1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this, 0); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat. 2591 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2592 int SplatIndex = -1; 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (0 <= SplatIndex && SplatIndex != M) 2603 return false; 2604 SplatIndex = M; 2605 } 2606 return true; 2607 } 2608 case ISD::EXTRACT_SUBVECTOR: { 2609 // Offset the demanded elts by the subvector index. 2610 SDValue Src = V.getOperand(0); 2611 // We don't support scalable vectors at the moment. 2612 if (Src.getValueType().isScalableVector()) 2613 return false; 2614 uint64_t Idx = V.getConstantOperandVal(1); 2615 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2616 APInt UndefSrcElts; 2617 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2618 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2619 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2620 return true; 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 // Widen the demanded elts by the src element count. 2628 SDValue Src = V.getOperand(0); 2629 // We don't support scalable vectors at the moment. 2630 if (Src.getValueType().isScalableVector()) 2631 return false; 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt UndefSrcElts; 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2635 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2636 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2637 return true; 2638 } 2639 break; 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 /// Helper wrapper to main isSplatValue function. 2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2648 EVT VT = V.getValueType(); 2649 assert(VT.isVector() && "Vector type expected"); 2650 2651 APInt UndefElts; 2652 APInt DemandedElts; 2653 2654 // For now we don't support this with scalable vectors. 2655 if (!VT.isScalableVector()) 2656 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2657 return isSplatValue(V, DemandedElts, UndefElts) && 2658 (AllowUndefs || !UndefElts); 2659 } 2660 2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2662 V = peekThroughExtractSubvectors(V); 2663 2664 EVT VT = V.getValueType(); 2665 unsigned Opcode = V.getOpcode(); 2666 switch (Opcode) { 2667 default: { 2668 APInt UndefElts; 2669 APInt DemandedElts; 2670 2671 if (!VT.isScalableVector()) 2672 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2673 2674 if (isSplatValue(V, DemandedElts, UndefElts)) { 2675 if (VT.isScalableVector()) { 2676 // DemandedElts and UndefElts are ignored for scalable vectors, since 2677 // the only supported cases are SPLAT_VECTOR nodes. 2678 SplatIdx = 0; 2679 } else { 2680 // Handle case where all demanded elements are UNDEF. 2681 if (DemandedElts.isSubsetOf(UndefElts)) { 2682 SplatIdx = 0; 2683 return getUNDEF(VT); 2684 } 2685 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2686 } 2687 return V; 2688 } 2689 break; 2690 } 2691 case ISD::SPLAT_VECTOR: 2692 SplatIdx = 0; 2693 return V; 2694 case ISD::VECTOR_SHUFFLE: { 2695 if (VT.isScalableVector()) 2696 return SDValue(); 2697 2698 // Check if this is a shuffle node doing a splat. 2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2700 // getTargetVShiftNode currently struggles without the splat source. 2701 auto *SVN = cast<ShuffleVectorSDNode>(V); 2702 if (!SVN->isSplat()) 2703 break; 2704 int Idx = SVN->getSplatIndex(); 2705 int NumElts = V.getValueType().getVectorNumElements(); 2706 SplatIdx = Idx % NumElts; 2707 return V.getOperand(Idx / NumElts); 2708 } 2709 } 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2715 int SplatIdx; 2716 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2717 EVT SVT = SrcVector.getValueType().getScalarType(); 2718 EVT LegalSVT = SVT; 2719 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2720 if (!SVT.isInteger()) 2721 return SDValue(); 2722 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2723 if (LegalSVT.bitsLT(SVT)) 2724 return SDValue(); 2725 } 2726 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2727 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2728 } 2729 return SDValue(); 2730 } 2731 2732 const APInt * 2733 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2734 const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 unsigned BitWidth = V.getScalarValueSizeInBits(); 2739 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2740 // Shifting more than the bitwidth is not valid. 2741 const APInt &ShAmt = SA->getAPIntValue(); 2742 if (ShAmt.ult(BitWidth)) 2743 return &ShAmt; 2744 } 2745 return nullptr; 2746 } 2747 2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2749 SDValue V, const APInt &DemandedElts) const { 2750 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2751 V.getOpcode() == ISD::SRA) && 2752 "Unknown shift node"); 2753 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2754 return ValidAmt; 2755 unsigned BitWidth = V.getScalarValueSizeInBits(); 2756 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2757 if (!BV) 2758 return nullptr; 2759 const APInt *MinShAmt = nullptr; 2760 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2761 if (!DemandedElts[i]) 2762 continue; 2763 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2764 if (!SA) 2765 return nullptr; 2766 // Shifting more than the bitwidth is not valid. 2767 const APInt &ShAmt = SA->getAPIntValue(); 2768 if (ShAmt.uge(BitWidth)) 2769 return nullptr; 2770 if (MinShAmt && MinShAmt->ule(ShAmt)) 2771 continue; 2772 MinShAmt = &ShAmt; 2773 } 2774 return MinShAmt; 2775 } 2776 2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2778 SDValue V, const APInt &DemandedElts) const { 2779 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2780 V.getOpcode() == ISD::SRA) && 2781 "Unknown shift node"); 2782 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2783 return ValidAmt; 2784 unsigned BitWidth = V.getScalarValueSizeInBits(); 2785 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2786 if (!BV) 2787 return nullptr; 2788 const APInt *MaxShAmt = nullptr; 2789 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2793 if (!SA) 2794 return nullptr; 2795 // Shifting more than the bitwidth is not valid. 2796 const APInt &ShAmt = SA->getAPIntValue(); 2797 if (ShAmt.uge(BitWidth)) 2798 return nullptr; 2799 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2800 continue; 2801 MaxShAmt = &ShAmt; 2802 } 2803 return MaxShAmt; 2804 } 2805 2806 /// Determine which bits of Op are known to be either zero or one and return 2807 /// them in Known. For vectors, the known bits are those that are shared by 2808 /// every vector element. 2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2810 EVT VT = Op.getValueType(); 2811 2812 // TOOD: Until we have a plan for how to represent demanded elements for 2813 // scalable vectors, we can just bail out for now. 2814 if (Op.getValueType().isScalableVector()) { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 return KnownBits(BitWidth); 2817 } 2818 2819 APInt DemandedElts = VT.isVector() 2820 ? APInt::getAllOnes(VT.getVectorNumElements()) 2821 : APInt(1, 1); 2822 return computeKnownBits(Op, DemandedElts, Depth); 2823 } 2824 2825 /// Determine which bits of Op are known to be either zero or one and return 2826 /// them in Known. The DemandedElts argument allows us to only collect the known 2827 /// bits that are shared by the requested vector elements. 2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2829 unsigned Depth) const { 2830 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2831 2832 KnownBits Known(BitWidth); // Don't know anything. 2833 2834 // TOOD: Until we have a plan for how to represent demanded elements for 2835 // scalable vectors, we can just bail out for now. 2836 if (Op.getValueType().isScalableVector()) 2837 return Known; 2838 2839 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2840 // We know all of the bits for a constant! 2841 return KnownBits::makeConstant(C->getAPIntValue()); 2842 } 2843 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2844 // We know all of the bits for a constant fp! 2845 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2846 } 2847 2848 if (Depth >= MaxRecursionDepth) 2849 return Known; // Limit search depth. 2850 2851 KnownBits Known2; 2852 unsigned NumElts = DemandedElts.getBitWidth(); 2853 assert((!Op.getValueType().isVector() || 2854 NumElts == Op.getValueType().getVectorNumElements()) && 2855 "Unexpected vector size"); 2856 2857 if (!DemandedElts) 2858 return Known; // No demanded elts, better to assume we don't know anything. 2859 2860 unsigned Opcode = Op.getOpcode(); 2861 switch (Opcode) { 2862 case ISD::BUILD_VECTOR: 2863 // Collect the known bits that are shared by every demanded vector element. 2864 Known.Zero.setAllBits(); Known.One.setAllBits(); 2865 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2866 if (!DemandedElts[i]) 2867 continue; 2868 2869 SDValue SrcOp = Op.getOperand(i); 2870 Known2 = computeKnownBits(SrcOp, Depth + 1); 2871 2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2873 if (SrcOp.getValueSizeInBits() != BitWidth) { 2874 assert(SrcOp.getValueSizeInBits() > BitWidth && 2875 "Expected BUILD_VECTOR implicit truncation"); 2876 Known2 = Known2.trunc(BitWidth); 2877 } 2878 2879 // Known bits are the values that are shared by every demanded element. 2880 Known = KnownBits::commonBits(Known, Known2); 2881 2882 // If we don't know any bits, early out. 2883 if (Known.isUnknown()) 2884 break; 2885 } 2886 break; 2887 case ISD::VECTOR_SHUFFLE: { 2888 // Collect the known bits that are shared by every vector element referenced 2889 // by the shuffle. 2890 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2893 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i]) 2896 continue; 2897 2898 int M = SVN->getMaskElt(i); 2899 if (M < 0) { 2900 // For UNDEF elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 Known.resetAll(); 2903 DemandedLHS.clearAllBits(); 2904 DemandedRHS.clearAllBits(); 2905 break; 2906 } 2907 2908 if ((unsigned)M < NumElts) 2909 DemandedLHS.setBit((unsigned)M % NumElts); 2910 else 2911 DemandedRHS.setBit((unsigned)M % NumElts); 2912 } 2913 // Known bits are the values that are shared by every demanded element. 2914 if (!!DemandedLHS) { 2915 SDValue LHS = Op.getOperand(0); 2916 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 // If we don't know any bits, early out. 2920 if (Known.isUnknown()) 2921 break; 2922 if (!!DemandedRHS) { 2923 SDValue RHS = Op.getOperand(1); 2924 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2925 Known = KnownBits::commonBits(Known, Known2); 2926 } 2927 break; 2928 } 2929 case ISD::CONCAT_VECTORS: { 2930 // Split DemandedElts and test each of the demanded subvectors. 2931 Known.Zero.setAllBits(); Known.One.setAllBits(); 2932 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2933 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2934 unsigned NumSubVectors = Op.getNumOperands(); 2935 for (unsigned i = 0; i != NumSubVectors; ++i) { 2936 APInt DemandedSub = 2937 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2938 if (!!DemandedSub) { 2939 SDValue Sub = Op.getOperand(i); 2940 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2941 Known = KnownBits::commonBits(Known, Known2); 2942 } 2943 // If we don't know any bits, early out. 2944 if (Known.isUnknown()) 2945 break; 2946 } 2947 break; 2948 } 2949 case ISD::INSERT_SUBVECTOR: { 2950 // Demand any elements from the subvector and the remainder from the src its 2951 // inserted into. 2952 SDValue Src = Op.getOperand(0); 2953 SDValue Sub = Op.getOperand(1); 2954 uint64_t Idx = Op.getConstantOperandVal(2); 2955 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2956 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2957 APInt DemandedSrcElts = DemandedElts; 2958 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2959 2960 Known.One.setAllBits(); 2961 Known.Zero.setAllBits(); 2962 if (!!DemandedSubElts) { 2963 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2964 if (Known.isUnknown()) 2965 break; // early-out. 2966 } 2967 if (!!DemandedSrcElts) { 2968 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 // Bail until we can represent demanded elements for scalable vectors. 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2982 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2983 break; 2984 } 2985 case ISD::SCALAR_TO_VECTOR: { 2986 // We know about scalar_to_vector as much as we know about it source, 2987 // which becomes the first element of otherwise unknown vector. 2988 if (DemandedElts != 1) 2989 break; 2990 2991 SDValue N0 = Op.getOperand(0); 2992 Known = computeKnownBits(N0, Depth + 1); 2993 if (N0.getValueSizeInBits() != BitWidth) 2994 Known = Known.trunc(BitWidth); 2995 2996 break; 2997 } 2998 case ISD::BITCAST: { 2999 SDValue N0 = Op.getOperand(0); 3000 EVT SubVT = N0.getValueType(); 3001 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3002 3003 // Ignore bitcasts from unsupported types. 3004 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3005 break; 3006 3007 // Fast handling of 'identity' bitcasts. 3008 if (BitWidth == SubBitWidth) { 3009 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3010 break; 3011 } 3012 3013 bool IsLE = getDataLayout().isLittleEndian(); 3014 3015 // Bitcast 'small element' vector to 'large element' scalar/vector. 3016 if ((BitWidth % SubBitWidth) == 0) { 3017 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3018 3019 // Collect known bits for the (larger) output by collecting the known 3020 // bits from each set of sub elements and shift these into place. 3021 // We need to separately call computeKnownBits for each set of 3022 // sub elements as the knownbits for each is likely to be different. 3023 unsigned SubScale = BitWidth / SubBitWidth; 3024 APInt SubDemandedElts(NumElts * SubScale, 0); 3025 for (unsigned i = 0; i != NumElts; ++i) 3026 if (DemandedElts[i]) 3027 SubDemandedElts.setBit(i * SubScale); 3028 3029 for (unsigned i = 0; i != SubScale; ++i) { 3030 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3031 Depth + 1); 3032 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3033 Known.insertBits(Known2, SubBitWidth * Shifts); 3034 } 3035 } 3036 3037 // Bitcast 'large element' scalar/vector to 'small element' vector. 3038 if ((SubBitWidth % BitWidth) == 0) { 3039 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3040 3041 // Collect known bits for the (smaller) output by collecting the known 3042 // bits from the overlapping larger input elements and extracting the 3043 // sub sections we actually care about. 3044 unsigned SubScale = SubBitWidth / BitWidth; 3045 APInt SubDemandedElts = 3046 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3047 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3048 3049 Known.Zero.setAllBits(); Known.One.setAllBits(); 3050 for (unsigned i = 0; i != NumElts; ++i) 3051 if (DemandedElts[i]) { 3052 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3053 unsigned Offset = (Shifts % SubScale) * BitWidth; 3054 Known = KnownBits::commonBits(Known, 3055 Known2.extractBits(BitWidth, Offset)); 3056 // If we don't know any bits, early out. 3057 if (Known.isUnknown()) 3058 break; 3059 } 3060 } 3061 break; 3062 } 3063 case ISD::AND: 3064 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3065 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3066 3067 Known &= Known2; 3068 break; 3069 case ISD::OR: 3070 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3071 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 3073 Known |= Known2; 3074 break; 3075 case ISD::XOR: 3076 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3078 3079 Known ^= Known2; 3080 break; 3081 case ISD::MUL: { 3082 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 Known = KnownBits::mul(Known, Known2); 3085 break; 3086 } 3087 case ISD::MULHU: { 3088 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3089 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3090 Known = KnownBits::mulhu(Known, Known2); 3091 break; 3092 } 3093 case ISD::MULHS: { 3094 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3095 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3096 Known = KnownBits::mulhs(Known, Known2); 3097 break; 3098 } 3099 case ISD::UMUL_LOHI: { 3100 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3101 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3102 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3103 if (Op.getResNo() == 0) 3104 Known = KnownBits::mul(Known, Known2); 3105 else 3106 Known = KnownBits::mulhu(Known, Known2); 3107 break; 3108 } 3109 case ISD::SMUL_LOHI: { 3110 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3111 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3112 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3113 if (Op.getResNo() == 0) 3114 Known = KnownBits::mul(Known, Known2); 3115 else 3116 Known = KnownBits::mulhs(Known, Known2); 3117 break; 3118 } 3119 case ISD::UDIV: { 3120 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3121 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3122 Known = KnownBits::udiv(Known, Known2); 3123 break; 3124 } 3125 case ISD::SELECT: 3126 case ISD::VSELECT: 3127 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3128 // If we don't know any bits, early out. 3129 if (Known.isUnknown()) 3130 break; 3131 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3132 3133 // Only known if known in both the LHS and RHS. 3134 Known = KnownBits::commonBits(Known, Known2); 3135 break; 3136 case ISD::SELECT_CC: 3137 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3138 // If we don't know any bits, early out. 3139 if (Known.isUnknown()) 3140 break; 3141 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3142 3143 // Only known if known in both the LHS and RHS. 3144 Known = KnownBits::commonBits(Known, Known2); 3145 break; 3146 case ISD::SMULO: 3147 case ISD::UMULO: 3148 if (Op.getResNo() != 1) 3149 break; 3150 // The boolean result conforms to getBooleanContents. 3151 // If we know the result of a setcc has the top bits zero, use this info. 3152 // We know that we have an integer-based boolean since these operations 3153 // are only available for integer. 3154 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3155 TargetLowering::ZeroOrOneBooleanContent && 3156 BitWidth > 1) 3157 Known.Zero.setBitsFrom(1); 3158 break; 3159 case ISD::SETCC: 3160 case ISD::STRICT_FSETCC: 3161 case ISD::STRICT_FSETCCS: { 3162 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3163 // If we know the result of a setcc has the top bits zero, use this info. 3164 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3165 TargetLowering::ZeroOrOneBooleanContent && 3166 BitWidth > 1) 3167 Known.Zero.setBitsFrom(1); 3168 break; 3169 } 3170 case ISD::SHL: 3171 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3173 Known = KnownBits::shl(Known, Known2); 3174 3175 // Minimum shift low bits are known zero. 3176 if (const APInt *ShMinAmt = 3177 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3178 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3179 break; 3180 case ISD::SRL: 3181 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3182 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3183 Known = KnownBits::lshr(Known, Known2); 3184 3185 // Minimum shift high bits are known zero. 3186 if (const APInt *ShMinAmt = 3187 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3188 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3189 break; 3190 case ISD::SRA: 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3193 Known = KnownBits::ashr(Known, Known2); 3194 // TODO: Add minimum shift high known sign bits. 3195 break; 3196 case ISD::FSHL: 3197 case ISD::FSHR: 3198 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3199 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3200 3201 // For fshl, 0-shift returns the 1st arg. 3202 // For fshr, 0-shift returns the 2nd arg. 3203 if (Amt == 0) { 3204 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3205 DemandedElts, Depth + 1); 3206 break; 3207 } 3208 3209 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3210 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3211 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3212 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3213 if (Opcode == ISD::FSHL) { 3214 Known.One <<= Amt; 3215 Known.Zero <<= Amt; 3216 Known2.One.lshrInPlace(BitWidth - Amt); 3217 Known2.Zero.lshrInPlace(BitWidth - Amt); 3218 } else { 3219 Known.One <<= BitWidth - Amt; 3220 Known.Zero <<= BitWidth - Amt; 3221 Known2.One.lshrInPlace(Amt); 3222 Known2.Zero.lshrInPlace(Amt); 3223 } 3224 Known.One |= Known2.One; 3225 Known.Zero |= Known2.Zero; 3226 } 3227 break; 3228 case ISD::SIGN_EXTEND_INREG: { 3229 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3230 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3231 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3232 break; 3233 } 3234 case ISD::CTTZ: 3235 case ISD::CTTZ_ZERO_UNDEF: { 3236 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3237 // If we have a known 1, its position is our upper bound. 3238 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3239 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3240 Known.Zero.setBitsFrom(LowBits); 3241 break; 3242 } 3243 case ISD::CTLZ: 3244 case ISD::CTLZ_ZERO_UNDEF: { 3245 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3246 // If we have a known 1, its position is our upper bound. 3247 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3248 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3249 Known.Zero.setBitsFrom(LowBits); 3250 break; 3251 } 3252 case ISD::CTPOP: { 3253 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3254 // If we know some of the bits are zero, they can't be one. 3255 unsigned PossibleOnes = Known2.countMaxPopulation(); 3256 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3257 break; 3258 } 3259 case ISD::PARITY: { 3260 // Parity returns 0 everywhere but the LSB. 3261 Known.Zero.setBitsFrom(1); 3262 break; 3263 } 3264 case ISD::LOAD: { 3265 LoadSDNode *LD = cast<LoadSDNode>(Op); 3266 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3267 if (ISD::isNON_EXTLoad(LD) && Cst) { 3268 // Determine any common known bits from the loaded constant pool value. 3269 Type *CstTy = Cst->getType(); 3270 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3271 // If its a vector splat, then we can (quickly) reuse the scalar path. 3272 // NOTE: We assume all elements match and none are UNDEF. 3273 if (CstTy->isVectorTy()) { 3274 if (const Constant *Splat = Cst->getSplatValue()) { 3275 Cst = Splat; 3276 CstTy = Cst->getType(); 3277 } 3278 } 3279 // TODO - do we need to handle different bitwidths? 3280 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3281 // Iterate across all vector elements finding common known bits. 3282 Known.One.setAllBits(); 3283 Known.Zero.setAllBits(); 3284 for (unsigned i = 0; i != NumElts; ++i) { 3285 if (!DemandedElts[i]) 3286 continue; 3287 if (Constant *Elt = Cst->getAggregateElement(i)) { 3288 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3289 const APInt &Value = CInt->getValue(); 3290 Known.One &= Value; 3291 Known.Zero &= ~Value; 3292 continue; 3293 } 3294 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3295 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3296 Known.One &= Value; 3297 Known.Zero &= ~Value; 3298 continue; 3299 } 3300 } 3301 Known.One.clearAllBits(); 3302 Known.Zero.clearAllBits(); 3303 break; 3304 } 3305 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3306 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3307 Known = KnownBits::makeConstant(CInt->getValue()); 3308 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3309 Known = 3310 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3311 } 3312 } 3313 } 3314 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3315 // If this is a ZEXTLoad and we are looking at the loaded value. 3316 EVT VT = LD->getMemoryVT(); 3317 unsigned MemBits = VT.getScalarSizeInBits(); 3318 Known.Zero.setBitsFrom(MemBits); 3319 } else if (const MDNode *Ranges = LD->getRanges()) { 3320 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3321 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3322 } 3323 break; 3324 } 3325 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3326 EVT InVT = Op.getOperand(0).getValueType(); 3327 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3328 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3329 Known = Known.zext(BitWidth); 3330 break; 3331 } 3332 case ISD::ZERO_EXTEND: { 3333 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3334 Known = Known.zext(BitWidth); 3335 break; 3336 } 3337 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3338 EVT InVT = Op.getOperand(0).getValueType(); 3339 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3340 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3341 // If the sign bit is known to be zero or one, then sext will extend 3342 // it to the top bits, else it will just zext. 3343 Known = Known.sext(BitWidth); 3344 break; 3345 } 3346 case ISD::SIGN_EXTEND: { 3347 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 // If the sign bit is known to be zero or one, then sext will extend 3349 // it to the top bits, else it will just zext. 3350 Known = Known.sext(BitWidth); 3351 break; 3352 } 3353 case ISD::ANY_EXTEND_VECTOR_INREG: { 3354 EVT InVT = Op.getOperand(0).getValueType(); 3355 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3356 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3357 Known = Known.anyext(BitWidth); 3358 break; 3359 } 3360 case ISD::ANY_EXTEND: { 3361 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 Known = Known.anyext(BitWidth); 3363 break; 3364 } 3365 case ISD::TRUNCATE: { 3366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3367 Known = Known.trunc(BitWidth); 3368 break; 3369 } 3370 case ISD::AssertZext: { 3371 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3372 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3373 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3374 Known.Zero |= (~InMask); 3375 Known.One &= (~Known.Zero); 3376 break; 3377 } 3378 case ISD::AssertAlign: { 3379 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3380 assert(LogOfAlign != 0); 3381 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3382 // well as clearing one bits. 3383 Known.Zero.setLowBits(LogOfAlign); 3384 Known.One.clearLowBits(LogOfAlign); 3385 break; 3386 } 3387 case ISD::FGETSIGN: 3388 // All bits are zero except the low bit. 3389 Known.Zero.setBitsFrom(1); 3390 break; 3391 case ISD::USUBO: 3392 case ISD::SSUBO: 3393 if (Op.getResNo() == 1) { 3394 // If we know the result of a setcc has the top bits zero, use this info. 3395 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3396 TargetLowering::ZeroOrOneBooleanContent && 3397 BitWidth > 1) 3398 Known.Zero.setBitsFrom(1); 3399 break; 3400 } 3401 LLVM_FALLTHROUGH; 3402 case ISD::SUB: 3403 case ISD::SUBC: { 3404 assert(Op.getResNo() == 0 && 3405 "We only compute knownbits for the difference here."); 3406 3407 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3408 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3409 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3410 Known, Known2); 3411 break; 3412 } 3413 case ISD::UADDO: 3414 case ISD::SADDO: 3415 case ISD::ADDCARRY: 3416 if (Op.getResNo() == 1) { 3417 // If we know the result of a setcc has the top bits zero, use this info. 3418 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3419 TargetLowering::ZeroOrOneBooleanContent && 3420 BitWidth > 1) 3421 Known.Zero.setBitsFrom(1); 3422 break; 3423 } 3424 LLVM_FALLTHROUGH; 3425 case ISD::ADD: 3426 case ISD::ADDC: 3427 case ISD::ADDE: { 3428 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3429 3430 // With ADDE and ADDCARRY, a carry bit may be added in. 3431 KnownBits Carry(1); 3432 if (Opcode == ISD::ADDE) 3433 // Can't track carry from glue, set carry to unknown. 3434 Carry.resetAll(); 3435 else if (Opcode == ISD::ADDCARRY) 3436 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3437 // the trouble (how often will we find a known carry bit). And I haven't 3438 // tested this very much yet, but something like this might work: 3439 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3440 // Carry = Carry.zextOrTrunc(1, false); 3441 Carry.resetAll(); 3442 else 3443 Carry.setAllZero(); 3444 3445 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3446 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3447 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3448 break; 3449 } 3450 case ISD::SREM: { 3451 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3452 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3453 Known = KnownBits::srem(Known, Known2); 3454 break; 3455 } 3456 case ISD::UREM: { 3457 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3458 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3459 Known = KnownBits::urem(Known, Known2); 3460 break; 3461 } 3462 case ISD::EXTRACT_ELEMENT: { 3463 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3464 const unsigned Index = Op.getConstantOperandVal(1); 3465 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3466 3467 // Remove low part of known bits mask 3468 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3469 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3470 3471 // Remove high part of known bit mask 3472 Known = Known.trunc(EltBitWidth); 3473 break; 3474 } 3475 case ISD::EXTRACT_VECTOR_ELT: { 3476 SDValue InVec = Op.getOperand(0); 3477 SDValue EltNo = Op.getOperand(1); 3478 EVT VecVT = InVec.getValueType(); 3479 // computeKnownBits not yet implemented for scalable vectors. 3480 if (VecVT.isScalableVector()) 3481 break; 3482 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3483 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3484 3485 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3486 // anything about the extended bits. 3487 if (BitWidth > EltBitWidth) 3488 Known = Known.trunc(EltBitWidth); 3489 3490 // If we know the element index, just demand that vector element, else for 3491 // an unknown element index, ignore DemandedElts and demand them all. 3492 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3493 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3494 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3495 DemandedSrcElts = 3496 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3497 3498 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3499 if (BitWidth > EltBitWidth) 3500 Known = Known.anyext(BitWidth); 3501 break; 3502 } 3503 case ISD::INSERT_VECTOR_ELT: { 3504 // If we know the element index, split the demand between the 3505 // source vector and the inserted element, otherwise assume we need 3506 // the original demanded vector elements and the value. 3507 SDValue InVec = Op.getOperand(0); 3508 SDValue InVal = Op.getOperand(1); 3509 SDValue EltNo = Op.getOperand(2); 3510 bool DemandedVal = true; 3511 APInt DemandedVecElts = DemandedElts; 3512 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3513 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3514 unsigned EltIdx = CEltNo->getZExtValue(); 3515 DemandedVal = !!DemandedElts[EltIdx]; 3516 DemandedVecElts.clearBit(EltIdx); 3517 } 3518 Known.One.setAllBits(); 3519 Known.Zero.setAllBits(); 3520 if (DemandedVal) { 3521 Known2 = computeKnownBits(InVal, Depth + 1); 3522 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3523 } 3524 if (!!DemandedVecElts) { 3525 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3526 Known = KnownBits::commonBits(Known, Known2); 3527 } 3528 break; 3529 } 3530 case ISD::BITREVERSE: { 3531 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3532 Known = Known2.reverseBits(); 3533 break; 3534 } 3535 case ISD::BSWAP: { 3536 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3537 Known = Known2.byteSwap(); 3538 break; 3539 } 3540 case ISD::ABS: { 3541 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3542 Known = Known2.abs(); 3543 break; 3544 } 3545 case ISD::USUBSAT: { 3546 // The result of usubsat will never be larger than the LHS. 3547 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3548 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3549 break; 3550 } 3551 case ISD::UMIN: { 3552 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3554 Known = KnownBits::umin(Known, Known2); 3555 break; 3556 } 3557 case ISD::UMAX: { 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::umax(Known, Known2); 3561 break; 3562 } 3563 case ISD::SMIN: 3564 case ISD::SMAX: { 3565 // If we have a clamp pattern, we know that the number of sign bits will be 3566 // the minimum of the clamp min/max range. 3567 bool IsMax = (Opcode == ISD::SMAX); 3568 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3569 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3570 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3571 CstHigh = 3572 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3573 if (CstLow && CstHigh) { 3574 if (!IsMax) 3575 std::swap(CstLow, CstHigh); 3576 3577 const APInt &ValueLow = CstLow->getAPIntValue(); 3578 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3579 if (ValueLow.sle(ValueHigh)) { 3580 unsigned LowSignBits = ValueLow.getNumSignBits(); 3581 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3582 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3583 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3584 Known.One.setHighBits(MinSignBits); 3585 break; 3586 } 3587 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3588 Known.Zero.setHighBits(MinSignBits); 3589 break; 3590 } 3591 } 3592 } 3593 3594 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3595 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3596 if (IsMax) 3597 Known = KnownBits::smax(Known, Known2); 3598 else 3599 Known = KnownBits::smin(Known, Known2); 3600 break; 3601 } 3602 case ISD::FP_TO_UINT_SAT: { 3603 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3604 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3605 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3606 break; 3607 } 3608 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3609 if (Op.getResNo() == 1) { 3610 // The boolean result conforms to getBooleanContents. 3611 // If we know the result of a setcc has the top bits zero, use this info. 3612 // We know that we have an integer-based boolean since these operations 3613 // are only available for integer. 3614 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3615 TargetLowering::ZeroOrOneBooleanContent && 3616 BitWidth > 1) 3617 Known.Zero.setBitsFrom(1); 3618 break; 3619 } 3620 LLVM_FALLTHROUGH; 3621 case ISD::ATOMIC_CMP_SWAP: 3622 case ISD::ATOMIC_SWAP: 3623 case ISD::ATOMIC_LOAD_ADD: 3624 case ISD::ATOMIC_LOAD_SUB: 3625 case ISD::ATOMIC_LOAD_AND: 3626 case ISD::ATOMIC_LOAD_CLR: 3627 case ISD::ATOMIC_LOAD_OR: 3628 case ISD::ATOMIC_LOAD_XOR: 3629 case ISD::ATOMIC_LOAD_NAND: 3630 case ISD::ATOMIC_LOAD_MIN: 3631 case ISD::ATOMIC_LOAD_MAX: 3632 case ISD::ATOMIC_LOAD_UMIN: 3633 case ISD::ATOMIC_LOAD_UMAX: 3634 case ISD::ATOMIC_LOAD: { 3635 unsigned MemBits = 3636 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3637 // If we are looking at the loaded value. 3638 if (Op.getResNo() == 0) { 3639 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3640 Known.Zero.setBitsFrom(MemBits); 3641 } 3642 break; 3643 } 3644 case ISD::FrameIndex: 3645 case ISD::TargetFrameIndex: 3646 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3647 Known, getMachineFunction()); 3648 break; 3649 3650 default: 3651 if (Opcode < ISD::BUILTIN_OP_END) 3652 break; 3653 LLVM_FALLTHROUGH; 3654 case ISD::INTRINSIC_WO_CHAIN: 3655 case ISD::INTRINSIC_W_CHAIN: 3656 case ISD::INTRINSIC_VOID: 3657 // Allow the target to implement this method for its nodes. 3658 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3659 break; 3660 } 3661 3662 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3663 return Known; 3664 } 3665 3666 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3667 SDValue N1) const { 3668 // X + 0 never overflow 3669 if (isNullConstant(N1)) 3670 return OFK_Never; 3671 3672 KnownBits N1Known = computeKnownBits(N1); 3673 if (N1Known.Zero.getBoolValue()) { 3674 KnownBits N0Known = computeKnownBits(N0); 3675 3676 bool overflow; 3677 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3678 if (!overflow) 3679 return OFK_Never; 3680 } 3681 3682 // mulhi + 1 never overflow 3683 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3684 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3685 return OFK_Never; 3686 3687 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3688 KnownBits N0Known = computeKnownBits(N0); 3689 3690 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3691 return OFK_Never; 3692 } 3693 3694 return OFK_Sometime; 3695 } 3696 3697 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3698 EVT OpVT = Val.getValueType(); 3699 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3700 3701 // Is the constant a known power of 2? 3702 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3703 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3704 3705 // A left-shift of a constant one will have exactly one bit set because 3706 // shifting the bit off the end is undefined. 3707 if (Val.getOpcode() == ISD::SHL) { 3708 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3709 if (C && C->getAPIntValue() == 1) 3710 return true; 3711 } 3712 3713 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3714 // one bit set. 3715 if (Val.getOpcode() == ISD::SRL) { 3716 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3717 if (C && C->getAPIntValue().isSignMask()) 3718 return true; 3719 } 3720 3721 // Are all operands of a build vector constant powers of two? 3722 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3723 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3724 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3725 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3726 return false; 3727 })) 3728 return true; 3729 3730 // Is the operand of a splat vector a constant power of two? 3731 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3732 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3733 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3734 return true; 3735 3736 // More could be done here, though the above checks are enough 3737 // to handle some common cases. 3738 3739 // Fall back to computeKnownBits to catch other known cases. 3740 KnownBits Known = computeKnownBits(Val); 3741 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3742 } 3743 3744 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3745 EVT VT = Op.getValueType(); 3746 3747 // TODO: Assume we don't know anything for now. 3748 if (VT.isScalableVector()) 3749 return 1; 3750 3751 APInt DemandedElts = VT.isVector() 3752 ? APInt::getAllOnes(VT.getVectorNumElements()) 3753 : APInt(1, 1); 3754 return ComputeNumSignBits(Op, DemandedElts, Depth); 3755 } 3756 3757 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3758 unsigned Depth) const { 3759 EVT VT = Op.getValueType(); 3760 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3761 unsigned VTBits = VT.getScalarSizeInBits(); 3762 unsigned NumElts = DemandedElts.getBitWidth(); 3763 unsigned Tmp, Tmp2; 3764 unsigned FirstAnswer = 1; 3765 3766 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3767 const APInt &Val = C->getAPIntValue(); 3768 return Val.getNumSignBits(); 3769 } 3770 3771 if (Depth >= MaxRecursionDepth) 3772 return 1; // Limit search depth. 3773 3774 if (!DemandedElts || VT.isScalableVector()) 3775 return 1; // No demanded elts, better to assume we don't know anything. 3776 3777 unsigned Opcode = Op.getOpcode(); 3778 switch (Opcode) { 3779 default: break; 3780 case ISD::AssertSext: 3781 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3782 return VTBits-Tmp+1; 3783 case ISD::AssertZext: 3784 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3785 return VTBits-Tmp; 3786 3787 case ISD::BUILD_VECTOR: 3788 Tmp = VTBits; 3789 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3790 if (!DemandedElts[i]) 3791 continue; 3792 3793 SDValue SrcOp = Op.getOperand(i); 3794 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3795 3796 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3797 if (SrcOp.getValueSizeInBits() != VTBits) { 3798 assert(SrcOp.getValueSizeInBits() > VTBits && 3799 "Expected BUILD_VECTOR implicit truncation"); 3800 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3802 } 3803 Tmp = std::min(Tmp, Tmp2); 3804 } 3805 return Tmp; 3806 3807 case ISD::VECTOR_SHUFFLE: { 3808 // Collect the minimum number of sign bits that are shared by every vector 3809 // element referenced by the shuffle. 3810 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3811 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3812 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3813 for (unsigned i = 0; i != NumElts; ++i) { 3814 int M = SVN->getMaskElt(i); 3815 if (!DemandedElts[i]) 3816 continue; 3817 // For UNDEF elements, we don't know anything about the common state of 3818 // the shuffle result. 3819 if (M < 0) 3820 return 1; 3821 if ((unsigned)M < NumElts) 3822 DemandedLHS.setBit((unsigned)M % NumElts); 3823 else 3824 DemandedRHS.setBit((unsigned)M % NumElts); 3825 } 3826 Tmp = std::numeric_limits<unsigned>::max(); 3827 if (!!DemandedLHS) 3828 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3829 if (!!DemandedRHS) { 3830 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3831 Tmp = std::min(Tmp, Tmp2); 3832 } 3833 // If we don't know anything, early out and try computeKnownBits fall-back. 3834 if (Tmp == 1) 3835 break; 3836 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3837 return Tmp; 3838 } 3839 3840 case ISD::BITCAST: { 3841 SDValue N0 = Op.getOperand(0); 3842 EVT SrcVT = N0.getValueType(); 3843 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3844 3845 // Ignore bitcasts from unsupported types.. 3846 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3847 break; 3848 3849 // Fast handling of 'identity' bitcasts. 3850 if (VTBits == SrcBits) 3851 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3852 3853 bool IsLE = getDataLayout().isLittleEndian(); 3854 3855 // Bitcast 'large element' scalar/vector to 'small element' vector. 3856 if ((SrcBits % VTBits) == 0) { 3857 assert(VT.isVector() && "Expected bitcast to vector"); 3858 3859 unsigned Scale = SrcBits / VTBits; 3860 APInt SrcDemandedElts = 3861 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3862 3863 // Fast case - sign splat can be simply split across the small elements. 3864 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3865 if (Tmp == SrcBits) 3866 return VTBits; 3867 3868 // Slow case - determine how far the sign extends into each sub-element. 3869 Tmp2 = VTBits; 3870 for (unsigned i = 0; i != NumElts; ++i) 3871 if (DemandedElts[i]) { 3872 unsigned SubOffset = i % Scale; 3873 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3874 SubOffset = SubOffset * VTBits; 3875 if (Tmp <= SubOffset) 3876 return 1; 3877 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3878 } 3879 return Tmp2; 3880 } 3881 break; 3882 } 3883 3884 case ISD::FP_TO_SINT_SAT: 3885 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3886 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3887 return VTBits - Tmp + 1; 3888 case ISD::SIGN_EXTEND: 3889 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3890 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3891 case ISD::SIGN_EXTEND_INREG: 3892 // Max of the input and what this extends. 3893 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3894 Tmp = VTBits-Tmp+1; 3895 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3896 return std::max(Tmp, Tmp2); 3897 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3898 SDValue Src = Op.getOperand(0); 3899 EVT SrcVT = Src.getValueType(); 3900 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3901 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3902 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3903 } 3904 case ISD::SRA: 3905 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3906 // SRA X, C -> adds C sign bits. 3907 if (const APInt *ShAmt = 3908 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3909 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3910 return Tmp; 3911 case ISD::SHL: 3912 if (const APInt *ShAmt = 3913 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3914 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3915 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3916 if (ShAmt->ult(Tmp)) 3917 return Tmp - ShAmt->getZExtValue(); 3918 } 3919 break; 3920 case ISD::AND: 3921 case ISD::OR: 3922 case ISD::XOR: // NOT is handled here. 3923 // Logical binary ops preserve the number of sign bits at the worst. 3924 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3925 if (Tmp != 1) { 3926 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3927 FirstAnswer = std::min(Tmp, Tmp2); 3928 // We computed what we know about the sign bits as our first 3929 // answer. Now proceed to the generic code that uses 3930 // computeKnownBits, and pick whichever answer is better. 3931 } 3932 break; 3933 3934 case ISD::SELECT: 3935 case ISD::VSELECT: 3936 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3937 if (Tmp == 1) return 1; // Early out. 3938 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3939 return std::min(Tmp, Tmp2); 3940 case ISD::SELECT_CC: 3941 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3942 if (Tmp == 1) return 1; // Early out. 3943 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3944 return std::min(Tmp, Tmp2); 3945 3946 case ISD::SMIN: 3947 case ISD::SMAX: { 3948 // If we have a clamp pattern, we know that the number of sign bits will be 3949 // the minimum of the clamp min/max range. 3950 bool IsMax = (Opcode == ISD::SMAX); 3951 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3952 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3953 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3954 CstHigh = 3955 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3956 if (CstLow && CstHigh) { 3957 if (!IsMax) 3958 std::swap(CstLow, CstHigh); 3959 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3960 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3961 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3962 return std::min(Tmp, Tmp2); 3963 } 3964 } 3965 3966 // Fallback - just get the minimum number of sign bits of the operands. 3967 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3968 if (Tmp == 1) 3969 return 1; // Early out. 3970 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3971 return std::min(Tmp, Tmp2); 3972 } 3973 case ISD::UMIN: 3974 case ISD::UMAX: 3975 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3976 if (Tmp == 1) 3977 return 1; // Early out. 3978 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3979 return std::min(Tmp, Tmp2); 3980 case ISD::SADDO: 3981 case ISD::UADDO: 3982 case ISD::SSUBO: 3983 case ISD::USUBO: 3984 case ISD::SMULO: 3985 case ISD::UMULO: 3986 if (Op.getResNo() != 1) 3987 break; 3988 // The boolean result conforms to getBooleanContents. Fall through. 3989 // If setcc returns 0/-1, all bits are sign bits. 3990 // We know that we have an integer-based boolean since these operations 3991 // are only available for integer. 3992 if (TLI->getBooleanContents(VT.isVector(), false) == 3993 TargetLowering::ZeroOrNegativeOneBooleanContent) 3994 return VTBits; 3995 break; 3996 case ISD::SETCC: 3997 case ISD::STRICT_FSETCC: 3998 case ISD::STRICT_FSETCCS: { 3999 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4000 // If setcc returns 0/-1, all bits are sign bits. 4001 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4002 TargetLowering::ZeroOrNegativeOneBooleanContent) 4003 return VTBits; 4004 break; 4005 } 4006 case ISD::ROTL: 4007 case ISD::ROTR: 4008 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4009 4010 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4011 if (Tmp == VTBits) 4012 return VTBits; 4013 4014 if (ConstantSDNode *C = 4015 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4016 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4017 4018 // Handle rotate right by N like a rotate left by 32-N. 4019 if (Opcode == ISD::ROTR) 4020 RotAmt = (VTBits - RotAmt) % VTBits; 4021 4022 // If we aren't rotating out all of the known-in sign bits, return the 4023 // number that are left. This handles rotl(sext(x), 1) for example. 4024 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4025 } 4026 break; 4027 case ISD::ADD: 4028 case ISD::ADDC: 4029 // Add can have at most one carry bit. Thus we know that the output 4030 // is, at worst, one more bit than the inputs. 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4032 if (Tmp == 1) return 1; // Early out. 4033 4034 // Special case decrementing a value (ADD X, -1): 4035 if (ConstantSDNode *CRHS = 4036 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4037 if (CRHS->isAllOnes()) { 4038 KnownBits Known = 4039 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4040 4041 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4042 // sign bits set. 4043 if ((Known.Zero | 1).isAllOnes()) 4044 return VTBits; 4045 4046 // If we are subtracting one from a positive number, there is no carry 4047 // out of the result. 4048 if (Known.isNonNegative()) 4049 return Tmp; 4050 } 4051 4052 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4053 if (Tmp2 == 1) return 1; // Early out. 4054 return std::min(Tmp, Tmp2) - 1; 4055 case ISD::SUB: 4056 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4057 if (Tmp2 == 1) return 1; // Early out. 4058 4059 // Handle NEG. 4060 if (ConstantSDNode *CLHS = 4061 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4062 if (CLHS->isZero()) { 4063 KnownBits Known = 4064 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4065 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4066 // sign bits set. 4067 if ((Known.Zero | 1).isAllOnes()) 4068 return VTBits; 4069 4070 // If the input is known to be positive (the sign bit is known clear), 4071 // the output of the NEG has the same number of sign bits as the input. 4072 if (Known.isNonNegative()) 4073 return Tmp2; 4074 4075 // Otherwise, we treat this like a SUB. 4076 } 4077 4078 // Sub can have at most one carry bit. Thus we know that the output 4079 // is, at worst, one more bit than the inputs. 4080 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4081 if (Tmp == 1) return 1; // Early out. 4082 return std::min(Tmp, Tmp2) - 1; 4083 case ISD::MUL: { 4084 // The output of the Mul can be at most twice the valid bits in the inputs. 4085 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4086 if (SignBitsOp0 == 1) 4087 break; 4088 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4089 if (SignBitsOp1 == 1) 4090 break; 4091 unsigned OutValidBits = 4092 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4093 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4094 } 4095 case ISD::SREM: 4096 // The sign bit is the LHS's sign bit, except when the result of the 4097 // remainder is zero. The magnitude of the result should be less than or 4098 // equal to the magnitude of the LHS. Therefore, the result should have 4099 // at least as many sign bits as the left hand side. 4100 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4101 case ISD::TRUNCATE: { 4102 // Check if the sign bits of source go down as far as the truncated value. 4103 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4104 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4105 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4106 return NumSrcSignBits - (NumSrcBits - VTBits); 4107 break; 4108 } 4109 case ISD::EXTRACT_ELEMENT: { 4110 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4111 const int BitWidth = Op.getValueSizeInBits(); 4112 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4113 4114 // Get reverse index (starting from 1), Op1 value indexes elements from 4115 // little end. Sign starts at big end. 4116 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4117 4118 // If the sign portion ends in our element the subtraction gives correct 4119 // result. Otherwise it gives either negative or > bitwidth result 4120 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4121 } 4122 case ISD::INSERT_VECTOR_ELT: { 4123 // If we know the element index, split the demand between the 4124 // source vector and the inserted element, otherwise assume we need 4125 // the original demanded vector elements and the value. 4126 SDValue InVec = Op.getOperand(0); 4127 SDValue InVal = Op.getOperand(1); 4128 SDValue EltNo = Op.getOperand(2); 4129 bool DemandedVal = true; 4130 APInt DemandedVecElts = DemandedElts; 4131 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4132 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4133 unsigned EltIdx = CEltNo->getZExtValue(); 4134 DemandedVal = !!DemandedElts[EltIdx]; 4135 DemandedVecElts.clearBit(EltIdx); 4136 } 4137 Tmp = std::numeric_limits<unsigned>::max(); 4138 if (DemandedVal) { 4139 // TODO - handle implicit truncation of inserted elements. 4140 if (InVal.getScalarValueSizeInBits() != VTBits) 4141 break; 4142 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4143 Tmp = std::min(Tmp, Tmp2); 4144 } 4145 if (!!DemandedVecElts) { 4146 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4147 Tmp = std::min(Tmp, Tmp2); 4148 } 4149 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4150 return Tmp; 4151 } 4152 case ISD::EXTRACT_VECTOR_ELT: { 4153 SDValue InVec = Op.getOperand(0); 4154 SDValue EltNo = Op.getOperand(1); 4155 EVT VecVT = InVec.getValueType(); 4156 // ComputeNumSignBits not yet implemented for scalable vectors. 4157 if (VecVT.isScalableVector()) 4158 break; 4159 const unsigned BitWidth = Op.getValueSizeInBits(); 4160 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4161 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4162 4163 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4164 // anything about sign bits. But if the sizes match we can derive knowledge 4165 // about sign bits from the vector operand. 4166 if (BitWidth != EltBitWidth) 4167 break; 4168 4169 // If we know the element index, just demand that vector element, else for 4170 // an unknown element index, ignore DemandedElts and demand them all. 4171 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4172 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4173 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4174 DemandedSrcElts = 4175 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4176 4177 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4178 } 4179 case ISD::EXTRACT_SUBVECTOR: { 4180 // Offset the demanded elts by the subvector index. 4181 SDValue Src = Op.getOperand(0); 4182 // Bail until we can represent demanded elements for scalable vectors. 4183 if (Src.getValueType().isScalableVector()) 4184 break; 4185 uint64_t Idx = Op.getConstantOperandVal(1); 4186 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4187 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4188 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4189 } 4190 case ISD::CONCAT_VECTORS: { 4191 // Determine the minimum number of sign bits across all demanded 4192 // elts of the input vectors. Early out if the result is already 1. 4193 Tmp = std::numeric_limits<unsigned>::max(); 4194 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4195 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4196 unsigned NumSubVectors = Op.getNumOperands(); 4197 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4198 APInt DemandedSub = 4199 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4200 if (!DemandedSub) 4201 continue; 4202 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4203 Tmp = std::min(Tmp, Tmp2); 4204 } 4205 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4206 return Tmp; 4207 } 4208 case ISD::INSERT_SUBVECTOR: { 4209 // Demand any elements from the subvector and the remainder from the src its 4210 // inserted into. 4211 SDValue Src = Op.getOperand(0); 4212 SDValue Sub = Op.getOperand(1); 4213 uint64_t Idx = Op.getConstantOperandVal(2); 4214 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4215 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4216 APInt DemandedSrcElts = DemandedElts; 4217 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4218 4219 Tmp = std::numeric_limits<unsigned>::max(); 4220 if (!!DemandedSubElts) { 4221 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4222 if (Tmp == 1) 4223 return 1; // early-out 4224 } 4225 if (!!DemandedSrcElts) { 4226 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4227 Tmp = std::min(Tmp, Tmp2); 4228 } 4229 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4230 return Tmp; 4231 } 4232 case ISD::ATOMIC_CMP_SWAP: 4233 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4234 case ISD::ATOMIC_SWAP: 4235 case ISD::ATOMIC_LOAD_ADD: 4236 case ISD::ATOMIC_LOAD_SUB: 4237 case ISD::ATOMIC_LOAD_AND: 4238 case ISD::ATOMIC_LOAD_CLR: 4239 case ISD::ATOMIC_LOAD_OR: 4240 case ISD::ATOMIC_LOAD_XOR: 4241 case ISD::ATOMIC_LOAD_NAND: 4242 case ISD::ATOMIC_LOAD_MIN: 4243 case ISD::ATOMIC_LOAD_MAX: 4244 case ISD::ATOMIC_LOAD_UMIN: 4245 case ISD::ATOMIC_LOAD_UMAX: 4246 case ISD::ATOMIC_LOAD: { 4247 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4248 // If we are looking at the loaded value. 4249 if (Op.getResNo() == 0) { 4250 if (Tmp == VTBits) 4251 return 1; // early-out 4252 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4253 return VTBits - Tmp + 1; 4254 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4255 return VTBits - Tmp; 4256 } 4257 break; 4258 } 4259 } 4260 4261 // If we are looking at the loaded value of the SDNode. 4262 if (Op.getResNo() == 0) { 4263 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4264 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4265 unsigned ExtType = LD->getExtensionType(); 4266 switch (ExtType) { 4267 default: break; 4268 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4269 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4270 return VTBits - Tmp + 1; 4271 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4272 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4273 return VTBits - Tmp; 4274 case ISD::NON_EXTLOAD: 4275 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4276 // We only need to handle vectors - computeKnownBits should handle 4277 // scalar cases. 4278 Type *CstTy = Cst->getType(); 4279 if (CstTy->isVectorTy() && 4280 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4281 Tmp = VTBits; 4282 for (unsigned i = 0; i != NumElts; ++i) { 4283 if (!DemandedElts[i]) 4284 continue; 4285 if (Constant *Elt = Cst->getAggregateElement(i)) { 4286 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4287 const APInt &Value = CInt->getValue(); 4288 Tmp = std::min(Tmp, Value.getNumSignBits()); 4289 continue; 4290 } 4291 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4292 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4293 Tmp = std::min(Tmp, Value.getNumSignBits()); 4294 continue; 4295 } 4296 } 4297 // Unknown type. Conservatively assume no bits match sign bit. 4298 return 1; 4299 } 4300 return Tmp; 4301 } 4302 } 4303 break; 4304 } 4305 } 4306 } 4307 4308 // Allow the target to implement this method for its nodes. 4309 if (Opcode >= ISD::BUILTIN_OP_END || 4310 Opcode == ISD::INTRINSIC_WO_CHAIN || 4311 Opcode == ISD::INTRINSIC_W_CHAIN || 4312 Opcode == ISD::INTRINSIC_VOID) { 4313 unsigned NumBits = 4314 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4315 if (NumBits > 1) 4316 FirstAnswer = std::max(FirstAnswer, NumBits); 4317 } 4318 4319 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4320 // use this information. 4321 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4322 return std::max(FirstAnswer, Known.countMinSignBits()); 4323 } 4324 4325 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4326 unsigned Depth) const { 4327 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4328 return Op.getScalarValueSizeInBits() - SignBits + 1; 4329 } 4330 4331 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4332 const APInt &DemandedElts, 4333 unsigned Depth) const { 4334 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4335 return Op.getScalarValueSizeInBits() - SignBits + 1; 4336 } 4337 4338 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4339 unsigned Depth) const { 4340 // Early out for FREEZE. 4341 if (Op.getOpcode() == ISD::FREEZE) 4342 return true; 4343 4344 // TODO: Assume we don't know anything for now. 4345 EVT VT = Op.getValueType(); 4346 if (VT.isScalableVector()) 4347 return false; 4348 4349 APInt DemandedElts = VT.isVector() 4350 ? APInt::getAllOnes(VT.getVectorNumElements()) 4351 : APInt(1, 1); 4352 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4353 } 4354 4355 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4356 const APInt &DemandedElts, 4357 bool PoisonOnly, 4358 unsigned Depth) const { 4359 unsigned Opcode = Op.getOpcode(); 4360 4361 // Early out for FREEZE. 4362 if (Opcode == ISD::FREEZE) 4363 return true; 4364 4365 if (Depth >= MaxRecursionDepth) 4366 return false; // Limit search depth. 4367 4368 if (isIntOrFPConstant(Op)) 4369 return true; 4370 4371 switch (Opcode) { 4372 case ISD::UNDEF: 4373 return PoisonOnly; 4374 4375 case ISD::BUILD_VECTOR: 4376 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4377 // this shouldn't affect the result. 4378 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4379 if (!DemandedElts[i]) 4380 continue; 4381 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4382 Depth + 1)) 4383 return false; 4384 } 4385 return true; 4386 4387 // TODO: Search for noundef attributes from library functions. 4388 4389 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4390 4391 default: 4392 // Allow the target to implement this method for its nodes. 4393 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4394 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4395 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4396 Op, DemandedElts, *this, PoisonOnly, Depth); 4397 break; 4398 } 4399 4400 return false; 4401 } 4402 4403 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4404 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4405 !isa<ConstantSDNode>(Op.getOperand(1))) 4406 return false; 4407 4408 if (Op.getOpcode() == ISD::OR && 4409 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4410 return false; 4411 4412 return true; 4413 } 4414 4415 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4416 // If we're told that NaNs won't happen, assume they won't. 4417 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4418 return true; 4419 4420 if (Depth >= MaxRecursionDepth) 4421 return false; // Limit search depth. 4422 4423 // TODO: Handle vectors. 4424 // If the value is a constant, we can obviously see if it is a NaN or not. 4425 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4426 return !C->getValueAPF().isNaN() || 4427 (SNaN && !C->getValueAPF().isSignaling()); 4428 } 4429 4430 unsigned Opcode = Op.getOpcode(); 4431 switch (Opcode) { 4432 case ISD::FADD: 4433 case ISD::FSUB: 4434 case ISD::FMUL: 4435 case ISD::FDIV: 4436 case ISD::FREM: 4437 case ISD::FSIN: 4438 case ISD::FCOS: { 4439 if (SNaN) 4440 return true; 4441 // TODO: Need isKnownNeverInfinity 4442 return false; 4443 } 4444 case ISD::FCANONICALIZE: 4445 case ISD::FEXP: 4446 case ISD::FEXP2: 4447 case ISD::FTRUNC: 4448 case ISD::FFLOOR: 4449 case ISD::FCEIL: 4450 case ISD::FROUND: 4451 case ISD::FROUNDEVEN: 4452 case ISD::FRINT: 4453 case ISD::FNEARBYINT: { 4454 if (SNaN) 4455 return true; 4456 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4457 } 4458 case ISD::FABS: 4459 case ISD::FNEG: 4460 case ISD::FCOPYSIGN: { 4461 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4462 } 4463 case ISD::SELECT: 4464 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4465 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4466 case ISD::FP_EXTEND: 4467 case ISD::FP_ROUND: { 4468 if (SNaN) 4469 return true; 4470 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4471 } 4472 case ISD::SINT_TO_FP: 4473 case ISD::UINT_TO_FP: 4474 return true; 4475 case ISD::FMA: 4476 case ISD::FMAD: { 4477 if (SNaN) 4478 return true; 4479 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4480 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4481 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4482 } 4483 case ISD::FSQRT: // Need is known positive 4484 case ISD::FLOG: 4485 case ISD::FLOG2: 4486 case ISD::FLOG10: 4487 case ISD::FPOWI: 4488 case ISD::FPOW: { 4489 if (SNaN) 4490 return true; 4491 // TODO: Refine on operand 4492 return false; 4493 } 4494 case ISD::FMINNUM: 4495 case ISD::FMAXNUM: { 4496 // Only one needs to be known not-nan, since it will be returned if the 4497 // other ends up being one. 4498 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4499 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4500 } 4501 case ISD::FMINNUM_IEEE: 4502 case ISD::FMAXNUM_IEEE: { 4503 if (SNaN) 4504 return true; 4505 // This can return a NaN if either operand is an sNaN, or if both operands 4506 // are NaN. 4507 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4508 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4509 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4510 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4511 } 4512 case ISD::FMINIMUM: 4513 case ISD::FMAXIMUM: { 4514 // TODO: Does this quiet or return the origina NaN as-is? 4515 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4516 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4517 } 4518 case ISD::EXTRACT_VECTOR_ELT: { 4519 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4520 } 4521 default: 4522 if (Opcode >= ISD::BUILTIN_OP_END || 4523 Opcode == ISD::INTRINSIC_WO_CHAIN || 4524 Opcode == ISD::INTRINSIC_W_CHAIN || 4525 Opcode == ISD::INTRINSIC_VOID) { 4526 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4527 } 4528 4529 return false; 4530 } 4531 } 4532 4533 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4534 assert(Op.getValueType().isFloatingPoint() && 4535 "Floating point type expected"); 4536 4537 // If the value is a constant, we can obviously see if it is a zero or not. 4538 // TODO: Add BuildVector support. 4539 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4540 return !C->isZero(); 4541 return false; 4542 } 4543 4544 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4545 assert(!Op.getValueType().isFloatingPoint() && 4546 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4547 4548 // If the value is a constant, we can obviously see if it is a zero or not. 4549 if (ISD::matchUnaryPredicate(Op, 4550 [](ConstantSDNode *C) { return !C->isZero(); })) 4551 return true; 4552 4553 // TODO: Recognize more cases here. 4554 switch (Op.getOpcode()) { 4555 default: break; 4556 case ISD::OR: 4557 if (isKnownNeverZero(Op.getOperand(1)) || 4558 isKnownNeverZero(Op.getOperand(0))) 4559 return true; 4560 break; 4561 } 4562 4563 return false; 4564 } 4565 4566 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4567 // Check the obvious case. 4568 if (A == B) return true; 4569 4570 // For for negative and positive zero. 4571 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4572 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4573 if (CA->isZero() && CB->isZero()) return true; 4574 4575 // Otherwise they may not be equal. 4576 return false; 4577 } 4578 4579 // FIXME: unify with llvm::haveNoCommonBitsSet. 4580 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4581 assert(A.getValueType() == B.getValueType() && 4582 "Values must have the same type"); 4583 // Match masked merge pattern (X & ~M) op (Y & M) 4584 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4585 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4586 if (isBitwiseNot(NotM, true)) { 4587 SDValue NotOperand = NotM->getOperand(0); 4588 return NotOperand == And->getOperand(0) || 4589 NotOperand == And->getOperand(1); 4590 } 4591 return false; 4592 }; 4593 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4594 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4595 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4596 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4597 return true; 4598 } 4599 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4600 computeKnownBits(B)); 4601 } 4602 4603 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4604 SelectionDAG &DAG) { 4605 if (cast<ConstantSDNode>(Step)->isZero()) 4606 return DAG.getConstant(0, DL, VT); 4607 4608 return SDValue(); 4609 } 4610 4611 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4612 ArrayRef<SDValue> Ops, 4613 SelectionDAG &DAG) { 4614 int NumOps = Ops.size(); 4615 assert(NumOps != 0 && "Can't build an empty vector!"); 4616 assert(!VT.isScalableVector() && 4617 "BUILD_VECTOR cannot be used with scalable types"); 4618 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4619 "Incorrect element count in BUILD_VECTOR!"); 4620 4621 // BUILD_VECTOR of UNDEFs is UNDEF. 4622 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4623 return DAG.getUNDEF(VT); 4624 4625 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4626 SDValue IdentitySrc; 4627 bool IsIdentity = true; 4628 for (int i = 0; i != NumOps; ++i) { 4629 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4630 Ops[i].getOperand(0).getValueType() != VT || 4631 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4632 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4633 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4634 IsIdentity = false; 4635 break; 4636 } 4637 IdentitySrc = Ops[i].getOperand(0); 4638 } 4639 if (IsIdentity) 4640 return IdentitySrc; 4641 4642 return SDValue(); 4643 } 4644 4645 /// Try to simplify vector concatenation to an input value, undef, or build 4646 /// vector. 4647 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4648 ArrayRef<SDValue> Ops, 4649 SelectionDAG &DAG) { 4650 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4651 assert(llvm::all_of(Ops, 4652 [Ops](SDValue Op) { 4653 return Ops[0].getValueType() == Op.getValueType(); 4654 }) && 4655 "Concatenation of vectors with inconsistent value types!"); 4656 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4657 VT.getVectorElementCount() && 4658 "Incorrect element count in vector concatenation!"); 4659 4660 if (Ops.size() == 1) 4661 return Ops[0]; 4662 4663 // Concat of UNDEFs is UNDEF. 4664 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4665 return DAG.getUNDEF(VT); 4666 4667 // Scan the operands and look for extract operations from a single source 4668 // that correspond to insertion at the same location via this concatenation: 4669 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4670 SDValue IdentitySrc; 4671 bool IsIdentity = true; 4672 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4673 SDValue Op = Ops[i]; 4674 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4675 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4676 Op.getOperand(0).getValueType() != VT || 4677 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4678 Op.getConstantOperandVal(1) != IdentityIndex) { 4679 IsIdentity = false; 4680 break; 4681 } 4682 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4683 "Unexpected identity source vector for concat of extracts"); 4684 IdentitySrc = Op.getOperand(0); 4685 } 4686 if (IsIdentity) { 4687 assert(IdentitySrc && "Failed to set source vector of extracts"); 4688 return IdentitySrc; 4689 } 4690 4691 // The code below this point is only designed to work for fixed width 4692 // vectors, so we bail out for now. 4693 if (VT.isScalableVector()) 4694 return SDValue(); 4695 4696 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4697 // simplified to one big BUILD_VECTOR. 4698 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4699 EVT SVT = VT.getScalarType(); 4700 SmallVector<SDValue, 16> Elts; 4701 for (SDValue Op : Ops) { 4702 EVT OpVT = Op.getValueType(); 4703 if (Op.isUndef()) 4704 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4705 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4706 Elts.append(Op->op_begin(), Op->op_end()); 4707 else 4708 return SDValue(); 4709 } 4710 4711 // BUILD_VECTOR requires all inputs to be of the same type, find the 4712 // maximum type and extend them all. 4713 for (SDValue Op : Elts) 4714 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4715 4716 if (SVT.bitsGT(VT.getScalarType())) { 4717 for (SDValue &Op : Elts) { 4718 if (Op.isUndef()) 4719 Op = DAG.getUNDEF(SVT); 4720 else 4721 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4722 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4723 : DAG.getSExtOrTrunc(Op, DL, SVT); 4724 } 4725 } 4726 4727 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4728 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4729 return V; 4730 } 4731 4732 /// Gets or creates the specified node. 4733 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4734 FoldingSetNodeID ID; 4735 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4736 void *IP = nullptr; 4737 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4738 return SDValue(E, 0); 4739 4740 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4741 getVTList(VT)); 4742 CSEMap.InsertNode(N, IP); 4743 4744 InsertNode(N); 4745 SDValue V = SDValue(N, 0); 4746 NewSDValueDbgMsg(V, "Creating new node: ", this); 4747 return V; 4748 } 4749 4750 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4751 SDValue Operand) { 4752 SDNodeFlags Flags; 4753 if (Inserter) 4754 Flags = Inserter->getFlags(); 4755 return getNode(Opcode, DL, VT, Operand, Flags); 4756 } 4757 4758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4759 SDValue Operand, const SDNodeFlags Flags) { 4760 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4761 "Operand is DELETED_NODE!"); 4762 // Constant fold unary operations with an integer constant operand. Even 4763 // opaque constant will be folded, because the folding of unary operations 4764 // doesn't create new constants with different values. Nevertheless, the 4765 // opaque flag is preserved during folding to prevent future folding with 4766 // other constants. 4767 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4768 const APInt &Val = C->getAPIntValue(); 4769 switch (Opcode) { 4770 default: break; 4771 case ISD::SIGN_EXTEND: 4772 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4773 C->isTargetOpcode(), C->isOpaque()); 4774 case ISD::TRUNCATE: 4775 if (C->isOpaque()) 4776 break; 4777 LLVM_FALLTHROUGH; 4778 case ISD::ZERO_EXTEND: 4779 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4780 C->isTargetOpcode(), C->isOpaque()); 4781 case ISD::ANY_EXTEND: 4782 // Some targets like RISCV prefer to sign extend some types. 4783 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4784 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4785 C->isTargetOpcode(), C->isOpaque()); 4786 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4787 C->isTargetOpcode(), C->isOpaque()); 4788 case ISD::UINT_TO_FP: 4789 case ISD::SINT_TO_FP: { 4790 APFloat apf(EVTToAPFloatSemantics(VT), 4791 APInt::getZero(VT.getSizeInBits())); 4792 (void)apf.convertFromAPInt(Val, 4793 Opcode==ISD::SINT_TO_FP, 4794 APFloat::rmNearestTiesToEven); 4795 return getConstantFP(apf, DL, VT); 4796 } 4797 case ISD::BITCAST: 4798 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4799 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4800 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4801 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4802 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4803 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4804 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4805 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4806 break; 4807 case ISD::ABS: 4808 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4809 C->isOpaque()); 4810 case ISD::BITREVERSE: 4811 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4812 C->isOpaque()); 4813 case ISD::BSWAP: 4814 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4815 C->isOpaque()); 4816 case ISD::CTPOP: 4817 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4818 C->isOpaque()); 4819 case ISD::CTLZ: 4820 case ISD::CTLZ_ZERO_UNDEF: 4821 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4822 C->isOpaque()); 4823 case ISD::CTTZ: 4824 case ISD::CTTZ_ZERO_UNDEF: 4825 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4826 C->isOpaque()); 4827 case ISD::FP16_TO_FP: { 4828 bool Ignored; 4829 APFloat FPV(APFloat::IEEEhalf(), 4830 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4831 4832 // This can return overflow, underflow, or inexact; we don't care. 4833 // FIXME need to be more flexible about rounding mode. 4834 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4835 APFloat::rmNearestTiesToEven, &Ignored); 4836 return getConstantFP(FPV, DL, VT); 4837 } 4838 case ISD::STEP_VECTOR: { 4839 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4840 return V; 4841 break; 4842 } 4843 } 4844 } 4845 4846 // Constant fold unary operations with a floating point constant operand. 4847 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4848 APFloat V = C->getValueAPF(); // make copy 4849 switch (Opcode) { 4850 case ISD::FNEG: 4851 V.changeSign(); 4852 return getConstantFP(V, DL, VT); 4853 case ISD::FABS: 4854 V.clearSign(); 4855 return getConstantFP(V, DL, VT); 4856 case ISD::FCEIL: { 4857 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4858 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4859 return getConstantFP(V, DL, VT); 4860 break; 4861 } 4862 case ISD::FTRUNC: { 4863 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4864 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4865 return getConstantFP(V, DL, VT); 4866 break; 4867 } 4868 case ISD::FFLOOR: { 4869 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4870 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4871 return getConstantFP(V, DL, VT); 4872 break; 4873 } 4874 case ISD::FP_EXTEND: { 4875 bool ignored; 4876 // This can return overflow, underflow, or inexact; we don't care. 4877 // FIXME need to be more flexible about rounding mode. 4878 (void)V.convert(EVTToAPFloatSemantics(VT), 4879 APFloat::rmNearestTiesToEven, &ignored); 4880 return getConstantFP(V, DL, VT); 4881 } 4882 case ISD::FP_TO_SINT: 4883 case ISD::FP_TO_UINT: { 4884 bool ignored; 4885 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4886 // FIXME need to be more flexible about rounding mode. 4887 APFloat::opStatus s = 4888 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4889 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4890 break; 4891 return getConstant(IntVal, DL, VT); 4892 } 4893 case ISD::BITCAST: 4894 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4895 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4896 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4897 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4898 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4899 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4900 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4901 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4902 break; 4903 case ISD::FP_TO_FP16: { 4904 bool Ignored; 4905 // This can return overflow, underflow, or inexact; we don't care. 4906 // FIXME need to be more flexible about rounding mode. 4907 (void)V.convert(APFloat::IEEEhalf(), 4908 APFloat::rmNearestTiesToEven, &Ignored); 4909 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4910 } 4911 } 4912 } 4913 4914 // Constant fold unary operations with a vector integer or float operand. 4915 switch (Opcode) { 4916 default: 4917 // FIXME: Entirely reasonable to perform folding of other unary 4918 // operations here as the need arises. 4919 break; 4920 case ISD::FNEG: 4921 case ISD::FABS: 4922 case ISD::FCEIL: 4923 case ISD::FTRUNC: 4924 case ISD::FFLOOR: 4925 case ISD::FP_EXTEND: 4926 case ISD::FP_TO_SINT: 4927 case ISD::FP_TO_UINT: 4928 case ISD::TRUNCATE: 4929 case ISD::ANY_EXTEND: 4930 case ISD::ZERO_EXTEND: 4931 case ISD::SIGN_EXTEND: 4932 case ISD::UINT_TO_FP: 4933 case ISD::SINT_TO_FP: 4934 case ISD::ABS: 4935 case ISD::BITREVERSE: 4936 case ISD::BSWAP: 4937 case ISD::CTLZ: 4938 case ISD::CTLZ_ZERO_UNDEF: 4939 case ISD::CTTZ: 4940 case ISD::CTTZ_ZERO_UNDEF: 4941 case ISD::CTPOP: { 4942 SDValue Ops = {Operand}; 4943 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4944 return Fold; 4945 } 4946 } 4947 4948 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4949 switch (Opcode) { 4950 case ISD::STEP_VECTOR: 4951 assert(VT.isScalableVector() && 4952 "STEP_VECTOR can only be used with scalable types"); 4953 assert(OpOpcode == ISD::TargetConstant && 4954 VT.getVectorElementType() == Operand.getValueType() && 4955 "Unexpected step operand"); 4956 break; 4957 case ISD::FREEZE: 4958 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4959 break; 4960 case ISD::TokenFactor: 4961 case ISD::MERGE_VALUES: 4962 case ISD::CONCAT_VECTORS: 4963 return Operand; // Factor, merge or concat of one node? No need. 4964 case ISD::BUILD_VECTOR: { 4965 // Attempt to simplify BUILD_VECTOR. 4966 SDValue Ops[] = {Operand}; 4967 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4968 return V; 4969 break; 4970 } 4971 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4972 case ISD::FP_EXTEND: 4973 assert(VT.isFloatingPoint() && 4974 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4975 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4976 assert((!VT.isVector() || 4977 VT.getVectorElementCount() == 4978 Operand.getValueType().getVectorElementCount()) && 4979 "Vector element count mismatch!"); 4980 assert(Operand.getValueType().bitsLT(VT) && 4981 "Invalid fpext node, dst < src!"); 4982 if (Operand.isUndef()) 4983 return getUNDEF(VT); 4984 break; 4985 case ISD::FP_TO_SINT: 4986 case ISD::FP_TO_UINT: 4987 if (Operand.isUndef()) 4988 return getUNDEF(VT); 4989 break; 4990 case ISD::SINT_TO_FP: 4991 case ISD::UINT_TO_FP: 4992 // [us]itofp(undef) = 0, because the result value is bounded. 4993 if (Operand.isUndef()) 4994 return getConstantFP(0.0, DL, VT); 4995 break; 4996 case ISD::SIGN_EXTEND: 4997 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4998 "Invalid SIGN_EXTEND!"); 4999 assert(VT.isVector() == Operand.getValueType().isVector() && 5000 "SIGN_EXTEND result type type should be vector iff the operand " 5001 "type is vector!"); 5002 if (Operand.getValueType() == VT) return Operand; // noop extension 5003 assert((!VT.isVector() || 5004 VT.getVectorElementCount() == 5005 Operand.getValueType().getVectorElementCount()) && 5006 "Vector element count mismatch!"); 5007 assert(Operand.getValueType().bitsLT(VT) && 5008 "Invalid sext node, dst < src!"); 5009 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5010 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5011 if (OpOpcode == ISD::UNDEF) 5012 // sext(undef) = 0, because the top bits will all be the same. 5013 return getConstant(0, DL, VT); 5014 break; 5015 case ISD::ZERO_EXTEND: 5016 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5017 "Invalid ZERO_EXTEND!"); 5018 assert(VT.isVector() == Operand.getValueType().isVector() && 5019 "ZERO_EXTEND result type type should be vector iff the operand " 5020 "type is vector!"); 5021 if (Operand.getValueType() == VT) return Operand; // noop extension 5022 assert((!VT.isVector() || 5023 VT.getVectorElementCount() == 5024 Operand.getValueType().getVectorElementCount()) && 5025 "Vector element count mismatch!"); 5026 assert(Operand.getValueType().bitsLT(VT) && 5027 "Invalid zext node, dst < src!"); 5028 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5029 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5030 if (OpOpcode == ISD::UNDEF) 5031 // zext(undef) = 0, because the top bits will be zero. 5032 return getConstant(0, DL, VT); 5033 break; 5034 case ISD::ANY_EXTEND: 5035 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5036 "Invalid ANY_EXTEND!"); 5037 assert(VT.isVector() == Operand.getValueType().isVector() && 5038 "ANY_EXTEND result type type should be vector iff the operand " 5039 "type is vector!"); 5040 if (Operand.getValueType() == VT) return Operand; // noop extension 5041 assert((!VT.isVector() || 5042 VT.getVectorElementCount() == 5043 Operand.getValueType().getVectorElementCount()) && 5044 "Vector element count mismatch!"); 5045 assert(Operand.getValueType().bitsLT(VT) && 5046 "Invalid anyext node, dst < src!"); 5047 5048 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5049 OpOpcode == ISD::ANY_EXTEND) 5050 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5051 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5052 if (OpOpcode == ISD::UNDEF) 5053 return getUNDEF(VT); 5054 5055 // (ext (trunc x)) -> x 5056 if (OpOpcode == ISD::TRUNCATE) { 5057 SDValue OpOp = Operand.getOperand(0); 5058 if (OpOp.getValueType() == VT) { 5059 transferDbgValues(Operand, OpOp); 5060 return OpOp; 5061 } 5062 } 5063 break; 5064 case ISD::TRUNCATE: 5065 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5066 "Invalid TRUNCATE!"); 5067 assert(VT.isVector() == Operand.getValueType().isVector() && 5068 "TRUNCATE result type type should be vector iff the operand " 5069 "type is vector!"); 5070 if (Operand.getValueType() == VT) return Operand; // noop truncate 5071 assert((!VT.isVector() || 5072 VT.getVectorElementCount() == 5073 Operand.getValueType().getVectorElementCount()) && 5074 "Vector element count mismatch!"); 5075 assert(Operand.getValueType().bitsGT(VT) && 5076 "Invalid truncate node, src < dst!"); 5077 if (OpOpcode == ISD::TRUNCATE) 5078 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5079 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5080 OpOpcode == ISD::ANY_EXTEND) { 5081 // If the source is smaller than the dest, we still need an extend. 5082 if (Operand.getOperand(0).getValueType().getScalarType() 5083 .bitsLT(VT.getScalarType())) 5084 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5085 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5086 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5087 return Operand.getOperand(0); 5088 } 5089 if (OpOpcode == ISD::UNDEF) 5090 return getUNDEF(VT); 5091 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5092 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5093 break; 5094 case ISD::ANY_EXTEND_VECTOR_INREG: 5095 case ISD::ZERO_EXTEND_VECTOR_INREG: 5096 case ISD::SIGN_EXTEND_VECTOR_INREG: 5097 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5098 assert(Operand.getValueType().bitsLE(VT) && 5099 "The input must be the same size or smaller than the result."); 5100 assert(VT.getVectorMinNumElements() < 5101 Operand.getValueType().getVectorMinNumElements() && 5102 "The destination vector type must have fewer lanes than the input."); 5103 break; 5104 case ISD::ABS: 5105 assert(VT.isInteger() && VT == Operand.getValueType() && 5106 "Invalid ABS!"); 5107 if (OpOpcode == ISD::UNDEF) 5108 return getUNDEF(VT); 5109 break; 5110 case ISD::BSWAP: 5111 assert(VT.isInteger() && VT == Operand.getValueType() && 5112 "Invalid BSWAP!"); 5113 assert((VT.getScalarSizeInBits() % 16 == 0) && 5114 "BSWAP types must be a multiple of 16 bits!"); 5115 if (OpOpcode == ISD::UNDEF) 5116 return getUNDEF(VT); 5117 break; 5118 case ISD::BITREVERSE: 5119 assert(VT.isInteger() && VT == Operand.getValueType() && 5120 "Invalid BITREVERSE!"); 5121 if (OpOpcode == ISD::UNDEF) 5122 return getUNDEF(VT); 5123 break; 5124 case ISD::BITCAST: 5125 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5126 "Cannot BITCAST between types of different sizes!"); 5127 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5128 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5129 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5130 if (OpOpcode == ISD::UNDEF) 5131 return getUNDEF(VT); 5132 break; 5133 case ISD::SCALAR_TO_VECTOR: 5134 assert(VT.isVector() && !Operand.getValueType().isVector() && 5135 (VT.getVectorElementType() == Operand.getValueType() || 5136 (VT.getVectorElementType().isInteger() && 5137 Operand.getValueType().isInteger() && 5138 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5139 "Illegal SCALAR_TO_VECTOR node!"); 5140 if (OpOpcode == ISD::UNDEF) 5141 return getUNDEF(VT); 5142 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5143 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5144 isa<ConstantSDNode>(Operand.getOperand(1)) && 5145 Operand.getConstantOperandVal(1) == 0 && 5146 Operand.getOperand(0).getValueType() == VT) 5147 return Operand.getOperand(0); 5148 break; 5149 case ISD::FNEG: 5150 // Negation of an unknown bag of bits is still completely undefined. 5151 if (OpOpcode == ISD::UNDEF) 5152 return getUNDEF(VT); 5153 5154 if (OpOpcode == ISD::FNEG) // --X -> X 5155 return Operand.getOperand(0); 5156 break; 5157 case ISD::FABS: 5158 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5159 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5160 break; 5161 case ISD::VSCALE: 5162 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5163 break; 5164 case ISD::CTPOP: 5165 if (Operand.getValueType().getScalarType() == MVT::i1) 5166 return Operand; 5167 break; 5168 case ISD::CTLZ: 5169 case ISD::CTTZ: 5170 if (Operand.getValueType().getScalarType() == MVT::i1) 5171 return getNOT(DL, Operand, Operand.getValueType()); 5172 break; 5173 case ISD::VECREDUCE_SMIN: 5174 case ISD::VECREDUCE_UMAX: 5175 if (Operand.getValueType().getScalarType() == MVT::i1) 5176 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5177 break; 5178 case ISD::VECREDUCE_SMAX: 5179 case ISD::VECREDUCE_UMIN: 5180 if (Operand.getValueType().getScalarType() == MVT::i1) 5181 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5182 break; 5183 } 5184 5185 SDNode *N; 5186 SDVTList VTs = getVTList(VT); 5187 SDValue Ops[] = {Operand}; 5188 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5189 FoldingSetNodeID ID; 5190 AddNodeIDNode(ID, Opcode, VTs, Ops); 5191 void *IP = nullptr; 5192 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5193 E->intersectFlagsWith(Flags); 5194 return SDValue(E, 0); 5195 } 5196 5197 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5198 N->setFlags(Flags); 5199 createOperands(N, Ops); 5200 CSEMap.InsertNode(N, IP); 5201 } else { 5202 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5203 createOperands(N, Ops); 5204 } 5205 5206 InsertNode(N); 5207 SDValue V = SDValue(N, 0); 5208 NewSDValueDbgMsg(V, "Creating new node: ", this); 5209 return V; 5210 } 5211 5212 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5213 const APInt &C2) { 5214 switch (Opcode) { 5215 case ISD::ADD: return C1 + C2; 5216 case ISD::SUB: return C1 - C2; 5217 case ISD::MUL: return C1 * C2; 5218 case ISD::AND: return C1 & C2; 5219 case ISD::OR: return C1 | C2; 5220 case ISD::XOR: return C1 ^ C2; 5221 case ISD::SHL: return C1 << C2; 5222 case ISD::SRL: return C1.lshr(C2); 5223 case ISD::SRA: return C1.ashr(C2); 5224 case ISD::ROTL: return C1.rotl(C2); 5225 case ISD::ROTR: return C1.rotr(C2); 5226 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5227 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5228 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5229 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5230 case ISD::SADDSAT: return C1.sadd_sat(C2); 5231 case ISD::UADDSAT: return C1.uadd_sat(C2); 5232 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5233 case ISD::USUBSAT: return C1.usub_sat(C2); 5234 case ISD::UDIV: 5235 if (!C2.getBoolValue()) 5236 break; 5237 return C1.udiv(C2); 5238 case ISD::UREM: 5239 if (!C2.getBoolValue()) 5240 break; 5241 return C1.urem(C2); 5242 case ISD::SDIV: 5243 if (!C2.getBoolValue()) 5244 break; 5245 return C1.sdiv(C2); 5246 case ISD::SREM: 5247 if (!C2.getBoolValue()) 5248 break; 5249 return C1.srem(C2); 5250 case ISD::MULHS: { 5251 unsigned FullWidth = C1.getBitWidth() * 2; 5252 APInt C1Ext = C1.sext(FullWidth); 5253 APInt C2Ext = C2.sext(FullWidth); 5254 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5255 } 5256 case ISD::MULHU: { 5257 unsigned FullWidth = C1.getBitWidth() * 2; 5258 APInt C1Ext = C1.zext(FullWidth); 5259 APInt C2Ext = C2.zext(FullWidth); 5260 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5261 } 5262 } 5263 return llvm::None; 5264 } 5265 5266 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5267 const GlobalAddressSDNode *GA, 5268 const SDNode *N2) { 5269 if (GA->getOpcode() != ISD::GlobalAddress) 5270 return SDValue(); 5271 if (!TLI->isOffsetFoldingLegal(GA)) 5272 return SDValue(); 5273 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5274 if (!C2) 5275 return SDValue(); 5276 int64_t Offset = C2->getSExtValue(); 5277 switch (Opcode) { 5278 case ISD::ADD: break; 5279 case ISD::SUB: Offset = -uint64_t(Offset); break; 5280 default: return SDValue(); 5281 } 5282 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5283 GA->getOffset() + uint64_t(Offset)); 5284 } 5285 5286 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5287 switch (Opcode) { 5288 case ISD::SDIV: 5289 case ISD::UDIV: 5290 case ISD::SREM: 5291 case ISD::UREM: { 5292 // If a divisor is zero/undef or any element of a divisor vector is 5293 // zero/undef, the whole op is undef. 5294 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5295 SDValue Divisor = Ops[1]; 5296 if (Divisor.isUndef() || isNullConstant(Divisor)) 5297 return true; 5298 5299 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5300 llvm::any_of(Divisor->op_values(), 5301 [](SDValue V) { return V.isUndef() || 5302 isNullConstant(V); }); 5303 // TODO: Handle signed overflow. 5304 } 5305 // TODO: Handle oversized shifts. 5306 default: 5307 return false; 5308 } 5309 } 5310 5311 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5312 EVT VT, ArrayRef<SDValue> Ops) { 5313 // If the opcode is a target-specific ISD node, there's nothing we can 5314 // do here and the operand rules may not line up with the below, so 5315 // bail early. 5316 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5317 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5318 // foldCONCAT_VECTORS in getNode before this is called. 5319 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5320 return SDValue(); 5321 5322 unsigned NumOps = Ops.size(); 5323 if (NumOps == 0) 5324 return SDValue(); 5325 5326 if (isUndef(Opcode, Ops)) 5327 return getUNDEF(VT); 5328 5329 // Handle binops special cases. 5330 if (NumOps == 2) { 5331 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5332 return CFP; 5333 5334 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5335 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5336 if (C1->isOpaque() || C2->isOpaque()) 5337 return SDValue(); 5338 5339 Optional<APInt> FoldAttempt = 5340 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5341 if (!FoldAttempt) 5342 return SDValue(); 5343 5344 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5345 assert((!Folded || !VT.isVector()) && 5346 "Can't fold vectors ops with scalar operands"); 5347 return Folded; 5348 } 5349 } 5350 5351 // fold (add Sym, c) -> Sym+c 5352 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5353 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5354 if (TLI->isCommutativeBinOp(Opcode)) 5355 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5356 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5357 } 5358 5359 // This is for vector folding only from here on. 5360 if (!VT.isVector()) 5361 return SDValue(); 5362 5363 ElementCount NumElts = VT.getVectorElementCount(); 5364 5365 // See if we can fold through bitcasted integer ops. 5366 // TODO: Can we handle undef elements? 5367 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5368 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5369 Ops[0].getOpcode() == ISD::BITCAST && 5370 Ops[1].getOpcode() == ISD::BITCAST) { 5371 SDValue N1 = peekThroughBitcasts(Ops[0]); 5372 SDValue N2 = peekThroughBitcasts(Ops[1]); 5373 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5374 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5375 EVT BVVT = N1.getValueType(); 5376 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5377 bool IsLE = getDataLayout().isLittleEndian(); 5378 unsigned EltBits = VT.getScalarSizeInBits(); 5379 SmallVector<APInt> RawBits1, RawBits2; 5380 BitVector UndefElts1, UndefElts2; 5381 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5382 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5383 UndefElts1.none() && UndefElts2.none()) { 5384 SmallVector<APInt> RawBits; 5385 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5386 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5387 if (!Fold) 5388 break; 5389 RawBits.push_back(Fold.getValue()); 5390 } 5391 if (RawBits.size() == NumElts.getFixedValue()) { 5392 // We have constant folded, but we need to cast this again back to 5393 // the original (possibly legalized) type. 5394 SmallVector<APInt> DstBits; 5395 BitVector DstUndefs; 5396 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5397 DstBits, RawBits, DstUndefs, 5398 BitVector(RawBits.size(), false)); 5399 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5400 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5401 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5402 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5403 if (DstUndefs[I]) 5404 continue; 5405 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5406 } 5407 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5408 } 5409 } 5410 } 5411 } 5412 5413 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5414 return !Op.getValueType().isVector() || 5415 Op.getValueType().getVectorElementCount() == NumElts; 5416 }; 5417 5418 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5419 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5420 Op.getOpcode() == ISD::BUILD_VECTOR || 5421 Op.getOpcode() == ISD::SPLAT_VECTOR; 5422 }; 5423 5424 // All operands must be vector types with the same number of elements as 5425 // the result type and must be either UNDEF or a build/splat vector 5426 // or UNDEF scalars. 5427 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5428 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5429 return SDValue(); 5430 5431 // If we are comparing vectors, then the result needs to be a i1 boolean 5432 // that is then sign-extended back to the legal result type. 5433 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5434 5435 // Find legal integer scalar type for constant promotion and 5436 // ensure that its scalar size is at least as large as source. 5437 EVT LegalSVT = VT.getScalarType(); 5438 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5439 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5440 if (LegalSVT.bitsLT(VT.getScalarType())) 5441 return SDValue(); 5442 } 5443 5444 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5445 // only have one operand to check. For fixed-length vector types we may have 5446 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5447 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5448 5449 // Constant fold each scalar lane separately. 5450 SmallVector<SDValue, 4> ScalarResults; 5451 for (unsigned I = 0; I != NumVectorElts; I++) { 5452 SmallVector<SDValue, 4> ScalarOps; 5453 for (SDValue Op : Ops) { 5454 EVT InSVT = Op.getValueType().getScalarType(); 5455 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5456 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5457 if (Op.isUndef()) 5458 ScalarOps.push_back(getUNDEF(InSVT)); 5459 else 5460 ScalarOps.push_back(Op); 5461 continue; 5462 } 5463 5464 SDValue ScalarOp = 5465 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5466 EVT ScalarVT = ScalarOp.getValueType(); 5467 5468 // Build vector (integer) scalar operands may need implicit 5469 // truncation - do this before constant folding. 5470 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5471 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5472 5473 ScalarOps.push_back(ScalarOp); 5474 } 5475 5476 // Constant fold the scalar operands. 5477 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5478 5479 // Legalize the (integer) scalar constant if necessary. 5480 if (LegalSVT != SVT) 5481 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5482 5483 // Scalar folding only succeeded if the result is a constant or UNDEF. 5484 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5485 ScalarResult.getOpcode() != ISD::ConstantFP) 5486 return SDValue(); 5487 ScalarResults.push_back(ScalarResult); 5488 } 5489 5490 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5491 : getBuildVector(VT, DL, ScalarResults); 5492 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5493 return V; 5494 } 5495 5496 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5497 EVT VT, SDValue N1, SDValue N2) { 5498 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5499 // should. That will require dealing with a potentially non-default 5500 // rounding mode, checking the "opStatus" return value from the APFloat 5501 // math calculations, and possibly other variations. 5502 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5503 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5504 if (N1CFP && N2CFP) { 5505 APFloat C1 = N1CFP->getValueAPF(); // make copy 5506 const APFloat &C2 = N2CFP->getValueAPF(); 5507 switch (Opcode) { 5508 case ISD::FADD: 5509 C1.add(C2, APFloat::rmNearestTiesToEven); 5510 return getConstantFP(C1, DL, VT); 5511 case ISD::FSUB: 5512 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5513 return getConstantFP(C1, DL, VT); 5514 case ISD::FMUL: 5515 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5516 return getConstantFP(C1, DL, VT); 5517 case ISD::FDIV: 5518 C1.divide(C2, APFloat::rmNearestTiesToEven); 5519 return getConstantFP(C1, DL, VT); 5520 case ISD::FREM: 5521 C1.mod(C2); 5522 return getConstantFP(C1, DL, VT); 5523 case ISD::FCOPYSIGN: 5524 C1.copySign(C2); 5525 return getConstantFP(C1, DL, VT); 5526 case ISD::FMINNUM: 5527 return getConstantFP(minnum(C1, C2), DL, VT); 5528 case ISD::FMAXNUM: 5529 return getConstantFP(maxnum(C1, C2), DL, VT); 5530 case ISD::FMINIMUM: 5531 return getConstantFP(minimum(C1, C2), DL, VT); 5532 case ISD::FMAXIMUM: 5533 return getConstantFP(maximum(C1, C2), DL, VT); 5534 default: break; 5535 } 5536 } 5537 if (N1CFP && Opcode == ISD::FP_ROUND) { 5538 APFloat C1 = N1CFP->getValueAPF(); // make copy 5539 bool Unused; 5540 // This can return overflow, underflow, or inexact; we don't care. 5541 // FIXME need to be more flexible about rounding mode. 5542 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5543 &Unused); 5544 return getConstantFP(C1, DL, VT); 5545 } 5546 5547 switch (Opcode) { 5548 case ISD::FSUB: 5549 // -0.0 - undef --> undef (consistent with "fneg undef") 5550 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5551 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5552 return getUNDEF(VT); 5553 LLVM_FALLTHROUGH; 5554 5555 case ISD::FADD: 5556 case ISD::FMUL: 5557 case ISD::FDIV: 5558 case ISD::FREM: 5559 // If both operands are undef, the result is undef. If 1 operand is undef, 5560 // the result is NaN. This should match the behavior of the IR optimizer. 5561 if (N1.isUndef() && N2.isUndef()) 5562 return getUNDEF(VT); 5563 if (N1.isUndef() || N2.isUndef()) 5564 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5565 } 5566 return SDValue(); 5567 } 5568 5569 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5570 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5571 5572 // There's no need to assert on a byte-aligned pointer. All pointers are at 5573 // least byte aligned. 5574 if (A == Align(1)) 5575 return Val; 5576 5577 FoldingSetNodeID ID; 5578 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5579 ID.AddInteger(A.value()); 5580 5581 void *IP = nullptr; 5582 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5583 return SDValue(E, 0); 5584 5585 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5586 Val.getValueType(), A); 5587 createOperands(N, {Val}); 5588 5589 CSEMap.InsertNode(N, IP); 5590 InsertNode(N); 5591 5592 SDValue V(N, 0); 5593 NewSDValueDbgMsg(V, "Creating new node: ", this); 5594 return V; 5595 } 5596 5597 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5598 SDValue N1, SDValue N2) { 5599 SDNodeFlags Flags; 5600 if (Inserter) 5601 Flags = Inserter->getFlags(); 5602 return getNode(Opcode, DL, VT, N1, N2, Flags); 5603 } 5604 5605 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5606 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5607 assert(N1.getOpcode() != ISD::DELETED_NODE && 5608 N2.getOpcode() != ISD::DELETED_NODE && 5609 "Operand is DELETED_NODE!"); 5610 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5611 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5612 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5613 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5614 5615 // Canonicalize constant to RHS if commutative. 5616 if (TLI->isCommutativeBinOp(Opcode)) { 5617 if (N1C && !N2C) { 5618 std::swap(N1C, N2C); 5619 std::swap(N1, N2); 5620 } else if (N1CFP && !N2CFP) { 5621 std::swap(N1CFP, N2CFP); 5622 std::swap(N1, N2); 5623 } 5624 } 5625 5626 switch (Opcode) { 5627 default: break; 5628 case ISD::TokenFactor: 5629 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5630 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5631 // Fold trivial token factors. 5632 if (N1.getOpcode() == ISD::EntryToken) return N2; 5633 if (N2.getOpcode() == ISD::EntryToken) return N1; 5634 if (N1 == N2) return N1; 5635 break; 5636 case ISD::BUILD_VECTOR: { 5637 // Attempt to simplify BUILD_VECTOR. 5638 SDValue Ops[] = {N1, N2}; 5639 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5640 return V; 5641 break; 5642 } 5643 case ISD::CONCAT_VECTORS: { 5644 SDValue Ops[] = {N1, N2}; 5645 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5646 return V; 5647 break; 5648 } 5649 case ISD::AND: 5650 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5651 assert(N1.getValueType() == N2.getValueType() && 5652 N1.getValueType() == VT && "Binary operator types must match!"); 5653 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5654 // worth handling here. 5655 if (N2C && N2C->isZero()) 5656 return N2; 5657 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5658 return N1; 5659 break; 5660 case ISD::OR: 5661 case ISD::XOR: 5662 case ISD::ADD: 5663 case ISD::SUB: 5664 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5665 assert(N1.getValueType() == N2.getValueType() && 5666 N1.getValueType() == VT && "Binary operator types must match!"); 5667 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5668 // it's worth handling here. 5669 if (N2C && N2C->isZero()) 5670 return N1; 5671 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5672 VT.getVectorElementType() == MVT::i1) 5673 return getNode(ISD::XOR, DL, VT, N1, N2); 5674 break; 5675 case ISD::MUL: 5676 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5677 assert(N1.getValueType() == N2.getValueType() && 5678 N1.getValueType() == VT && "Binary operator types must match!"); 5679 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5680 return getNode(ISD::AND, DL, VT, N1, N2); 5681 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5682 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5683 const APInt &N2CImm = N2C->getAPIntValue(); 5684 return getVScale(DL, VT, MulImm * N2CImm); 5685 } 5686 break; 5687 case ISD::UDIV: 5688 case ISD::UREM: 5689 case ISD::MULHU: 5690 case ISD::MULHS: 5691 case ISD::SDIV: 5692 case ISD::SREM: 5693 case ISD::SADDSAT: 5694 case ISD::SSUBSAT: 5695 case ISD::UADDSAT: 5696 case ISD::USUBSAT: 5697 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5698 assert(N1.getValueType() == N2.getValueType() && 5699 N1.getValueType() == VT && "Binary operator types must match!"); 5700 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5701 // fold (add_sat x, y) -> (or x, y) for bool types. 5702 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5703 return getNode(ISD::OR, DL, VT, N1, N2); 5704 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5705 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5706 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5707 } 5708 break; 5709 case ISD::SMIN: 5710 case ISD::UMAX: 5711 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5712 assert(N1.getValueType() == N2.getValueType() && 5713 N1.getValueType() == VT && "Binary operator types must match!"); 5714 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5715 return getNode(ISD::OR, DL, VT, N1, N2); 5716 break; 5717 case ISD::SMAX: 5718 case ISD::UMIN: 5719 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5720 assert(N1.getValueType() == N2.getValueType() && 5721 N1.getValueType() == VT && "Binary operator types must match!"); 5722 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5723 return getNode(ISD::AND, DL, VT, N1, N2); 5724 break; 5725 case ISD::FADD: 5726 case ISD::FSUB: 5727 case ISD::FMUL: 5728 case ISD::FDIV: 5729 case ISD::FREM: 5730 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5731 assert(N1.getValueType() == N2.getValueType() && 5732 N1.getValueType() == VT && "Binary operator types must match!"); 5733 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5734 return V; 5735 break; 5736 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5737 assert(N1.getValueType() == VT && 5738 N1.getValueType().isFloatingPoint() && 5739 N2.getValueType().isFloatingPoint() && 5740 "Invalid FCOPYSIGN!"); 5741 break; 5742 case ISD::SHL: 5743 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5744 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5745 const APInt &ShiftImm = N2C->getAPIntValue(); 5746 return getVScale(DL, VT, MulImm << ShiftImm); 5747 } 5748 LLVM_FALLTHROUGH; 5749 case ISD::SRA: 5750 case ISD::SRL: 5751 if (SDValue V = simplifyShift(N1, N2)) 5752 return V; 5753 LLVM_FALLTHROUGH; 5754 case ISD::ROTL: 5755 case ISD::ROTR: 5756 assert(VT == N1.getValueType() && 5757 "Shift operators return type must be the same as their first arg"); 5758 assert(VT.isInteger() && N2.getValueType().isInteger() && 5759 "Shifts only work on integers"); 5760 assert((!VT.isVector() || VT == N2.getValueType()) && 5761 "Vector shift amounts must be in the same as their first arg"); 5762 // Verify that the shift amount VT is big enough to hold valid shift 5763 // amounts. This catches things like trying to shift an i1024 value by an 5764 // i8, which is easy to fall into in generic code that uses 5765 // TLI.getShiftAmount(). 5766 assert(N2.getValueType().getScalarSizeInBits() >= 5767 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5768 "Invalid use of small shift amount with oversized value!"); 5769 5770 // Always fold shifts of i1 values so the code generator doesn't need to 5771 // handle them. Since we know the size of the shift has to be less than the 5772 // size of the value, the shift/rotate count is guaranteed to be zero. 5773 if (VT == MVT::i1) 5774 return N1; 5775 if (N2C && N2C->isZero()) 5776 return N1; 5777 break; 5778 case ISD::FP_ROUND: 5779 assert(VT.isFloatingPoint() && 5780 N1.getValueType().isFloatingPoint() && 5781 VT.bitsLE(N1.getValueType()) && 5782 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5783 "Invalid FP_ROUND!"); 5784 if (N1.getValueType() == VT) return N1; // noop conversion. 5785 break; 5786 case ISD::AssertSext: 5787 case ISD::AssertZext: { 5788 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5789 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5790 assert(VT.isInteger() && EVT.isInteger() && 5791 "Cannot *_EXTEND_INREG FP types"); 5792 assert(!EVT.isVector() && 5793 "AssertSExt/AssertZExt type should be the vector element type " 5794 "rather than the vector type!"); 5795 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5796 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5797 break; 5798 } 5799 case ISD::SIGN_EXTEND_INREG: { 5800 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5801 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5802 assert(VT.isInteger() && EVT.isInteger() && 5803 "Cannot *_EXTEND_INREG FP types"); 5804 assert(EVT.isVector() == VT.isVector() && 5805 "SIGN_EXTEND_INREG type should be vector iff the operand " 5806 "type is vector!"); 5807 assert((!EVT.isVector() || 5808 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5809 "Vector element counts must match in SIGN_EXTEND_INREG"); 5810 assert(EVT.bitsLE(VT) && "Not extending!"); 5811 if (EVT == VT) return N1; // Not actually extending 5812 5813 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5814 unsigned FromBits = EVT.getScalarSizeInBits(); 5815 Val <<= Val.getBitWidth() - FromBits; 5816 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5817 return getConstant(Val, DL, ConstantVT); 5818 }; 5819 5820 if (N1C) { 5821 const APInt &Val = N1C->getAPIntValue(); 5822 return SignExtendInReg(Val, VT); 5823 } 5824 5825 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5826 SmallVector<SDValue, 8> Ops; 5827 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5828 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5829 SDValue Op = N1.getOperand(i); 5830 if (Op.isUndef()) { 5831 Ops.push_back(getUNDEF(OpVT)); 5832 continue; 5833 } 5834 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5835 APInt Val = C->getAPIntValue(); 5836 Ops.push_back(SignExtendInReg(Val, OpVT)); 5837 } 5838 return getBuildVector(VT, DL, Ops); 5839 } 5840 break; 5841 } 5842 case ISD::FP_TO_SINT_SAT: 5843 case ISD::FP_TO_UINT_SAT: { 5844 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5845 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5846 assert(N1.getValueType().isVector() == VT.isVector() && 5847 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5848 "vector!"); 5849 assert((!VT.isVector() || VT.getVectorNumElements() == 5850 N1.getValueType().getVectorNumElements()) && 5851 "Vector element counts must match in FP_TO_*INT_SAT"); 5852 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5853 "Type to saturate to must be a scalar."); 5854 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5855 "Not extending!"); 5856 break; 5857 } 5858 case ISD::EXTRACT_VECTOR_ELT: 5859 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5860 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5861 element type of the vector."); 5862 5863 // Extract from an undefined value or using an undefined index is undefined. 5864 if (N1.isUndef() || N2.isUndef()) 5865 return getUNDEF(VT); 5866 5867 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5868 // vectors. For scalable vectors we will provide appropriate support for 5869 // dealing with arbitrary indices. 5870 if (N2C && N1.getValueType().isFixedLengthVector() && 5871 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5872 return getUNDEF(VT); 5873 5874 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5875 // expanding copies of large vectors from registers. This only works for 5876 // fixed length vectors, since we need to know the exact number of 5877 // elements. 5878 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5879 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5880 unsigned Factor = 5881 N1.getOperand(0).getValueType().getVectorNumElements(); 5882 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5883 N1.getOperand(N2C->getZExtValue() / Factor), 5884 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5885 } 5886 5887 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5888 // lowering is expanding large vector constants. 5889 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5890 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5891 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5892 N1.getValueType().isFixedLengthVector()) && 5893 "BUILD_VECTOR used for scalable vectors"); 5894 unsigned Index = 5895 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5896 SDValue Elt = N1.getOperand(Index); 5897 5898 if (VT != Elt.getValueType()) 5899 // If the vector element type is not legal, the BUILD_VECTOR operands 5900 // are promoted and implicitly truncated, and the result implicitly 5901 // extended. Make that explicit here. 5902 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5903 5904 return Elt; 5905 } 5906 5907 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5908 // operations are lowered to scalars. 5909 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5910 // If the indices are the same, return the inserted element else 5911 // if the indices are known different, extract the element from 5912 // the original vector. 5913 SDValue N1Op2 = N1.getOperand(2); 5914 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5915 5916 if (N1Op2C && N2C) { 5917 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5918 if (VT == N1.getOperand(1).getValueType()) 5919 return N1.getOperand(1); 5920 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5921 } 5922 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5923 } 5924 } 5925 5926 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5927 // when vector types are scalarized and v1iX is legal. 5928 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5929 // Here we are completely ignoring the extract element index (N2), 5930 // which is fine for fixed width vectors, since any index other than 0 5931 // is undefined anyway. However, this cannot be ignored for scalable 5932 // vectors - in theory we could support this, but we don't want to do this 5933 // without a profitability check. 5934 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5935 N1.getValueType().isFixedLengthVector() && 5936 N1.getValueType().getVectorNumElements() == 1) { 5937 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5938 N1.getOperand(1)); 5939 } 5940 break; 5941 case ISD::EXTRACT_ELEMENT: 5942 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5943 assert(!N1.getValueType().isVector() && !VT.isVector() && 5944 (N1.getValueType().isInteger() == VT.isInteger()) && 5945 N1.getValueType() != VT && 5946 "Wrong types for EXTRACT_ELEMENT!"); 5947 5948 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5949 // 64-bit integers into 32-bit parts. Instead of building the extract of 5950 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5951 if (N1.getOpcode() == ISD::BUILD_PAIR) 5952 return N1.getOperand(N2C->getZExtValue()); 5953 5954 // EXTRACT_ELEMENT of a constant int is also very common. 5955 if (N1C) { 5956 unsigned ElementSize = VT.getSizeInBits(); 5957 unsigned Shift = ElementSize * N2C->getZExtValue(); 5958 const APInt &Val = N1C->getAPIntValue(); 5959 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5960 } 5961 break; 5962 case ISD::EXTRACT_SUBVECTOR: { 5963 EVT N1VT = N1.getValueType(); 5964 assert(VT.isVector() && N1VT.isVector() && 5965 "Extract subvector VTs must be vectors!"); 5966 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5967 "Extract subvector VTs must have the same element type!"); 5968 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5969 "Cannot extract a scalable vector from a fixed length vector!"); 5970 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5971 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5972 "Extract subvector must be from larger vector to smaller vector!"); 5973 assert(N2C && "Extract subvector index must be a constant"); 5974 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5975 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5976 N1VT.getVectorMinNumElements()) && 5977 "Extract subvector overflow!"); 5978 assert(N2C->getAPIntValue().getBitWidth() == 5979 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5980 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5981 5982 // Trivial extraction. 5983 if (VT == N1VT) 5984 return N1; 5985 5986 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5987 if (N1.isUndef()) 5988 return getUNDEF(VT); 5989 5990 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5991 // the concat have the same type as the extract. 5992 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5993 VT == N1.getOperand(0).getValueType()) { 5994 unsigned Factor = VT.getVectorMinNumElements(); 5995 return N1.getOperand(N2C->getZExtValue() / Factor); 5996 } 5997 5998 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5999 // during shuffle legalization. 6000 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6001 VT == N1.getOperand(1).getValueType()) 6002 return N1.getOperand(1); 6003 break; 6004 } 6005 } 6006 6007 // Perform trivial constant folding. 6008 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6009 return SV; 6010 6011 // Canonicalize an UNDEF to the RHS, even over a constant. 6012 if (N1.isUndef()) { 6013 if (TLI->isCommutativeBinOp(Opcode)) { 6014 std::swap(N1, N2); 6015 } else { 6016 switch (Opcode) { 6017 case ISD::SIGN_EXTEND_INREG: 6018 case ISD::SUB: 6019 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6020 case ISD::UDIV: 6021 case ISD::SDIV: 6022 case ISD::UREM: 6023 case ISD::SREM: 6024 case ISD::SSUBSAT: 6025 case ISD::USUBSAT: 6026 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6027 } 6028 } 6029 } 6030 6031 // Fold a bunch of operators when the RHS is undef. 6032 if (N2.isUndef()) { 6033 switch (Opcode) { 6034 case ISD::XOR: 6035 if (N1.isUndef()) 6036 // Handle undef ^ undef -> 0 special case. This is a common 6037 // idiom (misuse). 6038 return getConstant(0, DL, VT); 6039 LLVM_FALLTHROUGH; 6040 case ISD::ADD: 6041 case ISD::SUB: 6042 case ISD::UDIV: 6043 case ISD::SDIV: 6044 case ISD::UREM: 6045 case ISD::SREM: 6046 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6047 case ISD::MUL: 6048 case ISD::AND: 6049 case ISD::SSUBSAT: 6050 case ISD::USUBSAT: 6051 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6052 case ISD::OR: 6053 case ISD::SADDSAT: 6054 case ISD::UADDSAT: 6055 return getAllOnesConstant(DL, VT); 6056 } 6057 } 6058 6059 // Memoize this node if possible. 6060 SDNode *N; 6061 SDVTList VTs = getVTList(VT); 6062 SDValue Ops[] = {N1, N2}; 6063 if (VT != MVT::Glue) { 6064 FoldingSetNodeID ID; 6065 AddNodeIDNode(ID, Opcode, VTs, Ops); 6066 void *IP = nullptr; 6067 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6068 E->intersectFlagsWith(Flags); 6069 return SDValue(E, 0); 6070 } 6071 6072 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6073 N->setFlags(Flags); 6074 createOperands(N, Ops); 6075 CSEMap.InsertNode(N, IP); 6076 } else { 6077 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6078 createOperands(N, Ops); 6079 } 6080 6081 InsertNode(N); 6082 SDValue V = SDValue(N, 0); 6083 NewSDValueDbgMsg(V, "Creating new node: ", this); 6084 return V; 6085 } 6086 6087 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6088 SDValue N1, SDValue N2, SDValue N3) { 6089 SDNodeFlags Flags; 6090 if (Inserter) 6091 Flags = Inserter->getFlags(); 6092 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6093 } 6094 6095 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6096 SDValue N1, SDValue N2, SDValue N3, 6097 const SDNodeFlags Flags) { 6098 assert(N1.getOpcode() != ISD::DELETED_NODE && 6099 N2.getOpcode() != ISD::DELETED_NODE && 6100 N3.getOpcode() != ISD::DELETED_NODE && 6101 "Operand is DELETED_NODE!"); 6102 // Perform various simplifications. 6103 switch (Opcode) { 6104 case ISD::FMA: { 6105 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6106 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6107 N3.getValueType() == VT && "FMA types must match!"); 6108 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6109 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6110 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6111 if (N1CFP && N2CFP && N3CFP) { 6112 APFloat V1 = N1CFP->getValueAPF(); 6113 const APFloat &V2 = N2CFP->getValueAPF(); 6114 const APFloat &V3 = N3CFP->getValueAPF(); 6115 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6116 return getConstantFP(V1, DL, VT); 6117 } 6118 break; 6119 } 6120 case ISD::BUILD_VECTOR: { 6121 // Attempt to simplify BUILD_VECTOR. 6122 SDValue Ops[] = {N1, N2, N3}; 6123 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6124 return V; 6125 break; 6126 } 6127 case ISD::CONCAT_VECTORS: { 6128 SDValue Ops[] = {N1, N2, N3}; 6129 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6130 return V; 6131 break; 6132 } 6133 case ISD::SETCC: { 6134 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6135 assert(N1.getValueType() == N2.getValueType() && 6136 "SETCC operands must have the same type!"); 6137 assert(VT.isVector() == N1.getValueType().isVector() && 6138 "SETCC type should be vector iff the operand type is vector!"); 6139 assert((!VT.isVector() || VT.getVectorElementCount() == 6140 N1.getValueType().getVectorElementCount()) && 6141 "SETCC vector element counts must match!"); 6142 // Use FoldSetCC to simplify SETCC's. 6143 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6144 return V; 6145 // Vector constant folding. 6146 SDValue Ops[] = {N1, N2, N3}; 6147 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6148 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6149 return V; 6150 } 6151 break; 6152 } 6153 case ISD::SELECT: 6154 case ISD::VSELECT: 6155 if (SDValue V = simplifySelect(N1, N2, N3)) 6156 return V; 6157 break; 6158 case ISD::VECTOR_SHUFFLE: 6159 llvm_unreachable("should use getVectorShuffle constructor!"); 6160 case ISD::VECTOR_SPLICE: { 6161 if (cast<ConstantSDNode>(N3)->isNullValue()) 6162 return N1; 6163 break; 6164 } 6165 case ISD::INSERT_VECTOR_ELT: { 6166 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6167 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6168 // for scalable vectors where we will generate appropriate code to 6169 // deal with out-of-bounds cases correctly. 6170 if (N3C && N1.getValueType().isFixedLengthVector() && 6171 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6172 return getUNDEF(VT); 6173 6174 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6175 if (N3.isUndef()) 6176 return getUNDEF(VT); 6177 6178 // If the inserted element is an UNDEF, just use the input vector. 6179 if (N2.isUndef()) 6180 return N1; 6181 6182 break; 6183 } 6184 case ISD::INSERT_SUBVECTOR: { 6185 // Inserting undef into undef is still undef. 6186 if (N1.isUndef() && N2.isUndef()) 6187 return getUNDEF(VT); 6188 6189 EVT N2VT = N2.getValueType(); 6190 assert(VT == N1.getValueType() && 6191 "Dest and insert subvector source types must match!"); 6192 assert(VT.isVector() && N2VT.isVector() && 6193 "Insert subvector VTs must be vectors!"); 6194 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6195 "Cannot insert a scalable vector into a fixed length vector!"); 6196 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6197 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6198 "Insert subvector must be from smaller vector to larger vector!"); 6199 assert(isa<ConstantSDNode>(N3) && 6200 "Insert subvector index must be constant"); 6201 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6202 (N2VT.getVectorMinNumElements() + 6203 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6204 VT.getVectorMinNumElements()) && 6205 "Insert subvector overflow!"); 6206 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6207 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6208 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6209 6210 // Trivial insertion. 6211 if (VT == N2VT) 6212 return N2; 6213 6214 // If this is an insert of an extracted vector into an undef vector, we 6215 // can just use the input to the extract. 6216 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6217 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6218 return N2.getOperand(0); 6219 break; 6220 } 6221 case ISD::BITCAST: 6222 // Fold bit_convert nodes from a type to themselves. 6223 if (N1.getValueType() == VT) 6224 return N1; 6225 break; 6226 } 6227 6228 // Memoize node if it doesn't produce a flag. 6229 SDNode *N; 6230 SDVTList VTs = getVTList(VT); 6231 SDValue Ops[] = {N1, N2, N3}; 6232 if (VT != MVT::Glue) { 6233 FoldingSetNodeID ID; 6234 AddNodeIDNode(ID, Opcode, VTs, Ops); 6235 void *IP = nullptr; 6236 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6237 E->intersectFlagsWith(Flags); 6238 return SDValue(E, 0); 6239 } 6240 6241 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6242 N->setFlags(Flags); 6243 createOperands(N, Ops); 6244 CSEMap.InsertNode(N, IP); 6245 } else { 6246 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6247 createOperands(N, Ops); 6248 } 6249 6250 InsertNode(N); 6251 SDValue V = SDValue(N, 0); 6252 NewSDValueDbgMsg(V, "Creating new node: ", this); 6253 return V; 6254 } 6255 6256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6257 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6258 SDValue Ops[] = { N1, N2, N3, N4 }; 6259 return getNode(Opcode, DL, VT, Ops); 6260 } 6261 6262 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6263 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6264 SDValue N5) { 6265 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6266 return getNode(Opcode, DL, VT, Ops); 6267 } 6268 6269 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6270 /// the incoming stack arguments to be loaded from the stack. 6271 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6272 SmallVector<SDValue, 8> ArgChains; 6273 6274 // Include the original chain at the beginning of the list. When this is 6275 // used by target LowerCall hooks, this helps legalize find the 6276 // CALLSEQ_BEGIN node. 6277 ArgChains.push_back(Chain); 6278 6279 // Add a chain value for each stack argument. 6280 for (SDNode *U : getEntryNode().getNode()->uses()) 6281 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6282 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6283 if (FI->getIndex() < 0) 6284 ArgChains.push_back(SDValue(L, 1)); 6285 6286 // Build a tokenfactor for all the chains. 6287 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6288 } 6289 6290 /// getMemsetValue - Vectorized representation of the memset value 6291 /// operand. 6292 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6293 const SDLoc &dl) { 6294 assert(!Value.isUndef()); 6295 6296 unsigned NumBits = VT.getScalarSizeInBits(); 6297 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6298 assert(C->getAPIntValue().getBitWidth() == 8); 6299 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6300 if (VT.isInteger()) { 6301 bool IsOpaque = VT.getSizeInBits() > 64 || 6302 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6303 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6304 } 6305 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6306 VT); 6307 } 6308 6309 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6310 EVT IntVT = VT.getScalarType(); 6311 if (!IntVT.isInteger()) 6312 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6313 6314 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6315 if (NumBits > 8) { 6316 // Use a multiplication with 0x010101... to extend the input to the 6317 // required length. 6318 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6319 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6320 DAG.getConstant(Magic, dl, IntVT)); 6321 } 6322 6323 if (VT != Value.getValueType() && !VT.isInteger()) 6324 Value = DAG.getBitcast(VT.getScalarType(), Value); 6325 if (VT != Value.getValueType()) 6326 Value = DAG.getSplatBuildVector(VT, dl, Value); 6327 6328 return Value; 6329 } 6330 6331 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6332 /// used when a memcpy is turned into a memset when the source is a constant 6333 /// string ptr. 6334 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6335 const TargetLowering &TLI, 6336 const ConstantDataArraySlice &Slice) { 6337 // Handle vector with all elements zero. 6338 if (Slice.Array == nullptr) { 6339 if (VT.isInteger()) 6340 return DAG.getConstant(0, dl, VT); 6341 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6342 return DAG.getConstantFP(0.0, dl, VT); 6343 if (VT.isVector()) { 6344 unsigned NumElts = VT.getVectorNumElements(); 6345 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6346 return DAG.getNode(ISD::BITCAST, dl, VT, 6347 DAG.getConstant(0, dl, 6348 EVT::getVectorVT(*DAG.getContext(), 6349 EltVT, NumElts))); 6350 } 6351 llvm_unreachable("Expected type!"); 6352 } 6353 6354 assert(!VT.isVector() && "Can't handle vector type here!"); 6355 unsigned NumVTBits = VT.getSizeInBits(); 6356 unsigned NumVTBytes = NumVTBits / 8; 6357 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6358 6359 APInt Val(NumVTBits, 0); 6360 if (DAG.getDataLayout().isLittleEndian()) { 6361 for (unsigned i = 0; i != NumBytes; ++i) 6362 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6363 } else { 6364 for (unsigned i = 0; i != NumBytes; ++i) 6365 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6366 } 6367 6368 // If the "cost" of materializing the integer immediate is less than the cost 6369 // of a load, then it is cost effective to turn the load into the immediate. 6370 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6371 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6372 return DAG.getConstant(Val, dl, VT); 6373 return SDValue(); 6374 } 6375 6376 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6377 const SDLoc &DL, 6378 const SDNodeFlags Flags) { 6379 EVT VT = Base.getValueType(); 6380 SDValue Index; 6381 6382 if (Offset.isScalable()) 6383 Index = getVScale(DL, Base.getValueType(), 6384 APInt(Base.getValueSizeInBits().getFixedSize(), 6385 Offset.getKnownMinSize())); 6386 else 6387 Index = getConstant(Offset.getFixedSize(), DL, VT); 6388 6389 return getMemBasePlusOffset(Base, Index, DL, Flags); 6390 } 6391 6392 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6393 const SDLoc &DL, 6394 const SDNodeFlags Flags) { 6395 assert(Offset.getValueType().isInteger()); 6396 EVT BasePtrVT = Ptr.getValueType(); 6397 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6398 } 6399 6400 /// Returns true if memcpy source is constant data. 6401 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6402 uint64_t SrcDelta = 0; 6403 GlobalAddressSDNode *G = nullptr; 6404 if (Src.getOpcode() == ISD::GlobalAddress) 6405 G = cast<GlobalAddressSDNode>(Src); 6406 else if (Src.getOpcode() == ISD::ADD && 6407 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6408 Src.getOperand(1).getOpcode() == ISD::Constant) { 6409 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6410 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6411 } 6412 if (!G) 6413 return false; 6414 6415 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6416 SrcDelta + G->getOffset()); 6417 } 6418 6419 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6420 SelectionDAG &DAG) { 6421 // On Darwin, -Os means optimize for size without hurting performance, so 6422 // only really optimize for size when -Oz (MinSize) is used. 6423 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6424 return MF.getFunction().hasMinSize(); 6425 return DAG.shouldOptForSize(); 6426 } 6427 6428 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6429 SmallVector<SDValue, 32> &OutChains, unsigned From, 6430 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6431 SmallVector<SDValue, 16> &OutStoreChains) { 6432 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6433 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6434 SmallVector<SDValue, 16> GluedLoadChains; 6435 for (unsigned i = From; i < To; ++i) { 6436 OutChains.push_back(OutLoadChains[i]); 6437 GluedLoadChains.push_back(OutLoadChains[i]); 6438 } 6439 6440 // Chain for all loads. 6441 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6442 GluedLoadChains); 6443 6444 for (unsigned i = From; i < To; ++i) { 6445 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6446 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6447 ST->getBasePtr(), ST->getMemoryVT(), 6448 ST->getMemOperand()); 6449 OutChains.push_back(NewStore); 6450 } 6451 } 6452 6453 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6454 SDValue Chain, SDValue Dst, SDValue Src, 6455 uint64_t Size, Align Alignment, 6456 bool isVol, bool AlwaysInline, 6457 MachinePointerInfo DstPtrInfo, 6458 MachinePointerInfo SrcPtrInfo, 6459 const AAMDNodes &AAInfo) { 6460 // Turn a memcpy of undef to nop. 6461 // FIXME: We need to honor volatile even is Src is undef. 6462 if (Src.isUndef()) 6463 return Chain; 6464 6465 // Expand memcpy to a series of load and store ops if the size operand falls 6466 // below a certain threshold. 6467 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6468 // rather than maybe a humongous number of loads and stores. 6469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6470 const DataLayout &DL = DAG.getDataLayout(); 6471 LLVMContext &C = *DAG.getContext(); 6472 std::vector<EVT> MemOps; 6473 bool DstAlignCanChange = false; 6474 MachineFunction &MF = DAG.getMachineFunction(); 6475 MachineFrameInfo &MFI = MF.getFrameInfo(); 6476 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6477 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6478 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6479 DstAlignCanChange = true; 6480 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6481 if (!SrcAlign || Alignment > *SrcAlign) 6482 SrcAlign = Alignment; 6483 assert(SrcAlign && "SrcAlign must be set"); 6484 ConstantDataArraySlice Slice; 6485 // If marked as volatile, perform a copy even when marked as constant. 6486 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6487 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6488 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6489 const MemOp Op = isZeroConstant 6490 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6491 /*IsZeroMemset*/ true, isVol) 6492 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6493 *SrcAlign, isVol, CopyFromConstant); 6494 if (!TLI.findOptimalMemOpLowering( 6495 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6496 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6497 return SDValue(); 6498 6499 if (DstAlignCanChange) { 6500 Type *Ty = MemOps[0].getTypeForEVT(C); 6501 Align NewAlign = DL.getABITypeAlign(Ty); 6502 6503 // Don't promote to an alignment that would require dynamic stack 6504 // realignment. 6505 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6506 if (!TRI->hasStackRealignment(MF)) 6507 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6508 NewAlign = NewAlign / 2; 6509 6510 if (NewAlign > Alignment) { 6511 // Give the stack frame object a larger alignment if needed. 6512 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6513 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6514 Alignment = NewAlign; 6515 } 6516 } 6517 6518 // Prepare AAInfo for loads/stores after lowering this memcpy. 6519 AAMDNodes NewAAInfo = AAInfo; 6520 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6521 6522 MachineMemOperand::Flags MMOFlags = 6523 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6524 SmallVector<SDValue, 16> OutLoadChains; 6525 SmallVector<SDValue, 16> OutStoreChains; 6526 SmallVector<SDValue, 32> OutChains; 6527 unsigned NumMemOps = MemOps.size(); 6528 uint64_t SrcOff = 0, DstOff = 0; 6529 for (unsigned i = 0; i != NumMemOps; ++i) { 6530 EVT VT = MemOps[i]; 6531 unsigned VTSize = VT.getSizeInBits() / 8; 6532 SDValue Value, Store; 6533 6534 if (VTSize > Size) { 6535 // Issuing an unaligned load / store pair that overlaps with the previous 6536 // pair. Adjust the offset accordingly. 6537 assert(i == NumMemOps-1 && i != 0); 6538 SrcOff -= VTSize - Size; 6539 DstOff -= VTSize - Size; 6540 } 6541 6542 if (CopyFromConstant && 6543 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6544 // It's unlikely a store of a vector immediate can be done in a single 6545 // instruction. It would require a load from a constantpool first. 6546 // We only handle zero vectors here. 6547 // FIXME: Handle other cases where store of vector immediate is done in 6548 // a single instruction. 6549 ConstantDataArraySlice SubSlice; 6550 if (SrcOff < Slice.Length) { 6551 SubSlice = Slice; 6552 SubSlice.move(SrcOff); 6553 } else { 6554 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6555 SubSlice.Array = nullptr; 6556 SubSlice.Offset = 0; 6557 SubSlice.Length = VTSize; 6558 } 6559 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6560 if (Value.getNode()) { 6561 Store = DAG.getStore( 6562 Chain, dl, Value, 6563 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6564 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6565 OutChains.push_back(Store); 6566 } 6567 } 6568 6569 if (!Store.getNode()) { 6570 // The type might not be legal for the target. This should only happen 6571 // if the type is smaller than a legal type, as on PPC, so the right 6572 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6573 // to Load/Store if NVT==VT. 6574 // FIXME does the case above also need this? 6575 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6576 assert(NVT.bitsGE(VT)); 6577 6578 bool isDereferenceable = 6579 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6580 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6581 if (isDereferenceable) 6582 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6583 6584 Value = DAG.getExtLoad( 6585 ISD::EXTLOAD, dl, NVT, Chain, 6586 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6587 SrcPtrInfo.getWithOffset(SrcOff), VT, 6588 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6589 OutLoadChains.push_back(Value.getValue(1)); 6590 6591 Store = DAG.getTruncStore( 6592 Chain, dl, Value, 6593 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6594 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6595 OutStoreChains.push_back(Store); 6596 } 6597 SrcOff += VTSize; 6598 DstOff += VTSize; 6599 Size -= VTSize; 6600 } 6601 6602 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6603 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6604 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6605 6606 if (NumLdStInMemcpy) { 6607 // It may be that memcpy might be converted to memset if it's memcpy 6608 // of constants. In such a case, we won't have loads and stores, but 6609 // just stores. In the absence of loads, there is nothing to gang up. 6610 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6611 // If target does not care, just leave as it. 6612 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6613 OutChains.push_back(OutLoadChains[i]); 6614 OutChains.push_back(OutStoreChains[i]); 6615 } 6616 } else { 6617 // Ld/St less than/equal limit set by target. 6618 if (NumLdStInMemcpy <= GluedLdStLimit) { 6619 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6620 NumLdStInMemcpy, OutLoadChains, 6621 OutStoreChains); 6622 } else { 6623 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6624 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6625 unsigned GlueIter = 0; 6626 6627 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6628 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6629 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6630 6631 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6632 OutLoadChains, OutStoreChains); 6633 GlueIter += GluedLdStLimit; 6634 } 6635 6636 // Residual ld/st. 6637 if (RemainingLdStInMemcpy) { 6638 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6639 RemainingLdStInMemcpy, OutLoadChains, 6640 OutStoreChains); 6641 } 6642 } 6643 } 6644 } 6645 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6646 } 6647 6648 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6649 SDValue Chain, SDValue Dst, SDValue Src, 6650 uint64_t Size, Align Alignment, 6651 bool isVol, bool AlwaysInline, 6652 MachinePointerInfo DstPtrInfo, 6653 MachinePointerInfo SrcPtrInfo, 6654 const AAMDNodes &AAInfo) { 6655 // Turn a memmove of undef to nop. 6656 // FIXME: We need to honor volatile even is Src is undef. 6657 if (Src.isUndef()) 6658 return Chain; 6659 6660 // Expand memmove to a series of load and store ops if the size operand falls 6661 // below a certain threshold. 6662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6663 const DataLayout &DL = DAG.getDataLayout(); 6664 LLVMContext &C = *DAG.getContext(); 6665 std::vector<EVT> MemOps; 6666 bool DstAlignCanChange = false; 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 MachineFrameInfo &MFI = MF.getFrameInfo(); 6669 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6670 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6671 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6672 DstAlignCanChange = true; 6673 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6674 if (!SrcAlign || Alignment > *SrcAlign) 6675 SrcAlign = Alignment; 6676 assert(SrcAlign && "SrcAlign must be set"); 6677 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6678 if (!TLI.findOptimalMemOpLowering( 6679 MemOps, Limit, 6680 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6681 /*IsVolatile*/ true), 6682 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6683 MF.getFunction().getAttributes())) 6684 return SDValue(); 6685 6686 if (DstAlignCanChange) { 6687 Type *Ty = MemOps[0].getTypeForEVT(C); 6688 Align NewAlign = DL.getABITypeAlign(Ty); 6689 if (NewAlign > Alignment) { 6690 // Give the stack frame object a larger alignment if needed. 6691 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6692 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6693 Alignment = NewAlign; 6694 } 6695 } 6696 6697 // Prepare AAInfo for loads/stores after lowering this memmove. 6698 AAMDNodes NewAAInfo = AAInfo; 6699 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6700 6701 MachineMemOperand::Flags MMOFlags = 6702 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6703 uint64_t SrcOff = 0, DstOff = 0; 6704 SmallVector<SDValue, 8> LoadValues; 6705 SmallVector<SDValue, 8> LoadChains; 6706 SmallVector<SDValue, 8> OutChains; 6707 unsigned NumMemOps = MemOps.size(); 6708 for (unsigned i = 0; i < NumMemOps; i++) { 6709 EVT VT = MemOps[i]; 6710 unsigned VTSize = VT.getSizeInBits() / 8; 6711 SDValue Value; 6712 6713 bool isDereferenceable = 6714 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6715 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6716 if (isDereferenceable) 6717 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6718 6719 Value = DAG.getLoad( 6720 VT, dl, Chain, 6721 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6722 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6723 LoadValues.push_back(Value); 6724 LoadChains.push_back(Value.getValue(1)); 6725 SrcOff += VTSize; 6726 } 6727 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6728 OutChains.clear(); 6729 for (unsigned i = 0; i < NumMemOps; i++) { 6730 EVT VT = MemOps[i]; 6731 unsigned VTSize = VT.getSizeInBits() / 8; 6732 SDValue Store; 6733 6734 Store = DAG.getStore( 6735 Chain, dl, LoadValues[i], 6736 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6737 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6738 OutChains.push_back(Store); 6739 DstOff += VTSize; 6740 } 6741 6742 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6743 } 6744 6745 /// Lower the call to 'memset' intrinsic function into a series of store 6746 /// operations. 6747 /// 6748 /// \param DAG Selection DAG where lowered code is placed. 6749 /// \param dl Link to corresponding IR location. 6750 /// \param Chain Control flow dependency. 6751 /// \param Dst Pointer to destination memory location. 6752 /// \param Src Value of byte to write into the memory. 6753 /// \param Size Number of bytes to write. 6754 /// \param Alignment Alignment of the destination in bytes. 6755 /// \param isVol True if destination is volatile. 6756 /// \param DstPtrInfo IR information on the memory pointer. 6757 /// \returns New head in the control flow, if lowering was successful, empty 6758 /// SDValue otherwise. 6759 /// 6760 /// The function tries to replace 'llvm.memset' intrinsic with several store 6761 /// operations and value calculation code. This is usually profitable for small 6762 /// memory size. 6763 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6764 SDValue Chain, SDValue Dst, SDValue Src, 6765 uint64_t Size, Align Alignment, bool isVol, 6766 MachinePointerInfo DstPtrInfo, 6767 const AAMDNodes &AAInfo) { 6768 // Turn a memset of undef to nop. 6769 // FIXME: We need to honor volatile even is Src is undef. 6770 if (Src.isUndef()) 6771 return Chain; 6772 6773 // Expand memset to a series of load/store ops if the size operand 6774 // falls below a certain threshold. 6775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6776 std::vector<EVT> MemOps; 6777 bool DstAlignCanChange = false; 6778 MachineFunction &MF = DAG.getMachineFunction(); 6779 MachineFrameInfo &MFI = MF.getFrameInfo(); 6780 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6781 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6782 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6783 DstAlignCanChange = true; 6784 bool IsZeroVal = 6785 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6786 if (!TLI.findOptimalMemOpLowering( 6787 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6788 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6789 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6790 return SDValue(); 6791 6792 if (DstAlignCanChange) { 6793 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6794 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6795 if (NewAlign > Alignment) { 6796 // Give the stack frame object a larger alignment if needed. 6797 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6798 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6799 Alignment = NewAlign; 6800 } 6801 } 6802 6803 SmallVector<SDValue, 8> OutChains; 6804 uint64_t DstOff = 0; 6805 unsigned NumMemOps = MemOps.size(); 6806 6807 // Find the largest store and generate the bit pattern for it. 6808 EVT LargestVT = MemOps[0]; 6809 for (unsigned i = 1; i < NumMemOps; i++) 6810 if (MemOps[i].bitsGT(LargestVT)) 6811 LargestVT = MemOps[i]; 6812 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6813 6814 // Prepare AAInfo for loads/stores after lowering this memset. 6815 AAMDNodes NewAAInfo = AAInfo; 6816 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6817 6818 for (unsigned i = 0; i < NumMemOps; i++) { 6819 EVT VT = MemOps[i]; 6820 unsigned VTSize = VT.getSizeInBits() / 8; 6821 if (VTSize > Size) { 6822 // Issuing an unaligned load / store pair that overlaps with the previous 6823 // pair. Adjust the offset accordingly. 6824 assert(i == NumMemOps-1 && i != 0); 6825 DstOff -= VTSize - Size; 6826 } 6827 6828 // If this store is smaller than the largest store see whether we can get 6829 // the smaller value for free with a truncate. 6830 SDValue Value = MemSetValue; 6831 if (VT.bitsLT(LargestVT)) { 6832 if (!LargestVT.isVector() && !VT.isVector() && 6833 TLI.isTruncateFree(LargestVT, VT)) 6834 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6835 else 6836 Value = getMemsetValue(Src, VT, DAG, dl); 6837 } 6838 assert(Value.getValueType() == VT && "Value with wrong type."); 6839 SDValue Store = DAG.getStore( 6840 Chain, dl, Value, 6841 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6842 DstPtrInfo.getWithOffset(DstOff), Alignment, 6843 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6844 NewAAInfo); 6845 OutChains.push_back(Store); 6846 DstOff += VT.getSizeInBits() / 8; 6847 Size -= VTSize; 6848 } 6849 6850 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6851 } 6852 6853 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6854 unsigned AS) { 6855 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6856 // pointer operands can be losslessly bitcasted to pointers of address space 0 6857 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6858 report_fatal_error("cannot lower memory intrinsic in address space " + 6859 Twine(AS)); 6860 } 6861 } 6862 6863 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6864 SDValue Src, SDValue Size, Align Alignment, 6865 bool isVol, bool AlwaysInline, bool isTailCall, 6866 MachinePointerInfo DstPtrInfo, 6867 MachinePointerInfo SrcPtrInfo, 6868 const AAMDNodes &AAInfo) { 6869 // Check to see if we should lower the memcpy to loads and stores first. 6870 // For cases within the target-specified limits, this is the best choice. 6871 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6872 if (ConstantSize) { 6873 // Memcpy with size zero? Just return the original chain. 6874 if (ConstantSize->isZero()) 6875 return Chain; 6876 6877 SDValue Result = getMemcpyLoadsAndStores( 6878 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6879 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6880 if (Result.getNode()) 6881 return Result; 6882 } 6883 6884 // Then check to see if we should lower the memcpy with target-specific 6885 // code. If the target chooses to do this, this is the next best. 6886 if (TSI) { 6887 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6888 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6889 DstPtrInfo, SrcPtrInfo); 6890 if (Result.getNode()) 6891 return Result; 6892 } 6893 6894 // If we really need inline code and the target declined to provide it, 6895 // use a (potentially long) sequence of loads and stores. 6896 if (AlwaysInline) { 6897 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6898 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6899 ConstantSize->getZExtValue(), Alignment, 6900 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6901 } 6902 6903 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6904 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6905 6906 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6907 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6908 // respect volatile, so they may do things like read or write memory 6909 // beyond the given memory regions. But fixing this isn't easy, and most 6910 // people don't care. 6911 6912 // Emit a library call. 6913 TargetLowering::ArgListTy Args; 6914 TargetLowering::ArgListEntry Entry; 6915 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6916 Entry.Node = Dst; Args.push_back(Entry); 6917 Entry.Node = Src; Args.push_back(Entry); 6918 6919 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6920 Entry.Node = Size; Args.push_back(Entry); 6921 // FIXME: pass in SDLoc 6922 TargetLowering::CallLoweringInfo CLI(*this); 6923 CLI.setDebugLoc(dl) 6924 .setChain(Chain) 6925 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6926 Dst.getValueType().getTypeForEVT(*getContext()), 6927 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6928 TLI->getPointerTy(getDataLayout())), 6929 std::move(Args)) 6930 .setDiscardResult() 6931 .setTailCall(isTailCall); 6932 6933 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6934 return CallResult.second; 6935 } 6936 6937 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6938 SDValue Dst, unsigned DstAlign, 6939 SDValue Src, unsigned SrcAlign, 6940 SDValue Size, Type *SizeTy, 6941 unsigned ElemSz, bool isTailCall, 6942 MachinePointerInfo DstPtrInfo, 6943 MachinePointerInfo SrcPtrInfo) { 6944 // Emit a library call. 6945 TargetLowering::ArgListTy Args; 6946 TargetLowering::ArgListEntry Entry; 6947 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6948 Entry.Node = Dst; 6949 Args.push_back(Entry); 6950 6951 Entry.Node = Src; 6952 Args.push_back(Entry); 6953 6954 Entry.Ty = SizeTy; 6955 Entry.Node = Size; 6956 Args.push_back(Entry); 6957 6958 RTLIB::Libcall LibraryCall = 6959 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6960 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6961 report_fatal_error("Unsupported element size"); 6962 6963 TargetLowering::CallLoweringInfo CLI(*this); 6964 CLI.setDebugLoc(dl) 6965 .setChain(Chain) 6966 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6967 Type::getVoidTy(*getContext()), 6968 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6969 TLI->getPointerTy(getDataLayout())), 6970 std::move(Args)) 6971 .setDiscardResult() 6972 .setTailCall(isTailCall); 6973 6974 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6975 return CallResult.second; 6976 } 6977 6978 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6979 SDValue Src, SDValue Size, Align Alignment, 6980 bool isVol, bool isTailCall, 6981 MachinePointerInfo DstPtrInfo, 6982 MachinePointerInfo SrcPtrInfo, 6983 const AAMDNodes &AAInfo) { 6984 // Check to see if we should lower the memmove to loads and stores first. 6985 // For cases within the target-specified limits, this is the best choice. 6986 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6987 if (ConstantSize) { 6988 // Memmove with size zero? Just return the original chain. 6989 if (ConstantSize->isZero()) 6990 return Chain; 6991 6992 SDValue Result = getMemmoveLoadsAndStores( 6993 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6994 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6995 if (Result.getNode()) 6996 return Result; 6997 } 6998 6999 // Then check to see if we should lower the memmove with target-specific 7000 // code. If the target chooses to do this, this is the next best. 7001 if (TSI) { 7002 SDValue Result = 7003 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7004 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7005 if (Result.getNode()) 7006 return Result; 7007 } 7008 7009 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7010 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7011 7012 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7013 // not be safe. See memcpy above for more details. 7014 7015 // Emit a library call. 7016 TargetLowering::ArgListTy Args; 7017 TargetLowering::ArgListEntry Entry; 7018 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7019 Entry.Node = Dst; Args.push_back(Entry); 7020 Entry.Node = Src; Args.push_back(Entry); 7021 7022 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7023 Entry.Node = Size; Args.push_back(Entry); 7024 // FIXME: pass in SDLoc 7025 TargetLowering::CallLoweringInfo CLI(*this); 7026 CLI.setDebugLoc(dl) 7027 .setChain(Chain) 7028 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7029 Dst.getValueType().getTypeForEVT(*getContext()), 7030 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7031 TLI->getPointerTy(getDataLayout())), 7032 std::move(Args)) 7033 .setDiscardResult() 7034 .setTailCall(isTailCall); 7035 7036 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7037 return CallResult.second; 7038 } 7039 7040 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7041 SDValue Dst, unsigned DstAlign, 7042 SDValue Src, unsigned SrcAlign, 7043 SDValue Size, Type *SizeTy, 7044 unsigned ElemSz, bool isTailCall, 7045 MachinePointerInfo DstPtrInfo, 7046 MachinePointerInfo SrcPtrInfo) { 7047 // Emit a library call. 7048 TargetLowering::ArgListTy Args; 7049 TargetLowering::ArgListEntry Entry; 7050 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7051 Entry.Node = Dst; 7052 Args.push_back(Entry); 7053 7054 Entry.Node = Src; 7055 Args.push_back(Entry); 7056 7057 Entry.Ty = SizeTy; 7058 Entry.Node = Size; 7059 Args.push_back(Entry); 7060 7061 RTLIB::Libcall LibraryCall = 7062 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7063 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7064 report_fatal_error("Unsupported element size"); 7065 7066 TargetLowering::CallLoweringInfo CLI(*this); 7067 CLI.setDebugLoc(dl) 7068 .setChain(Chain) 7069 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7070 Type::getVoidTy(*getContext()), 7071 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7072 TLI->getPointerTy(getDataLayout())), 7073 std::move(Args)) 7074 .setDiscardResult() 7075 .setTailCall(isTailCall); 7076 7077 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7078 return CallResult.second; 7079 } 7080 7081 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7082 SDValue Src, SDValue Size, Align Alignment, 7083 bool isVol, bool isTailCall, 7084 MachinePointerInfo DstPtrInfo, 7085 const AAMDNodes &AAInfo) { 7086 // Check to see if we should lower the memset to stores first. 7087 // For cases within the target-specified limits, this is the best choice. 7088 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7089 if (ConstantSize) { 7090 // Memset with size zero? Just return the original chain. 7091 if (ConstantSize->isZero()) 7092 return Chain; 7093 7094 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7095 ConstantSize->getZExtValue(), Alignment, 7096 isVol, DstPtrInfo, AAInfo); 7097 7098 if (Result.getNode()) 7099 return Result; 7100 } 7101 7102 // Then check to see if we should lower the memset with target-specific 7103 // code. If the target chooses to do this, this is the next best. 7104 if (TSI) { 7105 SDValue Result = TSI->EmitTargetCodeForMemset( 7106 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7107 if (Result.getNode()) 7108 return Result; 7109 } 7110 7111 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7112 7113 // Emit a library call. 7114 TargetLowering::ArgListTy Args; 7115 TargetLowering::ArgListEntry Entry; 7116 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7117 Args.push_back(Entry); 7118 Entry.Node = Src; 7119 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7120 Args.push_back(Entry); 7121 Entry.Node = Size; 7122 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7123 Args.push_back(Entry); 7124 7125 // FIXME: pass in SDLoc 7126 TargetLowering::CallLoweringInfo CLI(*this); 7127 CLI.setDebugLoc(dl) 7128 .setChain(Chain) 7129 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7130 Dst.getValueType().getTypeForEVT(*getContext()), 7131 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7132 TLI->getPointerTy(getDataLayout())), 7133 std::move(Args)) 7134 .setDiscardResult() 7135 .setTailCall(isTailCall); 7136 7137 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7138 return CallResult.second; 7139 } 7140 7141 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7142 SDValue Dst, unsigned DstAlign, 7143 SDValue Value, SDValue Size, Type *SizeTy, 7144 unsigned ElemSz, bool isTailCall, 7145 MachinePointerInfo DstPtrInfo) { 7146 // Emit a library call. 7147 TargetLowering::ArgListTy Args; 7148 TargetLowering::ArgListEntry Entry; 7149 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7150 Entry.Node = Dst; 7151 Args.push_back(Entry); 7152 7153 Entry.Ty = Type::getInt8Ty(*getContext()); 7154 Entry.Node = Value; 7155 Args.push_back(Entry); 7156 7157 Entry.Ty = SizeTy; 7158 Entry.Node = Size; 7159 Args.push_back(Entry); 7160 7161 RTLIB::Libcall LibraryCall = 7162 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7163 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7164 report_fatal_error("Unsupported element size"); 7165 7166 TargetLowering::CallLoweringInfo CLI(*this); 7167 CLI.setDebugLoc(dl) 7168 .setChain(Chain) 7169 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7170 Type::getVoidTy(*getContext()), 7171 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7172 TLI->getPointerTy(getDataLayout())), 7173 std::move(Args)) 7174 .setDiscardResult() 7175 .setTailCall(isTailCall); 7176 7177 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7178 return CallResult.second; 7179 } 7180 7181 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7182 SDVTList VTList, ArrayRef<SDValue> Ops, 7183 MachineMemOperand *MMO) { 7184 FoldingSetNodeID ID; 7185 ID.AddInteger(MemVT.getRawBits()); 7186 AddNodeIDNode(ID, Opcode, VTList, Ops); 7187 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7188 void* IP = nullptr; 7189 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7190 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7191 return SDValue(E, 0); 7192 } 7193 7194 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7195 VTList, MemVT, MMO); 7196 createOperands(N, Ops); 7197 7198 CSEMap.InsertNode(N, IP); 7199 InsertNode(N); 7200 return SDValue(N, 0); 7201 } 7202 7203 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7204 EVT MemVT, SDVTList VTs, SDValue Chain, 7205 SDValue Ptr, SDValue Cmp, SDValue Swp, 7206 MachineMemOperand *MMO) { 7207 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7208 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7209 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7210 7211 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7212 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7213 } 7214 7215 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7216 SDValue Chain, SDValue Ptr, SDValue Val, 7217 MachineMemOperand *MMO) { 7218 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7219 Opcode == ISD::ATOMIC_LOAD_SUB || 7220 Opcode == ISD::ATOMIC_LOAD_AND || 7221 Opcode == ISD::ATOMIC_LOAD_CLR || 7222 Opcode == ISD::ATOMIC_LOAD_OR || 7223 Opcode == ISD::ATOMIC_LOAD_XOR || 7224 Opcode == ISD::ATOMIC_LOAD_NAND || 7225 Opcode == ISD::ATOMIC_LOAD_MIN || 7226 Opcode == ISD::ATOMIC_LOAD_MAX || 7227 Opcode == ISD::ATOMIC_LOAD_UMIN || 7228 Opcode == ISD::ATOMIC_LOAD_UMAX || 7229 Opcode == ISD::ATOMIC_LOAD_FADD || 7230 Opcode == ISD::ATOMIC_LOAD_FSUB || 7231 Opcode == ISD::ATOMIC_SWAP || 7232 Opcode == ISD::ATOMIC_STORE) && 7233 "Invalid Atomic Op"); 7234 7235 EVT VT = Val.getValueType(); 7236 7237 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7238 getVTList(VT, MVT::Other); 7239 SDValue Ops[] = {Chain, Ptr, Val}; 7240 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7241 } 7242 7243 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7244 EVT VT, SDValue Chain, SDValue Ptr, 7245 MachineMemOperand *MMO) { 7246 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7247 7248 SDVTList VTs = getVTList(VT, MVT::Other); 7249 SDValue Ops[] = {Chain, Ptr}; 7250 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7251 } 7252 7253 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7254 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7255 if (Ops.size() == 1) 7256 return Ops[0]; 7257 7258 SmallVector<EVT, 4> VTs; 7259 VTs.reserve(Ops.size()); 7260 for (const SDValue &Op : Ops) 7261 VTs.push_back(Op.getValueType()); 7262 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7263 } 7264 7265 SDValue SelectionDAG::getMemIntrinsicNode( 7266 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7267 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7268 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7269 if (!Size && MemVT.isScalableVector()) 7270 Size = MemoryLocation::UnknownSize; 7271 else if (!Size) 7272 Size = MemVT.getStoreSize(); 7273 7274 MachineFunction &MF = getMachineFunction(); 7275 MachineMemOperand *MMO = 7276 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7277 7278 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7279 } 7280 7281 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7282 SDVTList VTList, 7283 ArrayRef<SDValue> Ops, EVT MemVT, 7284 MachineMemOperand *MMO) { 7285 assert((Opcode == ISD::INTRINSIC_VOID || 7286 Opcode == ISD::INTRINSIC_W_CHAIN || 7287 Opcode == ISD::PREFETCH || 7288 ((int)Opcode <= std::numeric_limits<int>::max() && 7289 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7290 "Opcode is not a memory-accessing opcode!"); 7291 7292 // Memoize the node unless it returns a flag. 7293 MemIntrinsicSDNode *N; 7294 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7295 FoldingSetNodeID ID; 7296 AddNodeIDNode(ID, Opcode, VTList, Ops); 7297 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7298 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7299 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7300 void *IP = nullptr; 7301 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7302 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7303 return SDValue(E, 0); 7304 } 7305 7306 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7307 VTList, MemVT, MMO); 7308 createOperands(N, Ops); 7309 7310 CSEMap.InsertNode(N, IP); 7311 } else { 7312 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7313 VTList, MemVT, MMO); 7314 createOperands(N, Ops); 7315 } 7316 InsertNode(N); 7317 SDValue V(N, 0); 7318 NewSDValueDbgMsg(V, "Creating new node: ", this); 7319 return V; 7320 } 7321 7322 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7323 SDValue Chain, int FrameIndex, 7324 int64_t Size, int64_t Offset) { 7325 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7326 const auto VTs = getVTList(MVT::Other); 7327 SDValue Ops[2] = { 7328 Chain, 7329 getFrameIndex(FrameIndex, 7330 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7331 true)}; 7332 7333 FoldingSetNodeID ID; 7334 AddNodeIDNode(ID, Opcode, VTs, Ops); 7335 ID.AddInteger(FrameIndex); 7336 ID.AddInteger(Size); 7337 ID.AddInteger(Offset); 7338 void *IP = nullptr; 7339 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7340 return SDValue(E, 0); 7341 7342 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7343 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7344 createOperands(N, Ops); 7345 CSEMap.InsertNode(N, IP); 7346 InsertNode(N); 7347 SDValue V(N, 0); 7348 NewSDValueDbgMsg(V, "Creating new node: ", this); 7349 return V; 7350 } 7351 7352 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7353 uint64_t Guid, uint64_t Index, 7354 uint32_t Attr) { 7355 const unsigned Opcode = ISD::PSEUDO_PROBE; 7356 const auto VTs = getVTList(MVT::Other); 7357 SDValue Ops[] = {Chain}; 7358 FoldingSetNodeID ID; 7359 AddNodeIDNode(ID, Opcode, VTs, Ops); 7360 ID.AddInteger(Guid); 7361 ID.AddInteger(Index); 7362 void *IP = nullptr; 7363 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7364 return SDValue(E, 0); 7365 7366 auto *N = newSDNode<PseudoProbeSDNode>( 7367 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7368 createOperands(N, Ops); 7369 CSEMap.InsertNode(N, IP); 7370 InsertNode(N); 7371 SDValue V(N, 0); 7372 NewSDValueDbgMsg(V, "Creating new node: ", this); 7373 return V; 7374 } 7375 7376 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7377 /// MachinePointerInfo record from it. This is particularly useful because the 7378 /// code generator has many cases where it doesn't bother passing in a 7379 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7380 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7381 SelectionDAG &DAG, SDValue Ptr, 7382 int64_t Offset = 0) { 7383 // If this is FI+Offset, we can model it. 7384 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7385 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7386 FI->getIndex(), Offset); 7387 7388 // If this is (FI+Offset1)+Offset2, we can model it. 7389 if (Ptr.getOpcode() != ISD::ADD || 7390 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7391 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7392 return Info; 7393 7394 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7395 return MachinePointerInfo::getFixedStack( 7396 DAG.getMachineFunction(), FI, 7397 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7398 } 7399 7400 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7401 /// MachinePointerInfo record from it. This is particularly useful because the 7402 /// code generator has many cases where it doesn't bother passing in a 7403 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7404 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7405 SelectionDAG &DAG, SDValue Ptr, 7406 SDValue OffsetOp) { 7407 // If the 'Offset' value isn't a constant, we can't handle this. 7408 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7409 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7410 if (OffsetOp.isUndef()) 7411 return InferPointerInfo(Info, DAG, Ptr); 7412 return Info; 7413 } 7414 7415 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7416 EVT VT, const SDLoc &dl, SDValue Chain, 7417 SDValue Ptr, SDValue Offset, 7418 MachinePointerInfo PtrInfo, EVT MemVT, 7419 Align Alignment, 7420 MachineMemOperand::Flags MMOFlags, 7421 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7422 assert(Chain.getValueType() == MVT::Other && 7423 "Invalid chain type"); 7424 7425 MMOFlags |= MachineMemOperand::MOLoad; 7426 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7427 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7428 // clients. 7429 if (PtrInfo.V.isNull()) 7430 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7431 7432 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7433 MachineFunction &MF = getMachineFunction(); 7434 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7435 Alignment, AAInfo, Ranges); 7436 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7437 } 7438 7439 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7440 EVT VT, const SDLoc &dl, SDValue Chain, 7441 SDValue Ptr, SDValue Offset, EVT MemVT, 7442 MachineMemOperand *MMO) { 7443 if (VT == MemVT) { 7444 ExtType = ISD::NON_EXTLOAD; 7445 } else if (ExtType == ISD::NON_EXTLOAD) { 7446 assert(VT == MemVT && "Non-extending load from different memory type!"); 7447 } else { 7448 // Extending load. 7449 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7450 "Should only be an extending load, not truncating!"); 7451 assert(VT.isInteger() == MemVT.isInteger() && 7452 "Cannot convert from FP to Int or Int -> FP!"); 7453 assert(VT.isVector() == MemVT.isVector() && 7454 "Cannot use an ext load to convert to or from a vector!"); 7455 assert((!VT.isVector() || 7456 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7457 "Cannot use an ext load to change the number of vector elements!"); 7458 } 7459 7460 bool Indexed = AM != ISD::UNINDEXED; 7461 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7462 7463 SDVTList VTs = Indexed ? 7464 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7465 SDValue Ops[] = { Chain, Ptr, Offset }; 7466 FoldingSetNodeID ID; 7467 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7468 ID.AddInteger(MemVT.getRawBits()); 7469 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7470 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7471 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7472 void *IP = nullptr; 7473 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7474 cast<LoadSDNode>(E)->refineAlignment(MMO); 7475 return SDValue(E, 0); 7476 } 7477 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7478 ExtType, MemVT, MMO); 7479 createOperands(N, Ops); 7480 7481 CSEMap.InsertNode(N, IP); 7482 InsertNode(N); 7483 SDValue V(N, 0); 7484 NewSDValueDbgMsg(V, "Creating new node: ", this); 7485 return V; 7486 } 7487 7488 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7489 SDValue Ptr, MachinePointerInfo PtrInfo, 7490 MaybeAlign Alignment, 7491 MachineMemOperand::Flags MMOFlags, 7492 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7493 SDValue Undef = getUNDEF(Ptr.getValueType()); 7494 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7495 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7496 } 7497 7498 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7499 SDValue Ptr, MachineMemOperand *MMO) { 7500 SDValue Undef = getUNDEF(Ptr.getValueType()); 7501 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7502 VT, MMO); 7503 } 7504 7505 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7506 EVT VT, SDValue Chain, SDValue Ptr, 7507 MachinePointerInfo PtrInfo, EVT MemVT, 7508 MaybeAlign Alignment, 7509 MachineMemOperand::Flags MMOFlags, 7510 const AAMDNodes &AAInfo) { 7511 SDValue Undef = getUNDEF(Ptr.getValueType()); 7512 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7513 MemVT, Alignment, MMOFlags, AAInfo); 7514 } 7515 7516 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7517 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7518 MachineMemOperand *MMO) { 7519 SDValue Undef = getUNDEF(Ptr.getValueType()); 7520 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7521 MemVT, MMO); 7522 } 7523 7524 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7525 SDValue Base, SDValue Offset, 7526 ISD::MemIndexedMode AM) { 7527 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7528 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7529 // Don't propagate the invariant or dereferenceable flags. 7530 auto MMOFlags = 7531 LD->getMemOperand()->getFlags() & 7532 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7533 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7534 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7535 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7536 } 7537 7538 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7539 SDValue Ptr, MachinePointerInfo PtrInfo, 7540 Align Alignment, 7541 MachineMemOperand::Flags MMOFlags, 7542 const AAMDNodes &AAInfo) { 7543 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7544 7545 MMOFlags |= MachineMemOperand::MOStore; 7546 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7547 7548 if (PtrInfo.V.isNull()) 7549 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7550 7551 MachineFunction &MF = getMachineFunction(); 7552 uint64_t Size = 7553 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7554 MachineMemOperand *MMO = 7555 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7556 return getStore(Chain, dl, Val, Ptr, MMO); 7557 } 7558 7559 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7560 SDValue Ptr, MachineMemOperand *MMO) { 7561 assert(Chain.getValueType() == MVT::Other && 7562 "Invalid chain type"); 7563 EVT VT = Val.getValueType(); 7564 SDVTList VTs = getVTList(MVT::Other); 7565 SDValue Undef = getUNDEF(Ptr.getValueType()); 7566 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7567 FoldingSetNodeID ID; 7568 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7569 ID.AddInteger(VT.getRawBits()); 7570 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7571 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7572 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7573 void *IP = nullptr; 7574 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7575 cast<StoreSDNode>(E)->refineAlignment(MMO); 7576 return SDValue(E, 0); 7577 } 7578 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7579 ISD::UNINDEXED, false, VT, MMO); 7580 createOperands(N, Ops); 7581 7582 CSEMap.InsertNode(N, IP); 7583 InsertNode(N); 7584 SDValue V(N, 0); 7585 NewSDValueDbgMsg(V, "Creating new node: ", this); 7586 return V; 7587 } 7588 7589 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7590 SDValue Ptr, MachinePointerInfo PtrInfo, 7591 EVT SVT, Align Alignment, 7592 MachineMemOperand::Flags MMOFlags, 7593 const AAMDNodes &AAInfo) { 7594 assert(Chain.getValueType() == MVT::Other && 7595 "Invalid chain type"); 7596 7597 MMOFlags |= MachineMemOperand::MOStore; 7598 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7599 7600 if (PtrInfo.V.isNull()) 7601 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7602 7603 MachineFunction &MF = getMachineFunction(); 7604 MachineMemOperand *MMO = MF.getMachineMemOperand( 7605 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7606 Alignment, AAInfo); 7607 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7608 } 7609 7610 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7611 SDValue Ptr, EVT SVT, 7612 MachineMemOperand *MMO) { 7613 EVT VT = Val.getValueType(); 7614 7615 assert(Chain.getValueType() == MVT::Other && 7616 "Invalid chain type"); 7617 if (VT == SVT) 7618 return getStore(Chain, dl, Val, Ptr, MMO); 7619 7620 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7621 "Should only be a truncating store, not extending!"); 7622 assert(VT.isInteger() == SVT.isInteger() && 7623 "Can't do FP-INT conversion!"); 7624 assert(VT.isVector() == SVT.isVector() && 7625 "Cannot use trunc store to convert to or from a vector!"); 7626 assert((!VT.isVector() || 7627 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7628 "Cannot use trunc store to change the number of vector elements!"); 7629 7630 SDVTList VTs = getVTList(MVT::Other); 7631 SDValue Undef = getUNDEF(Ptr.getValueType()); 7632 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7633 FoldingSetNodeID ID; 7634 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7635 ID.AddInteger(SVT.getRawBits()); 7636 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7637 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7638 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7639 void *IP = nullptr; 7640 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7641 cast<StoreSDNode>(E)->refineAlignment(MMO); 7642 return SDValue(E, 0); 7643 } 7644 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7645 ISD::UNINDEXED, true, SVT, MMO); 7646 createOperands(N, Ops); 7647 7648 CSEMap.InsertNode(N, IP); 7649 InsertNode(N); 7650 SDValue V(N, 0); 7651 NewSDValueDbgMsg(V, "Creating new node: ", this); 7652 return V; 7653 } 7654 7655 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7656 SDValue Base, SDValue Offset, 7657 ISD::MemIndexedMode AM) { 7658 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7659 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7660 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7661 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7662 FoldingSetNodeID ID; 7663 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7664 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7665 ID.AddInteger(ST->getRawSubclassData()); 7666 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7667 void *IP = nullptr; 7668 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7669 return SDValue(E, 0); 7670 7671 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7672 ST->isTruncatingStore(), ST->getMemoryVT(), 7673 ST->getMemOperand()); 7674 createOperands(N, Ops); 7675 7676 CSEMap.InsertNode(N, IP); 7677 InsertNode(N); 7678 SDValue V(N, 0); 7679 NewSDValueDbgMsg(V, "Creating new node: ", this); 7680 return V; 7681 } 7682 7683 SDValue SelectionDAG::getLoadVP( 7684 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7685 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7686 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7687 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7688 const MDNode *Ranges, bool IsExpanding) { 7689 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7690 7691 MMOFlags |= MachineMemOperand::MOLoad; 7692 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7693 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7694 // clients. 7695 if (PtrInfo.V.isNull()) 7696 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7697 7698 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7699 MachineFunction &MF = getMachineFunction(); 7700 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7701 Alignment, AAInfo, Ranges); 7702 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7703 MMO, IsExpanding); 7704 } 7705 7706 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7707 ISD::LoadExtType ExtType, EVT VT, 7708 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7709 SDValue Offset, SDValue Mask, SDValue EVL, 7710 EVT MemVT, MachineMemOperand *MMO, 7711 bool IsExpanding) { 7712 bool Indexed = AM != ISD::UNINDEXED; 7713 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7714 7715 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7716 : getVTList(VT, MVT::Other); 7717 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7718 FoldingSetNodeID ID; 7719 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7720 ID.AddInteger(VT.getRawBits()); 7721 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7722 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7723 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7724 void *IP = nullptr; 7725 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7726 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7727 return SDValue(E, 0); 7728 } 7729 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7730 ExtType, IsExpanding, MemVT, MMO); 7731 createOperands(N, Ops); 7732 7733 CSEMap.InsertNode(N, IP); 7734 InsertNode(N); 7735 SDValue V(N, 0); 7736 NewSDValueDbgMsg(V, "Creating new node: ", this); 7737 return V; 7738 } 7739 7740 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7741 SDValue Ptr, SDValue Mask, SDValue EVL, 7742 MachinePointerInfo PtrInfo, 7743 MaybeAlign Alignment, 7744 MachineMemOperand::Flags MMOFlags, 7745 const AAMDNodes &AAInfo, const MDNode *Ranges, 7746 bool IsExpanding) { 7747 SDValue Undef = getUNDEF(Ptr.getValueType()); 7748 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7749 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7750 IsExpanding); 7751 } 7752 7753 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7754 SDValue Ptr, SDValue Mask, SDValue EVL, 7755 MachineMemOperand *MMO, bool IsExpanding) { 7756 SDValue Undef = getUNDEF(Ptr.getValueType()); 7757 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7758 Mask, EVL, VT, MMO, IsExpanding); 7759 } 7760 7761 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7762 EVT VT, SDValue Chain, SDValue Ptr, 7763 SDValue Mask, SDValue EVL, 7764 MachinePointerInfo PtrInfo, EVT MemVT, 7765 MaybeAlign Alignment, 7766 MachineMemOperand::Flags MMOFlags, 7767 const AAMDNodes &AAInfo, bool IsExpanding) { 7768 SDValue Undef = getUNDEF(Ptr.getValueType()); 7769 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7770 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7771 IsExpanding); 7772 } 7773 7774 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7775 EVT VT, SDValue Chain, SDValue Ptr, 7776 SDValue Mask, SDValue EVL, EVT MemVT, 7777 MachineMemOperand *MMO, bool IsExpanding) { 7778 SDValue Undef = getUNDEF(Ptr.getValueType()); 7779 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7780 EVL, MemVT, MMO, IsExpanding); 7781 } 7782 7783 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7784 SDValue Base, SDValue Offset, 7785 ISD::MemIndexedMode AM) { 7786 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7787 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7788 // Don't propagate the invariant or dereferenceable flags. 7789 auto MMOFlags = 7790 LD->getMemOperand()->getFlags() & 7791 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7792 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7793 LD->getChain(), Base, Offset, LD->getMask(), 7794 LD->getVectorLength(), LD->getPointerInfo(), 7795 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7796 nullptr, LD->isExpandingLoad()); 7797 } 7798 7799 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7800 SDValue Ptr, SDValue Offset, SDValue Mask, 7801 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7802 ISD::MemIndexedMode AM, bool IsTruncating, 7803 bool IsCompressing) { 7804 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7805 bool Indexed = AM != ISD::UNINDEXED; 7806 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7807 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7808 : getVTList(MVT::Other); 7809 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7810 FoldingSetNodeID ID; 7811 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7812 ID.AddInteger(MemVT.getRawBits()); 7813 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7814 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7815 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7816 void *IP = nullptr; 7817 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7818 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7819 return SDValue(E, 0); 7820 } 7821 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7822 IsTruncating, IsCompressing, MemVT, MMO); 7823 createOperands(N, Ops); 7824 7825 CSEMap.InsertNode(N, IP); 7826 InsertNode(N); 7827 SDValue V(N, 0); 7828 NewSDValueDbgMsg(V, "Creating new node: ", this); 7829 return V; 7830 } 7831 7832 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7833 SDValue Val, SDValue Ptr, SDValue Mask, 7834 SDValue EVL, MachinePointerInfo PtrInfo, 7835 EVT SVT, Align Alignment, 7836 MachineMemOperand::Flags MMOFlags, 7837 const AAMDNodes &AAInfo, 7838 bool IsCompressing) { 7839 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7840 7841 MMOFlags |= MachineMemOperand::MOStore; 7842 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7843 7844 if (PtrInfo.V.isNull()) 7845 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7846 7847 MachineFunction &MF = getMachineFunction(); 7848 MachineMemOperand *MMO = MF.getMachineMemOperand( 7849 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7850 Alignment, AAInfo); 7851 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7852 IsCompressing); 7853 } 7854 7855 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7856 SDValue Val, SDValue Ptr, SDValue Mask, 7857 SDValue EVL, EVT SVT, 7858 MachineMemOperand *MMO, 7859 bool IsCompressing) { 7860 EVT VT = Val.getValueType(); 7861 7862 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7863 if (VT == SVT) 7864 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7865 EVL, VT, MMO, ISD::UNINDEXED, 7866 /*IsTruncating*/ false, IsCompressing); 7867 7868 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7869 "Should only be a truncating store, not extending!"); 7870 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7871 assert(VT.isVector() == SVT.isVector() && 7872 "Cannot use trunc store to convert to or from a vector!"); 7873 assert((!VT.isVector() || 7874 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7875 "Cannot use trunc store to change the number of vector elements!"); 7876 7877 SDVTList VTs = getVTList(MVT::Other); 7878 SDValue Undef = getUNDEF(Ptr.getValueType()); 7879 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7880 FoldingSetNodeID ID; 7881 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7882 ID.AddInteger(SVT.getRawBits()); 7883 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7884 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7885 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7886 void *IP = nullptr; 7887 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7888 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7889 return SDValue(E, 0); 7890 } 7891 auto *N = 7892 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7893 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7894 createOperands(N, Ops); 7895 7896 CSEMap.InsertNode(N, IP); 7897 InsertNode(N); 7898 SDValue V(N, 0); 7899 NewSDValueDbgMsg(V, "Creating new node: ", this); 7900 return V; 7901 } 7902 7903 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7904 SDValue Base, SDValue Offset, 7905 ISD::MemIndexedMode AM) { 7906 auto *ST = cast<VPStoreSDNode>(OrigStore); 7907 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7908 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7909 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7910 Offset, ST->getMask(), ST->getVectorLength()}; 7911 FoldingSetNodeID ID; 7912 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7913 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7914 ID.AddInteger(ST->getRawSubclassData()); 7915 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7916 void *IP = nullptr; 7917 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7918 return SDValue(E, 0); 7919 7920 auto *N = newSDNode<VPStoreSDNode>( 7921 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7922 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7923 createOperands(N, Ops); 7924 7925 CSEMap.InsertNode(N, IP); 7926 InsertNode(N); 7927 SDValue V(N, 0); 7928 NewSDValueDbgMsg(V, "Creating new node: ", this); 7929 return V; 7930 } 7931 7932 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7933 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7934 ISD::MemIndexType IndexType) { 7935 assert(Ops.size() == 6 && "Incompatible number of operands"); 7936 7937 FoldingSetNodeID ID; 7938 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7939 ID.AddInteger(VT.getRawBits()); 7940 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7941 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7942 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7943 void *IP = nullptr; 7944 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7945 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7946 return SDValue(E, 0); 7947 } 7948 7949 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7950 VT, MMO, IndexType); 7951 createOperands(N, Ops); 7952 7953 assert(N->getMask().getValueType().getVectorElementCount() == 7954 N->getValueType(0).getVectorElementCount() && 7955 "Vector width mismatch between mask and data"); 7956 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7957 N->getValueType(0).getVectorElementCount().isScalable() && 7958 "Scalable flags of index and data do not match"); 7959 assert(ElementCount::isKnownGE( 7960 N->getIndex().getValueType().getVectorElementCount(), 7961 N->getValueType(0).getVectorElementCount()) && 7962 "Vector width mismatch between index and data"); 7963 assert(isa<ConstantSDNode>(N->getScale()) && 7964 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7965 "Scale should be a constant power of 2"); 7966 7967 CSEMap.InsertNode(N, IP); 7968 InsertNode(N); 7969 SDValue V(N, 0); 7970 NewSDValueDbgMsg(V, "Creating new node: ", this); 7971 return V; 7972 } 7973 7974 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7975 ArrayRef<SDValue> Ops, 7976 MachineMemOperand *MMO, 7977 ISD::MemIndexType IndexType) { 7978 assert(Ops.size() == 7 && "Incompatible number of operands"); 7979 7980 FoldingSetNodeID ID; 7981 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7982 ID.AddInteger(VT.getRawBits()); 7983 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7984 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7985 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7986 void *IP = nullptr; 7987 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7988 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7989 return SDValue(E, 0); 7990 } 7991 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7992 VT, MMO, IndexType); 7993 createOperands(N, Ops); 7994 7995 assert(N->getMask().getValueType().getVectorElementCount() == 7996 N->getValue().getValueType().getVectorElementCount() && 7997 "Vector width mismatch between mask and data"); 7998 assert( 7999 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8000 N->getValue().getValueType().getVectorElementCount().isScalable() && 8001 "Scalable flags of index and data do not match"); 8002 assert(ElementCount::isKnownGE( 8003 N->getIndex().getValueType().getVectorElementCount(), 8004 N->getValue().getValueType().getVectorElementCount()) && 8005 "Vector width mismatch between index and data"); 8006 assert(isa<ConstantSDNode>(N->getScale()) && 8007 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8008 "Scale should be a constant power of 2"); 8009 8010 CSEMap.InsertNode(N, IP); 8011 InsertNode(N); 8012 SDValue V(N, 0); 8013 NewSDValueDbgMsg(V, "Creating new node: ", this); 8014 return V; 8015 } 8016 8017 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8018 SDValue Base, SDValue Offset, SDValue Mask, 8019 SDValue PassThru, EVT MemVT, 8020 MachineMemOperand *MMO, 8021 ISD::MemIndexedMode AM, 8022 ISD::LoadExtType ExtTy, bool isExpanding) { 8023 bool Indexed = AM != ISD::UNINDEXED; 8024 assert((Indexed || Offset.isUndef()) && 8025 "Unindexed masked load with an offset!"); 8026 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8027 : getVTList(VT, MVT::Other); 8028 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8029 FoldingSetNodeID ID; 8030 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8031 ID.AddInteger(MemVT.getRawBits()); 8032 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8033 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8034 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8035 void *IP = nullptr; 8036 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8037 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8038 return SDValue(E, 0); 8039 } 8040 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8041 AM, ExtTy, isExpanding, MemVT, MMO); 8042 createOperands(N, Ops); 8043 8044 CSEMap.InsertNode(N, IP); 8045 InsertNode(N); 8046 SDValue V(N, 0); 8047 NewSDValueDbgMsg(V, "Creating new node: ", this); 8048 return V; 8049 } 8050 8051 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8052 SDValue Base, SDValue Offset, 8053 ISD::MemIndexedMode AM) { 8054 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8055 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8056 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8057 Offset, LD->getMask(), LD->getPassThru(), 8058 LD->getMemoryVT(), LD->getMemOperand(), AM, 8059 LD->getExtensionType(), LD->isExpandingLoad()); 8060 } 8061 8062 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8063 SDValue Val, SDValue Base, SDValue Offset, 8064 SDValue Mask, EVT MemVT, 8065 MachineMemOperand *MMO, 8066 ISD::MemIndexedMode AM, bool IsTruncating, 8067 bool IsCompressing) { 8068 assert(Chain.getValueType() == MVT::Other && 8069 "Invalid chain type"); 8070 bool Indexed = AM != ISD::UNINDEXED; 8071 assert((Indexed || Offset.isUndef()) && 8072 "Unindexed masked store with an offset!"); 8073 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8074 : getVTList(MVT::Other); 8075 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8076 FoldingSetNodeID ID; 8077 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8078 ID.AddInteger(MemVT.getRawBits()); 8079 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8080 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8081 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8082 void *IP = nullptr; 8083 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8084 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8085 return SDValue(E, 0); 8086 } 8087 auto *N = 8088 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8089 IsTruncating, IsCompressing, MemVT, MMO); 8090 createOperands(N, Ops); 8091 8092 CSEMap.InsertNode(N, IP); 8093 InsertNode(N); 8094 SDValue V(N, 0); 8095 NewSDValueDbgMsg(V, "Creating new node: ", this); 8096 return V; 8097 } 8098 8099 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8100 SDValue Base, SDValue Offset, 8101 ISD::MemIndexedMode AM) { 8102 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8103 assert(ST->getOffset().isUndef() && 8104 "Masked store is already a indexed store!"); 8105 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8106 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8107 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8108 } 8109 8110 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8111 ArrayRef<SDValue> Ops, 8112 MachineMemOperand *MMO, 8113 ISD::MemIndexType IndexType, 8114 ISD::LoadExtType ExtTy) { 8115 assert(Ops.size() == 6 && "Incompatible number of operands"); 8116 8117 FoldingSetNodeID ID; 8118 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8119 ID.AddInteger(MemVT.getRawBits()); 8120 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8121 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8122 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8123 void *IP = nullptr; 8124 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8125 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8126 return SDValue(E, 0); 8127 } 8128 8129 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8130 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8131 VTs, MemVT, MMO, IndexType, ExtTy); 8132 createOperands(N, Ops); 8133 8134 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8135 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8136 assert(N->getMask().getValueType().getVectorElementCount() == 8137 N->getValueType(0).getVectorElementCount() && 8138 "Vector width mismatch between mask and data"); 8139 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8140 N->getValueType(0).getVectorElementCount().isScalable() && 8141 "Scalable flags of index and data do not match"); 8142 assert(ElementCount::isKnownGE( 8143 N->getIndex().getValueType().getVectorElementCount(), 8144 N->getValueType(0).getVectorElementCount()) && 8145 "Vector width mismatch between index and data"); 8146 assert(isa<ConstantSDNode>(N->getScale()) && 8147 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8148 "Scale should be a constant power of 2"); 8149 8150 CSEMap.InsertNode(N, IP); 8151 InsertNode(N); 8152 SDValue V(N, 0); 8153 NewSDValueDbgMsg(V, "Creating new node: ", this); 8154 return V; 8155 } 8156 8157 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8158 ArrayRef<SDValue> Ops, 8159 MachineMemOperand *MMO, 8160 ISD::MemIndexType IndexType, 8161 bool IsTrunc) { 8162 assert(Ops.size() == 6 && "Incompatible number of operands"); 8163 8164 FoldingSetNodeID ID; 8165 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8166 ID.AddInteger(MemVT.getRawBits()); 8167 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8168 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8169 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8170 void *IP = nullptr; 8171 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8172 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8173 return SDValue(E, 0); 8174 } 8175 8176 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8177 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8178 VTs, MemVT, MMO, IndexType, IsTrunc); 8179 createOperands(N, Ops); 8180 8181 assert(N->getMask().getValueType().getVectorElementCount() == 8182 N->getValue().getValueType().getVectorElementCount() && 8183 "Vector width mismatch between mask and data"); 8184 assert( 8185 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8186 N->getValue().getValueType().getVectorElementCount().isScalable() && 8187 "Scalable flags of index and data do not match"); 8188 assert(ElementCount::isKnownGE( 8189 N->getIndex().getValueType().getVectorElementCount(), 8190 N->getValue().getValueType().getVectorElementCount()) && 8191 "Vector width mismatch between index and data"); 8192 assert(isa<ConstantSDNode>(N->getScale()) && 8193 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8194 "Scale should be a constant power of 2"); 8195 8196 CSEMap.InsertNode(N, IP); 8197 InsertNode(N); 8198 SDValue V(N, 0); 8199 NewSDValueDbgMsg(V, "Creating new node: ", this); 8200 return V; 8201 } 8202 8203 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8204 // select undef, T, F --> T (if T is a constant), otherwise F 8205 // select, ?, undef, F --> F 8206 // select, ?, T, undef --> T 8207 if (Cond.isUndef()) 8208 return isConstantValueOfAnyType(T) ? T : F; 8209 if (T.isUndef()) 8210 return F; 8211 if (F.isUndef()) 8212 return T; 8213 8214 // select true, T, F --> T 8215 // select false, T, F --> F 8216 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8217 return CondC->isZero() ? F : T; 8218 8219 // TODO: This should simplify VSELECT with constant condition using something 8220 // like this (but check boolean contents to be complete?): 8221 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8222 // return T; 8223 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8224 // return F; 8225 8226 // select ?, T, T --> T 8227 if (T == F) 8228 return T; 8229 8230 return SDValue(); 8231 } 8232 8233 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8234 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8235 if (X.isUndef()) 8236 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8237 // shift X, undef --> undef (because it may shift by the bitwidth) 8238 if (Y.isUndef()) 8239 return getUNDEF(X.getValueType()); 8240 8241 // shift 0, Y --> 0 8242 // shift X, 0 --> X 8243 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8244 return X; 8245 8246 // shift X, C >= bitwidth(X) --> undef 8247 // All vector elements must be too big (or undef) to avoid partial undefs. 8248 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8249 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8250 }; 8251 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8252 return getUNDEF(X.getValueType()); 8253 8254 return SDValue(); 8255 } 8256 8257 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8258 SDNodeFlags Flags) { 8259 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8260 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8261 // operation is poison. That result can be relaxed to undef. 8262 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8263 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8264 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8265 (YC && YC->getValueAPF().isNaN()); 8266 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8267 (YC && YC->getValueAPF().isInfinity()); 8268 8269 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8270 return getUNDEF(X.getValueType()); 8271 8272 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8273 return getUNDEF(X.getValueType()); 8274 8275 if (!YC) 8276 return SDValue(); 8277 8278 // X + -0.0 --> X 8279 if (Opcode == ISD::FADD) 8280 if (YC->getValueAPF().isNegZero()) 8281 return X; 8282 8283 // X - +0.0 --> X 8284 if (Opcode == ISD::FSUB) 8285 if (YC->getValueAPF().isPosZero()) 8286 return X; 8287 8288 // X * 1.0 --> X 8289 // X / 1.0 --> X 8290 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8291 if (YC->getValueAPF().isExactlyValue(1.0)) 8292 return X; 8293 8294 // X * 0.0 --> 0.0 8295 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8296 if (YC->getValueAPF().isZero()) 8297 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8298 8299 return SDValue(); 8300 } 8301 8302 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8303 SDValue Ptr, SDValue SV, unsigned Align) { 8304 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8305 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8306 } 8307 8308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8309 ArrayRef<SDUse> Ops) { 8310 switch (Ops.size()) { 8311 case 0: return getNode(Opcode, DL, VT); 8312 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8313 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8314 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8315 default: break; 8316 } 8317 8318 // Copy from an SDUse array into an SDValue array for use with 8319 // the regular getNode logic. 8320 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8321 return getNode(Opcode, DL, VT, NewOps); 8322 } 8323 8324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8325 ArrayRef<SDValue> Ops) { 8326 SDNodeFlags Flags; 8327 if (Inserter) 8328 Flags = Inserter->getFlags(); 8329 return getNode(Opcode, DL, VT, Ops, Flags); 8330 } 8331 8332 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8333 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8334 unsigned NumOps = Ops.size(); 8335 switch (NumOps) { 8336 case 0: return getNode(Opcode, DL, VT); 8337 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8338 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8339 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8340 default: break; 8341 } 8342 8343 #ifndef NDEBUG 8344 for (auto &Op : Ops) 8345 assert(Op.getOpcode() != ISD::DELETED_NODE && 8346 "Operand is DELETED_NODE!"); 8347 #endif 8348 8349 switch (Opcode) { 8350 default: break; 8351 case ISD::BUILD_VECTOR: 8352 // Attempt to simplify BUILD_VECTOR. 8353 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8354 return V; 8355 break; 8356 case ISD::CONCAT_VECTORS: 8357 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8358 return V; 8359 break; 8360 case ISD::SELECT_CC: 8361 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8362 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8363 "LHS and RHS of condition must have same type!"); 8364 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8365 "True and False arms of SelectCC must have same type!"); 8366 assert(Ops[2].getValueType() == VT && 8367 "select_cc node must be of same type as true and false value!"); 8368 break; 8369 case ISD::BR_CC: 8370 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8371 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8372 "LHS/RHS of comparison should match types!"); 8373 break; 8374 } 8375 8376 // Memoize nodes. 8377 SDNode *N; 8378 SDVTList VTs = getVTList(VT); 8379 8380 if (VT != MVT::Glue) { 8381 FoldingSetNodeID ID; 8382 AddNodeIDNode(ID, Opcode, VTs, Ops); 8383 void *IP = nullptr; 8384 8385 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8386 return SDValue(E, 0); 8387 8388 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8389 createOperands(N, Ops); 8390 8391 CSEMap.InsertNode(N, IP); 8392 } else { 8393 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8394 createOperands(N, Ops); 8395 } 8396 8397 N->setFlags(Flags); 8398 InsertNode(N); 8399 SDValue V(N, 0); 8400 NewSDValueDbgMsg(V, "Creating new node: ", this); 8401 return V; 8402 } 8403 8404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8405 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8406 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8407 } 8408 8409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8410 ArrayRef<SDValue> Ops) { 8411 SDNodeFlags Flags; 8412 if (Inserter) 8413 Flags = Inserter->getFlags(); 8414 return getNode(Opcode, DL, VTList, Ops, Flags); 8415 } 8416 8417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8418 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8419 if (VTList.NumVTs == 1) 8420 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8421 8422 #ifndef NDEBUG 8423 for (auto &Op : Ops) 8424 assert(Op.getOpcode() != ISD::DELETED_NODE && 8425 "Operand is DELETED_NODE!"); 8426 #endif 8427 8428 switch (Opcode) { 8429 case ISD::STRICT_FP_EXTEND: 8430 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8431 "Invalid STRICT_FP_EXTEND!"); 8432 assert(VTList.VTs[0].isFloatingPoint() && 8433 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8434 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8435 "STRICT_FP_EXTEND result type should be vector iff the operand " 8436 "type is vector!"); 8437 assert((!VTList.VTs[0].isVector() || 8438 VTList.VTs[0].getVectorNumElements() == 8439 Ops[1].getValueType().getVectorNumElements()) && 8440 "Vector element count mismatch!"); 8441 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8442 "Invalid fpext node, dst <= src!"); 8443 break; 8444 case ISD::STRICT_FP_ROUND: 8445 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8446 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8447 "STRICT_FP_ROUND result type should be vector iff the operand " 8448 "type is vector!"); 8449 assert((!VTList.VTs[0].isVector() || 8450 VTList.VTs[0].getVectorNumElements() == 8451 Ops[1].getValueType().getVectorNumElements()) && 8452 "Vector element count mismatch!"); 8453 assert(VTList.VTs[0].isFloatingPoint() && 8454 Ops[1].getValueType().isFloatingPoint() && 8455 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8456 isa<ConstantSDNode>(Ops[2]) && 8457 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8458 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8459 "Invalid STRICT_FP_ROUND!"); 8460 break; 8461 #if 0 8462 // FIXME: figure out how to safely handle things like 8463 // int foo(int x) { return 1 << (x & 255); } 8464 // int bar() { return foo(256); } 8465 case ISD::SRA_PARTS: 8466 case ISD::SRL_PARTS: 8467 case ISD::SHL_PARTS: 8468 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8469 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8470 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8471 else if (N3.getOpcode() == ISD::AND) 8472 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8473 // If the and is only masking out bits that cannot effect the shift, 8474 // eliminate the and. 8475 unsigned NumBits = VT.getScalarSizeInBits()*2; 8476 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8477 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8478 } 8479 break; 8480 #endif 8481 } 8482 8483 // Memoize the node unless it returns a flag. 8484 SDNode *N; 8485 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8486 FoldingSetNodeID ID; 8487 AddNodeIDNode(ID, Opcode, VTList, Ops); 8488 void *IP = nullptr; 8489 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8490 return SDValue(E, 0); 8491 8492 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8493 createOperands(N, Ops); 8494 CSEMap.InsertNode(N, IP); 8495 } else { 8496 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8497 createOperands(N, Ops); 8498 } 8499 8500 N->setFlags(Flags); 8501 InsertNode(N); 8502 SDValue V(N, 0); 8503 NewSDValueDbgMsg(V, "Creating new node: ", this); 8504 return V; 8505 } 8506 8507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8508 SDVTList VTList) { 8509 return getNode(Opcode, DL, VTList, None); 8510 } 8511 8512 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8513 SDValue N1) { 8514 SDValue Ops[] = { N1 }; 8515 return getNode(Opcode, DL, VTList, Ops); 8516 } 8517 8518 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8519 SDValue N1, SDValue N2) { 8520 SDValue Ops[] = { N1, N2 }; 8521 return getNode(Opcode, DL, VTList, Ops); 8522 } 8523 8524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8525 SDValue N1, SDValue N2, SDValue N3) { 8526 SDValue Ops[] = { N1, N2, N3 }; 8527 return getNode(Opcode, DL, VTList, Ops); 8528 } 8529 8530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8531 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8532 SDValue Ops[] = { N1, N2, N3, N4 }; 8533 return getNode(Opcode, DL, VTList, Ops); 8534 } 8535 8536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8537 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8538 SDValue N5) { 8539 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8540 return getNode(Opcode, DL, VTList, Ops); 8541 } 8542 8543 SDVTList SelectionDAG::getVTList(EVT VT) { 8544 return makeVTList(SDNode::getValueTypeList(VT), 1); 8545 } 8546 8547 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8548 FoldingSetNodeID ID; 8549 ID.AddInteger(2U); 8550 ID.AddInteger(VT1.getRawBits()); 8551 ID.AddInteger(VT2.getRawBits()); 8552 8553 void *IP = nullptr; 8554 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8555 if (!Result) { 8556 EVT *Array = Allocator.Allocate<EVT>(2); 8557 Array[0] = VT1; 8558 Array[1] = VT2; 8559 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8560 VTListMap.InsertNode(Result, IP); 8561 } 8562 return Result->getSDVTList(); 8563 } 8564 8565 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8566 FoldingSetNodeID ID; 8567 ID.AddInteger(3U); 8568 ID.AddInteger(VT1.getRawBits()); 8569 ID.AddInteger(VT2.getRawBits()); 8570 ID.AddInteger(VT3.getRawBits()); 8571 8572 void *IP = nullptr; 8573 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8574 if (!Result) { 8575 EVT *Array = Allocator.Allocate<EVT>(3); 8576 Array[0] = VT1; 8577 Array[1] = VT2; 8578 Array[2] = VT3; 8579 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8580 VTListMap.InsertNode(Result, IP); 8581 } 8582 return Result->getSDVTList(); 8583 } 8584 8585 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8586 FoldingSetNodeID ID; 8587 ID.AddInteger(4U); 8588 ID.AddInteger(VT1.getRawBits()); 8589 ID.AddInteger(VT2.getRawBits()); 8590 ID.AddInteger(VT3.getRawBits()); 8591 ID.AddInteger(VT4.getRawBits()); 8592 8593 void *IP = nullptr; 8594 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8595 if (!Result) { 8596 EVT *Array = Allocator.Allocate<EVT>(4); 8597 Array[0] = VT1; 8598 Array[1] = VT2; 8599 Array[2] = VT3; 8600 Array[3] = VT4; 8601 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8602 VTListMap.InsertNode(Result, IP); 8603 } 8604 return Result->getSDVTList(); 8605 } 8606 8607 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8608 unsigned NumVTs = VTs.size(); 8609 FoldingSetNodeID ID; 8610 ID.AddInteger(NumVTs); 8611 for (unsigned index = 0; index < NumVTs; index++) { 8612 ID.AddInteger(VTs[index].getRawBits()); 8613 } 8614 8615 void *IP = nullptr; 8616 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8617 if (!Result) { 8618 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8619 llvm::copy(VTs, Array); 8620 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8621 VTListMap.InsertNode(Result, IP); 8622 } 8623 return Result->getSDVTList(); 8624 } 8625 8626 8627 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8628 /// specified operands. If the resultant node already exists in the DAG, 8629 /// this does not modify the specified node, instead it returns the node that 8630 /// already exists. If the resultant node does not exist in the DAG, the 8631 /// input node is returned. As a degenerate case, if you specify the same 8632 /// input operands as the node already has, the input node is returned. 8633 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8634 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8635 8636 // Check to see if there is no change. 8637 if (Op == N->getOperand(0)) return N; 8638 8639 // See if the modified node already exists. 8640 void *InsertPos = nullptr; 8641 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8642 return Existing; 8643 8644 // Nope it doesn't. Remove the node from its current place in the maps. 8645 if (InsertPos) 8646 if (!RemoveNodeFromCSEMaps(N)) 8647 InsertPos = nullptr; 8648 8649 // Now we update the operands. 8650 N->OperandList[0].set(Op); 8651 8652 updateDivergence(N); 8653 // If this gets put into a CSE map, add it. 8654 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8655 return N; 8656 } 8657 8658 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8659 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8660 8661 // Check to see if there is no change. 8662 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8663 return N; // No operands changed, just return the input node. 8664 8665 // See if the modified node already exists. 8666 void *InsertPos = nullptr; 8667 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8668 return Existing; 8669 8670 // Nope it doesn't. Remove the node from its current place in the maps. 8671 if (InsertPos) 8672 if (!RemoveNodeFromCSEMaps(N)) 8673 InsertPos = nullptr; 8674 8675 // Now we update the operands. 8676 if (N->OperandList[0] != Op1) 8677 N->OperandList[0].set(Op1); 8678 if (N->OperandList[1] != Op2) 8679 N->OperandList[1].set(Op2); 8680 8681 updateDivergence(N); 8682 // If this gets put into a CSE map, add it. 8683 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8684 return N; 8685 } 8686 8687 SDNode *SelectionDAG:: 8688 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8689 SDValue Ops[] = { Op1, Op2, Op3 }; 8690 return UpdateNodeOperands(N, Ops); 8691 } 8692 8693 SDNode *SelectionDAG:: 8694 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8695 SDValue Op3, SDValue Op4) { 8696 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8697 return UpdateNodeOperands(N, Ops); 8698 } 8699 8700 SDNode *SelectionDAG:: 8701 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8702 SDValue Op3, SDValue Op4, SDValue Op5) { 8703 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8704 return UpdateNodeOperands(N, Ops); 8705 } 8706 8707 SDNode *SelectionDAG:: 8708 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8709 unsigned NumOps = Ops.size(); 8710 assert(N->getNumOperands() == NumOps && 8711 "Update with wrong number of operands"); 8712 8713 // If no operands changed just return the input node. 8714 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8715 return N; 8716 8717 // See if the modified node already exists. 8718 void *InsertPos = nullptr; 8719 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8720 return Existing; 8721 8722 // Nope it doesn't. Remove the node from its current place in the maps. 8723 if (InsertPos) 8724 if (!RemoveNodeFromCSEMaps(N)) 8725 InsertPos = nullptr; 8726 8727 // Now we update the operands. 8728 for (unsigned i = 0; i != NumOps; ++i) 8729 if (N->OperandList[i] != Ops[i]) 8730 N->OperandList[i].set(Ops[i]); 8731 8732 updateDivergence(N); 8733 // If this gets put into a CSE map, add it. 8734 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8735 return N; 8736 } 8737 8738 /// DropOperands - Release the operands and set this node to have 8739 /// zero operands. 8740 void SDNode::DropOperands() { 8741 // Unlike the code in MorphNodeTo that does this, we don't need to 8742 // watch for dead nodes here. 8743 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8744 SDUse &Use = *I++; 8745 Use.set(SDValue()); 8746 } 8747 } 8748 8749 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8750 ArrayRef<MachineMemOperand *> NewMemRefs) { 8751 if (NewMemRefs.empty()) { 8752 N->clearMemRefs(); 8753 return; 8754 } 8755 8756 // Check if we can avoid allocating by storing a single reference directly. 8757 if (NewMemRefs.size() == 1) { 8758 N->MemRefs = NewMemRefs[0]; 8759 N->NumMemRefs = 1; 8760 return; 8761 } 8762 8763 MachineMemOperand **MemRefsBuffer = 8764 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8765 llvm::copy(NewMemRefs, MemRefsBuffer); 8766 N->MemRefs = MemRefsBuffer; 8767 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8768 } 8769 8770 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8771 /// machine opcode. 8772 /// 8773 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8774 EVT VT) { 8775 SDVTList VTs = getVTList(VT); 8776 return SelectNodeTo(N, MachineOpc, VTs, None); 8777 } 8778 8779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8780 EVT VT, SDValue Op1) { 8781 SDVTList VTs = getVTList(VT); 8782 SDValue Ops[] = { Op1 }; 8783 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8784 } 8785 8786 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8787 EVT VT, SDValue Op1, 8788 SDValue Op2) { 8789 SDVTList VTs = getVTList(VT); 8790 SDValue Ops[] = { Op1, Op2 }; 8791 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8792 } 8793 8794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8795 EVT VT, SDValue Op1, 8796 SDValue Op2, SDValue Op3) { 8797 SDVTList VTs = getVTList(VT); 8798 SDValue Ops[] = { Op1, Op2, Op3 }; 8799 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8800 } 8801 8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8803 EVT VT, ArrayRef<SDValue> Ops) { 8804 SDVTList VTs = getVTList(VT); 8805 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8806 } 8807 8808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8809 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8810 SDVTList VTs = getVTList(VT1, VT2); 8811 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8812 } 8813 8814 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8815 EVT VT1, EVT VT2) { 8816 SDVTList VTs = getVTList(VT1, VT2); 8817 return SelectNodeTo(N, MachineOpc, VTs, None); 8818 } 8819 8820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8821 EVT VT1, EVT VT2, EVT VT3, 8822 ArrayRef<SDValue> Ops) { 8823 SDVTList VTs = getVTList(VT1, VT2, VT3); 8824 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8825 } 8826 8827 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8828 EVT VT1, EVT VT2, 8829 SDValue Op1, SDValue Op2) { 8830 SDVTList VTs = getVTList(VT1, VT2); 8831 SDValue Ops[] = { Op1, Op2 }; 8832 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8833 } 8834 8835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8836 SDVTList VTs,ArrayRef<SDValue> Ops) { 8837 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8838 // Reset the NodeID to -1. 8839 New->setNodeId(-1); 8840 if (New != N) { 8841 ReplaceAllUsesWith(N, New); 8842 RemoveDeadNode(N); 8843 } 8844 return New; 8845 } 8846 8847 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8848 /// the line number information on the merged node since it is not possible to 8849 /// preserve the information that operation is associated with multiple lines. 8850 /// This will make the debugger working better at -O0, were there is a higher 8851 /// probability having other instructions associated with that line. 8852 /// 8853 /// For IROrder, we keep the smaller of the two 8854 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8855 DebugLoc NLoc = N->getDebugLoc(); 8856 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8857 N->setDebugLoc(DebugLoc()); 8858 } 8859 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8860 N->setIROrder(Order); 8861 return N; 8862 } 8863 8864 /// MorphNodeTo - This *mutates* the specified node to have the specified 8865 /// return type, opcode, and operands. 8866 /// 8867 /// Note that MorphNodeTo returns the resultant node. If there is already a 8868 /// node of the specified opcode and operands, it returns that node instead of 8869 /// the current one. Note that the SDLoc need not be the same. 8870 /// 8871 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8872 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8873 /// node, and because it doesn't require CSE recalculation for any of 8874 /// the node's users. 8875 /// 8876 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8877 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8878 /// the legalizer which maintain worklists that would need to be updated when 8879 /// deleting things. 8880 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8881 SDVTList VTs, ArrayRef<SDValue> Ops) { 8882 // If an identical node already exists, use it. 8883 void *IP = nullptr; 8884 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8885 FoldingSetNodeID ID; 8886 AddNodeIDNode(ID, Opc, VTs, Ops); 8887 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8888 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8889 } 8890 8891 if (!RemoveNodeFromCSEMaps(N)) 8892 IP = nullptr; 8893 8894 // Start the morphing. 8895 N->NodeType = Opc; 8896 N->ValueList = VTs.VTs; 8897 N->NumValues = VTs.NumVTs; 8898 8899 // Clear the operands list, updating used nodes to remove this from their 8900 // use list. Keep track of any operands that become dead as a result. 8901 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8902 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8903 SDUse &Use = *I++; 8904 SDNode *Used = Use.getNode(); 8905 Use.set(SDValue()); 8906 if (Used->use_empty()) 8907 DeadNodeSet.insert(Used); 8908 } 8909 8910 // For MachineNode, initialize the memory references information. 8911 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8912 MN->clearMemRefs(); 8913 8914 // Swap for an appropriately sized array from the recycler. 8915 removeOperands(N); 8916 createOperands(N, Ops); 8917 8918 // Delete any nodes that are still dead after adding the uses for the 8919 // new operands. 8920 if (!DeadNodeSet.empty()) { 8921 SmallVector<SDNode *, 16> DeadNodes; 8922 for (SDNode *N : DeadNodeSet) 8923 if (N->use_empty()) 8924 DeadNodes.push_back(N); 8925 RemoveDeadNodes(DeadNodes); 8926 } 8927 8928 if (IP) 8929 CSEMap.InsertNode(N, IP); // Memoize the new node. 8930 return N; 8931 } 8932 8933 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8934 unsigned OrigOpc = Node->getOpcode(); 8935 unsigned NewOpc; 8936 switch (OrigOpc) { 8937 default: 8938 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8939 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8940 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8941 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8942 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8943 #include "llvm/IR/ConstrainedOps.def" 8944 } 8945 8946 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8947 8948 // We're taking this node out of the chain, so we need to re-link things. 8949 SDValue InputChain = Node->getOperand(0); 8950 SDValue OutputChain = SDValue(Node, 1); 8951 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8952 8953 SmallVector<SDValue, 3> Ops; 8954 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8955 Ops.push_back(Node->getOperand(i)); 8956 8957 SDVTList VTs = getVTList(Node->getValueType(0)); 8958 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8959 8960 // MorphNodeTo can operate in two ways: if an existing node with the 8961 // specified operands exists, it can just return it. Otherwise, it 8962 // updates the node in place to have the requested operands. 8963 if (Res == Node) { 8964 // If we updated the node in place, reset the node ID. To the isel, 8965 // this should be just like a newly allocated machine node. 8966 Res->setNodeId(-1); 8967 } else { 8968 ReplaceAllUsesWith(Node, Res); 8969 RemoveDeadNode(Node); 8970 } 8971 8972 return Res; 8973 } 8974 8975 /// getMachineNode - These are used for target selectors to create a new node 8976 /// with specified return type(s), MachineInstr opcode, and operands. 8977 /// 8978 /// Note that getMachineNode returns the resultant node. If there is already a 8979 /// node of the specified opcode and operands, it returns that node instead of 8980 /// the current one. 8981 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8982 EVT VT) { 8983 SDVTList VTs = getVTList(VT); 8984 return getMachineNode(Opcode, dl, VTs, None); 8985 } 8986 8987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8988 EVT VT, SDValue Op1) { 8989 SDVTList VTs = getVTList(VT); 8990 SDValue Ops[] = { Op1 }; 8991 return getMachineNode(Opcode, dl, VTs, Ops); 8992 } 8993 8994 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8995 EVT VT, SDValue Op1, SDValue Op2) { 8996 SDVTList VTs = getVTList(VT); 8997 SDValue Ops[] = { Op1, Op2 }; 8998 return getMachineNode(Opcode, dl, VTs, Ops); 8999 } 9000 9001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9002 EVT VT, SDValue Op1, SDValue Op2, 9003 SDValue Op3) { 9004 SDVTList VTs = getVTList(VT); 9005 SDValue Ops[] = { Op1, Op2, Op3 }; 9006 return getMachineNode(Opcode, dl, VTs, Ops); 9007 } 9008 9009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9010 EVT VT, ArrayRef<SDValue> Ops) { 9011 SDVTList VTs = getVTList(VT); 9012 return getMachineNode(Opcode, dl, VTs, Ops); 9013 } 9014 9015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9016 EVT VT1, EVT VT2, SDValue Op1, 9017 SDValue Op2) { 9018 SDVTList VTs = getVTList(VT1, VT2); 9019 SDValue Ops[] = { Op1, Op2 }; 9020 return getMachineNode(Opcode, dl, VTs, Ops); 9021 } 9022 9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9024 EVT VT1, EVT VT2, SDValue Op1, 9025 SDValue Op2, SDValue Op3) { 9026 SDVTList VTs = getVTList(VT1, VT2); 9027 SDValue Ops[] = { Op1, Op2, Op3 }; 9028 return getMachineNode(Opcode, dl, VTs, Ops); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT1, EVT VT2, 9033 ArrayRef<SDValue> Ops) { 9034 SDVTList VTs = getVTList(VT1, VT2); 9035 return getMachineNode(Opcode, dl, VTs, Ops); 9036 } 9037 9038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9039 EVT VT1, EVT VT2, EVT VT3, 9040 SDValue Op1, SDValue Op2) { 9041 SDVTList VTs = getVTList(VT1, VT2, VT3); 9042 SDValue Ops[] = { Op1, Op2 }; 9043 return getMachineNode(Opcode, dl, VTs, Ops); 9044 } 9045 9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9047 EVT VT1, EVT VT2, EVT VT3, 9048 SDValue Op1, SDValue Op2, 9049 SDValue Op3) { 9050 SDVTList VTs = getVTList(VT1, VT2, VT3); 9051 SDValue Ops[] = { Op1, Op2, Op3 }; 9052 return getMachineNode(Opcode, dl, VTs, Ops); 9053 } 9054 9055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9056 EVT VT1, EVT VT2, EVT VT3, 9057 ArrayRef<SDValue> Ops) { 9058 SDVTList VTs = getVTList(VT1, VT2, VT3); 9059 return getMachineNode(Opcode, dl, VTs, Ops); 9060 } 9061 9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9063 ArrayRef<EVT> ResultTys, 9064 ArrayRef<SDValue> Ops) { 9065 SDVTList VTs = getVTList(ResultTys); 9066 return getMachineNode(Opcode, dl, VTs, Ops); 9067 } 9068 9069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9070 SDVTList VTs, 9071 ArrayRef<SDValue> Ops) { 9072 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9073 MachineSDNode *N; 9074 void *IP = nullptr; 9075 9076 if (DoCSE) { 9077 FoldingSetNodeID ID; 9078 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9079 IP = nullptr; 9080 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9081 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9082 } 9083 } 9084 9085 // Allocate a new MachineSDNode. 9086 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9087 createOperands(N, Ops); 9088 9089 if (DoCSE) 9090 CSEMap.InsertNode(N, IP); 9091 9092 InsertNode(N); 9093 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9094 return N; 9095 } 9096 9097 /// getTargetExtractSubreg - A convenience function for creating 9098 /// TargetOpcode::EXTRACT_SUBREG nodes. 9099 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9100 SDValue Operand) { 9101 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9102 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9103 VT, Operand, SRIdxVal); 9104 return SDValue(Subreg, 0); 9105 } 9106 9107 /// getTargetInsertSubreg - A convenience function for creating 9108 /// TargetOpcode::INSERT_SUBREG nodes. 9109 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9110 SDValue Operand, SDValue Subreg) { 9111 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9112 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9113 VT, Operand, Subreg, SRIdxVal); 9114 return SDValue(Result, 0); 9115 } 9116 9117 /// getNodeIfExists - Get the specified node if it's already available, or 9118 /// else return NULL. 9119 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9120 ArrayRef<SDValue> Ops) { 9121 SDNodeFlags Flags; 9122 if (Inserter) 9123 Flags = Inserter->getFlags(); 9124 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9125 } 9126 9127 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9128 ArrayRef<SDValue> Ops, 9129 const SDNodeFlags Flags) { 9130 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9131 FoldingSetNodeID ID; 9132 AddNodeIDNode(ID, Opcode, VTList, Ops); 9133 void *IP = nullptr; 9134 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9135 E->intersectFlagsWith(Flags); 9136 return E; 9137 } 9138 } 9139 return nullptr; 9140 } 9141 9142 /// doesNodeExist - Check if a node exists without modifying its flags. 9143 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9144 ArrayRef<SDValue> Ops) { 9145 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9146 FoldingSetNodeID ID; 9147 AddNodeIDNode(ID, Opcode, VTList, Ops); 9148 void *IP = nullptr; 9149 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9150 return true; 9151 } 9152 return false; 9153 } 9154 9155 /// getDbgValue - Creates a SDDbgValue node. 9156 /// 9157 /// SDNode 9158 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9159 SDNode *N, unsigned R, bool IsIndirect, 9160 const DebugLoc &DL, unsigned O) { 9161 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9162 "Expected inlined-at fields to agree"); 9163 return new (DbgInfo->getAlloc()) 9164 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9165 {}, IsIndirect, DL, O, 9166 /*IsVariadic=*/false); 9167 } 9168 9169 /// Constant 9170 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9171 DIExpression *Expr, 9172 const Value *C, 9173 const DebugLoc &DL, unsigned O) { 9174 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9175 "Expected inlined-at fields to agree"); 9176 return new (DbgInfo->getAlloc()) 9177 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9178 /*IsIndirect=*/false, DL, O, 9179 /*IsVariadic=*/false); 9180 } 9181 9182 /// FrameIndex 9183 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9184 DIExpression *Expr, unsigned FI, 9185 bool IsIndirect, 9186 const DebugLoc &DL, 9187 unsigned O) { 9188 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9189 "Expected inlined-at fields to agree"); 9190 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9191 } 9192 9193 /// FrameIndex with dependencies 9194 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9195 DIExpression *Expr, unsigned FI, 9196 ArrayRef<SDNode *> Dependencies, 9197 bool IsIndirect, 9198 const DebugLoc &DL, 9199 unsigned O) { 9200 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9201 "Expected inlined-at fields to agree"); 9202 return new (DbgInfo->getAlloc()) 9203 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9204 Dependencies, IsIndirect, DL, O, 9205 /*IsVariadic=*/false); 9206 } 9207 9208 /// VReg 9209 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9210 unsigned VReg, bool IsIndirect, 9211 const DebugLoc &DL, unsigned O) { 9212 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9213 "Expected inlined-at fields to agree"); 9214 return new (DbgInfo->getAlloc()) 9215 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9216 {}, IsIndirect, DL, O, 9217 /*IsVariadic=*/false); 9218 } 9219 9220 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9221 ArrayRef<SDDbgOperand> Locs, 9222 ArrayRef<SDNode *> Dependencies, 9223 bool IsIndirect, const DebugLoc &DL, 9224 unsigned O, bool IsVariadic) { 9225 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9226 "Expected inlined-at fields to agree"); 9227 return new (DbgInfo->getAlloc()) 9228 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9229 DL, O, IsVariadic); 9230 } 9231 9232 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9233 unsigned OffsetInBits, unsigned SizeInBits, 9234 bool InvalidateDbg) { 9235 SDNode *FromNode = From.getNode(); 9236 SDNode *ToNode = To.getNode(); 9237 assert(FromNode && ToNode && "Can't modify dbg values"); 9238 9239 // PR35338 9240 // TODO: assert(From != To && "Redundant dbg value transfer"); 9241 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9242 if (From == To || FromNode == ToNode) 9243 return; 9244 9245 if (!FromNode->getHasDebugValue()) 9246 return; 9247 9248 SDDbgOperand FromLocOp = 9249 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9250 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9251 9252 SmallVector<SDDbgValue *, 2> ClonedDVs; 9253 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9254 if (Dbg->isInvalidated()) 9255 continue; 9256 9257 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9258 9259 // Create a new location ops vector that is equal to the old vector, but 9260 // with each instance of FromLocOp replaced with ToLocOp. 9261 bool Changed = false; 9262 auto NewLocOps = Dbg->copyLocationOps(); 9263 std::replace_if( 9264 NewLocOps.begin(), NewLocOps.end(), 9265 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9266 bool Match = Op == FromLocOp; 9267 Changed |= Match; 9268 return Match; 9269 }, 9270 ToLocOp); 9271 // Ignore this SDDbgValue if we didn't find a matching location. 9272 if (!Changed) 9273 continue; 9274 9275 DIVariable *Var = Dbg->getVariable(); 9276 auto *Expr = Dbg->getExpression(); 9277 // If a fragment is requested, update the expression. 9278 if (SizeInBits) { 9279 // When splitting a larger (e.g., sign-extended) value whose 9280 // lower bits are described with an SDDbgValue, do not attempt 9281 // to transfer the SDDbgValue to the upper bits. 9282 if (auto FI = Expr->getFragmentInfo()) 9283 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9284 continue; 9285 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9286 SizeInBits); 9287 if (!Fragment) 9288 continue; 9289 Expr = *Fragment; 9290 } 9291 9292 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9293 // Clone the SDDbgValue and move it to To. 9294 SDDbgValue *Clone = getDbgValueList( 9295 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9296 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9297 Dbg->isVariadic()); 9298 ClonedDVs.push_back(Clone); 9299 9300 if (InvalidateDbg) { 9301 // Invalidate value and indicate the SDDbgValue should not be emitted. 9302 Dbg->setIsInvalidated(); 9303 Dbg->setIsEmitted(); 9304 } 9305 } 9306 9307 for (SDDbgValue *Dbg : ClonedDVs) { 9308 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9309 "Transferred DbgValues should depend on the new SDNode"); 9310 AddDbgValue(Dbg, false); 9311 } 9312 } 9313 9314 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9315 if (!N.getHasDebugValue()) 9316 return; 9317 9318 SmallVector<SDDbgValue *, 2> ClonedDVs; 9319 for (auto DV : GetDbgValues(&N)) { 9320 if (DV->isInvalidated()) 9321 continue; 9322 switch (N.getOpcode()) { 9323 default: 9324 break; 9325 case ISD::ADD: 9326 SDValue N0 = N.getOperand(0); 9327 SDValue N1 = N.getOperand(1); 9328 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9329 isConstantIntBuildVectorOrConstantInt(N1)) { 9330 uint64_t Offset = N.getConstantOperandVal(1); 9331 9332 // Rewrite an ADD constant node into a DIExpression. Since we are 9333 // performing arithmetic to compute the variable's *value* in the 9334 // DIExpression, we need to mark the expression with a 9335 // DW_OP_stack_value. 9336 auto *DIExpr = DV->getExpression(); 9337 auto NewLocOps = DV->copyLocationOps(); 9338 bool Changed = false; 9339 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9340 // We're not given a ResNo to compare against because the whole 9341 // node is going away. We know that any ISD::ADD only has one 9342 // result, so we can assume any node match is using the result. 9343 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9344 NewLocOps[i].getSDNode() != &N) 9345 continue; 9346 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9347 SmallVector<uint64_t, 3> ExprOps; 9348 DIExpression::appendOffset(ExprOps, Offset); 9349 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9350 Changed = true; 9351 } 9352 (void)Changed; 9353 assert(Changed && "Salvage target doesn't use N"); 9354 9355 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9356 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9357 NewLocOps, AdditionalDependencies, 9358 DV->isIndirect(), DV->getDebugLoc(), 9359 DV->getOrder(), DV->isVariadic()); 9360 ClonedDVs.push_back(Clone); 9361 DV->setIsInvalidated(); 9362 DV->setIsEmitted(); 9363 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9364 N0.getNode()->dumprFull(this); 9365 dbgs() << " into " << *DIExpr << '\n'); 9366 } 9367 } 9368 } 9369 9370 for (SDDbgValue *Dbg : ClonedDVs) { 9371 assert(!Dbg->getSDNodes().empty() && 9372 "Salvaged DbgValue should depend on a new SDNode"); 9373 AddDbgValue(Dbg, false); 9374 } 9375 } 9376 9377 /// Creates a SDDbgLabel node. 9378 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9379 const DebugLoc &DL, unsigned O) { 9380 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9381 "Expected inlined-at fields to agree"); 9382 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9383 } 9384 9385 namespace { 9386 9387 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9388 /// pointed to by a use iterator is deleted, increment the use iterator 9389 /// so that it doesn't dangle. 9390 /// 9391 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9392 SDNode::use_iterator &UI; 9393 SDNode::use_iterator &UE; 9394 9395 void NodeDeleted(SDNode *N, SDNode *E) override { 9396 // Increment the iterator as needed. 9397 while (UI != UE && N == *UI) 9398 ++UI; 9399 } 9400 9401 public: 9402 RAUWUpdateListener(SelectionDAG &d, 9403 SDNode::use_iterator &ui, 9404 SDNode::use_iterator &ue) 9405 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9406 }; 9407 9408 } // end anonymous namespace 9409 9410 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9411 /// This can cause recursive merging of nodes in the DAG. 9412 /// 9413 /// This version assumes From has a single result value. 9414 /// 9415 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9416 SDNode *From = FromN.getNode(); 9417 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9418 "Cannot replace with this method!"); 9419 assert(From != To.getNode() && "Cannot replace uses of with self"); 9420 9421 // Preserve Debug Values 9422 transferDbgValues(FromN, To); 9423 9424 // Iterate over all the existing uses of From. New uses will be added 9425 // to the beginning of the use list, which we avoid visiting. 9426 // This specifically avoids visiting uses of From that arise while the 9427 // replacement is happening, because any such uses would be the result 9428 // of CSE: If an existing node looks like From after one of its operands 9429 // is replaced by To, we don't want to replace of all its users with To 9430 // too. See PR3018 for more info. 9431 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9432 RAUWUpdateListener Listener(*this, UI, UE); 9433 while (UI != UE) { 9434 SDNode *User = *UI; 9435 9436 // This node is about to morph, remove its old self from the CSE maps. 9437 RemoveNodeFromCSEMaps(User); 9438 9439 // A user can appear in a use list multiple times, and when this 9440 // happens the uses are usually next to each other in the list. 9441 // To help reduce the number of CSE recomputations, process all 9442 // the uses of this user that we can find this way. 9443 do { 9444 SDUse &Use = UI.getUse(); 9445 ++UI; 9446 Use.set(To); 9447 if (To->isDivergent() != From->isDivergent()) 9448 updateDivergence(User); 9449 } while (UI != UE && *UI == User); 9450 // Now that we have modified User, add it back to the CSE maps. If it 9451 // already exists there, recursively merge the results together. 9452 AddModifiedNodeToCSEMaps(User); 9453 } 9454 9455 // If we just RAUW'd the root, take note. 9456 if (FromN == getRoot()) 9457 setRoot(To); 9458 } 9459 9460 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9461 /// This can cause recursive merging of nodes in the DAG. 9462 /// 9463 /// This version assumes that for each value of From, there is a 9464 /// corresponding value in To in the same position with the same type. 9465 /// 9466 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9467 #ifndef NDEBUG 9468 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9469 assert((!From->hasAnyUseOfValue(i) || 9470 From->getValueType(i) == To->getValueType(i)) && 9471 "Cannot use this version of ReplaceAllUsesWith!"); 9472 #endif 9473 9474 // Handle the trivial case. 9475 if (From == To) 9476 return; 9477 9478 // Preserve Debug Info. Only do this if there's a use. 9479 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9480 if (From->hasAnyUseOfValue(i)) { 9481 assert((i < To->getNumValues()) && "Invalid To location"); 9482 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9483 } 9484 9485 // Iterate over just the existing users of From. See the comments in 9486 // the ReplaceAllUsesWith above. 9487 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9488 RAUWUpdateListener Listener(*this, UI, UE); 9489 while (UI != UE) { 9490 SDNode *User = *UI; 9491 9492 // This node is about to morph, remove its old self from the CSE maps. 9493 RemoveNodeFromCSEMaps(User); 9494 9495 // A user can appear in a use list multiple times, and when this 9496 // happens the uses are usually next to each other in the list. 9497 // To help reduce the number of CSE recomputations, process all 9498 // the uses of this user that we can find this way. 9499 do { 9500 SDUse &Use = UI.getUse(); 9501 ++UI; 9502 Use.setNode(To); 9503 if (To->isDivergent() != From->isDivergent()) 9504 updateDivergence(User); 9505 } while (UI != UE && *UI == User); 9506 9507 // Now that we have modified User, add it back to the CSE maps. If it 9508 // already exists there, recursively merge the results together. 9509 AddModifiedNodeToCSEMaps(User); 9510 } 9511 9512 // If we just RAUW'd the root, take note. 9513 if (From == getRoot().getNode()) 9514 setRoot(SDValue(To, getRoot().getResNo())); 9515 } 9516 9517 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9518 /// This can cause recursive merging of nodes in the DAG. 9519 /// 9520 /// This version can replace From with any result values. To must match the 9521 /// number and types of values returned by From. 9522 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9523 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9524 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9525 9526 // Preserve Debug Info. 9527 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9528 transferDbgValues(SDValue(From, i), To[i]); 9529 9530 // Iterate over just the existing users of From. See the comments in 9531 // the ReplaceAllUsesWith above. 9532 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9533 RAUWUpdateListener Listener(*this, UI, UE); 9534 while (UI != UE) { 9535 SDNode *User = *UI; 9536 9537 // This node is about to morph, remove its old self from the CSE maps. 9538 RemoveNodeFromCSEMaps(User); 9539 9540 // A user can appear in a use list multiple times, and when this happens the 9541 // uses are usually next to each other in the list. To help reduce the 9542 // number of CSE and divergence recomputations, process all the uses of this 9543 // user that we can find this way. 9544 bool To_IsDivergent = false; 9545 do { 9546 SDUse &Use = UI.getUse(); 9547 const SDValue &ToOp = To[Use.getResNo()]; 9548 ++UI; 9549 Use.set(ToOp); 9550 To_IsDivergent |= ToOp->isDivergent(); 9551 } while (UI != UE && *UI == User); 9552 9553 if (To_IsDivergent != From->isDivergent()) 9554 updateDivergence(User); 9555 9556 // Now that we have modified User, add it back to the CSE maps. If it 9557 // already exists there, recursively merge the results together. 9558 AddModifiedNodeToCSEMaps(User); 9559 } 9560 9561 // If we just RAUW'd the root, take note. 9562 if (From == getRoot().getNode()) 9563 setRoot(SDValue(To[getRoot().getResNo()])); 9564 } 9565 9566 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9567 /// uses of other values produced by From.getNode() alone. The Deleted 9568 /// vector is handled the same way as for ReplaceAllUsesWith. 9569 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9570 // Handle the really simple, really trivial case efficiently. 9571 if (From == To) return; 9572 9573 // Handle the simple, trivial, case efficiently. 9574 if (From.getNode()->getNumValues() == 1) { 9575 ReplaceAllUsesWith(From, To); 9576 return; 9577 } 9578 9579 // Preserve Debug Info. 9580 transferDbgValues(From, To); 9581 9582 // Iterate over just the existing users of From. See the comments in 9583 // the ReplaceAllUsesWith above. 9584 SDNode::use_iterator UI = From.getNode()->use_begin(), 9585 UE = From.getNode()->use_end(); 9586 RAUWUpdateListener Listener(*this, UI, UE); 9587 while (UI != UE) { 9588 SDNode *User = *UI; 9589 bool UserRemovedFromCSEMaps = false; 9590 9591 // A user can appear in a use list multiple times, and when this 9592 // happens the uses are usually next to each other in the list. 9593 // To help reduce the number of CSE recomputations, process all 9594 // the uses of this user that we can find this way. 9595 do { 9596 SDUse &Use = UI.getUse(); 9597 9598 // Skip uses of different values from the same node. 9599 if (Use.getResNo() != From.getResNo()) { 9600 ++UI; 9601 continue; 9602 } 9603 9604 // If this node hasn't been modified yet, it's still in the CSE maps, 9605 // so remove its old self from the CSE maps. 9606 if (!UserRemovedFromCSEMaps) { 9607 RemoveNodeFromCSEMaps(User); 9608 UserRemovedFromCSEMaps = true; 9609 } 9610 9611 ++UI; 9612 Use.set(To); 9613 if (To->isDivergent() != From->isDivergent()) 9614 updateDivergence(User); 9615 } while (UI != UE && *UI == User); 9616 // We are iterating over all uses of the From node, so if a use 9617 // doesn't use the specific value, no changes are made. 9618 if (!UserRemovedFromCSEMaps) 9619 continue; 9620 9621 // Now that we have modified User, add it back to the CSE maps. If it 9622 // already exists there, recursively merge the results together. 9623 AddModifiedNodeToCSEMaps(User); 9624 } 9625 9626 // If we just RAUW'd the root, take note. 9627 if (From == getRoot()) 9628 setRoot(To); 9629 } 9630 9631 namespace { 9632 9633 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9634 /// to record information about a use. 9635 struct UseMemo { 9636 SDNode *User; 9637 unsigned Index; 9638 SDUse *Use; 9639 }; 9640 9641 /// operator< - Sort Memos by User. 9642 bool operator<(const UseMemo &L, const UseMemo &R) { 9643 return (intptr_t)L.User < (intptr_t)R.User; 9644 } 9645 9646 } // end anonymous namespace 9647 9648 bool SelectionDAG::calculateDivergence(SDNode *N) { 9649 if (TLI->isSDNodeAlwaysUniform(N)) { 9650 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9651 "Conflicting divergence information!"); 9652 return false; 9653 } 9654 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9655 return true; 9656 for (auto &Op : N->ops()) { 9657 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9658 return true; 9659 } 9660 return false; 9661 } 9662 9663 void SelectionDAG::updateDivergence(SDNode *N) { 9664 SmallVector<SDNode *, 16> Worklist(1, N); 9665 do { 9666 N = Worklist.pop_back_val(); 9667 bool IsDivergent = calculateDivergence(N); 9668 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9669 N->SDNodeBits.IsDivergent = IsDivergent; 9670 llvm::append_range(Worklist, N->uses()); 9671 } 9672 } while (!Worklist.empty()); 9673 } 9674 9675 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9676 DenseMap<SDNode *, unsigned> Degree; 9677 Order.reserve(AllNodes.size()); 9678 for (auto &N : allnodes()) { 9679 unsigned NOps = N.getNumOperands(); 9680 Degree[&N] = NOps; 9681 if (0 == NOps) 9682 Order.push_back(&N); 9683 } 9684 for (size_t I = 0; I != Order.size(); ++I) { 9685 SDNode *N = Order[I]; 9686 for (auto U : N->uses()) { 9687 unsigned &UnsortedOps = Degree[U]; 9688 if (0 == --UnsortedOps) 9689 Order.push_back(U); 9690 } 9691 } 9692 } 9693 9694 #ifndef NDEBUG 9695 void SelectionDAG::VerifyDAGDivergence() { 9696 std::vector<SDNode *> TopoOrder; 9697 CreateTopologicalOrder(TopoOrder); 9698 for (auto *N : TopoOrder) { 9699 assert(calculateDivergence(N) == N->isDivergent() && 9700 "Divergence bit inconsistency detected"); 9701 } 9702 } 9703 #endif 9704 9705 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9706 /// uses of other values produced by From.getNode() alone. The same value 9707 /// may appear in both the From and To list. The Deleted vector is 9708 /// handled the same way as for ReplaceAllUsesWith. 9709 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9710 const SDValue *To, 9711 unsigned Num){ 9712 // Handle the simple, trivial case efficiently. 9713 if (Num == 1) 9714 return ReplaceAllUsesOfValueWith(*From, *To); 9715 9716 transferDbgValues(*From, *To); 9717 9718 // Read up all the uses and make records of them. This helps 9719 // processing new uses that are introduced during the 9720 // replacement process. 9721 SmallVector<UseMemo, 4> Uses; 9722 for (unsigned i = 0; i != Num; ++i) { 9723 unsigned FromResNo = From[i].getResNo(); 9724 SDNode *FromNode = From[i].getNode(); 9725 for (SDNode::use_iterator UI = FromNode->use_begin(), 9726 E = FromNode->use_end(); UI != E; ++UI) { 9727 SDUse &Use = UI.getUse(); 9728 if (Use.getResNo() == FromResNo) { 9729 UseMemo Memo = { *UI, i, &Use }; 9730 Uses.push_back(Memo); 9731 } 9732 } 9733 } 9734 9735 // Sort the uses, so that all the uses from a given User are together. 9736 llvm::sort(Uses); 9737 9738 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9739 UseIndex != UseIndexEnd; ) { 9740 // We know that this user uses some value of From. If it is the right 9741 // value, update it. 9742 SDNode *User = Uses[UseIndex].User; 9743 9744 // This node is about to morph, remove its old self from the CSE maps. 9745 RemoveNodeFromCSEMaps(User); 9746 9747 // The Uses array is sorted, so all the uses for a given User 9748 // are next to each other in the list. 9749 // To help reduce the number of CSE recomputations, process all 9750 // the uses of this user that we can find this way. 9751 do { 9752 unsigned i = Uses[UseIndex].Index; 9753 SDUse &Use = *Uses[UseIndex].Use; 9754 ++UseIndex; 9755 9756 Use.set(To[i]); 9757 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9758 9759 // Now that we have modified User, add it back to the CSE maps. If it 9760 // already exists there, recursively merge the results together. 9761 AddModifiedNodeToCSEMaps(User); 9762 } 9763 } 9764 9765 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9766 /// based on their topological order. It returns the maximum id and a vector 9767 /// of the SDNodes* in assigned order by reference. 9768 unsigned SelectionDAG::AssignTopologicalOrder() { 9769 unsigned DAGSize = 0; 9770 9771 // SortedPos tracks the progress of the algorithm. Nodes before it are 9772 // sorted, nodes after it are unsorted. When the algorithm completes 9773 // it is at the end of the list. 9774 allnodes_iterator SortedPos = allnodes_begin(); 9775 9776 // Visit all the nodes. Move nodes with no operands to the front of 9777 // the list immediately. Annotate nodes that do have operands with their 9778 // operand count. Before we do this, the Node Id fields of the nodes 9779 // may contain arbitrary values. After, the Node Id fields for nodes 9780 // before SortedPos will contain the topological sort index, and the 9781 // Node Id fields for nodes At SortedPos and after will contain the 9782 // count of outstanding operands. 9783 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9784 checkForCycles(&N, this); 9785 unsigned Degree = N.getNumOperands(); 9786 if (Degree == 0) { 9787 // A node with no uses, add it to the result array immediately. 9788 N.setNodeId(DAGSize++); 9789 allnodes_iterator Q(&N); 9790 if (Q != SortedPos) 9791 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9792 assert(SortedPos != AllNodes.end() && "Overran node list"); 9793 ++SortedPos; 9794 } else { 9795 // Temporarily use the Node Id as scratch space for the degree count. 9796 N.setNodeId(Degree); 9797 } 9798 } 9799 9800 // Visit all the nodes. As we iterate, move nodes into sorted order, 9801 // such that by the time the end is reached all nodes will be sorted. 9802 for (SDNode &Node : allnodes()) { 9803 SDNode *N = &Node; 9804 checkForCycles(N, this); 9805 // N is in sorted position, so all its uses have one less operand 9806 // that needs to be sorted. 9807 for (SDNode *P : N->uses()) { 9808 unsigned Degree = P->getNodeId(); 9809 assert(Degree != 0 && "Invalid node degree"); 9810 --Degree; 9811 if (Degree == 0) { 9812 // All of P's operands are sorted, so P may sorted now. 9813 P->setNodeId(DAGSize++); 9814 if (P->getIterator() != SortedPos) 9815 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9816 assert(SortedPos != AllNodes.end() && "Overran node list"); 9817 ++SortedPos; 9818 } else { 9819 // Update P's outstanding operand count. 9820 P->setNodeId(Degree); 9821 } 9822 } 9823 if (Node.getIterator() == SortedPos) { 9824 #ifndef NDEBUG 9825 allnodes_iterator I(N); 9826 SDNode *S = &*++I; 9827 dbgs() << "Overran sorted position:\n"; 9828 S->dumprFull(this); dbgs() << "\n"; 9829 dbgs() << "Checking if this is due to cycles\n"; 9830 checkForCycles(this, true); 9831 #endif 9832 llvm_unreachable(nullptr); 9833 } 9834 } 9835 9836 assert(SortedPos == AllNodes.end() && 9837 "Topological sort incomplete!"); 9838 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9839 "First node in topological sort is not the entry token!"); 9840 assert(AllNodes.front().getNodeId() == 0 && 9841 "First node in topological sort has non-zero id!"); 9842 assert(AllNodes.front().getNumOperands() == 0 && 9843 "First node in topological sort has operands!"); 9844 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9845 "Last node in topologic sort has unexpected id!"); 9846 assert(AllNodes.back().use_empty() && 9847 "Last node in topologic sort has users!"); 9848 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9849 return DAGSize; 9850 } 9851 9852 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9853 /// value is produced by SD. 9854 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9855 for (SDNode *SD : DB->getSDNodes()) { 9856 if (!SD) 9857 continue; 9858 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9859 SD->setHasDebugValue(true); 9860 } 9861 DbgInfo->add(DB, isParameter); 9862 } 9863 9864 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9865 9866 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9867 SDValue NewMemOpChain) { 9868 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9869 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9870 // The new memory operation must have the same position as the old load in 9871 // terms of memory dependency. Create a TokenFactor for the old load and new 9872 // memory operation and update uses of the old load's output chain to use that 9873 // TokenFactor. 9874 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9875 return NewMemOpChain; 9876 9877 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9878 OldChain, NewMemOpChain); 9879 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9880 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9881 return TokenFactor; 9882 } 9883 9884 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9885 SDValue NewMemOp) { 9886 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9887 SDValue OldChain = SDValue(OldLoad, 1); 9888 SDValue NewMemOpChain = NewMemOp.getValue(1); 9889 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9890 } 9891 9892 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9893 Function **OutFunction) { 9894 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9895 9896 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9897 auto *Module = MF->getFunction().getParent(); 9898 auto *Function = Module->getFunction(Symbol); 9899 9900 if (OutFunction != nullptr) 9901 *OutFunction = Function; 9902 9903 if (Function != nullptr) { 9904 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9905 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9906 } 9907 9908 std::string ErrorStr; 9909 raw_string_ostream ErrorFormatter(ErrorStr); 9910 ErrorFormatter << "Undefined external symbol "; 9911 ErrorFormatter << '"' << Symbol << '"'; 9912 report_fatal_error(Twine(ErrorFormatter.str())); 9913 } 9914 9915 //===----------------------------------------------------------------------===// 9916 // SDNode Class 9917 //===----------------------------------------------------------------------===// 9918 9919 bool llvm::isNullConstant(SDValue V) { 9920 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9921 return Const != nullptr && Const->isZero(); 9922 } 9923 9924 bool llvm::isNullFPConstant(SDValue V) { 9925 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9926 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9927 } 9928 9929 bool llvm::isAllOnesConstant(SDValue V) { 9930 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9931 return Const != nullptr && Const->isAllOnes(); 9932 } 9933 9934 bool llvm::isOneConstant(SDValue V) { 9935 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9936 return Const != nullptr && Const->isOne(); 9937 } 9938 9939 SDValue llvm::peekThroughBitcasts(SDValue V) { 9940 while (V.getOpcode() == ISD::BITCAST) 9941 V = V.getOperand(0); 9942 return V; 9943 } 9944 9945 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9946 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9947 V = V.getOperand(0); 9948 return V; 9949 } 9950 9951 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9952 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9953 V = V.getOperand(0); 9954 return V; 9955 } 9956 9957 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9958 if (V.getOpcode() != ISD::XOR) 9959 return false; 9960 V = peekThroughBitcasts(V.getOperand(1)); 9961 unsigned NumBits = V.getScalarValueSizeInBits(); 9962 ConstantSDNode *C = 9963 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9964 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9965 } 9966 9967 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9968 bool AllowTruncation) { 9969 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9970 return CN; 9971 9972 // SplatVectors can truncate their operands. Ignore that case here unless 9973 // AllowTruncation is set. 9974 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9975 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9976 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9977 EVT CVT = CN->getValueType(0); 9978 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9979 if (AllowTruncation || CVT == VecEltVT) 9980 return CN; 9981 } 9982 } 9983 9984 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9985 BitVector UndefElements; 9986 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9987 9988 // BuildVectors can truncate their operands. Ignore that case here unless 9989 // AllowTruncation is set. 9990 if (CN && (UndefElements.none() || AllowUndefs)) { 9991 EVT CVT = CN->getValueType(0); 9992 EVT NSVT = N.getValueType().getScalarType(); 9993 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9994 if (AllowTruncation || (CVT == NSVT)) 9995 return CN; 9996 } 9997 } 9998 9999 return nullptr; 10000 } 10001 10002 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10003 bool AllowUndefs, 10004 bool AllowTruncation) { 10005 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10006 return CN; 10007 10008 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10009 BitVector UndefElements; 10010 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10011 10012 // BuildVectors can truncate their operands. Ignore that case here unless 10013 // AllowTruncation is set. 10014 if (CN && (UndefElements.none() || AllowUndefs)) { 10015 EVT CVT = CN->getValueType(0); 10016 EVT NSVT = N.getValueType().getScalarType(); 10017 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10018 if (AllowTruncation || (CVT == NSVT)) 10019 return CN; 10020 } 10021 } 10022 10023 return nullptr; 10024 } 10025 10026 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10027 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10028 return CN; 10029 10030 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10031 BitVector UndefElements; 10032 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10033 if (CN && (UndefElements.none() || AllowUndefs)) 10034 return CN; 10035 } 10036 10037 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10038 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10039 return CN; 10040 10041 return nullptr; 10042 } 10043 10044 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10045 const APInt &DemandedElts, 10046 bool AllowUndefs) { 10047 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10048 return CN; 10049 10050 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10051 BitVector UndefElements; 10052 ConstantFPSDNode *CN = 10053 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10054 if (CN && (UndefElements.none() || AllowUndefs)) 10055 return CN; 10056 } 10057 10058 return nullptr; 10059 } 10060 10061 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10062 // TODO: may want to use peekThroughBitcast() here. 10063 ConstantSDNode *C = 10064 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10065 return C && C->isZero(); 10066 } 10067 10068 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10069 // TODO: may want to use peekThroughBitcast() here. 10070 unsigned BitWidth = N.getScalarValueSizeInBits(); 10071 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10072 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10073 } 10074 10075 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10076 N = peekThroughBitcasts(N); 10077 unsigned BitWidth = N.getScalarValueSizeInBits(); 10078 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10079 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10080 } 10081 10082 HandleSDNode::~HandleSDNode() { 10083 DropOperands(); 10084 } 10085 10086 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10087 const DebugLoc &DL, 10088 const GlobalValue *GA, EVT VT, 10089 int64_t o, unsigned TF) 10090 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10091 TheGlobal = GA; 10092 } 10093 10094 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10095 EVT VT, unsigned SrcAS, 10096 unsigned DestAS) 10097 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10098 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10099 10100 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10101 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10102 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10103 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10104 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10105 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10106 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10107 10108 // We check here that the size of the memory operand fits within the size of 10109 // the MMO. This is because the MMO might indicate only a possible address 10110 // range instead of specifying the affected memory addresses precisely. 10111 // TODO: Make MachineMemOperands aware of scalable vectors. 10112 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10113 "Size mismatch!"); 10114 } 10115 10116 /// Profile - Gather unique data for the node. 10117 /// 10118 void SDNode::Profile(FoldingSetNodeID &ID) const { 10119 AddNodeIDNode(ID, this); 10120 } 10121 10122 namespace { 10123 10124 struct EVTArray { 10125 std::vector<EVT> VTs; 10126 10127 EVTArray() { 10128 VTs.reserve(MVT::VALUETYPE_SIZE); 10129 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10130 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10131 } 10132 }; 10133 10134 } // end anonymous namespace 10135 10136 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10137 static ManagedStatic<EVTArray> SimpleVTArray; 10138 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10139 10140 /// getValueTypeList - Return a pointer to the specified value type. 10141 /// 10142 const EVT *SDNode::getValueTypeList(EVT VT) { 10143 if (VT.isExtended()) { 10144 sys::SmartScopedLock<true> Lock(*VTMutex); 10145 return &(*EVTs->insert(VT).first); 10146 } 10147 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10148 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10149 } 10150 10151 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10152 /// indicated value. This method ignores uses of other values defined by this 10153 /// operation. 10154 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10155 assert(Value < getNumValues() && "Bad value!"); 10156 10157 // TODO: Only iterate over uses of a given value of the node 10158 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10159 if (UI.getUse().getResNo() == Value) { 10160 if (NUses == 0) 10161 return false; 10162 --NUses; 10163 } 10164 } 10165 10166 // Found exactly the right number of uses? 10167 return NUses == 0; 10168 } 10169 10170 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10171 /// value. This method ignores uses of other values defined by this operation. 10172 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10173 assert(Value < getNumValues() && "Bad value!"); 10174 10175 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10176 if (UI.getUse().getResNo() == Value) 10177 return true; 10178 10179 return false; 10180 } 10181 10182 /// isOnlyUserOf - Return true if this node is the only use of N. 10183 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10184 bool Seen = false; 10185 for (const SDNode *User : N->uses()) { 10186 if (User == this) 10187 Seen = true; 10188 else 10189 return false; 10190 } 10191 10192 return Seen; 10193 } 10194 10195 /// Return true if the only users of N are contained in Nodes. 10196 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10197 bool Seen = false; 10198 for (const SDNode *User : N->uses()) { 10199 if (llvm::is_contained(Nodes, User)) 10200 Seen = true; 10201 else 10202 return false; 10203 } 10204 10205 return Seen; 10206 } 10207 10208 /// isOperand - Return true if this node is an operand of N. 10209 bool SDValue::isOperandOf(const SDNode *N) const { 10210 return is_contained(N->op_values(), *this); 10211 } 10212 10213 bool SDNode::isOperandOf(const SDNode *N) const { 10214 return any_of(N->op_values(), 10215 [this](SDValue Op) { return this == Op.getNode(); }); 10216 } 10217 10218 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10219 /// be a chain) reaches the specified operand without crossing any 10220 /// side-effecting instructions on any chain path. In practice, this looks 10221 /// through token factors and non-volatile loads. In order to remain efficient, 10222 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10223 /// 10224 /// Note that we only need to examine chains when we're searching for 10225 /// side-effects; SelectionDAG requires that all side-effects are represented 10226 /// by chains, even if another operand would force a specific ordering. This 10227 /// constraint is necessary to allow transformations like splitting loads. 10228 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10229 unsigned Depth) const { 10230 if (*this == Dest) return true; 10231 10232 // Don't search too deeply, we just want to be able to see through 10233 // TokenFactor's etc. 10234 if (Depth == 0) return false; 10235 10236 // If this is a token factor, all inputs to the TF happen in parallel. 10237 if (getOpcode() == ISD::TokenFactor) { 10238 // First, try a shallow search. 10239 if (is_contained((*this)->ops(), Dest)) { 10240 // We found the chain we want as an operand of this TokenFactor. 10241 // Essentially, we reach the chain without side-effects if we could 10242 // serialize the TokenFactor into a simple chain of operations with 10243 // Dest as the last operation. This is automatically true if the 10244 // chain has one use: there are no other ordering constraints. 10245 // If the chain has more than one use, we give up: some other 10246 // use of Dest might force a side-effect between Dest and the current 10247 // node. 10248 if (Dest.hasOneUse()) 10249 return true; 10250 } 10251 // Next, try a deep search: check whether every operand of the TokenFactor 10252 // reaches Dest. 10253 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10254 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10255 }); 10256 } 10257 10258 // Loads don't have side effects, look through them. 10259 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10260 if (Ld->isUnordered()) 10261 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10262 } 10263 return false; 10264 } 10265 10266 bool SDNode::hasPredecessor(const SDNode *N) const { 10267 SmallPtrSet<const SDNode *, 32> Visited; 10268 SmallVector<const SDNode *, 16> Worklist; 10269 Worklist.push_back(this); 10270 return hasPredecessorHelper(N, Visited, Worklist); 10271 } 10272 10273 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10274 this->Flags.intersectWith(Flags); 10275 } 10276 10277 SDValue 10278 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10279 ArrayRef<ISD::NodeType> CandidateBinOps, 10280 bool AllowPartials) { 10281 // The pattern must end in an extract from index 0. 10282 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10283 !isNullConstant(Extract->getOperand(1))) 10284 return SDValue(); 10285 10286 // Match against one of the candidate binary ops. 10287 SDValue Op = Extract->getOperand(0); 10288 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10289 return Op.getOpcode() == unsigned(BinOp); 10290 })) 10291 return SDValue(); 10292 10293 // Floating-point reductions may require relaxed constraints on the final step 10294 // of the reduction because they may reorder intermediate operations. 10295 unsigned CandidateBinOp = Op.getOpcode(); 10296 if (Op.getValueType().isFloatingPoint()) { 10297 SDNodeFlags Flags = Op->getFlags(); 10298 switch (CandidateBinOp) { 10299 case ISD::FADD: 10300 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10301 return SDValue(); 10302 break; 10303 default: 10304 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10305 } 10306 } 10307 10308 // Matching failed - attempt to see if we did enough stages that a partial 10309 // reduction from a subvector is possible. 10310 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10311 if (!AllowPartials || !Op) 10312 return SDValue(); 10313 EVT OpVT = Op.getValueType(); 10314 EVT OpSVT = OpVT.getScalarType(); 10315 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10316 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10317 return SDValue(); 10318 BinOp = (ISD::NodeType)CandidateBinOp; 10319 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10320 getVectorIdxConstant(0, SDLoc(Op))); 10321 }; 10322 10323 // At each stage, we're looking for something that looks like: 10324 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10325 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10326 // i32 undef, i32 undef, i32 undef, i32 undef> 10327 // %a = binop <8 x i32> %op, %s 10328 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10329 // we expect something like: 10330 // <4,5,6,7,u,u,u,u> 10331 // <2,3,u,u,u,u,u,u> 10332 // <1,u,u,u,u,u,u,u> 10333 // While a partial reduction match would be: 10334 // <2,3,u,u,u,u,u,u> 10335 // <1,u,u,u,u,u,u,u> 10336 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10337 SDValue PrevOp; 10338 for (unsigned i = 0; i < Stages; ++i) { 10339 unsigned MaskEnd = (1 << i); 10340 10341 if (Op.getOpcode() != CandidateBinOp) 10342 return PartialReduction(PrevOp, MaskEnd); 10343 10344 SDValue Op0 = Op.getOperand(0); 10345 SDValue Op1 = Op.getOperand(1); 10346 10347 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10348 if (Shuffle) { 10349 Op = Op1; 10350 } else { 10351 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10352 Op = Op0; 10353 } 10354 10355 // The first operand of the shuffle should be the same as the other operand 10356 // of the binop. 10357 if (!Shuffle || Shuffle->getOperand(0) != Op) 10358 return PartialReduction(PrevOp, MaskEnd); 10359 10360 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10361 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10362 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10363 return PartialReduction(PrevOp, MaskEnd); 10364 10365 PrevOp = Op; 10366 } 10367 10368 // Handle subvector reductions, which tend to appear after the shuffle 10369 // reduction stages. 10370 while (Op.getOpcode() == CandidateBinOp) { 10371 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10372 SDValue Op0 = Op.getOperand(0); 10373 SDValue Op1 = Op.getOperand(1); 10374 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10375 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10376 Op0.getOperand(0) != Op1.getOperand(0)) 10377 break; 10378 SDValue Src = Op0.getOperand(0); 10379 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10380 if (NumSrcElts != (2 * NumElts)) 10381 break; 10382 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10383 Op1.getConstantOperandAPInt(1) == NumElts) && 10384 !(Op1.getConstantOperandAPInt(1) == 0 && 10385 Op0.getConstantOperandAPInt(1) == NumElts)) 10386 break; 10387 Op = Src; 10388 } 10389 10390 BinOp = (ISD::NodeType)CandidateBinOp; 10391 return Op; 10392 } 10393 10394 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10395 assert(N->getNumValues() == 1 && 10396 "Can't unroll a vector with multiple results!"); 10397 10398 EVT VT = N->getValueType(0); 10399 unsigned NE = VT.getVectorNumElements(); 10400 EVT EltVT = VT.getVectorElementType(); 10401 SDLoc dl(N); 10402 10403 SmallVector<SDValue, 8> Scalars; 10404 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10405 10406 // If ResNE is 0, fully unroll the vector op. 10407 if (ResNE == 0) 10408 ResNE = NE; 10409 else if (NE > ResNE) 10410 NE = ResNE; 10411 10412 unsigned i; 10413 for (i= 0; i != NE; ++i) { 10414 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10415 SDValue Operand = N->getOperand(j); 10416 EVT OperandVT = Operand.getValueType(); 10417 if (OperandVT.isVector()) { 10418 // A vector operand; extract a single element. 10419 EVT OperandEltVT = OperandVT.getVectorElementType(); 10420 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10421 Operand, getVectorIdxConstant(i, dl)); 10422 } else { 10423 // A scalar operand; just use it as is. 10424 Operands[j] = Operand; 10425 } 10426 } 10427 10428 switch (N->getOpcode()) { 10429 default: { 10430 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10431 N->getFlags())); 10432 break; 10433 } 10434 case ISD::VSELECT: 10435 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10436 break; 10437 case ISD::SHL: 10438 case ISD::SRA: 10439 case ISD::SRL: 10440 case ISD::ROTL: 10441 case ISD::ROTR: 10442 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10443 getShiftAmountOperand(Operands[0].getValueType(), 10444 Operands[1]))); 10445 break; 10446 case ISD::SIGN_EXTEND_INREG: { 10447 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10448 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10449 Operands[0], 10450 getValueType(ExtVT))); 10451 } 10452 } 10453 } 10454 10455 for (; i < ResNE; ++i) 10456 Scalars.push_back(getUNDEF(EltVT)); 10457 10458 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10459 return getBuildVector(VecVT, dl, Scalars); 10460 } 10461 10462 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10463 SDNode *N, unsigned ResNE) { 10464 unsigned Opcode = N->getOpcode(); 10465 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10466 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10467 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10468 "Expected an overflow opcode"); 10469 10470 EVT ResVT = N->getValueType(0); 10471 EVT OvVT = N->getValueType(1); 10472 EVT ResEltVT = ResVT.getVectorElementType(); 10473 EVT OvEltVT = OvVT.getVectorElementType(); 10474 SDLoc dl(N); 10475 10476 // If ResNE is 0, fully unroll the vector op. 10477 unsigned NE = ResVT.getVectorNumElements(); 10478 if (ResNE == 0) 10479 ResNE = NE; 10480 else if (NE > ResNE) 10481 NE = ResNE; 10482 10483 SmallVector<SDValue, 8> LHSScalars; 10484 SmallVector<SDValue, 8> RHSScalars; 10485 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10486 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10487 10488 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10489 SDVTList VTs = getVTList(ResEltVT, SVT); 10490 SmallVector<SDValue, 8> ResScalars; 10491 SmallVector<SDValue, 8> OvScalars; 10492 for (unsigned i = 0; i < NE; ++i) { 10493 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10494 SDValue Ov = 10495 getSelect(dl, OvEltVT, Res.getValue(1), 10496 getBoolConstant(true, dl, OvEltVT, ResVT), 10497 getConstant(0, dl, OvEltVT)); 10498 10499 ResScalars.push_back(Res); 10500 OvScalars.push_back(Ov); 10501 } 10502 10503 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10504 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10505 10506 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10507 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10508 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10509 getBuildVector(NewOvVT, dl, OvScalars)); 10510 } 10511 10512 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10513 LoadSDNode *Base, 10514 unsigned Bytes, 10515 int Dist) const { 10516 if (LD->isVolatile() || Base->isVolatile()) 10517 return false; 10518 // TODO: probably too restrictive for atomics, revisit 10519 if (!LD->isSimple()) 10520 return false; 10521 if (LD->isIndexed() || Base->isIndexed()) 10522 return false; 10523 if (LD->getChain() != Base->getChain()) 10524 return false; 10525 EVT VT = LD->getValueType(0); 10526 if (VT.getSizeInBits() / 8 != Bytes) 10527 return false; 10528 10529 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10530 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10531 10532 int64_t Offset = 0; 10533 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10534 return (Dist * Bytes == Offset); 10535 return false; 10536 } 10537 10538 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10539 /// if it cannot be inferred. 10540 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10541 // If this is a GlobalAddress + cst, return the alignment. 10542 const GlobalValue *GV = nullptr; 10543 int64_t GVOffset = 0; 10544 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10545 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10546 KnownBits Known(PtrWidth); 10547 llvm::computeKnownBits(GV, Known, getDataLayout()); 10548 unsigned AlignBits = Known.countMinTrailingZeros(); 10549 if (AlignBits) 10550 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10551 } 10552 10553 // If this is a direct reference to a stack slot, use information about the 10554 // stack slot's alignment. 10555 int FrameIdx = INT_MIN; 10556 int64_t FrameOffset = 0; 10557 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10558 FrameIdx = FI->getIndex(); 10559 } else if (isBaseWithConstantOffset(Ptr) && 10560 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10561 // Handle FI+Cst 10562 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10563 FrameOffset = Ptr.getConstantOperandVal(1); 10564 } 10565 10566 if (FrameIdx != INT_MIN) { 10567 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10568 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10569 } 10570 10571 return None; 10572 } 10573 10574 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10575 /// which is split (or expanded) into two not necessarily identical pieces. 10576 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10577 // Currently all types are split in half. 10578 EVT LoVT, HiVT; 10579 if (!VT.isVector()) 10580 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10581 else 10582 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10583 10584 return std::make_pair(LoVT, HiVT); 10585 } 10586 10587 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10588 /// type, dependent on an enveloping VT that has been split into two identical 10589 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10590 std::pair<EVT, EVT> 10591 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10592 bool *HiIsEmpty) const { 10593 EVT EltTp = VT.getVectorElementType(); 10594 // Examples: 10595 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10596 // custom VL=9 with enveloping VL=8/8 yields 8/1 10597 // custom VL=10 with enveloping VL=8/8 yields 8/2 10598 // etc. 10599 ElementCount VTNumElts = VT.getVectorElementCount(); 10600 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10601 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10602 "Mixing fixed width and scalable vectors when enveloping a type"); 10603 EVT LoVT, HiVT; 10604 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10605 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10606 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10607 *HiIsEmpty = false; 10608 } else { 10609 // Flag that hi type has zero storage size, but return split envelop type 10610 // (this would be easier if vector types with zero elements were allowed). 10611 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10612 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10613 *HiIsEmpty = true; 10614 } 10615 return std::make_pair(LoVT, HiVT); 10616 } 10617 10618 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10619 /// low/high part. 10620 std::pair<SDValue, SDValue> 10621 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10622 const EVT &HiVT) { 10623 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10624 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10625 "Splitting vector with an invalid mixture of fixed and scalable " 10626 "vector types"); 10627 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10628 N.getValueType().getVectorMinNumElements() && 10629 "More vector elements requested than available!"); 10630 SDValue Lo, Hi; 10631 Lo = 10632 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10633 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10634 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10635 // IDX with the runtime scaling factor of the result vector type. For 10636 // fixed-width result vectors, that runtime scaling factor is 1. 10637 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10638 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10639 return std::make_pair(Lo, Hi); 10640 } 10641 10642 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10643 const SDLoc &DL) { 10644 // Split the vector length parameter. 10645 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10646 EVT VT = N.getValueType(); 10647 assert(VecVT.getVectorElementCount().isKnownEven() && 10648 "Expecting the mask to be an evenly-sized vector"); 10649 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10650 SDValue HalfNumElts = 10651 VecVT.isFixedLengthVector() 10652 ? getConstant(HalfMinNumElts, DL, VT) 10653 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10654 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10655 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10656 return std::make_pair(Lo, Hi); 10657 } 10658 10659 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10660 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10661 EVT VT = N.getValueType(); 10662 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10663 NextPowerOf2(VT.getVectorNumElements())); 10664 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10665 getVectorIdxConstant(0, DL)); 10666 } 10667 10668 void SelectionDAG::ExtractVectorElements(SDValue Op, 10669 SmallVectorImpl<SDValue> &Args, 10670 unsigned Start, unsigned Count, 10671 EVT EltVT) { 10672 EVT VT = Op.getValueType(); 10673 if (Count == 0) 10674 Count = VT.getVectorNumElements(); 10675 if (EltVT == EVT()) 10676 EltVT = VT.getVectorElementType(); 10677 SDLoc SL(Op); 10678 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10679 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10680 getVectorIdxConstant(i, SL))); 10681 } 10682 } 10683 10684 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10685 unsigned GlobalAddressSDNode::getAddressSpace() const { 10686 return getGlobal()->getType()->getAddressSpace(); 10687 } 10688 10689 Type *ConstantPoolSDNode::getType() const { 10690 if (isMachineConstantPoolEntry()) 10691 return Val.MachineCPVal->getType(); 10692 return Val.ConstVal->getType(); 10693 } 10694 10695 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10696 unsigned &SplatBitSize, 10697 bool &HasAnyUndefs, 10698 unsigned MinSplatBits, 10699 bool IsBigEndian) const { 10700 EVT VT = getValueType(0); 10701 assert(VT.isVector() && "Expected a vector type"); 10702 unsigned VecWidth = VT.getSizeInBits(); 10703 if (MinSplatBits > VecWidth) 10704 return false; 10705 10706 // FIXME: The widths are based on this node's type, but build vectors can 10707 // truncate their operands. 10708 SplatValue = APInt(VecWidth, 0); 10709 SplatUndef = APInt(VecWidth, 0); 10710 10711 // Get the bits. Bits with undefined values (when the corresponding element 10712 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10713 // in SplatValue. If any of the values are not constant, give up and return 10714 // false. 10715 unsigned int NumOps = getNumOperands(); 10716 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10717 unsigned EltWidth = VT.getScalarSizeInBits(); 10718 10719 for (unsigned j = 0; j < NumOps; ++j) { 10720 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10721 SDValue OpVal = getOperand(i); 10722 unsigned BitPos = j * EltWidth; 10723 10724 if (OpVal.isUndef()) 10725 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10726 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10727 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10728 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10729 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10730 else 10731 return false; 10732 } 10733 10734 // The build_vector is all constants or undefs. Find the smallest element 10735 // size that splats the vector. 10736 HasAnyUndefs = (SplatUndef != 0); 10737 10738 // FIXME: This does not work for vectors with elements less than 8 bits. 10739 while (VecWidth > 8) { 10740 unsigned HalfSize = VecWidth / 2; 10741 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10742 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10743 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10744 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10745 10746 // If the two halves do not match (ignoring undef bits), stop here. 10747 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10748 MinSplatBits > HalfSize) 10749 break; 10750 10751 SplatValue = HighValue | LowValue; 10752 SplatUndef = HighUndef & LowUndef; 10753 10754 VecWidth = HalfSize; 10755 } 10756 10757 SplatBitSize = VecWidth; 10758 return true; 10759 } 10760 10761 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10762 BitVector *UndefElements) const { 10763 unsigned NumOps = getNumOperands(); 10764 if (UndefElements) { 10765 UndefElements->clear(); 10766 UndefElements->resize(NumOps); 10767 } 10768 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10769 if (!DemandedElts) 10770 return SDValue(); 10771 SDValue Splatted; 10772 for (unsigned i = 0; i != NumOps; ++i) { 10773 if (!DemandedElts[i]) 10774 continue; 10775 SDValue Op = getOperand(i); 10776 if (Op.isUndef()) { 10777 if (UndefElements) 10778 (*UndefElements)[i] = true; 10779 } else if (!Splatted) { 10780 Splatted = Op; 10781 } else if (Splatted != Op) { 10782 return SDValue(); 10783 } 10784 } 10785 10786 if (!Splatted) { 10787 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10788 assert(getOperand(FirstDemandedIdx).isUndef() && 10789 "Can only have a splat without a constant for all undefs."); 10790 return getOperand(FirstDemandedIdx); 10791 } 10792 10793 return Splatted; 10794 } 10795 10796 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10797 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10798 return getSplatValue(DemandedElts, UndefElements); 10799 } 10800 10801 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10802 SmallVectorImpl<SDValue> &Sequence, 10803 BitVector *UndefElements) const { 10804 unsigned NumOps = getNumOperands(); 10805 Sequence.clear(); 10806 if (UndefElements) { 10807 UndefElements->clear(); 10808 UndefElements->resize(NumOps); 10809 } 10810 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10811 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10812 return false; 10813 10814 // Set the undefs even if we don't find a sequence (like getSplatValue). 10815 if (UndefElements) 10816 for (unsigned I = 0; I != NumOps; ++I) 10817 if (DemandedElts[I] && getOperand(I).isUndef()) 10818 (*UndefElements)[I] = true; 10819 10820 // Iteratively widen the sequence length looking for repetitions. 10821 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10822 Sequence.append(SeqLen, SDValue()); 10823 for (unsigned I = 0; I != NumOps; ++I) { 10824 if (!DemandedElts[I]) 10825 continue; 10826 SDValue &SeqOp = Sequence[I % SeqLen]; 10827 SDValue Op = getOperand(I); 10828 if (Op.isUndef()) { 10829 if (!SeqOp) 10830 SeqOp = Op; 10831 continue; 10832 } 10833 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10834 Sequence.clear(); 10835 break; 10836 } 10837 SeqOp = Op; 10838 } 10839 if (!Sequence.empty()) 10840 return true; 10841 } 10842 10843 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10844 return false; 10845 } 10846 10847 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10848 BitVector *UndefElements) const { 10849 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10850 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10851 } 10852 10853 ConstantSDNode * 10854 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10855 BitVector *UndefElements) const { 10856 return dyn_cast_or_null<ConstantSDNode>( 10857 getSplatValue(DemandedElts, UndefElements)); 10858 } 10859 10860 ConstantSDNode * 10861 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10862 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10863 } 10864 10865 ConstantFPSDNode * 10866 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10867 BitVector *UndefElements) const { 10868 return dyn_cast_or_null<ConstantFPSDNode>( 10869 getSplatValue(DemandedElts, UndefElements)); 10870 } 10871 10872 ConstantFPSDNode * 10873 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10874 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10875 } 10876 10877 int32_t 10878 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10879 uint32_t BitWidth) const { 10880 if (ConstantFPSDNode *CN = 10881 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10882 bool IsExact; 10883 APSInt IntVal(BitWidth); 10884 const APFloat &APF = CN->getValueAPF(); 10885 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10886 APFloat::opOK || 10887 !IsExact) 10888 return -1; 10889 10890 return IntVal.exactLogBase2(); 10891 } 10892 return -1; 10893 } 10894 10895 bool BuildVectorSDNode::getConstantRawBits( 10896 bool IsLittleEndian, unsigned DstEltSizeInBits, 10897 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10898 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10899 if (!isConstant()) 10900 return false; 10901 10902 unsigned NumSrcOps = getNumOperands(); 10903 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10904 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10905 "Invalid bitcast scale"); 10906 10907 // Extract raw src bits. 10908 SmallVector<APInt> SrcBitElements(NumSrcOps, 10909 APInt::getNullValue(SrcEltSizeInBits)); 10910 BitVector SrcUndeElements(NumSrcOps, false); 10911 10912 for (unsigned I = 0; I != NumSrcOps; ++I) { 10913 SDValue Op = getOperand(I); 10914 if (Op.isUndef()) { 10915 SrcUndeElements.set(I); 10916 continue; 10917 } 10918 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10919 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10920 assert((CInt || CFP) && "Unknown constant"); 10921 SrcBitElements[I] = 10922 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10923 : CFP->getValueAPF().bitcastToAPInt(); 10924 } 10925 10926 // Recast to dst width. 10927 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10928 SrcBitElements, UndefElements, SrcUndeElements); 10929 return true; 10930 } 10931 10932 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10933 unsigned DstEltSizeInBits, 10934 SmallVectorImpl<APInt> &DstBitElements, 10935 ArrayRef<APInt> SrcBitElements, 10936 BitVector &DstUndefElements, 10937 const BitVector &SrcUndefElements) { 10938 unsigned NumSrcOps = SrcBitElements.size(); 10939 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10940 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10941 "Invalid bitcast scale"); 10942 assert(NumSrcOps == SrcUndefElements.size() && 10943 "Vector size mismatch"); 10944 10945 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10946 DstUndefElements.clear(); 10947 DstUndefElements.resize(NumDstOps, false); 10948 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10949 10950 // Concatenate src elements constant bits together into dst element. 10951 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10952 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10953 for (unsigned I = 0; I != NumDstOps; ++I) { 10954 DstUndefElements.set(I); 10955 APInt &DstBits = DstBitElements[I]; 10956 for (unsigned J = 0; J != Scale; ++J) { 10957 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10958 if (SrcUndefElements[Idx]) 10959 continue; 10960 DstUndefElements.reset(I); 10961 const APInt &SrcBits = SrcBitElements[Idx]; 10962 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10963 "Illegal constant bitwidths"); 10964 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10965 } 10966 } 10967 return; 10968 } 10969 10970 // Split src element constant bits into dst elements. 10971 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10972 for (unsigned I = 0; I != NumSrcOps; ++I) { 10973 if (SrcUndefElements[I]) { 10974 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10975 continue; 10976 } 10977 const APInt &SrcBits = SrcBitElements[I]; 10978 for (unsigned J = 0; J != Scale; ++J) { 10979 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10980 APInt &DstBits = DstBitElements[Idx]; 10981 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10982 } 10983 } 10984 } 10985 10986 bool BuildVectorSDNode::isConstant() const { 10987 for (const SDValue &Op : op_values()) { 10988 unsigned Opc = Op.getOpcode(); 10989 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10990 return false; 10991 } 10992 return true; 10993 } 10994 10995 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10996 // Find the first non-undef value in the shuffle mask. 10997 unsigned i, e; 10998 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10999 /* search */; 11000 11001 // If all elements are undefined, this shuffle can be considered a splat 11002 // (although it should eventually get simplified away completely). 11003 if (i == e) 11004 return true; 11005 11006 // Make sure all remaining elements are either undef or the same as the first 11007 // non-undef value. 11008 for (int Idx = Mask[i]; i != e; ++i) 11009 if (Mask[i] >= 0 && Mask[i] != Idx) 11010 return false; 11011 return true; 11012 } 11013 11014 // Returns the SDNode if it is a constant integer BuildVector 11015 // or constant integer. 11016 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11017 if (isa<ConstantSDNode>(N)) 11018 return N.getNode(); 11019 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11020 return N.getNode(); 11021 // Treat a GlobalAddress supporting constant offset folding as a 11022 // constant integer. 11023 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11024 if (GA->getOpcode() == ISD::GlobalAddress && 11025 TLI->isOffsetFoldingLegal(GA)) 11026 return GA; 11027 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11028 isa<ConstantSDNode>(N.getOperand(0))) 11029 return N.getNode(); 11030 return nullptr; 11031 } 11032 11033 // Returns the SDNode if it is a constant float BuildVector 11034 // or constant float. 11035 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11036 if (isa<ConstantFPSDNode>(N)) 11037 return N.getNode(); 11038 11039 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11040 return N.getNode(); 11041 11042 return nullptr; 11043 } 11044 11045 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11046 assert(!Node->OperandList && "Node already has operands"); 11047 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11048 "too many operands to fit into SDNode"); 11049 SDUse *Ops = OperandRecycler.allocate( 11050 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11051 11052 bool IsDivergent = false; 11053 for (unsigned I = 0; I != Vals.size(); ++I) { 11054 Ops[I].setUser(Node); 11055 Ops[I].setInitial(Vals[I]); 11056 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11057 IsDivergent |= Ops[I].getNode()->isDivergent(); 11058 } 11059 Node->NumOperands = Vals.size(); 11060 Node->OperandList = Ops; 11061 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11062 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11063 Node->SDNodeBits.IsDivergent = IsDivergent; 11064 } 11065 checkForCycles(Node); 11066 } 11067 11068 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11069 SmallVectorImpl<SDValue> &Vals) { 11070 size_t Limit = SDNode::getMaxNumOperands(); 11071 while (Vals.size() > Limit) { 11072 unsigned SliceIdx = Vals.size() - Limit; 11073 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11074 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11075 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11076 Vals.emplace_back(NewTF); 11077 } 11078 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11079 } 11080 11081 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11082 EVT VT, SDNodeFlags Flags) { 11083 switch (Opcode) { 11084 default: 11085 return SDValue(); 11086 case ISD::ADD: 11087 case ISD::OR: 11088 case ISD::XOR: 11089 case ISD::UMAX: 11090 return getConstant(0, DL, VT); 11091 case ISD::MUL: 11092 return getConstant(1, DL, VT); 11093 case ISD::AND: 11094 case ISD::UMIN: 11095 return getAllOnesConstant(DL, VT); 11096 case ISD::SMAX: 11097 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11098 case ISD::SMIN: 11099 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11100 case ISD::FADD: 11101 return getConstantFP(-0.0, DL, VT); 11102 case ISD::FMUL: 11103 return getConstantFP(1.0, DL, VT); 11104 case ISD::FMINNUM: 11105 case ISD::FMAXNUM: { 11106 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11107 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11108 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11109 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11110 APFloat::getLargest(Semantics); 11111 if (Opcode == ISD::FMAXNUM) 11112 NeutralAF.changeSign(); 11113 11114 return getConstantFP(NeutralAF, DL, VT); 11115 } 11116 } 11117 } 11118 11119 #ifndef NDEBUG 11120 static void checkForCyclesHelper(const SDNode *N, 11121 SmallPtrSetImpl<const SDNode*> &Visited, 11122 SmallPtrSetImpl<const SDNode*> &Checked, 11123 const llvm::SelectionDAG *DAG) { 11124 // If this node has already been checked, don't check it again. 11125 if (Checked.count(N)) 11126 return; 11127 11128 // If a node has already been visited on this depth-first walk, reject it as 11129 // a cycle. 11130 if (!Visited.insert(N).second) { 11131 errs() << "Detected cycle in SelectionDAG\n"; 11132 dbgs() << "Offending node:\n"; 11133 N->dumprFull(DAG); dbgs() << "\n"; 11134 abort(); 11135 } 11136 11137 for (const SDValue &Op : N->op_values()) 11138 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11139 11140 Checked.insert(N); 11141 Visited.erase(N); 11142 } 11143 #endif 11144 11145 void llvm::checkForCycles(const llvm::SDNode *N, 11146 const llvm::SelectionDAG *DAG, 11147 bool force) { 11148 #ifndef NDEBUG 11149 bool check = force; 11150 #ifdef EXPENSIVE_CHECKS 11151 check = true; 11152 #endif // EXPENSIVE_CHECKS 11153 if (check) { 11154 assert(N && "Checking nonexistent SDNode"); 11155 SmallPtrSet<const SDNode*, 32> visited; 11156 SmallPtrSet<const SDNode*, 32> checked; 11157 checkForCyclesHelper(N, visited, checked, DAG); 11158 } 11159 #endif // !NDEBUG 11160 } 11161 11162 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11163 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11164 } 11165