1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isScalableVector()) 1384 Result = getSplatVector(VT, DL, Result); 1385 else if (VT.isVector()) 1386 Result = getSplatBuildVector(VT, DL, Result); 1387 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1388 return Result; 1389 } 1390 1391 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1392 bool isTarget) { 1393 EVT EltVT = VT.getScalarType(); 1394 if (EltVT == MVT::f32) 1395 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f64) 1397 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1398 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1399 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1400 bool Ignored; 1401 APFloat APF = APFloat(Val); 1402 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1403 &Ignored); 1404 return getConstantFP(APF, DL, VT, isTarget); 1405 } else 1406 llvm_unreachable("Unsupported type in getConstantFP"); 1407 } 1408 1409 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1410 EVT VT, int64_t Offset, bool isTargetGA, 1411 unsigned TargetFlags) { 1412 assert((TargetFlags == 0 || isTargetGA) && 1413 "Cannot set target flags on target-independent globals"); 1414 1415 // Truncate (with sign-extension) the offset value to the pointer size. 1416 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1417 if (BitWidth < 64) 1418 Offset = SignExtend64(Offset, BitWidth); 1419 1420 unsigned Opc; 1421 if (GV->isThreadLocal()) 1422 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1423 else 1424 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1425 1426 FoldingSetNodeID ID; 1427 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1428 ID.AddPointer(GV); 1429 ID.AddInteger(Offset); 1430 ID.AddInteger(TargetFlags); 1431 void *IP = nullptr; 1432 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1433 return SDValue(E, 0); 1434 1435 auto *N = newSDNode<GlobalAddressSDNode>( 1436 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1443 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1446 ID.AddInteger(FI); 1447 void *IP = nullptr; 1448 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1449 return SDValue(E, 0); 1450 1451 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1452 CSEMap.InsertNode(N, IP); 1453 InsertNode(N); 1454 return SDValue(N, 0); 1455 } 1456 1457 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1458 unsigned TargetFlags) { 1459 assert((TargetFlags == 0 || isTarget) && 1460 "Cannot set target flags on target-independent jump tables"); 1461 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1462 FoldingSetNodeID ID; 1463 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1464 ID.AddInteger(JTI); 1465 ID.AddInteger(TargetFlags); 1466 void *IP = nullptr; 1467 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1468 return SDValue(E, 0); 1469 1470 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1471 CSEMap.InsertNode(N, IP); 1472 InsertNode(N); 1473 return SDValue(N, 0); 1474 } 1475 1476 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1477 MaybeAlign Alignment, int Offset, 1478 bool isTarget, unsigned TargetFlags) { 1479 assert((TargetFlags == 0 || isTarget) && 1480 "Cannot set target flags on target-independent globals"); 1481 if (!Alignment) 1482 Alignment = shouldOptForSize() 1483 ? getDataLayout().getABITypeAlign(C->getType()) 1484 : getDataLayout().getPrefTypeAlign(C->getType()); 1485 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1486 FoldingSetNodeID ID; 1487 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1488 ID.AddInteger(Alignment->value()); 1489 ID.AddInteger(Offset); 1490 ID.AddPointer(C); 1491 ID.AddInteger(TargetFlags); 1492 void *IP = nullptr; 1493 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1494 return SDValue(E, 0); 1495 1496 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1497 TargetFlags); 1498 CSEMap.InsertNode(N, IP); 1499 InsertNode(N); 1500 SDValue V = SDValue(N, 0); 1501 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1502 return V; 1503 } 1504 1505 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1506 MaybeAlign Alignment, int Offset, 1507 bool isTarget, unsigned TargetFlags) { 1508 assert((TargetFlags == 0 || isTarget) && 1509 "Cannot set target flags on target-independent globals"); 1510 if (!Alignment) 1511 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1512 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1513 FoldingSetNodeID ID; 1514 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1515 ID.AddInteger(Alignment->value()); 1516 ID.AddInteger(Offset); 1517 C->addSelectionDAGCSEId(ID); 1518 ID.AddInteger(TargetFlags); 1519 void *IP = nullptr; 1520 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1521 return SDValue(E, 0); 1522 1523 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1524 TargetFlags); 1525 CSEMap.InsertNode(N, IP); 1526 InsertNode(N); 1527 return SDValue(N, 0); 1528 } 1529 1530 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1531 unsigned TargetFlags) { 1532 FoldingSetNodeID ID; 1533 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1534 ID.AddInteger(Index); 1535 ID.AddInteger(Offset); 1536 ID.AddInteger(TargetFlags); 1537 void *IP = nullptr; 1538 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1539 return SDValue(E, 0); 1540 1541 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1548 FoldingSetNodeID ID; 1549 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1550 ID.AddPointer(MBB); 1551 void *IP = nullptr; 1552 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1553 return SDValue(E, 0); 1554 1555 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1556 CSEMap.InsertNode(N, IP); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getValueType(EVT VT) { 1562 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1563 ValueTypeNodes.size()) 1564 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1565 1566 SDNode *&N = VT.isExtended() ? 1567 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1568 1569 if (N) return SDValue(N, 0); 1570 N = newSDNode<VTSDNode>(VT); 1571 InsertNode(N); 1572 return SDValue(N, 0); 1573 } 1574 1575 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1576 SDNode *&N = ExternalSymbols[Sym]; 1577 if (N) return SDValue(N, 0); 1578 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1584 SDNode *&N = MCSymbols[Sym]; 1585 if (N) 1586 return SDValue(N, 0); 1587 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1593 unsigned TargetFlags) { 1594 SDNode *&N = 1595 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1596 if (N) return SDValue(N, 0); 1597 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1598 InsertNode(N); 1599 return SDValue(N, 0); 1600 } 1601 1602 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1603 if ((unsigned)Cond >= CondCodeNodes.size()) 1604 CondCodeNodes.resize(Cond+1); 1605 1606 if (!CondCodeNodes[Cond]) { 1607 auto *N = newSDNode<CondCodeSDNode>(Cond); 1608 CondCodeNodes[Cond] = N; 1609 InsertNode(N); 1610 } 1611 1612 return SDValue(CondCodeNodes[Cond], 0); 1613 } 1614 1615 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1616 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1617 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1618 std::swap(N1, N2); 1619 ShuffleVectorSDNode::commuteMask(M); 1620 } 1621 1622 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1623 SDValue N2, ArrayRef<int> Mask) { 1624 assert(VT.getVectorNumElements() == Mask.size() && 1625 "Must have the same number of vector elements as mask elements!"); 1626 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1627 "Invalid VECTOR_SHUFFLE"); 1628 1629 // Canonicalize shuffle undef, undef -> undef 1630 if (N1.isUndef() && N2.isUndef()) 1631 return getUNDEF(VT); 1632 1633 // Validate that all indices in Mask are within the range of the elements 1634 // input to the shuffle. 1635 int NElts = Mask.size(); 1636 assert(llvm::all_of(Mask, 1637 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1638 "Index out of range"); 1639 1640 // Copy the mask so we can do any needed cleanup. 1641 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1642 1643 // Canonicalize shuffle v, v -> v, undef 1644 if (N1 == N2) { 1645 N2 = getUNDEF(VT); 1646 for (int i = 0; i != NElts; ++i) 1647 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1648 } 1649 1650 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1651 if (N1.isUndef()) 1652 commuteShuffle(N1, N2, MaskVec); 1653 1654 if (TLI->hasVectorBlend()) { 1655 // If shuffling a splat, try to blend the splat instead. We do this here so 1656 // that even when this arises during lowering we don't have to re-handle it. 1657 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1658 BitVector UndefElements; 1659 SDValue Splat = BV->getSplatValue(&UndefElements); 1660 if (!Splat) 1661 return; 1662 1663 for (int i = 0; i < NElts; ++i) { 1664 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1665 continue; 1666 1667 // If this input comes from undef, mark it as such. 1668 if (UndefElements[MaskVec[i] - Offset]) { 1669 MaskVec[i] = -1; 1670 continue; 1671 } 1672 1673 // If we can blend a non-undef lane, use that instead. 1674 if (!UndefElements[i]) 1675 MaskVec[i] = i + Offset; 1676 } 1677 }; 1678 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1679 BlendSplat(N1BV, 0); 1680 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1681 BlendSplat(N2BV, NElts); 1682 } 1683 1684 // Canonicalize all index into lhs, -> shuffle lhs, undef 1685 // Canonicalize all index into rhs, -> shuffle rhs, undef 1686 bool AllLHS = true, AllRHS = true; 1687 bool N2Undef = N2.isUndef(); 1688 for (int i = 0; i != NElts; ++i) { 1689 if (MaskVec[i] >= NElts) { 1690 if (N2Undef) 1691 MaskVec[i] = -1; 1692 else 1693 AllLHS = false; 1694 } else if (MaskVec[i] >= 0) { 1695 AllRHS = false; 1696 } 1697 } 1698 if (AllLHS && AllRHS) 1699 return getUNDEF(VT); 1700 if (AllLHS && !N2Undef) 1701 N2 = getUNDEF(VT); 1702 if (AllRHS) { 1703 N1 = getUNDEF(VT); 1704 commuteShuffle(N1, N2, MaskVec); 1705 } 1706 // Reset our undef status after accounting for the mask. 1707 N2Undef = N2.isUndef(); 1708 // Re-check whether both sides ended up undef. 1709 if (N1.isUndef() && N2Undef) 1710 return getUNDEF(VT); 1711 1712 // If Identity shuffle return that node. 1713 bool Identity = true, AllSame = true; 1714 for (int i = 0; i != NElts; ++i) { 1715 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1716 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1717 } 1718 if (Identity && NElts) 1719 return N1; 1720 1721 // Shuffling a constant splat doesn't change the result. 1722 if (N2Undef) { 1723 SDValue V = N1; 1724 1725 // Look through any bitcasts. We check that these don't change the number 1726 // (and size) of elements and just changes their types. 1727 while (V.getOpcode() == ISD::BITCAST) 1728 V = V->getOperand(0); 1729 1730 // A splat should always show up as a build vector node. 1731 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1732 BitVector UndefElements; 1733 SDValue Splat = BV->getSplatValue(&UndefElements); 1734 // If this is a splat of an undef, shuffling it is also undef. 1735 if (Splat && Splat.isUndef()) 1736 return getUNDEF(VT); 1737 1738 bool SameNumElts = 1739 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1740 1741 // We only have a splat which can skip shuffles if there is a splatted 1742 // value and no undef lanes rearranged by the shuffle. 1743 if (Splat && UndefElements.none()) { 1744 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1745 // number of elements match or the value splatted is a zero constant. 1746 if (SameNumElts) 1747 return N1; 1748 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1749 if (C->isNullValue()) 1750 return N1; 1751 } 1752 1753 // If the shuffle itself creates a splat, build the vector directly. 1754 if (AllSame && SameNumElts) { 1755 EVT BuildVT = BV->getValueType(0); 1756 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1757 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1758 1759 // We may have jumped through bitcasts, so the type of the 1760 // BUILD_VECTOR may not match the type of the shuffle. 1761 if (BuildVT != VT) 1762 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1763 return NewBV; 1764 } 1765 } 1766 } 1767 1768 FoldingSetNodeID ID; 1769 SDValue Ops[2] = { N1, N2 }; 1770 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1771 for (int i = 0; i != NElts; ++i) 1772 ID.AddInteger(MaskVec[i]); 1773 1774 void* IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1776 return SDValue(E, 0); 1777 1778 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1779 // SDNode doesn't have access to it. This memory will be "leaked" when 1780 // the node is deallocated, but recovered when the NodeAllocator is released. 1781 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1782 llvm::copy(MaskVec, MaskAlloc); 1783 1784 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1785 dl.getDebugLoc(), MaskAlloc); 1786 createOperands(N, Ops); 1787 1788 CSEMap.InsertNode(N, IP); 1789 InsertNode(N); 1790 SDValue V = SDValue(N, 0); 1791 NewSDValueDbgMsg(V, "Creating new node: ", this); 1792 return V; 1793 } 1794 1795 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1796 EVT VT = SV.getValueType(0); 1797 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1798 ShuffleVectorSDNode::commuteMask(MaskVec); 1799 1800 SDValue Op0 = SV.getOperand(0); 1801 SDValue Op1 = SV.getOperand(1); 1802 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1803 } 1804 1805 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1806 FoldingSetNodeID ID; 1807 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1808 ID.AddInteger(RegNo); 1809 void *IP = nullptr; 1810 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1811 return SDValue(E, 0); 1812 1813 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1814 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1815 CSEMap.InsertNode(N, IP); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1821 FoldingSetNodeID ID; 1822 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1823 ID.AddPointer(RegMask); 1824 void *IP = nullptr; 1825 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1826 return SDValue(E, 0); 1827 1828 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1829 CSEMap.InsertNode(N, IP); 1830 InsertNode(N); 1831 return SDValue(N, 0); 1832 } 1833 1834 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1835 MCSymbol *Label) { 1836 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1837 } 1838 1839 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1840 SDValue Root, MCSymbol *Label) { 1841 FoldingSetNodeID ID; 1842 SDValue Ops[] = { Root }; 1843 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1844 ID.AddPointer(Label); 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = 1850 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1851 createOperands(N, Ops); 1852 1853 CSEMap.InsertNode(N, IP); 1854 InsertNode(N); 1855 return SDValue(N, 0); 1856 } 1857 1858 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1859 int64_t Offset, bool isTarget, 1860 unsigned TargetFlags) { 1861 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1862 1863 FoldingSetNodeID ID; 1864 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1865 ID.AddPointer(BA); 1866 ID.AddInteger(Offset); 1867 ID.AddInteger(TargetFlags); 1868 void *IP = nullptr; 1869 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1870 return SDValue(E, 0); 1871 1872 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1873 CSEMap.InsertNode(N, IP); 1874 InsertNode(N); 1875 return SDValue(N, 0); 1876 } 1877 1878 SDValue SelectionDAG::getSrcValue(const Value *V) { 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1999 const DataLayout &DL = getDataLayout(); 2000 Type *Ty = VT.getTypeForEVT(*getContext()); 2001 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2002 2003 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2004 return RedAlign; 2005 2006 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2007 const Align StackAlign = TFI->getStackAlign(); 2008 2009 // See if we can choose a smaller ABI alignment in cases where it's an 2010 // illegal vector type that will get broken down. 2011 if (RedAlign > StackAlign) { 2012 EVT IntermediateVT; 2013 MVT RegisterVT; 2014 unsigned NumIntermediates; 2015 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2016 NumIntermediates, RegisterVT); 2017 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2018 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2019 if (RedAlign2 < RedAlign) 2020 RedAlign = RedAlign2; 2021 } 2022 2023 return RedAlign; 2024 } 2025 2026 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2027 MachineFrameInfo &MFI = MF->getFrameInfo(); 2028 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2029 int StackID = 0; 2030 if (Bytes.isScalable()) 2031 StackID = TFI->getStackIDForScalableVectors(); 2032 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, 2033 false, nullptr, StackID); 2034 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2035 } 2036 2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2038 Type *Ty = VT.getTypeForEVT(*getContext()); 2039 Align StackAlign = 2040 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2041 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2042 } 2043 2044 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2045 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2046 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2047 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2048 const DataLayout &DL = getDataLayout(); 2049 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2050 return CreateStackTemporary(Bytes, Align); 2051 } 2052 2053 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2054 ISD::CondCode Cond, const SDLoc &dl) { 2055 EVT OpVT = N1.getValueType(); 2056 2057 // These setcc operations always fold. 2058 switch (Cond) { 2059 default: break; 2060 case ISD::SETFALSE: 2061 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2062 case ISD::SETTRUE: 2063 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2064 2065 case ISD::SETOEQ: 2066 case ISD::SETOGT: 2067 case ISD::SETOGE: 2068 case ISD::SETOLT: 2069 case ISD::SETOLE: 2070 case ISD::SETONE: 2071 case ISD::SETO: 2072 case ISD::SETUO: 2073 case ISD::SETUEQ: 2074 case ISD::SETUNE: 2075 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2076 break; 2077 } 2078 2079 if (OpVT.isInteger()) { 2080 // For EQ and NE, we can always pick a value for the undef to make the 2081 // predicate pass or fail, so we can return undef. 2082 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2083 // icmp eq/ne X, undef -> undef. 2084 if ((N1.isUndef() || N2.isUndef()) && 2085 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2086 return getUNDEF(VT); 2087 2088 // If both operands are undef, we can return undef for int comparison. 2089 // icmp undef, undef -> undef. 2090 if (N1.isUndef() && N2.isUndef()) 2091 return getUNDEF(VT); 2092 2093 // icmp X, X -> true/false 2094 // icmp X, undef -> true/false because undef could be X. 2095 if (N1 == N2) 2096 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2097 } 2098 2099 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2100 const APInt &C2 = N2C->getAPIntValue(); 2101 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2102 const APInt &C1 = N1C->getAPIntValue(); 2103 2104 switch (Cond) { 2105 default: llvm_unreachable("Unknown integer setcc!"); 2106 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2107 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2108 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2109 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2110 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2111 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2112 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2113 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2114 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2115 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2116 } 2117 } 2118 } 2119 2120 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2121 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2122 2123 if (N1CFP && N2CFP) { 2124 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2125 switch (Cond) { 2126 default: break; 2127 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2128 return getUNDEF(VT); 2129 LLVM_FALLTHROUGH; 2130 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2131 OpVT); 2132 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2133 return getUNDEF(VT); 2134 LLVM_FALLTHROUGH; 2135 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2136 R==APFloat::cmpLessThan, dl, VT, 2137 OpVT); 2138 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2139 return getUNDEF(VT); 2140 LLVM_FALLTHROUGH; 2141 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2142 OpVT); 2143 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2144 return getUNDEF(VT); 2145 LLVM_FALLTHROUGH; 2146 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2147 VT, OpVT); 2148 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2149 return getUNDEF(VT); 2150 LLVM_FALLTHROUGH; 2151 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2152 R==APFloat::cmpEqual, dl, VT, 2153 OpVT); 2154 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2155 return getUNDEF(VT); 2156 LLVM_FALLTHROUGH; 2157 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2158 R==APFloat::cmpEqual, dl, VT, OpVT); 2159 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2160 OpVT); 2161 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2162 OpVT); 2163 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2164 R==APFloat::cmpEqual, dl, VT, 2165 OpVT); 2166 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2167 OpVT); 2168 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2169 R==APFloat::cmpLessThan, dl, VT, 2170 OpVT); 2171 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2172 R==APFloat::cmpUnordered, dl, VT, 2173 OpVT); 2174 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2175 VT, OpVT); 2176 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2177 OpVT); 2178 } 2179 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2180 // Ensure that the constant occurs on the RHS. 2181 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2182 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2183 return SDValue(); 2184 return getSetCC(dl, VT, N2, N1, SwappedCond); 2185 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2186 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2187 // If an operand is known to be a nan (or undef that could be a nan), we can 2188 // fold it. 2189 // Choosing NaN for the undef will always make unordered comparison succeed 2190 // and ordered comparison fails. 2191 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2192 switch (ISD::getUnorderedFlavor(Cond)) { 2193 default: 2194 llvm_unreachable("Unknown flavor!"); 2195 case 0: // Known false. 2196 return getBoolConstant(false, dl, VT, OpVT); 2197 case 1: // Known true. 2198 return getBoolConstant(true, dl, VT, OpVT); 2199 case 2: // Undefined. 2200 return getUNDEF(VT); 2201 } 2202 } 2203 2204 // Could not fold it. 2205 return SDValue(); 2206 } 2207 2208 /// See if the specified operand can be simplified with the knowledge that only 2209 /// the bits specified by DemandedBits are used. 2210 /// TODO: really we should be making this into the DAG equivalent of 2211 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2212 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2213 EVT VT = V.getValueType(); 2214 APInt DemandedElts = VT.isVector() 2215 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2216 : APInt(1, 1); 2217 return GetDemandedBits(V, DemandedBits, DemandedElts); 2218 } 2219 2220 /// See if the specified operand can be simplified with the knowledge that only 2221 /// the bits specified by DemandedBits are used in the elements specified by 2222 /// DemandedElts. 2223 /// TODO: really we should be making this into the DAG equivalent of 2224 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2225 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2226 const APInt &DemandedElts) { 2227 switch (V.getOpcode()) { 2228 default: 2229 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2230 *this, 0); 2231 case ISD::Constant: { 2232 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2233 APInt NewVal = CVal & DemandedBits; 2234 if (NewVal != CVal) 2235 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2236 break; 2237 } 2238 case ISD::SRL: 2239 // Only look at single-use SRLs. 2240 if (!V.getNode()->hasOneUse()) 2241 break; 2242 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2243 // See if we can recursively simplify the LHS. 2244 unsigned Amt = RHSC->getZExtValue(); 2245 2246 // Watch out for shift count overflow though. 2247 if (Amt >= DemandedBits.getBitWidth()) 2248 break; 2249 APInt SrcDemandedBits = DemandedBits << Amt; 2250 if (SDValue SimplifyLHS = 2251 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2252 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2253 V.getOperand(1)); 2254 } 2255 break; 2256 } 2257 return SDValue(); 2258 } 2259 2260 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2261 /// use this predicate to simplify operations downstream. 2262 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2263 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2264 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2265 } 2266 2267 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2268 /// this predicate to simplify operations downstream. Mask is known to be zero 2269 /// for bits that V cannot have. 2270 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2271 unsigned Depth) const { 2272 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2273 } 2274 2275 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2276 /// DemandedElts. We use this predicate to simplify operations downstream. 2277 /// Mask is known to be zero for bits that V cannot have. 2278 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2279 const APInt &DemandedElts, 2280 unsigned Depth) const { 2281 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2282 } 2283 2284 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2285 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2286 unsigned Depth) const { 2287 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2288 } 2289 2290 /// isSplatValue - Return true if the vector V has the same value 2291 /// across all DemandedElts. For scalable vectors it does not make 2292 /// sense to specify which elements are demanded or undefined, therefore 2293 /// they are simply ignored. 2294 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2295 APInt &UndefElts) { 2296 EVT VT = V.getValueType(); 2297 assert(VT.isVector() && "Vector type expected"); 2298 2299 if (!VT.isScalableVector() && !DemandedElts) 2300 return false; // No demanded elts, better to assume we don't know anything. 2301 2302 // Deal with some common cases here that work for both fixed and scalable 2303 // vector types. 2304 switch (V.getOpcode()) { 2305 case ISD::SPLAT_VECTOR: 2306 return true; 2307 case ISD::ADD: 2308 case ISD::SUB: 2309 case ISD::AND: { 2310 APInt UndefLHS, UndefRHS; 2311 SDValue LHS = V.getOperand(0); 2312 SDValue RHS = V.getOperand(1); 2313 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2314 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2315 UndefElts = UndefLHS | UndefRHS; 2316 return true; 2317 } 2318 break; 2319 } 2320 case ISD::TRUNCATE: 2321 case ISD::SIGN_EXTEND: 2322 case ISD::ZERO_EXTEND: 2323 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2324 } 2325 2326 // We don't support other cases than those above for scalable vectors at 2327 // the moment. 2328 if (VT.isScalableVector()) 2329 return false; 2330 2331 unsigned NumElts = VT.getVectorNumElements(); 2332 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2333 UndefElts = APInt::getNullValue(NumElts); 2334 2335 switch (V.getOpcode()) { 2336 case ISD::BUILD_VECTOR: { 2337 SDValue Scl; 2338 for (unsigned i = 0; i != NumElts; ++i) { 2339 SDValue Op = V.getOperand(i); 2340 if (Op.isUndef()) { 2341 UndefElts.setBit(i); 2342 continue; 2343 } 2344 if (!DemandedElts[i]) 2345 continue; 2346 if (Scl && Scl != Op) 2347 return false; 2348 Scl = Op; 2349 } 2350 return true; 2351 } 2352 case ISD::VECTOR_SHUFFLE: { 2353 // Check if this is a shuffle node doing a splat. 2354 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2355 int SplatIndex = -1; 2356 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2357 for (int i = 0; i != (int)NumElts; ++i) { 2358 int M = Mask[i]; 2359 if (M < 0) { 2360 UndefElts.setBit(i); 2361 continue; 2362 } 2363 if (!DemandedElts[i]) 2364 continue; 2365 if (0 <= SplatIndex && SplatIndex != M) 2366 return false; 2367 SplatIndex = M; 2368 } 2369 return true; 2370 } 2371 case ISD::EXTRACT_SUBVECTOR: { 2372 // Offset the demanded elts by the subvector index. 2373 SDValue Src = V.getOperand(0); 2374 uint64_t Idx = V.getConstantOperandVal(1); 2375 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2376 APInt UndefSrcElts; 2377 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2378 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2379 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2380 return true; 2381 } 2382 break; 2383 } 2384 } 2385 2386 return false; 2387 } 2388 2389 /// Helper wrapper to main isSplatValue function. 2390 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2391 EVT VT = V.getValueType(); 2392 assert(VT.isVector() && "Vector type expected"); 2393 2394 APInt UndefElts; 2395 APInt DemandedElts; 2396 2397 // For now we don't support this with scalable vectors. 2398 if (!VT.isScalableVector()) 2399 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2400 return isSplatValue(V, DemandedElts, UndefElts) && 2401 (AllowUndefs || !UndefElts); 2402 } 2403 2404 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2405 V = peekThroughExtractSubvectors(V); 2406 2407 EVT VT = V.getValueType(); 2408 unsigned Opcode = V.getOpcode(); 2409 switch (Opcode) { 2410 default: { 2411 APInt UndefElts; 2412 APInt DemandedElts; 2413 2414 if (!VT.isScalableVector()) 2415 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2416 2417 if (isSplatValue(V, DemandedElts, UndefElts)) { 2418 if (VT.isScalableVector()) { 2419 // DemandedElts and UndefElts are ignored for scalable vectors, since 2420 // the only supported cases are SPLAT_VECTOR nodes. 2421 SplatIdx = 0; 2422 } else { 2423 // Handle case where all demanded elements are UNDEF. 2424 if (DemandedElts.isSubsetOf(UndefElts)) { 2425 SplatIdx = 0; 2426 return getUNDEF(VT); 2427 } 2428 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2429 } 2430 return V; 2431 } 2432 break; 2433 } 2434 case ISD::SPLAT_VECTOR: 2435 SplatIdx = 0; 2436 return V; 2437 case ISD::VECTOR_SHUFFLE: { 2438 if (VT.isScalableVector()) 2439 return SDValue(); 2440 2441 // Check if this is a shuffle node doing a splat. 2442 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2443 // getTargetVShiftNode currently struggles without the splat source. 2444 auto *SVN = cast<ShuffleVectorSDNode>(V); 2445 if (!SVN->isSplat()) 2446 break; 2447 int Idx = SVN->getSplatIndex(); 2448 int NumElts = V.getValueType().getVectorNumElements(); 2449 SplatIdx = Idx % NumElts; 2450 return V.getOperand(Idx / NumElts); 2451 } 2452 } 2453 2454 return SDValue(); 2455 } 2456 2457 SDValue SelectionDAG::getSplatValue(SDValue V) { 2458 int SplatIdx; 2459 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2460 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2461 SrcVector.getValueType().getScalarType(), SrcVector, 2462 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2463 return SDValue(); 2464 } 2465 2466 const APInt * 2467 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2468 const APInt &DemandedElts) const { 2469 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2470 V.getOpcode() == ISD::SRA) && 2471 "Unknown shift node"); 2472 unsigned BitWidth = V.getScalarValueSizeInBits(); 2473 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2474 // Shifting more than the bitwidth is not valid. 2475 const APInt &ShAmt = SA->getAPIntValue(); 2476 if (ShAmt.ult(BitWidth)) 2477 return &ShAmt; 2478 } 2479 return nullptr; 2480 } 2481 2482 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2483 SDValue V, const APInt &DemandedElts) const { 2484 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2485 V.getOpcode() == ISD::SRA) && 2486 "Unknown shift node"); 2487 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2488 return ValidAmt; 2489 unsigned BitWidth = V.getScalarValueSizeInBits(); 2490 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2491 if (!BV) 2492 return nullptr; 2493 const APInt *MinShAmt = nullptr; 2494 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2495 if (!DemandedElts[i]) 2496 continue; 2497 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2498 if (!SA) 2499 return nullptr; 2500 // Shifting more than the bitwidth is not valid. 2501 const APInt &ShAmt = SA->getAPIntValue(); 2502 if (ShAmt.uge(BitWidth)) 2503 return nullptr; 2504 if (MinShAmt && MinShAmt->ule(ShAmt)) 2505 continue; 2506 MinShAmt = &ShAmt; 2507 } 2508 return MinShAmt; 2509 } 2510 2511 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2512 SDValue V, const APInt &DemandedElts) const { 2513 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2514 V.getOpcode() == ISD::SRA) && 2515 "Unknown shift node"); 2516 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2517 return ValidAmt; 2518 unsigned BitWidth = V.getScalarValueSizeInBits(); 2519 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2520 if (!BV) 2521 return nullptr; 2522 const APInt *MaxShAmt = nullptr; 2523 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2524 if (!DemandedElts[i]) 2525 continue; 2526 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2527 if (!SA) 2528 return nullptr; 2529 // Shifting more than the bitwidth is not valid. 2530 const APInt &ShAmt = SA->getAPIntValue(); 2531 if (ShAmt.uge(BitWidth)) 2532 return nullptr; 2533 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2534 continue; 2535 MaxShAmt = &ShAmt; 2536 } 2537 return MaxShAmt; 2538 } 2539 2540 /// Determine which bits of Op are known to be either zero or one and return 2541 /// them in Known. For vectors, the known bits are those that are shared by 2542 /// every vector element. 2543 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2544 EVT VT = Op.getValueType(); 2545 2546 // TOOD: Until we have a plan for how to represent demanded elements for 2547 // scalable vectors, we can just bail out for now. 2548 if (Op.getValueType().isScalableVector()) { 2549 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2550 return KnownBits(BitWidth); 2551 } 2552 2553 APInt DemandedElts = VT.isVector() 2554 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2555 : APInt(1, 1); 2556 return computeKnownBits(Op, DemandedElts, Depth); 2557 } 2558 2559 /// Determine which bits of Op are known to be either zero or one and return 2560 /// them in Known. The DemandedElts argument allows us to only collect the known 2561 /// bits that are shared by the requested vector elements. 2562 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2563 unsigned Depth) const { 2564 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2565 2566 KnownBits Known(BitWidth); // Don't know anything. 2567 2568 // TOOD: Until we have a plan for how to represent demanded elements for 2569 // scalable vectors, we can just bail out for now. 2570 if (Op.getValueType().isScalableVector()) 2571 return Known; 2572 2573 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2574 // We know all of the bits for a constant! 2575 Known.One = C->getAPIntValue(); 2576 Known.Zero = ~Known.One; 2577 return Known; 2578 } 2579 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2580 // We know all of the bits for a constant fp! 2581 Known.One = C->getValueAPF().bitcastToAPInt(); 2582 Known.Zero = ~Known.One; 2583 return Known; 2584 } 2585 2586 if (Depth >= MaxRecursionDepth) 2587 return Known; // Limit search depth. 2588 2589 KnownBits Known2; 2590 unsigned NumElts = DemandedElts.getBitWidth(); 2591 assert((!Op.getValueType().isVector() || 2592 NumElts == Op.getValueType().getVectorNumElements()) && 2593 "Unexpected vector size"); 2594 2595 if (!DemandedElts) 2596 return Known; // No demanded elts, better to assume we don't know anything. 2597 2598 unsigned Opcode = Op.getOpcode(); 2599 switch (Opcode) { 2600 case ISD::BUILD_VECTOR: 2601 // Collect the known bits that are shared by every demanded vector element. 2602 Known.Zero.setAllBits(); Known.One.setAllBits(); 2603 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2604 if (!DemandedElts[i]) 2605 continue; 2606 2607 SDValue SrcOp = Op.getOperand(i); 2608 Known2 = computeKnownBits(SrcOp, Depth + 1); 2609 2610 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2611 if (SrcOp.getValueSizeInBits() != BitWidth) { 2612 assert(SrcOp.getValueSizeInBits() > BitWidth && 2613 "Expected BUILD_VECTOR implicit truncation"); 2614 Known2 = Known2.trunc(BitWidth); 2615 } 2616 2617 // Known bits are the values that are shared by every demanded element. 2618 Known.One &= Known2.One; 2619 Known.Zero &= Known2.Zero; 2620 2621 // If we don't know any bits, early out. 2622 if (Known.isUnknown()) 2623 break; 2624 } 2625 break; 2626 case ISD::VECTOR_SHUFFLE: { 2627 // Collect the known bits that are shared by every vector element referenced 2628 // by the shuffle. 2629 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2630 Known.Zero.setAllBits(); Known.One.setAllBits(); 2631 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2632 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2633 for (unsigned i = 0; i != NumElts; ++i) { 2634 if (!DemandedElts[i]) 2635 continue; 2636 2637 int M = SVN->getMaskElt(i); 2638 if (M < 0) { 2639 // For UNDEF elements, we don't know anything about the common state of 2640 // the shuffle result. 2641 Known.resetAll(); 2642 DemandedLHS.clearAllBits(); 2643 DemandedRHS.clearAllBits(); 2644 break; 2645 } 2646 2647 if ((unsigned)M < NumElts) 2648 DemandedLHS.setBit((unsigned)M % NumElts); 2649 else 2650 DemandedRHS.setBit((unsigned)M % NumElts); 2651 } 2652 // Known bits are the values that are shared by every demanded element. 2653 if (!!DemandedLHS) { 2654 SDValue LHS = Op.getOperand(0); 2655 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2656 Known.One &= Known2.One; 2657 Known.Zero &= Known2.Zero; 2658 } 2659 // If we don't know any bits, early out. 2660 if (Known.isUnknown()) 2661 break; 2662 if (!!DemandedRHS) { 2663 SDValue RHS = Op.getOperand(1); 2664 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2665 Known.One &= Known2.One; 2666 Known.Zero &= Known2.Zero; 2667 } 2668 break; 2669 } 2670 case ISD::CONCAT_VECTORS: { 2671 // Split DemandedElts and test each of the demanded subvectors. 2672 Known.Zero.setAllBits(); Known.One.setAllBits(); 2673 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2674 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2675 unsigned NumSubVectors = Op.getNumOperands(); 2676 for (unsigned i = 0; i != NumSubVectors; ++i) { 2677 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2678 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2679 if (!!DemandedSub) { 2680 SDValue Sub = Op.getOperand(i); 2681 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2682 Known.One &= Known2.One; 2683 Known.Zero &= Known2.Zero; 2684 } 2685 // If we don't know any bits, early out. 2686 if (Known.isUnknown()) 2687 break; 2688 } 2689 break; 2690 } 2691 case ISD::INSERT_SUBVECTOR: { 2692 // Demand any elements from the subvector and the remainder from the src its 2693 // inserted into. 2694 SDValue Src = Op.getOperand(0); 2695 SDValue Sub = Op.getOperand(1); 2696 uint64_t Idx = Op.getConstantOperandVal(2); 2697 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2698 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2699 APInt DemandedSrcElts = DemandedElts; 2700 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2701 2702 Known.One.setAllBits(); 2703 Known.Zero.setAllBits(); 2704 if (!!DemandedSubElts) { 2705 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2706 if (Known.isUnknown()) 2707 break; // early-out. 2708 } 2709 if (!!DemandedSrcElts) { 2710 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2711 Known.One &= Known2.One; 2712 Known.Zero &= Known2.Zero; 2713 } 2714 break; 2715 } 2716 case ISD::EXTRACT_SUBVECTOR: { 2717 // Offset the demanded elts by the subvector index. 2718 SDValue Src = Op.getOperand(0); 2719 // Bail until we can represent demanded elements for scalable vectors. 2720 if (Src.getValueType().isScalableVector()) 2721 break; 2722 uint64_t Idx = Op.getConstantOperandVal(1); 2723 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2724 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2725 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2726 break; 2727 } 2728 case ISD::SCALAR_TO_VECTOR: { 2729 // We know about scalar_to_vector as much as we know about it source, 2730 // which becomes the first element of otherwise unknown vector. 2731 if (DemandedElts != 1) 2732 break; 2733 2734 SDValue N0 = Op.getOperand(0); 2735 Known = computeKnownBits(N0, Depth + 1); 2736 if (N0.getValueSizeInBits() != BitWidth) 2737 Known = Known.trunc(BitWidth); 2738 2739 break; 2740 } 2741 case ISD::BITCAST: { 2742 SDValue N0 = Op.getOperand(0); 2743 EVT SubVT = N0.getValueType(); 2744 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2745 2746 // Ignore bitcasts from unsupported types. 2747 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2748 break; 2749 2750 // Fast handling of 'identity' bitcasts. 2751 if (BitWidth == SubBitWidth) { 2752 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2753 break; 2754 } 2755 2756 bool IsLE = getDataLayout().isLittleEndian(); 2757 2758 // Bitcast 'small element' vector to 'large element' scalar/vector. 2759 if ((BitWidth % SubBitWidth) == 0) { 2760 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2761 2762 // Collect known bits for the (larger) output by collecting the known 2763 // bits from each set of sub elements and shift these into place. 2764 // We need to separately call computeKnownBits for each set of 2765 // sub elements as the knownbits for each is likely to be different. 2766 unsigned SubScale = BitWidth / SubBitWidth; 2767 APInt SubDemandedElts(NumElts * SubScale, 0); 2768 for (unsigned i = 0; i != NumElts; ++i) 2769 if (DemandedElts[i]) 2770 SubDemandedElts.setBit(i * SubScale); 2771 2772 for (unsigned i = 0; i != SubScale; ++i) { 2773 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2774 Depth + 1); 2775 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2776 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2777 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2778 } 2779 } 2780 2781 // Bitcast 'large element' scalar/vector to 'small element' vector. 2782 if ((SubBitWidth % BitWidth) == 0) { 2783 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2784 2785 // Collect known bits for the (smaller) output by collecting the known 2786 // bits from the overlapping larger input elements and extracting the 2787 // sub sections we actually care about. 2788 unsigned SubScale = SubBitWidth / BitWidth; 2789 APInt SubDemandedElts(NumElts / SubScale, 0); 2790 for (unsigned i = 0; i != NumElts; ++i) 2791 if (DemandedElts[i]) 2792 SubDemandedElts.setBit(i / SubScale); 2793 2794 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2795 2796 Known.Zero.setAllBits(); Known.One.setAllBits(); 2797 for (unsigned i = 0; i != NumElts; ++i) 2798 if (DemandedElts[i]) { 2799 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2800 unsigned Offset = (Shifts % SubScale) * BitWidth; 2801 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2802 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2803 // If we don't know any bits, early out. 2804 if (Known.isUnknown()) 2805 break; 2806 } 2807 } 2808 break; 2809 } 2810 case ISD::AND: 2811 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2812 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2813 2814 Known &= Known2; 2815 break; 2816 case ISD::OR: 2817 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2818 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2819 2820 Known |= Known2; 2821 break; 2822 case ISD::XOR: 2823 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2824 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2825 2826 Known ^= Known2; 2827 break; 2828 case ISD::MUL: { 2829 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2830 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2831 2832 // If low bits are zero in either operand, output low known-0 bits. 2833 // Also compute a conservative estimate for high known-0 bits. 2834 // More trickiness is possible, but this is sufficient for the 2835 // interesting case of alignment computation. 2836 unsigned TrailZ = Known.countMinTrailingZeros() + 2837 Known2.countMinTrailingZeros(); 2838 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2839 Known2.countMinLeadingZeros(), 2840 BitWidth) - BitWidth; 2841 2842 Known.resetAll(); 2843 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2844 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2845 break; 2846 } 2847 case ISD::UDIV: { 2848 // For the purposes of computing leading zeros we can conservatively 2849 // treat a udiv as a logical right shift by the power of 2 known to 2850 // be less than the denominator. 2851 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2852 unsigned LeadZ = Known2.countMinLeadingZeros(); 2853 2854 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2855 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2856 if (RHSMaxLeadingZeros != BitWidth) 2857 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2858 2859 Known.Zero.setHighBits(LeadZ); 2860 break; 2861 } 2862 case ISD::SELECT: 2863 case ISD::VSELECT: 2864 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2865 // If we don't know any bits, early out. 2866 if (Known.isUnknown()) 2867 break; 2868 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2869 2870 // Only known if known in both the LHS and RHS. 2871 Known.One &= Known2.One; 2872 Known.Zero &= Known2.Zero; 2873 break; 2874 case ISD::SELECT_CC: 2875 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2876 // If we don't know any bits, early out. 2877 if (Known.isUnknown()) 2878 break; 2879 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2880 2881 // Only known if known in both the LHS and RHS. 2882 Known.One &= Known2.One; 2883 Known.Zero &= Known2.Zero; 2884 break; 2885 case ISD::SMULO: 2886 case ISD::UMULO: 2887 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2888 if (Op.getResNo() != 1) 2889 break; 2890 // The boolean result conforms to getBooleanContents. 2891 // If we know the result of a setcc has the top bits zero, use this info. 2892 // We know that we have an integer-based boolean since these operations 2893 // are only available for integer. 2894 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2895 TargetLowering::ZeroOrOneBooleanContent && 2896 BitWidth > 1) 2897 Known.Zero.setBitsFrom(1); 2898 break; 2899 case ISD::SETCC: 2900 case ISD::STRICT_FSETCC: 2901 case ISD::STRICT_FSETCCS: { 2902 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2903 // If we know the result of a setcc has the top bits zero, use this info. 2904 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2905 TargetLowering::ZeroOrOneBooleanContent && 2906 BitWidth > 1) 2907 Known.Zero.setBitsFrom(1); 2908 break; 2909 } 2910 case ISD::SHL: 2911 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2912 2913 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2914 unsigned Shift = ShAmt->getZExtValue(); 2915 Known.Zero <<= Shift; 2916 Known.One <<= Shift; 2917 // Low bits are known zero. 2918 Known.Zero.setLowBits(Shift); 2919 break; 2920 } 2921 2922 // No matter the shift amount, the trailing zeros will stay zero. 2923 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2924 Known.One.clearAllBits(); 2925 2926 // Minimum shift low bits are known zero. 2927 if (const APInt *ShMinAmt = 2928 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2929 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2930 break; 2931 case ISD::SRL: 2932 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2933 2934 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2935 unsigned Shift = ShAmt->getZExtValue(); 2936 Known.Zero.lshrInPlace(Shift); 2937 Known.One.lshrInPlace(Shift); 2938 // High bits are known zero. 2939 Known.Zero.setHighBits(Shift); 2940 break; 2941 } 2942 2943 // No matter the shift amount, the leading zeros will stay zero. 2944 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2945 Known.One.clearAllBits(); 2946 2947 // Minimum shift high bits are known zero. 2948 if (const APInt *ShMinAmt = 2949 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2950 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2951 break; 2952 case ISD::SRA: 2953 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2954 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2955 unsigned Shift = ShAmt->getZExtValue(); 2956 // Sign extend known zero/one bit (else is unknown). 2957 Known.Zero.ashrInPlace(Shift); 2958 Known.One.ashrInPlace(Shift); 2959 } 2960 break; 2961 case ISD::FSHL: 2962 case ISD::FSHR: 2963 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2964 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2965 2966 // For fshl, 0-shift returns the 1st arg. 2967 // For fshr, 0-shift returns the 2nd arg. 2968 if (Amt == 0) { 2969 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2970 DemandedElts, Depth + 1); 2971 break; 2972 } 2973 2974 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2975 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2976 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2977 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2978 if (Opcode == ISD::FSHL) { 2979 Known.One <<= Amt; 2980 Known.Zero <<= Amt; 2981 Known2.One.lshrInPlace(BitWidth - Amt); 2982 Known2.Zero.lshrInPlace(BitWidth - Amt); 2983 } else { 2984 Known.One <<= BitWidth - Amt; 2985 Known.Zero <<= BitWidth - Amt; 2986 Known2.One.lshrInPlace(Amt); 2987 Known2.Zero.lshrInPlace(Amt); 2988 } 2989 Known.One |= Known2.One; 2990 Known.Zero |= Known2.Zero; 2991 } 2992 break; 2993 case ISD::SIGN_EXTEND_INREG: { 2994 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2995 unsigned EBits = EVT.getScalarSizeInBits(); 2996 2997 // Sign extension. Compute the demanded bits in the result that are not 2998 // present in the input. 2999 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3000 3001 APInt InSignMask = APInt::getSignMask(EBits); 3002 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3003 3004 // If the sign extended bits are demanded, we know that the sign 3005 // bit is demanded. 3006 InSignMask = InSignMask.zext(BitWidth); 3007 if (NewBits.getBoolValue()) 3008 InputDemandedBits |= InSignMask; 3009 3010 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3011 Known.One &= InputDemandedBits; 3012 Known.Zero &= InputDemandedBits; 3013 3014 // If the sign bit of the input is known set or clear, then we know the 3015 // top bits of the result. 3016 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3017 Known.Zero |= NewBits; 3018 Known.One &= ~NewBits; 3019 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3020 Known.One |= NewBits; 3021 Known.Zero &= ~NewBits; 3022 } else { // Input sign bit unknown 3023 Known.Zero &= ~NewBits; 3024 Known.One &= ~NewBits; 3025 } 3026 break; 3027 } 3028 case ISD::CTTZ: 3029 case ISD::CTTZ_ZERO_UNDEF: { 3030 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 // If we have a known 1, its position is our upper bound. 3032 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3033 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3034 Known.Zero.setBitsFrom(LowBits); 3035 break; 3036 } 3037 case ISD::CTLZ: 3038 case ISD::CTLZ_ZERO_UNDEF: { 3039 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3040 // If we have a known 1, its position is our upper bound. 3041 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3042 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3043 Known.Zero.setBitsFrom(LowBits); 3044 break; 3045 } 3046 case ISD::CTPOP: { 3047 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3048 // If we know some of the bits are zero, they can't be one. 3049 unsigned PossibleOnes = Known2.countMaxPopulation(); 3050 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3051 break; 3052 } 3053 case ISD::LOAD: { 3054 LoadSDNode *LD = cast<LoadSDNode>(Op); 3055 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3056 if (ISD::isNON_EXTLoad(LD) && Cst) { 3057 // Determine any common known bits from the loaded constant pool value. 3058 Type *CstTy = Cst->getType(); 3059 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3060 // If its a vector splat, then we can (quickly) reuse the scalar path. 3061 // NOTE: We assume all elements match and none are UNDEF. 3062 if (CstTy->isVectorTy()) { 3063 if (const Constant *Splat = Cst->getSplatValue()) { 3064 Cst = Splat; 3065 CstTy = Cst->getType(); 3066 } 3067 } 3068 // TODO - do we need to handle different bitwidths? 3069 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3070 // Iterate across all vector elements finding common known bits. 3071 Known.One.setAllBits(); 3072 Known.Zero.setAllBits(); 3073 for (unsigned i = 0; i != NumElts; ++i) { 3074 if (!DemandedElts[i]) 3075 continue; 3076 if (Constant *Elt = Cst->getAggregateElement(i)) { 3077 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3078 const APInt &Value = CInt->getValue(); 3079 Known.One &= Value; 3080 Known.Zero &= ~Value; 3081 continue; 3082 } 3083 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3084 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3085 Known.One &= Value; 3086 Known.Zero &= ~Value; 3087 continue; 3088 } 3089 } 3090 Known.One.clearAllBits(); 3091 Known.Zero.clearAllBits(); 3092 break; 3093 } 3094 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3095 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3096 const APInt &Value = CInt->getValue(); 3097 Known.One = Value; 3098 Known.Zero = ~Value; 3099 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3100 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3101 Known.One = Value; 3102 Known.Zero = ~Value; 3103 } 3104 } 3105 } 3106 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3107 // If this is a ZEXTLoad and we are looking at the loaded value. 3108 EVT VT = LD->getMemoryVT(); 3109 unsigned MemBits = VT.getScalarSizeInBits(); 3110 Known.Zero.setBitsFrom(MemBits); 3111 } else if (const MDNode *Ranges = LD->getRanges()) { 3112 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3113 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3114 } 3115 break; 3116 } 3117 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3118 EVT InVT = Op.getOperand(0).getValueType(); 3119 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3120 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3121 Known = Known.zext(BitWidth); 3122 break; 3123 } 3124 case ISD::ZERO_EXTEND: { 3125 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3126 Known = Known.zext(BitWidth); 3127 break; 3128 } 3129 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3130 EVT InVT = Op.getOperand(0).getValueType(); 3131 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3132 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3133 // If the sign bit is known to be zero or one, then sext will extend 3134 // it to the top bits, else it will just zext. 3135 Known = Known.sext(BitWidth); 3136 break; 3137 } 3138 case ISD::SIGN_EXTEND: { 3139 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3140 // If the sign bit is known to be zero or one, then sext will extend 3141 // it to the top bits, else it will just zext. 3142 Known = Known.sext(BitWidth); 3143 break; 3144 } 3145 case ISD::ANY_EXTEND_VECTOR_INREG: { 3146 EVT InVT = Op.getOperand(0).getValueType(); 3147 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3148 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3149 Known = Known.anyext(BitWidth); 3150 break; 3151 } 3152 case ISD::ANY_EXTEND: { 3153 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 Known = Known.anyext(BitWidth); 3155 break; 3156 } 3157 case ISD::TRUNCATE: { 3158 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3159 Known = Known.trunc(BitWidth); 3160 break; 3161 } 3162 case ISD::AssertZext: { 3163 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3164 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3165 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3166 Known.Zero |= (~InMask); 3167 Known.One &= (~Known.Zero); 3168 break; 3169 } 3170 case ISD::AssertAlign: { 3171 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3172 assert(LogOfAlign != 0); 3173 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3174 // well as clearing one bits. 3175 Known.Zero.setLowBits(LogOfAlign); 3176 Known.One.clearLowBits(LogOfAlign); 3177 break; 3178 } 3179 case ISD::FGETSIGN: 3180 // All bits are zero except the low bit. 3181 Known.Zero.setBitsFrom(1); 3182 break; 3183 case ISD::USUBO: 3184 case ISD::SSUBO: 3185 if (Op.getResNo() == 1) { 3186 // If we know the result of a setcc has the top bits zero, use this info. 3187 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3188 TargetLowering::ZeroOrOneBooleanContent && 3189 BitWidth > 1) 3190 Known.Zero.setBitsFrom(1); 3191 break; 3192 } 3193 LLVM_FALLTHROUGH; 3194 case ISD::SUB: 3195 case ISD::SUBC: { 3196 assert(Op.getResNo() == 0 && 3197 "We only compute knownbits for the difference here."); 3198 3199 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3200 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3201 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3202 Known, Known2); 3203 break; 3204 } 3205 case ISD::UADDO: 3206 case ISD::SADDO: 3207 case ISD::ADDCARRY: 3208 if (Op.getResNo() == 1) { 3209 // If we know the result of a setcc has the top bits zero, use this info. 3210 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3211 TargetLowering::ZeroOrOneBooleanContent && 3212 BitWidth > 1) 3213 Known.Zero.setBitsFrom(1); 3214 break; 3215 } 3216 LLVM_FALLTHROUGH; 3217 case ISD::ADD: 3218 case ISD::ADDC: 3219 case ISD::ADDE: { 3220 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3221 3222 // With ADDE and ADDCARRY, a carry bit may be added in. 3223 KnownBits Carry(1); 3224 if (Opcode == ISD::ADDE) 3225 // Can't track carry from glue, set carry to unknown. 3226 Carry.resetAll(); 3227 else if (Opcode == ISD::ADDCARRY) 3228 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3229 // the trouble (how often will we find a known carry bit). And I haven't 3230 // tested this very much yet, but something like this might work: 3231 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3232 // Carry = Carry.zextOrTrunc(1, false); 3233 Carry.resetAll(); 3234 else 3235 Carry.setAllZero(); 3236 3237 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3239 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3240 break; 3241 } 3242 case ISD::SREM: 3243 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3244 const APInt &RA = Rem->getAPIntValue().abs(); 3245 if (RA.isPowerOf2()) { 3246 APInt LowBits = RA - 1; 3247 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3248 3249 // The low bits of the first operand are unchanged by the srem. 3250 Known.Zero = Known2.Zero & LowBits; 3251 Known.One = Known2.One & LowBits; 3252 3253 // If the first operand is non-negative or has all low bits zero, then 3254 // the upper bits are all zero. 3255 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3256 Known.Zero |= ~LowBits; 3257 3258 // If the first operand is negative and not all low bits are zero, then 3259 // the upper bits are all one. 3260 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3261 Known.One |= ~LowBits; 3262 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3263 } 3264 } 3265 break; 3266 case ISD::UREM: { 3267 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3268 const APInt &RA = Rem->getAPIntValue(); 3269 if (RA.isPowerOf2()) { 3270 APInt LowBits = (RA - 1); 3271 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3272 3273 // The upper bits are all zero, the lower ones are unchanged. 3274 Known.Zero = Known2.Zero | ~LowBits; 3275 Known.One = Known2.One & LowBits; 3276 break; 3277 } 3278 } 3279 3280 // Since the result is less than or equal to either operand, any leading 3281 // zero bits in either operand must also exist in the result. 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 3285 uint32_t Leaders = 3286 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3287 Known.resetAll(); 3288 Known.Zero.setHighBits(Leaders); 3289 break; 3290 } 3291 case ISD::EXTRACT_ELEMENT: { 3292 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3293 const unsigned Index = Op.getConstantOperandVal(1); 3294 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3295 3296 // Remove low part of known bits mask 3297 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3298 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3299 3300 // Remove high part of known bit mask 3301 Known = Known.trunc(EltBitWidth); 3302 break; 3303 } 3304 case ISD::EXTRACT_VECTOR_ELT: { 3305 SDValue InVec = Op.getOperand(0); 3306 SDValue EltNo = Op.getOperand(1); 3307 EVT VecVT = InVec.getValueType(); 3308 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3309 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3310 3311 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3312 // anything about the extended bits. 3313 if (BitWidth > EltBitWidth) 3314 Known = Known.trunc(EltBitWidth); 3315 3316 // If we know the element index, just demand that vector element, else for 3317 // an unknown element index, ignore DemandedElts and demand them all. 3318 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3319 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3320 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3321 DemandedSrcElts = 3322 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3323 3324 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3325 if (BitWidth > EltBitWidth) 3326 Known = Known.anyext(BitWidth); 3327 break; 3328 } 3329 case ISD::INSERT_VECTOR_ELT: { 3330 // If we know the element index, split the demand between the 3331 // source vector and the inserted element, otherwise assume we need 3332 // the original demanded vector elements and the value. 3333 SDValue InVec = Op.getOperand(0); 3334 SDValue InVal = Op.getOperand(1); 3335 SDValue EltNo = Op.getOperand(2); 3336 bool DemandedVal = true; 3337 APInt DemandedVecElts = DemandedElts; 3338 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3339 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3340 unsigned EltIdx = CEltNo->getZExtValue(); 3341 DemandedVal = !!DemandedElts[EltIdx]; 3342 DemandedVecElts.clearBit(EltIdx); 3343 } 3344 Known.One.setAllBits(); 3345 Known.Zero.setAllBits(); 3346 if (DemandedVal) { 3347 Known2 = computeKnownBits(InVal, Depth + 1); 3348 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3349 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3350 } 3351 if (!!DemandedVecElts) { 3352 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3353 Known.One &= Known2.One; 3354 Known.Zero &= Known2.Zero; 3355 } 3356 break; 3357 } 3358 case ISD::BITREVERSE: { 3359 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3360 Known = Known2.reverseBits(); 3361 break; 3362 } 3363 case ISD::BSWAP: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 Known = Known2.byteSwap(); 3366 break; 3367 } 3368 case ISD::ABS: { 3369 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 3371 // If the source's MSB is zero then we know the rest of the bits already. 3372 if (Known2.isNonNegative()) { 3373 Known.Zero = Known2.Zero; 3374 Known.One = Known2.One; 3375 break; 3376 } 3377 3378 // We only know that the absolute values's MSB will be zero iff there is 3379 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3380 Known2.One.clearSignBit(); 3381 if (Known2.One.getBoolValue()) { 3382 Known.Zero = APInt::getSignMask(BitWidth); 3383 break; 3384 } 3385 break; 3386 } 3387 case ISD::UMIN: { 3388 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3389 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3390 3391 // UMIN - we know that the result will have the maximum of the 3392 // known zero leading bits of the inputs. 3393 unsigned LeadZero = Known.countMinLeadingZeros(); 3394 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3395 3396 Known.Zero &= Known2.Zero; 3397 Known.One &= Known2.One; 3398 Known.Zero.setHighBits(LeadZero); 3399 break; 3400 } 3401 case ISD::UMAX: { 3402 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3403 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3404 3405 // UMAX - we know that the result will have the maximum of the 3406 // known one leading bits of the inputs. 3407 unsigned LeadOne = Known.countMinLeadingOnes(); 3408 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3409 3410 Known.Zero &= Known2.Zero; 3411 Known.One &= Known2.One; 3412 Known.One.setHighBits(LeadOne); 3413 break; 3414 } 3415 case ISD::SMIN: 3416 case ISD::SMAX: { 3417 // If we have a clamp pattern, we know that the number of sign bits will be 3418 // the minimum of the clamp min/max range. 3419 bool IsMax = (Opcode == ISD::SMAX); 3420 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3421 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3422 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3423 CstHigh = 3424 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3425 if (CstLow && CstHigh) { 3426 if (!IsMax) 3427 std::swap(CstLow, CstHigh); 3428 3429 const APInt &ValueLow = CstLow->getAPIntValue(); 3430 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3431 if (ValueLow.sle(ValueHigh)) { 3432 unsigned LowSignBits = ValueLow.getNumSignBits(); 3433 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3434 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3435 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3436 Known.One.setHighBits(MinSignBits); 3437 break; 3438 } 3439 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3440 Known.Zero.setHighBits(MinSignBits); 3441 break; 3442 } 3443 } 3444 } 3445 3446 // Fallback - just get the shared known bits of the operands. 3447 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3448 if (Known.isUnknown()) break; // Early-out 3449 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3450 Known.Zero &= Known2.Zero; 3451 Known.One &= Known2.One; 3452 break; 3453 } 3454 case ISD::FrameIndex: 3455 case ISD::TargetFrameIndex: 3456 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3457 Known, getMachineFunction()); 3458 break; 3459 3460 default: 3461 if (Opcode < ISD::BUILTIN_OP_END) 3462 break; 3463 LLVM_FALLTHROUGH; 3464 case ISD::INTRINSIC_WO_CHAIN: 3465 case ISD::INTRINSIC_W_CHAIN: 3466 case ISD::INTRINSIC_VOID: 3467 // Allow the target to implement this method for its nodes. 3468 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3469 break; 3470 } 3471 3472 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3473 return Known; 3474 } 3475 3476 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3477 SDValue N1) const { 3478 // X + 0 never overflow 3479 if (isNullConstant(N1)) 3480 return OFK_Never; 3481 3482 KnownBits N1Known = computeKnownBits(N1); 3483 if (N1Known.Zero.getBoolValue()) { 3484 KnownBits N0Known = computeKnownBits(N0); 3485 3486 bool overflow; 3487 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3488 if (!overflow) 3489 return OFK_Never; 3490 } 3491 3492 // mulhi + 1 never overflow 3493 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3494 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3495 return OFK_Never; 3496 3497 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3498 KnownBits N0Known = computeKnownBits(N0); 3499 3500 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3501 return OFK_Never; 3502 } 3503 3504 return OFK_Sometime; 3505 } 3506 3507 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3508 EVT OpVT = Val.getValueType(); 3509 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3510 3511 // Is the constant a known power of 2? 3512 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3513 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3514 3515 // A left-shift of a constant one will have exactly one bit set because 3516 // shifting the bit off the end is undefined. 3517 if (Val.getOpcode() == ISD::SHL) { 3518 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3519 if (C && C->getAPIntValue() == 1) 3520 return true; 3521 } 3522 3523 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3524 // one bit set. 3525 if (Val.getOpcode() == ISD::SRL) { 3526 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3527 if (C && C->getAPIntValue().isSignMask()) 3528 return true; 3529 } 3530 3531 // Are all operands of a build vector constant powers of two? 3532 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3533 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3534 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3535 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3536 return false; 3537 })) 3538 return true; 3539 3540 // More could be done here, though the above checks are enough 3541 // to handle some common cases. 3542 3543 // Fall back to computeKnownBits to catch other known cases. 3544 KnownBits Known = computeKnownBits(Val); 3545 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3546 } 3547 3548 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3549 EVT VT = Op.getValueType(); 3550 3551 // TODO: Assume we don't know anything for now. 3552 if (VT.isScalableVector()) 3553 return 1; 3554 3555 APInt DemandedElts = VT.isVector() 3556 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3557 : APInt(1, 1); 3558 return ComputeNumSignBits(Op, DemandedElts, Depth); 3559 } 3560 3561 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3562 unsigned Depth) const { 3563 EVT VT = Op.getValueType(); 3564 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3565 unsigned VTBits = VT.getScalarSizeInBits(); 3566 unsigned NumElts = DemandedElts.getBitWidth(); 3567 unsigned Tmp, Tmp2; 3568 unsigned FirstAnswer = 1; 3569 3570 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3571 const APInt &Val = C->getAPIntValue(); 3572 return Val.getNumSignBits(); 3573 } 3574 3575 if (Depth >= MaxRecursionDepth) 3576 return 1; // Limit search depth. 3577 3578 if (!DemandedElts || VT.isScalableVector()) 3579 return 1; // No demanded elts, better to assume we don't know anything. 3580 3581 unsigned Opcode = Op.getOpcode(); 3582 switch (Opcode) { 3583 default: break; 3584 case ISD::AssertSext: 3585 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3586 return VTBits-Tmp+1; 3587 case ISD::AssertZext: 3588 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3589 return VTBits-Tmp; 3590 3591 case ISD::BUILD_VECTOR: 3592 Tmp = VTBits; 3593 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3594 if (!DemandedElts[i]) 3595 continue; 3596 3597 SDValue SrcOp = Op.getOperand(i); 3598 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3599 3600 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3601 if (SrcOp.getValueSizeInBits() != VTBits) { 3602 assert(SrcOp.getValueSizeInBits() > VTBits && 3603 "Expected BUILD_VECTOR implicit truncation"); 3604 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3605 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3606 } 3607 Tmp = std::min(Tmp, Tmp2); 3608 } 3609 return Tmp; 3610 3611 case ISD::VECTOR_SHUFFLE: { 3612 // Collect the minimum number of sign bits that are shared by every vector 3613 // element referenced by the shuffle. 3614 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3615 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3616 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3617 for (unsigned i = 0; i != NumElts; ++i) { 3618 int M = SVN->getMaskElt(i); 3619 if (!DemandedElts[i]) 3620 continue; 3621 // For UNDEF elements, we don't know anything about the common state of 3622 // the shuffle result. 3623 if (M < 0) 3624 return 1; 3625 if ((unsigned)M < NumElts) 3626 DemandedLHS.setBit((unsigned)M % NumElts); 3627 else 3628 DemandedRHS.setBit((unsigned)M % NumElts); 3629 } 3630 Tmp = std::numeric_limits<unsigned>::max(); 3631 if (!!DemandedLHS) 3632 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3633 if (!!DemandedRHS) { 3634 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3635 Tmp = std::min(Tmp, Tmp2); 3636 } 3637 // If we don't know anything, early out and try computeKnownBits fall-back. 3638 if (Tmp == 1) 3639 break; 3640 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3641 return Tmp; 3642 } 3643 3644 case ISD::BITCAST: { 3645 SDValue N0 = Op.getOperand(0); 3646 EVT SrcVT = N0.getValueType(); 3647 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3648 3649 // Ignore bitcasts from unsupported types.. 3650 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3651 break; 3652 3653 // Fast handling of 'identity' bitcasts. 3654 if (VTBits == SrcBits) 3655 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3656 3657 bool IsLE = getDataLayout().isLittleEndian(); 3658 3659 // Bitcast 'large element' scalar/vector to 'small element' vector. 3660 if ((SrcBits % VTBits) == 0) { 3661 assert(VT.isVector() && "Expected bitcast to vector"); 3662 3663 unsigned Scale = SrcBits / VTBits; 3664 APInt SrcDemandedElts(NumElts / Scale, 0); 3665 for (unsigned i = 0; i != NumElts; ++i) 3666 if (DemandedElts[i]) 3667 SrcDemandedElts.setBit(i / Scale); 3668 3669 // Fast case - sign splat can be simply split across the small elements. 3670 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3671 if (Tmp == SrcBits) 3672 return VTBits; 3673 3674 // Slow case - determine how far the sign extends into each sub-element. 3675 Tmp2 = VTBits; 3676 for (unsigned i = 0; i != NumElts; ++i) 3677 if (DemandedElts[i]) { 3678 unsigned SubOffset = i % Scale; 3679 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3680 SubOffset = SubOffset * VTBits; 3681 if (Tmp <= SubOffset) 3682 return 1; 3683 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3684 } 3685 return Tmp2; 3686 } 3687 break; 3688 } 3689 3690 case ISD::SIGN_EXTEND: 3691 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3692 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3693 case ISD::SIGN_EXTEND_INREG: 3694 // Max of the input and what this extends. 3695 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3696 Tmp = VTBits-Tmp+1; 3697 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3698 return std::max(Tmp, Tmp2); 3699 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3700 SDValue Src = Op.getOperand(0); 3701 EVT SrcVT = Src.getValueType(); 3702 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3703 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3704 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3705 } 3706 case ISD::SRA: 3707 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3708 // SRA X, C -> adds C sign bits. 3709 if (const APInt *ShAmt = 3710 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3711 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3712 return Tmp; 3713 case ISD::SHL: 3714 if (const APInt *ShAmt = 3715 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3716 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3717 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 if (ShAmt->ult(Tmp)) 3719 return Tmp - ShAmt->getZExtValue(); 3720 } 3721 break; 3722 case ISD::AND: 3723 case ISD::OR: 3724 case ISD::XOR: // NOT is handled here. 3725 // Logical binary ops preserve the number of sign bits at the worst. 3726 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3727 if (Tmp != 1) { 3728 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3729 FirstAnswer = std::min(Tmp, Tmp2); 3730 // We computed what we know about the sign bits as our first 3731 // answer. Now proceed to the generic code that uses 3732 // computeKnownBits, and pick whichever answer is better. 3733 } 3734 break; 3735 3736 case ISD::SELECT: 3737 case ISD::VSELECT: 3738 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3739 if (Tmp == 1) return 1; // Early out. 3740 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3741 return std::min(Tmp, Tmp2); 3742 case ISD::SELECT_CC: 3743 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3744 if (Tmp == 1) return 1; // Early out. 3745 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3746 return std::min(Tmp, Tmp2); 3747 3748 case ISD::SMIN: 3749 case ISD::SMAX: { 3750 // If we have a clamp pattern, we know that the number of sign bits will be 3751 // the minimum of the clamp min/max range. 3752 bool IsMax = (Opcode == ISD::SMAX); 3753 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3754 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3755 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3756 CstHigh = 3757 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3758 if (CstLow && CstHigh) { 3759 if (!IsMax) 3760 std::swap(CstLow, CstHigh); 3761 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3762 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3763 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3764 return std::min(Tmp, Tmp2); 3765 } 3766 } 3767 3768 // Fallback - just get the minimum number of sign bits of the operands. 3769 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3770 if (Tmp == 1) 3771 return 1; // Early out. 3772 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3773 return std::min(Tmp, Tmp2); 3774 } 3775 case ISD::UMIN: 3776 case ISD::UMAX: 3777 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3778 if (Tmp == 1) 3779 return 1; // Early out. 3780 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3781 return std::min(Tmp, Tmp2); 3782 case ISD::SADDO: 3783 case ISD::UADDO: 3784 case ISD::SSUBO: 3785 case ISD::USUBO: 3786 case ISD::SMULO: 3787 case ISD::UMULO: 3788 if (Op.getResNo() != 1) 3789 break; 3790 // The boolean result conforms to getBooleanContents. Fall through. 3791 // If setcc returns 0/-1, all bits are sign bits. 3792 // We know that we have an integer-based boolean since these operations 3793 // are only available for integer. 3794 if (TLI->getBooleanContents(VT.isVector(), false) == 3795 TargetLowering::ZeroOrNegativeOneBooleanContent) 3796 return VTBits; 3797 break; 3798 case ISD::SETCC: 3799 case ISD::STRICT_FSETCC: 3800 case ISD::STRICT_FSETCCS: { 3801 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3802 // If setcc returns 0/-1, all bits are sign bits. 3803 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3804 TargetLowering::ZeroOrNegativeOneBooleanContent) 3805 return VTBits; 3806 break; 3807 } 3808 case ISD::ROTL: 3809 case ISD::ROTR: 3810 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3811 3812 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3813 if (Tmp == VTBits) 3814 return VTBits; 3815 3816 if (ConstantSDNode *C = 3817 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3818 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3819 3820 // Handle rotate right by N like a rotate left by 32-N. 3821 if (Opcode == ISD::ROTR) 3822 RotAmt = (VTBits - RotAmt) % VTBits; 3823 3824 // If we aren't rotating out all of the known-in sign bits, return the 3825 // number that are left. This handles rotl(sext(x), 1) for example. 3826 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3827 } 3828 break; 3829 case ISD::ADD: 3830 case ISD::ADDC: 3831 // Add can have at most one carry bit. Thus we know that the output 3832 // is, at worst, one more bit than the inputs. 3833 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3834 if (Tmp == 1) return 1; // Early out. 3835 3836 // Special case decrementing a value (ADD X, -1): 3837 if (ConstantSDNode *CRHS = 3838 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3839 if (CRHS->isAllOnesValue()) { 3840 KnownBits Known = 3841 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3842 3843 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3844 // sign bits set. 3845 if ((Known.Zero | 1).isAllOnesValue()) 3846 return VTBits; 3847 3848 // If we are subtracting one from a positive number, there is no carry 3849 // out of the result. 3850 if (Known.isNonNegative()) 3851 return Tmp; 3852 } 3853 3854 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3855 if (Tmp2 == 1) return 1; // Early out. 3856 return std::min(Tmp, Tmp2) - 1; 3857 case ISD::SUB: 3858 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3859 if (Tmp2 == 1) return 1; // Early out. 3860 3861 // Handle NEG. 3862 if (ConstantSDNode *CLHS = 3863 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3864 if (CLHS->isNullValue()) { 3865 KnownBits Known = 3866 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3867 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3868 // sign bits set. 3869 if ((Known.Zero | 1).isAllOnesValue()) 3870 return VTBits; 3871 3872 // If the input is known to be positive (the sign bit is known clear), 3873 // the output of the NEG has the same number of sign bits as the input. 3874 if (Known.isNonNegative()) 3875 return Tmp2; 3876 3877 // Otherwise, we treat this like a SUB. 3878 } 3879 3880 // Sub can have at most one carry bit. Thus we know that the output 3881 // is, at worst, one more bit than the inputs. 3882 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3883 if (Tmp == 1) return 1; // Early out. 3884 return std::min(Tmp, Tmp2) - 1; 3885 case ISD::MUL: { 3886 // The output of the Mul can be at most twice the valid bits in the inputs. 3887 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3888 if (SignBitsOp0 == 1) 3889 break; 3890 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3891 if (SignBitsOp1 == 1) 3892 break; 3893 unsigned OutValidBits = 3894 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3895 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3896 } 3897 case ISD::TRUNCATE: { 3898 // Check if the sign bits of source go down as far as the truncated value. 3899 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3900 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3901 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3902 return NumSrcSignBits - (NumSrcBits - VTBits); 3903 break; 3904 } 3905 case ISD::EXTRACT_ELEMENT: { 3906 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3907 const int BitWidth = Op.getValueSizeInBits(); 3908 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3909 3910 // Get reverse index (starting from 1), Op1 value indexes elements from 3911 // little end. Sign starts at big end. 3912 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3913 3914 // If the sign portion ends in our element the subtraction gives correct 3915 // result. Otherwise it gives either negative or > bitwidth result 3916 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3917 } 3918 case ISD::INSERT_VECTOR_ELT: { 3919 // If we know the element index, split the demand between the 3920 // source vector and the inserted element, otherwise assume we need 3921 // the original demanded vector elements and the value. 3922 SDValue InVec = Op.getOperand(0); 3923 SDValue InVal = Op.getOperand(1); 3924 SDValue EltNo = Op.getOperand(2); 3925 bool DemandedVal = true; 3926 APInt DemandedVecElts = DemandedElts; 3927 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3928 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3929 unsigned EltIdx = CEltNo->getZExtValue(); 3930 DemandedVal = !!DemandedElts[EltIdx]; 3931 DemandedVecElts.clearBit(EltIdx); 3932 } 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 if (DemandedVal) { 3935 // TODO - handle implicit truncation of inserted elements. 3936 if (InVal.getScalarValueSizeInBits() != VTBits) 3937 break; 3938 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3939 Tmp = std::min(Tmp, Tmp2); 3940 } 3941 if (!!DemandedVecElts) { 3942 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3943 Tmp = std::min(Tmp, Tmp2); 3944 } 3945 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3946 return Tmp; 3947 } 3948 case ISD::EXTRACT_VECTOR_ELT: { 3949 SDValue InVec = Op.getOperand(0); 3950 SDValue EltNo = Op.getOperand(1); 3951 EVT VecVT = InVec.getValueType(); 3952 const unsigned BitWidth = Op.getValueSizeInBits(); 3953 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3954 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3955 3956 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3957 // anything about sign bits. But if the sizes match we can derive knowledge 3958 // about sign bits from the vector operand. 3959 if (BitWidth != EltBitWidth) 3960 break; 3961 3962 // If we know the element index, just demand that vector element, else for 3963 // an unknown element index, ignore DemandedElts and demand them all. 3964 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3965 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3966 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3967 DemandedSrcElts = 3968 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3969 3970 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3971 } 3972 case ISD::EXTRACT_SUBVECTOR: { 3973 // Offset the demanded elts by the subvector index. 3974 SDValue Src = Op.getOperand(0); 3975 // Bail until we can represent demanded elements for scalable vectors. 3976 if (Src.getValueType().isScalableVector()) 3977 break; 3978 uint64_t Idx = Op.getConstantOperandVal(1); 3979 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3980 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3981 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3982 } 3983 case ISD::CONCAT_VECTORS: { 3984 // Determine the minimum number of sign bits across all demanded 3985 // elts of the input vectors. Early out if the result is already 1. 3986 Tmp = std::numeric_limits<unsigned>::max(); 3987 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3988 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3989 unsigned NumSubVectors = Op.getNumOperands(); 3990 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3991 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3992 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3993 if (!DemandedSub) 3994 continue; 3995 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3996 Tmp = std::min(Tmp, Tmp2); 3997 } 3998 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3999 return Tmp; 4000 } 4001 case ISD::INSERT_SUBVECTOR: { 4002 // Demand any elements from the subvector and the remainder from the src its 4003 // inserted into. 4004 SDValue Src = Op.getOperand(0); 4005 SDValue Sub = Op.getOperand(1); 4006 uint64_t Idx = Op.getConstantOperandVal(2); 4007 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4008 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4009 APInt DemandedSrcElts = DemandedElts; 4010 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4011 4012 Tmp = std::numeric_limits<unsigned>::max(); 4013 if (!!DemandedSubElts) { 4014 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4015 if (Tmp == 1) 4016 return 1; // early-out 4017 } 4018 if (!!DemandedSrcElts) { 4019 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4020 Tmp = std::min(Tmp, Tmp2); 4021 } 4022 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4023 return Tmp; 4024 } 4025 } 4026 4027 // If we are looking at the loaded value of the SDNode. 4028 if (Op.getResNo() == 0) { 4029 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4030 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4031 unsigned ExtType = LD->getExtensionType(); 4032 switch (ExtType) { 4033 default: break; 4034 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4035 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4036 return VTBits - Tmp + 1; 4037 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4038 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4039 return VTBits - Tmp; 4040 case ISD::NON_EXTLOAD: 4041 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4042 // We only need to handle vectors - computeKnownBits should handle 4043 // scalar cases. 4044 Type *CstTy = Cst->getType(); 4045 if (CstTy->isVectorTy() && 4046 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4047 Tmp = VTBits; 4048 for (unsigned i = 0; i != NumElts; ++i) { 4049 if (!DemandedElts[i]) 4050 continue; 4051 if (Constant *Elt = Cst->getAggregateElement(i)) { 4052 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4053 const APInt &Value = CInt->getValue(); 4054 Tmp = std::min(Tmp, Value.getNumSignBits()); 4055 continue; 4056 } 4057 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4058 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4059 Tmp = std::min(Tmp, Value.getNumSignBits()); 4060 continue; 4061 } 4062 } 4063 // Unknown type. Conservatively assume no bits match sign bit. 4064 return 1; 4065 } 4066 return Tmp; 4067 } 4068 } 4069 break; 4070 } 4071 } 4072 } 4073 4074 // Allow the target to implement this method for its nodes. 4075 if (Opcode >= ISD::BUILTIN_OP_END || 4076 Opcode == ISD::INTRINSIC_WO_CHAIN || 4077 Opcode == ISD::INTRINSIC_W_CHAIN || 4078 Opcode == ISD::INTRINSIC_VOID) { 4079 unsigned NumBits = 4080 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4081 if (NumBits > 1) 4082 FirstAnswer = std::max(FirstAnswer, NumBits); 4083 } 4084 4085 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4086 // use this information. 4087 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4088 4089 APInt Mask; 4090 if (Known.isNonNegative()) { // sign bit is 0 4091 Mask = Known.Zero; 4092 } else if (Known.isNegative()) { // sign bit is 1; 4093 Mask = Known.One; 4094 } else { 4095 // Nothing known. 4096 return FirstAnswer; 4097 } 4098 4099 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4100 // the number of identical bits in the top of the input value. 4101 Mask <<= Mask.getBitWidth()-VTBits; 4102 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4103 } 4104 4105 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4106 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4107 !isa<ConstantSDNode>(Op.getOperand(1))) 4108 return false; 4109 4110 if (Op.getOpcode() == ISD::OR && 4111 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4112 return false; 4113 4114 return true; 4115 } 4116 4117 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4118 // If we're told that NaNs won't happen, assume they won't. 4119 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4120 return true; 4121 4122 if (Depth >= MaxRecursionDepth) 4123 return false; // Limit search depth. 4124 4125 // TODO: Handle vectors. 4126 // If the value is a constant, we can obviously see if it is a NaN or not. 4127 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4128 return !C->getValueAPF().isNaN() || 4129 (SNaN && !C->getValueAPF().isSignaling()); 4130 } 4131 4132 unsigned Opcode = Op.getOpcode(); 4133 switch (Opcode) { 4134 case ISD::FADD: 4135 case ISD::FSUB: 4136 case ISD::FMUL: 4137 case ISD::FDIV: 4138 case ISD::FREM: 4139 case ISD::FSIN: 4140 case ISD::FCOS: { 4141 if (SNaN) 4142 return true; 4143 // TODO: Need isKnownNeverInfinity 4144 return false; 4145 } 4146 case ISD::FCANONICALIZE: 4147 case ISD::FEXP: 4148 case ISD::FEXP2: 4149 case ISD::FTRUNC: 4150 case ISD::FFLOOR: 4151 case ISD::FCEIL: 4152 case ISD::FROUND: 4153 case ISD::FROUNDEVEN: 4154 case ISD::FRINT: 4155 case ISD::FNEARBYINT: { 4156 if (SNaN) 4157 return true; 4158 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4159 } 4160 case ISD::FABS: 4161 case ISD::FNEG: 4162 case ISD::FCOPYSIGN: { 4163 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4164 } 4165 case ISD::SELECT: 4166 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4167 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4168 case ISD::FP_EXTEND: 4169 case ISD::FP_ROUND: { 4170 if (SNaN) 4171 return true; 4172 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4173 } 4174 case ISD::SINT_TO_FP: 4175 case ISD::UINT_TO_FP: 4176 return true; 4177 case ISD::FMA: 4178 case ISD::FMAD: { 4179 if (SNaN) 4180 return true; 4181 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4182 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4183 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4184 } 4185 case ISD::FSQRT: // Need is known positive 4186 case ISD::FLOG: 4187 case ISD::FLOG2: 4188 case ISD::FLOG10: 4189 case ISD::FPOWI: 4190 case ISD::FPOW: { 4191 if (SNaN) 4192 return true; 4193 // TODO: Refine on operand 4194 return false; 4195 } 4196 case ISD::FMINNUM: 4197 case ISD::FMAXNUM: { 4198 // Only one needs to be known not-nan, since it will be returned if the 4199 // other ends up being one. 4200 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4201 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4202 } 4203 case ISD::FMINNUM_IEEE: 4204 case ISD::FMAXNUM_IEEE: { 4205 if (SNaN) 4206 return true; 4207 // This can return a NaN if either operand is an sNaN, or if both operands 4208 // are NaN. 4209 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4210 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4211 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4212 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4213 } 4214 case ISD::FMINIMUM: 4215 case ISD::FMAXIMUM: { 4216 // TODO: Does this quiet or return the origina NaN as-is? 4217 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4218 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4219 } 4220 case ISD::EXTRACT_VECTOR_ELT: { 4221 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4222 } 4223 default: 4224 if (Opcode >= ISD::BUILTIN_OP_END || 4225 Opcode == ISD::INTRINSIC_WO_CHAIN || 4226 Opcode == ISD::INTRINSIC_W_CHAIN || 4227 Opcode == ISD::INTRINSIC_VOID) { 4228 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4229 } 4230 4231 return false; 4232 } 4233 } 4234 4235 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4236 assert(Op.getValueType().isFloatingPoint() && 4237 "Floating point type expected"); 4238 4239 // If the value is a constant, we can obviously see if it is a zero or not. 4240 // TODO: Add BuildVector support. 4241 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4242 return !C->isZero(); 4243 return false; 4244 } 4245 4246 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4247 assert(!Op.getValueType().isFloatingPoint() && 4248 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4249 4250 // If the value is a constant, we can obviously see if it is a zero or not. 4251 if (ISD::matchUnaryPredicate( 4252 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4253 return true; 4254 4255 // TODO: Recognize more cases here. 4256 switch (Op.getOpcode()) { 4257 default: break; 4258 case ISD::OR: 4259 if (isKnownNeverZero(Op.getOperand(1)) || 4260 isKnownNeverZero(Op.getOperand(0))) 4261 return true; 4262 break; 4263 } 4264 4265 return false; 4266 } 4267 4268 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4269 // Check the obvious case. 4270 if (A == B) return true; 4271 4272 // For for negative and positive zero. 4273 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4274 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4275 if (CA->isZero() && CB->isZero()) return true; 4276 4277 // Otherwise they may not be equal. 4278 return false; 4279 } 4280 4281 // FIXME: unify with llvm::haveNoCommonBitsSet. 4282 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4283 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4284 assert(A.getValueType() == B.getValueType() && 4285 "Values must have the same type"); 4286 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4287 } 4288 4289 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4290 ArrayRef<SDValue> Ops, 4291 SelectionDAG &DAG) { 4292 int NumOps = Ops.size(); 4293 assert(NumOps != 0 && "Can't build an empty vector!"); 4294 assert(!VT.isScalableVector() && 4295 "BUILD_VECTOR cannot be used with scalable types"); 4296 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4297 "Incorrect element count in BUILD_VECTOR!"); 4298 4299 // BUILD_VECTOR of UNDEFs is UNDEF. 4300 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4301 return DAG.getUNDEF(VT); 4302 4303 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4304 SDValue IdentitySrc; 4305 bool IsIdentity = true; 4306 for (int i = 0; i != NumOps; ++i) { 4307 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4308 Ops[i].getOperand(0).getValueType() != VT || 4309 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4310 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4311 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4312 IsIdentity = false; 4313 break; 4314 } 4315 IdentitySrc = Ops[i].getOperand(0); 4316 } 4317 if (IsIdentity) 4318 return IdentitySrc; 4319 4320 return SDValue(); 4321 } 4322 4323 /// Try to simplify vector concatenation to an input value, undef, or build 4324 /// vector. 4325 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4326 ArrayRef<SDValue> Ops, 4327 SelectionDAG &DAG) { 4328 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4329 assert(llvm::all_of(Ops, 4330 [Ops](SDValue Op) { 4331 return Ops[0].getValueType() == Op.getValueType(); 4332 }) && 4333 "Concatenation of vectors with inconsistent value types!"); 4334 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4335 VT.getVectorElementCount() && 4336 "Incorrect element count in vector concatenation!"); 4337 4338 if (Ops.size() == 1) 4339 return Ops[0]; 4340 4341 // Concat of UNDEFs is UNDEF. 4342 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4343 return DAG.getUNDEF(VT); 4344 4345 // Scan the operands and look for extract operations from a single source 4346 // that correspond to insertion at the same location via this concatenation: 4347 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4348 SDValue IdentitySrc; 4349 bool IsIdentity = true; 4350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4351 SDValue Op = Ops[i]; 4352 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4353 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4354 Op.getOperand(0).getValueType() != VT || 4355 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4356 Op.getConstantOperandVal(1) != IdentityIndex) { 4357 IsIdentity = false; 4358 break; 4359 } 4360 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4361 "Unexpected identity source vector for concat of extracts"); 4362 IdentitySrc = Op.getOperand(0); 4363 } 4364 if (IsIdentity) { 4365 assert(IdentitySrc && "Failed to set source vector of extracts"); 4366 return IdentitySrc; 4367 } 4368 4369 // The code below this point is only designed to work for fixed width 4370 // vectors, so we bail out for now. 4371 if (VT.isScalableVector()) 4372 return SDValue(); 4373 4374 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4375 // simplified to one big BUILD_VECTOR. 4376 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4377 EVT SVT = VT.getScalarType(); 4378 SmallVector<SDValue, 16> Elts; 4379 for (SDValue Op : Ops) { 4380 EVT OpVT = Op.getValueType(); 4381 if (Op.isUndef()) 4382 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4383 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4384 Elts.append(Op->op_begin(), Op->op_end()); 4385 else 4386 return SDValue(); 4387 } 4388 4389 // BUILD_VECTOR requires all inputs to be of the same type, find the 4390 // maximum type and extend them all. 4391 for (SDValue Op : Elts) 4392 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4393 4394 if (SVT.bitsGT(VT.getScalarType())) 4395 for (SDValue &Op : Elts) 4396 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4397 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4398 : DAG.getSExtOrTrunc(Op, DL, SVT); 4399 4400 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4401 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4402 return V; 4403 } 4404 4405 /// Gets or creates the specified node. 4406 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4407 FoldingSetNodeID ID; 4408 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4409 void *IP = nullptr; 4410 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4411 return SDValue(E, 0); 4412 4413 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4414 getVTList(VT)); 4415 CSEMap.InsertNode(N, IP); 4416 4417 InsertNode(N); 4418 SDValue V = SDValue(N, 0); 4419 NewSDValueDbgMsg(V, "Creating new node: ", this); 4420 return V; 4421 } 4422 4423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4424 SDValue Operand, const SDNodeFlags Flags) { 4425 // Constant fold unary operations with an integer constant operand. Even 4426 // opaque constant will be folded, because the folding of unary operations 4427 // doesn't create new constants with different values. Nevertheless, the 4428 // opaque flag is preserved during folding to prevent future folding with 4429 // other constants. 4430 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4431 const APInt &Val = C->getAPIntValue(); 4432 switch (Opcode) { 4433 default: break; 4434 case ISD::SIGN_EXTEND: 4435 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4436 C->isTargetOpcode(), C->isOpaque()); 4437 case ISD::TRUNCATE: 4438 if (C->isOpaque()) 4439 break; 4440 LLVM_FALLTHROUGH; 4441 case ISD::ANY_EXTEND: 4442 case ISD::ZERO_EXTEND: 4443 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4444 C->isTargetOpcode(), C->isOpaque()); 4445 case ISD::UINT_TO_FP: 4446 case ISD::SINT_TO_FP: { 4447 APFloat apf(EVTToAPFloatSemantics(VT), 4448 APInt::getNullValue(VT.getSizeInBits())); 4449 (void)apf.convertFromAPInt(Val, 4450 Opcode==ISD::SINT_TO_FP, 4451 APFloat::rmNearestTiesToEven); 4452 return getConstantFP(apf, DL, VT); 4453 } 4454 case ISD::BITCAST: 4455 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4456 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4457 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4458 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4459 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4460 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4461 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4462 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4463 break; 4464 case ISD::ABS: 4465 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4466 C->isOpaque()); 4467 case ISD::BITREVERSE: 4468 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4469 C->isOpaque()); 4470 case ISD::BSWAP: 4471 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4472 C->isOpaque()); 4473 case ISD::CTPOP: 4474 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4475 C->isOpaque()); 4476 case ISD::CTLZ: 4477 case ISD::CTLZ_ZERO_UNDEF: 4478 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4479 C->isOpaque()); 4480 case ISD::CTTZ: 4481 case ISD::CTTZ_ZERO_UNDEF: 4482 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4483 C->isOpaque()); 4484 case ISD::FP16_TO_FP: { 4485 bool Ignored; 4486 APFloat FPV(APFloat::IEEEhalf(), 4487 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4488 4489 // This can return overflow, underflow, or inexact; we don't care. 4490 // FIXME need to be more flexible about rounding mode. 4491 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4492 APFloat::rmNearestTiesToEven, &Ignored); 4493 return getConstantFP(FPV, DL, VT); 4494 } 4495 } 4496 } 4497 4498 // Constant fold unary operations with a floating point constant operand. 4499 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4500 APFloat V = C->getValueAPF(); // make copy 4501 switch (Opcode) { 4502 case ISD::FNEG: 4503 V.changeSign(); 4504 return getConstantFP(V, DL, VT); 4505 case ISD::FABS: 4506 V.clearSign(); 4507 return getConstantFP(V, DL, VT); 4508 case ISD::FCEIL: { 4509 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4510 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4511 return getConstantFP(V, DL, VT); 4512 break; 4513 } 4514 case ISD::FTRUNC: { 4515 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4516 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4517 return getConstantFP(V, DL, VT); 4518 break; 4519 } 4520 case ISD::FFLOOR: { 4521 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4522 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4523 return getConstantFP(V, DL, VT); 4524 break; 4525 } 4526 case ISD::FP_EXTEND: { 4527 bool ignored; 4528 // This can return overflow, underflow, or inexact; we don't care. 4529 // FIXME need to be more flexible about rounding mode. 4530 (void)V.convert(EVTToAPFloatSemantics(VT), 4531 APFloat::rmNearestTiesToEven, &ignored); 4532 return getConstantFP(V, DL, VT); 4533 } 4534 case ISD::FP_TO_SINT: 4535 case ISD::FP_TO_UINT: { 4536 bool ignored; 4537 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4538 // FIXME need to be more flexible about rounding mode. 4539 APFloat::opStatus s = 4540 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4541 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4542 break; 4543 return getConstant(IntVal, DL, VT); 4544 } 4545 case ISD::BITCAST: 4546 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4547 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4548 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4549 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4550 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4551 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4552 break; 4553 case ISD::FP_TO_FP16: { 4554 bool Ignored; 4555 // This can return overflow, underflow, or inexact; we don't care. 4556 // FIXME need to be more flexible about rounding mode. 4557 (void)V.convert(APFloat::IEEEhalf(), 4558 APFloat::rmNearestTiesToEven, &Ignored); 4559 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4560 } 4561 } 4562 } 4563 4564 // Constant fold unary operations with a vector integer or float operand. 4565 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4566 if (BV->isConstant()) { 4567 switch (Opcode) { 4568 default: 4569 // FIXME: Entirely reasonable to perform folding of other unary 4570 // operations here as the need arises. 4571 break; 4572 case ISD::FNEG: 4573 case ISD::FABS: 4574 case ISD::FCEIL: 4575 case ISD::FTRUNC: 4576 case ISD::FFLOOR: 4577 case ISD::FP_EXTEND: 4578 case ISD::FP_TO_SINT: 4579 case ISD::FP_TO_UINT: 4580 case ISD::TRUNCATE: 4581 case ISD::ANY_EXTEND: 4582 case ISD::ZERO_EXTEND: 4583 case ISD::SIGN_EXTEND: 4584 case ISD::UINT_TO_FP: 4585 case ISD::SINT_TO_FP: 4586 case ISD::ABS: 4587 case ISD::BITREVERSE: 4588 case ISD::BSWAP: 4589 case ISD::CTLZ: 4590 case ISD::CTLZ_ZERO_UNDEF: 4591 case ISD::CTTZ: 4592 case ISD::CTTZ_ZERO_UNDEF: 4593 case ISD::CTPOP: { 4594 SDValue Ops = { Operand }; 4595 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4596 return Fold; 4597 } 4598 } 4599 } 4600 } 4601 4602 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4603 switch (Opcode) { 4604 case ISD::FREEZE: 4605 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4606 break; 4607 case ISD::TokenFactor: 4608 case ISD::MERGE_VALUES: 4609 case ISD::CONCAT_VECTORS: 4610 return Operand; // Factor, merge or concat of one node? No need. 4611 case ISD::BUILD_VECTOR: { 4612 // Attempt to simplify BUILD_VECTOR. 4613 SDValue Ops[] = {Operand}; 4614 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4615 return V; 4616 break; 4617 } 4618 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4619 case ISD::FP_EXTEND: 4620 assert(VT.isFloatingPoint() && 4621 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4622 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4623 assert((!VT.isVector() || 4624 VT.getVectorNumElements() == 4625 Operand.getValueType().getVectorNumElements()) && 4626 "Vector element count mismatch!"); 4627 assert(Operand.getValueType().bitsLT(VT) && 4628 "Invalid fpext node, dst < src!"); 4629 if (Operand.isUndef()) 4630 return getUNDEF(VT); 4631 break; 4632 case ISD::FP_TO_SINT: 4633 case ISD::FP_TO_UINT: 4634 if (Operand.isUndef()) 4635 return getUNDEF(VT); 4636 break; 4637 case ISD::SINT_TO_FP: 4638 case ISD::UINT_TO_FP: 4639 // [us]itofp(undef) = 0, because the result value is bounded. 4640 if (Operand.isUndef()) 4641 return getConstantFP(0.0, DL, VT); 4642 break; 4643 case ISD::SIGN_EXTEND: 4644 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4645 "Invalid SIGN_EXTEND!"); 4646 assert(VT.isVector() == Operand.getValueType().isVector() && 4647 "SIGN_EXTEND result type type should be vector iff the operand " 4648 "type is vector!"); 4649 if (Operand.getValueType() == VT) return Operand; // noop extension 4650 assert((!VT.isVector() || 4651 VT.getVectorElementCount() == 4652 Operand.getValueType().getVectorElementCount()) && 4653 "Vector element count mismatch!"); 4654 assert(Operand.getValueType().bitsLT(VT) && 4655 "Invalid sext node, dst < src!"); 4656 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4657 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4658 else if (OpOpcode == ISD::UNDEF) 4659 // sext(undef) = 0, because the top bits will all be the same. 4660 return getConstant(0, DL, VT); 4661 break; 4662 case ISD::ZERO_EXTEND: 4663 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4664 "Invalid ZERO_EXTEND!"); 4665 assert(VT.isVector() == Operand.getValueType().isVector() && 4666 "ZERO_EXTEND result type type should be vector iff the operand " 4667 "type is vector!"); 4668 if (Operand.getValueType() == VT) return Operand; // noop extension 4669 assert((!VT.isVector() || 4670 VT.getVectorElementCount() == 4671 Operand.getValueType().getVectorElementCount()) && 4672 "Vector element count mismatch!"); 4673 assert(Operand.getValueType().bitsLT(VT) && 4674 "Invalid zext node, dst < src!"); 4675 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4676 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4677 else if (OpOpcode == ISD::UNDEF) 4678 // zext(undef) = 0, because the top bits will be zero. 4679 return getConstant(0, DL, VT); 4680 break; 4681 case ISD::ANY_EXTEND: 4682 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4683 "Invalid ANY_EXTEND!"); 4684 assert(VT.isVector() == Operand.getValueType().isVector() && 4685 "ANY_EXTEND result type type should be vector iff the operand " 4686 "type is vector!"); 4687 if (Operand.getValueType() == VT) return Operand; // noop extension 4688 assert((!VT.isVector() || 4689 VT.getVectorElementCount() == 4690 Operand.getValueType().getVectorElementCount()) && 4691 "Vector element count mismatch!"); 4692 assert(Operand.getValueType().bitsLT(VT) && 4693 "Invalid anyext node, dst < src!"); 4694 4695 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4696 OpOpcode == ISD::ANY_EXTEND) 4697 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4698 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4699 else if (OpOpcode == ISD::UNDEF) 4700 return getUNDEF(VT); 4701 4702 // (ext (trunc x)) -> x 4703 if (OpOpcode == ISD::TRUNCATE) { 4704 SDValue OpOp = Operand.getOperand(0); 4705 if (OpOp.getValueType() == VT) { 4706 transferDbgValues(Operand, OpOp); 4707 return OpOp; 4708 } 4709 } 4710 break; 4711 case ISD::TRUNCATE: 4712 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4713 "Invalid TRUNCATE!"); 4714 assert(VT.isVector() == Operand.getValueType().isVector() && 4715 "TRUNCATE result type type should be vector iff the operand " 4716 "type is vector!"); 4717 if (Operand.getValueType() == VT) return Operand; // noop truncate 4718 assert((!VT.isVector() || 4719 VT.getVectorElementCount() == 4720 Operand.getValueType().getVectorElementCount()) && 4721 "Vector element count mismatch!"); 4722 assert(Operand.getValueType().bitsGT(VT) && 4723 "Invalid truncate node, src < dst!"); 4724 if (OpOpcode == ISD::TRUNCATE) 4725 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4726 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4727 OpOpcode == ISD::ANY_EXTEND) { 4728 // If the source is smaller than the dest, we still need an extend. 4729 if (Operand.getOperand(0).getValueType().getScalarType() 4730 .bitsLT(VT.getScalarType())) 4731 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4732 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4733 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4734 return Operand.getOperand(0); 4735 } 4736 if (OpOpcode == ISD::UNDEF) 4737 return getUNDEF(VT); 4738 break; 4739 case ISD::ANY_EXTEND_VECTOR_INREG: 4740 case ISD::ZERO_EXTEND_VECTOR_INREG: 4741 case ISD::SIGN_EXTEND_VECTOR_INREG: 4742 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4743 assert(Operand.getValueType().bitsLE(VT) && 4744 "The input must be the same size or smaller than the result."); 4745 assert(VT.getVectorNumElements() < 4746 Operand.getValueType().getVectorNumElements() && 4747 "The destination vector type must have fewer lanes than the input."); 4748 break; 4749 case ISD::ABS: 4750 assert(VT.isInteger() && VT == Operand.getValueType() && 4751 "Invalid ABS!"); 4752 if (OpOpcode == ISD::UNDEF) 4753 return getUNDEF(VT); 4754 break; 4755 case ISD::BSWAP: 4756 assert(VT.isInteger() && VT == Operand.getValueType() && 4757 "Invalid BSWAP!"); 4758 assert((VT.getScalarSizeInBits() % 16 == 0) && 4759 "BSWAP types must be a multiple of 16 bits!"); 4760 if (OpOpcode == ISD::UNDEF) 4761 return getUNDEF(VT); 4762 break; 4763 case ISD::BITREVERSE: 4764 assert(VT.isInteger() && VT == Operand.getValueType() && 4765 "Invalid BITREVERSE!"); 4766 if (OpOpcode == ISD::UNDEF) 4767 return getUNDEF(VT); 4768 break; 4769 case ISD::BITCAST: 4770 // Basic sanity checking. 4771 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4772 "Cannot BITCAST between types of different sizes!"); 4773 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4774 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4775 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4776 if (OpOpcode == ISD::UNDEF) 4777 return getUNDEF(VT); 4778 break; 4779 case ISD::SCALAR_TO_VECTOR: 4780 assert(VT.isVector() && !Operand.getValueType().isVector() && 4781 (VT.getVectorElementType() == Operand.getValueType() || 4782 (VT.getVectorElementType().isInteger() && 4783 Operand.getValueType().isInteger() && 4784 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4785 "Illegal SCALAR_TO_VECTOR node!"); 4786 if (OpOpcode == ISD::UNDEF) 4787 return getUNDEF(VT); 4788 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4789 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4790 isa<ConstantSDNode>(Operand.getOperand(1)) && 4791 Operand.getConstantOperandVal(1) == 0 && 4792 Operand.getOperand(0).getValueType() == VT) 4793 return Operand.getOperand(0); 4794 break; 4795 case ISD::FNEG: 4796 // Negation of an unknown bag of bits is still completely undefined. 4797 if (OpOpcode == ISD::UNDEF) 4798 return getUNDEF(VT); 4799 4800 if (OpOpcode == ISD::FNEG) // --X -> X 4801 return Operand.getOperand(0); 4802 break; 4803 case ISD::FABS: 4804 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4805 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4806 break; 4807 case ISD::VSCALE: 4808 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4809 break; 4810 } 4811 4812 SDNode *N; 4813 SDVTList VTs = getVTList(VT); 4814 SDValue Ops[] = {Operand}; 4815 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4816 FoldingSetNodeID ID; 4817 AddNodeIDNode(ID, Opcode, VTs, Ops); 4818 void *IP = nullptr; 4819 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4820 E->intersectFlagsWith(Flags); 4821 return SDValue(E, 0); 4822 } 4823 4824 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4825 N->setFlags(Flags); 4826 createOperands(N, Ops); 4827 CSEMap.InsertNode(N, IP); 4828 } else { 4829 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4830 createOperands(N, Ops); 4831 } 4832 4833 InsertNode(N); 4834 SDValue V = SDValue(N, 0); 4835 NewSDValueDbgMsg(V, "Creating new node: ", this); 4836 return V; 4837 } 4838 4839 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4840 const APInt &C2) { 4841 switch (Opcode) { 4842 case ISD::ADD: return C1 + C2; 4843 case ISD::SUB: return C1 - C2; 4844 case ISD::MUL: return C1 * C2; 4845 case ISD::AND: return C1 & C2; 4846 case ISD::OR: return C1 | C2; 4847 case ISD::XOR: return C1 ^ C2; 4848 case ISD::SHL: return C1 << C2; 4849 case ISD::SRL: return C1.lshr(C2); 4850 case ISD::SRA: return C1.ashr(C2); 4851 case ISD::ROTL: return C1.rotl(C2); 4852 case ISD::ROTR: return C1.rotr(C2); 4853 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4854 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4855 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4856 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4857 case ISD::SADDSAT: return C1.sadd_sat(C2); 4858 case ISD::UADDSAT: return C1.uadd_sat(C2); 4859 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4860 case ISD::USUBSAT: return C1.usub_sat(C2); 4861 case ISD::UDIV: 4862 if (!C2.getBoolValue()) 4863 break; 4864 return C1.udiv(C2); 4865 case ISD::UREM: 4866 if (!C2.getBoolValue()) 4867 break; 4868 return C1.urem(C2); 4869 case ISD::SDIV: 4870 if (!C2.getBoolValue()) 4871 break; 4872 return C1.sdiv(C2); 4873 case ISD::SREM: 4874 if (!C2.getBoolValue()) 4875 break; 4876 return C1.srem(C2); 4877 } 4878 return llvm::None; 4879 } 4880 4881 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4882 const GlobalAddressSDNode *GA, 4883 const SDNode *N2) { 4884 if (GA->getOpcode() != ISD::GlobalAddress) 4885 return SDValue(); 4886 if (!TLI->isOffsetFoldingLegal(GA)) 4887 return SDValue(); 4888 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4889 if (!C2) 4890 return SDValue(); 4891 int64_t Offset = C2->getSExtValue(); 4892 switch (Opcode) { 4893 case ISD::ADD: break; 4894 case ISD::SUB: Offset = -uint64_t(Offset); break; 4895 default: return SDValue(); 4896 } 4897 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4898 GA->getOffset() + uint64_t(Offset)); 4899 } 4900 4901 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4902 switch (Opcode) { 4903 case ISD::SDIV: 4904 case ISD::UDIV: 4905 case ISD::SREM: 4906 case ISD::UREM: { 4907 // If a divisor is zero/undef or any element of a divisor vector is 4908 // zero/undef, the whole op is undef. 4909 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4910 SDValue Divisor = Ops[1]; 4911 if (Divisor.isUndef() || isNullConstant(Divisor)) 4912 return true; 4913 4914 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4915 llvm::any_of(Divisor->op_values(), 4916 [](SDValue V) { return V.isUndef() || 4917 isNullConstant(V); }); 4918 // TODO: Handle signed overflow. 4919 } 4920 // TODO: Handle oversized shifts. 4921 default: 4922 return false; 4923 } 4924 } 4925 4926 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4927 EVT VT, ArrayRef<SDValue> Ops) { 4928 // If the opcode is a target-specific ISD node, there's nothing we can 4929 // do here and the operand rules may not line up with the below, so 4930 // bail early. 4931 if (Opcode >= ISD::BUILTIN_OP_END) 4932 return SDValue(); 4933 4934 // For now, the array Ops should only contain two values. 4935 // This enforcement will be removed once this function is merged with 4936 // FoldConstantVectorArithmetic 4937 if (Ops.size() != 2) 4938 return SDValue(); 4939 4940 if (isUndef(Opcode, Ops)) 4941 return getUNDEF(VT); 4942 4943 SDNode *N1 = Ops[0].getNode(); 4944 SDNode *N2 = Ops[1].getNode(); 4945 4946 // Handle the case of two scalars. 4947 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4948 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4949 if (C1->isOpaque() || C2->isOpaque()) 4950 return SDValue(); 4951 4952 Optional<APInt> FoldAttempt = 4953 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4954 if (!FoldAttempt) 4955 return SDValue(); 4956 4957 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4958 assert((!Folded || !VT.isVector()) && 4959 "Can't fold vectors ops with scalar operands"); 4960 return Folded; 4961 } 4962 } 4963 4964 // fold (add Sym, c) -> Sym+c 4965 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4966 return FoldSymbolOffset(Opcode, VT, GA, N2); 4967 if (TLI->isCommutativeBinOp(Opcode)) 4968 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4969 return FoldSymbolOffset(Opcode, VT, GA, N1); 4970 4971 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4972 // vector width, however we should be able to do constant folds involving 4973 // splat vector nodes too. 4974 if (VT.isScalableVector()) 4975 return SDValue(); 4976 4977 // For fixed width vectors, extract each constant element and fold them 4978 // individually. Either input may be an undef value. 4979 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4980 if (!BV1 && !N1->isUndef()) 4981 return SDValue(); 4982 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4983 if (!BV2 && !N2->isUndef()) 4984 return SDValue(); 4985 // If both operands are undef, that's handled the same way as scalars. 4986 if (!BV1 && !BV2) 4987 return SDValue(); 4988 4989 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4990 "Vector binop with different number of elements in operands?"); 4991 4992 EVT SVT = VT.getScalarType(); 4993 EVT LegalSVT = SVT; 4994 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4995 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4996 if (LegalSVT.bitsLT(SVT)) 4997 return SDValue(); 4998 } 4999 SmallVector<SDValue, 4> Outputs; 5000 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5001 for (unsigned I = 0; I != NumOps; ++I) { 5002 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5003 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5004 if (SVT.isInteger()) { 5005 if (V1->getValueType(0).bitsGT(SVT)) 5006 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5007 if (V2->getValueType(0).bitsGT(SVT)) 5008 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5009 } 5010 5011 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5012 return SDValue(); 5013 5014 // Fold one vector element. 5015 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5016 if (LegalSVT != SVT) 5017 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5018 5019 // Scalar folding only succeeded if the result is a constant or UNDEF. 5020 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5021 ScalarResult.getOpcode() != ISD::ConstantFP) 5022 return SDValue(); 5023 Outputs.push_back(ScalarResult); 5024 } 5025 5026 assert(VT.getVectorNumElements() == Outputs.size() && 5027 "Vector size mismatch!"); 5028 5029 // We may have a vector type but a scalar result. Create a splat. 5030 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5031 5032 // Build a big vector out of the scalar elements we generated. 5033 return getBuildVector(VT, SDLoc(), Outputs); 5034 } 5035 5036 // TODO: Merge with FoldConstantArithmetic 5037 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5038 const SDLoc &DL, EVT VT, 5039 ArrayRef<SDValue> Ops, 5040 const SDNodeFlags Flags) { 5041 // If the opcode is a target-specific ISD node, there's nothing we can 5042 // do here and the operand rules may not line up with the below, so 5043 // bail early. 5044 if (Opcode >= ISD::BUILTIN_OP_END) 5045 return SDValue(); 5046 5047 if (isUndef(Opcode, Ops)) 5048 return getUNDEF(VT); 5049 5050 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5051 if (!VT.isVector()) 5052 return SDValue(); 5053 5054 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5055 // vector width, however we should be able to do constant folds involving 5056 // splat vector nodes too. 5057 if (VT.isScalableVector()) 5058 return SDValue(); 5059 5060 // From this point onwards all vectors are assumed to be fixed width. 5061 unsigned NumElts = VT.getVectorNumElements(); 5062 5063 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5064 return !Op.getValueType().isVector() || 5065 Op.getValueType().getVectorNumElements() == NumElts; 5066 }; 5067 5068 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5069 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5070 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5071 (BV && BV->isConstant()); 5072 }; 5073 5074 // All operands must be vector types with the same number of elements as 5075 // the result type and must be either UNDEF or a build vector of constant 5076 // or UNDEF scalars. 5077 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5078 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5079 return SDValue(); 5080 5081 // If we are comparing vectors, then the result needs to be a i1 boolean 5082 // that is then sign-extended back to the legal result type. 5083 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5084 5085 // Find legal integer scalar type for constant promotion and 5086 // ensure that its scalar size is at least as large as source. 5087 EVT LegalSVT = VT.getScalarType(); 5088 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5089 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5090 if (LegalSVT.bitsLT(VT.getScalarType())) 5091 return SDValue(); 5092 } 5093 5094 // Constant fold each scalar lane separately. 5095 SmallVector<SDValue, 4> ScalarResults; 5096 for (unsigned i = 0; i != NumElts; i++) { 5097 SmallVector<SDValue, 4> ScalarOps; 5098 for (SDValue Op : Ops) { 5099 EVT InSVT = Op.getValueType().getScalarType(); 5100 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5101 if (!InBV) { 5102 // We've checked that this is UNDEF or a constant of some kind. 5103 if (Op.isUndef()) 5104 ScalarOps.push_back(getUNDEF(InSVT)); 5105 else 5106 ScalarOps.push_back(Op); 5107 continue; 5108 } 5109 5110 SDValue ScalarOp = InBV->getOperand(i); 5111 EVT ScalarVT = ScalarOp.getValueType(); 5112 5113 // Build vector (integer) scalar operands may need implicit 5114 // truncation - do this before constant folding. 5115 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5116 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5117 5118 ScalarOps.push_back(ScalarOp); 5119 } 5120 5121 // Constant fold the scalar operands. 5122 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5123 5124 // Legalize the (integer) scalar constant if necessary. 5125 if (LegalSVT != SVT) 5126 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5127 5128 // Scalar folding only succeeded if the result is a constant or UNDEF. 5129 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5130 ScalarResult.getOpcode() != ISD::ConstantFP) 5131 return SDValue(); 5132 ScalarResults.push_back(ScalarResult); 5133 } 5134 5135 SDValue V = getBuildVector(VT, DL, ScalarResults); 5136 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5137 return V; 5138 } 5139 5140 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5141 EVT VT, SDValue N1, SDValue N2) { 5142 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5143 // should. That will require dealing with a potentially non-default 5144 // rounding mode, checking the "opStatus" return value from the APFloat 5145 // math calculations, and possibly other variations. 5146 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5147 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5148 if (N1CFP && N2CFP) { 5149 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5150 switch (Opcode) { 5151 case ISD::FADD: 5152 C1.add(C2, APFloat::rmNearestTiesToEven); 5153 return getConstantFP(C1, DL, VT); 5154 case ISD::FSUB: 5155 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5156 return getConstantFP(C1, DL, VT); 5157 case ISD::FMUL: 5158 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5159 return getConstantFP(C1, DL, VT); 5160 case ISD::FDIV: 5161 C1.divide(C2, APFloat::rmNearestTiesToEven); 5162 return getConstantFP(C1, DL, VT); 5163 case ISD::FREM: 5164 C1.mod(C2); 5165 return getConstantFP(C1, DL, VT); 5166 case ISD::FCOPYSIGN: 5167 C1.copySign(C2); 5168 return getConstantFP(C1, DL, VT); 5169 default: break; 5170 } 5171 } 5172 if (N1CFP && Opcode == ISD::FP_ROUND) { 5173 APFloat C1 = N1CFP->getValueAPF(); // make copy 5174 bool Unused; 5175 // This can return overflow, underflow, or inexact; we don't care. 5176 // FIXME need to be more flexible about rounding mode. 5177 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5178 &Unused); 5179 return getConstantFP(C1, DL, VT); 5180 } 5181 5182 switch (Opcode) { 5183 case ISD::FSUB: 5184 // -0.0 - undef --> undef (consistent with "fneg undef") 5185 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5186 return getUNDEF(VT); 5187 LLVM_FALLTHROUGH; 5188 5189 case ISD::FADD: 5190 case ISD::FMUL: 5191 case ISD::FDIV: 5192 case ISD::FREM: 5193 // If both operands are undef, the result is undef. If 1 operand is undef, 5194 // the result is NaN. This should match the behavior of the IR optimizer. 5195 if (N1.isUndef() && N2.isUndef()) 5196 return getUNDEF(VT); 5197 if (N1.isUndef() || N2.isUndef()) 5198 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5199 } 5200 return SDValue(); 5201 } 5202 5203 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5204 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5205 5206 // There's no need to assert on a byte-aligned pointer. All pointers are at 5207 // least byte aligned. 5208 if (A == Align(1)) 5209 return Val; 5210 5211 FoldingSetNodeID ID; 5212 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5213 ID.AddInteger(A.value()); 5214 5215 void *IP = nullptr; 5216 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5217 return SDValue(E, 0); 5218 5219 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5220 Val.getValueType(), A); 5221 createOperands(N, {Val}); 5222 5223 CSEMap.InsertNode(N, IP); 5224 InsertNode(N); 5225 5226 SDValue V(N, 0); 5227 NewSDValueDbgMsg(V, "Creating new node: ", this); 5228 return V; 5229 } 5230 5231 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5232 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5233 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5234 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5235 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5236 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5237 5238 // Canonicalize constant to RHS if commutative. 5239 if (TLI->isCommutativeBinOp(Opcode)) { 5240 if (N1C && !N2C) { 5241 std::swap(N1C, N2C); 5242 std::swap(N1, N2); 5243 } else if (N1CFP && !N2CFP) { 5244 std::swap(N1CFP, N2CFP); 5245 std::swap(N1, N2); 5246 } 5247 } 5248 5249 switch (Opcode) { 5250 default: break; 5251 case ISD::TokenFactor: 5252 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5253 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5254 // Fold trivial token factors. 5255 if (N1.getOpcode() == ISD::EntryToken) return N2; 5256 if (N2.getOpcode() == ISD::EntryToken) return N1; 5257 if (N1 == N2) return N1; 5258 break; 5259 case ISD::BUILD_VECTOR: { 5260 // Attempt to simplify BUILD_VECTOR. 5261 SDValue Ops[] = {N1, N2}; 5262 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5263 return V; 5264 break; 5265 } 5266 case ISD::CONCAT_VECTORS: { 5267 SDValue Ops[] = {N1, N2}; 5268 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5269 return V; 5270 break; 5271 } 5272 case ISD::AND: 5273 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5274 assert(N1.getValueType() == N2.getValueType() && 5275 N1.getValueType() == VT && "Binary operator types must match!"); 5276 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5277 // worth handling here. 5278 if (N2C && N2C->isNullValue()) 5279 return N2; 5280 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5281 return N1; 5282 break; 5283 case ISD::OR: 5284 case ISD::XOR: 5285 case ISD::ADD: 5286 case ISD::SUB: 5287 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5288 assert(N1.getValueType() == N2.getValueType() && 5289 N1.getValueType() == VT && "Binary operator types must match!"); 5290 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5291 // it's worth handling here. 5292 if (N2C && N2C->isNullValue()) 5293 return N1; 5294 break; 5295 case ISD::MUL: 5296 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5297 assert(N1.getValueType() == N2.getValueType() && 5298 N1.getValueType() == VT && "Binary operator types must match!"); 5299 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5300 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5301 APInt N2CImm = N2C->getAPIntValue(); 5302 return getVScale(DL, VT, MulImm * N2CImm); 5303 } 5304 break; 5305 case ISD::UDIV: 5306 case ISD::UREM: 5307 case ISD::MULHU: 5308 case ISD::MULHS: 5309 case ISD::SDIV: 5310 case ISD::SREM: 5311 case ISD::SMIN: 5312 case ISD::SMAX: 5313 case ISD::UMIN: 5314 case ISD::UMAX: 5315 case ISD::SADDSAT: 5316 case ISD::SSUBSAT: 5317 case ISD::UADDSAT: 5318 case ISD::USUBSAT: 5319 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5320 assert(N1.getValueType() == N2.getValueType() && 5321 N1.getValueType() == VT && "Binary operator types must match!"); 5322 break; 5323 case ISD::FADD: 5324 case ISD::FSUB: 5325 case ISD::FMUL: 5326 case ISD::FDIV: 5327 case ISD::FREM: 5328 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5329 assert(N1.getValueType() == N2.getValueType() && 5330 N1.getValueType() == VT && "Binary operator types must match!"); 5331 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5332 return V; 5333 break; 5334 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5335 assert(N1.getValueType() == VT && 5336 N1.getValueType().isFloatingPoint() && 5337 N2.getValueType().isFloatingPoint() && 5338 "Invalid FCOPYSIGN!"); 5339 break; 5340 case ISD::SHL: 5341 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5342 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5343 APInt ShiftImm = N2C->getAPIntValue(); 5344 return getVScale(DL, VT, MulImm << ShiftImm); 5345 } 5346 LLVM_FALLTHROUGH; 5347 case ISD::SRA: 5348 case ISD::SRL: 5349 if (SDValue V = simplifyShift(N1, N2)) 5350 return V; 5351 LLVM_FALLTHROUGH; 5352 case ISD::ROTL: 5353 case ISD::ROTR: 5354 assert(VT == N1.getValueType() && 5355 "Shift operators return type must be the same as their first arg"); 5356 assert(VT.isInteger() && N2.getValueType().isInteger() && 5357 "Shifts only work on integers"); 5358 assert((!VT.isVector() || VT == N2.getValueType()) && 5359 "Vector shift amounts must be in the same as their first arg"); 5360 // Verify that the shift amount VT is big enough to hold valid shift 5361 // amounts. This catches things like trying to shift an i1024 value by an 5362 // i8, which is easy to fall into in generic code that uses 5363 // TLI.getShiftAmount(). 5364 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5365 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5366 "Invalid use of small shift amount with oversized value!"); 5367 5368 // Always fold shifts of i1 values so the code generator doesn't need to 5369 // handle them. Since we know the size of the shift has to be less than the 5370 // size of the value, the shift/rotate count is guaranteed to be zero. 5371 if (VT == MVT::i1) 5372 return N1; 5373 if (N2C && N2C->isNullValue()) 5374 return N1; 5375 break; 5376 case ISD::FP_ROUND: 5377 assert(VT.isFloatingPoint() && 5378 N1.getValueType().isFloatingPoint() && 5379 VT.bitsLE(N1.getValueType()) && 5380 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5381 "Invalid FP_ROUND!"); 5382 if (N1.getValueType() == VT) return N1; // noop conversion. 5383 break; 5384 case ISD::AssertSext: 5385 case ISD::AssertZext: { 5386 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5387 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5388 assert(VT.isInteger() && EVT.isInteger() && 5389 "Cannot *_EXTEND_INREG FP types"); 5390 assert(!EVT.isVector() && 5391 "AssertSExt/AssertZExt type should be the vector element type " 5392 "rather than the vector type!"); 5393 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5394 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5395 break; 5396 } 5397 case ISD::SIGN_EXTEND_INREG: { 5398 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5399 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5400 assert(VT.isInteger() && EVT.isInteger() && 5401 "Cannot *_EXTEND_INREG FP types"); 5402 assert(EVT.isVector() == VT.isVector() && 5403 "SIGN_EXTEND_INREG type should be vector iff the operand " 5404 "type is vector!"); 5405 assert((!EVT.isVector() || 5406 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5407 "Vector element counts must match in SIGN_EXTEND_INREG"); 5408 assert(EVT.bitsLE(VT) && "Not extending!"); 5409 if (EVT == VT) return N1; // Not actually extending 5410 5411 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5412 unsigned FromBits = EVT.getScalarSizeInBits(); 5413 Val <<= Val.getBitWidth() - FromBits; 5414 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5415 return getConstant(Val, DL, ConstantVT); 5416 }; 5417 5418 if (N1C) { 5419 const APInt &Val = N1C->getAPIntValue(); 5420 return SignExtendInReg(Val, VT); 5421 } 5422 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5423 SmallVector<SDValue, 8> Ops; 5424 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5425 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5426 SDValue Op = N1.getOperand(i); 5427 if (Op.isUndef()) { 5428 Ops.push_back(getUNDEF(OpVT)); 5429 continue; 5430 } 5431 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5432 APInt Val = C->getAPIntValue(); 5433 Ops.push_back(SignExtendInReg(Val, OpVT)); 5434 } 5435 return getBuildVector(VT, DL, Ops); 5436 } 5437 break; 5438 } 5439 case ISD::EXTRACT_VECTOR_ELT: 5440 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5441 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5442 element type of the vector."); 5443 5444 // Extract from an undefined value or using an undefined index is undefined. 5445 if (N1.isUndef() || N2.isUndef()) 5446 return getUNDEF(VT); 5447 5448 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5449 // vectors. For scalable vectors we will provide appropriate support for 5450 // dealing with arbitrary indices. 5451 if (N2C && N1.getValueType().isFixedLengthVector() && 5452 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5453 return getUNDEF(VT); 5454 5455 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5456 // expanding copies of large vectors from registers. This only works for 5457 // fixed length vectors, since we need to know the exact number of 5458 // elements. 5459 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5460 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5461 unsigned Factor = 5462 N1.getOperand(0).getValueType().getVectorNumElements(); 5463 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5464 N1.getOperand(N2C->getZExtValue() / Factor), 5465 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5466 } 5467 5468 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5469 // lowering is expanding large vector constants. 5470 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5471 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5472 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5473 N1.getValueType().isFixedLengthVector()) && 5474 "BUILD_VECTOR used for scalable vectors"); 5475 unsigned Index = 5476 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5477 SDValue Elt = N1.getOperand(Index); 5478 5479 if (VT != Elt.getValueType()) 5480 // If the vector element type is not legal, the BUILD_VECTOR operands 5481 // are promoted and implicitly truncated, and the result implicitly 5482 // extended. Make that explicit here. 5483 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5484 5485 return Elt; 5486 } 5487 5488 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5489 // operations are lowered to scalars. 5490 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5491 // If the indices are the same, return the inserted element else 5492 // if the indices are known different, extract the element from 5493 // the original vector. 5494 SDValue N1Op2 = N1.getOperand(2); 5495 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5496 5497 if (N1Op2C && N2C) { 5498 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5499 if (VT == N1.getOperand(1).getValueType()) 5500 return N1.getOperand(1); 5501 else 5502 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5503 } 5504 5505 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5506 } 5507 } 5508 5509 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5510 // when vector types are scalarized and v1iX is legal. 5511 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5512 // Here we are completely ignoring the extract element index (N2), 5513 // which is fine for fixed width vectors, since any index other than 0 5514 // is undefined anyway. However, this cannot be ignored for scalable 5515 // vectors - in theory we could support this, but we don't want to do this 5516 // without a profitability check. 5517 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5518 N1.getValueType().isFixedLengthVector() && 5519 N1.getValueType().getVectorNumElements() == 1) { 5520 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5521 N1.getOperand(1)); 5522 } 5523 break; 5524 case ISD::EXTRACT_ELEMENT: 5525 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5526 assert(!N1.getValueType().isVector() && !VT.isVector() && 5527 (N1.getValueType().isInteger() == VT.isInteger()) && 5528 N1.getValueType() != VT && 5529 "Wrong types for EXTRACT_ELEMENT!"); 5530 5531 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5532 // 64-bit integers into 32-bit parts. Instead of building the extract of 5533 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5534 if (N1.getOpcode() == ISD::BUILD_PAIR) 5535 return N1.getOperand(N2C->getZExtValue()); 5536 5537 // EXTRACT_ELEMENT of a constant int is also very common. 5538 if (N1C) { 5539 unsigned ElementSize = VT.getSizeInBits(); 5540 unsigned Shift = ElementSize * N2C->getZExtValue(); 5541 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5542 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5543 } 5544 break; 5545 case ISD::EXTRACT_SUBVECTOR: 5546 EVT N1VT = N1.getValueType(); 5547 assert(VT.isVector() && N1VT.isVector() && 5548 "Extract subvector VTs must be vectors!"); 5549 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5550 "Extract subvector VTs must have the same element type!"); 5551 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5552 "Cannot extract a scalable vector from a fixed length vector!"); 5553 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5554 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5555 "Extract subvector must be from larger vector to smaller vector!"); 5556 assert(N2C && "Extract subvector index must be a constant"); 5557 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5558 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5559 N1VT.getVectorMinNumElements()) && 5560 "Extract subvector overflow!"); 5561 assert(N2C->getAPIntValue().getBitWidth() == 5562 TLI->getVectorIdxTy(getDataLayout()) 5563 .getSizeInBits() 5564 .getFixedSize() && 5565 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5566 5567 // Trivial extraction. 5568 if (VT == N1VT) 5569 return N1; 5570 5571 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5572 if (N1.isUndef()) 5573 return getUNDEF(VT); 5574 5575 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5576 // the concat have the same type as the extract. 5577 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5578 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5579 unsigned Factor = VT.getVectorMinNumElements(); 5580 return N1.getOperand(N2C->getZExtValue() / Factor); 5581 } 5582 5583 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5584 // during shuffle legalization. 5585 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5586 VT == N1.getOperand(1).getValueType()) 5587 return N1.getOperand(1); 5588 break; 5589 } 5590 5591 // Perform trivial constant folding. 5592 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5593 return SV; 5594 5595 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5596 return V; 5597 5598 // Canonicalize an UNDEF to the RHS, even over a constant. 5599 if (N1.isUndef()) { 5600 if (TLI->isCommutativeBinOp(Opcode)) { 5601 std::swap(N1, N2); 5602 } else { 5603 switch (Opcode) { 5604 case ISD::SIGN_EXTEND_INREG: 5605 case ISD::SUB: 5606 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5607 case ISD::UDIV: 5608 case ISD::SDIV: 5609 case ISD::UREM: 5610 case ISD::SREM: 5611 case ISD::SSUBSAT: 5612 case ISD::USUBSAT: 5613 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5614 } 5615 } 5616 } 5617 5618 // Fold a bunch of operators when the RHS is undef. 5619 if (N2.isUndef()) { 5620 switch (Opcode) { 5621 case ISD::XOR: 5622 if (N1.isUndef()) 5623 // Handle undef ^ undef -> 0 special case. This is a common 5624 // idiom (misuse). 5625 return getConstant(0, DL, VT); 5626 LLVM_FALLTHROUGH; 5627 case ISD::ADD: 5628 case ISD::SUB: 5629 case ISD::UDIV: 5630 case ISD::SDIV: 5631 case ISD::UREM: 5632 case ISD::SREM: 5633 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5634 case ISD::MUL: 5635 case ISD::AND: 5636 case ISD::SSUBSAT: 5637 case ISD::USUBSAT: 5638 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5639 case ISD::OR: 5640 case ISD::SADDSAT: 5641 case ISD::UADDSAT: 5642 return getAllOnesConstant(DL, VT); 5643 } 5644 } 5645 5646 // Memoize this node if possible. 5647 SDNode *N; 5648 SDVTList VTs = getVTList(VT); 5649 SDValue Ops[] = {N1, N2}; 5650 if (VT != MVT::Glue) { 5651 FoldingSetNodeID ID; 5652 AddNodeIDNode(ID, Opcode, VTs, Ops); 5653 void *IP = nullptr; 5654 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5655 E->intersectFlagsWith(Flags); 5656 return SDValue(E, 0); 5657 } 5658 5659 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5660 N->setFlags(Flags); 5661 createOperands(N, Ops); 5662 CSEMap.InsertNode(N, IP); 5663 } else { 5664 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5665 createOperands(N, Ops); 5666 } 5667 5668 InsertNode(N); 5669 SDValue V = SDValue(N, 0); 5670 NewSDValueDbgMsg(V, "Creating new node: ", this); 5671 return V; 5672 } 5673 5674 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5675 SDValue N1, SDValue N2, SDValue N3, 5676 const SDNodeFlags Flags) { 5677 // Perform various simplifications. 5678 switch (Opcode) { 5679 case ISD::FMA: { 5680 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5681 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5682 N3.getValueType() == VT && "FMA types must match!"); 5683 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5684 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5685 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5686 if (N1CFP && N2CFP && N3CFP) { 5687 APFloat V1 = N1CFP->getValueAPF(); 5688 const APFloat &V2 = N2CFP->getValueAPF(); 5689 const APFloat &V3 = N3CFP->getValueAPF(); 5690 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5691 return getConstantFP(V1, DL, VT); 5692 } 5693 break; 5694 } 5695 case ISD::BUILD_VECTOR: { 5696 // Attempt to simplify BUILD_VECTOR. 5697 SDValue Ops[] = {N1, N2, N3}; 5698 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5699 return V; 5700 break; 5701 } 5702 case ISD::CONCAT_VECTORS: { 5703 SDValue Ops[] = {N1, N2, N3}; 5704 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5705 return V; 5706 break; 5707 } 5708 case ISD::SETCC: { 5709 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5710 assert(N1.getValueType() == N2.getValueType() && 5711 "SETCC operands must have the same type!"); 5712 assert(VT.isVector() == N1.getValueType().isVector() && 5713 "SETCC type should be vector iff the operand type is vector!"); 5714 assert((!VT.isVector() || VT.getVectorElementCount() == 5715 N1.getValueType().getVectorElementCount()) && 5716 "SETCC vector element counts must match!"); 5717 // Use FoldSetCC to simplify SETCC's. 5718 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5719 return V; 5720 // Vector constant folding. 5721 SDValue Ops[] = {N1, N2, N3}; 5722 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5723 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5724 return V; 5725 } 5726 break; 5727 } 5728 case ISD::SELECT: 5729 case ISD::VSELECT: 5730 if (SDValue V = simplifySelect(N1, N2, N3)) 5731 return V; 5732 break; 5733 case ISD::VECTOR_SHUFFLE: 5734 llvm_unreachable("should use getVectorShuffle constructor!"); 5735 case ISD::INSERT_VECTOR_ELT: { 5736 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5737 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5738 // for scalable vectors where we will generate appropriate code to 5739 // deal with out-of-bounds cases correctly. 5740 if (N3C && N1.getValueType().isFixedLengthVector() && 5741 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5742 return getUNDEF(VT); 5743 5744 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5745 if (N3.isUndef()) 5746 return getUNDEF(VT); 5747 5748 // If the inserted element is an UNDEF, just use the input vector. 5749 if (N2.isUndef()) 5750 return N1; 5751 5752 break; 5753 } 5754 case ISD::INSERT_SUBVECTOR: { 5755 // Inserting undef into undef is still undef. 5756 if (N1.isUndef() && N2.isUndef()) 5757 return getUNDEF(VT); 5758 5759 EVT N2VT = N2.getValueType(); 5760 assert(VT == N1.getValueType() && 5761 "Dest and insert subvector source types must match!"); 5762 assert(VT.isVector() && N2VT.isVector() && 5763 "Insert subvector VTs must be vectors!"); 5764 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5765 "Cannot insert a scalable vector into a fixed length vector!"); 5766 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5767 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5768 "Insert subvector must be from smaller vector to larger vector!"); 5769 assert(isa<ConstantSDNode>(N3) && 5770 "Insert subvector index must be constant"); 5771 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5772 (N2VT.getVectorMinNumElements() + 5773 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5774 VT.getVectorMinNumElements()) && 5775 "Insert subvector overflow!"); 5776 5777 // Trivial insertion. 5778 if (VT == N2VT) 5779 return N2; 5780 5781 // If this is an insert of an extracted vector into an undef vector, we 5782 // can just use the input to the extract. 5783 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5784 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5785 return N2.getOperand(0); 5786 break; 5787 } 5788 case ISD::BITCAST: 5789 // Fold bit_convert nodes from a type to themselves. 5790 if (N1.getValueType() == VT) 5791 return N1; 5792 break; 5793 } 5794 5795 // Memoize node if it doesn't produce a flag. 5796 SDNode *N; 5797 SDVTList VTs = getVTList(VT); 5798 SDValue Ops[] = {N1, N2, N3}; 5799 if (VT != MVT::Glue) { 5800 FoldingSetNodeID ID; 5801 AddNodeIDNode(ID, Opcode, VTs, Ops); 5802 void *IP = nullptr; 5803 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5804 E->intersectFlagsWith(Flags); 5805 return SDValue(E, 0); 5806 } 5807 5808 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5809 N->setFlags(Flags); 5810 createOperands(N, Ops); 5811 CSEMap.InsertNode(N, IP); 5812 } else { 5813 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5814 createOperands(N, Ops); 5815 } 5816 5817 InsertNode(N); 5818 SDValue V = SDValue(N, 0); 5819 NewSDValueDbgMsg(V, "Creating new node: ", this); 5820 return V; 5821 } 5822 5823 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5824 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5825 SDValue Ops[] = { N1, N2, N3, N4 }; 5826 return getNode(Opcode, DL, VT, Ops); 5827 } 5828 5829 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5830 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5831 SDValue N5) { 5832 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5833 return getNode(Opcode, DL, VT, Ops); 5834 } 5835 5836 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5837 /// the incoming stack arguments to be loaded from the stack. 5838 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5839 SmallVector<SDValue, 8> ArgChains; 5840 5841 // Include the original chain at the beginning of the list. When this is 5842 // used by target LowerCall hooks, this helps legalize find the 5843 // CALLSEQ_BEGIN node. 5844 ArgChains.push_back(Chain); 5845 5846 // Add a chain value for each stack argument. 5847 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5848 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5849 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5850 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5851 if (FI->getIndex() < 0) 5852 ArgChains.push_back(SDValue(L, 1)); 5853 5854 // Build a tokenfactor for all the chains. 5855 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5856 } 5857 5858 /// getMemsetValue - Vectorized representation of the memset value 5859 /// operand. 5860 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5861 const SDLoc &dl) { 5862 assert(!Value.isUndef()); 5863 5864 unsigned NumBits = VT.getScalarSizeInBits(); 5865 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5866 assert(C->getAPIntValue().getBitWidth() == 8); 5867 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5868 if (VT.isInteger()) { 5869 bool IsOpaque = VT.getSizeInBits() > 64 || 5870 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5871 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5872 } 5873 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5874 VT); 5875 } 5876 5877 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5878 EVT IntVT = VT.getScalarType(); 5879 if (!IntVT.isInteger()) 5880 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5881 5882 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5883 if (NumBits > 8) { 5884 // Use a multiplication with 0x010101... to extend the input to the 5885 // required length. 5886 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5887 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5888 DAG.getConstant(Magic, dl, IntVT)); 5889 } 5890 5891 if (VT != Value.getValueType() && !VT.isInteger()) 5892 Value = DAG.getBitcast(VT.getScalarType(), Value); 5893 if (VT != Value.getValueType()) 5894 Value = DAG.getSplatBuildVector(VT, dl, Value); 5895 5896 return Value; 5897 } 5898 5899 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5900 /// used when a memcpy is turned into a memset when the source is a constant 5901 /// string ptr. 5902 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5903 const TargetLowering &TLI, 5904 const ConstantDataArraySlice &Slice) { 5905 // Handle vector with all elements zero. 5906 if (Slice.Array == nullptr) { 5907 if (VT.isInteger()) 5908 return DAG.getConstant(0, dl, VT); 5909 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5910 return DAG.getConstantFP(0.0, dl, VT); 5911 else if (VT.isVector()) { 5912 unsigned NumElts = VT.getVectorNumElements(); 5913 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5914 return DAG.getNode(ISD::BITCAST, dl, VT, 5915 DAG.getConstant(0, dl, 5916 EVT::getVectorVT(*DAG.getContext(), 5917 EltVT, NumElts))); 5918 } else 5919 llvm_unreachable("Expected type!"); 5920 } 5921 5922 assert(!VT.isVector() && "Can't handle vector type here!"); 5923 unsigned NumVTBits = VT.getSizeInBits(); 5924 unsigned NumVTBytes = NumVTBits / 8; 5925 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5926 5927 APInt Val(NumVTBits, 0); 5928 if (DAG.getDataLayout().isLittleEndian()) { 5929 for (unsigned i = 0; i != NumBytes; ++i) 5930 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5931 } else { 5932 for (unsigned i = 0; i != NumBytes; ++i) 5933 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5934 } 5935 5936 // If the "cost" of materializing the integer immediate is less than the cost 5937 // of a load, then it is cost effective to turn the load into the immediate. 5938 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5939 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5940 return DAG.getConstant(Val, dl, VT); 5941 return SDValue(nullptr, 0); 5942 } 5943 5944 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5945 const SDLoc &DL, 5946 const SDNodeFlags Flags) { 5947 EVT VT = Base.getValueType(); 5948 SDValue Index; 5949 5950 if (Offset.isScalable()) 5951 Index = getVScale(DL, Base.getValueType(), 5952 APInt(Base.getValueSizeInBits().getFixedSize(), 5953 Offset.getKnownMinSize())); 5954 else 5955 Index = getConstant(Offset.getFixedSize(), DL, VT); 5956 5957 return getMemBasePlusOffset(Base, Index, DL, Flags); 5958 } 5959 5960 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5961 const SDLoc &DL, 5962 const SDNodeFlags Flags) { 5963 assert(Offset.getValueType().isInteger()); 5964 EVT BasePtrVT = Ptr.getValueType(); 5965 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5966 } 5967 5968 /// Returns true if memcpy source is constant data. 5969 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5970 uint64_t SrcDelta = 0; 5971 GlobalAddressSDNode *G = nullptr; 5972 if (Src.getOpcode() == ISD::GlobalAddress) 5973 G = cast<GlobalAddressSDNode>(Src); 5974 else if (Src.getOpcode() == ISD::ADD && 5975 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5976 Src.getOperand(1).getOpcode() == ISD::Constant) { 5977 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5978 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5979 } 5980 if (!G) 5981 return false; 5982 5983 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5984 SrcDelta + G->getOffset()); 5985 } 5986 5987 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5988 SelectionDAG &DAG) { 5989 // On Darwin, -Os means optimize for size without hurting performance, so 5990 // only really optimize for size when -Oz (MinSize) is used. 5991 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5992 return MF.getFunction().hasMinSize(); 5993 return DAG.shouldOptForSize(); 5994 } 5995 5996 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5997 SmallVector<SDValue, 32> &OutChains, unsigned From, 5998 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5999 SmallVector<SDValue, 16> &OutStoreChains) { 6000 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6001 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6002 SmallVector<SDValue, 16> GluedLoadChains; 6003 for (unsigned i = From; i < To; ++i) { 6004 OutChains.push_back(OutLoadChains[i]); 6005 GluedLoadChains.push_back(OutLoadChains[i]); 6006 } 6007 6008 // Chain for all loads. 6009 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6010 GluedLoadChains); 6011 6012 for (unsigned i = From; i < To; ++i) { 6013 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6014 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6015 ST->getBasePtr(), ST->getMemoryVT(), 6016 ST->getMemOperand()); 6017 OutChains.push_back(NewStore); 6018 } 6019 } 6020 6021 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6022 SDValue Chain, SDValue Dst, SDValue Src, 6023 uint64_t Size, Align Alignment, 6024 bool isVol, bool AlwaysInline, 6025 MachinePointerInfo DstPtrInfo, 6026 MachinePointerInfo SrcPtrInfo) { 6027 // Turn a memcpy of undef to nop. 6028 // FIXME: We need to honor volatile even is Src is undef. 6029 if (Src.isUndef()) 6030 return Chain; 6031 6032 // Expand memcpy to a series of load and store ops if the size operand falls 6033 // below a certain threshold. 6034 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6035 // rather than maybe a humongous number of loads and stores. 6036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6037 const DataLayout &DL = DAG.getDataLayout(); 6038 LLVMContext &C = *DAG.getContext(); 6039 std::vector<EVT> MemOps; 6040 bool DstAlignCanChange = false; 6041 MachineFunction &MF = DAG.getMachineFunction(); 6042 MachineFrameInfo &MFI = MF.getFrameInfo(); 6043 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6044 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6045 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6046 DstAlignCanChange = true; 6047 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6048 if (!SrcAlign || Alignment > *SrcAlign) 6049 SrcAlign = Alignment; 6050 assert(SrcAlign && "SrcAlign must be set"); 6051 ConstantDataArraySlice Slice; 6052 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 6053 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6054 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6055 const MemOp Op = isZeroConstant 6056 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6057 /*IsZeroMemset*/ true, isVol) 6058 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6059 *SrcAlign, isVol, CopyFromConstant); 6060 if (!TLI.findOptimalMemOpLowering( 6061 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6062 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6063 return SDValue(); 6064 6065 if (DstAlignCanChange) { 6066 Type *Ty = MemOps[0].getTypeForEVT(C); 6067 Align NewAlign = DL.getABITypeAlign(Ty); 6068 6069 // Don't promote to an alignment that would require dynamic stack 6070 // realignment. 6071 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6072 if (!TRI->needsStackRealignment(MF)) 6073 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6074 NewAlign = NewAlign / 2; 6075 6076 if (NewAlign > Alignment) { 6077 // Give the stack frame object a larger alignment if needed. 6078 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6079 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6080 Alignment = NewAlign; 6081 } 6082 } 6083 6084 MachineMemOperand::Flags MMOFlags = 6085 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6086 SmallVector<SDValue, 16> OutLoadChains; 6087 SmallVector<SDValue, 16> OutStoreChains; 6088 SmallVector<SDValue, 32> OutChains; 6089 unsigned NumMemOps = MemOps.size(); 6090 uint64_t SrcOff = 0, DstOff = 0; 6091 for (unsigned i = 0; i != NumMemOps; ++i) { 6092 EVT VT = MemOps[i]; 6093 unsigned VTSize = VT.getSizeInBits() / 8; 6094 SDValue Value, Store; 6095 6096 if (VTSize > Size) { 6097 // Issuing an unaligned load / store pair that overlaps with the previous 6098 // pair. Adjust the offset accordingly. 6099 assert(i == NumMemOps-1 && i != 0); 6100 SrcOff -= VTSize - Size; 6101 DstOff -= VTSize - Size; 6102 } 6103 6104 if (CopyFromConstant && 6105 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6106 // It's unlikely a store of a vector immediate can be done in a single 6107 // instruction. It would require a load from a constantpool first. 6108 // We only handle zero vectors here. 6109 // FIXME: Handle other cases where store of vector immediate is done in 6110 // a single instruction. 6111 ConstantDataArraySlice SubSlice; 6112 if (SrcOff < Slice.Length) { 6113 SubSlice = Slice; 6114 SubSlice.move(SrcOff); 6115 } else { 6116 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6117 SubSlice.Array = nullptr; 6118 SubSlice.Offset = 0; 6119 SubSlice.Length = VTSize; 6120 } 6121 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6122 if (Value.getNode()) { 6123 Store = DAG.getStore( 6124 Chain, dl, Value, 6125 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6126 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6127 OutChains.push_back(Store); 6128 } 6129 } 6130 6131 if (!Store.getNode()) { 6132 // The type might not be legal for the target. This should only happen 6133 // if the type is smaller than a legal type, as on PPC, so the right 6134 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6135 // to Load/Store if NVT==VT. 6136 // FIXME does the case above also need this? 6137 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6138 assert(NVT.bitsGE(VT)); 6139 6140 bool isDereferenceable = 6141 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6142 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6143 if (isDereferenceable) 6144 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6145 6146 Value = DAG.getExtLoad( 6147 ISD::EXTLOAD, dl, NVT, Chain, 6148 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6149 SrcPtrInfo.getWithOffset(SrcOff), VT, 6150 commonAlignment(*SrcAlign, SrcOff).value(), SrcMMOFlags); 6151 OutLoadChains.push_back(Value.getValue(1)); 6152 6153 Store = DAG.getTruncStore( 6154 Chain, dl, Value, 6155 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6156 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6157 OutStoreChains.push_back(Store); 6158 } 6159 SrcOff += VTSize; 6160 DstOff += VTSize; 6161 Size -= VTSize; 6162 } 6163 6164 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6165 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6166 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6167 6168 if (NumLdStInMemcpy) { 6169 // It may be that memcpy might be converted to memset if it's memcpy 6170 // of constants. In such a case, we won't have loads and stores, but 6171 // just stores. In the absence of loads, there is nothing to gang up. 6172 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6173 // If target does not care, just leave as it. 6174 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6175 OutChains.push_back(OutLoadChains[i]); 6176 OutChains.push_back(OutStoreChains[i]); 6177 } 6178 } else { 6179 // Ld/St less than/equal limit set by target. 6180 if (NumLdStInMemcpy <= GluedLdStLimit) { 6181 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6182 NumLdStInMemcpy, OutLoadChains, 6183 OutStoreChains); 6184 } else { 6185 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6186 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6187 unsigned GlueIter = 0; 6188 6189 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6190 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6191 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6192 6193 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6194 OutLoadChains, OutStoreChains); 6195 GlueIter += GluedLdStLimit; 6196 } 6197 6198 // Residual ld/st. 6199 if (RemainingLdStInMemcpy) { 6200 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6201 RemainingLdStInMemcpy, OutLoadChains, 6202 OutStoreChains); 6203 } 6204 } 6205 } 6206 } 6207 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6208 } 6209 6210 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6211 SDValue Chain, SDValue Dst, SDValue Src, 6212 uint64_t Size, Align Alignment, 6213 bool isVol, bool AlwaysInline, 6214 MachinePointerInfo DstPtrInfo, 6215 MachinePointerInfo SrcPtrInfo) { 6216 // Turn a memmove of undef to nop. 6217 // FIXME: We need to honor volatile even is Src is undef. 6218 if (Src.isUndef()) 6219 return Chain; 6220 6221 // Expand memmove to a series of load and store ops if the size operand falls 6222 // below a certain threshold. 6223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6224 const DataLayout &DL = DAG.getDataLayout(); 6225 LLVMContext &C = *DAG.getContext(); 6226 std::vector<EVT> MemOps; 6227 bool DstAlignCanChange = false; 6228 MachineFunction &MF = DAG.getMachineFunction(); 6229 MachineFrameInfo &MFI = MF.getFrameInfo(); 6230 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6231 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6232 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6233 DstAlignCanChange = true; 6234 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6235 if (!SrcAlign || Alignment > *SrcAlign) 6236 SrcAlign = Alignment; 6237 assert(SrcAlign && "SrcAlign must be set"); 6238 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6239 if (!TLI.findOptimalMemOpLowering( 6240 MemOps, Limit, 6241 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6242 /*IsVolatile*/ true), 6243 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6244 MF.getFunction().getAttributes())) 6245 return SDValue(); 6246 6247 if (DstAlignCanChange) { 6248 Type *Ty = MemOps[0].getTypeForEVT(C); 6249 Align NewAlign = DL.getABITypeAlign(Ty); 6250 if (NewAlign > Alignment) { 6251 // Give the stack frame object a larger alignment if needed. 6252 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6253 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6254 Alignment = NewAlign; 6255 } 6256 } 6257 6258 MachineMemOperand::Flags MMOFlags = 6259 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6260 uint64_t SrcOff = 0, DstOff = 0; 6261 SmallVector<SDValue, 8> LoadValues; 6262 SmallVector<SDValue, 8> LoadChains; 6263 SmallVector<SDValue, 8> OutChains; 6264 unsigned NumMemOps = MemOps.size(); 6265 for (unsigned i = 0; i < NumMemOps; i++) { 6266 EVT VT = MemOps[i]; 6267 unsigned VTSize = VT.getSizeInBits() / 8; 6268 SDValue Value; 6269 6270 bool isDereferenceable = 6271 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6272 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6273 if (isDereferenceable) 6274 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6275 6276 Value = DAG.getLoad( 6277 VT, dl, Chain, 6278 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6279 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6280 LoadValues.push_back(Value); 6281 LoadChains.push_back(Value.getValue(1)); 6282 SrcOff += VTSize; 6283 } 6284 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6285 OutChains.clear(); 6286 for (unsigned i = 0; i < NumMemOps; i++) { 6287 EVT VT = MemOps[i]; 6288 unsigned VTSize = VT.getSizeInBits() / 8; 6289 SDValue Store; 6290 6291 Store = DAG.getStore( 6292 Chain, dl, LoadValues[i], 6293 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6294 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6295 OutChains.push_back(Store); 6296 DstOff += VTSize; 6297 } 6298 6299 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6300 } 6301 6302 /// Lower the call to 'memset' intrinsic function into a series of store 6303 /// operations. 6304 /// 6305 /// \param DAG Selection DAG where lowered code is placed. 6306 /// \param dl Link to corresponding IR location. 6307 /// \param Chain Control flow dependency. 6308 /// \param Dst Pointer to destination memory location. 6309 /// \param Src Value of byte to write into the memory. 6310 /// \param Size Number of bytes to write. 6311 /// \param Alignment Alignment of the destination in bytes. 6312 /// \param isVol True if destination is volatile. 6313 /// \param DstPtrInfo IR information on the memory pointer. 6314 /// \returns New head in the control flow, if lowering was successful, empty 6315 /// SDValue otherwise. 6316 /// 6317 /// The function tries to replace 'llvm.memset' intrinsic with several store 6318 /// operations and value calculation code. This is usually profitable for small 6319 /// memory size. 6320 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6321 SDValue Chain, SDValue Dst, SDValue Src, 6322 uint64_t Size, Align Alignment, bool isVol, 6323 MachinePointerInfo DstPtrInfo) { 6324 // Turn a memset of undef to nop. 6325 // FIXME: We need to honor volatile even is Src is undef. 6326 if (Src.isUndef()) 6327 return Chain; 6328 6329 // Expand memset to a series of load/store ops if the size operand 6330 // falls below a certain threshold. 6331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6332 std::vector<EVT> MemOps; 6333 bool DstAlignCanChange = false; 6334 MachineFunction &MF = DAG.getMachineFunction(); 6335 MachineFrameInfo &MFI = MF.getFrameInfo(); 6336 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6337 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6338 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6339 DstAlignCanChange = true; 6340 bool IsZeroVal = 6341 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6342 if (!TLI.findOptimalMemOpLowering( 6343 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6344 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6345 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6346 return SDValue(); 6347 6348 if (DstAlignCanChange) { 6349 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6350 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6351 if (NewAlign > Alignment) { 6352 // Give the stack frame object a larger alignment if needed. 6353 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6354 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6355 Alignment = NewAlign; 6356 } 6357 } 6358 6359 SmallVector<SDValue, 8> OutChains; 6360 uint64_t DstOff = 0; 6361 unsigned NumMemOps = MemOps.size(); 6362 6363 // Find the largest store and generate the bit pattern for it. 6364 EVT LargestVT = MemOps[0]; 6365 for (unsigned i = 1; i < NumMemOps; i++) 6366 if (MemOps[i].bitsGT(LargestVT)) 6367 LargestVT = MemOps[i]; 6368 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6369 6370 for (unsigned i = 0; i < NumMemOps; i++) { 6371 EVT VT = MemOps[i]; 6372 unsigned VTSize = VT.getSizeInBits() / 8; 6373 if (VTSize > Size) { 6374 // Issuing an unaligned load / store pair that overlaps with the previous 6375 // pair. Adjust the offset accordingly. 6376 assert(i == NumMemOps-1 && i != 0); 6377 DstOff -= VTSize - Size; 6378 } 6379 6380 // If this store is smaller than the largest store see whether we can get 6381 // the smaller value for free with a truncate. 6382 SDValue Value = MemSetValue; 6383 if (VT.bitsLT(LargestVT)) { 6384 if (!LargestVT.isVector() && !VT.isVector() && 6385 TLI.isTruncateFree(LargestVT, VT)) 6386 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6387 else 6388 Value = getMemsetValue(Src, VT, DAG, dl); 6389 } 6390 assert(Value.getValueType() == VT && "Value with wrong type."); 6391 SDValue Store = DAG.getStore( 6392 Chain, dl, Value, 6393 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6394 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6395 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6396 OutChains.push_back(Store); 6397 DstOff += VT.getSizeInBits() / 8; 6398 Size -= VTSize; 6399 } 6400 6401 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6402 } 6403 6404 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6405 unsigned AS) { 6406 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6407 // pointer operands can be losslessly bitcasted to pointers of address space 0 6408 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6409 report_fatal_error("cannot lower memory intrinsic in address space " + 6410 Twine(AS)); 6411 } 6412 } 6413 6414 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6415 SDValue Src, SDValue Size, Align Alignment, 6416 bool isVol, bool AlwaysInline, bool isTailCall, 6417 MachinePointerInfo DstPtrInfo, 6418 MachinePointerInfo SrcPtrInfo) { 6419 // Check to see if we should lower the memcpy to loads and stores first. 6420 // For cases within the target-specified limits, this is the best choice. 6421 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6422 if (ConstantSize) { 6423 // Memcpy with size zero? Just return the original chain. 6424 if (ConstantSize->isNullValue()) 6425 return Chain; 6426 6427 SDValue Result = getMemcpyLoadsAndStores( 6428 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6429 isVol, false, DstPtrInfo, SrcPtrInfo); 6430 if (Result.getNode()) 6431 return Result; 6432 } 6433 6434 // Then check to see if we should lower the memcpy with target-specific 6435 // code. If the target chooses to do this, this is the next best. 6436 if (TSI) { 6437 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6438 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6439 DstPtrInfo, SrcPtrInfo); 6440 if (Result.getNode()) 6441 return Result; 6442 } 6443 6444 // If we really need inline code and the target declined to provide it, 6445 // use a (potentially long) sequence of loads and stores. 6446 if (AlwaysInline) { 6447 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6448 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6449 ConstantSize->getZExtValue(), Alignment, 6450 isVol, true, DstPtrInfo, SrcPtrInfo); 6451 } 6452 6453 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6454 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6455 6456 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6457 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6458 // respect volatile, so they may do things like read or write memory 6459 // beyond the given memory regions. But fixing this isn't easy, and most 6460 // people don't care. 6461 6462 // Emit a library call. 6463 TargetLowering::ArgListTy Args; 6464 TargetLowering::ArgListEntry Entry; 6465 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6466 Entry.Node = Dst; Args.push_back(Entry); 6467 Entry.Node = Src; Args.push_back(Entry); 6468 6469 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6470 Entry.Node = Size; Args.push_back(Entry); 6471 // FIXME: pass in SDLoc 6472 TargetLowering::CallLoweringInfo CLI(*this); 6473 CLI.setDebugLoc(dl) 6474 .setChain(Chain) 6475 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6476 Dst.getValueType().getTypeForEVT(*getContext()), 6477 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6478 TLI->getPointerTy(getDataLayout())), 6479 std::move(Args)) 6480 .setDiscardResult() 6481 .setTailCall(isTailCall); 6482 6483 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6484 return CallResult.second; 6485 } 6486 6487 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6488 SDValue Dst, unsigned DstAlign, 6489 SDValue Src, unsigned SrcAlign, 6490 SDValue Size, Type *SizeTy, 6491 unsigned ElemSz, bool isTailCall, 6492 MachinePointerInfo DstPtrInfo, 6493 MachinePointerInfo SrcPtrInfo) { 6494 // Emit a library call. 6495 TargetLowering::ArgListTy Args; 6496 TargetLowering::ArgListEntry Entry; 6497 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6498 Entry.Node = Dst; 6499 Args.push_back(Entry); 6500 6501 Entry.Node = Src; 6502 Args.push_back(Entry); 6503 6504 Entry.Ty = SizeTy; 6505 Entry.Node = Size; 6506 Args.push_back(Entry); 6507 6508 RTLIB::Libcall LibraryCall = 6509 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6510 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6511 report_fatal_error("Unsupported element size"); 6512 6513 TargetLowering::CallLoweringInfo CLI(*this); 6514 CLI.setDebugLoc(dl) 6515 .setChain(Chain) 6516 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6517 Type::getVoidTy(*getContext()), 6518 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6519 TLI->getPointerTy(getDataLayout())), 6520 std::move(Args)) 6521 .setDiscardResult() 6522 .setTailCall(isTailCall); 6523 6524 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6525 return CallResult.second; 6526 } 6527 6528 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6529 SDValue Src, SDValue Size, Align Alignment, 6530 bool isVol, bool isTailCall, 6531 MachinePointerInfo DstPtrInfo, 6532 MachinePointerInfo SrcPtrInfo) { 6533 // Check to see if we should lower the memmove to loads and stores first. 6534 // For cases within the target-specified limits, this is the best choice. 6535 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6536 if (ConstantSize) { 6537 // Memmove with size zero? Just return the original chain. 6538 if (ConstantSize->isNullValue()) 6539 return Chain; 6540 6541 SDValue Result = getMemmoveLoadsAndStores( 6542 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6543 isVol, false, DstPtrInfo, SrcPtrInfo); 6544 if (Result.getNode()) 6545 return Result; 6546 } 6547 6548 // Then check to see if we should lower the memmove with target-specific 6549 // code. If the target chooses to do this, this is the next best. 6550 if (TSI) { 6551 SDValue Result = 6552 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6553 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6554 if (Result.getNode()) 6555 return Result; 6556 } 6557 6558 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6559 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6560 6561 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6562 // not be safe. See memcpy above for more details. 6563 6564 // Emit a library call. 6565 TargetLowering::ArgListTy Args; 6566 TargetLowering::ArgListEntry Entry; 6567 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6568 Entry.Node = Dst; Args.push_back(Entry); 6569 Entry.Node = Src; Args.push_back(Entry); 6570 6571 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6572 Entry.Node = Size; Args.push_back(Entry); 6573 // FIXME: pass in SDLoc 6574 TargetLowering::CallLoweringInfo CLI(*this); 6575 CLI.setDebugLoc(dl) 6576 .setChain(Chain) 6577 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6578 Dst.getValueType().getTypeForEVT(*getContext()), 6579 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6580 TLI->getPointerTy(getDataLayout())), 6581 std::move(Args)) 6582 .setDiscardResult() 6583 .setTailCall(isTailCall); 6584 6585 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6586 return CallResult.second; 6587 } 6588 6589 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6590 SDValue Dst, unsigned DstAlign, 6591 SDValue Src, unsigned SrcAlign, 6592 SDValue Size, Type *SizeTy, 6593 unsigned ElemSz, bool isTailCall, 6594 MachinePointerInfo DstPtrInfo, 6595 MachinePointerInfo SrcPtrInfo) { 6596 // Emit a library call. 6597 TargetLowering::ArgListTy Args; 6598 TargetLowering::ArgListEntry Entry; 6599 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6600 Entry.Node = Dst; 6601 Args.push_back(Entry); 6602 6603 Entry.Node = Src; 6604 Args.push_back(Entry); 6605 6606 Entry.Ty = SizeTy; 6607 Entry.Node = Size; 6608 Args.push_back(Entry); 6609 6610 RTLIB::Libcall LibraryCall = 6611 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6612 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6613 report_fatal_error("Unsupported element size"); 6614 6615 TargetLowering::CallLoweringInfo CLI(*this); 6616 CLI.setDebugLoc(dl) 6617 .setChain(Chain) 6618 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6619 Type::getVoidTy(*getContext()), 6620 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6621 TLI->getPointerTy(getDataLayout())), 6622 std::move(Args)) 6623 .setDiscardResult() 6624 .setTailCall(isTailCall); 6625 6626 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6627 return CallResult.second; 6628 } 6629 6630 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6631 SDValue Src, SDValue Size, Align Alignment, 6632 bool isVol, bool isTailCall, 6633 MachinePointerInfo DstPtrInfo) { 6634 // Check to see if we should lower the memset to stores first. 6635 // For cases within the target-specified limits, this is the best choice. 6636 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6637 if (ConstantSize) { 6638 // Memset with size zero? Just return the original chain. 6639 if (ConstantSize->isNullValue()) 6640 return Chain; 6641 6642 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6643 ConstantSize->getZExtValue(), Alignment, 6644 isVol, DstPtrInfo); 6645 6646 if (Result.getNode()) 6647 return Result; 6648 } 6649 6650 // Then check to see if we should lower the memset with target-specific 6651 // code. If the target chooses to do this, this is the next best. 6652 if (TSI) { 6653 SDValue Result = TSI->EmitTargetCodeForMemset( 6654 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6655 if (Result.getNode()) 6656 return Result; 6657 } 6658 6659 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6660 6661 // Emit a library call. 6662 TargetLowering::ArgListTy Args; 6663 TargetLowering::ArgListEntry Entry; 6664 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6665 Args.push_back(Entry); 6666 Entry.Node = Src; 6667 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6668 Args.push_back(Entry); 6669 Entry.Node = Size; 6670 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6671 Args.push_back(Entry); 6672 6673 // FIXME: pass in SDLoc 6674 TargetLowering::CallLoweringInfo CLI(*this); 6675 CLI.setDebugLoc(dl) 6676 .setChain(Chain) 6677 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6678 Dst.getValueType().getTypeForEVT(*getContext()), 6679 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6680 TLI->getPointerTy(getDataLayout())), 6681 std::move(Args)) 6682 .setDiscardResult() 6683 .setTailCall(isTailCall); 6684 6685 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6686 return CallResult.second; 6687 } 6688 6689 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6690 SDValue Dst, unsigned DstAlign, 6691 SDValue Value, SDValue Size, Type *SizeTy, 6692 unsigned ElemSz, bool isTailCall, 6693 MachinePointerInfo DstPtrInfo) { 6694 // Emit a library call. 6695 TargetLowering::ArgListTy Args; 6696 TargetLowering::ArgListEntry Entry; 6697 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6698 Entry.Node = Dst; 6699 Args.push_back(Entry); 6700 6701 Entry.Ty = Type::getInt8Ty(*getContext()); 6702 Entry.Node = Value; 6703 Args.push_back(Entry); 6704 6705 Entry.Ty = SizeTy; 6706 Entry.Node = Size; 6707 Args.push_back(Entry); 6708 6709 RTLIB::Libcall LibraryCall = 6710 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6711 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6712 report_fatal_error("Unsupported element size"); 6713 6714 TargetLowering::CallLoweringInfo CLI(*this); 6715 CLI.setDebugLoc(dl) 6716 .setChain(Chain) 6717 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6718 Type::getVoidTy(*getContext()), 6719 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6720 TLI->getPointerTy(getDataLayout())), 6721 std::move(Args)) 6722 .setDiscardResult() 6723 .setTailCall(isTailCall); 6724 6725 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6726 return CallResult.second; 6727 } 6728 6729 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6730 SDVTList VTList, ArrayRef<SDValue> Ops, 6731 MachineMemOperand *MMO) { 6732 FoldingSetNodeID ID; 6733 ID.AddInteger(MemVT.getRawBits()); 6734 AddNodeIDNode(ID, Opcode, VTList, Ops); 6735 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6736 void* IP = nullptr; 6737 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6738 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6739 return SDValue(E, 0); 6740 } 6741 6742 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6743 VTList, MemVT, MMO); 6744 createOperands(N, Ops); 6745 6746 CSEMap.InsertNode(N, IP); 6747 InsertNode(N); 6748 return SDValue(N, 0); 6749 } 6750 6751 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6752 EVT MemVT, SDVTList VTs, SDValue Chain, 6753 SDValue Ptr, SDValue Cmp, SDValue Swp, 6754 MachineMemOperand *MMO) { 6755 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6756 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6757 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6758 6759 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6760 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6761 } 6762 6763 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6764 SDValue Chain, SDValue Ptr, SDValue Val, 6765 MachineMemOperand *MMO) { 6766 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6767 Opcode == ISD::ATOMIC_LOAD_SUB || 6768 Opcode == ISD::ATOMIC_LOAD_AND || 6769 Opcode == ISD::ATOMIC_LOAD_CLR || 6770 Opcode == ISD::ATOMIC_LOAD_OR || 6771 Opcode == ISD::ATOMIC_LOAD_XOR || 6772 Opcode == ISD::ATOMIC_LOAD_NAND || 6773 Opcode == ISD::ATOMIC_LOAD_MIN || 6774 Opcode == ISD::ATOMIC_LOAD_MAX || 6775 Opcode == ISD::ATOMIC_LOAD_UMIN || 6776 Opcode == ISD::ATOMIC_LOAD_UMAX || 6777 Opcode == ISD::ATOMIC_LOAD_FADD || 6778 Opcode == ISD::ATOMIC_LOAD_FSUB || 6779 Opcode == ISD::ATOMIC_SWAP || 6780 Opcode == ISD::ATOMIC_STORE) && 6781 "Invalid Atomic Op"); 6782 6783 EVT VT = Val.getValueType(); 6784 6785 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6786 getVTList(VT, MVT::Other); 6787 SDValue Ops[] = {Chain, Ptr, Val}; 6788 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6789 } 6790 6791 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6792 EVT VT, SDValue Chain, SDValue Ptr, 6793 MachineMemOperand *MMO) { 6794 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6795 6796 SDVTList VTs = getVTList(VT, MVT::Other); 6797 SDValue Ops[] = {Chain, Ptr}; 6798 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6799 } 6800 6801 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6802 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6803 if (Ops.size() == 1) 6804 return Ops[0]; 6805 6806 SmallVector<EVT, 4> VTs; 6807 VTs.reserve(Ops.size()); 6808 for (unsigned i = 0; i < Ops.size(); ++i) 6809 VTs.push_back(Ops[i].getValueType()); 6810 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6811 } 6812 6813 SDValue SelectionDAG::getMemIntrinsicNode( 6814 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6815 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6816 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6817 if (!Size && MemVT.isScalableVector()) 6818 Size = MemoryLocation::UnknownSize; 6819 else if (!Size) 6820 Size = MemVT.getStoreSize(); 6821 6822 MachineFunction &MF = getMachineFunction(); 6823 MachineMemOperand *MMO = 6824 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6825 6826 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6827 } 6828 6829 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6830 SDVTList VTList, 6831 ArrayRef<SDValue> Ops, EVT MemVT, 6832 MachineMemOperand *MMO) { 6833 assert((Opcode == ISD::INTRINSIC_VOID || 6834 Opcode == ISD::INTRINSIC_W_CHAIN || 6835 Opcode == ISD::PREFETCH || 6836 ((int)Opcode <= std::numeric_limits<int>::max() && 6837 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6838 "Opcode is not a memory-accessing opcode!"); 6839 6840 // Memoize the node unless it returns a flag. 6841 MemIntrinsicSDNode *N; 6842 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6843 FoldingSetNodeID ID; 6844 AddNodeIDNode(ID, Opcode, VTList, Ops); 6845 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6846 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6847 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6848 void *IP = nullptr; 6849 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6850 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6851 return SDValue(E, 0); 6852 } 6853 6854 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6855 VTList, MemVT, MMO); 6856 createOperands(N, Ops); 6857 6858 CSEMap.InsertNode(N, IP); 6859 } else { 6860 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6861 VTList, MemVT, MMO); 6862 createOperands(N, Ops); 6863 } 6864 InsertNode(N); 6865 SDValue V(N, 0); 6866 NewSDValueDbgMsg(V, "Creating new node: ", this); 6867 return V; 6868 } 6869 6870 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6871 SDValue Chain, int FrameIndex, 6872 int64_t Size, int64_t Offset) { 6873 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6874 const auto VTs = getVTList(MVT::Other); 6875 SDValue Ops[2] = { 6876 Chain, 6877 getFrameIndex(FrameIndex, 6878 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6879 true)}; 6880 6881 FoldingSetNodeID ID; 6882 AddNodeIDNode(ID, Opcode, VTs, Ops); 6883 ID.AddInteger(FrameIndex); 6884 ID.AddInteger(Size); 6885 ID.AddInteger(Offset); 6886 void *IP = nullptr; 6887 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6888 return SDValue(E, 0); 6889 6890 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6891 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6892 createOperands(N, Ops); 6893 CSEMap.InsertNode(N, IP); 6894 InsertNode(N); 6895 SDValue V(N, 0); 6896 NewSDValueDbgMsg(V, "Creating new node: ", this); 6897 return V; 6898 } 6899 6900 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6901 /// MachinePointerInfo record from it. This is particularly useful because the 6902 /// code generator has many cases where it doesn't bother passing in a 6903 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6904 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6905 SelectionDAG &DAG, SDValue Ptr, 6906 int64_t Offset = 0) { 6907 // If this is FI+Offset, we can model it. 6908 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6909 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6910 FI->getIndex(), Offset); 6911 6912 // If this is (FI+Offset1)+Offset2, we can model it. 6913 if (Ptr.getOpcode() != ISD::ADD || 6914 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6915 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6916 return Info; 6917 6918 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6919 return MachinePointerInfo::getFixedStack( 6920 DAG.getMachineFunction(), FI, 6921 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6922 } 6923 6924 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6925 /// MachinePointerInfo record from it. This is particularly useful because the 6926 /// code generator has many cases where it doesn't bother passing in a 6927 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6928 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6929 SelectionDAG &DAG, SDValue Ptr, 6930 SDValue OffsetOp) { 6931 // If the 'Offset' value isn't a constant, we can't handle this. 6932 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6933 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6934 if (OffsetOp.isUndef()) 6935 return InferPointerInfo(Info, DAG, Ptr); 6936 return Info; 6937 } 6938 6939 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6940 EVT VT, const SDLoc &dl, SDValue Chain, 6941 SDValue Ptr, SDValue Offset, 6942 MachinePointerInfo PtrInfo, EVT MemVT, 6943 Align Alignment, 6944 MachineMemOperand::Flags MMOFlags, 6945 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6946 assert(Chain.getValueType() == MVT::Other && 6947 "Invalid chain type"); 6948 6949 MMOFlags |= MachineMemOperand::MOLoad; 6950 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6951 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6952 // clients. 6953 if (PtrInfo.V.isNull()) 6954 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6955 6956 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6957 MachineFunction &MF = getMachineFunction(); 6958 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6959 Alignment, AAInfo, Ranges); 6960 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6961 } 6962 6963 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6964 EVT VT, const SDLoc &dl, SDValue Chain, 6965 SDValue Ptr, SDValue Offset, EVT MemVT, 6966 MachineMemOperand *MMO) { 6967 if (VT == MemVT) { 6968 ExtType = ISD::NON_EXTLOAD; 6969 } else if (ExtType == ISD::NON_EXTLOAD) { 6970 assert(VT == MemVT && "Non-extending load from different memory type!"); 6971 } else { 6972 // Extending load. 6973 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6974 "Should only be an extending load, not truncating!"); 6975 assert(VT.isInteger() == MemVT.isInteger() && 6976 "Cannot convert from FP to Int or Int -> FP!"); 6977 assert(VT.isVector() == MemVT.isVector() && 6978 "Cannot use an ext load to convert to or from a vector!"); 6979 assert((!VT.isVector() || 6980 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6981 "Cannot use an ext load to change the number of vector elements!"); 6982 } 6983 6984 bool Indexed = AM != ISD::UNINDEXED; 6985 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6986 6987 SDVTList VTs = Indexed ? 6988 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6989 SDValue Ops[] = { Chain, Ptr, Offset }; 6990 FoldingSetNodeID ID; 6991 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6992 ID.AddInteger(MemVT.getRawBits()); 6993 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6994 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6995 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6996 void *IP = nullptr; 6997 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6998 cast<LoadSDNode>(E)->refineAlignment(MMO); 6999 return SDValue(E, 0); 7000 } 7001 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7002 ExtType, MemVT, MMO); 7003 createOperands(N, Ops); 7004 7005 CSEMap.InsertNode(N, IP); 7006 InsertNode(N); 7007 SDValue V(N, 0); 7008 NewSDValueDbgMsg(V, "Creating new node: ", this); 7009 return V; 7010 } 7011 7012 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7013 SDValue Ptr, MachinePointerInfo PtrInfo, 7014 MaybeAlign Alignment, 7015 MachineMemOperand::Flags MMOFlags, 7016 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7017 SDValue Undef = getUNDEF(Ptr.getValueType()); 7018 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7019 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7020 } 7021 7022 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7023 SDValue Ptr, MachineMemOperand *MMO) { 7024 SDValue Undef = getUNDEF(Ptr.getValueType()); 7025 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7026 VT, MMO); 7027 } 7028 7029 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7030 EVT VT, SDValue Chain, SDValue Ptr, 7031 MachinePointerInfo PtrInfo, EVT MemVT, 7032 MaybeAlign Alignment, 7033 MachineMemOperand::Flags MMOFlags, 7034 const AAMDNodes &AAInfo) { 7035 SDValue Undef = getUNDEF(Ptr.getValueType()); 7036 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7037 MemVT, Alignment, MMOFlags, AAInfo); 7038 } 7039 7040 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7041 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7042 MachineMemOperand *MMO) { 7043 SDValue Undef = getUNDEF(Ptr.getValueType()); 7044 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7045 MemVT, MMO); 7046 } 7047 7048 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7049 SDValue Base, SDValue Offset, 7050 ISD::MemIndexedMode AM) { 7051 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7052 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7053 // Don't propagate the invariant or dereferenceable flags. 7054 auto MMOFlags = 7055 LD->getMemOperand()->getFlags() & 7056 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7057 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7058 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7059 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 7060 LD->getAAInfo()); 7061 } 7062 7063 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7064 SDValue Ptr, MachinePointerInfo PtrInfo, 7065 Align Alignment, 7066 MachineMemOperand::Flags MMOFlags, 7067 const AAMDNodes &AAInfo) { 7068 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7069 7070 MMOFlags |= MachineMemOperand::MOStore; 7071 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7072 7073 if (PtrInfo.V.isNull()) 7074 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7075 7076 MachineFunction &MF = getMachineFunction(); 7077 uint64_t Size = 7078 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7079 MachineMemOperand *MMO = 7080 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7081 return getStore(Chain, dl, Val, Ptr, MMO); 7082 } 7083 7084 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7085 SDValue Ptr, MachineMemOperand *MMO) { 7086 assert(Chain.getValueType() == MVT::Other && 7087 "Invalid chain type"); 7088 EVT VT = Val.getValueType(); 7089 SDVTList VTs = getVTList(MVT::Other); 7090 SDValue Undef = getUNDEF(Ptr.getValueType()); 7091 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7092 FoldingSetNodeID ID; 7093 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7094 ID.AddInteger(VT.getRawBits()); 7095 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7096 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7098 void *IP = nullptr; 7099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7100 cast<StoreSDNode>(E)->refineAlignment(MMO); 7101 return SDValue(E, 0); 7102 } 7103 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7104 ISD::UNINDEXED, false, VT, MMO); 7105 createOperands(N, Ops); 7106 7107 CSEMap.InsertNode(N, IP); 7108 InsertNode(N); 7109 SDValue V(N, 0); 7110 NewSDValueDbgMsg(V, "Creating new node: ", this); 7111 return V; 7112 } 7113 7114 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7115 SDValue Ptr, MachinePointerInfo PtrInfo, 7116 EVT SVT, Align Alignment, 7117 MachineMemOperand::Flags MMOFlags, 7118 const AAMDNodes &AAInfo) { 7119 assert(Chain.getValueType() == MVT::Other && 7120 "Invalid chain type"); 7121 7122 MMOFlags |= MachineMemOperand::MOStore; 7123 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7124 7125 if (PtrInfo.V.isNull()) 7126 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7127 7128 MachineFunction &MF = getMachineFunction(); 7129 MachineMemOperand *MMO = MF.getMachineMemOperand( 7130 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7131 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7132 } 7133 7134 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7135 SDValue Ptr, EVT SVT, 7136 MachineMemOperand *MMO) { 7137 EVT VT = Val.getValueType(); 7138 7139 assert(Chain.getValueType() == MVT::Other && 7140 "Invalid chain type"); 7141 if (VT == SVT) 7142 return getStore(Chain, dl, Val, Ptr, MMO); 7143 7144 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7145 "Should only be a truncating store, not extending!"); 7146 assert(VT.isInteger() == SVT.isInteger() && 7147 "Can't do FP-INT conversion!"); 7148 assert(VT.isVector() == SVT.isVector() && 7149 "Cannot use trunc store to convert to or from a vector!"); 7150 assert((!VT.isVector() || 7151 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7152 "Cannot use trunc store to change the number of vector elements!"); 7153 7154 SDVTList VTs = getVTList(MVT::Other); 7155 SDValue Undef = getUNDEF(Ptr.getValueType()); 7156 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7157 FoldingSetNodeID ID; 7158 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7159 ID.AddInteger(SVT.getRawBits()); 7160 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7161 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7162 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7163 void *IP = nullptr; 7164 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7165 cast<StoreSDNode>(E)->refineAlignment(MMO); 7166 return SDValue(E, 0); 7167 } 7168 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7169 ISD::UNINDEXED, true, SVT, MMO); 7170 createOperands(N, Ops); 7171 7172 CSEMap.InsertNode(N, IP); 7173 InsertNode(N); 7174 SDValue V(N, 0); 7175 NewSDValueDbgMsg(V, "Creating new node: ", this); 7176 return V; 7177 } 7178 7179 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7180 SDValue Base, SDValue Offset, 7181 ISD::MemIndexedMode AM) { 7182 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7183 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7184 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7185 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7186 FoldingSetNodeID ID; 7187 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7188 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7189 ID.AddInteger(ST->getRawSubclassData()); 7190 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7191 void *IP = nullptr; 7192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7193 return SDValue(E, 0); 7194 7195 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7196 ST->isTruncatingStore(), ST->getMemoryVT(), 7197 ST->getMemOperand()); 7198 createOperands(N, Ops); 7199 7200 CSEMap.InsertNode(N, IP); 7201 InsertNode(N); 7202 SDValue V(N, 0); 7203 NewSDValueDbgMsg(V, "Creating new node: ", this); 7204 return V; 7205 } 7206 7207 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7208 SDValue Base, SDValue Offset, SDValue Mask, 7209 SDValue PassThru, EVT MemVT, 7210 MachineMemOperand *MMO, 7211 ISD::MemIndexedMode AM, 7212 ISD::LoadExtType ExtTy, bool isExpanding) { 7213 bool Indexed = AM != ISD::UNINDEXED; 7214 assert((Indexed || Offset.isUndef()) && 7215 "Unindexed masked load with an offset!"); 7216 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7217 : getVTList(VT, MVT::Other); 7218 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7219 FoldingSetNodeID ID; 7220 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7221 ID.AddInteger(MemVT.getRawBits()); 7222 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7223 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7224 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7225 void *IP = nullptr; 7226 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7227 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7228 return SDValue(E, 0); 7229 } 7230 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7231 AM, ExtTy, isExpanding, MemVT, MMO); 7232 createOperands(N, Ops); 7233 7234 CSEMap.InsertNode(N, IP); 7235 InsertNode(N); 7236 SDValue V(N, 0); 7237 NewSDValueDbgMsg(V, "Creating new node: ", this); 7238 return V; 7239 } 7240 7241 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7242 SDValue Base, SDValue Offset, 7243 ISD::MemIndexedMode AM) { 7244 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7245 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7246 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7247 Offset, LD->getMask(), LD->getPassThru(), 7248 LD->getMemoryVT(), LD->getMemOperand(), AM, 7249 LD->getExtensionType(), LD->isExpandingLoad()); 7250 } 7251 7252 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7253 SDValue Val, SDValue Base, SDValue Offset, 7254 SDValue Mask, EVT MemVT, 7255 MachineMemOperand *MMO, 7256 ISD::MemIndexedMode AM, bool IsTruncating, 7257 bool IsCompressing) { 7258 assert(Chain.getValueType() == MVT::Other && 7259 "Invalid chain type"); 7260 bool Indexed = AM != ISD::UNINDEXED; 7261 assert((Indexed || Offset.isUndef()) && 7262 "Unindexed masked store with an offset!"); 7263 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7264 : getVTList(MVT::Other); 7265 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7266 FoldingSetNodeID ID; 7267 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7268 ID.AddInteger(MemVT.getRawBits()); 7269 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7270 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7271 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7272 void *IP = nullptr; 7273 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7274 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7275 return SDValue(E, 0); 7276 } 7277 auto *N = 7278 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7279 IsTruncating, IsCompressing, MemVT, MMO); 7280 createOperands(N, Ops); 7281 7282 CSEMap.InsertNode(N, IP); 7283 InsertNode(N); 7284 SDValue V(N, 0); 7285 NewSDValueDbgMsg(V, "Creating new node: ", this); 7286 return V; 7287 } 7288 7289 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7290 SDValue Base, SDValue Offset, 7291 ISD::MemIndexedMode AM) { 7292 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7293 assert(ST->getOffset().isUndef() && 7294 "Masked store is already a indexed store!"); 7295 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7296 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7297 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7298 } 7299 7300 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7301 ArrayRef<SDValue> Ops, 7302 MachineMemOperand *MMO, 7303 ISD::MemIndexType IndexType) { 7304 assert(Ops.size() == 6 && "Incompatible number of operands"); 7305 7306 FoldingSetNodeID ID; 7307 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7308 ID.AddInteger(VT.getRawBits()); 7309 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7310 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7311 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7312 void *IP = nullptr; 7313 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7314 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7315 return SDValue(E, 0); 7316 } 7317 7318 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7319 VTs, VT, MMO, IndexType); 7320 createOperands(N, Ops); 7321 7322 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7323 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7324 assert(N->getMask().getValueType().getVectorNumElements() == 7325 N->getValueType(0).getVectorNumElements() && 7326 "Vector width mismatch between mask and data"); 7327 assert(N->getIndex().getValueType().getVectorNumElements() >= 7328 N->getValueType(0).getVectorNumElements() && 7329 "Vector width mismatch between index and data"); 7330 assert(isa<ConstantSDNode>(N->getScale()) && 7331 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7332 "Scale should be a constant power of 2"); 7333 7334 CSEMap.InsertNode(N, IP); 7335 InsertNode(N); 7336 SDValue V(N, 0); 7337 NewSDValueDbgMsg(V, "Creating new node: ", this); 7338 return V; 7339 } 7340 7341 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7342 ArrayRef<SDValue> Ops, 7343 MachineMemOperand *MMO, 7344 ISD::MemIndexType IndexType) { 7345 assert(Ops.size() == 6 && "Incompatible number of operands"); 7346 7347 FoldingSetNodeID ID; 7348 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7349 ID.AddInteger(VT.getRawBits()); 7350 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7351 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7352 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7353 void *IP = nullptr; 7354 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7355 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7356 return SDValue(E, 0); 7357 } 7358 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7359 VTs, VT, MMO, IndexType); 7360 createOperands(N, Ops); 7361 7362 assert(N->getMask().getValueType().getVectorNumElements() == 7363 N->getValue().getValueType().getVectorNumElements() && 7364 "Vector width mismatch between mask and data"); 7365 assert(N->getIndex().getValueType().getVectorNumElements() >= 7366 N->getValue().getValueType().getVectorNumElements() && 7367 "Vector width mismatch between index and data"); 7368 assert(isa<ConstantSDNode>(N->getScale()) && 7369 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7370 "Scale should be a constant power of 2"); 7371 7372 CSEMap.InsertNode(N, IP); 7373 InsertNode(N); 7374 SDValue V(N, 0); 7375 NewSDValueDbgMsg(V, "Creating new node: ", this); 7376 return V; 7377 } 7378 7379 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7380 // select undef, T, F --> T (if T is a constant), otherwise F 7381 // select, ?, undef, F --> F 7382 // select, ?, T, undef --> T 7383 if (Cond.isUndef()) 7384 return isConstantValueOfAnyType(T) ? T : F; 7385 if (T.isUndef()) 7386 return F; 7387 if (F.isUndef()) 7388 return T; 7389 7390 // select true, T, F --> T 7391 // select false, T, F --> F 7392 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7393 return CondC->isNullValue() ? F : T; 7394 7395 // TODO: This should simplify VSELECT with constant condition using something 7396 // like this (but check boolean contents to be complete?): 7397 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7398 // return T; 7399 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7400 // return F; 7401 7402 // select ?, T, T --> T 7403 if (T == F) 7404 return T; 7405 7406 return SDValue(); 7407 } 7408 7409 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7410 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7411 if (X.isUndef()) 7412 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7413 // shift X, undef --> undef (because it may shift by the bitwidth) 7414 if (Y.isUndef()) 7415 return getUNDEF(X.getValueType()); 7416 7417 // shift 0, Y --> 0 7418 // shift X, 0 --> X 7419 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7420 return X; 7421 7422 // shift X, C >= bitwidth(X) --> undef 7423 // All vector elements must be too big (or undef) to avoid partial undefs. 7424 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7425 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7426 }; 7427 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7428 return getUNDEF(X.getValueType()); 7429 7430 return SDValue(); 7431 } 7432 7433 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7434 SDNodeFlags Flags) { 7435 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7436 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7437 // operation is poison. That result can be relaxed to undef. 7438 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7439 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7440 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7441 (YC && YC->getValueAPF().isNaN()); 7442 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7443 (YC && YC->getValueAPF().isInfinity()); 7444 7445 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7446 return getUNDEF(X.getValueType()); 7447 7448 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7449 return getUNDEF(X.getValueType()); 7450 7451 if (!YC) 7452 return SDValue(); 7453 7454 // X + -0.0 --> X 7455 if (Opcode == ISD::FADD) 7456 if (YC->getValueAPF().isNegZero()) 7457 return X; 7458 7459 // X - +0.0 --> X 7460 if (Opcode == ISD::FSUB) 7461 if (YC->getValueAPF().isPosZero()) 7462 return X; 7463 7464 // X * 1.0 --> X 7465 // X / 1.0 --> X 7466 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7467 if (YC->getValueAPF().isExactlyValue(1.0)) 7468 return X; 7469 7470 return SDValue(); 7471 } 7472 7473 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7474 SDValue Ptr, SDValue SV, unsigned Align) { 7475 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7476 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7477 } 7478 7479 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7480 ArrayRef<SDUse> Ops) { 7481 switch (Ops.size()) { 7482 case 0: return getNode(Opcode, DL, VT); 7483 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7484 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7485 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7486 default: break; 7487 } 7488 7489 // Copy from an SDUse array into an SDValue array for use with 7490 // the regular getNode logic. 7491 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7492 return getNode(Opcode, DL, VT, NewOps); 7493 } 7494 7495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7496 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7497 unsigned NumOps = Ops.size(); 7498 switch (NumOps) { 7499 case 0: return getNode(Opcode, DL, VT); 7500 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7501 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7502 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7503 default: break; 7504 } 7505 7506 switch (Opcode) { 7507 default: break; 7508 case ISD::BUILD_VECTOR: 7509 // Attempt to simplify BUILD_VECTOR. 7510 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7511 return V; 7512 break; 7513 case ISD::CONCAT_VECTORS: 7514 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7515 return V; 7516 break; 7517 case ISD::SELECT_CC: 7518 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7519 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7520 "LHS and RHS of condition must have same type!"); 7521 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7522 "True and False arms of SelectCC must have same type!"); 7523 assert(Ops[2].getValueType() == VT && 7524 "select_cc node must be of same type as true and false value!"); 7525 break; 7526 case ISD::BR_CC: 7527 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7528 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7529 "LHS/RHS of comparison should match types!"); 7530 break; 7531 } 7532 7533 // Memoize nodes. 7534 SDNode *N; 7535 SDVTList VTs = getVTList(VT); 7536 7537 if (VT != MVT::Glue) { 7538 FoldingSetNodeID ID; 7539 AddNodeIDNode(ID, Opcode, VTs, Ops); 7540 void *IP = nullptr; 7541 7542 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7543 return SDValue(E, 0); 7544 7545 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7546 createOperands(N, Ops); 7547 7548 CSEMap.InsertNode(N, IP); 7549 } else { 7550 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7551 createOperands(N, Ops); 7552 } 7553 7554 N->setFlags(Flags); 7555 InsertNode(N); 7556 SDValue V(N, 0); 7557 NewSDValueDbgMsg(V, "Creating new node: ", this); 7558 return V; 7559 } 7560 7561 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7562 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7563 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7564 } 7565 7566 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7567 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7568 if (VTList.NumVTs == 1) 7569 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7570 7571 switch (Opcode) { 7572 case ISD::STRICT_FP_EXTEND: 7573 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7574 "Invalid STRICT_FP_EXTEND!"); 7575 assert(VTList.VTs[0].isFloatingPoint() && 7576 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7577 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7578 "STRICT_FP_EXTEND result type should be vector iff the operand " 7579 "type is vector!"); 7580 assert((!VTList.VTs[0].isVector() || 7581 VTList.VTs[0].getVectorNumElements() == 7582 Ops[1].getValueType().getVectorNumElements()) && 7583 "Vector element count mismatch!"); 7584 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7585 "Invalid fpext node, dst <= src!"); 7586 break; 7587 case ISD::STRICT_FP_ROUND: 7588 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7589 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7590 "STRICT_FP_ROUND result type should be vector iff the operand " 7591 "type is vector!"); 7592 assert((!VTList.VTs[0].isVector() || 7593 VTList.VTs[0].getVectorNumElements() == 7594 Ops[1].getValueType().getVectorNumElements()) && 7595 "Vector element count mismatch!"); 7596 assert(VTList.VTs[0].isFloatingPoint() && 7597 Ops[1].getValueType().isFloatingPoint() && 7598 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7599 isa<ConstantSDNode>(Ops[2]) && 7600 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7601 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7602 "Invalid STRICT_FP_ROUND!"); 7603 break; 7604 #if 0 7605 // FIXME: figure out how to safely handle things like 7606 // int foo(int x) { return 1 << (x & 255); } 7607 // int bar() { return foo(256); } 7608 case ISD::SRA_PARTS: 7609 case ISD::SRL_PARTS: 7610 case ISD::SHL_PARTS: 7611 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7612 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7613 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7614 else if (N3.getOpcode() == ISD::AND) 7615 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7616 // If the and is only masking out bits that cannot effect the shift, 7617 // eliminate the and. 7618 unsigned NumBits = VT.getScalarSizeInBits()*2; 7619 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7620 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7621 } 7622 break; 7623 #endif 7624 } 7625 7626 // Memoize the node unless it returns a flag. 7627 SDNode *N; 7628 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7629 FoldingSetNodeID ID; 7630 AddNodeIDNode(ID, Opcode, VTList, Ops); 7631 void *IP = nullptr; 7632 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7633 return SDValue(E, 0); 7634 7635 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7636 createOperands(N, Ops); 7637 CSEMap.InsertNode(N, IP); 7638 } else { 7639 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7640 createOperands(N, Ops); 7641 } 7642 7643 N->setFlags(Flags); 7644 InsertNode(N); 7645 SDValue V(N, 0); 7646 NewSDValueDbgMsg(V, "Creating new node: ", this); 7647 return V; 7648 } 7649 7650 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7651 SDVTList VTList) { 7652 return getNode(Opcode, DL, VTList, None); 7653 } 7654 7655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7656 SDValue N1) { 7657 SDValue Ops[] = { N1 }; 7658 return getNode(Opcode, DL, VTList, Ops); 7659 } 7660 7661 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7662 SDValue N1, SDValue N2) { 7663 SDValue Ops[] = { N1, N2 }; 7664 return getNode(Opcode, DL, VTList, Ops); 7665 } 7666 7667 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7668 SDValue N1, SDValue N2, SDValue N3) { 7669 SDValue Ops[] = { N1, N2, N3 }; 7670 return getNode(Opcode, DL, VTList, Ops); 7671 } 7672 7673 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7674 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7675 SDValue Ops[] = { N1, N2, N3, N4 }; 7676 return getNode(Opcode, DL, VTList, Ops); 7677 } 7678 7679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7680 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7681 SDValue N5) { 7682 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7683 return getNode(Opcode, DL, VTList, Ops); 7684 } 7685 7686 SDVTList SelectionDAG::getVTList(EVT VT) { 7687 return makeVTList(SDNode::getValueTypeList(VT), 1); 7688 } 7689 7690 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7691 FoldingSetNodeID ID; 7692 ID.AddInteger(2U); 7693 ID.AddInteger(VT1.getRawBits()); 7694 ID.AddInteger(VT2.getRawBits()); 7695 7696 void *IP = nullptr; 7697 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7698 if (!Result) { 7699 EVT *Array = Allocator.Allocate<EVT>(2); 7700 Array[0] = VT1; 7701 Array[1] = VT2; 7702 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7703 VTListMap.InsertNode(Result, IP); 7704 } 7705 return Result->getSDVTList(); 7706 } 7707 7708 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7709 FoldingSetNodeID ID; 7710 ID.AddInteger(3U); 7711 ID.AddInteger(VT1.getRawBits()); 7712 ID.AddInteger(VT2.getRawBits()); 7713 ID.AddInteger(VT3.getRawBits()); 7714 7715 void *IP = nullptr; 7716 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7717 if (!Result) { 7718 EVT *Array = Allocator.Allocate<EVT>(3); 7719 Array[0] = VT1; 7720 Array[1] = VT2; 7721 Array[2] = VT3; 7722 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7723 VTListMap.InsertNode(Result, IP); 7724 } 7725 return Result->getSDVTList(); 7726 } 7727 7728 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7729 FoldingSetNodeID ID; 7730 ID.AddInteger(4U); 7731 ID.AddInteger(VT1.getRawBits()); 7732 ID.AddInteger(VT2.getRawBits()); 7733 ID.AddInteger(VT3.getRawBits()); 7734 ID.AddInteger(VT4.getRawBits()); 7735 7736 void *IP = nullptr; 7737 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7738 if (!Result) { 7739 EVT *Array = Allocator.Allocate<EVT>(4); 7740 Array[0] = VT1; 7741 Array[1] = VT2; 7742 Array[2] = VT3; 7743 Array[3] = VT4; 7744 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7745 VTListMap.InsertNode(Result, IP); 7746 } 7747 return Result->getSDVTList(); 7748 } 7749 7750 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7751 unsigned NumVTs = VTs.size(); 7752 FoldingSetNodeID ID; 7753 ID.AddInteger(NumVTs); 7754 for (unsigned index = 0; index < NumVTs; index++) { 7755 ID.AddInteger(VTs[index].getRawBits()); 7756 } 7757 7758 void *IP = nullptr; 7759 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7760 if (!Result) { 7761 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7762 llvm::copy(VTs, Array); 7763 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7764 VTListMap.InsertNode(Result, IP); 7765 } 7766 return Result->getSDVTList(); 7767 } 7768 7769 7770 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7771 /// specified operands. If the resultant node already exists in the DAG, 7772 /// this does not modify the specified node, instead it returns the node that 7773 /// already exists. If the resultant node does not exist in the DAG, the 7774 /// input node is returned. As a degenerate case, if you specify the same 7775 /// input operands as the node already has, the input node is returned. 7776 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7777 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7778 7779 // Check to see if there is no change. 7780 if (Op == N->getOperand(0)) return N; 7781 7782 // See if the modified node already exists. 7783 void *InsertPos = nullptr; 7784 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7785 return Existing; 7786 7787 // Nope it doesn't. Remove the node from its current place in the maps. 7788 if (InsertPos) 7789 if (!RemoveNodeFromCSEMaps(N)) 7790 InsertPos = nullptr; 7791 7792 // Now we update the operands. 7793 N->OperandList[0].set(Op); 7794 7795 updateDivergence(N); 7796 // If this gets put into a CSE map, add it. 7797 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7798 return N; 7799 } 7800 7801 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7802 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7803 7804 // Check to see if there is no change. 7805 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7806 return N; // No operands changed, just return the input node. 7807 7808 // See if the modified node already exists. 7809 void *InsertPos = nullptr; 7810 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7811 return Existing; 7812 7813 // Nope it doesn't. Remove the node from its current place in the maps. 7814 if (InsertPos) 7815 if (!RemoveNodeFromCSEMaps(N)) 7816 InsertPos = nullptr; 7817 7818 // Now we update the operands. 7819 if (N->OperandList[0] != Op1) 7820 N->OperandList[0].set(Op1); 7821 if (N->OperandList[1] != Op2) 7822 N->OperandList[1].set(Op2); 7823 7824 updateDivergence(N); 7825 // If this gets put into a CSE map, add it. 7826 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7827 return N; 7828 } 7829 7830 SDNode *SelectionDAG:: 7831 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7832 SDValue Ops[] = { Op1, Op2, Op3 }; 7833 return UpdateNodeOperands(N, Ops); 7834 } 7835 7836 SDNode *SelectionDAG:: 7837 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7838 SDValue Op3, SDValue Op4) { 7839 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7840 return UpdateNodeOperands(N, Ops); 7841 } 7842 7843 SDNode *SelectionDAG:: 7844 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7845 SDValue Op3, SDValue Op4, SDValue Op5) { 7846 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7847 return UpdateNodeOperands(N, Ops); 7848 } 7849 7850 SDNode *SelectionDAG:: 7851 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7852 unsigned NumOps = Ops.size(); 7853 assert(N->getNumOperands() == NumOps && 7854 "Update with wrong number of operands"); 7855 7856 // If no operands changed just return the input node. 7857 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7858 return N; 7859 7860 // See if the modified node already exists. 7861 void *InsertPos = nullptr; 7862 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7863 return Existing; 7864 7865 // Nope it doesn't. Remove the node from its current place in the maps. 7866 if (InsertPos) 7867 if (!RemoveNodeFromCSEMaps(N)) 7868 InsertPos = nullptr; 7869 7870 // Now we update the operands. 7871 for (unsigned i = 0; i != NumOps; ++i) 7872 if (N->OperandList[i] != Ops[i]) 7873 N->OperandList[i].set(Ops[i]); 7874 7875 updateDivergence(N); 7876 // If this gets put into a CSE map, add it. 7877 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7878 return N; 7879 } 7880 7881 /// DropOperands - Release the operands and set this node to have 7882 /// zero operands. 7883 void SDNode::DropOperands() { 7884 // Unlike the code in MorphNodeTo that does this, we don't need to 7885 // watch for dead nodes here. 7886 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7887 SDUse &Use = *I++; 7888 Use.set(SDValue()); 7889 } 7890 } 7891 7892 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7893 ArrayRef<MachineMemOperand *> NewMemRefs) { 7894 if (NewMemRefs.empty()) { 7895 N->clearMemRefs(); 7896 return; 7897 } 7898 7899 // Check if we can avoid allocating by storing a single reference directly. 7900 if (NewMemRefs.size() == 1) { 7901 N->MemRefs = NewMemRefs[0]; 7902 N->NumMemRefs = 1; 7903 return; 7904 } 7905 7906 MachineMemOperand **MemRefsBuffer = 7907 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7908 llvm::copy(NewMemRefs, MemRefsBuffer); 7909 N->MemRefs = MemRefsBuffer; 7910 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7911 } 7912 7913 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7914 /// machine opcode. 7915 /// 7916 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7917 EVT VT) { 7918 SDVTList VTs = getVTList(VT); 7919 return SelectNodeTo(N, MachineOpc, VTs, None); 7920 } 7921 7922 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7923 EVT VT, SDValue Op1) { 7924 SDVTList VTs = getVTList(VT); 7925 SDValue Ops[] = { Op1 }; 7926 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7927 } 7928 7929 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7930 EVT VT, SDValue Op1, 7931 SDValue Op2) { 7932 SDVTList VTs = getVTList(VT); 7933 SDValue Ops[] = { Op1, Op2 }; 7934 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7935 } 7936 7937 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7938 EVT VT, SDValue Op1, 7939 SDValue Op2, SDValue Op3) { 7940 SDVTList VTs = getVTList(VT); 7941 SDValue Ops[] = { Op1, Op2, Op3 }; 7942 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7943 } 7944 7945 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7946 EVT VT, ArrayRef<SDValue> Ops) { 7947 SDVTList VTs = getVTList(VT); 7948 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7949 } 7950 7951 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7952 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7953 SDVTList VTs = getVTList(VT1, VT2); 7954 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7955 } 7956 7957 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7958 EVT VT1, EVT VT2) { 7959 SDVTList VTs = getVTList(VT1, VT2); 7960 return SelectNodeTo(N, MachineOpc, VTs, None); 7961 } 7962 7963 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7964 EVT VT1, EVT VT2, EVT VT3, 7965 ArrayRef<SDValue> Ops) { 7966 SDVTList VTs = getVTList(VT1, VT2, VT3); 7967 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7968 } 7969 7970 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7971 EVT VT1, EVT VT2, 7972 SDValue Op1, SDValue Op2) { 7973 SDVTList VTs = getVTList(VT1, VT2); 7974 SDValue Ops[] = { Op1, Op2 }; 7975 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7976 } 7977 7978 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7979 SDVTList VTs,ArrayRef<SDValue> Ops) { 7980 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7981 // Reset the NodeID to -1. 7982 New->setNodeId(-1); 7983 if (New != N) { 7984 ReplaceAllUsesWith(N, New); 7985 RemoveDeadNode(N); 7986 } 7987 return New; 7988 } 7989 7990 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7991 /// the line number information on the merged node since it is not possible to 7992 /// preserve the information that operation is associated with multiple lines. 7993 /// This will make the debugger working better at -O0, were there is a higher 7994 /// probability having other instructions associated with that line. 7995 /// 7996 /// For IROrder, we keep the smaller of the two 7997 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7998 DebugLoc NLoc = N->getDebugLoc(); 7999 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8000 N->setDebugLoc(DebugLoc()); 8001 } 8002 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8003 N->setIROrder(Order); 8004 return N; 8005 } 8006 8007 /// MorphNodeTo - This *mutates* the specified node to have the specified 8008 /// return type, opcode, and operands. 8009 /// 8010 /// Note that MorphNodeTo returns the resultant node. If there is already a 8011 /// node of the specified opcode and operands, it returns that node instead of 8012 /// the current one. Note that the SDLoc need not be the same. 8013 /// 8014 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8015 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8016 /// node, and because it doesn't require CSE recalculation for any of 8017 /// the node's users. 8018 /// 8019 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8020 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8021 /// the legalizer which maintain worklists that would need to be updated when 8022 /// deleting things. 8023 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8024 SDVTList VTs, ArrayRef<SDValue> Ops) { 8025 // If an identical node already exists, use it. 8026 void *IP = nullptr; 8027 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8028 FoldingSetNodeID ID; 8029 AddNodeIDNode(ID, Opc, VTs, Ops); 8030 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8031 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8032 } 8033 8034 if (!RemoveNodeFromCSEMaps(N)) 8035 IP = nullptr; 8036 8037 // Start the morphing. 8038 N->NodeType = Opc; 8039 N->ValueList = VTs.VTs; 8040 N->NumValues = VTs.NumVTs; 8041 8042 // Clear the operands list, updating used nodes to remove this from their 8043 // use list. Keep track of any operands that become dead as a result. 8044 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8045 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8046 SDUse &Use = *I++; 8047 SDNode *Used = Use.getNode(); 8048 Use.set(SDValue()); 8049 if (Used->use_empty()) 8050 DeadNodeSet.insert(Used); 8051 } 8052 8053 // For MachineNode, initialize the memory references information. 8054 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8055 MN->clearMemRefs(); 8056 8057 // Swap for an appropriately sized array from the recycler. 8058 removeOperands(N); 8059 createOperands(N, Ops); 8060 8061 // Delete any nodes that are still dead after adding the uses for the 8062 // new operands. 8063 if (!DeadNodeSet.empty()) { 8064 SmallVector<SDNode *, 16> DeadNodes; 8065 for (SDNode *N : DeadNodeSet) 8066 if (N->use_empty()) 8067 DeadNodes.push_back(N); 8068 RemoveDeadNodes(DeadNodes); 8069 } 8070 8071 if (IP) 8072 CSEMap.InsertNode(N, IP); // Memoize the new node. 8073 return N; 8074 } 8075 8076 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8077 unsigned OrigOpc = Node->getOpcode(); 8078 unsigned NewOpc; 8079 switch (OrigOpc) { 8080 default: 8081 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8082 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8083 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8084 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8085 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8086 #include "llvm/IR/ConstrainedOps.def" 8087 } 8088 8089 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8090 8091 // We're taking this node out of the chain, so we need to re-link things. 8092 SDValue InputChain = Node->getOperand(0); 8093 SDValue OutputChain = SDValue(Node, 1); 8094 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8095 8096 SmallVector<SDValue, 3> Ops; 8097 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8098 Ops.push_back(Node->getOperand(i)); 8099 8100 SDVTList VTs = getVTList(Node->getValueType(0)); 8101 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8102 8103 // MorphNodeTo can operate in two ways: if an existing node with the 8104 // specified operands exists, it can just return it. Otherwise, it 8105 // updates the node in place to have the requested operands. 8106 if (Res == Node) { 8107 // If we updated the node in place, reset the node ID. To the isel, 8108 // this should be just like a newly allocated machine node. 8109 Res->setNodeId(-1); 8110 } else { 8111 ReplaceAllUsesWith(Node, Res); 8112 RemoveDeadNode(Node); 8113 } 8114 8115 return Res; 8116 } 8117 8118 /// getMachineNode - These are used for target selectors to create a new node 8119 /// with specified return type(s), MachineInstr opcode, and operands. 8120 /// 8121 /// Note that getMachineNode returns the resultant node. If there is already a 8122 /// node of the specified opcode and operands, it returns that node instead of 8123 /// the current one. 8124 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8125 EVT VT) { 8126 SDVTList VTs = getVTList(VT); 8127 return getMachineNode(Opcode, dl, VTs, None); 8128 } 8129 8130 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8131 EVT VT, SDValue Op1) { 8132 SDVTList VTs = getVTList(VT); 8133 SDValue Ops[] = { Op1 }; 8134 return getMachineNode(Opcode, dl, VTs, Ops); 8135 } 8136 8137 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8138 EVT VT, SDValue Op1, SDValue Op2) { 8139 SDVTList VTs = getVTList(VT); 8140 SDValue Ops[] = { Op1, Op2 }; 8141 return getMachineNode(Opcode, dl, VTs, Ops); 8142 } 8143 8144 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8145 EVT VT, SDValue Op1, SDValue Op2, 8146 SDValue Op3) { 8147 SDVTList VTs = getVTList(VT); 8148 SDValue Ops[] = { Op1, Op2, Op3 }; 8149 return getMachineNode(Opcode, dl, VTs, Ops); 8150 } 8151 8152 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8153 EVT VT, ArrayRef<SDValue> Ops) { 8154 SDVTList VTs = getVTList(VT); 8155 return getMachineNode(Opcode, dl, VTs, Ops); 8156 } 8157 8158 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8159 EVT VT1, EVT VT2, SDValue Op1, 8160 SDValue Op2) { 8161 SDVTList VTs = getVTList(VT1, VT2); 8162 SDValue Ops[] = { Op1, Op2 }; 8163 return getMachineNode(Opcode, dl, VTs, Ops); 8164 } 8165 8166 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8167 EVT VT1, EVT VT2, SDValue Op1, 8168 SDValue Op2, SDValue Op3) { 8169 SDVTList VTs = getVTList(VT1, VT2); 8170 SDValue Ops[] = { Op1, Op2, Op3 }; 8171 return getMachineNode(Opcode, dl, VTs, Ops); 8172 } 8173 8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8175 EVT VT1, EVT VT2, 8176 ArrayRef<SDValue> Ops) { 8177 SDVTList VTs = getVTList(VT1, VT2); 8178 return getMachineNode(Opcode, dl, VTs, Ops); 8179 } 8180 8181 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8182 EVT VT1, EVT VT2, EVT VT3, 8183 SDValue Op1, SDValue Op2) { 8184 SDVTList VTs = getVTList(VT1, VT2, VT3); 8185 SDValue Ops[] = { Op1, Op2 }; 8186 return getMachineNode(Opcode, dl, VTs, Ops); 8187 } 8188 8189 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8190 EVT VT1, EVT VT2, EVT VT3, 8191 SDValue Op1, SDValue Op2, 8192 SDValue Op3) { 8193 SDVTList VTs = getVTList(VT1, VT2, VT3); 8194 SDValue Ops[] = { Op1, Op2, Op3 }; 8195 return getMachineNode(Opcode, dl, VTs, Ops); 8196 } 8197 8198 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8199 EVT VT1, EVT VT2, EVT VT3, 8200 ArrayRef<SDValue> Ops) { 8201 SDVTList VTs = getVTList(VT1, VT2, VT3); 8202 return getMachineNode(Opcode, dl, VTs, Ops); 8203 } 8204 8205 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8206 ArrayRef<EVT> ResultTys, 8207 ArrayRef<SDValue> Ops) { 8208 SDVTList VTs = getVTList(ResultTys); 8209 return getMachineNode(Opcode, dl, VTs, Ops); 8210 } 8211 8212 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8213 SDVTList VTs, 8214 ArrayRef<SDValue> Ops) { 8215 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8216 MachineSDNode *N; 8217 void *IP = nullptr; 8218 8219 if (DoCSE) { 8220 FoldingSetNodeID ID; 8221 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8222 IP = nullptr; 8223 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8224 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8225 } 8226 } 8227 8228 // Allocate a new MachineSDNode. 8229 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8230 createOperands(N, Ops); 8231 8232 if (DoCSE) 8233 CSEMap.InsertNode(N, IP); 8234 8235 InsertNode(N); 8236 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8237 return N; 8238 } 8239 8240 /// getTargetExtractSubreg - A convenience function for creating 8241 /// TargetOpcode::EXTRACT_SUBREG nodes. 8242 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8243 SDValue Operand) { 8244 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8245 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8246 VT, Operand, SRIdxVal); 8247 return SDValue(Subreg, 0); 8248 } 8249 8250 /// getTargetInsertSubreg - A convenience function for creating 8251 /// TargetOpcode::INSERT_SUBREG nodes. 8252 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8253 SDValue Operand, SDValue Subreg) { 8254 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8255 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8256 VT, Operand, Subreg, SRIdxVal); 8257 return SDValue(Result, 0); 8258 } 8259 8260 /// getNodeIfExists - Get the specified node if it's already available, or 8261 /// else return NULL. 8262 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8263 ArrayRef<SDValue> Ops, 8264 const SDNodeFlags Flags) { 8265 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8266 FoldingSetNodeID ID; 8267 AddNodeIDNode(ID, Opcode, VTList, Ops); 8268 void *IP = nullptr; 8269 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8270 E->intersectFlagsWith(Flags); 8271 return E; 8272 } 8273 } 8274 return nullptr; 8275 } 8276 8277 /// getDbgValue - Creates a SDDbgValue node. 8278 /// 8279 /// SDNode 8280 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8281 SDNode *N, unsigned R, bool IsIndirect, 8282 const DebugLoc &DL, unsigned O) { 8283 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8284 "Expected inlined-at fields to agree"); 8285 return new (DbgInfo->getAlloc()) 8286 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8287 } 8288 8289 /// Constant 8290 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8291 DIExpression *Expr, 8292 const Value *C, 8293 const DebugLoc &DL, unsigned O) { 8294 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8295 "Expected inlined-at fields to agree"); 8296 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8297 } 8298 8299 /// FrameIndex 8300 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8301 DIExpression *Expr, unsigned FI, 8302 bool IsIndirect, 8303 const DebugLoc &DL, 8304 unsigned O) { 8305 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8306 "Expected inlined-at fields to agree"); 8307 return new (DbgInfo->getAlloc()) 8308 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8309 } 8310 8311 /// VReg 8312 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8313 DIExpression *Expr, 8314 unsigned VReg, bool IsIndirect, 8315 const DebugLoc &DL, unsigned O) { 8316 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8317 "Expected inlined-at fields to agree"); 8318 return new (DbgInfo->getAlloc()) 8319 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8320 } 8321 8322 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8323 unsigned OffsetInBits, unsigned SizeInBits, 8324 bool InvalidateDbg) { 8325 SDNode *FromNode = From.getNode(); 8326 SDNode *ToNode = To.getNode(); 8327 assert(FromNode && ToNode && "Can't modify dbg values"); 8328 8329 // PR35338 8330 // TODO: assert(From != To && "Redundant dbg value transfer"); 8331 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8332 if (From == To || FromNode == ToNode) 8333 return; 8334 8335 if (!FromNode->getHasDebugValue()) 8336 return; 8337 8338 SmallVector<SDDbgValue *, 2> ClonedDVs; 8339 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8340 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8341 continue; 8342 8343 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8344 8345 // Just transfer the dbg value attached to From. 8346 if (Dbg->getResNo() != From.getResNo()) 8347 continue; 8348 8349 DIVariable *Var = Dbg->getVariable(); 8350 auto *Expr = Dbg->getExpression(); 8351 // If a fragment is requested, update the expression. 8352 if (SizeInBits) { 8353 // When splitting a larger (e.g., sign-extended) value whose 8354 // lower bits are described with an SDDbgValue, do not attempt 8355 // to transfer the SDDbgValue to the upper bits. 8356 if (auto FI = Expr->getFragmentInfo()) 8357 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8358 continue; 8359 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8360 SizeInBits); 8361 if (!Fragment) 8362 continue; 8363 Expr = *Fragment; 8364 } 8365 // Clone the SDDbgValue and move it to To. 8366 SDDbgValue *Clone = getDbgValue( 8367 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8368 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8369 ClonedDVs.push_back(Clone); 8370 8371 if (InvalidateDbg) { 8372 // Invalidate value and indicate the SDDbgValue should not be emitted. 8373 Dbg->setIsInvalidated(); 8374 Dbg->setIsEmitted(); 8375 } 8376 } 8377 8378 for (SDDbgValue *Dbg : ClonedDVs) 8379 AddDbgValue(Dbg, ToNode, false); 8380 } 8381 8382 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8383 if (!N.getHasDebugValue()) 8384 return; 8385 8386 SmallVector<SDDbgValue *, 2> ClonedDVs; 8387 for (auto DV : GetDbgValues(&N)) { 8388 if (DV->isInvalidated()) 8389 continue; 8390 switch (N.getOpcode()) { 8391 default: 8392 break; 8393 case ISD::ADD: 8394 SDValue N0 = N.getOperand(0); 8395 SDValue N1 = N.getOperand(1); 8396 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8397 isConstantIntBuildVectorOrConstantInt(N1)) { 8398 uint64_t Offset = N.getConstantOperandVal(1); 8399 // Rewrite an ADD constant node into a DIExpression. Since we are 8400 // performing arithmetic to compute the variable's *value* in the 8401 // DIExpression, we need to mark the expression with a 8402 // DW_OP_stack_value. 8403 auto *DIExpr = DV->getExpression(); 8404 DIExpr = 8405 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8406 SDDbgValue *Clone = 8407 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8408 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8409 ClonedDVs.push_back(Clone); 8410 DV->setIsInvalidated(); 8411 DV->setIsEmitted(); 8412 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8413 N0.getNode()->dumprFull(this); 8414 dbgs() << " into " << *DIExpr << '\n'); 8415 } 8416 } 8417 } 8418 8419 for (SDDbgValue *Dbg : ClonedDVs) 8420 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8421 } 8422 8423 /// Creates a SDDbgLabel node. 8424 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8425 const DebugLoc &DL, unsigned O) { 8426 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8427 "Expected inlined-at fields to agree"); 8428 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8429 } 8430 8431 namespace { 8432 8433 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8434 /// pointed to by a use iterator is deleted, increment the use iterator 8435 /// so that it doesn't dangle. 8436 /// 8437 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8438 SDNode::use_iterator &UI; 8439 SDNode::use_iterator &UE; 8440 8441 void NodeDeleted(SDNode *N, SDNode *E) override { 8442 // Increment the iterator as needed. 8443 while (UI != UE && N == *UI) 8444 ++UI; 8445 } 8446 8447 public: 8448 RAUWUpdateListener(SelectionDAG &d, 8449 SDNode::use_iterator &ui, 8450 SDNode::use_iterator &ue) 8451 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8452 }; 8453 8454 } // end anonymous namespace 8455 8456 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8457 /// This can cause recursive merging of nodes in the DAG. 8458 /// 8459 /// This version assumes From has a single result value. 8460 /// 8461 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8462 SDNode *From = FromN.getNode(); 8463 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8464 "Cannot replace with this method!"); 8465 assert(From != To.getNode() && "Cannot replace uses of with self"); 8466 8467 // Preserve Debug Values 8468 transferDbgValues(FromN, To); 8469 8470 // Iterate over all the existing uses of From. New uses will be added 8471 // to the beginning of the use list, which we avoid visiting. 8472 // This specifically avoids visiting uses of From that arise while the 8473 // replacement is happening, because any such uses would be the result 8474 // of CSE: If an existing node looks like From after one of its operands 8475 // is replaced by To, we don't want to replace of all its users with To 8476 // too. See PR3018 for more info. 8477 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8478 RAUWUpdateListener Listener(*this, UI, UE); 8479 while (UI != UE) { 8480 SDNode *User = *UI; 8481 8482 // This node is about to morph, remove its old self from the CSE maps. 8483 RemoveNodeFromCSEMaps(User); 8484 8485 // A user can appear in a use list multiple times, and when this 8486 // happens the uses are usually next to each other in the list. 8487 // To help reduce the number of CSE recomputations, process all 8488 // the uses of this user that we can find this way. 8489 do { 8490 SDUse &Use = UI.getUse(); 8491 ++UI; 8492 Use.set(To); 8493 if (To->isDivergent() != From->isDivergent()) 8494 updateDivergence(User); 8495 } while (UI != UE && *UI == User); 8496 // Now that we have modified User, add it back to the CSE maps. If it 8497 // already exists there, recursively merge the results together. 8498 AddModifiedNodeToCSEMaps(User); 8499 } 8500 8501 // If we just RAUW'd the root, take note. 8502 if (FromN == getRoot()) 8503 setRoot(To); 8504 } 8505 8506 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8507 /// This can cause recursive merging of nodes in the DAG. 8508 /// 8509 /// This version assumes that for each value of From, there is a 8510 /// corresponding value in To in the same position with the same type. 8511 /// 8512 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8513 #ifndef NDEBUG 8514 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8515 assert((!From->hasAnyUseOfValue(i) || 8516 From->getValueType(i) == To->getValueType(i)) && 8517 "Cannot use this version of ReplaceAllUsesWith!"); 8518 #endif 8519 8520 // Handle the trivial case. 8521 if (From == To) 8522 return; 8523 8524 // Preserve Debug Info. Only do this if there's a use. 8525 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8526 if (From->hasAnyUseOfValue(i)) { 8527 assert((i < To->getNumValues()) && "Invalid To location"); 8528 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8529 } 8530 8531 // Iterate over just the existing users of From. See the comments in 8532 // the ReplaceAllUsesWith above. 8533 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8534 RAUWUpdateListener Listener(*this, UI, UE); 8535 while (UI != UE) { 8536 SDNode *User = *UI; 8537 8538 // This node is about to morph, remove its old self from the CSE maps. 8539 RemoveNodeFromCSEMaps(User); 8540 8541 // A user can appear in a use list multiple times, and when this 8542 // happens the uses are usually next to each other in the list. 8543 // To help reduce the number of CSE recomputations, process all 8544 // the uses of this user that we can find this way. 8545 do { 8546 SDUse &Use = UI.getUse(); 8547 ++UI; 8548 Use.setNode(To); 8549 if (To->isDivergent() != From->isDivergent()) 8550 updateDivergence(User); 8551 } while (UI != UE && *UI == User); 8552 8553 // Now that we have modified User, add it back to the CSE maps. If it 8554 // already exists there, recursively merge the results together. 8555 AddModifiedNodeToCSEMaps(User); 8556 } 8557 8558 // If we just RAUW'd the root, take note. 8559 if (From == getRoot().getNode()) 8560 setRoot(SDValue(To, getRoot().getResNo())); 8561 } 8562 8563 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8564 /// This can cause recursive merging of nodes in the DAG. 8565 /// 8566 /// This version can replace From with any result values. To must match the 8567 /// number and types of values returned by From. 8568 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8569 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8570 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8571 8572 // Preserve Debug Info. 8573 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8574 transferDbgValues(SDValue(From, i), To[i]); 8575 8576 // Iterate over just the existing users of From. See the comments in 8577 // the ReplaceAllUsesWith above. 8578 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8579 RAUWUpdateListener Listener(*this, UI, UE); 8580 while (UI != UE) { 8581 SDNode *User = *UI; 8582 8583 // This node is about to morph, remove its old self from the CSE maps. 8584 RemoveNodeFromCSEMaps(User); 8585 8586 // A user can appear in a use list multiple times, and when this happens the 8587 // uses are usually next to each other in the list. To help reduce the 8588 // number of CSE and divergence recomputations, process all the uses of this 8589 // user that we can find this way. 8590 bool To_IsDivergent = false; 8591 do { 8592 SDUse &Use = UI.getUse(); 8593 const SDValue &ToOp = To[Use.getResNo()]; 8594 ++UI; 8595 Use.set(ToOp); 8596 To_IsDivergent |= ToOp->isDivergent(); 8597 } while (UI != UE && *UI == User); 8598 8599 if (To_IsDivergent != From->isDivergent()) 8600 updateDivergence(User); 8601 8602 // Now that we have modified User, add it back to the CSE maps. If it 8603 // already exists there, recursively merge the results together. 8604 AddModifiedNodeToCSEMaps(User); 8605 } 8606 8607 // If we just RAUW'd the root, take note. 8608 if (From == getRoot().getNode()) 8609 setRoot(SDValue(To[getRoot().getResNo()])); 8610 } 8611 8612 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8613 /// uses of other values produced by From.getNode() alone. The Deleted 8614 /// vector is handled the same way as for ReplaceAllUsesWith. 8615 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8616 // Handle the really simple, really trivial case efficiently. 8617 if (From == To) return; 8618 8619 // Handle the simple, trivial, case efficiently. 8620 if (From.getNode()->getNumValues() == 1) { 8621 ReplaceAllUsesWith(From, To); 8622 return; 8623 } 8624 8625 // Preserve Debug Info. 8626 transferDbgValues(From, To); 8627 8628 // Iterate over just the existing users of From. See the comments in 8629 // the ReplaceAllUsesWith above. 8630 SDNode::use_iterator UI = From.getNode()->use_begin(), 8631 UE = From.getNode()->use_end(); 8632 RAUWUpdateListener Listener(*this, UI, UE); 8633 while (UI != UE) { 8634 SDNode *User = *UI; 8635 bool UserRemovedFromCSEMaps = false; 8636 8637 // A user can appear in a use list multiple times, and when this 8638 // happens the uses are usually next to each other in the list. 8639 // To help reduce the number of CSE recomputations, process all 8640 // the uses of this user that we can find this way. 8641 do { 8642 SDUse &Use = UI.getUse(); 8643 8644 // Skip uses of different values from the same node. 8645 if (Use.getResNo() != From.getResNo()) { 8646 ++UI; 8647 continue; 8648 } 8649 8650 // If this node hasn't been modified yet, it's still in the CSE maps, 8651 // so remove its old self from the CSE maps. 8652 if (!UserRemovedFromCSEMaps) { 8653 RemoveNodeFromCSEMaps(User); 8654 UserRemovedFromCSEMaps = true; 8655 } 8656 8657 ++UI; 8658 Use.set(To); 8659 if (To->isDivergent() != From->isDivergent()) 8660 updateDivergence(User); 8661 } while (UI != UE && *UI == User); 8662 // We are iterating over all uses of the From node, so if a use 8663 // doesn't use the specific value, no changes are made. 8664 if (!UserRemovedFromCSEMaps) 8665 continue; 8666 8667 // Now that we have modified User, add it back to the CSE maps. If it 8668 // already exists there, recursively merge the results together. 8669 AddModifiedNodeToCSEMaps(User); 8670 } 8671 8672 // If we just RAUW'd the root, take note. 8673 if (From == getRoot()) 8674 setRoot(To); 8675 } 8676 8677 namespace { 8678 8679 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8680 /// to record information about a use. 8681 struct UseMemo { 8682 SDNode *User; 8683 unsigned Index; 8684 SDUse *Use; 8685 }; 8686 8687 /// operator< - Sort Memos by User. 8688 bool operator<(const UseMemo &L, const UseMemo &R) { 8689 return (intptr_t)L.User < (intptr_t)R.User; 8690 } 8691 8692 } // end anonymous namespace 8693 8694 void SelectionDAG::updateDivergence(SDNode * N) 8695 { 8696 if (TLI->isSDNodeAlwaysUniform(N)) 8697 return; 8698 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8699 for (auto &Op : N->ops()) { 8700 if (Op.Val.getValueType() != MVT::Other) 8701 IsDivergent |= Op.getNode()->isDivergent(); 8702 } 8703 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8704 N->SDNodeBits.IsDivergent = IsDivergent; 8705 for (auto U : N->uses()) { 8706 updateDivergence(U); 8707 } 8708 } 8709 } 8710 8711 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8712 DenseMap<SDNode *, unsigned> Degree; 8713 Order.reserve(AllNodes.size()); 8714 for (auto &N : allnodes()) { 8715 unsigned NOps = N.getNumOperands(); 8716 Degree[&N] = NOps; 8717 if (0 == NOps) 8718 Order.push_back(&N); 8719 } 8720 for (size_t I = 0; I != Order.size(); ++I) { 8721 SDNode *N = Order[I]; 8722 for (auto U : N->uses()) { 8723 unsigned &UnsortedOps = Degree[U]; 8724 if (0 == --UnsortedOps) 8725 Order.push_back(U); 8726 } 8727 } 8728 } 8729 8730 #ifndef NDEBUG 8731 void SelectionDAG::VerifyDAGDiverence() { 8732 std::vector<SDNode *> TopoOrder; 8733 CreateTopologicalOrder(TopoOrder); 8734 const TargetLowering &TLI = getTargetLoweringInfo(); 8735 DenseMap<const SDNode *, bool> DivergenceMap; 8736 for (auto &N : allnodes()) { 8737 DivergenceMap[&N] = false; 8738 } 8739 for (auto N : TopoOrder) { 8740 bool IsDivergent = DivergenceMap[N]; 8741 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8742 for (auto &Op : N->ops()) { 8743 if (Op.Val.getValueType() != MVT::Other) 8744 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8745 } 8746 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8747 DivergenceMap[N] = true; 8748 } 8749 } 8750 for (auto &N : allnodes()) { 8751 (void)N; 8752 assert(DivergenceMap[&N] == N.isDivergent() && 8753 "Divergence bit inconsistency detected\n"); 8754 } 8755 } 8756 #endif 8757 8758 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8759 /// uses of other values produced by From.getNode() alone. The same value 8760 /// may appear in both the From and To list. The Deleted vector is 8761 /// handled the same way as for ReplaceAllUsesWith. 8762 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8763 const SDValue *To, 8764 unsigned Num){ 8765 // Handle the simple, trivial case efficiently. 8766 if (Num == 1) 8767 return ReplaceAllUsesOfValueWith(*From, *To); 8768 8769 transferDbgValues(*From, *To); 8770 8771 // Read up all the uses and make records of them. This helps 8772 // processing new uses that are introduced during the 8773 // replacement process. 8774 SmallVector<UseMemo, 4> Uses; 8775 for (unsigned i = 0; i != Num; ++i) { 8776 unsigned FromResNo = From[i].getResNo(); 8777 SDNode *FromNode = From[i].getNode(); 8778 for (SDNode::use_iterator UI = FromNode->use_begin(), 8779 E = FromNode->use_end(); UI != E; ++UI) { 8780 SDUse &Use = UI.getUse(); 8781 if (Use.getResNo() == FromResNo) { 8782 UseMemo Memo = { *UI, i, &Use }; 8783 Uses.push_back(Memo); 8784 } 8785 } 8786 } 8787 8788 // Sort the uses, so that all the uses from a given User are together. 8789 llvm::sort(Uses); 8790 8791 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8792 UseIndex != UseIndexEnd; ) { 8793 // We know that this user uses some value of From. If it is the right 8794 // value, update it. 8795 SDNode *User = Uses[UseIndex].User; 8796 8797 // This node is about to morph, remove its old self from the CSE maps. 8798 RemoveNodeFromCSEMaps(User); 8799 8800 // The Uses array is sorted, so all the uses for a given User 8801 // are next to each other in the list. 8802 // To help reduce the number of CSE recomputations, process all 8803 // the uses of this user that we can find this way. 8804 do { 8805 unsigned i = Uses[UseIndex].Index; 8806 SDUse &Use = *Uses[UseIndex].Use; 8807 ++UseIndex; 8808 8809 Use.set(To[i]); 8810 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8811 8812 // Now that we have modified User, add it back to the CSE maps. If it 8813 // already exists there, recursively merge the results together. 8814 AddModifiedNodeToCSEMaps(User); 8815 } 8816 } 8817 8818 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8819 /// based on their topological order. It returns the maximum id and a vector 8820 /// of the SDNodes* in assigned order by reference. 8821 unsigned SelectionDAG::AssignTopologicalOrder() { 8822 unsigned DAGSize = 0; 8823 8824 // SortedPos tracks the progress of the algorithm. Nodes before it are 8825 // sorted, nodes after it are unsorted. When the algorithm completes 8826 // it is at the end of the list. 8827 allnodes_iterator SortedPos = allnodes_begin(); 8828 8829 // Visit all the nodes. Move nodes with no operands to the front of 8830 // the list immediately. Annotate nodes that do have operands with their 8831 // operand count. Before we do this, the Node Id fields of the nodes 8832 // may contain arbitrary values. After, the Node Id fields for nodes 8833 // before SortedPos will contain the topological sort index, and the 8834 // Node Id fields for nodes At SortedPos and after will contain the 8835 // count of outstanding operands. 8836 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8837 SDNode *N = &*I++; 8838 checkForCycles(N, this); 8839 unsigned Degree = N->getNumOperands(); 8840 if (Degree == 0) { 8841 // A node with no uses, add it to the result array immediately. 8842 N->setNodeId(DAGSize++); 8843 allnodes_iterator Q(N); 8844 if (Q != SortedPos) 8845 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8846 assert(SortedPos != AllNodes.end() && "Overran node list"); 8847 ++SortedPos; 8848 } else { 8849 // Temporarily use the Node Id as scratch space for the degree count. 8850 N->setNodeId(Degree); 8851 } 8852 } 8853 8854 // Visit all the nodes. As we iterate, move nodes into sorted order, 8855 // such that by the time the end is reached all nodes will be sorted. 8856 for (SDNode &Node : allnodes()) { 8857 SDNode *N = &Node; 8858 checkForCycles(N, this); 8859 // N is in sorted position, so all its uses have one less operand 8860 // that needs to be sorted. 8861 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8862 UI != UE; ++UI) { 8863 SDNode *P = *UI; 8864 unsigned Degree = P->getNodeId(); 8865 assert(Degree != 0 && "Invalid node degree"); 8866 --Degree; 8867 if (Degree == 0) { 8868 // All of P's operands are sorted, so P may sorted now. 8869 P->setNodeId(DAGSize++); 8870 if (P->getIterator() != SortedPos) 8871 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8872 assert(SortedPos != AllNodes.end() && "Overran node list"); 8873 ++SortedPos; 8874 } else { 8875 // Update P's outstanding operand count. 8876 P->setNodeId(Degree); 8877 } 8878 } 8879 if (Node.getIterator() == SortedPos) { 8880 #ifndef NDEBUG 8881 allnodes_iterator I(N); 8882 SDNode *S = &*++I; 8883 dbgs() << "Overran sorted position:\n"; 8884 S->dumprFull(this); dbgs() << "\n"; 8885 dbgs() << "Checking if this is due to cycles\n"; 8886 checkForCycles(this, true); 8887 #endif 8888 llvm_unreachable(nullptr); 8889 } 8890 } 8891 8892 assert(SortedPos == AllNodes.end() && 8893 "Topological sort incomplete!"); 8894 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8895 "First node in topological sort is not the entry token!"); 8896 assert(AllNodes.front().getNodeId() == 0 && 8897 "First node in topological sort has non-zero id!"); 8898 assert(AllNodes.front().getNumOperands() == 0 && 8899 "First node in topological sort has operands!"); 8900 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8901 "Last node in topologic sort has unexpected id!"); 8902 assert(AllNodes.back().use_empty() && 8903 "Last node in topologic sort has users!"); 8904 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8905 return DAGSize; 8906 } 8907 8908 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8909 /// value is produced by SD. 8910 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8911 if (SD) { 8912 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8913 SD->setHasDebugValue(true); 8914 } 8915 DbgInfo->add(DB, SD, isParameter); 8916 } 8917 8918 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8919 DbgInfo->add(DB); 8920 } 8921 8922 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8923 SDValue NewMemOp) { 8924 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8925 // The new memory operation must have the same position as the old load in 8926 // terms of memory dependency. Create a TokenFactor for the old load and new 8927 // memory operation and update uses of the old load's output chain to use that 8928 // TokenFactor. 8929 SDValue OldChain = SDValue(OldLoad, 1); 8930 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8931 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8932 return NewChain; 8933 8934 SDValue TokenFactor = 8935 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8936 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8937 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8938 return TokenFactor; 8939 } 8940 8941 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8942 Function **OutFunction) { 8943 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8944 8945 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8946 auto *Module = MF->getFunction().getParent(); 8947 auto *Function = Module->getFunction(Symbol); 8948 8949 if (OutFunction != nullptr) 8950 *OutFunction = Function; 8951 8952 if (Function != nullptr) { 8953 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8954 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8955 } 8956 8957 std::string ErrorStr; 8958 raw_string_ostream ErrorFormatter(ErrorStr); 8959 8960 ErrorFormatter << "Undefined external symbol "; 8961 ErrorFormatter << '"' << Symbol << '"'; 8962 ErrorFormatter.flush(); 8963 8964 report_fatal_error(ErrorStr); 8965 } 8966 8967 //===----------------------------------------------------------------------===// 8968 // SDNode Class 8969 //===----------------------------------------------------------------------===// 8970 8971 bool llvm::isNullConstant(SDValue V) { 8972 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8973 return Const != nullptr && Const->isNullValue(); 8974 } 8975 8976 bool llvm::isNullFPConstant(SDValue V) { 8977 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8978 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8979 } 8980 8981 bool llvm::isAllOnesConstant(SDValue V) { 8982 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8983 return Const != nullptr && Const->isAllOnesValue(); 8984 } 8985 8986 bool llvm::isOneConstant(SDValue V) { 8987 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8988 return Const != nullptr && Const->isOne(); 8989 } 8990 8991 SDValue llvm::peekThroughBitcasts(SDValue V) { 8992 while (V.getOpcode() == ISD::BITCAST) 8993 V = V.getOperand(0); 8994 return V; 8995 } 8996 8997 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8998 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8999 V = V.getOperand(0); 9000 return V; 9001 } 9002 9003 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9004 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9005 V = V.getOperand(0); 9006 return V; 9007 } 9008 9009 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9010 if (V.getOpcode() != ISD::XOR) 9011 return false; 9012 V = peekThroughBitcasts(V.getOperand(1)); 9013 unsigned NumBits = V.getScalarValueSizeInBits(); 9014 ConstantSDNode *C = 9015 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9016 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9017 } 9018 9019 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9020 bool AllowTruncation) { 9021 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9022 return CN; 9023 9024 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9025 BitVector UndefElements; 9026 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9027 9028 // BuildVectors can truncate their operands. Ignore that case here unless 9029 // AllowTruncation is set. 9030 if (CN && (UndefElements.none() || AllowUndefs)) { 9031 EVT CVT = CN->getValueType(0); 9032 EVT NSVT = N.getValueType().getScalarType(); 9033 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9034 if (AllowTruncation || (CVT == NSVT)) 9035 return CN; 9036 } 9037 } 9038 9039 return nullptr; 9040 } 9041 9042 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9043 bool AllowUndefs, 9044 bool AllowTruncation) { 9045 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9046 return CN; 9047 9048 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9049 BitVector UndefElements; 9050 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9051 9052 // BuildVectors can truncate their operands. Ignore that case here unless 9053 // AllowTruncation is set. 9054 if (CN && (UndefElements.none() || AllowUndefs)) { 9055 EVT CVT = CN->getValueType(0); 9056 EVT NSVT = N.getValueType().getScalarType(); 9057 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9058 if (AllowTruncation || (CVT == NSVT)) 9059 return CN; 9060 } 9061 } 9062 9063 return nullptr; 9064 } 9065 9066 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9067 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9068 return CN; 9069 9070 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9071 BitVector UndefElements; 9072 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9073 if (CN && (UndefElements.none() || AllowUndefs)) 9074 return CN; 9075 } 9076 9077 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9078 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9079 return CN; 9080 9081 return nullptr; 9082 } 9083 9084 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9085 const APInt &DemandedElts, 9086 bool AllowUndefs) { 9087 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9088 return CN; 9089 9090 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9091 BitVector UndefElements; 9092 ConstantFPSDNode *CN = 9093 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9094 if (CN && (UndefElements.none() || AllowUndefs)) 9095 return CN; 9096 } 9097 9098 return nullptr; 9099 } 9100 9101 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9102 // TODO: may want to use peekThroughBitcast() here. 9103 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9104 return C && C->isNullValue(); 9105 } 9106 9107 bool llvm::isOneOrOneSplat(SDValue N) { 9108 // TODO: may want to use peekThroughBitcast() here. 9109 unsigned BitWidth = N.getScalarValueSizeInBits(); 9110 ConstantSDNode *C = isConstOrConstSplat(N); 9111 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9112 } 9113 9114 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9115 N = peekThroughBitcasts(N); 9116 unsigned BitWidth = N.getScalarValueSizeInBits(); 9117 ConstantSDNode *C = isConstOrConstSplat(N); 9118 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9119 } 9120 9121 HandleSDNode::~HandleSDNode() { 9122 DropOperands(); 9123 } 9124 9125 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9126 const DebugLoc &DL, 9127 const GlobalValue *GA, EVT VT, 9128 int64_t o, unsigned TF) 9129 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9130 TheGlobal = GA; 9131 } 9132 9133 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9134 EVT VT, unsigned SrcAS, 9135 unsigned DestAS) 9136 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9137 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9138 9139 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9140 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9141 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9142 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9143 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9144 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9145 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9146 9147 // We check here that the size of the memory operand fits within the size of 9148 // the MMO. This is because the MMO might indicate only a possible address 9149 // range instead of specifying the affected memory addresses precisely. 9150 // TODO: Make MachineMemOperands aware of scalable vectors. 9151 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9152 "Size mismatch!"); 9153 } 9154 9155 /// Profile - Gather unique data for the node. 9156 /// 9157 void SDNode::Profile(FoldingSetNodeID &ID) const { 9158 AddNodeIDNode(ID, this); 9159 } 9160 9161 namespace { 9162 9163 struct EVTArray { 9164 std::vector<EVT> VTs; 9165 9166 EVTArray() { 9167 VTs.reserve(MVT::LAST_VALUETYPE); 9168 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9169 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9170 } 9171 }; 9172 9173 } // end anonymous namespace 9174 9175 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9176 static ManagedStatic<EVTArray> SimpleVTArray; 9177 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9178 9179 /// getValueTypeList - Return a pointer to the specified value type. 9180 /// 9181 const EVT *SDNode::getValueTypeList(EVT VT) { 9182 if (VT.isExtended()) { 9183 sys::SmartScopedLock<true> Lock(*VTMutex); 9184 return &(*EVTs->insert(VT).first); 9185 } else { 9186 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9187 "Value type out of range!"); 9188 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9189 } 9190 } 9191 9192 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9193 /// indicated value. This method ignores uses of other values defined by this 9194 /// operation. 9195 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9196 assert(Value < getNumValues() && "Bad value!"); 9197 9198 // TODO: Only iterate over uses of a given value of the node 9199 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9200 if (UI.getUse().getResNo() == Value) { 9201 if (NUses == 0) 9202 return false; 9203 --NUses; 9204 } 9205 } 9206 9207 // Found exactly the right number of uses? 9208 return NUses == 0; 9209 } 9210 9211 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9212 /// value. This method ignores uses of other values defined by this operation. 9213 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9214 assert(Value < getNumValues() && "Bad value!"); 9215 9216 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9217 if (UI.getUse().getResNo() == Value) 9218 return true; 9219 9220 return false; 9221 } 9222 9223 /// isOnlyUserOf - Return true if this node is the only use of N. 9224 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9225 bool Seen = false; 9226 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9227 SDNode *User = *I; 9228 if (User == this) 9229 Seen = true; 9230 else 9231 return false; 9232 } 9233 9234 return Seen; 9235 } 9236 9237 /// Return true if the only users of N are contained in Nodes. 9238 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9239 bool Seen = false; 9240 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9241 SDNode *User = *I; 9242 if (llvm::any_of(Nodes, 9243 [&User](const SDNode *Node) { return User == Node; })) 9244 Seen = true; 9245 else 9246 return false; 9247 } 9248 9249 return Seen; 9250 } 9251 9252 /// isOperand - Return true if this node is an operand of N. 9253 bool SDValue::isOperandOf(const SDNode *N) const { 9254 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9255 } 9256 9257 bool SDNode::isOperandOf(const SDNode *N) const { 9258 return any_of(N->op_values(), 9259 [this](SDValue Op) { return this == Op.getNode(); }); 9260 } 9261 9262 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9263 /// be a chain) reaches the specified operand without crossing any 9264 /// side-effecting instructions on any chain path. In practice, this looks 9265 /// through token factors and non-volatile loads. In order to remain efficient, 9266 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9267 /// 9268 /// Note that we only need to examine chains when we're searching for 9269 /// side-effects; SelectionDAG requires that all side-effects are represented 9270 /// by chains, even if another operand would force a specific ordering. This 9271 /// constraint is necessary to allow transformations like splitting loads. 9272 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9273 unsigned Depth) const { 9274 if (*this == Dest) return true; 9275 9276 // Don't search too deeply, we just want to be able to see through 9277 // TokenFactor's etc. 9278 if (Depth == 0) return false; 9279 9280 // If this is a token factor, all inputs to the TF happen in parallel. 9281 if (getOpcode() == ISD::TokenFactor) { 9282 // First, try a shallow search. 9283 if (is_contained((*this)->ops(), Dest)) { 9284 // We found the chain we want as an operand of this TokenFactor. 9285 // Essentially, we reach the chain without side-effects if we could 9286 // serialize the TokenFactor into a simple chain of operations with 9287 // Dest as the last operation. This is automatically true if the 9288 // chain has one use: there are no other ordering constraints. 9289 // If the chain has more than one use, we give up: some other 9290 // use of Dest might force a side-effect between Dest and the current 9291 // node. 9292 if (Dest.hasOneUse()) 9293 return true; 9294 } 9295 // Next, try a deep search: check whether every operand of the TokenFactor 9296 // reaches Dest. 9297 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9298 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9299 }); 9300 } 9301 9302 // Loads don't have side effects, look through them. 9303 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9304 if (Ld->isUnordered()) 9305 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9306 } 9307 return false; 9308 } 9309 9310 bool SDNode::hasPredecessor(const SDNode *N) const { 9311 SmallPtrSet<const SDNode *, 32> Visited; 9312 SmallVector<const SDNode *, 16> Worklist; 9313 Worklist.push_back(this); 9314 return hasPredecessorHelper(N, Visited, Worklist); 9315 } 9316 9317 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9318 this->Flags.intersectWith(Flags); 9319 } 9320 9321 SDValue 9322 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9323 ArrayRef<ISD::NodeType> CandidateBinOps, 9324 bool AllowPartials) { 9325 // The pattern must end in an extract from index 0. 9326 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9327 !isNullConstant(Extract->getOperand(1))) 9328 return SDValue(); 9329 9330 // Match against one of the candidate binary ops. 9331 SDValue Op = Extract->getOperand(0); 9332 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9333 return Op.getOpcode() == unsigned(BinOp); 9334 })) 9335 return SDValue(); 9336 9337 // Floating-point reductions may require relaxed constraints on the final step 9338 // of the reduction because they may reorder intermediate operations. 9339 unsigned CandidateBinOp = Op.getOpcode(); 9340 if (Op.getValueType().isFloatingPoint()) { 9341 SDNodeFlags Flags = Op->getFlags(); 9342 switch (CandidateBinOp) { 9343 case ISD::FADD: 9344 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9345 return SDValue(); 9346 break; 9347 default: 9348 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9349 } 9350 } 9351 9352 // Matching failed - attempt to see if we did enough stages that a partial 9353 // reduction from a subvector is possible. 9354 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9355 if (!AllowPartials || !Op) 9356 return SDValue(); 9357 EVT OpVT = Op.getValueType(); 9358 EVT OpSVT = OpVT.getScalarType(); 9359 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9360 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9361 return SDValue(); 9362 BinOp = (ISD::NodeType)CandidateBinOp; 9363 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9364 getVectorIdxConstant(0, SDLoc(Op))); 9365 }; 9366 9367 // At each stage, we're looking for something that looks like: 9368 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9369 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9370 // i32 undef, i32 undef, i32 undef, i32 undef> 9371 // %a = binop <8 x i32> %op, %s 9372 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9373 // we expect something like: 9374 // <4,5,6,7,u,u,u,u> 9375 // <2,3,u,u,u,u,u,u> 9376 // <1,u,u,u,u,u,u,u> 9377 // While a partial reduction match would be: 9378 // <2,3,u,u,u,u,u,u> 9379 // <1,u,u,u,u,u,u,u> 9380 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9381 SDValue PrevOp; 9382 for (unsigned i = 0; i < Stages; ++i) { 9383 unsigned MaskEnd = (1 << i); 9384 9385 if (Op.getOpcode() != CandidateBinOp) 9386 return PartialReduction(PrevOp, MaskEnd); 9387 9388 SDValue Op0 = Op.getOperand(0); 9389 SDValue Op1 = Op.getOperand(1); 9390 9391 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9392 if (Shuffle) { 9393 Op = Op1; 9394 } else { 9395 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9396 Op = Op0; 9397 } 9398 9399 // The first operand of the shuffle should be the same as the other operand 9400 // of the binop. 9401 if (!Shuffle || Shuffle->getOperand(0) != Op) 9402 return PartialReduction(PrevOp, MaskEnd); 9403 9404 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9405 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9406 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9407 return PartialReduction(PrevOp, MaskEnd); 9408 9409 PrevOp = Op; 9410 } 9411 9412 // Handle subvector reductions, which tend to appear after the shuffle 9413 // reduction stages. 9414 while (Op.getOpcode() == CandidateBinOp) { 9415 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9416 SDValue Op0 = Op.getOperand(0); 9417 SDValue Op1 = Op.getOperand(1); 9418 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9419 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9420 Op0.getOperand(0) != Op1.getOperand(0)) 9421 break; 9422 SDValue Src = Op0.getOperand(0); 9423 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9424 if (NumSrcElts != (2 * NumElts)) 9425 break; 9426 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9427 Op1.getConstantOperandAPInt(1) == NumElts) && 9428 !(Op1.getConstantOperandAPInt(1) == 0 && 9429 Op0.getConstantOperandAPInt(1) == NumElts)) 9430 break; 9431 Op = Src; 9432 } 9433 9434 BinOp = (ISD::NodeType)CandidateBinOp; 9435 return Op; 9436 } 9437 9438 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9439 assert(N->getNumValues() == 1 && 9440 "Can't unroll a vector with multiple results!"); 9441 9442 EVT VT = N->getValueType(0); 9443 unsigned NE = VT.getVectorNumElements(); 9444 EVT EltVT = VT.getVectorElementType(); 9445 SDLoc dl(N); 9446 9447 SmallVector<SDValue, 8> Scalars; 9448 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9449 9450 // If ResNE is 0, fully unroll the vector op. 9451 if (ResNE == 0) 9452 ResNE = NE; 9453 else if (NE > ResNE) 9454 NE = ResNE; 9455 9456 unsigned i; 9457 for (i= 0; i != NE; ++i) { 9458 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9459 SDValue Operand = N->getOperand(j); 9460 EVT OperandVT = Operand.getValueType(); 9461 if (OperandVT.isVector()) { 9462 // A vector operand; extract a single element. 9463 EVT OperandEltVT = OperandVT.getVectorElementType(); 9464 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9465 Operand, getVectorIdxConstant(i, dl)); 9466 } else { 9467 // A scalar operand; just use it as is. 9468 Operands[j] = Operand; 9469 } 9470 } 9471 9472 switch (N->getOpcode()) { 9473 default: { 9474 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9475 N->getFlags())); 9476 break; 9477 } 9478 case ISD::VSELECT: 9479 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9480 break; 9481 case ISD::SHL: 9482 case ISD::SRA: 9483 case ISD::SRL: 9484 case ISD::ROTL: 9485 case ISD::ROTR: 9486 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9487 getShiftAmountOperand(Operands[0].getValueType(), 9488 Operands[1]))); 9489 break; 9490 case ISD::SIGN_EXTEND_INREG: { 9491 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9492 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9493 Operands[0], 9494 getValueType(ExtVT))); 9495 } 9496 } 9497 } 9498 9499 for (; i < ResNE; ++i) 9500 Scalars.push_back(getUNDEF(EltVT)); 9501 9502 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9503 return getBuildVector(VecVT, dl, Scalars); 9504 } 9505 9506 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9507 SDNode *N, unsigned ResNE) { 9508 unsigned Opcode = N->getOpcode(); 9509 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9510 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9511 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9512 "Expected an overflow opcode"); 9513 9514 EVT ResVT = N->getValueType(0); 9515 EVT OvVT = N->getValueType(1); 9516 EVT ResEltVT = ResVT.getVectorElementType(); 9517 EVT OvEltVT = OvVT.getVectorElementType(); 9518 SDLoc dl(N); 9519 9520 // If ResNE is 0, fully unroll the vector op. 9521 unsigned NE = ResVT.getVectorNumElements(); 9522 if (ResNE == 0) 9523 ResNE = NE; 9524 else if (NE > ResNE) 9525 NE = ResNE; 9526 9527 SmallVector<SDValue, 8> LHSScalars; 9528 SmallVector<SDValue, 8> RHSScalars; 9529 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9530 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9531 9532 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9533 SDVTList VTs = getVTList(ResEltVT, SVT); 9534 SmallVector<SDValue, 8> ResScalars; 9535 SmallVector<SDValue, 8> OvScalars; 9536 for (unsigned i = 0; i < NE; ++i) { 9537 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9538 SDValue Ov = 9539 getSelect(dl, OvEltVT, Res.getValue(1), 9540 getBoolConstant(true, dl, OvEltVT, ResVT), 9541 getConstant(0, dl, OvEltVT)); 9542 9543 ResScalars.push_back(Res); 9544 OvScalars.push_back(Ov); 9545 } 9546 9547 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9548 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9549 9550 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9551 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9552 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9553 getBuildVector(NewOvVT, dl, OvScalars)); 9554 } 9555 9556 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9557 LoadSDNode *Base, 9558 unsigned Bytes, 9559 int Dist) const { 9560 if (LD->isVolatile() || Base->isVolatile()) 9561 return false; 9562 // TODO: probably too restrictive for atomics, revisit 9563 if (!LD->isSimple()) 9564 return false; 9565 if (LD->isIndexed() || Base->isIndexed()) 9566 return false; 9567 if (LD->getChain() != Base->getChain()) 9568 return false; 9569 EVT VT = LD->getValueType(0); 9570 if (VT.getSizeInBits() / 8 != Bytes) 9571 return false; 9572 9573 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9574 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9575 9576 int64_t Offset = 0; 9577 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9578 return (Dist * Bytes == Offset); 9579 return false; 9580 } 9581 9582 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9583 /// if it cannot be inferred. 9584 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9585 // If this is a GlobalAddress + cst, return the alignment. 9586 const GlobalValue *GV = nullptr; 9587 int64_t GVOffset = 0; 9588 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9589 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9590 KnownBits Known(PtrWidth); 9591 llvm::computeKnownBits(GV, Known, getDataLayout()); 9592 unsigned AlignBits = Known.countMinTrailingZeros(); 9593 if (AlignBits) 9594 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9595 } 9596 9597 // If this is a direct reference to a stack slot, use information about the 9598 // stack slot's alignment. 9599 int FrameIdx = INT_MIN; 9600 int64_t FrameOffset = 0; 9601 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9602 FrameIdx = FI->getIndex(); 9603 } else if (isBaseWithConstantOffset(Ptr) && 9604 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9605 // Handle FI+Cst 9606 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9607 FrameOffset = Ptr.getConstantOperandVal(1); 9608 } 9609 9610 if (FrameIdx != INT_MIN) { 9611 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9612 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9613 } 9614 9615 return None; 9616 } 9617 9618 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9619 /// which is split (or expanded) into two not necessarily identical pieces. 9620 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9621 // Currently all types are split in half. 9622 EVT LoVT, HiVT; 9623 if (!VT.isVector()) 9624 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9625 else 9626 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9627 9628 return std::make_pair(LoVT, HiVT); 9629 } 9630 9631 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9632 /// type, dependent on an enveloping VT that has been split into two identical 9633 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9634 std::pair<EVT, EVT> 9635 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9636 bool *HiIsEmpty) const { 9637 EVT EltTp = VT.getVectorElementType(); 9638 // Examples: 9639 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9640 // custom VL=9 with enveloping VL=8/8 yields 8/1 9641 // custom VL=10 with enveloping VL=8/8 yields 8/2 9642 // etc. 9643 ElementCount VTNumElts = VT.getVectorElementCount(); 9644 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9645 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9646 "Mixing fixed width and scalable vectors when enveloping a type"); 9647 EVT LoVT, HiVT; 9648 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9649 LoVT = EnvVT; 9650 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9651 *HiIsEmpty = false; 9652 } else { 9653 // Flag that hi type has zero storage size, but return split envelop type 9654 // (this would be easier if vector types with zero elements were allowed). 9655 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9656 HiVT = EnvVT; 9657 *HiIsEmpty = true; 9658 } 9659 return std::make_pair(LoVT, HiVT); 9660 } 9661 9662 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9663 /// low/high part. 9664 std::pair<SDValue, SDValue> 9665 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9666 const EVT &HiVT) { 9667 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9668 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9669 "Splitting vector with an invalid mixture of fixed and scalable " 9670 "vector types"); 9671 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9672 N.getValueType().getVectorMinNumElements() && 9673 "More vector elements requested than available!"); 9674 SDValue Lo, Hi; 9675 Lo = 9676 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9677 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9678 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9679 // IDX with the runtime scaling factor of the result vector type. For 9680 // fixed-width result vectors, that runtime scaling factor is 1. 9681 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9682 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9683 return std::make_pair(Lo, Hi); 9684 } 9685 9686 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9687 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9688 EVT VT = N.getValueType(); 9689 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9690 NextPowerOf2(VT.getVectorNumElements())); 9691 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9692 getVectorIdxConstant(0, DL)); 9693 } 9694 9695 void SelectionDAG::ExtractVectorElements(SDValue Op, 9696 SmallVectorImpl<SDValue> &Args, 9697 unsigned Start, unsigned Count, 9698 EVT EltVT) { 9699 EVT VT = Op.getValueType(); 9700 if (Count == 0) 9701 Count = VT.getVectorNumElements(); 9702 if (EltVT == EVT()) 9703 EltVT = VT.getVectorElementType(); 9704 SDLoc SL(Op); 9705 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9706 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9707 getVectorIdxConstant(i, SL))); 9708 } 9709 } 9710 9711 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9712 unsigned GlobalAddressSDNode::getAddressSpace() const { 9713 return getGlobal()->getType()->getAddressSpace(); 9714 } 9715 9716 Type *ConstantPoolSDNode::getType() const { 9717 if (isMachineConstantPoolEntry()) 9718 return Val.MachineCPVal->getType(); 9719 return Val.ConstVal->getType(); 9720 } 9721 9722 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9723 unsigned &SplatBitSize, 9724 bool &HasAnyUndefs, 9725 unsigned MinSplatBits, 9726 bool IsBigEndian) const { 9727 EVT VT = getValueType(0); 9728 assert(VT.isVector() && "Expected a vector type"); 9729 unsigned VecWidth = VT.getSizeInBits(); 9730 if (MinSplatBits > VecWidth) 9731 return false; 9732 9733 // FIXME: The widths are based on this node's type, but build vectors can 9734 // truncate their operands. 9735 SplatValue = APInt(VecWidth, 0); 9736 SplatUndef = APInt(VecWidth, 0); 9737 9738 // Get the bits. Bits with undefined values (when the corresponding element 9739 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9740 // in SplatValue. If any of the values are not constant, give up and return 9741 // false. 9742 unsigned int NumOps = getNumOperands(); 9743 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9744 unsigned EltWidth = VT.getScalarSizeInBits(); 9745 9746 for (unsigned j = 0; j < NumOps; ++j) { 9747 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9748 SDValue OpVal = getOperand(i); 9749 unsigned BitPos = j * EltWidth; 9750 9751 if (OpVal.isUndef()) 9752 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9753 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9754 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9755 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9756 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9757 else 9758 return false; 9759 } 9760 9761 // The build_vector is all constants or undefs. Find the smallest element 9762 // size that splats the vector. 9763 HasAnyUndefs = (SplatUndef != 0); 9764 9765 // FIXME: This does not work for vectors with elements less than 8 bits. 9766 while (VecWidth > 8) { 9767 unsigned HalfSize = VecWidth / 2; 9768 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9769 APInt LowValue = SplatValue.trunc(HalfSize); 9770 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9771 APInt LowUndef = SplatUndef.trunc(HalfSize); 9772 9773 // If the two halves do not match (ignoring undef bits), stop here. 9774 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9775 MinSplatBits > HalfSize) 9776 break; 9777 9778 SplatValue = HighValue | LowValue; 9779 SplatUndef = HighUndef & LowUndef; 9780 9781 VecWidth = HalfSize; 9782 } 9783 9784 SplatBitSize = VecWidth; 9785 return true; 9786 } 9787 9788 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9789 BitVector *UndefElements) const { 9790 if (UndefElements) { 9791 UndefElements->clear(); 9792 UndefElements->resize(getNumOperands()); 9793 } 9794 assert(getNumOperands() == DemandedElts.getBitWidth() && 9795 "Unexpected vector size"); 9796 if (!DemandedElts) 9797 return SDValue(); 9798 SDValue Splatted; 9799 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9800 if (!DemandedElts[i]) 9801 continue; 9802 SDValue Op = getOperand(i); 9803 if (Op.isUndef()) { 9804 if (UndefElements) 9805 (*UndefElements)[i] = true; 9806 } else if (!Splatted) { 9807 Splatted = Op; 9808 } else if (Splatted != Op) { 9809 return SDValue(); 9810 } 9811 } 9812 9813 if (!Splatted) { 9814 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9815 assert(getOperand(FirstDemandedIdx).isUndef() && 9816 "Can only have a splat without a constant for all undefs."); 9817 return getOperand(FirstDemandedIdx); 9818 } 9819 9820 return Splatted; 9821 } 9822 9823 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9824 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9825 return getSplatValue(DemandedElts, UndefElements); 9826 } 9827 9828 ConstantSDNode * 9829 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9830 BitVector *UndefElements) const { 9831 return dyn_cast_or_null<ConstantSDNode>( 9832 getSplatValue(DemandedElts, UndefElements)); 9833 } 9834 9835 ConstantSDNode * 9836 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9837 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9838 } 9839 9840 ConstantFPSDNode * 9841 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9842 BitVector *UndefElements) const { 9843 return dyn_cast_or_null<ConstantFPSDNode>( 9844 getSplatValue(DemandedElts, UndefElements)); 9845 } 9846 9847 ConstantFPSDNode * 9848 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9849 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9850 } 9851 9852 int32_t 9853 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9854 uint32_t BitWidth) const { 9855 if (ConstantFPSDNode *CN = 9856 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9857 bool IsExact; 9858 APSInt IntVal(BitWidth); 9859 const APFloat &APF = CN->getValueAPF(); 9860 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9861 APFloat::opOK || 9862 !IsExact) 9863 return -1; 9864 9865 return IntVal.exactLogBase2(); 9866 } 9867 return -1; 9868 } 9869 9870 bool BuildVectorSDNode::isConstant() const { 9871 for (const SDValue &Op : op_values()) { 9872 unsigned Opc = Op.getOpcode(); 9873 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9874 return false; 9875 } 9876 return true; 9877 } 9878 9879 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9880 // Find the first non-undef value in the shuffle mask. 9881 unsigned i, e; 9882 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9883 /* search */; 9884 9885 // If all elements are undefined, this shuffle can be considered a splat 9886 // (although it should eventually get simplified away completely). 9887 if (i == e) 9888 return true; 9889 9890 // Make sure all remaining elements are either undef or the same as the first 9891 // non-undef value. 9892 for (int Idx = Mask[i]; i != e; ++i) 9893 if (Mask[i] >= 0 && Mask[i] != Idx) 9894 return false; 9895 return true; 9896 } 9897 9898 // Returns the SDNode if it is a constant integer BuildVector 9899 // or constant integer. 9900 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9901 if (isa<ConstantSDNode>(N)) 9902 return N.getNode(); 9903 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9904 return N.getNode(); 9905 // Treat a GlobalAddress supporting constant offset folding as a 9906 // constant integer. 9907 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9908 if (GA->getOpcode() == ISD::GlobalAddress && 9909 TLI->isOffsetFoldingLegal(GA)) 9910 return GA; 9911 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9912 isa<ConstantSDNode>(N.getOperand(0))) 9913 return N.getNode(); 9914 return nullptr; 9915 } 9916 9917 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9918 if (isa<ConstantFPSDNode>(N)) 9919 return N.getNode(); 9920 9921 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9922 return N.getNode(); 9923 9924 return nullptr; 9925 } 9926 9927 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9928 assert(!Node->OperandList && "Node already has operands"); 9929 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9930 "too many operands to fit into SDNode"); 9931 SDUse *Ops = OperandRecycler.allocate( 9932 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9933 9934 bool IsDivergent = false; 9935 for (unsigned I = 0; I != Vals.size(); ++I) { 9936 Ops[I].setUser(Node); 9937 Ops[I].setInitial(Vals[I]); 9938 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9939 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9940 } 9941 Node->NumOperands = Vals.size(); 9942 Node->OperandList = Ops; 9943 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9944 if (!TLI->isSDNodeAlwaysUniform(Node)) 9945 Node->SDNodeBits.IsDivergent = IsDivergent; 9946 checkForCycles(Node); 9947 } 9948 9949 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9950 SmallVectorImpl<SDValue> &Vals) { 9951 size_t Limit = SDNode::getMaxNumOperands(); 9952 while (Vals.size() > Limit) { 9953 unsigned SliceIdx = Vals.size() - Limit; 9954 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9955 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9956 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9957 Vals.emplace_back(NewTF); 9958 } 9959 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9960 } 9961 9962 #ifndef NDEBUG 9963 static void checkForCyclesHelper(const SDNode *N, 9964 SmallPtrSetImpl<const SDNode*> &Visited, 9965 SmallPtrSetImpl<const SDNode*> &Checked, 9966 const llvm::SelectionDAG *DAG) { 9967 // If this node has already been checked, don't check it again. 9968 if (Checked.count(N)) 9969 return; 9970 9971 // If a node has already been visited on this depth-first walk, reject it as 9972 // a cycle. 9973 if (!Visited.insert(N).second) { 9974 errs() << "Detected cycle in SelectionDAG\n"; 9975 dbgs() << "Offending node:\n"; 9976 N->dumprFull(DAG); dbgs() << "\n"; 9977 abort(); 9978 } 9979 9980 for (const SDValue &Op : N->op_values()) 9981 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9982 9983 Checked.insert(N); 9984 Visited.erase(N); 9985 } 9986 #endif 9987 9988 void llvm::checkForCycles(const llvm::SDNode *N, 9989 const llvm::SelectionDAG *DAG, 9990 bool force) { 9991 #ifndef NDEBUG 9992 bool check = force; 9993 #ifdef EXPENSIVE_CHECKS 9994 check = true; 9995 #endif // EXPENSIVE_CHECKS 9996 if (check) { 9997 assert(N && "Checking nonexistent SDNode"); 9998 SmallPtrSet<const SDNode*, 32> visited; 9999 SmallPtrSet<const SDNode*, 32> checked; 10000 checkForCyclesHelper(N, visited, checked, DAG); 10001 } 10002 #endif // !NDEBUG 10003 } 10004 10005 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10006 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10007 } 10008