2069 LLVM_FALLTHROUGH; 2070 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2071 R==APFloat::cmpEqual, dl, VT, OpVT); 2072 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2073 OpVT); 2074 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2075 OpVT); 2076 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2077 R==APFloat::cmpEqual, dl, VT, 2078 OpVT); 2079 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2080 OpVT); 2081 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2082 R==APFloat::cmpLessThan, dl, VT, 2083 OpVT); 2084 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2085 R==APFloat::cmpUnordered, dl, VT, 2086 OpVT); 2087 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2088 VT, OpVT); 2089 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2090 OpVT); 2091 } 2092 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2093 // Ensure that the constant occurs on the RHS. 2094 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2095 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2096 return SDValue(); 2097 return getSetCC(dl, VT, N2, N1, SwappedCond); 2098 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2099 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2100 // If an operand is known to be a nan (or undef that could be a nan), we can 2101 // fold it. 2102 // Choosing NaN for the undef will always make unordered comparison succeed 2103 // and ordered comparison fails. 2104 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2105 switch (ISD::getUnorderedFlavor(Cond)) { 2106 default: 2107 llvm_unreachable("Unknown flavor!"); 2108 case 0: // Known false. 2109 return getBoolConstant(false, dl, VT, OpVT); 2110 case 1: // Known true. 2111 return getBoolConstant(true, dl, VT, OpVT); 2112 case 2: // Undefined. 2113 return getUNDEF(VT); 2114 } 2115 } 2116 2117 // Could not fold it. 2118 return SDValue(); 2119 } 2120 2121 /// See if the specified operand can be simplified with the knowledge that only 2122 /// the bits specified by DemandedBits are used. 2123 /// TODO: really we should be making this into the DAG equivalent of 2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2126 EVT VT = V.getValueType(); 2127 APInt DemandedElts = VT.isVector() 2128 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2129 : APInt(1, 1); 2130 return GetDemandedBits(V, DemandedBits, DemandedElts); 2131 } 2132 2133 /// See if the specified operand can be simplified with the knowledge that only 2134 /// the bits specified by DemandedBits are used in the elements specified by 2135 /// DemandedElts. 2136 /// TODO: really we should be making this into the DAG equivalent of 2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2138 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2139 const APInt &DemandedElts) { 2140 switch (V.getOpcode()) { 2141 default: 2142 break; 2143 case ISD::Constant: { 2144 auto *CV = cast<ConstantSDNode>(V.getNode()); 2145 assert(CV && "Const value should be ConstSDNode."); 2146 const APInt &CVal = CV->getAPIntValue(); 2147 APInt NewVal = CVal & DemandedBits; 2148 if (NewVal != CVal) 2149 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2150 break; 2151 } 2152 case ISD::OR: 2153 case ISD::XOR: 2154 case ISD::SIGN_EXTEND_INREG: 2155 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2156 *this, 0); 2157 case ISD::SRL: 2158 // Only look at single-use SRLs. 2159 if (!V.getNode()->hasOneUse()) 2160 break; 2161 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2162 // See if we can recursively simplify the LHS. 2163 unsigned Amt = RHSC->getZExtValue(); 2164 2165 // Watch out for shift count overflow though. 2166 if (Amt >= DemandedBits.getBitWidth()) 2167 break; 2168 APInt SrcDemandedBits = DemandedBits << Amt; 2169 if (SDValue SimplifyLHS = 2170 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2171 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2172 V.getOperand(1)); 2173 } 2174 break; 2175 case ISD::AND: { 2176 // X & -1 -> X (ignoring bits which aren't demanded). 2177 // Also handle the case where masked out bits in X are known to be zero. 2178 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2179 const APInt &AndVal = RHSC->getAPIntValue(); 2180 if (DemandedBits.isSubsetOf(AndVal) || 2181 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2182 AndVal)) 2183 return V.getOperand(0); 2184 } 2185 break; 2186 } 2187 case ISD::ANY_EXTEND: { 2188 SDValue Src = V.getOperand(0); 2189 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2190 // Being conservative here - only peek through if we only demand bits in the 2191 // non-extended source (even though the extended bits are technically 2192 // undef). 2193 if (DemandedBits.getActiveBits() > SrcBitWidth) 2194 break; 2195 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2196 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2197 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2198 break; 2199 } 2200 } 2201 return SDValue(); 2202 } 2203 2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2205 /// use this predicate to simplify operations downstream. 2206 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2207 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2208 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2209 } 2210 2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2212 /// this predicate to simplify operations downstream. Mask is known to be zero 2213 /// for bits that V cannot have. 2214 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2215 unsigned Depth) const { 2216 EVT VT = V.getValueType(); 2217 APInt DemandedElts = VT.isVector() 2218 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2219 : APInt(1, 1); 2220 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2221 } 2222 2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2224 /// DemandedElts. We use this predicate to simplify operations downstream. 2225 /// Mask is known to be zero for bits that V cannot have. 2226 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2227 const APInt &DemandedElts, 2228 unsigned Depth) const { 2229 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2230 } 2231 2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2234 unsigned Depth) const { 2235 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2236 } 2237 2238 /// isSplatValue - Return true if the vector V has the same value 2239 /// across all DemandedElts. 2240 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2241 APInt &UndefElts) { 2242 if (!DemandedElts) 2243 return false; // No demanded elts, better to assume we don't know anything. 2244 2245 EVT VT = V.getValueType(); 2246 assert(VT.isVector() && "Vector type expected"); 2247 2248 unsigned NumElts = VT.getVectorNumElements(); 2249 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2250 UndefElts = APInt::getNullValue(NumElts); 2251 2252 switch (V.getOpcode()) { 2253 case ISD::BUILD_VECTOR: { 2254 SDValue Scl; 2255 for (unsigned i = 0; i != NumElts; ++i) { 2256 SDValue Op = V.getOperand(i); 2257 if (Op.isUndef()) { 2258 UndefElts.setBit(i); 2259 continue; 2260 } 2261 if (!DemandedElts[i]) 2262 continue; 2263 if (Scl && Scl != Op) 2264 return false; 2265 Scl = Op; 2266 } 2267 return true; 2268 } 2269 case ISD::VECTOR_SHUFFLE: { 2270 // Check if this is a shuffle node doing a splat. 2271 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2272 int SplatIndex = -1; 2273 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2274 for (int i = 0; i != (int)NumElts; ++i) { 2275 int M = Mask[i]; 2276 if (M < 0) { 2277 UndefElts.setBit(i); 2278 continue; 2279 } 2280 if (!DemandedElts[i]) 2281 continue; 2282 if (0 <= SplatIndex && SplatIndex != M) 2283 return false; 2284 SplatIndex = M; 2285 } 2286 return true; 2287 } 2288 case ISD::EXTRACT_SUBVECTOR: { 2289 SDValue Src = V.getOperand(0); 2290 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2291 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2292 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2293 // Offset the demanded elts by the subvector index. 2294 uint64_t Idx = SubIdx->getZExtValue(); 2295 APInt UndefSrcElts; 2296 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2297 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2298 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2299 return true; 2300 } 2301 } 2302 break; 2303 } 2304 case ISD::ADD: 2305 case ISD::SUB: 2306 case ISD::AND: { 2307 APInt UndefLHS, UndefRHS; 2308 SDValue LHS = V.getOperand(0); 2309 SDValue RHS = V.getOperand(1); 2310 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2311 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2312 UndefElts = UndefLHS | UndefRHS; 2313 return true; 2314 } 2315 break; 2316 } 2317 } 2318 2319 return false; 2320 } 2321 2322 /// Helper wrapper to main isSplatValue function. 2323 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2324 EVT VT = V.getValueType(); 2325 assert(VT.isVector() && "Vector type expected"); 2326 unsigned NumElts = VT.getVectorNumElements(); 2327 2328 APInt UndefElts; 2329 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2330 return isSplatValue(V, DemandedElts, UndefElts) && 2331 (AllowUndefs || !UndefElts); 2332 } 2333 2334 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2335 V = peekThroughExtractSubvectors(V); 2336 2337 EVT VT = V.getValueType(); 2338 unsigned Opcode = V.getOpcode(); 2339 switch (Opcode) { 2340 default: { 2341 APInt UndefElts; 2342 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2343 if (isSplatValue(V, DemandedElts, UndefElts)) { 2344 // Handle case where all demanded elements are UNDEF. 2345 if (DemandedElts.isSubsetOf(UndefElts)) { 2346 SplatIdx = 0; 2347 return getUNDEF(VT); 2348 } 2349 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2350 return V; 2351 } 2352 break; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 // Check if this is a shuffle node doing a splat. 2356 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2357 // getTargetVShiftNode currently struggles without the splat source. 2358 auto *SVN = cast<ShuffleVectorSDNode>(V); 2359 if (!SVN->isSplat()) 2360 break; 2361 int Idx = SVN->getSplatIndex(); 2362 int NumElts = V.getValueType().getVectorNumElements(); 2363 SplatIdx = Idx % NumElts; 2364 return V.getOperand(Idx / NumElts); 2365 } 2366 } 2367 2368 return SDValue(); 2369 } 2370 2371 SDValue SelectionDAG::getSplatValue(SDValue V) { 2372 int SplatIdx; 2373 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2374 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2375 SrcVector.getValueType().getScalarType(), SrcVector, 2376 getIntPtrConstant(SplatIdx, SDLoc(V))); 2377 return SDValue(); 2378 } 2379 2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2381 /// is less than the element bit-width of the shift node, return it. 2382 static const APInt *getValidShiftAmountConstant(SDValue V) { 2383 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2384 // Shifting more than the bitwidth is not valid. 2385 const APInt &ShAmt = SA->getAPIntValue(); 2386 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2387 return &ShAmt; 2388 } 2389 return nullptr; 2390 } 2391 2392 /// Determine which bits of Op are known to be either zero or one and return 2393 /// them in Known. For vectors, the known bits are those that are shared by 2394 /// every vector element. 2395 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2396 EVT VT = Op.getValueType(); 2397 APInt DemandedElts = VT.isVector() 2398 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2399 : APInt(1, 1); 2400 return computeKnownBits(Op, DemandedElts, Depth); 2401 } 2402 2403 /// Determine which bits of Op are known to be either zero or one and return 2404 /// them in Known. The DemandedElts argument allows us to only collect the known 2405 /// bits that are shared by the requested vector elements. 2406 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2407 unsigned Depth) const { 2408 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2409 2410 KnownBits Known(BitWidth); // Don't know anything. 2411 2412 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2413 // We know all of the bits for a constant! 2414 Known.One = C->getAPIntValue(); 2415 Known.Zero = ~Known.One; 2416 return Known; 2417 } 2418 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2419 // We know all of the bits for a constant fp! 2420 Known.One = C->getValueAPF().bitcastToAPInt(); 2421 Known.Zero = ~Known.One; 2422 return Known; 2423 } 2424 2425 if (Depth >= MaxRecursionDepth) 2426 return Known; // Limit search depth. 2427 2428 KnownBits Known2; 2429 unsigned NumElts = DemandedElts.getBitWidth(); 2430 assert((!Op.getValueType().isVector() || 2431 NumElts == Op.getValueType().getVectorNumElements()) && 2432 "Unexpected vector size"); 2433 2434 if (!DemandedElts) 2435 return Known; // No demanded elts, better to assume we don't know anything. 2436 2437 unsigned Opcode = Op.getOpcode(); 2438 switch (Opcode) { 2439 case ISD::BUILD_VECTOR: 2440 // Collect the known bits that are shared by every demanded vector element. 2441 Known.Zero.setAllBits(); Known.One.setAllBits(); 2442 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2443 if (!DemandedElts[i]) 2444 continue; 2445 2446 SDValue SrcOp = Op.getOperand(i); 2447 Known2 = computeKnownBits(SrcOp, Depth + 1); 2448 2449 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2450 if (SrcOp.getValueSizeInBits() != BitWidth) { 2451 assert(SrcOp.getValueSizeInBits() > BitWidth && 2452 "Expected BUILD_VECTOR implicit truncation"); 2453 Known2 = Known2.trunc(BitWidth); 2454 } 2455 2456 // Known bits are the values that are shared by every demanded element. 2457 Known.One &= Known2.One; 2458 Known.Zero &= Known2.Zero; 2459 2460 // If we don't know any bits, early out. 2461 if (Known.isUnknown()) 2462 break; 2463 } 2464 break; 2465 case ISD::VECTOR_SHUFFLE: { 2466 // Collect the known bits that are shared by every vector element referenced 2467 // by the shuffle. 2468 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2469 Known.Zero.setAllBits(); Known.One.setAllBits(); 2470 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2471 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2472 for (unsigned i = 0; i != NumElts; ++i) { 2473 if (!DemandedElts[i]) 2474 continue; 2475 2476 int M = SVN->getMaskElt(i); 2477 if (M < 0) { 2478 // For UNDEF elements, we don't know anything about the common state of 2479 // the shuffle result. 2480 Known.resetAll(); 2481 DemandedLHS.clearAllBits(); 2482 DemandedRHS.clearAllBits(); 2483 break; 2484 } 2485 2486 if ((unsigned)M < NumElts) 2487 DemandedLHS.setBit((unsigned)M % NumElts); 2488 else 2489 DemandedRHS.setBit((unsigned)M % NumElts); 2490 } 2491 // Known bits are the values that are shared by every demanded element. 2492 if (!!DemandedLHS) { 2493 SDValue LHS = Op.getOperand(0); 2494 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2495 Known.One &= Known2.One; 2496 Known.Zero &= Known2.Zero; 2497 } 2498 // If we don't know any bits, early out. 2499 if (Known.isUnknown()) 2500 break; 2501 if (!!DemandedRHS) { 2502 SDValue RHS = Op.getOperand(1); 2503 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2504 Known.One &= Known2.One; 2505 Known.Zero &= Known2.Zero; 2506 } 2507 break; 2508 } 2509 case ISD::CONCAT_VECTORS: { 2510 // Split DemandedElts and test each of the demanded subvectors. 2511 Known.Zero.setAllBits(); Known.One.setAllBits(); 2512 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2513 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2514 unsigned NumSubVectors = Op.getNumOperands(); 2515 for (unsigned i = 0; i != NumSubVectors; ++i) { 2516 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2517 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2518 if (!!DemandedSub) { 2519 SDValue Sub = Op.getOperand(i); 2520 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2521 Known.One &= Known2.One; 2522 Known.Zero &= Known2.Zero; 2523 } 2524 // If we don't know any bits, early out. 2525 if (Known.isUnknown()) 2526 break; 2527 } 2528 break; 2529 } 2530 case ISD::INSERT_SUBVECTOR: { 2531 // If we know the element index, demand any elements from the subvector and 2532 // the remainder from the src its inserted into, otherwise demand them all. 2533 SDValue Src = Op.getOperand(0); 2534 SDValue Sub = Op.getOperand(1); 2535 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2536 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2537 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2538 Known.One.setAllBits(); 2539 Known.Zero.setAllBits(); 2540 uint64_t Idx = SubIdx->getZExtValue(); 2541 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2542 if (!!DemandedSubElts) { 2543 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2544 if (Known.isUnknown()) 2545 break; // early-out. 2546 } 2547 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2548 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2549 if (!!DemandedSrcElts) { 2550 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2551 Known.One &= Known2.One; 2552 Known.Zero &= Known2.Zero; 2553 } 2554 } else { 2555 Known = computeKnownBits(Sub, Depth + 1); 2556 if (Known.isUnknown()) 2557 break; // early-out. 2558 Known2 = computeKnownBits(Src, Depth + 1); 2559 Known.One &= Known2.One; 2560 Known.Zero &= Known2.Zero; 2561 } 2562 break; 2563 } 2564 case ISD::EXTRACT_SUBVECTOR: { 2565 // If we know the element index, just demand that subvector elements, 2566 // otherwise demand them all. 2567 SDValue Src = Op.getOperand(0); 2568 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2569 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2570 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2571 // Offset the demanded elts by the subvector index. 2572 uint64_t Idx = SubIdx->getZExtValue(); 2573 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2574 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2575 } else { 2576 Known = computeKnownBits(Src, Depth + 1); 2577 } 2578 break; 2579 } 2580 case ISD::SCALAR_TO_VECTOR: { 2581 // We know about scalar_to_vector as much as we know about it source, 2582 // which becomes the first element of otherwise unknown vector. 2583 if (DemandedElts != 1) 2584 break; 2585 2586 SDValue N0 = Op.getOperand(0); 2587 Known = computeKnownBits(N0, Depth + 1); 2588 if (N0.getValueSizeInBits() != BitWidth) 2589 Known = Known.trunc(BitWidth); 2590 2591 break; 2592 } 2593 case ISD::BITCAST: { 2594 SDValue N0 = Op.getOperand(0); 2595 EVT SubVT = N0.getValueType(); 2596 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2597 2598 // Ignore bitcasts from unsupported types. 2599 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2600 break; 2601 2602 // Fast handling of 'identity' bitcasts. 2603 if (BitWidth == SubBitWidth) { 2604 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2605 break; 2606 } 2607 2608 bool IsLE = getDataLayout().isLittleEndian(); 2609 2610 // Bitcast 'small element' vector to 'large element' scalar/vector. 2611 if ((BitWidth % SubBitWidth) == 0) { 2612 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2613 2614 // Collect known bits for the (larger) output by collecting the known 2615 // bits from each set of sub elements and shift these into place. 2616 // We need to separately call computeKnownBits for each set of 2617 // sub elements as the knownbits for each is likely to be different. 2618 unsigned SubScale = BitWidth / SubBitWidth; 2619 APInt SubDemandedElts(NumElts * SubScale, 0); 2620 for (unsigned i = 0; i != NumElts; ++i) 2621 if (DemandedElts[i]) 2622 SubDemandedElts.setBit(i * SubScale); 2623 2624 for (unsigned i = 0; i != SubScale; ++i) { 2625 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2626 Depth + 1); 2627 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2628 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2629 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2630 } 2631 } 2632 2633 // Bitcast 'large element' scalar/vector to 'small element' vector. 2634 if ((SubBitWidth % BitWidth) == 0) { 2635 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2636 2637 // Collect known bits for the (smaller) output by collecting the known 2638 // bits from the overlapping larger input elements and extracting the 2639 // sub sections we actually care about. 2640 unsigned SubScale = SubBitWidth / BitWidth; 2641 APInt SubDemandedElts(NumElts / SubScale, 0); 2642 for (unsigned i = 0; i != NumElts; ++i) 2643 if (DemandedElts[i]) 2644 SubDemandedElts.setBit(i / SubScale); 2645 2646 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2647 2648 Known.Zero.setAllBits(); Known.One.setAllBits(); 2649 for (unsigned i = 0; i != NumElts; ++i) 2650 if (DemandedElts[i]) { 2651 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2652 unsigned Offset = (Shifts % SubScale) * BitWidth; 2653 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2654 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2655 // If we don't know any bits, early out. 2656 if (Known.isUnknown()) 2657 break; 2658 } 2659 } 2660 break; 2661 } 2662 case ISD::AND: 2663 // If either the LHS or the RHS are Zero, the result is zero. 2664 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2665 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2666 2667 // Output known-1 bits are only known if set in both the LHS & RHS. 2668 Known.One &= Known2.One; 2669 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2670 Known.Zero |= Known2.Zero; 2671 break; 2672 case ISD::OR: 2673 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2674 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2675 2676 // Output known-0 bits are only known if clear in both the LHS & RHS. 2677 Known.Zero &= Known2.Zero; 2678 // Output known-1 are known to be set if set in either the LHS | RHS. 2679 Known.One |= Known2.One; 2680 break; 2681 case ISD::XOR: { 2682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2684 2685 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2686 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2687 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2688 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2689 Known.Zero = KnownZeroOut; 2690 break; 2691 } 2692 case ISD::MUL: { 2693 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2694 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2695 2696 // If low bits are zero in either operand, output low known-0 bits. 2697 // Also compute a conservative estimate for high known-0 bits. 2698 // More trickiness is possible, but this is sufficient for the 2699 // interesting case of alignment computation. 2700 unsigned TrailZ = Known.countMinTrailingZeros() + 2701 Known2.countMinTrailingZeros(); 2702 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2703 Known2.countMinLeadingZeros(), 2704 BitWidth) - BitWidth; 2705 2706 Known.resetAll(); 2707 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2708 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2709 break; 2710 } 2711 case ISD::UDIV: { 2712 // For the purposes of computing leading zeros we can conservatively 2713 // treat a udiv as a logical right shift by the power of 2 known to 2714 // be less than the denominator. 2715 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2716 unsigned LeadZ = Known2.countMinLeadingZeros(); 2717 2718 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2719 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2720 if (RHSMaxLeadingZeros != BitWidth) 2721 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2722 2723 Known.Zero.setHighBits(LeadZ); 2724 break; 2725 } 2726 case ISD::SELECT: 2727 case ISD::VSELECT: 2728 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2729 // If we don't know any bits, early out. 2730 if (Known.isUnknown()) 2731 break; 2732 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2733 2734 // Only known if known in both the LHS and RHS. 2735 Known.One &= Known2.One; 2736 Known.Zero &= Known2.Zero; 2737 break; 2738 case ISD::SELECT_CC: 2739 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2740 // If we don't know any bits, early out. 2741 if (Known.isUnknown()) 2742 break; 2743 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2744 2745 // Only known if known in both the LHS and RHS. 2746 Known.One &= Known2.One; 2747 Known.Zero &= Known2.Zero; 2748 break; 2749 case ISD::SMULO: 2750 case ISD::UMULO: 2751 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2752 if (Op.getResNo() != 1) 2753 break; 2754 // The boolean result conforms to getBooleanContents. 2755 // If we know the result of a setcc has the top bits zero, use this info. 2756 // We know that we have an integer-based boolean since these operations 2757 // are only available for integer. 2758 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2759 TargetLowering::ZeroOrOneBooleanContent && 2760 BitWidth > 1) 2761 Known.Zero.setBitsFrom(1); 2762 break; 2763 case ISD::SETCC: 2764 // If we know the result of a setcc has the top bits zero, use this info. 2765 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2766 TargetLowering::ZeroOrOneBooleanContent && 2767 BitWidth > 1) 2768 Known.Zero.setBitsFrom(1); 2769 break; 2770 case ISD::SHL: 2771 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2773 unsigned Shift = ShAmt->getZExtValue(); 2774 Known.Zero <<= Shift; 2775 Known.One <<= Shift; 2776 // Low bits are known zero. 2777 Known.Zero.setLowBits(Shift); 2778 } 2779 break; 2780 case ISD::SRL: 2781 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2782 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2783 unsigned Shift = ShAmt->getZExtValue(); 2784 Known.Zero.lshrInPlace(Shift); 2785 Known.One.lshrInPlace(Shift); 2786 // High bits are known zero. 2787 Known.Zero.setHighBits(Shift); 2788 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2789 // If the shift amount is a vector of constants see if we can bound 2790 // the number of upper zero bits. 2791 unsigned ShiftAmountMin = BitWidth; 2792 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2793 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2794 const APInt &ShAmt = C->getAPIntValue(); 2795 if (ShAmt.ult(BitWidth)) { 2796 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2797 ShAmt.getZExtValue()); 2798 continue; 2799 } 2800 } 2801 // Don't know anything. 2802 ShiftAmountMin = 0; 2803 break; 2804 } 2805 2806 Known.Zero.setHighBits(ShiftAmountMin); 2807 } 2808 break; 2809 case ISD::SRA: 2810 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2811 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2812 unsigned Shift = ShAmt->getZExtValue(); 2813 // Sign extend known zero/one bit (else is unknown). 2814 Known.Zero.ashrInPlace(Shift); 2815 Known.One.ashrInPlace(Shift); 2816 } 2817 break; 2818 case ISD::FSHL: 2819 case ISD::FSHR: 2820 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2821 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2822 2823 // For fshl, 0-shift returns the 1st arg. 2824 // For fshr, 0-shift returns the 2nd arg. 2825 if (Amt == 0) { 2826 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2827 DemandedElts, Depth + 1); 2828 break; 2829 } 2830 2831 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2832 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2833 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2834 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2835 if (Opcode == ISD::FSHL) { 2836 Known.One <<= Amt; 2837 Known.Zero <<= Amt; 2838 Known2.One.lshrInPlace(BitWidth - Amt); 2839 Known2.Zero.lshrInPlace(BitWidth - Amt); 2840 } else { 2841 Known.One <<= BitWidth - Amt; 2842 Known.Zero <<= BitWidth - Amt; 2843 Known2.One.lshrInPlace(Amt); 2844 Known2.Zero.lshrInPlace(Amt); 2845 } 2846 Known.One |= Known2.One; 2847 Known.Zero |= Known2.Zero; 2848 } 2849 break; 2850 case ISD::SIGN_EXTEND_INREG: { 2851 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2852 unsigned EBits = EVT.getScalarSizeInBits(); 2853 2854 // Sign extension. Compute the demanded bits in the result that are not 2855 // present in the input. 2856 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2857 2858 APInt InSignMask = APInt::getSignMask(EBits); 2859 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2860 2861 // If the sign extended bits are demanded, we know that the sign 2862 // bit is demanded. 2863 InSignMask = InSignMask.zext(BitWidth); 2864 if (NewBits.getBoolValue()) 2865 InputDemandedBits |= InSignMask; 2866 2867 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2868 Known.One &= InputDemandedBits; 2869 Known.Zero &= InputDemandedBits; 2870 2871 // If the sign bit of the input is known set or clear, then we know the 2872 // top bits of the result. 2873 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2874 Known.Zero |= NewBits; 2875 Known.One &= ~NewBits; 2876 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2877 Known.One |= NewBits; 2878 Known.Zero &= ~NewBits; 2879 } else { // Input sign bit unknown 2880 Known.Zero &= ~NewBits; 2881 Known.One &= ~NewBits; 2882 } 2883 break; 2884 } 2885 case ISD::CTTZ: 2886 case ISD::CTTZ_ZERO_UNDEF: { 2887 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 // If we have a known 1, its position is our upper bound. 2889 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2890 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2891 Known.Zero.setBitsFrom(LowBits); 2892 break; 2893 } 2894 case ISD::CTLZ: 2895 case ISD::CTLZ_ZERO_UNDEF: { 2896 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2897 // If we have a known 1, its position is our upper bound. 2898 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2899 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2900 Known.Zero.setBitsFrom(LowBits); 2901 break; 2902 } 2903 case ISD::CTPOP: { 2904 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2905 // If we know some of the bits are zero, they can't be one. 2906 unsigned PossibleOnes = Known2.countMaxPopulation(); 2907 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2908 break; 2909 } 2910 case ISD::LOAD: { 2911 LoadSDNode *LD = cast<LoadSDNode>(Op); 2912 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2913 if (ISD::isNON_EXTLoad(LD) && Cst) { 2914 // Determine any common known bits from the loaded constant pool value. 2915 Type *CstTy = Cst->getType(); 2916 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2917 // If its a vector splat, then we can (quickly) reuse the scalar path. 2918 // NOTE: We assume all elements match and none are UNDEF. 2919 if (CstTy->isVectorTy()) { 2920 if (const Constant *Splat = Cst->getSplatValue()) { 2921 Cst = Splat; 2922 CstTy = Cst->getType(); 2923 } 2924 } 2925 // TODO - do we need to handle different bitwidths? 2926 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2927 // Iterate across all vector elements finding common known bits. 2928 Known.One.setAllBits(); 2929 Known.Zero.setAllBits(); 2930 for (unsigned i = 0; i != NumElts; ++i) { 2931 if (!DemandedElts[i]) 2932 continue; 2933 if (Constant *Elt = Cst->getAggregateElement(i)) { 2934 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2935 const APInt &Value = CInt->getValue(); 2936 Known.One &= Value; 2937 Known.Zero &= ~Value; 2938 continue; 2939 } 2940 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2941 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2942 Known.One &= Value; 2943 Known.Zero &= ~Value; 2944 continue; 2945 } 2946 } 2947 Known.One.clearAllBits(); 2948 Known.Zero.clearAllBits(); 2949 break; 2950 } 2951 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2952 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2953 const APInt &Value = CInt->getValue(); 2954 Known.One = Value; 2955 Known.Zero = ~Value; 2956 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2957 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2958 Known.One = Value; 2959 Known.Zero = ~Value; 2960 } 2961 } 2962 } 2963 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2964 // If this is a ZEXTLoad and we are looking at the loaded value. 2965 EVT VT = LD->getMemoryVT(); 2966 unsigned MemBits = VT.getScalarSizeInBits(); 2967 Known.Zero.setBitsFrom(MemBits); 2968 } else if (const MDNode *Ranges = LD->getRanges()) { 2969 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2970 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2971 } 2972 break; 2973 } 2974 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2975 EVT InVT = Op.getOperand(0).getValueType(); 2976 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2977 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2978 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2979 break; 2980 } 2981 case ISD::ZERO_EXTEND: { 2982 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2983 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2984 break; 2985 } 2986 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2987 EVT InVT = Op.getOperand(0).getValueType(); 2988 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2989 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2990 // If the sign bit is known to be zero or one, then sext will extend 2991 // it to the top bits, else it will just zext. 2992 Known = Known.sext(BitWidth); 2993 break; 2994 } 2995 case ISD::SIGN_EXTEND: { 2996 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2997 // If the sign bit is known to be zero or one, then sext will extend 2998 // it to the top bits, else it will just zext. 2999 Known = Known.sext(BitWidth); 3000 break; 3001 } 3002 case ISD::ANY_EXTEND: { 3003 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3004 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3005 break; 3006 } 3007 case ISD::TRUNCATE: { 3008 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3009 Known = Known.trunc(BitWidth); 3010 break; 3011 } 3012 case ISD::AssertZext: { 3013 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3014 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3015 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3016 Known.Zero |= (~InMask); 3017 Known.One &= (~Known.Zero); 3018 break; 3019 } 3020 case ISD::FGETSIGN: 3021 // All bits are zero except the low bit. 3022 Known.Zero.setBitsFrom(1); 3023 break; 3024 case ISD::USUBO: 3025 case ISD::SSUBO: 3026 if (Op.getResNo() == 1) { 3027 // If we know the result of a setcc has the top bits zero, use this info. 3028 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3029 TargetLowering::ZeroOrOneBooleanContent && 3030 BitWidth > 1) 3031 Known.Zero.setBitsFrom(1); 3032 break; 3033 } 3034 LLVM_FALLTHROUGH; 3035 case ISD::SUB: 3036 case ISD::SUBC: { 3037 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3039 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3040 Known, Known2); 3041 break; 3042 } 3043 case ISD::UADDO: 3044 case ISD::SADDO: 3045 case ISD::ADDCARRY: 3046 if (Op.getResNo() == 1) { 3047 // If we know the result of a setcc has the top bits zero, use this info. 3048 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3049 TargetLowering::ZeroOrOneBooleanContent && 3050 BitWidth > 1) 3051 Known.Zero.setBitsFrom(1); 3052 break; 3053 } 3054 LLVM_FALLTHROUGH; 3055 case ISD::ADD: 3056 case ISD::ADDC: 3057 case ISD::ADDE: { 3058 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3059 3060 // With ADDE and ADDCARRY, a carry bit may be added in. 3061 KnownBits Carry(1); 3062 if (Opcode == ISD::ADDE) 3063 // Can't track carry from glue, set carry to unknown. 3064 Carry.resetAll(); 3065 else if (Opcode == ISD::ADDCARRY) 3066 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3067 // the trouble (how often will we find a known carry bit). And I haven't 3068 // tested this very much yet, but something like this might work: 3069 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3070 // Carry = Carry.zextOrTrunc(1, false); 3071 Carry.resetAll(); 3072 else 3073 Carry.setAllZero(); 3074 3075 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3076 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3078 break; 3079 } 3080 case ISD::SREM: 3081 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3082 const APInt &RA = Rem->getAPIntValue().abs(); 3083 if (RA.isPowerOf2()) { 3084 APInt LowBits = RA - 1; 3085 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3086 3087 // The low bits of the first operand are unchanged by the srem. 3088 Known.Zero = Known2.Zero & LowBits; 3089 Known.One = Known2.One & LowBits; 3090 3091 // If the first operand is non-negative or has all low bits zero, then 3092 // the upper bits are all zero. 3093 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3094 Known.Zero |= ~LowBits; 3095 3096 // If the first operand is negative and not all low bits are zero, then 3097 // the upper bits are all one. 3098 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3099 Known.One |= ~LowBits; 3100 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3101 } 3102 } 3103 break; 3104 case ISD::UREM: { 3105 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3106 const APInt &RA = Rem->getAPIntValue(); 3107 if (RA.isPowerOf2()) { 3108 APInt LowBits = (RA - 1); 3109 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3110 3111 // The upper bits are all zero, the lower ones are unchanged. 3112 Known.Zero = Known2.Zero | ~LowBits; 3113 Known.One = Known2.One & LowBits; 3114 break; 3115 } 3116 } 3117 3118 // Since the result is less than or equal to either operand, any leading 3119 // zero bits in either operand must also exist in the result. 3120 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3121 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3122 3123 uint32_t Leaders = 3124 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3125 Known.resetAll(); 3126 Known.Zero.setHighBits(Leaders); 3127 break; 3128 } 3129 case ISD::EXTRACT_ELEMENT: { 3130 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3131 const unsigned Index = Op.getConstantOperandVal(1); 3132 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3133 3134 // Remove low part of known bits mask 3135 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3136 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3137 3138 // Remove high part of known bit mask 3139 Known = Known.trunc(EltBitWidth); 3140 break; 3141 } 3142 case ISD::EXTRACT_VECTOR_ELT: { 3143 SDValue InVec = Op.getOperand(0); 3144 SDValue EltNo = Op.getOperand(1); 3145 EVT VecVT = InVec.getValueType(); 3146 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3147 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3148 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3149 // anything about the extended bits. 3150 if (BitWidth > EltBitWidth) 3151 Known = Known.trunc(EltBitWidth); 3152 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3153 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3154 // If we know the element index, just demand that vector element. 3155 unsigned Idx = ConstEltNo->getZExtValue(); 3156 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3157 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3158 } else { 3159 // Unknown element index, so ignore DemandedElts and demand them all. 3160 Known = computeKnownBits(InVec, Depth + 1); 3161 } 3162 if (BitWidth > EltBitWidth) 3163 Known = Known.zext(BitWidth, false /* => any extend */); 3164 break; 3165 } 3166 case ISD::INSERT_VECTOR_ELT: { 3167 SDValue InVec = Op.getOperand(0); 3168 SDValue InVal = Op.getOperand(1); 3169 SDValue EltNo = Op.getOperand(2); 3170 3171 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3172 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3173 // If we know the element index, split the demand between the 3174 // source vector and the inserted element. 3175 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3176 unsigned EltIdx = CEltNo->getZExtValue(); 3177 3178 // If we demand the inserted element then add its common known bits. 3179 if (DemandedElts[EltIdx]) { 3180 Known2 = computeKnownBits(InVal, Depth + 1); 3181 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3182 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3183 } 3184 3185 // If we demand the source vector then add its common known bits, ensuring 3186 // that we don't demand the inserted element. 3187 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3188 if (!!VectorElts) { 3189 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3190 Known.One &= Known2.One; 3191 Known.Zero &= Known2.Zero; 3192 } 3193 } else { 3194 // Unknown element index, so ignore DemandedElts and demand them all. 3195 Known = computeKnownBits(InVec, Depth + 1); 3196 Known2 = computeKnownBits(InVal, Depth + 1); 3197 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3198 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3199 } 3200 break; 3201 } 3202 case ISD::BITREVERSE: { 3203 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3204 Known.Zero = Known2.Zero.reverseBits(); 3205 Known.One = Known2.One.reverseBits(); 3206 break; 3207 } 3208 case ISD::BSWAP: { 3209 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3210 Known.Zero = Known2.Zero.byteSwap(); 3211 Known.One = Known2.One.byteSwap(); 3212 break; 3213 } 3214 case ISD::ABS: { 3215 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 3217 // If the source's MSB is zero then we know the rest of the bits already. 3218 if (Known2.isNonNegative()) { 3219 Known.Zero = Known2.Zero; 3220 Known.One = Known2.One; 3221 break; 3222 } 3223 3224 // We only know that the absolute values's MSB will be zero iff there is 3225 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3226 Known2.One.clearSignBit(); 3227 if (Known2.One.getBoolValue()) { 3228 Known.Zero = APInt::getSignMask(BitWidth); 3229 break; 3230 } 3231 break; 3232 } 3233 case ISD::UMIN: { 3234 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3235 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3236 3237 // UMIN - we know that the result will have the maximum of the 3238 // known zero leading bits of the inputs. 3239 unsigned LeadZero = Known.countMinLeadingZeros(); 3240 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3241 3242 Known.Zero &= Known2.Zero; 3243 Known.One &= Known2.One; 3244 Known.Zero.setHighBits(LeadZero); 3245 break; 3246 } 3247 case ISD::UMAX: { 3248 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3249 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3250 3251 // UMAX - we know that the result will have the maximum of the 3252 // known one leading bits of the inputs. 3253 unsigned LeadOne = Known.countMinLeadingOnes(); 3254 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3255 3256 Known.Zero &= Known2.Zero; 3257 Known.One &= Known2.One; 3258 Known.One.setHighBits(LeadOne); 3259 break; 3260 } 3261 case ISD::SMIN: 3262 case ISD::SMAX: { 3263 // If we have a clamp pattern, we know that the number of sign bits will be 3264 // the minimum of the clamp min/max range. 3265 bool IsMax = (Opcode == ISD::SMAX); 3266 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3267 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3268 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3269 CstHigh = 3270 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3271 if (CstLow && CstHigh) { 3272 if (!IsMax) 3273 std::swap(CstLow, CstHigh); 3274 3275 const APInt &ValueLow = CstLow->getAPIntValue(); 3276 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3277 if (ValueLow.sle(ValueHigh)) { 3278 unsigned LowSignBits = ValueLow.getNumSignBits(); 3279 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3280 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3281 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3282 Known.One.setHighBits(MinSignBits); 3283 break; 3284 } 3285 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3286 Known.Zero.setHighBits(MinSignBits); 3287 break; 3288 } 3289 } 3290 } 3291 3292 // Fallback - just get the shared known bits of the operands. 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 if (Known.isUnknown()) break; // Early-out 3295 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3296 Known.Zero &= Known2.Zero; 3297 Known.One &= Known2.One; 3298 break; 3299 } 3300 case ISD::FrameIndex: 3301 case ISD::TargetFrameIndex: 3302 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3303 break; 3304 3305 default: 3306 if (Opcode < ISD::BUILTIN_OP_END) 3307 break; 3308 LLVM_FALLTHROUGH; 3309 case ISD::INTRINSIC_WO_CHAIN: 3310 case ISD::INTRINSIC_W_CHAIN: 3311 case ISD::INTRINSIC_VOID: 3312 // Allow the target to implement this method for its nodes. 3313 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3314 break; 3315 } 3316 3317 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3318 return Known; 3319 } 3320 3321 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3322 SDValue N1) const { 3323 // X + 0 never overflow 3324 if (isNullConstant(N1)) 3325 return OFK_Never; 3326 3327 KnownBits N1Known = computeKnownBits(N1); 3328 if (N1Known.Zero.getBoolValue()) { 3329 KnownBits N0Known = computeKnownBits(N0); 3330 3331 bool overflow; 3332 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3333 if (!overflow) 3334 return OFK_Never; 3335 } 3336 3337 // mulhi + 1 never overflow 3338 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3339 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3340 return OFK_Never; 3341 3342 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3343 KnownBits N0Known = computeKnownBits(N0); 3344 3345 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3346 return OFK_Never; 3347 } 3348 3349 return OFK_Sometime; 3350 } 3351 3352 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3353 EVT OpVT = Val.getValueType(); 3354 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3355 3356 // Is the constant a known power of 2? 3357 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3358 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3359 3360 // A left-shift of a constant one will have exactly one bit set because 3361 // shifting the bit off the end is undefined. 3362 if (Val.getOpcode() == ISD::SHL) { 3363 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3364 if (C && C->getAPIntValue() == 1) 3365 return true; 3366 } 3367 3368 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3369 // one bit set. 3370 if (Val.getOpcode() == ISD::SRL) { 3371 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3372 if (C && C->getAPIntValue().isSignMask()) 3373 return true; 3374 } 3375 3376 // Are all operands of a build vector constant powers of two? 3377 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3378 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3379 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3380 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3381 return false; 3382 })) 3383 return true; 3384 3385 // More could be done here, though the above checks are enough 3386 // to handle some common cases. 3387 3388 // Fall back to computeKnownBits to catch other known cases. 3389 KnownBits Known = computeKnownBits(Val); 3390 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3391 } 3392 3393 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3394 EVT VT = Op.getValueType(); 3395 APInt DemandedElts = VT.isVector() 3396 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3397 : APInt(1, 1); 3398 return ComputeNumSignBits(Op, DemandedElts, Depth); 3399 } 3400 3401 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3402 unsigned Depth) const { 3403 EVT VT = Op.getValueType(); 3404 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3405 unsigned VTBits = VT.getScalarSizeInBits(); 3406 unsigned NumElts = DemandedElts.getBitWidth(); 3407 unsigned Tmp, Tmp2; 3408 unsigned FirstAnswer = 1; 3409 3410 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3411 const APInt &Val = C->getAPIntValue(); 3412 return Val.getNumSignBits(); 3413 } 3414 3415 if (Depth >= MaxRecursionDepth) 3416 return 1; // Limit search depth. 3417 3418 if (!DemandedElts) 3419 return 1; // No demanded elts, better to assume we don't know anything. 3420 3421 unsigned Opcode = Op.getOpcode(); 3422 switch (Opcode) { 3423 default: break; 3424 case ISD::AssertSext: 3425 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3426 return VTBits-Tmp+1; 3427 case ISD::AssertZext: 3428 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3429 return VTBits-Tmp; 3430 3431 case ISD::BUILD_VECTOR: 3432 Tmp = VTBits; 3433 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3434 if (!DemandedElts[i]) 3435 continue; 3436 3437 SDValue SrcOp = Op.getOperand(i); 3438 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3439 3440 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3441 if (SrcOp.getValueSizeInBits() != VTBits) { 3442 assert(SrcOp.getValueSizeInBits() > VTBits && 3443 "Expected BUILD_VECTOR implicit truncation"); 3444 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3445 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3446 } 3447 Tmp = std::min(Tmp, Tmp2); 3448 } 3449 return Tmp; 3450 3451 case ISD::VECTOR_SHUFFLE: { 3452 // Collect the minimum number of sign bits that are shared by every vector 3453 // element referenced by the shuffle. 3454 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3455 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3456 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3457 for (unsigned i = 0; i != NumElts; ++i) { 3458 int M = SVN->getMaskElt(i); 3459 if (!DemandedElts[i]) 3460 continue; 3461 // For UNDEF elements, we don't know anything about the common state of 3462 // the shuffle result. 3463 if (M < 0) 3464 return 1; 3465 if ((unsigned)M < NumElts) 3466 DemandedLHS.setBit((unsigned)M % NumElts); 3467 else 3468 DemandedRHS.setBit((unsigned)M % NumElts); 3469 } 3470 Tmp = std::numeric_limits<unsigned>::max(); 3471 if (!!DemandedLHS) 3472 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3473 if (!!DemandedRHS) { 3474 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3475 Tmp = std::min(Tmp, Tmp2); 3476 } 3477 // If we don't know anything, early out and try computeKnownBits fall-back. 3478 if (Tmp == 1) 3479 break; 3480 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3481 return Tmp; 3482 } 3483 3484 case ISD::BITCAST: { 3485 SDValue N0 = Op.getOperand(0); 3486 EVT SrcVT = N0.getValueType(); 3487 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3488 3489 // Ignore bitcasts from unsupported types.. 3490 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3491 break; 3492 3493 // Fast handling of 'identity' bitcasts. 3494 if (VTBits == SrcBits) 3495 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3496 3497 bool IsLE = getDataLayout().isLittleEndian(); 3498 3499 // Bitcast 'large element' scalar/vector to 'small element' vector. 3500 if ((SrcBits % VTBits) == 0) { 3501 assert(VT.isVector() && "Expected bitcast to vector"); 3502 3503 unsigned Scale = SrcBits / VTBits; 3504 APInt SrcDemandedElts(NumElts / Scale, 0); 3505 for (unsigned i = 0; i != NumElts; ++i) 3506 if (DemandedElts[i]) 3507 SrcDemandedElts.setBit(i / Scale); 3508 3509 // Fast case - sign splat can be simply split across the small elements. 3510 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3511 if (Tmp == SrcBits) 3512 return VTBits; 3513 3514 // Slow case - determine how far the sign extends into each sub-element. 3515 Tmp2 = VTBits; 3516 for (unsigned i = 0; i != NumElts; ++i) 3517 if (DemandedElts[i]) { 3518 unsigned SubOffset = i % Scale; 3519 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3520 SubOffset = SubOffset * VTBits; 3521 if (Tmp <= SubOffset) 3522 return 1; 3523 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3524 } 3525 return Tmp2; 3526 } 3527 break; 3528 } 3529 3530 case ISD::SIGN_EXTEND: 3531 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3532 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3533 case ISD::SIGN_EXTEND_INREG: 3534 // Max of the input and what this extends. 3535 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3536 Tmp = VTBits-Tmp+1; 3537 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3538 return std::max(Tmp, Tmp2); 3539 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3540 SDValue Src = Op.getOperand(0); 3541 EVT SrcVT = Src.getValueType(); 3542 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3543 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3544 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3545 } 3546 3547 case ISD::SRA: 3548 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3549 // SRA X, C -> adds C sign bits. 3550 if (ConstantSDNode *C = 3551 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3552 APInt ShiftVal = C->getAPIntValue(); 3553 ShiftVal += Tmp; 3554 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3555 } 3556 return Tmp; 3557 case ISD::SHL: 3558 if (ConstantSDNode *C = 3559 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3560 // shl destroys sign bits. 3561 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3562 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3563 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3564 return Tmp - C->getZExtValue(); 3565 } 3566 break; 3567 case ISD::AND: 3568 case ISD::OR: 3569 case ISD::XOR: // NOT is handled here. 3570 // Logical binary ops preserve the number of sign bits at the worst. 3571 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3572 if (Tmp != 1) { 3573 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3574 FirstAnswer = std::min(Tmp, Tmp2); 3575 // We computed what we know about the sign bits as our first 3576 // answer. Now proceed to the generic code that uses 3577 // computeKnownBits, and pick whichever answer is better. 3578 } 3579 break; 3580 3581 case ISD::SELECT: 3582 case ISD::VSELECT: 3583 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3584 if (Tmp == 1) return 1; // Early out. 3585 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3586 return std::min(Tmp, Tmp2); 3587 case ISD::SELECT_CC: 3588 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3589 if (Tmp == 1) return 1; // Early out. 3590 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3591 return std::min(Tmp, Tmp2); 3592 3593 case ISD::SMIN: 3594 case ISD::SMAX: { 3595 // If we have a clamp pattern, we know that the number of sign bits will be 3596 // the minimum of the clamp min/max range. 3597 bool IsMax = (Opcode == ISD::SMAX); 3598 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3599 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3600 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3601 CstHigh = 3602 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3603 if (CstLow && CstHigh) { 3604 if (!IsMax) 3605 std::swap(CstLow, CstHigh); 3606 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3607 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3608 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3609 return std::min(Tmp, Tmp2); 3610 } 3611 } 3612 3613 // Fallback - just get the minimum number of sign bits of the operands. 3614 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3615 if (Tmp == 1) 3616 return 1; // Early out. 3617 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3618 return std::min(Tmp, Tmp2); 3619 } 3620 case ISD::UMIN: 3621 case ISD::UMAX: 3622 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3623 if (Tmp == 1) 3624 return 1; // Early out. 3625 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3626 return std::min(Tmp, Tmp2); 3627 case ISD::SADDO: 3628 case ISD::UADDO: 3629 case ISD::SSUBO: 3630 case ISD::USUBO: 3631 case ISD::SMULO: 3632 case ISD::UMULO: 3633 if (Op.getResNo() != 1) 3634 break; 3635 // The boolean result conforms to getBooleanContents. Fall through. 3636 // If setcc returns 0/-1, all bits are sign bits. 3637 // We know that we have an integer-based boolean since these operations 3638 // are only available for integer. 3639 if (TLI->getBooleanContents(VT.isVector(), false) == 3640 TargetLowering::ZeroOrNegativeOneBooleanContent) 3641 return VTBits; 3642 break; 3643 case ISD::SETCC: 3644 // If setcc returns 0/-1, all bits are sign bits. 3645 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3646 TargetLowering::ZeroOrNegativeOneBooleanContent) 3647 return VTBits; 3648 break; 3649 case ISD::ROTL: 3650 case ISD::ROTR: 3651 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3652 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3653 3654 // Handle rotate right by N like a rotate left by 32-N. 3655 if (Opcode == ISD::ROTR) 3656 RotAmt = (VTBits - RotAmt) % VTBits; 3657 3658 // If we aren't rotating out all of the known-in sign bits, return the 3659 // number that are left. This handles rotl(sext(x), 1) for example. 3660 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3661 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3662 } 3663 break; 3664 case ISD::ADD: 3665 case ISD::ADDC: 3666 // Add can have at most one carry bit. Thus we know that the output 3667 // is, at worst, one more bit than the inputs. 3668 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3669 if (Tmp == 1) return 1; // Early out. 3670 3671 // Special case decrementing a value (ADD X, -1): 3672 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3673 if (CRHS->isAllOnesValue()) { 3674 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3675 3676 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3677 // sign bits set. 3678 if ((Known.Zero | 1).isAllOnesValue()) 3679 return VTBits; 3680 3681 // If we are subtracting one from a positive number, there is no carry 3682 // out of the result. 3683 if (Known.isNonNegative()) 3684 return Tmp; 3685 } 3686 3687 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3688 if (Tmp2 == 1) return 1; 3689 return std::min(Tmp, Tmp2)-1; 3690 3691 case ISD::SUB: 3692 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3693 if (Tmp2 == 1) return 1; 3694 3695 // Handle NEG. 3696 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3697 if (CLHS->isNullValue()) { 3698 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3699 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3700 // sign bits set. 3701 if ((Known.Zero | 1).isAllOnesValue()) 3702 return VTBits; 3703 3704 // If the input is known to be positive (the sign bit is known clear), 3705 // the output of the NEG has the same number of sign bits as the input. 3706 if (Known.isNonNegative()) 3707 return Tmp2; 3708 3709 // Otherwise, we treat this like a SUB. 3710 } 3711 3712 // Sub can have at most one carry bit. Thus we know that the output 3713 // is, at worst, one more bit than the inputs. 3714 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3715 if (Tmp == 1) return 1; // Early out. 3716 return std::min(Tmp, Tmp2)-1; 3717 case ISD::MUL: { 3718 // The output of the Mul can be at most twice the valid bits in the inputs. 3719 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3720 if (SignBitsOp0 == 1) 3721 break; 3722 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3723 if (SignBitsOp1 == 1) 3724 break; 3725 unsigned OutValidBits = 3726 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3727 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3728 } 3729 case ISD::TRUNCATE: { 3730 // Check if the sign bits of source go down as far as the truncated value. 3731 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3732 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3733 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3734 return NumSrcSignBits - (NumSrcBits - VTBits); 3735 break; 3736 } 3737 case ISD::EXTRACT_ELEMENT: { 3738 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3739 const int BitWidth = Op.getValueSizeInBits(); 3740 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3741 3742 // Get reverse index (starting from 1), Op1 value indexes elements from 3743 // little end. Sign starts at big end. 3744 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3745 3746 // If the sign portion ends in our element the subtraction gives correct 3747 // result. Otherwise it gives either negative or > bitwidth result 3748 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3749 } 3750 case ISD::INSERT_VECTOR_ELT: { 3751 SDValue InVec = Op.getOperand(0); 3752 SDValue InVal = Op.getOperand(1); 3753 SDValue EltNo = Op.getOperand(2); 3754 3755 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3756 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3757 // If we know the element index, split the demand between the 3758 // source vector and the inserted element. 3759 unsigned EltIdx = CEltNo->getZExtValue(); 3760 3761 // If we demand the inserted element then get its sign bits. 3762 Tmp = std::numeric_limits<unsigned>::max(); 3763 if (DemandedElts[EltIdx]) { 3764 // TODO - handle implicit truncation of inserted elements. 3765 if (InVal.getScalarValueSizeInBits() != VTBits) 3766 break; 3767 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3768 } 3769 3770 // If we demand the source vector then get its sign bits, and determine 3771 // the minimum. 3772 APInt VectorElts = DemandedElts; 3773 VectorElts.clearBit(EltIdx); 3774 if (!!VectorElts) { 3775 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3776 Tmp = std::min(Tmp, Tmp2); 3777 } 3778 } else { 3779 // Unknown element index, so ignore DemandedElts and demand them all. 3780 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3781 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3782 Tmp = std::min(Tmp, Tmp2); 3783 } 3784 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3785 return Tmp; 3786 } 3787 case ISD::EXTRACT_VECTOR_ELT: { 3788 SDValue InVec = Op.getOperand(0); 3789 SDValue EltNo = Op.getOperand(1); 3790 EVT VecVT = InVec.getValueType(); 3791 const unsigned BitWidth = Op.getValueSizeInBits(); 3792 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3793 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3794 3795 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3796 // anything about sign bits. But if the sizes match we can derive knowledge 3797 // about sign bits from the vector operand. 3798 if (BitWidth != EltBitWidth) 3799 break; 3800 3801 // If we know the element index, just demand that vector element, else for 3802 // an unknown element index, ignore DemandedElts and demand them all. 3803 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3804 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3805 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3806 DemandedSrcElts = 3807 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3808 3809 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3810 } 3811 case ISD::EXTRACT_SUBVECTOR: { 3812 // If we know the element index, just demand that subvector elements, 3813 // otherwise demand them all. 3814 SDValue Src = Op.getOperand(0); 3815 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3816 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3817 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3818 // Offset the demanded elts by the subvector index. 3819 uint64_t Idx = SubIdx->getZExtValue(); 3820 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3821 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3822 } 3823 return ComputeNumSignBits(Src, Depth + 1); 3824 } 3825 case ISD::CONCAT_VECTORS: { 3826 // Determine the minimum number of sign bits across all demanded 3827 // elts of the input vectors. Early out if the result is already 1. 3828 Tmp = std::numeric_limits<unsigned>::max(); 3829 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3830 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3831 unsigned NumSubVectors = Op.getNumOperands(); 3832 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3833 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3834 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3835 if (!DemandedSub) 3836 continue; 3837 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3838 Tmp = std::min(Tmp, Tmp2); 3839 } 3840 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3841 return Tmp; 3842 } 3843 case ISD::INSERT_SUBVECTOR: { 3844 // If we know the element index, demand any elements from the subvector and 3845 // the remainder from the src its inserted into, otherwise demand them all. 3846 SDValue Src = Op.getOperand(0); 3847 SDValue Sub = Op.getOperand(1); 3848 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3849 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3850 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3851 Tmp = std::numeric_limits<unsigned>::max(); 3852 uint64_t Idx = SubIdx->getZExtValue(); 3853 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3854 if (!!DemandedSubElts) { 3855 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3856 if (Tmp == 1) return 1; // early-out 3857 } 3858 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3859 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3860 if (!!DemandedSrcElts) { 3861 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3862 Tmp = std::min(Tmp, Tmp2); 3863 } 3864 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3865 return Tmp; 3866 } 3867 3868 // Not able to determine the index so just assume worst case. 3869 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3870 if (Tmp == 1) return 1; // early-out 3871 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3872 Tmp = std::min(Tmp, Tmp2); 3873 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3874 return Tmp; 3875 } 3876 } 3877 3878 // If we are looking at the loaded value of the SDNode. 3879 if (Op.getResNo() == 0) { 3880 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3881 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3882 unsigned ExtType = LD->getExtensionType(); 3883 switch (ExtType) { 3884 default: break; 3885 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3886 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3887 return VTBits - Tmp + 1; 3888 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3889 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3890 return VTBits - Tmp; 3891 case ISD::NON_EXTLOAD: 3892 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3893 // We only need to handle vectors - computeKnownBits should handle 3894 // scalar cases. 3895 Type *CstTy = Cst->getType(); 3896 if (CstTy->isVectorTy() && 3897 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3898 Tmp = VTBits; 3899 for (unsigned i = 0; i != NumElts; ++i) { 3900 if (!DemandedElts[i]) 3901 continue; 3902 if (Constant *Elt = Cst->getAggregateElement(i)) { 3903 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3904 const APInt &Value = CInt->getValue(); 3905 Tmp = std::min(Tmp, Value.getNumSignBits()); 3906 continue; 3907 } 3908 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3909 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3910 Tmp = std::min(Tmp, Value.getNumSignBits()); 3911 continue; 3912 } 3913 } 3914 // Unknown type. Conservatively assume no bits match sign bit. 3915 return 1; 3916 } 3917 return Tmp; 3918 } 3919 } 3920 break; 3921 } 3922 } 3923 } 3924 3925 // Allow the target to implement this method for its nodes. 3926 if (Opcode >= ISD::BUILTIN_OP_END || 3927 Opcode == ISD::INTRINSIC_WO_CHAIN || 3928 Opcode == ISD::INTRINSIC_W_CHAIN || 3929 Opcode == ISD::INTRINSIC_VOID) { 3930 unsigned NumBits = 3931 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3932 if (NumBits > 1) 3933 FirstAnswer = std::max(FirstAnswer, NumBits); 3934 } 3935 3936 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3937 // use this information. 3938 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3939 3940 APInt Mask; 3941 if (Known.isNonNegative()) { // sign bit is 0 3942 Mask = Known.Zero; 3943 } else if (Known.isNegative()) { // sign bit is 1; 3944 Mask = Known.One; 3945 } else { 3946 // Nothing known. 3947 return FirstAnswer; 3948 } 3949 3950 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3951 // the number of identical bits in the top of the input value. 3952 Mask = ~Mask; 3953 Mask <<= Mask.getBitWidth()-VTBits; 3954 // Return # leading zeros. We use 'min' here in case Val was zero before 3955 // shifting. We don't want to return '64' as for an i32 "0". 3956 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3957 } 3958 3959 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3960 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3961 !isa<ConstantSDNode>(Op.getOperand(1))) 3962 return false; 3963 3964 if (Op.getOpcode() == ISD::OR && 3965 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3966 return false; 3967 3968 return true; 3969 } 3970 3971 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3972 // If we're told that NaNs won't happen, assume they won't. 3973 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3974 return true; 3975 3976 if (Depth >= MaxRecursionDepth) 3977 return false; // Limit search depth. 3978 3979 // TODO: Handle vectors. 3980 // If the value is a constant, we can obviously see if it is a NaN or not. 3981 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3982 return !C->getValueAPF().isNaN() || 3983 (SNaN && !C->getValueAPF().isSignaling()); 3984 } 3985 3986 unsigned Opcode = Op.getOpcode(); 3987 switch (Opcode) { 3988 case ISD::FADD: 3989 case ISD::FSUB: 3990 case ISD::FMUL: 3991 case ISD::FDIV: 3992 case ISD::FREM: 3993 case ISD::FSIN: 3994 case ISD::FCOS: { 3995 if (SNaN) 3996 return true; 3997 // TODO: Need isKnownNeverInfinity 3998 return false; 3999 } 4000 case ISD::FCANONICALIZE: 4001 case ISD::FEXP: 4002 case ISD::FEXP2: 4003 case ISD::FTRUNC: 4004 case ISD::FFLOOR: 4005 case ISD::FCEIL: 4006 case ISD::FROUND: 4007 case ISD::FRINT: 4008 case ISD::FNEARBYINT: { 4009 if (SNaN) 4010 return true; 4011 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4012 } 4013 case ISD::FABS: 4014 case ISD::FNEG: 4015 case ISD::FCOPYSIGN: { 4016 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4017 } 4018 case ISD::SELECT: 4019 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4020 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4021 case ISD::FP_EXTEND: 4022 case ISD::FP_ROUND: { 4023 if (SNaN) 4024 return true; 4025 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4026 } 4027 case ISD::SINT_TO_FP: 4028 case ISD::UINT_TO_FP: 4029 return true; 4030 case ISD::FMA: 4031 case ISD::FMAD: { 4032 if (SNaN) 4033 return true; 4034 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4035 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4036 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4037 } 4038 case ISD::FSQRT: // Need is known positive 4039 case ISD::FLOG: 4040 case ISD::FLOG2: 4041 case ISD::FLOG10: 4042 case ISD::FPOWI: 4043 case ISD::FPOW: { 4044 if (SNaN) 4045 return true; 4046 // TODO: Refine on operand 4047 return false; 4048 } 4049 case ISD::FMINNUM: 4050 case ISD::FMAXNUM: { 4051 // Only one needs to be known not-nan, since it will be returned if the 4052 // other ends up being one. 4053 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4054 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4055 } 4056 case ISD::FMINNUM_IEEE: 4057 case ISD::FMAXNUM_IEEE: { 4058 if (SNaN) 4059 return true; 4060 // This can return a NaN if either operand is an sNaN, or if both operands 4061 // are NaN. 4062 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4063 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4064 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4065 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4066 } 4067 case ISD::FMINIMUM: 4068 case ISD::FMAXIMUM: { 4069 // TODO: Does this quiet or return the origina NaN as-is? 4070 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4071 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4072 } 4073 case ISD::EXTRACT_VECTOR_ELT: { 4074 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4075 } 4076 default: 4077 if (Opcode >= ISD::BUILTIN_OP_END || 4078 Opcode == ISD::INTRINSIC_WO_CHAIN || 4079 Opcode == ISD::INTRINSIC_W_CHAIN || 4080 Opcode == ISD::INTRINSIC_VOID) { 4081 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4082 } 4083 4084 return false; 4085 } 4086 } 4087 4088 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4089 assert(Op.getValueType().isFloatingPoint() && 4090 "Floating point type expected"); 4091 4092 // If the value is a constant, we can obviously see if it is a zero or not. 4093 // TODO: Add BuildVector support. 4094 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4095 return !C->isZero(); 4096 return false; 4097 } 4098 4099 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4100 assert(!Op.getValueType().isFloatingPoint() && 4101 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4102 4103 // If the value is a constant, we can obviously see if it is a zero or not. 4104 if (ISD::matchUnaryPredicate( 4105 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4106 return true; 4107 4108 // TODO: Recognize more cases here. 4109 switch (Op.getOpcode()) { 4110 default: break; 4111 case ISD::OR: 4112 if (isKnownNeverZero(Op.getOperand(1)) || 4113 isKnownNeverZero(Op.getOperand(0))) 4114 return true; 4115 break; 4116 } 4117 4118 return false; 4119 } 4120 4121 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4122 // Check the obvious case. 4123 if (A == B) return true; 4124 4125 // For for negative and positive zero. 4126 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4127 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4128 if (CA->isZero() && CB->isZero()) return true; 4129 4130 // Otherwise they may not be equal. 4131 return false; 4132 } 4133 4134 // FIXME: unify with llvm::haveNoCommonBitsSet. 4135 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4136 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4137 assert(A.getValueType() == B.getValueType() && 4138 "Values must have the same type"); 4139 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4140 } 4141 4142 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4143 ArrayRef<SDValue> Ops, 4144 SelectionDAG &DAG) { 4145 int NumOps = Ops.size(); 4146 assert(NumOps != 0 && "Can't build an empty vector!"); 4147 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4148 "Incorrect element count in BUILD_VECTOR!"); 4149 4150 // BUILD_VECTOR of UNDEFs is UNDEF. 4151 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4152 return DAG.getUNDEF(VT); 4153 4154 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4155 SDValue IdentitySrc; 4156 bool IsIdentity = true; 4157 for (int i = 0; i != NumOps; ++i) { 4158 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4159 Ops[i].getOperand(0).getValueType() != VT || 4160 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4161 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4162 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4163 IsIdentity = false; 4164 break; 4165 } 4166 IdentitySrc = Ops[i].getOperand(0); 4167 } 4168 if (IsIdentity) 4169 return IdentitySrc; 4170 4171 return SDValue(); 4172 } 4173 4174 /// Try to simplify vector concatenation to an input value, undef, or build 4175 /// vector. 4176 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4177 ArrayRef<SDValue> Ops, 4178 SelectionDAG &DAG) { 4179 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4180 assert(llvm::all_of(Ops, 4181 [Ops](SDValue Op) { 4182 return Ops[0].getValueType() == Op.getValueType(); 4183 }) && 4184 "Concatenation of vectors with inconsistent value types!"); 4185 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4186 VT.getVectorNumElements() && 4187 "Incorrect element count in vector concatenation!"); 4188 4189 if (Ops.size() == 1) 4190 return Ops[0]; 4191 4192 // Concat of UNDEFs is UNDEF. 4193 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4194 return DAG.getUNDEF(VT); 4195 4196 // Scan the operands and look for extract operations from a single source 4197 // that correspond to insertion at the same location via this concatenation: 4198 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4199 SDValue IdentitySrc; 4200 bool IsIdentity = true; 4201 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4202 SDValue Op = Ops[i]; 4203 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4204 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4205 Op.getOperand(0).getValueType() != VT || 4206 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4207 !isa<ConstantSDNode>(Op.getOperand(1)) || 4208 Op.getConstantOperandVal(1) != IdentityIndex) { 4209 IsIdentity = false; 4210 break; 4211 } 4212 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4213 "Unexpected identity source vector for concat of extracts"); 4214 IdentitySrc = Op.getOperand(0); 4215 } 4216 if (IsIdentity) { 4217 assert(IdentitySrc && "Failed to set source vector of extracts"); 4218 return IdentitySrc; 4219 } 4220 4221 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4222 // simplified to one big BUILD_VECTOR. 4223 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4224 EVT SVT = VT.getScalarType(); 4225 SmallVector<SDValue, 16> Elts; 4226 for (SDValue Op : Ops) { 4227 EVT OpVT = Op.getValueType(); 4228 if (Op.isUndef()) 4229 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4230 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4231 Elts.append(Op->op_begin(), Op->op_end()); 4232 else 4233 return SDValue(); 4234 } 4235 4236 // BUILD_VECTOR requires all inputs to be of the same type, find the 4237 // maximum type and extend them all. 4238 for (SDValue Op : Elts) 4239 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4240 4241 if (SVT.bitsGT(VT.getScalarType())) 4242 for (SDValue &Op : Elts) 4243 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4244 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4245 : DAG.getSExtOrTrunc(Op, DL, SVT); 4246 4247 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4248 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4249 return V; 4250 } 4251 4252 /// Gets or creates the specified node. 4253 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4254 FoldingSetNodeID ID; 4255 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4256 void *IP = nullptr; 4257 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4258 return SDValue(E, 0); 4259 4260 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4261 getVTList(VT)); 4262 CSEMap.InsertNode(N, IP); 4263 4264 InsertNode(N); 4265 SDValue V = SDValue(N, 0); 4266 NewSDValueDbgMsg(V, "Creating new node: ", this); 4267 return V; 4268 } 4269 4270 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4271 SDValue Operand, const SDNodeFlags Flags) { 4272 // Constant fold unary operations with an integer constant operand. Even 4273 // opaque constant will be folded, because the folding of unary operations 4274 // doesn't create new constants with different values. Nevertheless, the 4275 // opaque flag is preserved during folding to prevent future folding with 4276 // other constants. 4277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4278 const APInt &Val = C->getAPIntValue(); 4279 switch (Opcode) { 4280 default: break; 4281 case ISD::SIGN_EXTEND: 4282 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4283 C->isTargetOpcode(), C->isOpaque()); 4284 case ISD::TRUNCATE: 4285 if (C->isOpaque()) 4286 break; 4287 LLVM_FALLTHROUGH; 4288 case ISD::ANY_EXTEND: 4289 case ISD::ZERO_EXTEND: 4290 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4291 C->isTargetOpcode(), C->isOpaque()); 4292 case ISD::UINT_TO_FP: 4293 case ISD::SINT_TO_FP: { 4294 APFloat apf(EVTToAPFloatSemantics(VT), 4295 APInt::getNullValue(VT.getSizeInBits())); 4296 (void)apf.convertFromAPInt(Val, 4297 Opcode==ISD::SINT_TO_FP, 4298 APFloat::rmNearestTiesToEven); 4299 return getConstantFP(apf, DL, VT); 4300 } 4301 case ISD::BITCAST: 4302 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4303 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4304 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4305 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4306 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4307 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4308 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4309 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4310 break; 4311 case ISD::ABS: 4312 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4313 C->isOpaque()); 4314 case ISD::BITREVERSE: 4315 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4316 C->isOpaque()); 4317 case ISD::BSWAP: 4318 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4319 C->isOpaque()); 4320 case ISD::CTPOP: 4321 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4322 C->isOpaque()); 4323 case ISD::CTLZ: 4324 case ISD::CTLZ_ZERO_UNDEF: 4325 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4326 C->isOpaque()); 4327 case ISD::CTTZ: 4328 case ISD::CTTZ_ZERO_UNDEF: 4329 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4330 C->isOpaque()); 4331 case ISD::FP16_TO_FP: { 4332 bool Ignored; 4333 APFloat FPV(APFloat::IEEEhalf(), 4334 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4335 4336 // This can return overflow, underflow, or inexact; we don't care. 4337 // FIXME need to be more flexible about rounding mode. 4338 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4339 APFloat::rmNearestTiesToEven, &Ignored); 4340 return getConstantFP(FPV, DL, VT); 4341 } 4342 } 4343 } 4344 4345 // Constant fold unary operations with a floating point constant operand. 4346 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4347 APFloat V = C->getValueAPF(); // make copy 4348 switch (Opcode) { 4349 case ISD::FNEG: 4350 V.changeSign(); 4351 return getConstantFP(V, DL, VT); 4352 case ISD::FABS: 4353 V.clearSign(); 4354 return getConstantFP(V, DL, VT); 4355 case ISD::FCEIL: { 4356 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4357 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4358 return getConstantFP(V, DL, VT); 4359 break; 4360 } 4361 case ISD::FTRUNC: { 4362 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4363 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4364 return getConstantFP(V, DL, VT); 4365 break; 4366 } 4367 case ISD::FFLOOR: { 4368 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4369 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4370 return getConstantFP(V, DL, VT); 4371 break; 4372 } 4373 case ISD::FP_EXTEND: { 4374 bool ignored; 4375 // This can return overflow, underflow, or inexact; we don't care. 4376 // FIXME need to be more flexible about rounding mode. 4377 (void)V.convert(EVTToAPFloatSemantics(VT), 4378 APFloat::rmNearestTiesToEven, &ignored); 4379 return getConstantFP(V, DL, VT); 4380 } 4381 case ISD::FP_TO_SINT: 4382 case ISD::FP_TO_UINT: { 4383 bool ignored; 4384 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4385 // FIXME need to be more flexible about rounding mode. 4386 APFloat::opStatus s = 4387 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4388 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4389 break; 4390 return getConstant(IntVal, DL, VT); 4391 } 4392 case ISD::BITCAST: 4393 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4394 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4395 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4396 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4397 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4398 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4399 break; 4400 case ISD::FP_TO_FP16: { 4401 bool Ignored; 4402 // This can return overflow, underflow, or inexact; we don't care. 4403 // FIXME need to be more flexible about rounding mode. 4404 (void)V.convert(APFloat::IEEEhalf(), 4405 APFloat::rmNearestTiesToEven, &Ignored); 4406 return getConstant(V.bitcastToAPInt(), DL, VT); 4407 } 4408 } 4409 } 4410 4411 // Constant fold unary operations with a vector integer or float operand. 4412 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4413 if (BV->isConstant()) { 4414 switch (Opcode) { 4415 default: 4416 // FIXME: Entirely reasonable to perform folding of other unary 4417 // operations here as the need arises. 4418 break; 4419 case ISD::FNEG: 4420 case ISD::FABS: 4421 case ISD::FCEIL: 4422 case ISD::FTRUNC: 4423 case ISD::FFLOOR: 4424 case ISD::FP_EXTEND: 4425 case ISD::FP_TO_SINT: 4426 case ISD::FP_TO_UINT: 4427 case ISD::TRUNCATE: 4428 case ISD::ANY_EXTEND: 4429 case ISD::ZERO_EXTEND: 4430 case ISD::SIGN_EXTEND: 4431 case ISD::UINT_TO_FP: 4432 case ISD::SINT_TO_FP: 4433 case ISD::ABS: 4434 case ISD::BITREVERSE: 4435 case ISD::BSWAP: 4436 case ISD::CTLZ: 4437 case ISD::CTLZ_ZERO_UNDEF: 4438 case ISD::CTTZ: 4439 case ISD::CTTZ_ZERO_UNDEF: 4440 case ISD::CTPOP: { 4441 SDValue Ops = { Operand }; 4442 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4443 return Fold; 4444 } 4445 } 4446 } 4447 } 4448 4449 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4450 switch (Opcode) { 4451 case ISD::TokenFactor: 4452 case ISD::MERGE_VALUES: 4453 case ISD::CONCAT_VECTORS: 4454 return Operand; // Factor, merge or concat of one node? No need. 4455 case ISD::BUILD_VECTOR: { 4456 // Attempt to simplify BUILD_VECTOR. 4457 SDValue Ops[] = {Operand}; 4458 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4459 return V; 4460 break; 4461 } 4462 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4463 case ISD::FP_EXTEND: 4464 assert(VT.isFloatingPoint() && 4465 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4466 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4467 assert((!VT.isVector() || 4468 VT.getVectorNumElements() == 4469 Operand.getValueType().getVectorNumElements()) && 4470 "Vector element count mismatch!"); 4471 assert(Operand.getValueType().bitsLT(VT) && 4472 "Invalid fpext node, dst < src!"); 4473 if (Operand.isUndef()) 4474 return getUNDEF(VT); 4475 break; 4476 case ISD::FP_TO_SINT: 4477 case ISD::FP_TO_UINT: 4478 if (Operand.isUndef()) 4479 return getUNDEF(VT); 4480 break; 4481 case ISD::SINT_TO_FP: 4482 case ISD::UINT_TO_FP: 4483 // [us]itofp(undef) = 0, because the result value is bounded. 4484 if (Operand.isUndef()) 4485 return getConstantFP(0.0, DL, VT); 4486 break; 4487 case ISD::SIGN_EXTEND: 4488 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4489 "Invalid SIGN_EXTEND!"); 4490 assert(VT.isVector() == Operand.getValueType().isVector() && 4491 "SIGN_EXTEND result type type should be vector iff the operand " 4492 "type is vector!"); 4493 if (Operand.getValueType() == VT) return Operand; // noop extension 4494 assert((!VT.isVector() || 4495 VT.getVectorNumElements() == 4496 Operand.getValueType().getVectorNumElements()) && 4497 "Vector element count mismatch!"); 4498 assert(Operand.getValueType().bitsLT(VT) && 4499 "Invalid sext node, dst < src!"); 4500 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4501 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4502 else if (OpOpcode == ISD::UNDEF) 4503 // sext(undef) = 0, because the top bits will all be the same. 4504 return getConstant(0, DL, VT); 4505 break; 4506 case ISD::ZERO_EXTEND: 4507 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4508 "Invalid ZERO_EXTEND!"); 4509 assert(VT.isVector() == Operand.getValueType().isVector() && 4510 "ZERO_EXTEND result type type should be vector iff the operand " 4511 "type is vector!"); 4512 if (Operand.getValueType() == VT) return Operand; // noop extension 4513 assert((!VT.isVector() || 4514 VT.getVectorNumElements() == 4515 Operand.getValueType().getVectorNumElements()) && 4516 "Vector element count mismatch!"); 4517 assert(Operand.getValueType().bitsLT(VT) && 4518 "Invalid zext node, dst < src!"); 4519 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4520 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4521 else if (OpOpcode == ISD::UNDEF) 4522 // zext(undef) = 0, because the top bits will be zero. 4523 return getConstant(0, DL, VT); 4524 break; 4525 case ISD::ANY_EXTEND: 4526 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4527 "Invalid ANY_EXTEND!"); 4528 assert(VT.isVector() == Operand.getValueType().isVector() && 4529 "ANY_EXTEND result type type should be vector iff the operand " 4530 "type is vector!"); 4531 if (Operand.getValueType() == VT) return Operand; // noop extension 4532 assert((!VT.isVector() || 4533 VT.getVectorNumElements() == 4534 Operand.getValueType().getVectorNumElements()) && 4535 "Vector element count mismatch!"); 4536 assert(Operand.getValueType().bitsLT(VT) && 4537 "Invalid anyext node, dst < src!"); 4538 4539 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4540 OpOpcode == ISD::ANY_EXTEND) 4541 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4542 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4543 else if (OpOpcode == ISD::UNDEF) 4544 return getUNDEF(VT); 4545 4546 // (ext (trunc x)) -> x 4547 if (OpOpcode == ISD::TRUNCATE) { 4548 SDValue OpOp = Operand.getOperand(0); 4549 if (OpOp.getValueType() == VT) { 4550 transferDbgValues(Operand, OpOp); 4551 return OpOp; 4552 } 4553 } 4554 break; 4555 case ISD::TRUNCATE: 4556 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4557 "Invalid TRUNCATE!"); 4558 assert(VT.isVector() == Operand.getValueType().isVector() && 4559 "TRUNCATE result type type should be vector iff the operand " 4560 "type is vector!"); 4561 if (Operand.getValueType() == VT) return Operand; // noop truncate 4562 assert((!VT.isVector() || 4563 VT.getVectorNumElements() == 4564 Operand.getValueType().getVectorNumElements()) && 4565 "Vector element count mismatch!"); 4566 assert(Operand.getValueType().bitsGT(VT) && 4567 "Invalid truncate node, src < dst!"); 4568 if (OpOpcode == ISD::TRUNCATE) 4569 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4570 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4571 OpOpcode == ISD::ANY_EXTEND) { 4572 // If the source is smaller than the dest, we still need an extend. 4573 if (Operand.getOperand(0).getValueType().getScalarType() 4574 .bitsLT(VT.getScalarType())) 4575 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4576 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4577 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4578 return Operand.getOperand(0); 4579 } 4580 if (OpOpcode == ISD::UNDEF) 4581 return getUNDEF(VT); 4582 break; 4583 case ISD::ANY_EXTEND_VECTOR_INREG: 4584 case ISD::ZERO_EXTEND_VECTOR_INREG: 4585 case ISD::SIGN_EXTEND_VECTOR_INREG: 4586 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4587 assert(Operand.getValueType().bitsLE(VT) && 4588 "The input must be the same size or smaller than the result."); 4589 assert(VT.getVectorNumElements() < 4590 Operand.getValueType().getVectorNumElements() && 4591 "The destination vector type must have fewer lanes than the input."); 4592 break; 4593 case ISD::ABS: 4594 assert(VT.isInteger() && VT == Operand.getValueType() && 4595 "Invalid ABS!"); 4596 if (OpOpcode == ISD::UNDEF) 4597 return getUNDEF(VT); 4598 break; 4599 case ISD::BSWAP: 4600 assert(VT.isInteger() && VT == Operand.getValueType() && 4601 "Invalid BSWAP!"); 4602 assert((VT.getScalarSizeInBits() % 16 == 0) && 4603 "BSWAP types must be a multiple of 16 bits!"); 4604 if (OpOpcode == ISD::UNDEF) 4605 return getUNDEF(VT); 4606 break; 4607 case ISD::BITREVERSE: 4608 assert(VT.isInteger() && VT == Operand.getValueType() && 4609 "Invalid BITREVERSE!"); 4610 if (OpOpcode == ISD::UNDEF) 4611 return getUNDEF(VT); 4612 break; 4613 case ISD::BITCAST: 4614 // Basic sanity checking. 4615 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4616 "Cannot BITCAST between types of different sizes!"); 4617 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4618 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4619 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4620 if (OpOpcode == ISD::UNDEF) 4621 return getUNDEF(VT); 4622 break; 4623 case ISD::SCALAR_TO_VECTOR: 4624 assert(VT.isVector() && !Operand.getValueType().isVector() && 4625 (VT.getVectorElementType() == Operand.getValueType() || 4626 (VT.getVectorElementType().isInteger() && 4627 Operand.getValueType().isInteger() && 4628 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4629 "Illegal SCALAR_TO_VECTOR node!"); 4630 if (OpOpcode == ISD::UNDEF) 4631 return getUNDEF(VT); 4632 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4633 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4634 isa<ConstantSDNode>(Operand.getOperand(1)) && 4635 Operand.getConstantOperandVal(1) == 0 && 4636 Operand.getOperand(0).getValueType() == VT) 4637 return Operand.getOperand(0); 4638 break; 4639 case ISD::FNEG: 4640 // Negation of an unknown bag of bits is still completely undefined. 4641 if (OpOpcode == ISD::UNDEF) 4642 return getUNDEF(VT); 4643 4644 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4645 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4646 OpOpcode == ISD::FSUB) 4647 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4648 Operand.getOperand(0), Flags); 4649 if (OpOpcode == ISD::FNEG) // --X -> X 4650 return Operand.getOperand(0); 4651 break; 4652 case ISD::FABS: 4653 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4654 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4655 break; 4656 } 4657 4658 SDNode *N; 4659 SDVTList VTs = getVTList(VT); 4660 SDValue Ops[] = {Operand}; 4661 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4662 FoldingSetNodeID ID; 4663 AddNodeIDNode(ID, Opcode, VTs, Ops); 4664 void *IP = nullptr; 4665 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4666 E->intersectFlagsWith(Flags); 4667 return SDValue(E, 0); 4668 } 4669 4670 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4671 N->setFlags(Flags); 4672 createOperands(N, Ops); 4673 CSEMap.InsertNode(N, IP); 4674 } else { 4675 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4676 createOperands(N, Ops); 4677 } 4678 4679 InsertNode(N); 4680 SDValue V = SDValue(N, 0); 4681 NewSDValueDbgMsg(V, "Creating new node: ", this); 4682 return V; 4683 } 4684 4685 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4686 const APInt &C2) { 4687 switch (Opcode) { 4688 case ISD::ADD: return std::make_pair(C1 + C2, true); 4689 case ISD::SUB: return std::make_pair(C1 - C2, true); 4690 case ISD::MUL: return std::make_pair(C1 * C2, true); 4691 case ISD::AND: return std::make_pair(C1 & C2, true); 4692 case ISD::OR: return std::make_pair(C1 | C2, true); 4693 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4694 case ISD::SHL: return std::make_pair(C1 << C2, true); 4695 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4696 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4697 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4698 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4699 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4700 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4701 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4702 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4703 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4704 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4705 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4706 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4707 case ISD::UDIV: 4708 if (!C2.getBoolValue()) 4709 break; 4710 return std::make_pair(C1.udiv(C2), true); 4711 case ISD::UREM: 4712 if (!C2.getBoolValue()) 4713 break; 4714 return std::make_pair(C1.urem(C2), true); 4715 case ISD::SDIV: 4716 if (!C2.getBoolValue()) 4717 break; 4718 return std::make_pair(C1.sdiv(C2), true); 4719 case ISD::SREM: 4720 if (!C2.getBoolValue()) 4721 break; 4722 return std::make_pair(C1.srem(C2), true); 4723 } 4724 return std::make_pair(APInt(1, 0), false); 4725 } 4726 4727 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4728 EVT VT, const ConstantSDNode *C1, 4729 const ConstantSDNode *C2) { 4730 if (C1->isOpaque() || C2->isOpaque()) 4731 return SDValue(); 4732 4733 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4734 C2->getAPIntValue()); 4735 if (!Folded.second) 4736 return SDValue(); 4737 return getConstant(Folded.first, DL, VT); 4738 } 4739 4740 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4741 const GlobalAddressSDNode *GA, 4742 const SDNode *N2) { 4743 if (GA->getOpcode() != ISD::GlobalAddress) 4744 return SDValue(); 4745 if (!TLI->isOffsetFoldingLegal(GA)) 4746 return SDValue(); 4747 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4748 if (!C2) 4749 return SDValue(); 4750 int64_t Offset = C2->getSExtValue(); 4751 switch (Opcode) { 4752 case ISD::ADD: break; 4753 case ISD::SUB: Offset = -uint64_t(Offset); break; 4754 default: return SDValue(); 4755 } 4756 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4757 GA->getOffset() + uint64_t(Offset)); 4758 } 4759 4760 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4761 switch (Opcode) { 4762 case ISD::SDIV: 4763 case ISD::UDIV: 4764 case ISD::SREM: 4765 case ISD::UREM: { 4766 // If a divisor is zero/undef or any element of a divisor vector is 4767 // zero/undef, the whole op is undef. 4768 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4769 SDValue Divisor = Ops[1]; 4770 if (Divisor.isUndef() || isNullConstant(Divisor)) 4771 return true; 4772 4773 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4774 llvm::any_of(Divisor->op_values(), 4775 [](SDValue V) { return V.isUndef() || 4776 isNullConstant(V); }); 4777 // TODO: Handle signed overflow. 4778 } 4779 // TODO: Handle oversized shifts. 4780 default: 4781 return false; 4782 } 4783 } 4784 4785 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4786 EVT VT, SDNode *N1, SDNode *N2) { 4787 // If the opcode is a target-specific ISD node, there's nothing we can 4788 // do here and the operand rules may not line up with the below, so 4789 // bail early. 4790 if (Opcode >= ISD::BUILTIN_OP_END) 4791 return SDValue(); 4792 4793 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4794 return getUNDEF(VT); 4795 4796 // Handle the case of two scalars. 4797 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4798 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4799 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4800 assert((!Folded || !VT.isVector()) && 4801 "Can't fold vectors ops with scalar operands"); 4802 return Folded; 4803 } 4804 } 4805 4806 // fold (add Sym, c) -> Sym+c 4807 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4808 return FoldSymbolOffset(Opcode, VT, GA, N2); 4809 if (TLI->isCommutativeBinOp(Opcode)) 4810 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4811 return FoldSymbolOffset(Opcode, VT, GA, N1); 4812 4813 // For vectors, extract each constant element and fold them individually. 4814 // Either input may be an undef value. 4815 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4816 if (!BV1 && !N1->isUndef()) 4817 return SDValue(); 4818 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4819 if (!BV2 && !N2->isUndef()) 4820 return SDValue(); 4821 // If both operands are undef, that's handled the same way as scalars. 4822 if (!BV1 && !BV2) 4823 return SDValue(); 4824 4825 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4826 "Vector binop with different number of elements in operands?"); 4827 4828 EVT SVT = VT.getScalarType(); 4829 EVT LegalSVT = SVT; 4830 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4831 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4832 if (LegalSVT.bitsLT(SVT)) 4833 return SDValue(); 4834 } 4835 SmallVector<SDValue, 4> Outputs; 4836 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4837 for (unsigned I = 0; I != NumOps; ++I) { 4838 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4839 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4840 if (SVT.isInteger()) { 4841 if (V1->getValueType(0).bitsGT(SVT)) 4842 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4843 if (V2->getValueType(0).bitsGT(SVT)) 4844 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4845 } 4846 4847 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4848 return SDValue(); 4849 4850 // Fold one vector element. 4851 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4852 if (LegalSVT != SVT) 4853 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4854 4855 // Scalar folding only succeeded if the result is a constant or UNDEF. 4856 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4857 ScalarResult.getOpcode() != ISD::ConstantFP) 4858 return SDValue(); 4859 Outputs.push_back(ScalarResult); 4860 } 4861 4862 assert(VT.getVectorNumElements() == Outputs.size() && 4863 "Vector size mismatch!"); 4864 4865 // We may have a vector type but a scalar result. Create a splat. 4866 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4867 4868 // Build a big vector out of the scalar elements we generated. 4869 return getBuildVector(VT, SDLoc(), Outputs); 4870 } 4871 4872 // TODO: Merge with FoldConstantArithmetic 4873 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4874 const SDLoc &DL, EVT VT, 4875 ArrayRef<SDValue> Ops, 4876 const SDNodeFlags Flags) { 4877 // If the opcode is a target-specific ISD node, there's nothing we can 4878 // do here and the operand rules may not line up with the below, so 4879 // bail early. 4880 if (Opcode >= ISD::BUILTIN_OP_END) 4881 return SDValue(); 4882 4883 if (isUndef(Opcode, Ops)) 4884 return getUNDEF(VT); 4885 4886 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4887 if (!VT.isVector()) 4888 return SDValue(); 4889 4890 unsigned NumElts = VT.getVectorNumElements(); 4891 4892 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4893 return !Op.getValueType().isVector() || 4894 Op.getValueType().getVectorNumElements() == NumElts; 4895 }; 4896 4897 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4898 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4899 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4900 (BV && BV->isConstant()); 4901 }; 4902 4903 // All operands must be vector types with the same number of elements as 4904 // the result type and must be either UNDEF or a build vector of constant 4905 // or UNDEF scalars. 4906 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4907 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4908 return SDValue(); 4909 4910 // If we are comparing vectors, then the result needs to be a i1 boolean 4911 // that is then sign-extended back to the legal result type. 4912 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4913 4914 // Find legal integer scalar type for constant promotion and 4915 // ensure that its scalar size is at least as large as source. 4916 EVT LegalSVT = VT.getScalarType(); 4917 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4918 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4919 if (LegalSVT.bitsLT(VT.getScalarType())) 4920 return SDValue(); 4921 } 4922 4923 // Constant fold each scalar lane separately. 4924 SmallVector<SDValue, 4> ScalarResults; 4925 for (unsigned i = 0; i != NumElts; i++) { 4926 SmallVector<SDValue, 4> ScalarOps; 4927 for (SDValue Op : Ops) { 4928 EVT InSVT = Op.getValueType().getScalarType(); 4929 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4930 if (!InBV) { 4931 // We've checked that this is UNDEF or a constant of some kind. 4932 if (Op.isUndef()) 4933 ScalarOps.push_back(getUNDEF(InSVT)); 4934 else 4935 ScalarOps.push_back(Op); 4936 continue; 4937 } 4938 4939 SDValue ScalarOp = InBV->getOperand(i); 4940 EVT ScalarVT = ScalarOp.getValueType(); 4941 4942 // Build vector (integer) scalar operands may need implicit 4943 // truncation - do this before constant folding. 4944 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4945 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4946 4947 ScalarOps.push_back(ScalarOp); 4948 } 4949 4950 // Constant fold the scalar operands. 4951 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4952 4953 // Legalize the (integer) scalar constant if necessary. 4954 if (LegalSVT != SVT) 4955 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4956 4957 // Scalar folding only succeeded if the result is a constant or UNDEF. 4958 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4959 ScalarResult.getOpcode() != ISD::ConstantFP) 4960 return SDValue(); 4961 ScalarResults.push_back(ScalarResult); 4962 } 4963 4964 SDValue V = getBuildVector(VT, DL, ScalarResults); 4965 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4966 return V; 4967 } 4968 4969 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4970 EVT VT, SDValue N1, SDValue N2) { 4971 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4972 // should. That will require dealing with a potentially non-default 4973 // rounding mode, checking the "opStatus" return value from the APFloat 4974 // math calculations, and possibly other variations. 4975 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4976 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4977 if (N1CFP && N2CFP) { 4978 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4979 switch (Opcode) { 4980 case ISD::FADD: 4981 C1.add(C2, APFloat::rmNearestTiesToEven); 4982 return getConstantFP(C1, DL, VT); 4983 case ISD::FSUB: 4984 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4985 return getConstantFP(C1, DL, VT); 4986 case ISD::FMUL: 4987 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4988 return getConstantFP(C1, DL, VT); 4989 case ISD::FDIV: 4990 C1.divide(C2, APFloat::rmNearestTiesToEven); 4991 return getConstantFP(C1, DL, VT); 4992 case ISD::FREM: 4993 C1.mod(C2); 4994 return getConstantFP(C1, DL, VT); 4995 case ISD::FCOPYSIGN: 4996 C1.copySign(C2); 4997 return getConstantFP(C1, DL, VT); 4998 default: break; 4999 } 5000 } 5001 if (N1CFP && Opcode == ISD::FP_ROUND) { 5002 APFloat C1 = N1CFP->getValueAPF(); // make copy 5003 bool Unused; 5004 // This can return overflow, underflow, or inexact; we don't care. 5005 // FIXME need to be more flexible about rounding mode. 5006 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5007 &Unused); 5008 return getConstantFP(C1, DL, VT); 5009 } 5010 5011 switch (Opcode) { 5012 case ISD::FADD: 5013 case ISD::FSUB: 5014 case ISD::FMUL: 5015 case ISD::FDIV: 5016 case ISD::FREM: 5017 // If both operands are undef, the result is undef. If 1 operand is undef, 5018 // the result is NaN. This should match the behavior of the IR optimizer. 5019 if (N1.isUndef() && N2.isUndef()) 5020 return getUNDEF(VT); 5021 if (N1.isUndef() || N2.isUndef()) 5022 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5023 } 5024 return SDValue(); 5025 } 5026 5027 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5028 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5029 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5030 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5031 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5032 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5033 5034 // Canonicalize constant to RHS if commutative. 5035 if (TLI->isCommutativeBinOp(Opcode)) { 5036 if (N1C && !N2C) { 5037 std::swap(N1C, N2C); 5038 std::swap(N1, N2); 5039 } else if (N1CFP && !N2CFP) { 5040 std::swap(N1CFP, N2CFP); 5041 std::swap(N1, N2); 5042 } 5043 } 5044 5045 switch (Opcode) { 5046 default: break; 5047 case ISD::TokenFactor: 5048 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5049 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5050 // Fold trivial token factors. 5051 if (N1.getOpcode() == ISD::EntryToken) return N2; 5052 if (N2.getOpcode() == ISD::EntryToken) return N1; 5053 if (N1 == N2) return N1; 5054 break; 5055 case ISD::BUILD_VECTOR: { 5056 // Attempt to simplify BUILD_VECTOR. 5057 SDValue Ops[] = {N1, N2}; 5058 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5059 return V; 5060 break; 5061 } 5062 case ISD::CONCAT_VECTORS: { 5063 SDValue Ops[] = {N1, N2}; 5064 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5065 return V; 5066 break; 5067 } 5068 case ISD::AND: 5069 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5070 assert(N1.getValueType() == N2.getValueType() && 5071 N1.getValueType() == VT && "Binary operator types must match!"); 5072 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5073 // worth handling here. 5074 if (N2C && N2C->isNullValue()) 5075 return N2; 5076 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5077 return N1; 5078 break; 5079 case ISD::OR: 5080 case ISD::XOR: 5081 case ISD::ADD: 5082 case ISD::SUB: 5083 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5084 assert(N1.getValueType() == N2.getValueType() && 5085 N1.getValueType() == VT && "Binary operator types must match!"); 5086 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5087 // it's worth handling here. 5088 if (N2C && N2C->isNullValue()) 5089 return N1; 5090 break; 5091 case ISD::UDIV: 5092 case ISD::UREM: 5093 case ISD::MULHU: 5094 case ISD::MULHS: 5095 case ISD::MUL: 5096 case ISD::SDIV: 5097 case ISD::SREM: 5098 case ISD::SMIN: 5099 case ISD::SMAX: 5100 case ISD::UMIN: 5101 case ISD::UMAX: 5102 case ISD::SADDSAT: 5103 case ISD::SSUBSAT: 5104 case ISD::UADDSAT: 5105 case ISD::USUBSAT: 5106 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5107 assert(N1.getValueType() == N2.getValueType() && 5108 N1.getValueType() == VT && "Binary operator types must match!"); 5109 break; 5110 case ISD::FADD: 5111 case ISD::FSUB: 5112 case ISD::FMUL: 5113 case ISD::FDIV: 5114 case ISD::FREM: 5115 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5116 assert(N1.getValueType() == N2.getValueType() && 5117 N1.getValueType() == VT && "Binary operator types must match!"); 5118 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5119 return V; 5120 break; 5121 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5122 assert(N1.getValueType() == VT && 5123 N1.getValueType().isFloatingPoint() && 5124 N2.getValueType().isFloatingPoint() && 5125 "Invalid FCOPYSIGN!"); 5126 break; 5127 case ISD::SHL: 5128 case ISD::SRA: 5129 case ISD::SRL: 5130 if (SDValue V = simplifyShift(N1, N2)) 5131 return V; 5132 LLVM_FALLTHROUGH; 5133 case ISD::ROTL: 5134 case ISD::ROTR: 5135 assert(VT == N1.getValueType() && 5136 "Shift operators return type must be the same as their first arg"); 5137 assert(VT.isInteger() && N2.getValueType().isInteger() && 5138 "Shifts only work on integers"); 5139 assert((!VT.isVector() || VT == N2.getValueType()) && 5140 "Vector shift amounts must be in the same as their first arg"); 5141 // Verify that the shift amount VT is big enough to hold valid shift 5142 // amounts. This catches things like trying to shift an i1024 value by an 5143 // i8, which is easy to fall into in generic code that uses 5144 // TLI.getShiftAmount(). 5145 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5146 "Invalid use of small shift amount with oversized value!"); 5147 5148 // Always fold shifts of i1 values so the code generator doesn't need to 5149 // handle them. Since we know the size of the shift has to be less than the 5150 // size of the value, the shift/rotate count is guaranteed to be zero. 5151 if (VT == MVT::i1) 5152 return N1; 5153 if (N2C && N2C->isNullValue()) 5154 return N1; 5155 break; 5156 case ISD::FP_ROUND: 5157 assert(VT.isFloatingPoint() && 5158 N1.getValueType().isFloatingPoint() && 5159 VT.bitsLE(N1.getValueType()) && 5160 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5161 "Invalid FP_ROUND!"); 5162 if (N1.getValueType() == VT) return N1; // noop conversion. 5163 break; 5164 case ISD::AssertSext: 5165 case ISD::AssertZext: { 5166 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5167 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5168 assert(VT.isInteger() && EVT.isInteger() && 5169 "Cannot *_EXTEND_INREG FP types"); 5170 assert(!EVT.isVector() && 5171 "AssertSExt/AssertZExt type should be the vector element type " 5172 "rather than the vector type!"); 5173 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5174 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5175 break; 5176 } 5177 case ISD::SIGN_EXTEND_INREG: { 5178 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5179 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5180 assert(VT.isInteger() && EVT.isInteger() && 5181 "Cannot *_EXTEND_INREG FP types"); 5182 assert(EVT.isVector() == VT.isVector() && 5183 "SIGN_EXTEND_INREG type should be vector iff the operand " 5184 "type is vector!"); 5185 assert((!EVT.isVector() || 5186 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5187 "Vector element counts must match in SIGN_EXTEND_INREG"); 5188 assert(EVT.bitsLE(VT) && "Not extending!"); 5189 if (EVT == VT) return N1; // Not actually extending 5190 5191 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5192 unsigned FromBits = EVT.getScalarSizeInBits(); 5193 Val <<= Val.getBitWidth() - FromBits; 5194 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5195 return getConstant(Val, DL, ConstantVT); 5196 }; 5197 5198 if (N1C) { 5199 const APInt &Val = N1C->getAPIntValue(); 5200 return SignExtendInReg(Val, VT); 5201 } 5202 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5203 SmallVector<SDValue, 8> Ops; 5204 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5205 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5206 SDValue Op = N1.getOperand(i); 5207 if (Op.isUndef()) { 5208 Ops.push_back(getUNDEF(OpVT)); 5209 continue; 5210 } 5211 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5212 APInt Val = C->getAPIntValue(); 5213 Ops.push_back(SignExtendInReg(Val, OpVT)); 5214 } 5215 return getBuildVector(VT, DL, Ops); 5216 } 5217 break; 5218 } 5219 case ISD::EXTRACT_VECTOR_ELT: 5220 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5221 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5222 element type of the vector."); 5223 5224 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5225 if (N1.isUndef()) 5226 return getUNDEF(VT); 5227 5228 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5229 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5230 return getUNDEF(VT); 5231 5232 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5233 // expanding copies of large vectors from registers. 5234 if (N2C && 5235 N1.getOpcode() == ISD::CONCAT_VECTORS && 5236 N1.getNumOperands() > 0) { 5237 unsigned Factor = 5238 N1.getOperand(0).getValueType().getVectorNumElements(); 5239 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5240 N1.getOperand(N2C->getZExtValue() / Factor), 5241 getConstant(N2C->getZExtValue() % Factor, DL, 5242 N2.getValueType())); 5243 } 5244 5245 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5246 // expanding large vector constants. 5247 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5248 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5249 5250 if (VT != Elt.getValueType()) 5251 // If the vector element type is not legal, the BUILD_VECTOR operands 5252 // are promoted and implicitly truncated, and the result implicitly 5253 // extended. Make that explicit here. 5254 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5255 5256 return Elt; 5257 } 5258 5259 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5260 // operations are lowered to scalars. 5261 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5262 // If the indices are the same, return the inserted element else 5263 // if the indices are known different, extract the element from 5264 // the original vector. 5265 SDValue N1Op2 = N1.getOperand(2); 5266 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5267 5268 if (N1Op2C && N2C) { 5269 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5270 if (VT == N1.getOperand(1).getValueType()) 5271 return N1.getOperand(1); 5272 else 5273 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5274 } 5275 5276 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5277 } 5278 } 5279 5280 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5281 // when vector types are scalarized and v1iX is legal. 5282 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5283 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5284 N1.getValueType().getVectorNumElements() == 1) { 5285 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5286 N1.getOperand(1)); 5287 } 5288 break; 5289 case ISD::EXTRACT_ELEMENT: 5290 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5291 assert(!N1.getValueType().isVector() && !VT.isVector() && 5292 (N1.getValueType().isInteger() == VT.isInteger()) && 5293 N1.getValueType() != VT && 5294 "Wrong types for EXTRACT_ELEMENT!"); 5295 5296 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5297 // 64-bit integers into 32-bit parts. Instead of building the extract of 5298 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5299 if (N1.getOpcode() == ISD::BUILD_PAIR) 5300 return N1.getOperand(N2C->getZExtValue()); 5301 5302 // EXTRACT_ELEMENT of a constant int is also very common. 5303 if (N1C) { 5304 unsigned ElementSize = VT.getSizeInBits(); 5305 unsigned Shift = ElementSize * N2C->getZExtValue(); 5306 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5307 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5308 } 5309 break; 5310 case ISD::EXTRACT_SUBVECTOR: 5311 if (VT.isSimple() && N1.getValueType().isSimple()) { 5312 assert(VT.isVector() && N1.getValueType().isVector() && 5313 "Extract subvector VTs must be a vectors!"); 5314 assert(VT.getVectorElementType() == 5315 N1.getValueType().getVectorElementType() && 5316 "Extract subvector VTs must have the same element type!"); 5317 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5318 "Extract subvector must be from larger vector to smaller vector!"); 5319 5320 if (N2C) { 5321 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5322 <= N1.getValueType().getVectorNumElements()) 5323 && "Extract subvector overflow!"); 5324 } 5325 5326 // Trivial extraction. 5327 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5328 return N1; 5329 5330 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5331 if (N1.isUndef()) 5332 return getUNDEF(VT); 5333 5334 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5335 // the concat have the same type as the extract. 5336 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5337 N1.getNumOperands() > 0 && 5338 VT == N1.getOperand(0).getValueType()) { 5339 unsigned Factor = VT.getVectorNumElements(); 5340 return N1.getOperand(N2C->getZExtValue() / Factor); 5341 } 5342 5343 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5344 // during shuffle legalization. 5345 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5346 VT == N1.getOperand(1).getValueType()) 5347 return N1.getOperand(1); 5348 } 5349 break; 5350 } 5351 5352 // Perform trivial constant folding. 5353 if (SDValue SV = 5354 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5355 return SV; 5356 5357 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5358 return V; 5359 5360 // Canonicalize an UNDEF to the RHS, even over a constant. 5361 if (N1.isUndef()) { 5362 if (TLI->isCommutativeBinOp(Opcode)) { 5363 std::swap(N1, N2); 5364 } else { 5365 switch (Opcode) { 5366 case ISD::SIGN_EXTEND_INREG: 5367 case ISD::SUB: 5368 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5369 case ISD::UDIV: 5370 case ISD::SDIV: 5371 case ISD::UREM: 5372 case ISD::SREM: 5373 case ISD::SSUBSAT: 5374 case ISD::USUBSAT: 5375 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5376 } 5377 } 5378 } 5379 5380 // Fold a bunch of operators when the RHS is undef. 5381 if (N2.isUndef()) { 5382 switch (Opcode) { 5383 case ISD::XOR: 5384 if (N1.isUndef()) 5385 // Handle undef ^ undef -> 0 special case. This is a common 5386 // idiom (misuse). 5387 return getConstant(0, DL, VT); 5388 LLVM_FALLTHROUGH; 5389 case ISD::ADD: 5390 case ISD::SUB: 5391 case ISD::UDIV: 5392 case ISD::SDIV: 5393 case ISD::UREM: 5394 case ISD::SREM: 5395 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5396 case ISD::MUL: 5397 case ISD::AND: 5398 case ISD::SSUBSAT: 5399 case ISD::USUBSAT: 5400 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5401 case ISD::OR: 5402 case ISD::SADDSAT: 5403 case ISD::UADDSAT: 5404 return getAllOnesConstant(DL, VT); 5405 } 5406 } 5407 5408 // Memoize this node if possible. 5409 SDNode *N; 5410 SDVTList VTs = getVTList(VT); 5411 SDValue Ops[] = {N1, N2}; 5412 if (VT != MVT::Glue) { 5413 FoldingSetNodeID ID; 5414 AddNodeIDNode(ID, Opcode, VTs, Ops); 5415 void *IP = nullptr; 5416 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5417 E->intersectFlagsWith(Flags); 5418 return SDValue(E, 0); 5419 } 5420 5421 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5422 N->setFlags(Flags); 5423 createOperands(N, Ops); 5424 CSEMap.InsertNode(N, IP); 5425 } else { 5426 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5427 createOperands(N, Ops); 5428 } 5429 5430 InsertNode(N); 5431 SDValue V = SDValue(N, 0); 5432 NewSDValueDbgMsg(V, "Creating new node: ", this); 5433 return V; 5434 } 5435 5436 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5437 SDValue N1, SDValue N2, SDValue N3, 5438 const SDNodeFlags Flags) { 5439 // Perform various simplifications. 5440 switch (Opcode) { 5441 case ISD::FMA: { 5442 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5443 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5444 N3.getValueType() == VT && "FMA types must match!"); 5445 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5446 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5447 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5448 if (N1CFP && N2CFP && N3CFP) { 5449 APFloat V1 = N1CFP->getValueAPF(); 5450 const APFloat &V2 = N2CFP->getValueAPF(); 5451 const APFloat &V3 = N3CFP->getValueAPF(); 5452 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5453 return getConstantFP(V1, DL, VT); 5454 } 5455 break; 5456 } 5457 case ISD::BUILD_VECTOR: { 5458 // Attempt to simplify BUILD_VECTOR. 5459 SDValue Ops[] = {N1, N2, N3}; 5460 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5461 return V; 5462 break; 5463 } 5464 case ISD::CONCAT_VECTORS: { 5465 SDValue Ops[] = {N1, N2, N3}; 5466 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5467 return V; 5468 break; 5469 } 5470 case ISD::SETCC: { 5471 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5472 assert(N1.getValueType() == N2.getValueType() && 5473 "SETCC operands must have the same type!"); 5474 assert(VT.isVector() == N1.getValueType().isVector() && 5475 "SETCC type should be vector iff the operand type is vector!"); 5476 assert((!VT.isVector() || 5477 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5478 "SETCC vector element counts must match!"); 5479 // Use FoldSetCC to simplify SETCC's. 5480 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5481 return V; 5482 // Vector constant folding. 5483 SDValue Ops[] = {N1, N2, N3}; 5484 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5485 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5486 return V; 5487 } 5488 break; 5489 } 5490 case ISD::SELECT: 5491 case ISD::VSELECT: 5492 if (SDValue V = simplifySelect(N1, N2, N3)) 5493 return V; 5494 break; 5495 case ISD::VECTOR_SHUFFLE: 5496 llvm_unreachable("should use getVectorShuffle constructor!"); 5497 case ISD::INSERT_VECTOR_ELT: { 5498 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5499 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5500 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5501 return getUNDEF(VT); 5502 break; 5503 } 5504 case ISD::INSERT_SUBVECTOR: { 5505 // Inserting undef into undef is still undef. 5506 if (N1.isUndef() && N2.isUndef()) 5507 return getUNDEF(VT); 5508 SDValue Index = N3; 5509 if (VT.isSimple() && N1.getValueType().isSimple() 5510 && N2.getValueType().isSimple()) { 5511 assert(VT.isVector() && N1.getValueType().isVector() && 5512 N2.getValueType().isVector() && 5513 "Insert subvector VTs must be a vectors"); 5514 assert(VT == N1.getValueType() && 5515 "Dest and insert subvector source types must match!"); 5516 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5517 "Insert subvector must be from smaller vector to larger vector!"); 5518 if (isa<ConstantSDNode>(Index)) { 5519 assert((N2.getValueType().getVectorNumElements() + 5520 cast<ConstantSDNode>(Index)->getZExtValue() 5521 <= VT.getVectorNumElements()) 5522 && "Insert subvector overflow!"); 5523 } 5524 5525 // Trivial insertion. 5526 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5527 return N2; 5528 5529 // If this is an insert of an extracted vector into an undef vector, we 5530 // can just use the input to the extract. 5531 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5532 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5533 return N2.getOperand(0); 5534 } 5535 break; 5536 } 5537 case ISD::BITCAST: 5538 // Fold bit_convert nodes from a type to themselves. 5539 if (N1.getValueType() == VT) 5540 return N1; 5541 break; 5542 } 5543 5544 // Memoize node if it doesn't produce a flag. 5545 SDNode *N; 5546 SDVTList VTs = getVTList(VT); 5547 SDValue Ops[] = {N1, N2, N3}; 5548 if (VT != MVT::Glue) { 5549 FoldingSetNodeID ID; 5550 AddNodeIDNode(ID, Opcode, VTs, Ops); 5551 void *IP = nullptr; 5552 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5553 E->intersectFlagsWith(Flags); 5554 return SDValue(E, 0); 5555 } 5556 5557 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5558 N->setFlags(Flags); 5559 createOperands(N, Ops); 5560 CSEMap.InsertNode(N, IP); 5561 } else { 5562 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5563 createOperands(N, Ops); 5564 } 5565 5566 InsertNode(N); 5567 SDValue V = SDValue(N, 0); 5568 NewSDValueDbgMsg(V, "Creating new node: ", this); 5569 return V; 5570 } 5571 5572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5573 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5574 SDValue Ops[] = { N1, N2, N3, N4 }; 5575 return getNode(Opcode, DL, VT, Ops); 5576 } 5577 5578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5579 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5580 SDValue N5) { 5581 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5582 return getNode(Opcode, DL, VT, Ops); 5583 } 5584 5585 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5586 /// the incoming stack arguments to be loaded from the stack. 5587 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5588 SmallVector<SDValue, 8> ArgChains; 5589 5590 // Include the original chain at the beginning of the list. When this is 5591 // used by target LowerCall hooks, this helps legalize find the 5592 // CALLSEQ_BEGIN node. 5593 ArgChains.push_back(Chain); 5594 5595 // Add a chain value for each stack argument. 5596 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5597 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5598 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5599 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5600 if (FI->getIndex() < 0) 5601 ArgChains.push_back(SDValue(L, 1)); 5602 5603 // Build a tokenfactor for all the chains. 5604 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5605 } 5606 5607 /// getMemsetValue - Vectorized representation of the memset value 5608 /// operand. 5609 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5610 const SDLoc &dl) { 5611 assert(!Value.isUndef()); 5612 5613 unsigned NumBits = VT.getScalarSizeInBits(); 5614 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5615 assert(C->getAPIntValue().getBitWidth() == 8); 5616 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5617 if (VT.isInteger()) { 5618 bool IsOpaque = VT.getSizeInBits() > 64 || 5619 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5620 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5621 } 5622 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5623 VT); 5624 } 5625 5626 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5627 EVT IntVT = VT.getScalarType(); 5628 if (!IntVT.isInteger()) 5629 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5630 5631 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5632 if (NumBits > 8) { 5633 // Use a multiplication with 0x010101... to extend the input to the 5634 // required length. 5635 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5636 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5637 DAG.getConstant(Magic, dl, IntVT)); 5638 } 5639 5640 if (VT != Value.getValueType() && !VT.isInteger()) 5641 Value = DAG.getBitcast(VT.getScalarType(), Value); 5642 if (VT != Value.getValueType()) 5643 Value = DAG.getSplatBuildVector(VT, dl, Value); 5644 5645 return Value; 5646 } 5647 5648 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5649 /// used when a memcpy is turned into a memset when the source is a constant 5650 /// string ptr. 5651 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5652 const TargetLowering &TLI, 5653 const ConstantDataArraySlice &Slice) { 5654 // Handle vector with all elements zero. 5655 if (Slice.Array == nullptr) { 5656 if (VT.isInteger()) 5657 return DAG.getConstant(0, dl, VT); 5658 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5659 return DAG.getConstantFP(0.0, dl, VT); 5660 else if (VT.isVector()) { 5661 unsigned NumElts = VT.getVectorNumElements(); 5662 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5663 return DAG.getNode(ISD::BITCAST, dl, VT, 5664 DAG.getConstant(0, dl, 5665 EVT::getVectorVT(*DAG.getContext(), 5666 EltVT, NumElts))); 5667 } else 5668 llvm_unreachable("Expected type!"); 5669 } 5670 5671 assert(!VT.isVector() && "Can't handle vector type here!"); 5672 unsigned NumVTBits = VT.getSizeInBits(); 5673 unsigned NumVTBytes = NumVTBits / 8; 5674 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5675 5676 APInt Val(NumVTBits, 0); 5677 if (DAG.getDataLayout().isLittleEndian()) { 5678 for (unsigned i = 0; i != NumBytes; ++i) 5679 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5680 } else { 5681 for (unsigned i = 0; i != NumBytes; ++i) 5682 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5683 } 5684 5685 // If the "cost" of materializing the integer immediate is less than the cost 5686 // of a load, then it is cost effective to turn the load into the immediate. 5687 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5688 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5689 return DAG.getConstant(Val, dl, VT); 5690 return SDValue(nullptr, 0); 5691 } 5692 5693 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5694 const SDLoc &DL) { 5695 EVT VT = Base.getValueType(); 5696 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5697 } 5698 5699 /// Returns true if memcpy source is constant data. 5700 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5701 uint64_t SrcDelta = 0; 5702 GlobalAddressSDNode *G = nullptr; 5703 if (Src.getOpcode() == ISD::GlobalAddress) 5704 G = cast<GlobalAddressSDNode>(Src); 5705 else if (Src.getOpcode() == ISD::ADD && 5706 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5707 Src.getOperand(1).getOpcode() == ISD::Constant) { 5708 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5709 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5710 } 5711 if (!G) 5712 return false; 5713 5714 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5715 SrcDelta + G->getOffset()); 5716 } 5717 5718 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5719 // On Darwin, -Os means optimize for size without hurting performance, so 5720 // only really optimize for size when -Oz (MinSize) is used. 5721 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5722 return MF.getFunction().hasMinSize(); 5723 return MF.getFunction().hasOptSize(); 5724 } 5725 5726 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5727 SmallVector<SDValue, 32> &OutChains, unsigned From, 5728 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5729 SmallVector<SDValue, 16> &OutStoreChains) { 5730 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5731 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5732 SmallVector<SDValue, 16> GluedLoadChains; 5733 for (unsigned i = From; i < To; ++i) { 5734 OutChains.push_back(OutLoadChains[i]); 5735 GluedLoadChains.push_back(OutLoadChains[i]); 5736 } 5737 5738 // Chain for all loads. 5739 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5740 GluedLoadChains); 5741 5742 for (unsigned i = From; i < To; ++i) { 5743 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5744 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5745 ST->getBasePtr(), ST->getMemoryVT(), 5746 ST->getMemOperand()); 5747 OutChains.push_back(NewStore); 5748 } 5749 } 5750 5751 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5752 SDValue Chain, SDValue Dst, SDValue Src, 5753 uint64_t Size, unsigned Align, 5754 bool isVol, bool AlwaysInline, 5755 MachinePointerInfo DstPtrInfo, 5756 MachinePointerInfo SrcPtrInfo) { 5757 // Turn a memcpy of undef to nop. 5758 // FIXME: We need to honor volatile even is Src is undef. 5759 if (Src.isUndef()) 5760 return Chain; 5761 5762 // Expand memcpy to a series of load and store ops if the size operand falls 5763 // below a certain threshold. 5764 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5765 // rather than maybe a humongous number of loads and stores. 5766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5767 const DataLayout &DL = DAG.getDataLayout(); 5768 LLVMContext &C = *DAG.getContext(); 5769 std::vector<EVT> MemOps; 5770 bool DstAlignCanChange = false; 5771 MachineFunction &MF = DAG.getMachineFunction(); 5772 MachineFrameInfo &MFI = MF.getFrameInfo(); 5773 bool OptSize = shouldLowerMemFuncForSize(MF); 5774 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5775 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5776 DstAlignCanChange = true; 5777 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5778 if (Align > SrcAlign) 5779 SrcAlign = Align; 5780 ConstantDataArraySlice Slice; 5781 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5782 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5783 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5784 5785 if (!TLI.findOptimalMemOpLowering( 5786 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), 5787 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5788 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5789 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5790 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5791 return SDValue(); 5792 5793 if (DstAlignCanChange) { 5794 Type *Ty = MemOps[0].getTypeForEVT(C); 5795 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5796 5797 // Don't promote to an alignment that would require dynamic stack 5798 // realignment. 5799 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5800 if (!TRI->needsStackRealignment(MF)) 5801 while (NewAlign > Align && 5802 DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign))) 5803 NewAlign /= 2; 5804 5805 if (NewAlign > Align) { 5806 // Give the stack frame object a larger alignment if needed. 5807 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5808 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5809 Align = NewAlign; 5810 } 5811 } 5812 5813 MachineMemOperand::Flags MMOFlags = 5814 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5815 SmallVector<SDValue, 16> OutLoadChains; 5816 SmallVector<SDValue, 16> OutStoreChains; 5817 SmallVector<SDValue, 32> OutChains; 5818 unsigned NumMemOps = MemOps.size(); 5819 uint64_t SrcOff = 0, DstOff = 0; 5820 for (unsigned i = 0; i != NumMemOps; ++i) { 5821 EVT VT = MemOps[i]; 5822 unsigned VTSize = VT.getSizeInBits() / 8; 5823 SDValue Value, Store; 5824 5825 if (VTSize > Size) { 5826 // Issuing an unaligned load / store pair that overlaps with the previous 5827 // pair. Adjust the offset accordingly. 5828 assert(i == NumMemOps-1 && i != 0); 5829 SrcOff -= VTSize - Size; 5830 DstOff -= VTSize - Size; 5831 } 5832 5833 if (CopyFromConstant && 5834 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5835 // It's unlikely a store of a vector immediate can be done in a single 5836 // instruction. It would require a load from a constantpool first. 5837 // We only handle zero vectors here. 5838 // FIXME: Handle other cases where store of vector immediate is done in 5839 // a single instruction. 5840 ConstantDataArraySlice SubSlice; 5841 if (SrcOff < Slice.Length) { 5842 SubSlice = Slice; 5843 SubSlice.move(SrcOff); 5844 } else { 5845 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5846 SubSlice.Array = nullptr; 5847 SubSlice.Offset = 0; 5848 SubSlice.Length = VTSize; 5849 } 5850 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5851 if (Value.getNode()) { 5852 Store = DAG.getStore(Chain, dl, Value, 5853 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5854 DstPtrInfo.getWithOffset(DstOff), Align, 5855 MMOFlags); 5856 OutChains.push_back(Store); 5857 } 5858 } 5859 5860 if (!Store.getNode()) { 5861 // The type might not be legal for the target. This should only happen 5862 // if the type is smaller than a legal type, as on PPC, so the right 5863 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5864 // to Load/Store if NVT==VT. 5865 // FIXME does the case above also need this? 5866 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5867 assert(NVT.bitsGE(VT)); 5868 5869 bool isDereferenceable = 5870 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5871 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5872 if (isDereferenceable) 5873 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5874 5875 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5876 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5877 SrcPtrInfo.getWithOffset(SrcOff), VT, 5878 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5879 OutLoadChains.push_back(Value.getValue(1)); 5880 5881 Store = DAG.getTruncStore( 5882 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5883 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5884 OutStoreChains.push_back(Store); 5885 } 5886 SrcOff += VTSize; 5887 DstOff += VTSize; 5888 Size -= VTSize; 5889 } 5890 5891 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5892 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5893 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5894 5895 if (NumLdStInMemcpy) { 5896 // It may be that memcpy might be converted to memset if it's memcpy 5897 // of constants. In such a case, we won't have loads and stores, but 5898 // just stores. In the absence of loads, there is nothing to gang up. 5899 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5900 // If target does not care, just leave as it. 5901 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5902 OutChains.push_back(OutLoadChains[i]); 5903 OutChains.push_back(OutStoreChains[i]); 5904 } 5905 } else { 5906 // Ld/St less than/equal limit set by target. 5907 if (NumLdStInMemcpy <= GluedLdStLimit) { 5908 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5909 NumLdStInMemcpy, OutLoadChains, 5910 OutStoreChains); 5911 } else { 5912 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5913 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5914 unsigned GlueIter = 0; 5915 5916 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5917 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5918 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5919 5920 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5921 OutLoadChains, OutStoreChains); 5922 GlueIter += GluedLdStLimit; 5923 } 5924 5925 // Residual ld/st. 5926 if (RemainingLdStInMemcpy) { 5927 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5928 RemainingLdStInMemcpy, OutLoadChains, 5929 OutStoreChains); 5930 } 5931 } 5932 } 5933 } 5934 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5935 } 5936 5937 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5938 SDValue Chain, SDValue Dst, SDValue Src, 5939 uint64_t Size, unsigned Align, 5940 bool isVol, bool AlwaysInline, 5941 MachinePointerInfo DstPtrInfo, 5942 MachinePointerInfo SrcPtrInfo) { 5943 // Turn a memmove of undef to nop. 5944 // FIXME: We need to honor volatile even is Src is undef. 5945 if (Src.isUndef()) 5946 return Chain; 5947 5948 // Expand memmove to a series of load and store ops if the size operand falls 5949 // below a certain threshold. 5950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5951 const DataLayout &DL = DAG.getDataLayout(); 5952 LLVMContext &C = *DAG.getContext(); 5953 std::vector<EVT> MemOps; 5954 bool DstAlignCanChange = false; 5955 MachineFunction &MF = DAG.getMachineFunction(); 5956 MachineFrameInfo &MFI = MF.getFrameInfo(); 5957 bool OptSize = shouldLowerMemFuncForSize(MF); 5958 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5959 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5960 DstAlignCanChange = true; 5961 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5962 if (Align > SrcAlign) 5963 SrcAlign = Align; 5964 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5965 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5966 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5967 // correct code. 5968 bool AllowOverlap = false; 5969 if (!TLI.findOptimalMemOpLowering( 5970 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 5971 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 5972 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 5973 MF.getFunction().getAttributes())) 5974 return SDValue(); 5975 5976 if (DstAlignCanChange) { 5977 Type *Ty = MemOps[0].getTypeForEVT(C); 5978 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5979 if (NewAlign > Align) { 5980 // Give the stack frame object a larger alignment if needed. 5981 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5982 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5983 Align = NewAlign; 5984 } 5985 } 5986 5987 MachineMemOperand::Flags MMOFlags = 5988 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5989 uint64_t SrcOff = 0, DstOff = 0; 5990 SmallVector<SDValue, 8> LoadValues; 5991 SmallVector<SDValue, 8> LoadChains; 5992 SmallVector<SDValue, 8> OutChains; 5993 unsigned NumMemOps = MemOps.size(); 5994 for (unsigned i = 0; i < NumMemOps; i++) { 5995 EVT VT = MemOps[i]; 5996 unsigned VTSize = VT.getSizeInBits() / 8; 5997 SDValue Value; 5998 5999 bool isDereferenceable = 6000 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6001 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6002 if (isDereferenceable) 6003 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6004 6005 Value = 6006 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6007 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6008 LoadValues.push_back(Value); 6009 LoadChains.push_back(Value.getValue(1)); 6010 SrcOff += VTSize; 6011 } 6012 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6013 OutChains.clear(); 6014 for (unsigned i = 0; i < NumMemOps; i++) { 6015 EVT VT = MemOps[i]; 6016 unsigned VTSize = VT.getSizeInBits() / 8; 6017 SDValue Store; 6018 6019 Store = DAG.getStore(Chain, dl, LoadValues[i], 6020 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6021 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6022 OutChains.push_back(Store); 6023 DstOff += VTSize; 6024 } 6025 6026 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6027 } 6028 6029 /// Lower the call to 'memset' intrinsic function into a series of store 6030 /// operations. 6031 /// 6032 /// \param DAG Selection DAG where lowered code is placed. 6033 /// \param dl Link to corresponding IR location. 6034 /// \param Chain Control flow dependency. 6035 /// \param Dst Pointer to destination memory location. 6036 /// \param Src Value of byte to write into the memory. 6037 /// \param Size Number of bytes to write. 6038 /// \param Align Alignment of the destination in bytes. 6039 /// \param isVol True if destination is volatile. 6040 /// \param DstPtrInfo IR information on the memory pointer. 6041 /// \returns New head in the control flow, if lowering was successful, empty 6042 /// SDValue otherwise. 6043 /// 6044 /// The function tries to replace 'llvm.memset' intrinsic with several store 6045 /// operations and value calculation code. This is usually profitable for small 6046 /// memory size. 6047 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6048 SDValue Chain, SDValue Dst, SDValue Src, 6049 uint64_t Size, unsigned Align, bool isVol, 6050 MachinePointerInfo DstPtrInfo) { 6051 // Turn a memset of undef to nop. 6052 // FIXME: We need to honor volatile even is Src is undef. 6053 if (Src.isUndef()) 6054 return Chain; 6055 6056 // Expand memset to a series of load/store ops if the size operand 6057 // falls below a certain threshold. 6058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6059 std::vector<EVT> MemOps; 6060 bool DstAlignCanChange = false; 6061 MachineFunction &MF = DAG.getMachineFunction(); 6062 MachineFrameInfo &MFI = MF.getFrameInfo(); 6063 bool OptSize = shouldLowerMemFuncForSize(MF); 6064 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6065 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6066 DstAlignCanChange = true; 6067 bool IsZeroVal = 6068 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6069 if (!TLI.findOptimalMemOpLowering( 6070 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6071 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6072 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6073 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6074 MF.getFunction().getAttributes())) 6075 return SDValue(); 6076 6077 if (DstAlignCanChange) { 6078 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6079 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6080 if (NewAlign > Align) { 6081 // Give the stack frame object a larger alignment if needed. 6082 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6083 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6084 Align = NewAlign; 6085 } 6086 } 6087 6088 SmallVector<SDValue, 8> OutChains; 6089 uint64_t DstOff = 0; 6090 unsigned NumMemOps = MemOps.size(); 6091 6092 // Find the largest store and generate the bit pattern for it. 6093 EVT LargestVT = MemOps[0]; 6094 for (unsigned i = 1; i < NumMemOps; i++) 6095 if (MemOps[i].bitsGT(LargestVT)) 6096 LargestVT = MemOps[i]; 6097 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6098 6099 for (unsigned i = 0; i < NumMemOps; i++) { 6100 EVT VT = MemOps[i]; 6101 unsigned VTSize = VT.getSizeInBits() / 8; 6102 if (VTSize > Size) { 6103 // Issuing an unaligned load / store pair that overlaps with the previous 6104 // pair. Adjust the offset accordingly. 6105 assert(i == NumMemOps-1 && i != 0); 6106 DstOff -= VTSize - Size; 6107 } 6108 6109 // If this store is smaller than the largest store see whether we can get 6110 // the smaller value for free with a truncate. 6111 SDValue Value = MemSetValue; 6112 if (VT.bitsLT(LargestVT)) { 6113 if (!LargestVT.isVector() && !VT.isVector() && 6114 TLI.isTruncateFree(LargestVT, VT)) 6115 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6116 else 6117 Value = getMemsetValue(Src, VT, DAG, dl); 6118 } 6119 assert(Value.getValueType() == VT && "Value with wrong type."); 6120 SDValue Store = DAG.getStore( 6121 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6122 DstPtrInfo.getWithOffset(DstOff), Align, 6123 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6124 OutChains.push_back(Store); 6125 DstOff += VT.getSizeInBits() / 8; 6126 Size -= VTSize; 6127 } 6128 6129 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6130 } 6131 6132 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6133 unsigned AS) { 6134 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6135 // pointer operands can be losslessly bitcasted to pointers of address space 0 6136 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6137 report_fatal_error("cannot lower memory intrinsic in address space " + 6138 Twine(AS)); 6139 } 6140 } 6141 6142 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6143 SDValue Src, SDValue Size, unsigned Align, 6144 bool isVol, bool AlwaysInline, bool isTailCall, 6145 MachinePointerInfo DstPtrInfo, 6146 MachinePointerInfo SrcPtrInfo) { 6147 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6148 6149 // Check to see if we should lower the memcpy to loads and stores first. 6150 // For cases within the target-specified limits, this is the best choice. 6151 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6152 if (ConstantSize) { 6153 // Memcpy with size zero? Just return the original chain. 6154 if (ConstantSize->isNullValue()) 6155 return Chain; 6156 6157 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6158 ConstantSize->getZExtValue(),Align, 6159 isVol, false, DstPtrInfo, SrcPtrInfo); 6160 if (Result.getNode()) 6161 return Result; 6162 } 6163 6164 // Then check to see if we should lower the memcpy with target-specific 6165 // code. If the target chooses to do this, this is the next best. 6166 if (TSI) { 6167 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6168 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6169 DstPtrInfo, SrcPtrInfo); 6170 if (Result.getNode()) 6171 return Result; 6172 } 6173 6174 // If we really need inline code and the target declined to provide it, 6175 // use a (potentially long) sequence of loads and stores. 6176 if (AlwaysInline) { 6177 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6178 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6179 ConstantSize->getZExtValue(), Align, isVol, 6180 true, DstPtrInfo, SrcPtrInfo); 6181 } 6182 6183 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6184 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6185 6186 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6187 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6188 // respect volatile, so they may do things like read or write memory 6189 // beyond the given memory regions. But fixing this isn't easy, and most 6190 // people don't care. 6191 6192 // Emit a library call. 6193 TargetLowering::ArgListTy Args; 6194 TargetLowering::ArgListEntry Entry; 6195 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6196 Entry.Node = Dst; Args.push_back(Entry); 6197 Entry.Node = Src; Args.push_back(Entry); 6198 6199 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6200 Entry.Node = Size; Args.push_back(Entry); 6201 // FIXME: pass in SDLoc 6202 TargetLowering::CallLoweringInfo CLI(*this); 6203 CLI.setDebugLoc(dl) 6204 .setChain(Chain) 6205 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6206 Dst.getValueType().getTypeForEVT(*getContext()), 6207 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6208 TLI->getPointerTy(getDataLayout())), 6209 std::move(Args)) 6210 .setDiscardResult() 6211 .setTailCall(isTailCall); 6212 6213 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6214 return CallResult.second; 6215 } 6216 6217 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6218 SDValue Dst, unsigned DstAlign, 6219 SDValue Src, unsigned SrcAlign, 6220 SDValue Size, Type *SizeTy, 6221 unsigned ElemSz, bool isTailCall, 6222 MachinePointerInfo DstPtrInfo, 6223 MachinePointerInfo SrcPtrInfo) { 6224 // Emit a library call. 6225 TargetLowering::ArgListTy Args; 6226 TargetLowering::ArgListEntry Entry; 6227 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6228 Entry.Node = Dst; 6229 Args.push_back(Entry); 6230 6231 Entry.Node = Src; 6232 Args.push_back(Entry); 6233 6234 Entry.Ty = SizeTy; 6235 Entry.Node = Size; 6236 Args.push_back(Entry); 6237 6238 RTLIB::Libcall LibraryCall = 6239 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6240 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6241 report_fatal_error("Unsupported element size"); 6242 6243 TargetLowering::CallLoweringInfo CLI(*this); 6244 CLI.setDebugLoc(dl) 6245 .setChain(Chain) 6246 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6247 Type::getVoidTy(*getContext()), 6248 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6249 TLI->getPointerTy(getDataLayout())), 6250 std::move(Args)) 6251 .setDiscardResult() 6252 .setTailCall(isTailCall); 6253 6254 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6255 return CallResult.second; 6256 } 6257 6258 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6259 SDValue Src, SDValue Size, unsigned Align, 6260 bool isVol, bool isTailCall, 6261 MachinePointerInfo DstPtrInfo, 6262 MachinePointerInfo SrcPtrInfo) { 6263 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6264 6265 // Check to see if we should lower the memmove to loads and stores first. 6266 // For cases within the target-specified limits, this is the best choice. 6267 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6268 if (ConstantSize) { 6269 // Memmove with size zero? Just return the original chain. 6270 if (ConstantSize->isNullValue()) 6271 return Chain; 6272 6273 SDValue Result = 6274 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6275 ConstantSize->getZExtValue(), Align, isVol, 6276 false, DstPtrInfo, SrcPtrInfo); 6277 if (Result.getNode()) 6278 return Result; 6279 } 6280 6281 // Then check to see if we should lower the memmove with target-specific 6282 // code. If the target chooses to do this, this is the next best. 6283 if (TSI) { 6284 SDValue Result = TSI->EmitTargetCodeForMemmove( 6285 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6286 if (Result.getNode()) 6287 return Result; 6288 } 6289 6290 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6291 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6292 6293 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6294 // not be safe. See memcpy above for more details. 6295 6296 // Emit a library call. 6297 TargetLowering::ArgListTy Args; 6298 TargetLowering::ArgListEntry Entry; 6299 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6300 Entry.Node = Dst; Args.push_back(Entry); 6301 Entry.Node = Src; Args.push_back(Entry); 6302 6303 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6304 Entry.Node = Size; Args.push_back(Entry); 6305 // FIXME: pass in SDLoc 6306 TargetLowering::CallLoweringInfo CLI(*this); 6307 CLI.setDebugLoc(dl) 6308 .setChain(Chain) 6309 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6310 Dst.getValueType().getTypeForEVT(*getContext()), 6311 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6312 TLI->getPointerTy(getDataLayout())), 6313 std::move(Args)) 6314 .setDiscardResult() 6315 .setTailCall(isTailCall); 6316 6317 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6318 return CallResult.second; 6319 } 6320 6321 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6322 SDValue Dst, unsigned DstAlign, 6323 SDValue Src, unsigned SrcAlign, 6324 SDValue Size, Type *SizeTy, 6325 unsigned ElemSz, bool isTailCall, 6326 MachinePointerInfo DstPtrInfo, 6327 MachinePointerInfo SrcPtrInfo) { 6328 // Emit a library call. 6329 TargetLowering::ArgListTy Args; 6330 TargetLowering::ArgListEntry Entry; 6331 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6332 Entry.Node = Dst; 6333 Args.push_back(Entry); 6334 6335 Entry.Node = Src; 6336 Args.push_back(Entry); 6337 6338 Entry.Ty = SizeTy; 6339 Entry.Node = Size; 6340 Args.push_back(Entry); 6341 6342 RTLIB::Libcall LibraryCall = 6343 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6344 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6345 report_fatal_error("Unsupported element size"); 6346 6347 TargetLowering::CallLoweringInfo CLI(*this); 6348 CLI.setDebugLoc(dl) 6349 .setChain(Chain) 6350 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6351 Type::getVoidTy(*getContext()), 6352 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6353 TLI->getPointerTy(getDataLayout())), 6354 std::move(Args)) 6355 .setDiscardResult() 6356 .setTailCall(isTailCall); 6357 6358 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6359 return CallResult.second; 6360 } 6361 6362 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6363 SDValue Src, SDValue Size, unsigned Align, 6364 bool isVol, bool isTailCall, 6365 MachinePointerInfo DstPtrInfo) { 6366 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6367 6368 // Check to see if we should lower the memset to stores first. 6369 // For cases within the target-specified limits, this is the best choice. 6370 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6371 if (ConstantSize) { 6372 // Memset with size zero? Just return the original chain. 6373 if (ConstantSize->isNullValue()) 6374 return Chain; 6375 6376 SDValue Result = 6377 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6378 Align, isVol, DstPtrInfo); 6379 6380 if (Result.getNode()) 6381 return Result; 6382 } 6383 6384 // Then check to see if we should lower the memset with target-specific 6385 // code. If the target chooses to do this, this is the next best. 6386 if (TSI) { 6387 SDValue Result = TSI->EmitTargetCodeForMemset( 6388 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6389 if (Result.getNode()) 6390 return Result; 6391 } 6392 6393 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6394 6395 // Emit a library call. 6396 TargetLowering::ArgListTy Args; 6397 TargetLowering::ArgListEntry Entry; 6398 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6399 Args.push_back(Entry); 6400 Entry.Node = Src; 6401 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6402 Args.push_back(Entry); 6403 Entry.Node = Size; 6404 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6405 Args.push_back(Entry); 6406 6407 // FIXME: pass in SDLoc 6408 TargetLowering::CallLoweringInfo CLI(*this); 6409 CLI.setDebugLoc(dl) 6410 .setChain(Chain) 6411 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6412 Dst.getValueType().getTypeForEVT(*getContext()), 6413 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6414 TLI->getPointerTy(getDataLayout())), 6415 std::move(Args)) 6416 .setDiscardResult() 6417 .setTailCall(isTailCall); 6418 6419 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6420 return CallResult.second; 6421 } 6422 6423 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6424 SDValue Dst, unsigned DstAlign, 6425 SDValue Value, SDValue Size, Type *SizeTy, 6426 unsigned ElemSz, bool isTailCall, 6427 MachinePointerInfo DstPtrInfo) { 6428 // Emit a library call. 6429 TargetLowering::ArgListTy Args; 6430 TargetLowering::ArgListEntry Entry; 6431 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6432 Entry.Node = Dst; 6433 Args.push_back(Entry); 6434 6435 Entry.Ty = Type::getInt8Ty(*getContext()); 6436 Entry.Node = Value; 6437 Args.push_back(Entry); 6438 6439 Entry.Ty = SizeTy; 6440 Entry.Node = Size; 6441 Args.push_back(Entry); 6442 6443 RTLIB::Libcall LibraryCall = 6444 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6445 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6446 report_fatal_error("Unsupported element size"); 6447 6448 TargetLowering::CallLoweringInfo CLI(*this); 6449 CLI.setDebugLoc(dl) 6450 .setChain(Chain) 6451 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6452 Type::getVoidTy(*getContext()), 6453 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6454 TLI->getPointerTy(getDataLayout())), 6455 std::move(Args)) 6456 .setDiscardResult() 6457 .setTailCall(isTailCall); 6458 6459 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6460 return CallResult.second; 6461 } 6462 6463 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6464 SDVTList VTList, ArrayRef<SDValue> Ops, 6465 MachineMemOperand *MMO) { 6466 FoldingSetNodeID ID; 6467 ID.AddInteger(MemVT.getRawBits()); 6468 AddNodeIDNode(ID, Opcode, VTList, Ops); 6469 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6470 void* IP = nullptr; 6471 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6472 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6473 return SDValue(E, 0); 6474 } 6475 6476 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6477 VTList, MemVT, MMO); 6478 createOperands(N, Ops); 6479 6480 CSEMap.InsertNode(N, IP); 6481 InsertNode(N); 6482 return SDValue(N, 0); 6483 } 6484 6485 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6486 EVT MemVT, SDVTList VTs, SDValue Chain, 6487 SDValue Ptr, SDValue Cmp, SDValue Swp, 6488 MachineMemOperand *MMO) { 6489 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6490 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6491 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6492 6493 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6494 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6495 } 6496 6497 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6498 SDValue Chain, SDValue Ptr, SDValue Val, 6499 MachineMemOperand *MMO) { 6500 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6501 Opcode == ISD::ATOMIC_LOAD_SUB || 6502 Opcode == ISD::ATOMIC_LOAD_AND || 6503 Opcode == ISD::ATOMIC_LOAD_CLR || 6504 Opcode == ISD::ATOMIC_LOAD_OR || 6505 Opcode == ISD::ATOMIC_LOAD_XOR || 6506 Opcode == ISD::ATOMIC_LOAD_NAND || 6507 Opcode == ISD::ATOMIC_LOAD_MIN || 6508 Opcode == ISD::ATOMIC_LOAD_MAX || 6509 Opcode == ISD::ATOMIC_LOAD_UMIN || 6510 Opcode == ISD::ATOMIC_LOAD_UMAX || 6511 Opcode == ISD::ATOMIC_LOAD_FADD || 6512 Opcode == ISD::ATOMIC_LOAD_FSUB || 6513 Opcode == ISD::ATOMIC_SWAP || 6514 Opcode == ISD::ATOMIC_STORE) && 6515 "Invalid Atomic Op"); 6516 6517 EVT VT = Val.getValueType(); 6518 6519 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6520 getVTList(VT, MVT::Other); 6521 SDValue Ops[] = {Chain, Ptr, Val}; 6522 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6523 } 6524 6525 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6526 EVT VT, SDValue Chain, SDValue Ptr, 6527 MachineMemOperand *MMO) { 6528 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6529 6530 SDVTList VTs = getVTList(VT, MVT::Other); 6531 SDValue Ops[] = {Chain, Ptr}; 6532 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6533 } 6534 6535 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6536 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6537 if (Ops.size() == 1) 6538 return Ops[0]; 6539 6540 SmallVector<EVT, 4> VTs; 6541 VTs.reserve(Ops.size()); 6542 for (unsigned i = 0; i < Ops.size(); ++i) 6543 VTs.push_back(Ops[i].getValueType()); 6544 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6545 } 6546 6547 SDValue SelectionDAG::getMemIntrinsicNode( 6548 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6549 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6550 MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) { 6551 if (Align == 0) // Ensure that codegen never sees alignment 0 6552 Align = getEVTAlignment(MemVT); 6553 6554 if (!Size) 6555 Size = MemVT.getStoreSize(); 6556 6557 MachineFunction &MF = getMachineFunction(); 6558 MachineMemOperand *MMO = 6559 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6560 6561 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6562 } 6563 6564 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6565 SDVTList VTList, 6566 ArrayRef<SDValue> Ops, EVT MemVT, 6567 MachineMemOperand *MMO) { 6568 assert((Opcode == ISD::INTRINSIC_VOID || 6569 Opcode == ISD::INTRINSIC_W_CHAIN || 6570 Opcode == ISD::PREFETCH || 6571 Opcode == ISD::LIFETIME_START || 6572 Opcode == ISD::LIFETIME_END || 6573 ((int)Opcode <= std::numeric_limits<int>::max() && 6574 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6575 "Opcode is not a memory-accessing opcode!"); 6576 6577 // Memoize the node unless it returns a flag. 6578 MemIntrinsicSDNode *N; 6579 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6580 FoldingSetNodeID ID; 6581 AddNodeIDNode(ID, Opcode, VTList, Ops); 6582 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6583 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6584 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6585 void *IP = nullptr; 6586 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6587 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6588 return SDValue(E, 0); 6589 } 6590 6591 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6592 VTList, MemVT, MMO); 6593 createOperands(N, Ops); 6594 6595 CSEMap.InsertNode(N, IP); 6596 } else { 6597 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6598 VTList, MemVT, MMO); 6599 createOperands(N, Ops); 6600 } 6601 InsertNode(N); 6602 SDValue V(N, 0); 6603 NewSDValueDbgMsg(V, "Creating new node: ", this); 6604 return V; 6605 } 6606 6607 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6608 SDValue Chain, int FrameIndex, 6609 int64_t Size, int64_t Offset) { 6610 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6611 const auto VTs = getVTList(MVT::Other); 6612 SDValue Ops[2] = { 6613 Chain, 6614 getFrameIndex(FrameIndex, 6615 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6616 true)}; 6617 6618 FoldingSetNodeID ID; 6619 AddNodeIDNode(ID, Opcode, VTs, Ops); 6620 ID.AddInteger(FrameIndex); 6621 ID.AddInteger(Size); 6622 ID.AddInteger(Offset); 6623 void *IP = nullptr; 6624 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6625 return SDValue(E, 0); 6626 6627 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6628 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6629 createOperands(N, Ops); 6630 CSEMap.InsertNode(N, IP); 6631 InsertNode(N); 6632 SDValue V(N, 0); 6633 NewSDValueDbgMsg(V, "Creating new node: ", this); 6634 return V; 6635 } 6636 6637 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6638 /// MachinePointerInfo record from it. This is particularly useful because the 6639 /// code generator has many cases where it doesn't bother passing in a 6640 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6641 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6642 SelectionDAG &DAG, SDValue Ptr, 6643 int64_t Offset = 0) { 6644 // If this is FI+Offset, we can model it. 6645 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6646 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6647 FI->getIndex(), Offset); 6648 6649 // If this is (FI+Offset1)+Offset2, we can model it. 6650 if (Ptr.getOpcode() != ISD::ADD || 6651 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6652 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6653 return Info; 6654 6655 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6656 return MachinePointerInfo::getFixedStack( 6657 DAG.getMachineFunction(), FI, 6658 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6659 } 6660 6661 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6662 /// MachinePointerInfo record from it. This is particularly useful because the 6663 /// code generator has many cases where it doesn't bother passing in a 6664 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6665 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6666 SelectionDAG &DAG, SDValue Ptr, 6667 SDValue OffsetOp) { 6668 // If the 'Offset' value isn't a constant, we can't handle this. 6669 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6670 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6671 if (OffsetOp.isUndef()) 6672 return InferPointerInfo(Info, DAG, Ptr); 6673 return Info; 6674 } 6675 6676 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6677 EVT VT, const SDLoc &dl, SDValue Chain, 6678 SDValue Ptr, SDValue Offset, 6679 MachinePointerInfo PtrInfo, EVT MemVT, 6680 unsigned Alignment, 6681 MachineMemOperand::Flags MMOFlags, 6682 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6683 assert(Chain.getValueType() == MVT::Other && 6684 "Invalid chain type"); 6685 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6686 Alignment = getEVTAlignment(MemVT); 6687 6688 MMOFlags |= MachineMemOperand::MOLoad; 6689 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6690 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6691 // clients. 6692 if (PtrInfo.V.isNull()) 6693 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6694 6695 MachineFunction &MF = getMachineFunction(); 6696 MachineMemOperand *MMO = MF.getMachineMemOperand( 6697 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6698 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6699 } 6700 6701 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6702 EVT VT, const SDLoc &dl, SDValue Chain, 6703 SDValue Ptr, SDValue Offset, EVT MemVT, 6704 MachineMemOperand *MMO) { 6705 if (VT == MemVT) { 6706 ExtType = ISD::NON_EXTLOAD; 6707 } else if (ExtType == ISD::NON_EXTLOAD) { 6708 assert(VT == MemVT && "Non-extending load from different memory type!"); 6709 } else { 6710 // Extending load. 6711 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6712 "Should only be an extending load, not truncating!"); 6713 assert(VT.isInteger() == MemVT.isInteger() && 6714 "Cannot convert from FP to Int or Int -> FP!"); 6715 assert(VT.isVector() == MemVT.isVector() && 6716 "Cannot use an ext load to convert to or from a vector!"); 6717 assert((!VT.isVector() || 6718 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6719 "Cannot use an ext load to change the number of vector elements!"); 6720 } 6721 6722 bool Indexed = AM != ISD::UNINDEXED; 6723 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6724 6725 SDVTList VTs = Indexed ? 6726 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6727 SDValue Ops[] = { Chain, Ptr, Offset }; 6728 FoldingSetNodeID ID; 6729 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6730 ID.AddInteger(MemVT.getRawBits()); 6731 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6732 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6733 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6734 void *IP = nullptr; 6735 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6736 cast<LoadSDNode>(E)->refineAlignment(MMO); 6737 return SDValue(E, 0); 6738 } 6739 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6740 ExtType, MemVT, MMO); 6741 createOperands(N, Ops); 6742 6743 CSEMap.InsertNode(N, IP); 6744 InsertNode(N); 6745 SDValue V(N, 0); 6746 NewSDValueDbgMsg(V, "Creating new node: ", this); 6747 return V; 6748 } 6749 6750 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6751 SDValue Ptr, MachinePointerInfo PtrInfo, 6752 unsigned Alignment, 6753 MachineMemOperand::Flags MMOFlags, 6754 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6755 SDValue Undef = getUNDEF(Ptr.getValueType()); 6756 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6757 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6758 } 6759 6760 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6761 SDValue Ptr, MachineMemOperand *MMO) { 6762 SDValue Undef = getUNDEF(Ptr.getValueType()); 6763 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6764 VT, MMO); 6765 } 6766 6767 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6768 EVT VT, SDValue Chain, SDValue Ptr, 6769 MachinePointerInfo PtrInfo, EVT MemVT, 6770 unsigned Alignment, 6771 MachineMemOperand::Flags MMOFlags, 6772 const AAMDNodes &AAInfo) { 6773 SDValue Undef = getUNDEF(Ptr.getValueType()); 6774 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6775 MemVT, Alignment, MMOFlags, AAInfo); 6776 } 6777 6778 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6779 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6780 MachineMemOperand *MMO) { 6781 SDValue Undef = getUNDEF(Ptr.getValueType()); 6782 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6783 MemVT, MMO); 6784 } 6785 6786 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6787 SDValue Base, SDValue Offset, 6788 ISD::MemIndexedMode AM) { 6789 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6790 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6791 // Don't propagate the invariant or dereferenceable flags. 6792 auto MMOFlags = 6793 LD->getMemOperand()->getFlags() & 6794 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6795 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6796 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6797 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6798 LD->getAAInfo()); 6799 } 6800 6801 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6802 SDValue Ptr, MachinePointerInfo PtrInfo, 6803 unsigned Alignment, 6804 MachineMemOperand::Flags MMOFlags, 6805 const AAMDNodes &AAInfo) { 6806 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6807 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6808 Alignment = getEVTAlignment(Val.getValueType()); 6809 6810 MMOFlags |= MachineMemOperand::MOStore; 6811 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6812 6813 if (PtrInfo.V.isNull()) 6814 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6815 6816 MachineFunction &MF = getMachineFunction(); 6817 MachineMemOperand *MMO = MF.getMachineMemOperand( 6818 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6819 return getStore(Chain, dl, Val, Ptr, MMO); 6820 } 6821 6822 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6823 SDValue Ptr, MachineMemOperand *MMO) { 6824 assert(Chain.getValueType() == MVT::Other && 6825 "Invalid chain type"); 6826 EVT VT = Val.getValueType(); 6827 SDVTList VTs = getVTList(MVT::Other); 6828 SDValue Undef = getUNDEF(Ptr.getValueType()); 6829 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6830 FoldingSetNodeID ID; 6831 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6832 ID.AddInteger(VT.getRawBits()); 6833 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6834 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6835 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6836 void *IP = nullptr; 6837 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6838 cast<StoreSDNode>(E)->refineAlignment(MMO); 6839 return SDValue(E, 0); 6840 } 6841 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6842 ISD::UNINDEXED, false, VT, MMO); 6843 createOperands(N, Ops); 6844 6845 CSEMap.InsertNode(N, IP); 6846 InsertNode(N); 6847 SDValue V(N, 0); 6848 NewSDValueDbgMsg(V, "Creating new node: ", this); 6849 return V; 6850 } 6851 6852 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6853 SDValue Ptr, MachinePointerInfo PtrInfo, 6854 EVT SVT, unsigned Alignment, 6855 MachineMemOperand::Flags MMOFlags, 6856 const AAMDNodes &AAInfo) { 6857 assert(Chain.getValueType() == MVT::Other && 6858 "Invalid chain type"); 6859 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6860 Alignment = getEVTAlignment(SVT); 6861 6862 MMOFlags |= MachineMemOperand::MOStore; 6863 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6864 6865 if (PtrInfo.V.isNull()) 6866 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6867 6868 MachineFunction &MF = getMachineFunction(); 6869 MachineMemOperand *MMO = MF.getMachineMemOperand( 6870 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6871 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6872 } 6873 6874 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6875 SDValue Ptr, EVT SVT, 6876 MachineMemOperand *MMO) { 6877 EVT VT = Val.getValueType(); 6878 6879 assert(Chain.getValueType() == MVT::Other && 6880 "Invalid chain type"); 6881 if (VT == SVT) 6882 return getStore(Chain, dl, Val, Ptr, MMO); 6883 6884 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6885 "Should only be a truncating store, not extending!"); 6886 assert(VT.isInteger() == SVT.isInteger() && 6887 "Can't do FP-INT conversion!"); 6888 assert(VT.isVector() == SVT.isVector() && 6889 "Cannot use trunc store to convert to or from a vector!"); 6890 assert((!VT.isVector() || 6891 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6892 "Cannot use trunc store to change the number of vector elements!"); 6893 6894 SDVTList VTs = getVTList(MVT::Other); 6895 SDValue Undef = getUNDEF(Ptr.getValueType()); 6896 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6897 FoldingSetNodeID ID; 6898 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6899 ID.AddInteger(SVT.getRawBits()); 6900 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6901 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6902 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6903 void *IP = nullptr; 6904 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6905 cast<StoreSDNode>(E)->refineAlignment(MMO); 6906 return SDValue(E, 0); 6907 } 6908 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6909 ISD::UNINDEXED, true, SVT, MMO); 6910 createOperands(N, Ops); 6911 6912 CSEMap.InsertNode(N, IP); 6913 InsertNode(N); 6914 SDValue V(N, 0); 6915 NewSDValueDbgMsg(V, "Creating new node: ", this); 6916 return V; 6917 } 6918 6919 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6920 SDValue Base, SDValue Offset, 6921 ISD::MemIndexedMode AM) { 6922 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6923 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6924 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6925 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6926 FoldingSetNodeID ID; 6927 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6928 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6929 ID.AddInteger(ST->getRawSubclassData()); 6930 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6931 void *IP = nullptr; 6932 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6933 return SDValue(E, 0); 6934 6935 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6936 ST->isTruncatingStore(), ST->getMemoryVT(), 6937 ST->getMemOperand()); 6938 createOperands(N, Ops); 6939 6940 CSEMap.InsertNode(N, IP); 6941 InsertNode(N); 6942 SDValue V(N, 0); 6943 NewSDValueDbgMsg(V, "Creating new node: ", this); 6944 return V; 6945 } 6946 6947 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6948 SDValue Ptr, SDValue Mask, SDValue PassThru, 6949 EVT MemVT, MachineMemOperand *MMO, 6950 ISD::LoadExtType ExtTy, bool isExpanding) { 6951 SDVTList VTs = getVTList(VT, MVT::Other); 6952 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6953 FoldingSetNodeID ID; 6954 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6955 ID.AddInteger(MemVT.getRawBits()); 6956 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6957 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6958 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6959 void *IP = nullptr; 6960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6961 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6962 return SDValue(E, 0); 6963 } 6964 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6965 ExtTy, isExpanding, MemVT, MMO); 6966 createOperands(N, Ops); 6967 6968 CSEMap.InsertNode(N, IP); 6969 InsertNode(N); 6970 SDValue V(N, 0); 6971 NewSDValueDbgMsg(V, "Creating new node: ", this); 6972 return V; 6973 } 6974 6975 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6976 SDValue Val, SDValue Ptr, SDValue Mask, 6977 EVT MemVT, MachineMemOperand *MMO, 6978 bool IsTruncating, bool IsCompressing) { 6979 assert(Chain.getValueType() == MVT::Other && 6980 "Invalid chain type"); 6981 SDVTList VTs = getVTList(MVT::Other); 6982 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6983 FoldingSetNodeID ID; 6984 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6985 ID.AddInteger(MemVT.getRawBits()); 6986 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6987 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6988 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6989 void *IP = nullptr; 6990 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6991 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6992 return SDValue(E, 0); 6993 } 6994 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6995 IsTruncating, IsCompressing, MemVT, MMO); 6996 createOperands(N, Ops); 6997 6998 CSEMap.InsertNode(N, IP); 6999 InsertNode(N); 7000 SDValue V(N, 0); 7001 NewSDValueDbgMsg(V, "Creating new node: ", this); 7002 return V; 7003 } 7004 7005 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7006 ArrayRef<SDValue> Ops, 7007 MachineMemOperand *MMO, 7008 ISD::MemIndexType IndexType) { 7009 assert(Ops.size() == 6 && "Incompatible number of operands"); 7010 7011 FoldingSetNodeID ID; 7012 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7013 ID.AddInteger(VT.getRawBits()); 7014 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7015 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7016 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7017 void *IP = nullptr; 7018 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7019 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7020 return SDValue(E, 0); 7021 } 7022 7023 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7024 VTs, VT, MMO, IndexType); 7025 createOperands(N, Ops); 7026 7027 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7028 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7029 assert(N->getMask().getValueType().getVectorNumElements() == 7030 N->getValueType(0).getVectorNumElements() && 7031 "Vector width mismatch between mask and data"); 7032 assert(N->getIndex().getValueType().getVectorNumElements() >= 7033 N->getValueType(0).getVectorNumElements() && 7034 "Vector width mismatch between index and data"); 7035 assert(isa<ConstantSDNode>(N->getScale()) && 7036 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7037 "Scale should be a constant power of 2"); 7038 7039 CSEMap.InsertNode(N, IP); 7040 InsertNode(N); 7041 SDValue V(N, 0); 7042 NewSDValueDbgMsg(V, "Creating new node: ", this); 7043 return V; 7044 } 7045 7046 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7047 ArrayRef<SDValue> Ops, 7048 MachineMemOperand *MMO, 7049 ISD::MemIndexType IndexType) { 7050 assert(Ops.size() == 6 && "Incompatible number of operands"); 7051 7052 FoldingSetNodeID ID; 7053 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7054 ID.AddInteger(VT.getRawBits()); 7055 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7056 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7057 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7058 void *IP = nullptr; 7059 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7060 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7061 return SDValue(E, 0); 7062 } 7063 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7064 VTs, VT, MMO, IndexType); 7065 createOperands(N, Ops); 7066 7067 assert(N->getMask().getValueType().getVectorNumElements() == 7068 N->getValue().getValueType().getVectorNumElements() && 7069 "Vector width mismatch between mask and data"); 7070 assert(N->getIndex().getValueType().getVectorNumElements() >= 7071 N->getValue().getValueType().getVectorNumElements() && 7072 "Vector width mismatch between index and data"); 7073 assert(isa<ConstantSDNode>(N->getScale()) && 7074 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7075 "Scale should be a constant power of 2"); 7076 7077 CSEMap.InsertNode(N, IP); 7078 InsertNode(N); 7079 SDValue V(N, 0); 7080 NewSDValueDbgMsg(V, "Creating new node: ", this); 7081 return V; 7082 } 7083 7084 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7085 // select undef, T, F --> T (if T is a constant), otherwise F 7086 // select, ?, undef, F --> F 7087 // select, ?, T, undef --> T 7088 if (Cond.isUndef()) 7089 return isConstantValueOfAnyType(T) ? T : F; 7090 if (T.isUndef()) 7091 return F; 7092 if (F.isUndef()) 7093 return T; 7094 7095 // select true, T, F --> T 7096 // select false, T, F --> F 7097 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7098 return CondC->isNullValue() ? F : T; 7099 7100 // TODO: This should simplify VSELECT with constant condition using something 7101 // like this (but check boolean contents to be complete?): 7102 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7103 // return T; 7104 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7105 // return F; 7106 7107 // select ?, T, T --> T 7108 if (T == F) 7109 return T; 7110 7111 return SDValue(); 7112 } 7113 7114 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7115 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7116 if (X.isUndef()) 7117 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7118 // shift X, undef --> undef (because it may shift by the bitwidth) 7119 if (Y.isUndef()) 7120 return getUNDEF(X.getValueType()); 7121 7122 // shift 0, Y --> 0 7123 // shift X, 0 --> X 7124 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7125 return X; 7126 7127 // shift X, C >= bitwidth(X) --> undef 7128 // All vector elements must be too big (or undef) to avoid partial undefs. 7129 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7130 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7131 }; 7132 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7133 return getUNDEF(X.getValueType()); 7134 7135 return SDValue(); 7136 } 7137 7138 // TODO: Use fast-math-flags to enable more simplifications. 7139 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7140 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7141 if (!YC) 7142 return SDValue(); 7143 7144 // X + -0.0 --> X 7145 if (Opcode == ISD::FADD) 7146 if (YC->getValueAPF().isNegZero()) 7147 return X; 7148 7149 // X - +0.0 --> X 7150 if (Opcode == ISD::FSUB) 7151 if (YC->getValueAPF().isPosZero()) 7152 return X; 7153 7154 // X * 1.0 --> X 7155 // X / 1.0 --> X 7156 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7157 if (YC->getValueAPF().isExactlyValue(1.0)) 7158 return X; 7159 7160 return SDValue(); 7161 } 7162 7163 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7164 SDValue Ptr, SDValue SV, unsigned Align) { 7165 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7166 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7167 } 7168 7169 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7170 ArrayRef<SDUse> Ops) { 7171 switch (Ops.size()) { 7172 case 0: return getNode(Opcode, DL, VT); 7173 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7174 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7175 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7176 default: break; 7177 } 7178 7179 // Copy from an SDUse array into an SDValue array for use with 7180 // the regular getNode logic. 7181 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7182 return getNode(Opcode, DL, VT, NewOps); 7183 } 7184 7185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7186 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7187 unsigned NumOps = Ops.size(); 7188 switch (NumOps) { 7189 case 0: return getNode(Opcode, DL, VT); 7190 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7191 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7192 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7193 default: break; 7194 } 7195 7196 switch (Opcode) { 7197 default: break; 7198 case ISD::BUILD_VECTOR: 7199 // Attempt to simplify BUILD_VECTOR. 7200 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7201 return V; 7202 break; 7203 case ISD::CONCAT_VECTORS: 7204 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7205 return V; 7206 break; 7207 case ISD::SELECT_CC: 7208 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7209 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7210 "LHS and RHS of condition must have same type!"); 7211 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7212 "True and False arms of SelectCC must have same type!"); 7213 assert(Ops[2].getValueType() == VT && 7214 "select_cc node must be of same type as true and false value!"); 7215 break; 7216 case ISD::BR_CC: 7217 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7218 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7219 "LHS/RHS of comparison should match types!"); 7220 break; 7221 } 7222 7223 // Memoize nodes. 7224 SDNode *N; 7225 SDVTList VTs = getVTList(VT); 7226 7227 if (VT != MVT::Glue) { 7228 FoldingSetNodeID ID; 7229 AddNodeIDNode(ID, Opcode, VTs, Ops); 7230 void *IP = nullptr; 7231 7232 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7233 return SDValue(E, 0); 7234 7235 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7236 createOperands(N, Ops); 7237 7238 CSEMap.InsertNode(N, IP); 7239 } else { 7240 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7241 createOperands(N, Ops); 7242 } 7243 7244 InsertNode(N); 7245 SDValue V(N, 0); 7246 NewSDValueDbgMsg(V, "Creating new node: ", this); 7247 return V; 7248 } 7249 7250 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7251 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7252 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7253 } 7254 7255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7256 ArrayRef<SDValue> Ops) { 7257 if (VTList.NumVTs == 1) 7258 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7259 7260 #if 0 7261 switch (Opcode) { 7262 // FIXME: figure out how to safely handle things like 7263 // int foo(int x) { return 1 << (x & 255); } 7264 // int bar() { return foo(256); } 7265 case ISD::SRA_PARTS: 7266 case ISD::SRL_PARTS: 7267 case ISD::SHL_PARTS: 7268 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7269 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7270 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7271 else if (N3.getOpcode() == ISD::AND) 7272 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7273 // If the and is only masking out bits that cannot effect the shift, 7274 // eliminate the and. 7275 unsigned NumBits = VT.getScalarSizeInBits()*2; 7276 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7277 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7278 } 7279 break; 7280 } 7281 #endif 7282 7283 // Memoize the node unless it returns a flag. 7284 SDNode *N; 7285 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7286 FoldingSetNodeID ID; 7287 AddNodeIDNode(ID, Opcode, VTList, Ops); 7288 void *IP = nullptr; 7289 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7290 return SDValue(E, 0); 7291 7292 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7293 createOperands(N, Ops); 7294 CSEMap.InsertNode(N, IP); 7295 } else { 7296 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7297 createOperands(N, Ops); 7298 } 7299 InsertNode(N); 7300 SDValue V(N, 0); 7301 NewSDValueDbgMsg(V, "Creating new node: ", this); 7302 return V; 7303 } 7304 7305 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7306 SDVTList VTList) { 7307 return getNode(Opcode, DL, VTList, None); 7308 } 7309 7310 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7311 SDValue N1) { 7312 SDValue Ops[] = { N1 }; 7313 return getNode(Opcode, DL, VTList, Ops); 7314 } 7315 7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7317 SDValue N1, SDValue N2) { 7318 SDValue Ops[] = { N1, N2 }; 7319 return getNode(Opcode, DL, VTList, Ops); 7320 } 7321 7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7323 SDValue N1, SDValue N2, SDValue N3) { 7324 SDValue Ops[] = { N1, N2, N3 }; 7325 return getNode(Opcode, DL, VTList, Ops); 7326 } 7327 7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7329 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7330 SDValue Ops[] = { N1, N2, N3, N4 }; 7331 return getNode(Opcode, DL, VTList, Ops); 7332 } 7333 7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7335 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7336 SDValue N5) { 7337 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7338 return getNode(Opcode, DL, VTList, Ops); 7339 } 7340 7341 SDVTList SelectionDAG::getVTList(EVT VT) { 7342 return makeVTList(SDNode::getValueTypeList(VT), 1); 7343 } 7344 7345 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7346 FoldingSetNodeID ID; 7347 ID.AddInteger(2U); 7348 ID.AddInteger(VT1.getRawBits()); 7349 ID.AddInteger(VT2.getRawBits()); 7350 7351 void *IP = nullptr; 7352 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7353 if (!Result) { 7354 EVT *Array = Allocator.Allocate<EVT>(2); 7355 Array[0] = VT1; 7356 Array[1] = VT2; 7357 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7358 VTListMap.InsertNode(Result, IP); 7359 } 7360 return Result->getSDVTList(); 7361 } 7362 7363 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7364 FoldingSetNodeID ID; 7365 ID.AddInteger(3U); 7366 ID.AddInteger(VT1.getRawBits()); 7367 ID.AddInteger(VT2.getRawBits()); 7368 ID.AddInteger(VT3.getRawBits()); 7369 7370 void *IP = nullptr; 7371 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7372 if (!Result) { 7373 EVT *Array = Allocator.Allocate<EVT>(3); 7374 Array[0] = VT1; 7375 Array[1] = VT2; 7376 Array[2] = VT3; 7377 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7378 VTListMap.InsertNode(Result, IP); 7379 } 7380 return Result->getSDVTList(); 7381 } 7382 7383 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7384 FoldingSetNodeID ID; 7385 ID.AddInteger(4U); 7386 ID.AddInteger(VT1.getRawBits()); 7387 ID.AddInteger(VT2.getRawBits()); 7388 ID.AddInteger(VT3.getRawBits()); 7389 ID.AddInteger(VT4.getRawBits()); 7390 7391 void *IP = nullptr; 7392 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7393 if (!Result) { 7394 EVT *Array = Allocator.Allocate<EVT>(4); 7395 Array[0] = VT1; 7396 Array[1] = VT2; 7397 Array[2] = VT3; 7398 Array[3] = VT4; 7399 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7400 VTListMap.InsertNode(Result, IP); 7401 } 7402 return Result->getSDVTList(); 7403 } 7404 7405 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7406 unsigned NumVTs = VTs.size(); 7407 FoldingSetNodeID ID; 7408 ID.AddInteger(NumVTs); 7409 for (unsigned index = 0; index < NumVTs; index++) { 7410 ID.AddInteger(VTs[index].getRawBits()); 7411 } 7412 7413 void *IP = nullptr; 7414 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7415 if (!Result) { 7416 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7417 llvm::copy(VTs, Array); 7418 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7419 VTListMap.InsertNode(Result, IP); 7420 } 7421 return Result->getSDVTList(); 7422 } 7423 7424 7425 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7426 /// specified operands. If the resultant node already exists in the DAG, 7427 /// this does not modify the specified node, instead it returns the node that 7428 /// already exists. If the resultant node does not exist in the DAG, the 7429 /// input node is returned. As a degenerate case, if you specify the same 7430 /// input operands as the node already has, the input node is returned. 7431 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7432 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7433 7434 // Check to see if there is no change. 7435 if (Op == N->getOperand(0)) return N; 7436 7437 // See if the modified node already exists. 7438 void *InsertPos = nullptr; 7439 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7440 return Existing; 7441 7442 // Nope it doesn't. Remove the node from its current place in the maps. 7443 if (InsertPos) 7444 if (!RemoveNodeFromCSEMaps(N)) 7445 InsertPos = nullptr; 7446 7447 // Now we update the operands. 7448 N->OperandList[0].set(Op); 7449 7450 updateDivergence(N); 7451 // If this gets put into a CSE map, add it. 7452 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7453 return N; 7454 } 7455 7456 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7457 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7458 7459 // Check to see if there is no change. 7460 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7461 return N; // No operands changed, just return the input node. 7462 7463 // See if the modified node already exists. 7464 void *InsertPos = nullptr; 7465 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7466 return Existing; 7467 7468 // Nope it doesn't. Remove the node from its current place in the maps. 7469 if (InsertPos) 7470 if (!RemoveNodeFromCSEMaps(N)) 7471 InsertPos = nullptr; 7472 7473 // Now we update the operands. 7474 if (N->OperandList[0] != Op1) 7475 N->OperandList[0].set(Op1); 7476 if (N->OperandList[1] != Op2) 7477 N->OperandList[1].set(Op2); 7478 7479 updateDivergence(N); 7480 // If this gets put into a CSE map, add it. 7481 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7482 return N; 7483 } 7484 7485 SDNode *SelectionDAG:: 7486 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7487 SDValue Ops[] = { Op1, Op2, Op3 }; 7488 return UpdateNodeOperands(N, Ops); 7489 } 7490 7491 SDNode *SelectionDAG:: 7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7493 SDValue Op3, SDValue Op4) { 7494 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7495 return UpdateNodeOperands(N, Ops); 7496 } 7497 7498 SDNode *SelectionDAG:: 7499 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7500 SDValue Op3, SDValue Op4, SDValue Op5) { 7501 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7502 return UpdateNodeOperands(N, Ops); 7503 } 7504 7505 SDNode *SelectionDAG:: 7506 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7507 unsigned NumOps = Ops.size(); 7508 assert(N->getNumOperands() == NumOps && 7509 "Update with wrong number of operands"); 7510 7511 // If no operands changed just return the input node. 7512 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7513 return N; 7514 7515 // See if the modified node already exists. 7516 void *InsertPos = nullptr; 7517 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7518 return Existing; 7519 7520 // Nope it doesn't. Remove the node from its current place in the maps. 7521 if (InsertPos) 7522 if (!RemoveNodeFromCSEMaps(N)) 7523 InsertPos = nullptr; 7524 7525 // Now we update the operands. 7526 for (unsigned i = 0; i != NumOps; ++i) 7527 if (N->OperandList[i] != Ops[i]) 7528 N->OperandList[i].set(Ops[i]); 7529 7530 updateDivergence(N); 7531 // If this gets put into a CSE map, add it. 7532 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7533 return N; 7534 } 7535 7536 /// DropOperands - Release the operands and set this node to have 7537 /// zero operands. 7538 void SDNode::DropOperands() { 7539 // Unlike the code in MorphNodeTo that does this, we don't need to 7540 // watch for dead nodes here. 7541 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7542 SDUse &Use = *I++; 7543 Use.set(SDValue()); 7544 } 7545 } 7546 7547 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7548 ArrayRef<MachineMemOperand *> NewMemRefs) { 7549 if (NewMemRefs.empty()) { 7550 N->clearMemRefs(); 7551 return; 7552 } 7553 7554 // Check if we can avoid allocating by storing a single reference directly. 7555 if (NewMemRefs.size() == 1) { 7556 N->MemRefs = NewMemRefs[0]; 7557 N->NumMemRefs = 1; 7558 return; 7559 } 7560 7561 MachineMemOperand **MemRefsBuffer = 7562 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7563 llvm::copy(NewMemRefs, MemRefsBuffer); 7564 N->MemRefs = MemRefsBuffer; 7565 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7566 } 7567 7568 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7569 /// machine opcode. 7570 /// 7571 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7572 EVT VT) { 7573 SDVTList VTs = getVTList(VT); 7574 return SelectNodeTo(N, MachineOpc, VTs, None); 7575 } 7576 7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7578 EVT VT, SDValue Op1) { 7579 SDVTList VTs = getVTList(VT); 7580 SDValue Ops[] = { Op1 }; 7581 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7582 } 7583 7584 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7585 EVT VT, SDValue Op1, 7586 SDValue Op2) { 7587 SDVTList VTs = getVTList(VT); 7588 SDValue Ops[] = { Op1, Op2 }; 7589 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7590 } 7591 7592 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7593 EVT VT, SDValue Op1, 7594 SDValue Op2, SDValue Op3) { 7595 SDVTList VTs = getVTList(VT); 7596 SDValue Ops[] = { Op1, Op2, Op3 }; 7597 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7598 } 7599 7600 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7601 EVT VT, ArrayRef<SDValue> Ops) { 7602 SDVTList VTs = getVTList(VT); 7603 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7604 } 7605 7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7607 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7608 SDVTList VTs = getVTList(VT1, VT2); 7609 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7610 } 7611 7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7613 EVT VT1, EVT VT2) { 7614 SDVTList VTs = getVTList(VT1, VT2); 7615 return SelectNodeTo(N, MachineOpc, VTs, None); 7616 } 7617 7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7619 EVT VT1, EVT VT2, EVT VT3, 7620 ArrayRef<SDValue> Ops) { 7621 SDVTList VTs = getVTList(VT1, VT2, VT3); 7622 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7623 } 7624 7625 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7626 EVT VT1, EVT VT2, 7627 SDValue Op1, SDValue Op2) { 7628 SDVTList VTs = getVTList(VT1, VT2); 7629 SDValue Ops[] = { Op1, Op2 }; 7630 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7631 } 7632 7633 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7634 SDVTList VTs,ArrayRef<SDValue> Ops) { 7635 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7636 // Reset the NodeID to -1. 7637 New->setNodeId(-1); 7638 if (New != N) { 7639 ReplaceAllUsesWith(N, New); 7640 RemoveDeadNode(N); 7641 } 7642 return New; 7643 } 7644 7645 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7646 /// the line number information on the merged node since it is not possible to 7647 /// preserve the information that operation is associated with multiple lines. 7648 /// This will make the debugger working better at -O0, were there is a higher 7649 /// probability having other instructions associated with that line. 7650 /// 7651 /// For IROrder, we keep the smaller of the two 7652 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7653 DebugLoc NLoc = N->getDebugLoc(); 7654 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7655 N->setDebugLoc(DebugLoc()); 7656 } 7657 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7658 N->setIROrder(Order); 7659 return N; 7660 } 7661 7662 /// MorphNodeTo - This *mutates* the specified node to have the specified 7663 /// return type, opcode, and operands. 7664 /// 7665 /// Note that MorphNodeTo returns the resultant node. If there is already a 7666 /// node of the specified opcode and operands, it returns that node instead of 7667 /// the current one. Note that the SDLoc need not be the same. 7668 /// 7669 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7670 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7671 /// node, and because it doesn't require CSE recalculation for any of 7672 /// the node's users. 7673 /// 7674 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7675 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7676 /// the legalizer which maintain worklists that would need to be updated when 7677 /// deleting things. 7678 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7679 SDVTList VTs, ArrayRef<SDValue> Ops) { 7680 // If an identical node already exists, use it. 7681 void *IP = nullptr; 7682 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7683 FoldingSetNodeID ID; 7684 AddNodeIDNode(ID, Opc, VTs, Ops); 7685 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7686 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7687 } 7688 7689 if (!RemoveNodeFromCSEMaps(N)) 7690 IP = nullptr; 7691 7692 // Start the morphing. 7693 N->NodeType = Opc; 7694 N->ValueList = VTs.VTs; 7695 N->NumValues = VTs.NumVTs; 7696 7697 // Clear the operands list, updating used nodes to remove this from their 7698 // use list. Keep track of any operands that become dead as a result. 7699 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7700 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7701 SDUse &Use = *I++; 7702 SDNode *Used = Use.getNode(); 7703 Use.set(SDValue()); 7704 if (Used->use_empty()) 7705 DeadNodeSet.insert(Used); 7706 } 7707 7708 // For MachineNode, initialize the memory references information. 7709 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7710 MN->clearMemRefs(); 7711 7712 // Swap for an appropriately sized array from the recycler. 7713 removeOperands(N); 7714 createOperands(N, Ops); 7715 7716 // Delete any nodes that are still dead after adding the uses for the 7717 // new operands. 7718 if (!DeadNodeSet.empty()) { 7719 SmallVector<SDNode *, 16> DeadNodes; 7720 for (SDNode *N : DeadNodeSet) 7721 if (N->use_empty()) 7722 DeadNodes.push_back(N); 7723 RemoveDeadNodes(DeadNodes); 7724 } 7725 7726 if (IP) 7727 CSEMap.InsertNode(N, IP); // Memoize the new node. 7728 return N; 7729 } 7730 7731 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7732 unsigned OrigOpc = Node->getOpcode(); 7733 unsigned NewOpc; 7734 switch (OrigOpc) { 7735 default: 7736 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7737 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7738 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7739 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7740 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7741 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7742 case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; 7743 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; 7744 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7745 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7746 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; 7747 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; 7748 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; 7749 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; 7750 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; 7751 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; 7752 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; 7753 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; 7754 case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; 7755 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7756 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7757 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; 7758 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; 7759 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; 7760 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; 7761 case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; 7762 case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; 7763 case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break; 7764 case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break; 7765 } 7766 7767 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7768 7769 // We're taking this node out of the chain, so we need to re-link things. 7770 SDValue InputChain = Node->getOperand(0); 7771 SDValue OutputChain = SDValue(Node, 1); 7772 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7773 7774 SmallVector<SDValue, 3> Ops; 7775 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7776 Ops.push_back(Node->getOperand(i)); 7777 7778 SDVTList VTs = getVTList(Node->getValueType(0)); 7779 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7780 7781 // MorphNodeTo can operate in two ways: if an existing node with the 7782 // specified operands exists, it can just return it. Otherwise, it 7783 // updates the node in place to have the requested operands. 7784 if (Res == Node) { 7785 // If we updated the node in place, reset the node ID. To the isel, 7786 // this should be just like a newly allocated machine node. 7787 Res->setNodeId(-1); 7788 } else { 7789 ReplaceAllUsesWith(Node, Res); 7790 RemoveDeadNode(Node); 7791 } 7792 7793 return Res; 7794 } 7795 7796 /// getMachineNode - These are used for target selectors to create a new node 7797 /// with specified return type(s), MachineInstr opcode, and operands. 7798 /// 7799 /// Note that getMachineNode returns the resultant node. If there is already a 7800 /// node of the specified opcode and operands, it returns that node instead of 7801 /// the current one. 7802 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7803 EVT VT) { 7804 SDVTList VTs = getVTList(VT); 7805 return getMachineNode(Opcode, dl, VTs, None); 7806 } 7807 7808 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7809 EVT VT, SDValue Op1) { 7810 SDVTList VTs = getVTList(VT); 7811 SDValue Ops[] = { Op1 }; 7812 return getMachineNode(Opcode, dl, VTs, Ops); 7813 } 7814 7815 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7816 EVT VT, SDValue Op1, SDValue Op2) { 7817 SDVTList VTs = getVTList(VT); 7818 SDValue Ops[] = { Op1, Op2 }; 7819 return getMachineNode(Opcode, dl, VTs, Ops); 7820 } 7821 7822 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7823 EVT VT, SDValue Op1, SDValue Op2, 7824 SDValue Op3) { 7825 SDVTList VTs = getVTList(VT); 7826 SDValue Ops[] = { Op1, Op2, Op3 }; 7827 return getMachineNode(Opcode, dl, VTs, Ops); 7828 } 7829 7830 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7831 EVT VT, ArrayRef<SDValue> Ops) { 7832 SDVTList VTs = getVTList(VT); 7833 return getMachineNode(Opcode, dl, VTs, Ops); 7834 } 7835 7836 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7837 EVT VT1, EVT VT2, SDValue Op1, 7838 SDValue Op2) { 7839 SDVTList VTs = getVTList(VT1, VT2); 7840 SDValue Ops[] = { Op1, Op2 }; 7841 return getMachineNode(Opcode, dl, VTs, Ops); 7842 } 7843 7844 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7845 EVT VT1, EVT VT2, SDValue Op1, 7846 SDValue Op2, SDValue Op3) { 7847 SDVTList VTs = getVTList(VT1, VT2); 7848 SDValue Ops[] = { Op1, Op2, Op3 }; 7849 return getMachineNode(Opcode, dl, VTs, Ops); 7850 } 7851 7852 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7853 EVT VT1, EVT VT2, 7854 ArrayRef<SDValue> Ops) { 7855 SDVTList VTs = getVTList(VT1, VT2); 7856 return getMachineNode(Opcode, dl, VTs, Ops); 7857 } 7858 7859 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7860 EVT VT1, EVT VT2, EVT VT3, 7861 SDValue Op1, SDValue Op2) { 7862 SDVTList VTs = getVTList(VT1, VT2, VT3); 7863 SDValue Ops[] = { Op1, Op2 }; 7864 return getMachineNode(Opcode, dl, VTs, Ops); 7865 } 7866 7867 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7868 EVT VT1, EVT VT2, EVT VT3, 7869 SDValue Op1, SDValue Op2, 7870 SDValue Op3) { 7871 SDVTList VTs = getVTList(VT1, VT2, VT3); 7872 SDValue Ops[] = { Op1, Op2, Op3 }; 7873 return getMachineNode(Opcode, dl, VTs, Ops); 7874 } 7875 7876 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7877 EVT VT1, EVT VT2, EVT VT3, 7878 ArrayRef<SDValue> Ops) { 7879 SDVTList VTs = getVTList(VT1, VT2, VT3); 7880 return getMachineNode(Opcode, dl, VTs, Ops); 7881 } 7882 7883 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7884 ArrayRef<EVT> ResultTys, 7885 ArrayRef<SDValue> Ops) { 7886 SDVTList VTs = getVTList(ResultTys); 7887 return getMachineNode(Opcode, dl, VTs, Ops); 7888 } 7889 7890 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7891 SDVTList VTs, 7892 ArrayRef<SDValue> Ops) { 7893 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7894 MachineSDNode *N; 7895 void *IP = nullptr; 7896 7897 if (DoCSE) { 7898 FoldingSetNodeID ID; 7899 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7900 IP = nullptr; 7901 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7902 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7903 } 7904 } 7905 7906 // Allocate a new MachineSDNode. 7907 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7908 createOperands(N, Ops); 7909 7910 if (DoCSE) 7911 CSEMap.InsertNode(N, IP); 7912 7913 InsertNode(N); 7914 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 7915 return N; 7916 } 7917 7918 /// getTargetExtractSubreg - A convenience function for creating 7919 /// TargetOpcode::EXTRACT_SUBREG nodes. 7920 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7921 SDValue Operand) { 7922 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7923 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7924 VT, Operand, SRIdxVal); 7925 return SDValue(Subreg, 0); 7926 } 7927 7928 /// getTargetInsertSubreg - A convenience function for creating 7929 /// TargetOpcode::INSERT_SUBREG nodes. 7930 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7931 SDValue Operand, SDValue Subreg) { 7932 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7933 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7934 VT, Operand, Subreg, SRIdxVal); 7935 return SDValue(Result, 0); 7936 } 7937 7938 /// getNodeIfExists - Get the specified node if it's already available, or 7939 /// else return NULL. 7940 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7941 ArrayRef<SDValue> Ops, 7942 const SDNodeFlags Flags) { 7943 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7944 FoldingSetNodeID ID; 7945 AddNodeIDNode(ID, Opcode, VTList, Ops); 7946 void *IP = nullptr; 7947 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7948 E->intersectFlagsWith(Flags); 7949 return E; 7950 } 7951 } 7952 return nullptr; 7953 } 7954 7955 /// getDbgValue - Creates a SDDbgValue node. 7956 /// 7957 /// SDNode 7958 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7959 SDNode *N, unsigned R, bool IsIndirect, 7960 const DebugLoc &DL, unsigned O) { 7961 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7962 "Expected inlined-at fields to agree"); 7963 return new (DbgInfo->getAlloc()) 7964 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7965 } 7966 7967 /// Constant 7968 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7969 DIExpression *Expr, 7970 const Value *C, 7971 const DebugLoc &DL, unsigned O) { 7972 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7973 "Expected inlined-at fields to agree"); 7974 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7975 } 7976 7977 /// FrameIndex 7978 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7979 DIExpression *Expr, unsigned FI, 7980 bool IsIndirect, 7981 const DebugLoc &DL, 7982 unsigned O) { 7983 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7984 "Expected inlined-at fields to agree"); 7985 return new (DbgInfo->getAlloc()) 7986 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7987 } 7988 7989 /// VReg 7990 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7991 DIExpression *Expr, 7992 unsigned VReg, bool IsIndirect, 7993 const DebugLoc &DL, unsigned O) { 7994 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7995 "Expected inlined-at fields to agree"); 7996 return new (DbgInfo->getAlloc()) 7997 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7998 } 7999 8000 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8001 unsigned OffsetInBits, unsigned SizeInBits, 8002 bool InvalidateDbg) { 8003 SDNode *FromNode = From.getNode(); 8004 SDNode *ToNode = To.getNode(); 8005 assert(FromNode && ToNode && "Can't modify dbg values"); 8006 8007 // PR35338 8008 // TODO: assert(From != To && "Redundant dbg value transfer"); 8009 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8010 if (From == To || FromNode == ToNode) 8011 return; 8012 8013 if (!FromNode->getHasDebugValue()) 8014 return; 8015 8016 SmallVector<SDDbgValue *, 2> ClonedDVs; 8017 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8018 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8019 continue; 8020 8021 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8022 8023 // Just transfer the dbg value attached to From. 8024 if (Dbg->getResNo() != From.getResNo()) 8025 continue; 8026 8027 DIVariable *Var = Dbg->getVariable(); 8028 auto *Expr = Dbg->getExpression(); 8029 // If a fragment is requested, update the expression. 8030 if (SizeInBits) { 8031 // When splitting a larger (e.g., sign-extended) value whose 8032 // lower bits are described with an SDDbgValue, do not attempt 8033 // to transfer the SDDbgValue to the upper bits. 8034 if (auto FI = Expr->getFragmentInfo()) 8035 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8036 continue; 8037 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8038 SizeInBits); 8039 if (!Fragment) 8040 continue; 8041 Expr = *Fragment; 8042 } 8043 // Clone the SDDbgValue and move it to To. 8044 SDDbgValue *Clone = 8045 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8046 Dbg->getDebugLoc(), Dbg->getOrder()); 8047 ClonedDVs.push_back(Clone); 8048 8049 if (InvalidateDbg) { 8050 // Invalidate value and indicate the SDDbgValue should not be emitted. 8051 Dbg->setIsInvalidated(); 8052 Dbg->setIsEmitted(); 8053 } 8054 } 8055 8056 for (SDDbgValue *Dbg : ClonedDVs) 8057 AddDbgValue(Dbg, ToNode, false); 8058 } 8059 8060 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8061 if (!N.getHasDebugValue()) 8062 return; 8063 8064 SmallVector<SDDbgValue *, 2> ClonedDVs; 8065 for (auto DV : GetDbgValues(&N)) { 8066 if (DV->isInvalidated()) 8067 continue; 8068 switch (N.getOpcode()) { 8069 default: 8070 break; 8071 case ISD::ADD: 8072 SDValue N0 = N.getOperand(0); 8073 SDValue N1 = N.getOperand(1); 8074 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8075 isConstantIntBuildVectorOrConstantInt(N1)) { 8076 uint64_t Offset = N.getConstantOperandVal(1); 8077 // Rewrite an ADD constant node into a DIExpression. Since we are 8078 // performing arithmetic to compute the variable's *value* in the 8079 // DIExpression, we need to mark the expression with a 8080 // DW_OP_stack_value. 8081 auto *DIExpr = DV->getExpression(); 8082 DIExpr = 8083 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8084 SDDbgValue *Clone = 8085 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8086 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8087 ClonedDVs.push_back(Clone); 8088 DV->setIsInvalidated(); 8089 DV->setIsEmitted(); 8090 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8091 N0.getNode()->dumprFull(this); 8092 dbgs() << " into " << *DIExpr << '\n'); 8093 } 8094 } 8095 } 8096 8097 for (SDDbgValue *Dbg : ClonedDVs) 8098 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8099 } 8100 8101 /// Creates a SDDbgLabel node. 8102 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8103 const DebugLoc &DL, unsigned O) { 8104 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8105 "Expected inlined-at fields to agree"); 8106 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8107 } 8108 8109 namespace { 8110 8111 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8112 /// pointed to by a use iterator is deleted, increment the use iterator 8113 /// so that it doesn't dangle. 8114 /// 8115 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8116 SDNode::use_iterator &UI; 8117 SDNode::use_iterator &UE; 8118 8119 void NodeDeleted(SDNode *N, SDNode *E) override { 8120 // Increment the iterator as needed. 8121 while (UI != UE && N == *UI) 8122 ++UI; 8123 } 8124 8125 public: 8126 RAUWUpdateListener(SelectionDAG &d, 8127 SDNode::use_iterator &ui, 8128 SDNode::use_iterator &ue) 8129 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8130 }; 8131 8132 } // end anonymous namespace 8133 8134 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8135 /// This can cause recursive merging of nodes in the DAG. 8136 /// 8137 /// This version assumes From has a single result value. 8138 /// 8139 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8140 SDNode *From = FromN.getNode(); 8141 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8142 "Cannot replace with this method!"); 8143 assert(From != To.getNode() && "Cannot replace uses of with self"); 8144 8145 // Preserve Debug Values 8146 transferDbgValues(FromN, To); 8147 8148 // Iterate over all the existing uses of From. New uses will be added 8149 // to the beginning of the use list, which we avoid visiting. 8150 // This specifically avoids visiting uses of From that arise while the 8151 // replacement is happening, because any such uses would be the result 8152 // of CSE: If an existing node looks like From after one of its operands 8153 // is replaced by To, we don't want to replace of all its users with To 8154 // too. See PR3018 for more info. 8155 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8156 RAUWUpdateListener Listener(*this, UI, UE); 8157 while (UI != UE) { 8158 SDNode *User = *UI; 8159 8160 // This node is about to morph, remove its old self from the CSE maps. 8161 RemoveNodeFromCSEMaps(User); 8162 8163 // A user can appear in a use list multiple times, and when this 8164 // happens the uses are usually next to each other in the list. 8165 // To help reduce the number of CSE recomputations, process all 8166 // the uses of this user that we can find this way. 8167 do { 8168 SDUse &Use = UI.getUse(); 8169 ++UI; 8170 Use.set(To); 8171 if (To->isDivergent() != From->isDivergent()) 8172 updateDivergence(User); 8173 } while (UI != UE && *UI == User); 8174 // Now that we have modified User, add it back to the CSE maps. If it 8175 // already exists there, recursively merge the results together. 8176 AddModifiedNodeToCSEMaps(User); 8177 } 8178 8179 // If we just RAUW'd the root, take note. 8180 if (FromN == getRoot()) 8181 setRoot(To); 8182 } 8183 8184 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8185 /// This can cause recursive merging of nodes in the DAG. 8186 /// 8187 /// This version assumes that for each value of From, there is a 8188 /// corresponding value in To in the same position with the same type. 8189 /// 8190 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8191 #ifndef NDEBUG 8192 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8193 assert((!From->hasAnyUseOfValue(i) || 8194 From->getValueType(i) == To->getValueType(i)) && 8195 "Cannot use this version of ReplaceAllUsesWith!"); 8196 #endif 8197 8198 // Handle the trivial case. 8199 if (From == To) 8200 return; 8201 8202 // Preserve Debug Info. Only do this if there's a use. 8203 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8204 if (From->hasAnyUseOfValue(i)) { 8205 assert((i < To->getNumValues()) && "Invalid To location"); 8206 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8207 } 8208 8209 // Iterate over just the existing users of From. See the comments in 8210 // the ReplaceAllUsesWith above. 8211 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8212 RAUWUpdateListener Listener(*this, UI, UE); 8213 while (UI != UE) { 8214 SDNode *User = *UI; 8215 8216 // This node is about to morph, remove its old self from the CSE maps. 8217 RemoveNodeFromCSEMaps(User); 8218 8219 // A user can appear in a use list multiple times, and when this 8220 // happens the uses are usually next to each other in the list. 8221 // To help reduce the number of CSE recomputations, process all 8222 // the uses of this user that we can find this way. 8223 do { 8224 SDUse &Use = UI.getUse(); 8225 ++UI; 8226 Use.setNode(To); 8227 if (To->isDivergent() != From->isDivergent()) 8228 updateDivergence(User); 8229 } while (UI != UE && *UI == User); 8230 8231 // Now that we have modified User, add it back to the CSE maps. If it 8232 // already exists there, recursively merge the results together. 8233 AddModifiedNodeToCSEMaps(User); 8234 } 8235 8236 // If we just RAUW'd the root, take note. 8237 if (From == getRoot().getNode()) 8238 setRoot(SDValue(To, getRoot().getResNo())); 8239 } 8240 8241 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8242 /// This can cause recursive merging of nodes in the DAG. 8243 /// 8244 /// This version can replace From with any result values. To must match the 8245 /// number and types of values returned by From. 8246 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8247 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8248 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8249 8250 // Preserve Debug Info. 8251 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8252 transferDbgValues(SDValue(From, i), To[i]); 8253 8254 // Iterate over just the existing users of From. See the comments in 8255 // the ReplaceAllUsesWith above. 8256 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8257 RAUWUpdateListener Listener(*this, UI, UE); 8258 while (UI != UE) { 8259 SDNode *User = *UI; 8260 8261 // This node is about to morph, remove its old self from the CSE maps. 8262 RemoveNodeFromCSEMaps(User); 8263 8264 // A user can appear in a use list multiple times, and when this happens the 8265 // uses are usually next to each other in the list. To help reduce the 8266 // number of CSE and divergence recomputations, process all the uses of this 8267 // user that we can find this way. 8268 bool To_IsDivergent = false; 8269 do { 8270 SDUse &Use = UI.getUse(); 8271 const SDValue &ToOp = To[Use.getResNo()]; 8272 ++UI; 8273 Use.set(ToOp); 8274 To_IsDivergent |= ToOp->isDivergent(); 8275 } while (UI != UE && *UI == User); 8276 8277 if (To_IsDivergent != From->isDivergent()) 8278 updateDivergence(User); 8279 8280 // Now that we have modified User, add it back to the CSE maps. If it 8281 // already exists there, recursively merge the results together. 8282 AddModifiedNodeToCSEMaps(User); 8283 } 8284 8285 // If we just RAUW'd the root, take note. 8286 if (From == getRoot().getNode()) 8287 setRoot(SDValue(To[getRoot().getResNo()])); 8288 } 8289 8290 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8291 /// uses of other values produced by From.getNode() alone. The Deleted 8292 /// vector is handled the same way as for ReplaceAllUsesWith. 8293 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8294 // Handle the really simple, really trivial case efficiently. 8295 if (From == To) return; 8296 8297 // Handle the simple, trivial, case efficiently. 8298 if (From.getNode()->getNumValues() == 1) { 8299 ReplaceAllUsesWith(From, To); 8300 return; 8301 } 8302 8303 // Preserve Debug Info. 8304 transferDbgValues(From, To); 8305 8306 // Iterate over just the existing users of From. See the comments in 8307 // the ReplaceAllUsesWith above. 8308 SDNode::use_iterator UI = From.getNode()->use_begin(), 8309 UE = From.getNode()->use_end(); 8310 RAUWUpdateListener Listener(*this, UI, UE); 8311 while (UI != UE) { 8312 SDNode *User = *UI; 8313 bool UserRemovedFromCSEMaps = false; 8314 8315 // A user can appear in a use list multiple times, and when this 8316 // happens the uses are usually next to each other in the list. 8317 // To help reduce the number of CSE recomputations, process all 8318 // the uses of this user that we can find this way. 8319 do { 8320 SDUse &Use = UI.getUse(); 8321 8322 // Skip uses of different values from the same node. 8323 if (Use.getResNo() != From.getResNo()) { 8324 ++UI; 8325 continue; 8326 } 8327 8328 // If this node hasn't been modified yet, it's still in the CSE maps, 8329 // so remove its old self from the CSE maps. 8330 if (!UserRemovedFromCSEMaps) { 8331 RemoveNodeFromCSEMaps(User); 8332 UserRemovedFromCSEMaps = true; 8333 } 8334 8335 ++UI; 8336 Use.set(To); 8337 if (To->isDivergent() != From->isDivergent()) 8338 updateDivergence(User); 8339 } while (UI != UE && *UI == User); 8340 // We are iterating over all uses of the From node, so if a use 8341 // doesn't use the specific value, no changes are made. 8342 if (!UserRemovedFromCSEMaps) 8343 continue; 8344 8345 // Now that we have modified User, add it back to the CSE maps. If it 8346 // already exists there, recursively merge the results together. 8347 AddModifiedNodeToCSEMaps(User); 8348 } 8349 8350 // If we just RAUW'd the root, take note. 8351 if (From == getRoot()) 8352 setRoot(To); 8353 } 8354 8355 namespace { 8356 8357 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8358 /// to record information about a use. 8359 struct UseMemo { 8360 SDNode *User; 8361 unsigned Index; 8362 SDUse *Use; 8363 }; 8364 8365 /// operator< - Sort Memos by User. 8366 bool operator<(const UseMemo &L, const UseMemo &R) { 8367 return (intptr_t)L.User < (intptr_t)R.User; 8368 } 8369 8370 } // end anonymous namespace 8371 8372 void SelectionDAG::updateDivergence(SDNode * N) 8373 { 8374 if (TLI->isSDNodeAlwaysUniform(N)) 8375 return; 8376 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8377 for (auto &Op : N->ops()) { 8378 if (Op.Val.getValueType() != MVT::Other) 8379 IsDivergent |= Op.getNode()->isDivergent(); 8380 } 8381 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8382 N->SDNodeBits.IsDivergent = IsDivergent; 8383 for (auto U : N->uses()) { 8384 updateDivergence(U); 8385 } 8386 } 8387 } 8388 8389 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8390 DenseMap<SDNode *, unsigned> Degree; 8391 Order.reserve(AllNodes.size()); 8392 for (auto &N : allnodes()) { 8393 unsigned NOps = N.getNumOperands(); 8394 Degree[&N] = NOps; 8395 if (0 == NOps) 8396 Order.push_back(&N); 8397 } 8398 for (size_t I = 0; I != Order.size(); ++I) { 8399 SDNode *N = Order[I]; 8400 for (auto U : N->uses()) { 8401 unsigned &UnsortedOps = Degree[U]; 8402 if (0 == --UnsortedOps) 8403 Order.push_back(U); 8404 } 8405 } 8406 } 8407 8408 #ifndef NDEBUG 8409 void SelectionDAG::VerifyDAGDiverence() { 8410 std::vector<SDNode *> TopoOrder; 8411 CreateTopologicalOrder(TopoOrder); 8412 const TargetLowering &TLI = getTargetLoweringInfo(); 8413 DenseMap<const SDNode *, bool> DivergenceMap; 8414 for (auto &N : allnodes()) { 8415 DivergenceMap[&N] = false; 8416 } 8417 for (auto N : TopoOrder) { 8418 bool IsDivergent = DivergenceMap[N]; 8419 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8420 for (auto &Op : N->ops()) { 8421 if (Op.Val.getValueType() != MVT::Other) 8422 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8423 } 8424 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8425 DivergenceMap[N] = true; 8426 } 8427 } 8428 for (auto &N : allnodes()) { 8429 (void)N; 8430 assert(DivergenceMap[&N] == N.isDivergent() && 8431 "Divergence bit inconsistency detected\n"); 8432 } 8433 } 8434 #endif 8435 8436 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8437 /// uses of other values produced by From.getNode() alone. The same value 8438 /// may appear in both the From and To list. The Deleted vector is 8439 /// handled the same way as for ReplaceAllUsesWith. 8440 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8441 const SDValue *To, 8442 unsigned Num){ 8443 // Handle the simple, trivial case efficiently. 8444 if (Num == 1) 8445 return ReplaceAllUsesOfValueWith(*From, *To); 8446 8447 transferDbgValues(*From, *To); 8448 8449 // Read up all the uses and make records of them. This helps 8450 // processing new uses that are introduced during the 8451 // replacement process. 8452 SmallVector<UseMemo, 4> Uses; 8453 for (unsigned i = 0; i != Num; ++i) { 8454 unsigned FromResNo = From[i].getResNo(); 8455 SDNode *FromNode = From[i].getNode(); 8456 for (SDNode::use_iterator UI = FromNode->use_begin(), 8457 E = FromNode->use_end(); UI != E; ++UI) { 8458 SDUse &Use = UI.getUse(); 8459 if (Use.getResNo() == FromResNo) { 8460 UseMemo Memo = { *UI, i, &Use }; 8461 Uses.push_back(Memo); 8462 } 8463 } 8464 } 8465 8466 // Sort the uses, so that all the uses from a given User are together. 8467 llvm::sort(Uses); 8468 8469 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8470 UseIndex != UseIndexEnd; ) { 8471 // We know that this user uses some value of From. If it is the right 8472 // value, update it. 8473 SDNode *User = Uses[UseIndex].User; 8474 8475 // This node is about to morph, remove its old self from the CSE maps. 8476 RemoveNodeFromCSEMaps(User); 8477 8478 // The Uses array is sorted, so all the uses for a given User 8479 // are next to each other in the list. 8480 // To help reduce the number of CSE recomputations, process all 8481 // the uses of this user that we can find this way. 8482 do { 8483 unsigned i = Uses[UseIndex].Index; 8484 SDUse &Use = *Uses[UseIndex].Use; 8485 ++UseIndex; 8486 8487 Use.set(To[i]); 8488 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8489 8490 // Now that we have modified User, add it back to the CSE maps. If it 8491 // already exists there, recursively merge the results together. 8492 AddModifiedNodeToCSEMaps(User); 8493 } 8494 } 8495 8496 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8497 /// based on their topological order. It returns the maximum id and a vector 8498 /// of the SDNodes* in assigned order by reference. 8499 unsigned SelectionDAG::AssignTopologicalOrder() { 8500 unsigned DAGSize = 0; 8501 8502 // SortedPos tracks the progress of the algorithm. Nodes before it are 8503 // sorted, nodes after it are unsorted. When the algorithm completes 8504 // it is at the end of the list. 8505 allnodes_iterator SortedPos = allnodes_begin(); 8506 8507 // Visit all the nodes. Move nodes with no operands to the front of 8508 // the list immediately. Annotate nodes that do have operands with their 8509 // operand count. Before we do this, the Node Id fields of the nodes 8510 // may contain arbitrary values. After, the Node Id fields for nodes 8511 // before SortedPos will contain the topological sort index, and the 8512 // Node Id fields for nodes At SortedPos and after will contain the 8513 // count of outstanding operands. 8514 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8515 SDNode *N = &*I++; 8516 checkForCycles(N, this); 8517 unsigned Degree = N->getNumOperands(); 8518 if (Degree == 0) { 8519 // A node with no uses, add it to the result array immediately. 8520 N->setNodeId(DAGSize++); 8521 allnodes_iterator Q(N); 8522 if (Q != SortedPos) 8523 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8524 assert(SortedPos != AllNodes.end() && "Overran node list"); 8525 ++SortedPos; 8526 } else { 8527 // Temporarily use the Node Id as scratch space for the degree count. 8528 N->setNodeId(Degree); 8529 } 8530 } 8531 8532 // Visit all the nodes. As we iterate, move nodes into sorted order, 8533 // such that by the time the end is reached all nodes will be sorted. 8534 for (SDNode &Node : allnodes()) { 8535 SDNode *N = &Node; 8536 checkForCycles(N, this); 8537 // N is in sorted position, so all its uses have one less operand 8538 // that needs to be sorted. 8539 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8540 UI != UE; ++UI) { 8541 SDNode *P = *UI; 8542 unsigned Degree = P->getNodeId(); 8543 assert(Degree != 0 && "Invalid node degree"); 8544 --Degree; 8545 if (Degree == 0) { 8546 // All of P's operands are sorted, so P may sorted now. 8547 P->setNodeId(DAGSize++); 8548 if (P->getIterator() != SortedPos) 8549 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8550 assert(SortedPos != AllNodes.end() && "Overran node list"); 8551 ++SortedPos; 8552 } else { 8553 // Update P's outstanding operand count. 8554 P->setNodeId(Degree); 8555 } 8556 } 8557 if (Node.getIterator() == SortedPos) { 8558 #ifndef NDEBUG 8559 allnodes_iterator I(N); 8560 SDNode *S = &*++I; 8561 dbgs() << "Overran sorted position:\n"; 8562 S->dumprFull(this); dbgs() << "\n"; 8563 dbgs() << "Checking if this is due to cycles\n"; 8564 checkForCycles(this, true); 8565 #endif 8566 llvm_unreachable(nullptr); 8567 } 8568 } 8569 8570 assert(SortedPos == AllNodes.end() && 8571 "Topological sort incomplete!"); 8572 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8573 "First node in topological sort is not the entry token!"); 8574 assert(AllNodes.front().getNodeId() == 0 && 8575 "First node in topological sort has non-zero id!"); 8576 assert(AllNodes.front().getNumOperands() == 0 && 8577 "First node in topological sort has operands!"); 8578 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8579 "Last node in topologic sort has unexpected id!"); 8580 assert(AllNodes.back().use_empty() && 8581 "Last node in topologic sort has users!"); 8582 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8583 return DAGSize; 8584 } 8585 8586 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8587 /// value is produced by SD. 8588 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8589 if (SD) { 8590 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8591 SD->setHasDebugValue(true); 8592 } 8593 DbgInfo->add(DB, SD, isParameter); 8594 } 8595 8596 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8597 DbgInfo->add(DB); 8598 } 8599 8600 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8601 SDValue NewMemOp) { 8602 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8603 // The new memory operation must have the same position as the old load in 8604 // terms of memory dependency. Create a TokenFactor for the old load and new 8605 // memory operation and update uses of the old load's output chain to use that 8606 // TokenFactor. 8607 SDValue OldChain = SDValue(OldLoad, 1); 8608 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8609 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8610 return NewChain; 8611 8612 SDValue TokenFactor = 8613 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8614 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8615 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8616 return TokenFactor; 8617 } 8618 8619 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8620 Function **OutFunction) { 8621 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8622 8623 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8624 auto *Module = MF->getFunction().getParent(); 8625 auto *Function = Module->getFunction(Symbol); 8626 8627 if (OutFunction != nullptr) 8628 *OutFunction = Function; 8629 8630 if (Function != nullptr) { 8631 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8632 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8633 } 8634 8635 std::string ErrorStr; 8636 raw_string_ostream ErrorFormatter(ErrorStr); 8637 8638 ErrorFormatter << "Undefined external symbol "; 8639 ErrorFormatter << '"' << Symbol << '"'; 8640 ErrorFormatter.flush(); 8641 8642 report_fatal_error(ErrorStr); 8643 } 8644 8645 //===----------------------------------------------------------------------===// 8646 // SDNode Class 8647 //===----------------------------------------------------------------------===// 8648 8649 bool llvm::isNullConstant(SDValue V) { 8650 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8651 return Const != nullptr && Const->isNullValue(); 8652 } 8653 8654 bool llvm::isNullFPConstant(SDValue V) { 8655 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8656 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8657 } 8658 8659 bool llvm::isAllOnesConstant(SDValue V) { 8660 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8661 return Const != nullptr && Const->isAllOnesValue(); 8662 } 8663 8664 bool llvm::isOneConstant(SDValue V) { 8665 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8666 return Const != nullptr && Const->isOne(); 8667 } 8668 8669 SDValue llvm::peekThroughBitcasts(SDValue V) { 8670 while (V.getOpcode() == ISD::BITCAST) 8671 V = V.getOperand(0); 8672 return V; 8673 } 8674 8675 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8676 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8677 V = V.getOperand(0); 8678 return V; 8679 } 8680 8681 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8682 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8683 V = V.getOperand(0); 8684 return V; 8685 } 8686 8687 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8688 if (V.getOpcode() != ISD::XOR) 8689 return false; 8690 V = peekThroughBitcasts(V.getOperand(1)); 8691 unsigned NumBits = V.getScalarValueSizeInBits(); 8692 ConstantSDNode *C = 8693 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8694 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8695 } 8696 8697 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8698 bool AllowTruncation) { 8699 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8700 return CN; 8701 8702 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8703 BitVector UndefElements; 8704 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8705 8706 // BuildVectors can truncate their operands. Ignore that case here unless 8707 // AllowTruncation is set. 8708 if (CN && (UndefElements.none() || AllowUndefs)) { 8709 EVT CVT = CN->getValueType(0); 8710 EVT NSVT = N.getValueType().getScalarType(); 8711 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8712 if (AllowTruncation || (CVT == NSVT)) 8713 return CN; 8714 } 8715 } 8716 8717 return nullptr; 8718 } 8719 8720 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8721 bool AllowUndefs, 8722 bool AllowTruncation) { 8723 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8724 return CN; 8725 8726 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8727 BitVector UndefElements; 8728 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8729 8730 // BuildVectors can truncate their operands. Ignore that case here unless 8731 // AllowTruncation is set. 8732 if (CN && (UndefElements.none() || AllowUndefs)) { 8733 EVT CVT = CN->getValueType(0); 8734 EVT NSVT = N.getValueType().getScalarType(); 8735 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8736 if (AllowTruncation || (CVT == NSVT)) 8737 return CN; 8738 } 8739 } 8740 8741 return nullptr; 8742 } 8743 8744 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8745 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8746 return CN; 8747 8748 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8749 BitVector UndefElements; 8750 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8751 if (CN && (UndefElements.none() || AllowUndefs)) 8752 return CN; 8753 } 8754 8755 return nullptr; 8756 } 8757 8758 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8759 const APInt &DemandedElts, 8760 bool AllowUndefs) { 8761 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8762 return CN; 8763 8764 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8765 BitVector UndefElements; 8766 ConstantFPSDNode *CN = 8767 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8768 if (CN && (UndefElements.none() || AllowUndefs)) 8769 return CN; 8770 } 8771 8772 return nullptr; 8773 } 8774 8775 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8776 // TODO: may want to use peekThroughBitcast() here. 8777 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8778 return C && C->isNullValue(); 8779 } 8780 8781 bool llvm::isOneOrOneSplat(SDValue N) { 8782 // TODO: may want to use peekThroughBitcast() here. 8783 unsigned BitWidth = N.getScalarValueSizeInBits(); 8784 ConstantSDNode *C = isConstOrConstSplat(N); 8785 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8786 } 8787 8788 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8789 N = peekThroughBitcasts(N); 8790 unsigned BitWidth = N.getScalarValueSizeInBits(); 8791 ConstantSDNode *C = isConstOrConstSplat(N); 8792 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8793 } 8794 8795 HandleSDNode::~HandleSDNode() { 8796 DropOperands(); 8797 } 8798 8799 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8800 const DebugLoc &DL, 8801 const GlobalValue *GA, EVT VT, 8802 int64_t o, unsigned TF) 8803 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8804 TheGlobal = GA; 8805 } 8806 8807 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8808 EVT VT, unsigned SrcAS, 8809 unsigned DestAS) 8810 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8811 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8812 8813 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8814 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8815 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8816 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8817 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8818 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8819 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8820 8821 // We check here that the size of the memory operand fits within the size of 8822 // the MMO. This is because the MMO might indicate only a possible address 8823 // range instead of specifying the affected memory addresses precisely. 8824 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8825 } 8826 8827 /// Profile - Gather unique data for the node. 8828 /// 8829 void SDNode::Profile(FoldingSetNodeID &ID) const { 8830 AddNodeIDNode(ID, this); 8831 } 8832 8833 namespace { 8834 8835 struct EVTArray { 8836 std::vector<EVT> VTs; 8837 8838 EVTArray() { 8839 VTs.reserve(MVT::LAST_VALUETYPE); 8840 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8841 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8842 } 8843 }; 8844 8845 } // end anonymous namespace 8846 8847 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8848 static ManagedStatic<EVTArray> SimpleVTArray; 8849 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8850 8851 /// getValueTypeList - Return a pointer to the specified value type. 8852 /// 8853 const EVT *SDNode::getValueTypeList(EVT VT) { 8854 if (VT.isExtended()) { 8855 sys::SmartScopedLock<true> Lock(*VTMutex); 8856 return &(*EVTs->insert(VT).first); 8857 } else { 8858 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8859 "Value type out of range!"); 8860 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8861 } 8862 } 8863 8864 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8865 /// indicated value. This method ignores uses of other values defined by this 8866 /// operation. 8867 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8868 assert(Value < getNumValues() && "Bad value!"); 8869 8870 // TODO: Only iterate over uses of a given value of the node 8871 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8872 if (UI.getUse().getResNo() == Value) { 8873 if (NUses == 0) 8874 return false; 8875 --NUses; 8876 } 8877 } 8878 8879 // Found exactly the right number of uses? 8880 return NUses == 0; 8881 } 8882 8883 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8884 /// value. This method ignores uses of other values defined by this operation. 8885 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8886 assert(Value < getNumValues() && "Bad value!"); 8887 8888 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8889 if (UI.getUse().getResNo() == Value) 8890 return true; 8891 8892 return false; 8893 } 8894 8895 /// isOnlyUserOf - Return true if this node is the only use of N. 8896 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8897 bool Seen = false; 8898 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8899 SDNode *User = *I; 8900 if (User == this) 8901 Seen = true; 8902 else 8903 return false; 8904 } 8905 8906 return Seen; 8907 } 8908 8909 /// Return true if the only users of N are contained in Nodes. 8910 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8911 bool Seen = false; 8912 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8913 SDNode *User = *I; 8914 if (llvm::any_of(Nodes, 8915 [&User](const SDNode *Node) { return User == Node; })) 8916 Seen = true; 8917 else 8918 return false; 8919 } 8920 8921 return Seen; 8922 } 8923 8924 /// isOperand - Return true if this node is an operand of N. 8925 bool SDValue::isOperandOf(const SDNode *N) const { 8926 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8927 } 8928 8929 bool SDNode::isOperandOf(const SDNode *N) const { 8930 return any_of(N->op_values(), 8931 [this](SDValue Op) { return this == Op.getNode(); }); 8932 } 8933 8934 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8935 /// be a chain) reaches the specified operand without crossing any 8936 /// side-effecting instructions on any chain path. In practice, this looks 8937 /// through token factors and non-volatile loads. In order to remain efficient, 8938 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8939 /// 8940 /// Note that we only need to examine chains when we're searching for 8941 /// side-effects; SelectionDAG requires that all side-effects are represented 8942 /// by chains, even if another operand would force a specific ordering. This 8943 /// constraint is necessary to allow transformations like splitting loads. 8944 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8945 unsigned Depth) const { 8946 if (*this == Dest) return true; 8947 8948 // Don't search too deeply, we just want to be able to see through 8949 // TokenFactor's etc. 8950 if (Depth == 0) return false; 8951 8952 // If this is a token factor, all inputs to the TF happen in parallel. 8953 if (getOpcode() == ISD::TokenFactor) { 8954 // First, try a shallow search. 8955 if (is_contained((*this)->ops(), Dest)) { 8956 // We found the chain we want as an operand of this TokenFactor. 8957 // Essentially, we reach the chain without side-effects if we could 8958 // serialize the TokenFactor into a simple chain of operations with 8959 // Dest as the last operation. This is automatically true if the 8960 // chain has one use: there are no other ordering constraints. 8961 // If the chain has more than one use, we give up: some other 8962 // use of Dest might force a side-effect between Dest and the current 8963 // node. 8964 if (Dest.hasOneUse()) 8965 return true; 8966 } 8967 // Next, try a deep search: check whether every operand of the TokenFactor 8968 // reaches Dest. 8969 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8970 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8971 }); 8972 } 8973 8974 // Loads don't have side effects, look through them. 8975 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8976 if (Ld->isUnordered()) 8977 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8978 } 8979 return false; 8980 } 8981 8982 bool SDNode::hasPredecessor(const SDNode *N) const { 8983 SmallPtrSet<const SDNode *, 32> Visited; 8984 SmallVector<const SDNode *, 16> Worklist; 8985 Worklist.push_back(this); 8986 return hasPredecessorHelper(N, Visited, Worklist); 8987 } 8988 8989 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8990 this->Flags.intersectWith(Flags); 8991 } 8992 8993 SDValue 8994 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8995 ArrayRef<ISD::NodeType> CandidateBinOps, 8996 bool AllowPartials) { 8997 // The pattern must end in an extract from index 0. 8998 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8999 !isNullConstant(Extract->getOperand(1))) 9000 return SDValue(); 9001 9002 // Match against one of the candidate binary ops. 9003 SDValue Op = Extract->getOperand(0); 9004 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9005 return Op.getOpcode() == unsigned(BinOp); 9006 })) 9007 return SDValue(); 9008 9009 // Floating-point reductions may require relaxed constraints on the final step 9010 // of the reduction because they may reorder intermediate operations. 9011 unsigned CandidateBinOp = Op.getOpcode(); 9012 if (Op.getValueType().isFloatingPoint()) { 9013 SDNodeFlags Flags = Op->getFlags(); 9014 switch (CandidateBinOp) { 9015 case ISD::FADD: 9016 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9017 return SDValue(); 9018 break; 9019 default: 9020 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9021 } 9022 } 9023 9024 // Matching failed - attempt to see if we did enough stages that a partial 9025 // reduction from a subvector is possible. 9026 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9027 if (!AllowPartials || !Op) 9028 return SDValue(); 9029 EVT OpVT = Op.getValueType(); 9030 EVT OpSVT = OpVT.getScalarType(); 9031 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9032 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9033 return SDValue(); 9034 BinOp = (ISD::NodeType)CandidateBinOp; 9035 return getNode( 9036 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9037 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9038 }; 9039 9040 // At each stage, we're looking for something that looks like: 9041 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9042 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9043 // i32 undef, i32 undef, i32 undef, i32 undef> 9044 // %a = binop <8 x i32> %op, %s 9045 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9046 // we expect something like: 9047 // <4,5,6,7,u,u,u,u> 9048 // <2,3,u,u,u,u,u,u> 9049 // <1,u,u,u,u,u,u,u> 9050 // While a partial reduction match would be: 9051 // <2,3,u,u,u,u,u,u> 9052 // <1,u,u,u,u,u,u,u> 9053 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9054 SDValue PrevOp; 9055 for (unsigned i = 0; i < Stages; ++i) { 9056 unsigned MaskEnd = (1 << i); 9057 9058 if (Op.getOpcode() != CandidateBinOp) 9059 return PartialReduction(PrevOp, MaskEnd); 9060 9061 SDValue Op0 = Op.getOperand(0); 9062 SDValue Op1 = Op.getOperand(1); 9063 9064 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9065 if (Shuffle) { 9066 Op = Op1; 9067 } else { 9068 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9069 Op = Op0; 9070 } 9071 9072 // The first operand of the shuffle should be the same as the other operand 9073 // of the binop. 9074 if (!Shuffle || Shuffle->getOperand(0) != Op) 9075 return PartialReduction(PrevOp, MaskEnd); 9076 9077 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9078 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9079 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9080 return PartialReduction(PrevOp, MaskEnd); 9081 9082 PrevOp = Op; 9083 } 9084 9085 BinOp = (ISD::NodeType)CandidateBinOp; 9086 return Op; 9087 } 9088 9089 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9090 assert(N->getNumValues() == 1 && 9091 "Can't unroll a vector with multiple results!"); 9092 9093 EVT VT = N->getValueType(0); 9094 unsigned NE = VT.getVectorNumElements(); 9095 EVT EltVT = VT.getVectorElementType(); 9096 SDLoc dl(N); 9097 9098 SmallVector<SDValue, 8> Scalars; 9099 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9100 9101 // If ResNE is 0, fully unroll the vector op. 9102 if (ResNE == 0) 9103 ResNE = NE; 9104 else if (NE > ResNE) 9105 NE = ResNE; 9106 9107 unsigned i; 9108 for (i= 0; i != NE; ++i) { 9109 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9110 SDValue Operand = N->getOperand(j); 9111 EVT OperandVT = Operand.getValueType(); 9112 if (OperandVT.isVector()) { 9113 // A vector operand; extract a single element. 9114 EVT OperandEltVT = OperandVT.getVectorElementType(); 9115 Operands[j] = 9116 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9117 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9118 } else { 9119 // A scalar operand; just use it as is. 9120 Operands[j] = Operand; 9121 } 9122 } 9123 9124 switch (N->getOpcode()) { 9125 default: { 9126 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9127 N->getFlags())); 9128 break; 9129 } 9130 case ISD::VSELECT: 9131 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9132 break; 9133 case ISD::SHL: 9134 case ISD::SRA: 9135 case ISD::SRL: 9136 case ISD::ROTL: 9137 case ISD::ROTR: 9138 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9139 getShiftAmountOperand(Operands[0].getValueType(), 9140 Operands[1]))); 9141 break; 9142 case ISD::SIGN_EXTEND_INREG: { 9143 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9144 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9145 Operands[0], 9146 getValueType(ExtVT))); 9147 } 9148 } 9149 } 9150 9151 for (; i < ResNE; ++i) 9152 Scalars.push_back(getUNDEF(EltVT)); 9153 9154 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9155 return getBuildVector(VecVT, dl, Scalars); 9156 } 9157 9158 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9159 SDNode *N, unsigned ResNE) { 9160 unsigned Opcode = N->getOpcode(); 9161 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9162 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9163 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9164 "Expected an overflow opcode"); 9165 9166 EVT ResVT = N->getValueType(0); 9167 EVT OvVT = N->getValueType(1); 9168 EVT ResEltVT = ResVT.getVectorElementType(); 9169 EVT OvEltVT = OvVT.getVectorElementType(); 9170 SDLoc dl(N); 9171 9172 // If ResNE is 0, fully unroll the vector op. 9173 unsigned NE = ResVT.getVectorNumElements(); 9174 if (ResNE == 0) 9175 ResNE = NE; 9176 else if (NE > ResNE) 9177 NE = ResNE; 9178 9179 SmallVector<SDValue, 8> LHSScalars; 9180 SmallVector<SDValue, 8> RHSScalars; 9181 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9182 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9183 9184 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9185 SDVTList VTs = getVTList(ResEltVT, SVT); 9186 SmallVector<SDValue, 8> ResScalars; 9187 SmallVector<SDValue, 8> OvScalars; 9188 for (unsigned i = 0; i < NE; ++i) { 9189 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9190 SDValue Ov = 9191 getSelect(dl, OvEltVT, Res.getValue(1), 9192 getBoolConstant(true, dl, OvEltVT, ResVT), 9193 getConstant(0, dl, OvEltVT)); 9194 9195 ResScalars.push_back(Res); 9196 OvScalars.push_back(Ov); 9197 } 9198 9199 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9200 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9201 9202 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9203 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9204 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9205 getBuildVector(NewOvVT, dl, OvScalars)); 9206 } 9207 9208 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9209 LoadSDNode *Base, 9210 unsigned Bytes, 9211 int Dist) const { 9212 if (LD->isVolatile() || Base->isVolatile()) 9213 return false; 9214 // TODO: probably too restrictive for atomics, revisit 9215 if (!LD->isSimple()) 9216 return false; 9217 if (LD->isIndexed() || Base->isIndexed()) 9218 return false; 9219 if (LD->getChain() != Base->getChain()) 9220 return false; 9221 EVT VT = LD->getValueType(0); 9222 if (VT.getSizeInBits() / 8 != Bytes) 9223 return false; 9224 9225 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9226 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9227 9228 int64_t Offset = 0; 9229 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9230 return (Dist * Bytes == Offset); 9231 return false; 9232 } 9233 9234 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9235 /// it cannot be inferred. 9236 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9237 // If this is a GlobalAddress + cst, return the alignment. 9238 const GlobalValue *GV; 9239 int64_t GVOffset = 0; 9240 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9241 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9242 KnownBits Known(IdxWidth); 9243 llvm::computeKnownBits(GV, Known, getDataLayout()); 9244 unsigned AlignBits = Known.countMinTrailingZeros(); 9245 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9246 if (Align) 9247 return MinAlign(Align, GVOffset); 9248 } 9249 9250 // If this is a direct reference to a stack slot, use information about the 9251 // stack slot's alignment. 9252 int FrameIdx = INT_MIN; 9253 int64_t FrameOffset = 0; 9254 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9255 FrameIdx = FI->getIndex(); 9256 } else if (isBaseWithConstantOffset(Ptr) && 9257 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9258 // Handle FI+Cst 9259 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9260 FrameOffset = Ptr.getConstantOperandVal(1); 9261 } 9262 9263 if (FrameIdx != INT_MIN) { 9264 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9265 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9266 FrameOffset); 9267 return FIInfoAlign; 9268 } 9269 9270 return 0; 9271 } 9272 9273 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9274 /// which is split (or expanded) into two not necessarily identical pieces. 9275 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9276 // Currently all types are split in half. 9277 EVT LoVT, HiVT; 9278 if (!VT.isVector()) 9279 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9280 else 9281 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9282 9283 return std::make_pair(LoVT, HiVT); 9284 } 9285 9286 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9287 /// low/high part. 9288 std::pair<SDValue, SDValue> 9289 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9290 const EVT &HiVT) { 9291 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9292 N.getValueType().getVectorNumElements() && 9293 "More vector elements requested than available!"); 9294 SDValue Lo, Hi; 9295 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9296 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9297 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9298 getConstant(LoVT.getVectorNumElements(), DL, 9299 TLI->getVectorIdxTy(getDataLayout()))); 9300 return std::make_pair(Lo, Hi); 9301 } 9302 9303 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9304 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9305 EVT VT = N.getValueType(); 9306 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9307 NextPowerOf2(VT.getVectorNumElements())); 9308 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9309 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9310 } 9311 9312 void SelectionDAG::ExtractVectorElements(SDValue Op, 9313 SmallVectorImpl<SDValue> &Args, 9314 unsigned Start, unsigned Count) { 9315 EVT VT = Op.getValueType(); 9316 if (Count == 0) 9317 Count = VT.getVectorNumElements(); 9318 9319 EVT EltVT = VT.getVectorElementType(); 9320 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9321 SDLoc SL(Op); 9322 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9323 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9324 Op, getConstant(i, SL, IdxTy))); 9325 } 9326 } 9327 9328 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9329 unsigned GlobalAddressSDNode::getAddressSpace() const { 9330 return getGlobal()->getType()->getAddressSpace(); 9331 } 9332 9333 Type *ConstantPoolSDNode::getType() const { 9334 if (isMachineConstantPoolEntry()) 9335 return Val.MachineCPVal->getType(); 9336 return Val.ConstVal->getType(); 9337 } 9338 9339 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9340 unsigned &SplatBitSize, 9341 bool &HasAnyUndefs, 9342 unsigned MinSplatBits, 9343 bool IsBigEndian) const { 9344 EVT VT = getValueType(0); 9345 assert(VT.isVector() && "Expected a vector type"); 9346 unsigned VecWidth = VT.getSizeInBits(); 9347 if (MinSplatBits > VecWidth) 9348 return false; 9349 9350 // FIXME: The widths are based on this node's type, but build vectors can 9351 // truncate their operands. 9352 SplatValue = APInt(VecWidth, 0); 9353 SplatUndef = APInt(VecWidth, 0); 9354 9355 // Get the bits. Bits with undefined values (when the corresponding element 9356 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9357 // in SplatValue. If any of the values are not constant, give up and return 9358 // false. 9359 unsigned int NumOps = getNumOperands(); 9360 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9361 unsigned EltWidth = VT.getScalarSizeInBits(); 9362 9363 for (unsigned j = 0; j < NumOps; ++j) { 9364 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9365 SDValue OpVal = getOperand(i); 9366 unsigned BitPos = j * EltWidth; 9367 9368 if (OpVal.isUndef()) 9369 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9370 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9371 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9372 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9373 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9374 else 9375 return false; 9376 } 9377 9378 // The build_vector is all constants or undefs. Find the smallest element 9379 // size that splats the vector. 9380 HasAnyUndefs = (SplatUndef != 0); 9381 9382 // FIXME: This does not work for vectors with elements less than 8 bits. 9383 while (VecWidth > 8) { 9384 unsigned HalfSize = VecWidth / 2; 9385 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9386 APInt LowValue = SplatValue.trunc(HalfSize); 9387 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9388 APInt LowUndef = SplatUndef.trunc(HalfSize); 9389 9390 // If the two halves do not match (ignoring undef bits), stop here. 9391 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9392 MinSplatBits > HalfSize) 9393 break; 9394 9395 SplatValue = HighValue | LowValue; 9396 SplatUndef = HighUndef & LowUndef; 9397 9398 VecWidth = HalfSize; 9399 } 9400 9401 SplatBitSize = VecWidth; 9402 return true; 9403 } 9404 9405 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9406 BitVector *UndefElements) const { 9407 if (UndefElements) { 9408 UndefElements->clear(); 9409 UndefElements->resize(getNumOperands()); 9410 } 9411 assert(getNumOperands() == DemandedElts.getBitWidth() && 9412 "Unexpected vector size"); 9413 if (!DemandedElts) 9414 return SDValue(); 9415 SDValue Splatted; 9416 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9417 if (!DemandedElts[i]) 9418 continue; 9419 SDValue Op = getOperand(i); 9420 if (Op.isUndef()) { 9421 if (UndefElements) 9422 (*UndefElements)[i] = true; 9423 } else if (!Splatted) { 9424 Splatted = Op; 9425 } else if (Splatted != Op) { 9426 return SDValue(); 9427 } 9428 } 9429 9430 if (!Splatted) { 9431 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9432 assert(getOperand(FirstDemandedIdx).isUndef() && 9433 "Can only have a splat without a constant for all undefs."); 9434 return getOperand(FirstDemandedIdx); 9435 } 9436 9437 return Splatted; 9438 } 9439 9440 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9441 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9442 return getSplatValue(DemandedElts, UndefElements); 9443 } 9444 9445 ConstantSDNode * 9446 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9447 BitVector *UndefElements) const { 9448 return dyn_cast_or_null<ConstantSDNode>( 9449 getSplatValue(DemandedElts, UndefElements)); 9450 } 9451 9452 ConstantSDNode * 9453 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9454 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9455 } 9456 9457 ConstantFPSDNode * 9458 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9459 BitVector *UndefElements) const { 9460 return dyn_cast_or_null<ConstantFPSDNode>( 9461 getSplatValue(DemandedElts, UndefElements)); 9462 } 9463 9464 ConstantFPSDNode * 9465 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9466 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9467 } 9468 9469 int32_t 9470 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9471 uint32_t BitWidth) const { 9472 if (ConstantFPSDNode *CN = 9473 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9474 bool IsExact; 9475 APSInt IntVal(BitWidth); 9476 const APFloat &APF = CN->getValueAPF(); 9477 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9478 APFloat::opOK || 9479 !IsExact) 9480 return -1; 9481 9482 return IntVal.exactLogBase2(); 9483 } 9484 return -1; 9485 } 9486 9487 bool BuildVectorSDNode::isConstant() const { 9488 for (const SDValue &Op : op_values()) { 9489 unsigned Opc = Op.getOpcode(); 9490 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9491 return false; 9492 } 9493 return true; 9494 } 9495 9496 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9497 // Find the first non-undef value in the shuffle mask. 9498 unsigned i, e; 9499 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9500 /* search */; 9501 9502 // If all elements are undefined, this shuffle can be considered a splat 9503 // (although it should eventually get simplified away completely). 9504 if (i == e) 9505 return true; 9506 9507 // Make sure all remaining elements are either undef or the same as the first 9508 // non-undef value. 9509 for (int Idx = Mask[i]; i != e; ++i) 9510 if (Mask[i] >= 0 && Mask[i] != Idx) 9511 return false; 9512 return true; 9513 } 9514 9515 // Returns the SDNode if it is a constant integer BuildVector 9516 // or constant integer. 9517 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9518 if (isa<ConstantSDNode>(N)) 9519 return N.getNode(); 9520 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9521 return N.getNode(); 9522 // Treat a GlobalAddress supporting constant offset folding as a 9523 // constant integer. 9524 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9525 if (GA->getOpcode() == ISD::GlobalAddress && 9526 TLI->isOffsetFoldingLegal(GA)) 9527 return GA; 9528 return nullptr; 9529 } 9530 9531 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9532 if (isa<ConstantFPSDNode>(N)) 9533 return N.getNode(); 9534 9535 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9536 return N.getNode(); 9537 9538 return nullptr; 9539 } 9540 9541 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9542 assert(!Node->OperandList && "Node already has operands"); 9543 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9544 "too many operands to fit into SDNode"); 9545 SDUse *Ops = OperandRecycler.allocate( 9546 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9547 9548 bool IsDivergent = false; 9549 for (unsigned I = 0; I != Vals.size(); ++I) { 9550 Ops[I].setUser(Node); 9551 Ops[I].setInitial(Vals[I]); 9552 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9553 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9554 } 9555 Node->NumOperands = Vals.size(); 9556 Node->OperandList = Ops; 9557 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9558 if (!TLI->isSDNodeAlwaysUniform(Node)) 9559 Node->SDNodeBits.IsDivergent = IsDivergent; 9560 checkForCycles(Node); 9561 } 9562 9563 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9564 SmallVectorImpl<SDValue> &Vals) { 9565 size_t Limit = SDNode::getMaxNumOperands(); 9566 while (Vals.size() > Limit) { 9567 unsigned SliceIdx = Vals.size() - Limit; 9568 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9569 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9570 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9571 Vals.emplace_back(NewTF); 9572 } 9573 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9574 } 9575 9576 #ifndef NDEBUG 9577 static void checkForCyclesHelper(const SDNode *N, 9578 SmallPtrSetImpl<const SDNode*> &Visited, 9579 SmallPtrSetImpl<const SDNode*> &Checked, 9580 const llvm::SelectionDAG *DAG) { 9581 // If this node has already been checked, don't check it again. 9582 if (Checked.count(N)) 9583 return; 9584 9585 // If a node has already been visited on this depth-first walk, reject it as 9586 // a cycle. 9587 if (!Visited.insert(N).second) { 9588 errs() << "Detected cycle in SelectionDAG\n"; 9589 dbgs() << "Offending node:\n"; 9590 N->dumprFull(DAG); dbgs() << "\n"; 9591 abort(); 9592 } 9593 9594 for (const SDValue &Op : N->op_values()) 9595 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9596 9597 Checked.insert(N); 9598 Visited.erase(N); 9599 } 9600 #endif 9601 9602 void llvm::checkForCycles(const llvm::SDNode *N, 9603 const llvm::SelectionDAG *DAG, 9604 bool force) { 9605 #ifndef NDEBUG 9606 bool check = force; 9607 #ifdef EXPENSIVE_CHECKS 9608 check = true; 9609 #endif // EXPENSIVE_CHECKS 9610 if (check) { 9611 assert(N && "Checking nonexistent SDNode"); 9612 SmallPtrSet<const SDNode*, 32> visited; 9613 SmallPtrSet<const SDNode*, 32> checked; 9614 checkForCyclesHelper(N, visited, checked, DAG); 9615 } 9616 #endif // !NDEBUG 9617 } 9618 9619 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9620 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9621 } 9622