1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode() && 310 ISD::SPLAT_VECTOR != Op.getOpcode()) 311 return false; 312 313 EVT SVT = Op.getValueType().getScalarType(); 314 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 315 if (AllowUndefs && Op.getOperand(i).isUndef()) { 316 if (!Match(nullptr)) 317 return false; 318 continue; 319 } 320 321 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 322 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 323 return false; 324 } 325 return true; 326 } 327 328 bool ISD::matchBinaryPredicate( 329 SDValue LHS, SDValue RHS, 330 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 331 bool AllowUndefs, bool AllowTypeMismatch) { 332 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 333 return false; 334 335 // TODO: Add support for scalar UNDEF cases? 336 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 337 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 338 return Match(LHSCst, RHSCst); 339 340 // TODO: Add support for vector UNDEF cases? 341 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 342 ISD::BUILD_VECTOR != RHS.getOpcode()) 343 return false; 344 345 EVT SVT = LHS.getValueType().getScalarType(); 346 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 347 SDValue LHSOp = LHS.getOperand(i); 348 SDValue RHSOp = RHS.getOperand(i); 349 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 350 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 351 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 352 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 353 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 354 return false; 355 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 356 LHSOp.getValueType() != RHSOp.getValueType())) 357 return false; 358 if (!Match(LHSCst, RHSCst)) 359 return false; 360 } 361 return true; 362 } 363 364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 365 switch (VecReduceOpcode) { 366 default: 367 llvm_unreachable("Expected VECREDUCE opcode"); 368 case ISD::VECREDUCE_FADD: 369 case ISD::VECREDUCE_SEQ_FADD: 370 return ISD::FADD; 371 case ISD::VECREDUCE_FMUL: 372 case ISD::VECREDUCE_SEQ_FMUL: 373 return ISD::FMUL; 374 case ISD::VECREDUCE_ADD: 375 return ISD::ADD; 376 case ISD::VECREDUCE_MUL: 377 return ISD::MUL; 378 case ISD::VECREDUCE_AND: 379 return ISD::AND; 380 case ISD::VECREDUCE_OR: 381 return ISD::OR; 382 case ISD::VECREDUCE_XOR: 383 return ISD::XOR; 384 case ISD::VECREDUCE_SMAX: 385 return ISD::SMAX; 386 case ISD::VECREDUCE_SMIN: 387 return ISD::SMIN; 388 case ISD::VECREDUCE_UMAX: 389 return ISD::UMAX; 390 case ISD::VECREDUCE_UMIN: 391 return ISD::UMIN; 392 case ISD::VECREDUCE_FMAX: 393 return ISD::FMAXNUM; 394 case ISD::VECREDUCE_FMIN: 395 return ISD::FMINNUM; 396 } 397 } 398 399 bool ISD::isVPOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: 402 return false; 403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 404 case ISD::SDOPC: \ 405 return true; 406 #include "llvm/IR/VPIntrinsics.def" 407 } 408 } 409 410 /// The operand position of the vector mask. 411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 412 switch (Opcode) { 413 default: 414 return None; 415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 416 case ISD::SDOPC: \ 417 return MASKPOS; 418 #include "llvm/IR/VPIntrinsics.def" 419 } 420 } 421 422 /// The operand position of the explicit vector length parameter. 423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 424 switch (Opcode) { 425 default: 426 return None; 427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 428 case ISD::SDOPC: \ 429 return EVLPOS; 430 #include "llvm/IR/VPIntrinsics.def" 431 } 432 } 433 434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 435 switch (ExtType) { 436 case ISD::EXTLOAD: 437 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 438 case ISD::SEXTLOAD: 439 return ISD::SIGN_EXTEND; 440 case ISD::ZEXTLOAD: 441 return ISD::ZERO_EXTEND; 442 default: 443 break; 444 } 445 446 llvm_unreachable("Invalid LoadExtType"); 447 } 448 449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 450 // To perform this operation, we just need to swap the L and G bits of the 451 // operation. 452 unsigned OldL = (Operation >> 2) & 1; 453 unsigned OldG = (Operation >> 1) & 1; 454 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 455 (OldL << 1) | // New G bit 456 (OldG << 2)); // New L bit. 457 } 458 459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 460 unsigned Operation = Op; 461 if (isIntegerLike) 462 Operation ^= 7; // Flip L, G, E bits, but not U. 463 else 464 Operation ^= 15; // Flip all of the condition bits. 465 466 if (Operation > ISD::SETTRUE2) 467 Operation &= ~8; // Don't let N and U bits get set. 468 469 return ISD::CondCode(Operation); 470 } 471 472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 473 return getSetCCInverseImpl(Op, Type.isInteger()); 474 } 475 476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 477 bool isIntegerLike) { 478 return getSetCCInverseImpl(Op, isIntegerLike); 479 } 480 481 /// For an integer comparison, return 1 if the comparison is a signed operation 482 /// and 2 if the result is an unsigned comparison. Return zero if the operation 483 /// does not depend on the sign of the input (setne and seteq). 484 static int isSignedOp(ISD::CondCode Opcode) { 485 switch (Opcode) { 486 default: llvm_unreachable("Illegal integer setcc operation!"); 487 case ISD::SETEQ: 488 case ISD::SETNE: return 0; 489 case ISD::SETLT: 490 case ISD::SETLE: 491 case ISD::SETGT: 492 case ISD::SETGE: return 1; 493 case ISD::SETULT: 494 case ISD::SETULE: 495 case ISD::SETUGT: 496 case ISD::SETUGE: return 2; 497 } 498 } 499 500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 501 EVT Type) { 502 bool IsInteger = Type.isInteger(); 503 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 504 // Cannot fold a signed integer setcc with an unsigned integer setcc. 505 return ISD::SETCC_INVALID; 506 507 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 508 509 // If the N and U bits get set, then the resultant comparison DOES suddenly 510 // care about orderedness, and it is true when ordered. 511 if (Op > ISD::SETTRUE2) 512 Op &= ~16; // Clear the U bit if the N bit is set. 513 514 // Canonicalize illegal integer setcc's. 515 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 516 Op = ISD::SETNE; 517 518 return ISD::CondCode(Op); 519 } 520 521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 522 EVT Type) { 523 bool IsInteger = Type.isInteger(); 524 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 525 // Cannot fold a signed setcc with an unsigned setcc. 526 return ISD::SETCC_INVALID; 527 528 // Combine all of the condition bits. 529 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 530 531 // Canonicalize illegal integer setcc's. 532 if (IsInteger) { 533 switch (Result) { 534 default: break; 535 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 536 case ISD::SETOEQ: // SETEQ & SETU[LG]E 537 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 538 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 539 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 540 } 541 } 542 543 return Result; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // SDNode Profile Support 548 //===----------------------------------------------------------------------===// 549 550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 552 ID.AddInteger(OpC); 553 } 554 555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 556 /// solely with their pointer. 557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 558 ID.AddPointer(VTList.VTs); 559 } 560 561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 562 static void AddNodeIDOperands(FoldingSetNodeID &ID, 563 ArrayRef<SDValue> Ops) { 564 for (auto& Op : Ops) { 565 ID.AddPointer(Op.getNode()); 566 ID.AddInteger(Op.getResNo()); 567 } 568 } 569 570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 571 static void AddNodeIDOperands(FoldingSetNodeID &ID, 572 ArrayRef<SDUse> Ops) { 573 for (auto& Op : Ops) { 574 ID.AddPointer(Op.getNode()); 575 ID.AddInteger(Op.getResNo()); 576 } 577 } 578 579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 580 SDVTList VTList, ArrayRef<SDValue> OpList) { 581 AddNodeIDOpcode(ID, OpC); 582 AddNodeIDValueTypes(ID, VTList); 583 AddNodeIDOperands(ID, OpList); 584 } 585 586 /// If this is an SDNode with special info, add this info to the NodeID data. 587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 588 switch (N->getOpcode()) { 589 case ISD::TargetExternalSymbol: 590 case ISD::ExternalSymbol: 591 case ISD::MCSymbol: 592 llvm_unreachable("Should only be used on nodes with operands"); 593 default: break; // Normal nodes don't need extra info. 594 case ISD::TargetConstant: 595 case ISD::Constant: { 596 const ConstantSDNode *C = cast<ConstantSDNode>(N); 597 ID.AddPointer(C->getConstantIntValue()); 598 ID.AddBoolean(C->isOpaque()); 599 break; 600 } 601 case ISD::TargetConstantFP: 602 case ISD::ConstantFP: 603 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 604 break; 605 case ISD::TargetGlobalAddress: 606 case ISD::GlobalAddress: 607 case ISD::TargetGlobalTLSAddress: 608 case ISD::GlobalTLSAddress: { 609 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 610 ID.AddPointer(GA->getGlobal()); 611 ID.AddInteger(GA->getOffset()); 612 ID.AddInteger(GA->getTargetFlags()); 613 break; 614 } 615 case ISD::BasicBlock: 616 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 617 break; 618 case ISD::Register: 619 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 620 break; 621 case ISD::RegisterMask: 622 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 623 break; 624 case ISD::SRCVALUE: 625 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 626 break; 627 case ISD::FrameIndex: 628 case ISD::TargetFrameIndex: 629 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 630 break; 631 case ISD::LIFETIME_START: 632 case ISD::LIFETIME_END: 633 if (cast<LifetimeSDNode>(N)->hasOffset()) { 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 635 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 636 } 637 break; 638 case ISD::PSEUDO_PROBE: 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 641 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 642 break; 643 case ISD::JumpTable: 644 case ISD::TargetJumpTable: 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 647 break; 648 case ISD::ConstantPool: 649 case ISD::TargetConstantPool: { 650 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 651 ID.AddInteger(CP->getAlign().value()); 652 ID.AddInteger(CP->getOffset()); 653 if (CP->isMachineConstantPoolEntry()) 654 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 655 else 656 ID.AddPointer(CP->getConstVal()); 657 ID.AddInteger(CP->getTargetFlags()); 658 break; 659 } 660 case ISD::TargetIndex: { 661 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 662 ID.AddInteger(TI->getIndex()); 663 ID.AddInteger(TI->getOffset()); 664 ID.AddInteger(TI->getTargetFlags()); 665 break; 666 } 667 case ISD::LOAD: { 668 const LoadSDNode *LD = cast<LoadSDNode>(N); 669 ID.AddInteger(LD->getMemoryVT().getRawBits()); 670 ID.AddInteger(LD->getRawSubclassData()); 671 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 672 break; 673 } 674 case ISD::STORE: { 675 const StoreSDNode *ST = cast<StoreSDNode>(N); 676 ID.AddInteger(ST->getMemoryVT().getRawBits()); 677 ID.AddInteger(ST->getRawSubclassData()); 678 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 679 break; 680 } 681 case ISD::MLOAD: { 682 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 683 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 684 ID.AddInteger(MLD->getRawSubclassData()); 685 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 686 break; 687 } 688 case ISD::MSTORE: { 689 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 690 ID.AddInteger(MST->getMemoryVT().getRawBits()); 691 ID.AddInteger(MST->getRawSubclassData()); 692 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 693 break; 694 } 695 case ISD::MGATHER: { 696 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 697 ID.AddInteger(MG->getMemoryVT().getRawBits()); 698 ID.AddInteger(MG->getRawSubclassData()); 699 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::MSCATTER: { 703 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 704 ID.AddInteger(MS->getMemoryVT().getRawBits()); 705 ID.AddInteger(MS->getRawSubclassData()); 706 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::ATOMIC_CMP_SWAP: 710 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 711 case ISD::ATOMIC_SWAP: 712 case ISD::ATOMIC_LOAD_ADD: 713 case ISD::ATOMIC_LOAD_SUB: 714 case ISD::ATOMIC_LOAD_AND: 715 case ISD::ATOMIC_LOAD_CLR: 716 case ISD::ATOMIC_LOAD_OR: 717 case ISD::ATOMIC_LOAD_XOR: 718 case ISD::ATOMIC_LOAD_NAND: 719 case ISD::ATOMIC_LOAD_MIN: 720 case ISD::ATOMIC_LOAD_MAX: 721 case ISD::ATOMIC_LOAD_UMIN: 722 case ISD::ATOMIC_LOAD_UMAX: 723 case ISD::ATOMIC_LOAD: 724 case ISD::ATOMIC_STORE: { 725 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 726 ID.AddInteger(AT->getMemoryVT().getRawBits()); 727 ID.AddInteger(AT->getRawSubclassData()); 728 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 729 break; 730 } 731 case ISD::PREFETCH: { 732 const MemSDNode *PF = cast<MemSDNode>(N); 733 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::VECTOR_SHUFFLE: { 737 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 738 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 739 i != e; ++i) 740 ID.AddInteger(SVN->getMaskElt(i)); 741 break; 742 } 743 case ISD::TargetBlockAddress: 744 case ISD::BlockAddress: { 745 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 746 ID.AddPointer(BA->getBlockAddress()); 747 ID.AddInteger(BA->getOffset()); 748 ID.AddInteger(BA->getTargetFlags()); 749 break; 750 } 751 } // end switch (N->getOpcode()) 752 753 // Target specific memory nodes could also have address spaces to check. 754 if (N->isTargetMemoryOpcode()) 755 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 756 } 757 758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 759 /// data. 760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 761 AddNodeIDOpcode(ID, N->getOpcode()); 762 // Add the return value info. 763 AddNodeIDValueTypes(ID, N->getVTList()); 764 // Add the operand info. 765 AddNodeIDOperands(ID, N->ops()); 766 767 // Handle SDNode leafs with special info. 768 AddNodeIDCustom(ID, N); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // SelectionDAG Class 773 //===----------------------------------------------------------------------===// 774 775 /// doNotCSE - Return true if CSE should not be performed for this node. 776 static bool doNotCSE(SDNode *N) { 777 if (N->getValueType(0) == MVT::Glue) 778 return true; // Never CSE anything that produces a flag. 779 780 switch (N->getOpcode()) { 781 default: break; 782 case ISD::HANDLENODE: 783 case ISD::EH_LABEL: 784 return true; // Never CSE these nodes. 785 } 786 787 // Check that remaining values produced are not flags. 788 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 789 if (N->getValueType(i) == MVT::Glue) 790 return true; // Never CSE anything that produces a flag. 791 792 return false; 793 } 794 795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 796 /// SelectionDAG. 797 void SelectionDAG::RemoveDeadNodes() { 798 // Create a dummy node (which is not added to allnodes), that adds a reference 799 // to the root node, preventing it from being deleted. 800 HandleSDNode Dummy(getRoot()); 801 802 SmallVector<SDNode*, 128> DeadNodes; 803 804 // Add all obviously-dead nodes to the DeadNodes worklist. 805 for (SDNode &Node : allnodes()) 806 if (Node.use_empty()) 807 DeadNodes.push_back(&Node); 808 809 RemoveDeadNodes(DeadNodes); 810 811 // If the root changed (e.g. it was a dead load, update the root). 812 setRoot(Dummy.getValue()); 813 } 814 815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 816 /// given list, and any nodes that become unreachable as a result. 817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 818 819 // Process the worklist, deleting the nodes and adding their uses to the 820 // worklist. 821 while (!DeadNodes.empty()) { 822 SDNode *N = DeadNodes.pop_back_val(); 823 // Skip to next node if we've already managed to delete the node. This could 824 // happen if replacing a node causes a node previously added to the node to 825 // be deleted. 826 if (N->getOpcode() == ISD::DELETED_NODE) 827 continue; 828 829 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 830 DUL->NodeDeleted(N, nullptr); 831 832 // Take the node out of the appropriate CSE map. 833 RemoveNodeFromCSEMaps(N); 834 835 // Next, brutally remove the operand list. This is safe to do, as there are 836 // no cycles in the graph. 837 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 838 SDUse &Use = *I++; 839 SDNode *Operand = Use.getNode(); 840 Use.set(SDValue()); 841 842 // Now that we removed this operand, see if there are no uses of it left. 843 if (Operand->use_empty()) 844 DeadNodes.push_back(Operand); 845 } 846 847 DeallocateNode(N); 848 } 849 } 850 851 void SelectionDAG::RemoveDeadNode(SDNode *N){ 852 SmallVector<SDNode*, 16> DeadNodes(1, N); 853 854 // Create a dummy node that adds a reference to the root node, preventing 855 // it from being deleted. (This matters if the root is an operand of the 856 // dead node.) 857 HandleSDNode Dummy(getRoot()); 858 859 RemoveDeadNodes(DeadNodes); 860 } 861 862 void SelectionDAG::DeleteNode(SDNode *N) { 863 // First take this out of the appropriate CSE map. 864 RemoveNodeFromCSEMaps(N); 865 866 // Finally, remove uses due to operands of this node, remove from the 867 // AllNodes list, and delete the node. 868 DeleteNodeNotInCSEMaps(N); 869 } 870 871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 872 assert(N->getIterator() != AllNodes.begin() && 873 "Cannot delete the entry node!"); 874 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 875 876 // Drop all of the operands and decrement used node's use counts. 877 N->DropOperands(); 878 879 DeallocateNode(N); 880 } 881 882 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 883 assert(!(V->isVariadic() && isParameter)); 884 if (isParameter) 885 ByvalParmDbgValues.push_back(V); 886 else 887 DbgValues.push_back(V); 888 for (const SDNode *Node : V->getSDNodes()) 889 if (Node) 890 DbgValMap[Node].push_back(V); 891 } 892 893 void SDDbgInfo::erase(const SDNode *Node) { 894 DbgValMapType::iterator I = DbgValMap.find(Node); 895 if (I == DbgValMap.end()) 896 return; 897 for (auto &Val: I->second) 898 Val->setIsInvalidated(); 899 DbgValMap.erase(I); 900 } 901 902 void SelectionDAG::DeallocateNode(SDNode *N) { 903 // If we have operands, deallocate them. 904 removeOperands(N); 905 906 NodeAllocator.Deallocate(AllNodes.remove(N)); 907 908 // Set the opcode to DELETED_NODE to help catch bugs when node 909 // memory is reallocated. 910 // FIXME: There are places in SDag that have grown a dependency on the opcode 911 // value in the released node. 912 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 913 N->NodeType = ISD::DELETED_NODE; 914 915 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 916 // them and forget about that node. 917 DbgInfo->erase(N); 918 } 919 920 #ifndef NDEBUG 921 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 922 static void VerifySDNode(SDNode *N) { 923 switch (N->getOpcode()) { 924 default: 925 break; 926 case ISD::BUILD_PAIR: { 927 EVT VT = N->getValueType(0); 928 assert(N->getNumValues() == 1 && "Too many results!"); 929 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 930 "Wrong return type!"); 931 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 932 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 933 "Mismatched operand types!"); 934 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 935 "Wrong operand type!"); 936 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 937 "Wrong return type size"); 938 break; 939 } 940 case ISD::BUILD_VECTOR: { 941 assert(N->getNumValues() == 1 && "Too many results!"); 942 assert(N->getValueType(0).isVector() && "Wrong return type!"); 943 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 944 "Wrong number of operands!"); 945 EVT EltVT = N->getValueType(0).getVectorElementType(); 946 for (const SDUse &Op : N->ops()) { 947 assert((Op.getValueType() == EltVT || 948 (EltVT.isInteger() && Op.getValueType().isInteger() && 949 EltVT.bitsLE(Op.getValueType()))) && 950 "Wrong operand type!"); 951 assert(Op.getValueType() == N->getOperand(0).getValueType() && 952 "Operands must all have the same type"); 953 } 954 break; 955 } 956 } 957 } 958 #endif // NDEBUG 959 960 /// Insert a newly allocated node into the DAG. 961 /// 962 /// Handles insertion into the all nodes list and CSE map, as well as 963 /// verification and other common operations when a new node is allocated. 964 void SelectionDAG::InsertNode(SDNode *N) { 965 AllNodes.push_back(N); 966 #ifndef NDEBUG 967 N->PersistentId = NextPersistentId++; 968 VerifySDNode(N); 969 #endif 970 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 971 DUL->NodeInserted(N); 972 } 973 974 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 975 /// correspond to it. This is useful when we're about to delete or repurpose 976 /// the node. We don't want future request for structurally identical nodes 977 /// to return N anymore. 978 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 979 bool Erased = false; 980 switch (N->getOpcode()) { 981 case ISD::HANDLENODE: return false; // noop. 982 case ISD::CONDCODE: 983 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 984 "Cond code doesn't exist!"); 985 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 986 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 987 break; 988 case ISD::ExternalSymbol: 989 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 990 break; 991 case ISD::TargetExternalSymbol: { 992 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 993 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 994 ESN->getSymbol(), ESN->getTargetFlags())); 995 break; 996 } 997 case ISD::MCSymbol: { 998 auto *MCSN = cast<MCSymbolSDNode>(N); 999 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1000 break; 1001 } 1002 case ISD::VALUETYPE: { 1003 EVT VT = cast<VTSDNode>(N)->getVT(); 1004 if (VT.isExtended()) { 1005 Erased = ExtendedValueTypeNodes.erase(VT); 1006 } else { 1007 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1008 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1009 } 1010 break; 1011 } 1012 default: 1013 // Remove it from the CSE Map. 1014 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1015 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1016 Erased = CSEMap.RemoveNode(N); 1017 break; 1018 } 1019 #ifndef NDEBUG 1020 // Verify that the node was actually in one of the CSE maps, unless it has a 1021 // flag result (which cannot be CSE'd) or is one of the special cases that are 1022 // not subject to CSE. 1023 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1024 !N->isMachineOpcode() && !doNotCSE(N)) { 1025 N->dump(this); 1026 dbgs() << "\n"; 1027 llvm_unreachable("Node is not in map!"); 1028 } 1029 #endif 1030 return Erased; 1031 } 1032 1033 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1034 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1035 /// node already exists, in which case transfer all its users to the existing 1036 /// node. This transfer can potentially trigger recursive merging. 1037 void 1038 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1039 // For node types that aren't CSE'd, just act as if no identical node 1040 // already exists. 1041 if (!doNotCSE(N)) { 1042 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1043 if (Existing != N) { 1044 // If there was already an existing matching node, use ReplaceAllUsesWith 1045 // to replace the dead one with the existing one. This can cause 1046 // recursive merging of other unrelated nodes down the line. 1047 ReplaceAllUsesWith(N, Existing); 1048 1049 // N is now dead. Inform the listeners and delete it. 1050 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1051 DUL->NodeDeleted(N, Existing); 1052 DeleteNodeNotInCSEMaps(N); 1053 return; 1054 } 1055 } 1056 1057 // If the node doesn't already exist, we updated it. Inform listeners. 1058 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1059 DUL->NodeUpdated(N); 1060 } 1061 1062 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1063 /// were replaced with those specified. If this node is never memoized, 1064 /// return null, otherwise return a pointer to the slot it would take. If a 1065 /// node already exists with these operands, the slot will be non-null. 1066 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1067 void *&InsertPos) { 1068 if (doNotCSE(N)) 1069 return nullptr; 1070 1071 SDValue Ops[] = { Op }; 1072 FoldingSetNodeID ID; 1073 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1074 AddNodeIDCustom(ID, N); 1075 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1076 if (Node) 1077 Node->intersectFlagsWith(N->getFlags()); 1078 return Node; 1079 } 1080 1081 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1082 /// were replaced with those specified. If this node is never memoized, 1083 /// return null, otherwise return a pointer to the slot it would take. If a 1084 /// node already exists with these operands, the slot will be non-null. 1085 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1086 SDValue Op1, SDValue Op2, 1087 void *&InsertPos) { 1088 if (doNotCSE(N)) 1089 return nullptr; 1090 1091 SDValue Ops[] = { Op1, Op2 }; 1092 FoldingSetNodeID ID; 1093 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1094 AddNodeIDCustom(ID, N); 1095 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1096 if (Node) 1097 Node->intersectFlagsWith(N->getFlags()); 1098 return Node; 1099 } 1100 1101 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1102 /// were replaced with those specified. If this node is never memoized, 1103 /// return null, otherwise return a pointer to the slot it would take. If a 1104 /// node already exists with these operands, the slot will be non-null. 1105 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1106 void *&InsertPos) { 1107 if (doNotCSE(N)) 1108 return nullptr; 1109 1110 FoldingSetNodeID ID; 1111 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1112 AddNodeIDCustom(ID, N); 1113 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1114 if (Node) 1115 Node->intersectFlagsWith(N->getFlags()); 1116 return Node; 1117 } 1118 1119 Align SelectionDAG::getEVTAlign(EVT VT) const { 1120 Type *Ty = VT == MVT::iPTR ? 1121 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1122 VT.getTypeForEVT(*getContext()); 1123 1124 return getDataLayout().getABITypeAlign(Ty); 1125 } 1126 1127 // EntryNode could meaningfully have debug info if we can find it... 1128 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1129 : TM(tm), OptLevel(OL), 1130 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1131 Root(getEntryNode()) { 1132 InsertNode(&EntryNode); 1133 DbgInfo = new SDDbgInfo(); 1134 } 1135 1136 void SelectionDAG::init(MachineFunction &NewMF, 1137 OptimizationRemarkEmitter &NewORE, 1138 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1139 LegacyDivergenceAnalysis * Divergence, 1140 ProfileSummaryInfo *PSIin, 1141 BlockFrequencyInfo *BFIin) { 1142 MF = &NewMF; 1143 SDAGISelPass = PassPtr; 1144 ORE = &NewORE; 1145 TLI = getSubtarget().getTargetLowering(); 1146 TSI = getSubtarget().getSelectionDAGInfo(); 1147 LibInfo = LibraryInfo; 1148 Context = &MF->getFunction().getContext(); 1149 DA = Divergence; 1150 PSI = PSIin; 1151 BFI = BFIin; 1152 } 1153 1154 SelectionDAG::~SelectionDAG() { 1155 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1156 allnodes_clear(); 1157 OperandRecycler.clear(OperandAllocator); 1158 delete DbgInfo; 1159 } 1160 1161 bool SelectionDAG::shouldOptForSize() const { 1162 return MF->getFunction().hasOptSize() || 1163 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1164 } 1165 1166 void SelectionDAG::allnodes_clear() { 1167 assert(&*AllNodes.begin() == &EntryNode); 1168 AllNodes.remove(AllNodes.begin()); 1169 while (!AllNodes.empty()) 1170 DeallocateNode(&AllNodes.front()); 1171 #ifndef NDEBUG 1172 NextPersistentId = 0; 1173 #endif 1174 } 1175 1176 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1177 void *&InsertPos) { 1178 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1179 if (N) { 1180 switch (N->getOpcode()) { 1181 default: break; 1182 case ISD::Constant: 1183 case ISD::ConstantFP: 1184 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1185 "debug location. Use another overload."); 1186 } 1187 } 1188 return N; 1189 } 1190 1191 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1192 const SDLoc &DL, void *&InsertPos) { 1193 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1194 if (N) { 1195 switch (N->getOpcode()) { 1196 case ISD::Constant: 1197 case ISD::ConstantFP: 1198 // Erase debug location from the node if the node is used at several 1199 // different places. Do not propagate one location to all uses as it 1200 // will cause a worse single stepping debugging experience. 1201 if (N->getDebugLoc() != DL.getDebugLoc()) 1202 N->setDebugLoc(DebugLoc()); 1203 break; 1204 default: 1205 // When the node's point of use is located earlier in the instruction 1206 // sequence than its prior point of use, update its debug info to the 1207 // earlier location. 1208 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1209 N->setDebugLoc(DL.getDebugLoc()); 1210 break; 1211 } 1212 } 1213 return N; 1214 } 1215 1216 void SelectionDAG::clear() { 1217 allnodes_clear(); 1218 OperandRecycler.clear(OperandAllocator); 1219 OperandAllocator.Reset(); 1220 CSEMap.clear(); 1221 1222 ExtendedValueTypeNodes.clear(); 1223 ExternalSymbols.clear(); 1224 TargetExternalSymbols.clear(); 1225 MCSymbols.clear(); 1226 SDCallSiteDbgInfo.clear(); 1227 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1228 static_cast<CondCodeSDNode*>(nullptr)); 1229 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1230 static_cast<SDNode*>(nullptr)); 1231 1232 EntryNode.UseList = nullptr; 1233 InsertNode(&EntryNode); 1234 Root = getEntryNode(); 1235 DbgInfo->clear(); 1236 } 1237 1238 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1239 return VT.bitsGT(Op.getValueType()) 1240 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1241 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1242 } 1243 1244 std::pair<SDValue, SDValue> 1245 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1246 const SDLoc &DL, EVT VT) { 1247 assert(!VT.bitsEq(Op.getValueType()) && 1248 "Strict no-op FP extend/round not allowed."); 1249 SDValue Res = 1250 VT.bitsGT(Op.getValueType()) 1251 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1252 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1253 {Chain, Op, getIntPtrConstant(0, DL)}); 1254 1255 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1256 } 1257 1258 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1259 return VT.bitsGT(Op.getValueType()) ? 1260 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1261 getNode(ISD::TRUNCATE, DL, VT, Op); 1262 } 1263 1264 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1265 return VT.bitsGT(Op.getValueType()) ? 1266 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1267 getNode(ISD::TRUNCATE, DL, VT, Op); 1268 } 1269 1270 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1271 return VT.bitsGT(Op.getValueType()) ? 1272 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1273 getNode(ISD::TRUNCATE, DL, VT, Op); 1274 } 1275 1276 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1277 EVT OpVT) { 1278 if (VT.bitsLE(Op.getValueType())) 1279 return getNode(ISD::TRUNCATE, SL, VT, Op); 1280 1281 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1282 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1283 } 1284 1285 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1286 EVT OpVT = Op.getValueType(); 1287 assert(VT.isInteger() && OpVT.isInteger() && 1288 "Cannot getZeroExtendInReg FP types"); 1289 assert(VT.isVector() == OpVT.isVector() && 1290 "getZeroExtendInReg type should be vector iff the operand " 1291 "type is vector!"); 1292 assert((!VT.isVector() || 1293 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1294 "Vector element counts must match in getZeroExtendInReg"); 1295 assert(VT.bitsLE(OpVT) && "Not extending!"); 1296 if (OpVT == VT) 1297 return Op; 1298 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1299 VT.getScalarSizeInBits()); 1300 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1301 } 1302 1303 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1304 // Only unsigned pointer semantics are supported right now. In the future this 1305 // might delegate to TLI to check pointer signedness. 1306 return getZExtOrTrunc(Op, DL, VT); 1307 } 1308 1309 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1310 // Only unsigned pointer semantics are supported right now. In the future this 1311 // might delegate to TLI to check pointer signedness. 1312 return getZeroExtendInReg(Op, DL, VT); 1313 } 1314 1315 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1316 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1317 EVT EltVT = VT.getScalarType(); 1318 SDValue NegOne = 1319 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1320 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1321 } 1322 1323 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1324 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1325 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1326 } 1327 1328 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1329 EVT OpVT) { 1330 if (!V) 1331 return getConstant(0, DL, VT); 1332 1333 switch (TLI->getBooleanContents(OpVT)) { 1334 case TargetLowering::ZeroOrOneBooleanContent: 1335 case TargetLowering::UndefinedBooleanContent: 1336 return getConstant(1, DL, VT); 1337 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1338 return getAllOnesConstant(DL, VT); 1339 } 1340 llvm_unreachable("Unexpected boolean content enum!"); 1341 } 1342 1343 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1344 bool isT, bool isO) { 1345 EVT EltVT = VT.getScalarType(); 1346 assert((EltVT.getSizeInBits() >= 64 || 1347 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1348 "getConstant with a uint64_t value that doesn't fit in the type!"); 1349 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1350 } 1351 1352 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1353 bool isT, bool isO) { 1354 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1355 } 1356 1357 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1358 EVT VT, bool isT, bool isO) { 1359 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 const ConstantInt *Elt = &Val; 1363 1364 // In some cases the vector type is legal but the element type is illegal and 1365 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1366 // inserted value (the type does not need to match the vector element type). 1367 // Any extra bits introduced will be truncated away. 1368 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1369 TargetLowering::TypePromoteInteger) { 1370 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1371 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1372 Elt = ConstantInt::get(*getContext(), NewVal); 1373 } 1374 // In other cases the element type is illegal and needs to be expanded, for 1375 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1376 // the value into n parts and use a vector type with n-times the elements. 1377 // Then bitcast to the type requested. 1378 // Legalizing constants too early makes the DAGCombiner's job harder so we 1379 // only legalize if the DAG tells us we must produce legal types. 1380 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1381 TLI->getTypeAction(*getContext(), EltVT) == 1382 TargetLowering::TypeExpandInteger) { 1383 const APInt &NewVal = Elt->getValue(); 1384 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1385 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1386 1387 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1388 if (VT.isScalableVector()) { 1389 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1390 "Can only handle an even split!"); 1391 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1392 1393 SmallVector<SDValue, 2> ScalarParts; 1394 for (unsigned i = 0; i != Parts; ++i) 1395 ScalarParts.push_back(getConstant( 1396 NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL, 1397 ViaEltVT, isT, isO)); 1398 1399 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1400 } 1401 1402 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1403 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1404 1405 // Check the temporary vector is the correct size. If this fails then 1406 // getTypeToTransformTo() probably returned a type whose size (in bits) 1407 // isn't a power-of-2 factor of the requested type size. 1408 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1409 1410 SmallVector<SDValue, 2> EltParts; 1411 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1412 EltParts.push_back(getConstant( 1413 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1414 ViaEltVT, isT, isO)); 1415 } 1416 1417 // EltParts is currently in little endian order. If we actually want 1418 // big-endian order then reverse it now. 1419 if (getDataLayout().isBigEndian()) 1420 std::reverse(EltParts.begin(), EltParts.end()); 1421 1422 // The elements must be reversed when the element order is different 1423 // to the endianness of the elements (because the BITCAST is itself a 1424 // vector shuffle in this situation). However, we do not need any code to 1425 // perform this reversal because getConstant() is producing a vector 1426 // splat. 1427 // This situation occurs in MIPS MSA. 1428 1429 SmallVector<SDValue, 8> Ops; 1430 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1431 llvm::append_range(Ops, EltParts); 1432 1433 SDValue V = 1434 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1435 return V; 1436 } 1437 1438 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1439 "APInt size does not match type size!"); 1440 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1441 FoldingSetNodeID ID; 1442 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1443 ID.AddPointer(Elt); 1444 ID.AddBoolean(isO); 1445 void *IP = nullptr; 1446 SDNode *N = nullptr; 1447 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1448 if (!VT.isVector()) 1449 return SDValue(N, 0); 1450 1451 if (!N) { 1452 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1453 CSEMap.InsertNode(N, IP); 1454 InsertNode(N); 1455 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1456 } 1457 1458 SDValue Result(N, 0); 1459 if (VT.isScalableVector()) 1460 Result = getSplatVector(VT, DL, Result); 1461 else if (VT.isVector()) 1462 Result = getSplatBuildVector(VT, DL, Result); 1463 1464 return Result; 1465 } 1466 1467 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1468 bool isTarget) { 1469 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1470 } 1471 1472 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1473 const SDLoc &DL, bool LegalTypes) { 1474 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1475 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1476 return getConstant(Val, DL, ShiftVT); 1477 } 1478 1479 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1480 bool isTarget) { 1481 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1482 } 1483 1484 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1485 bool isTarget) { 1486 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1487 } 1488 1489 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1490 EVT VT, bool isTarget) { 1491 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1492 1493 EVT EltVT = VT.getScalarType(); 1494 1495 // Do the map lookup using the actual bit pattern for the floating point 1496 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1497 // we don't have issues with SNANs. 1498 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1499 FoldingSetNodeID ID; 1500 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1501 ID.AddPointer(&V); 1502 void *IP = nullptr; 1503 SDNode *N = nullptr; 1504 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1505 if (!VT.isVector()) 1506 return SDValue(N, 0); 1507 1508 if (!N) { 1509 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1510 CSEMap.InsertNode(N, IP); 1511 InsertNode(N); 1512 } 1513 1514 SDValue Result(N, 0); 1515 if (VT.isScalableVector()) 1516 Result = getSplatVector(VT, DL, Result); 1517 else if (VT.isVector()) 1518 Result = getSplatBuildVector(VT, DL, Result); 1519 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1520 return Result; 1521 } 1522 1523 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1524 bool isTarget) { 1525 EVT EltVT = VT.getScalarType(); 1526 if (EltVT == MVT::f32) 1527 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1528 else if (EltVT == MVT::f64) 1529 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1530 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1531 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1532 bool Ignored; 1533 APFloat APF = APFloat(Val); 1534 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1535 &Ignored); 1536 return getConstantFP(APF, DL, VT, isTarget); 1537 } else 1538 llvm_unreachable("Unsupported type in getConstantFP"); 1539 } 1540 1541 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1542 EVT VT, int64_t Offset, bool isTargetGA, 1543 unsigned TargetFlags) { 1544 assert((TargetFlags == 0 || isTargetGA) && 1545 "Cannot set target flags on target-independent globals"); 1546 1547 // Truncate (with sign-extension) the offset value to the pointer size. 1548 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1549 if (BitWidth < 64) 1550 Offset = SignExtend64(Offset, BitWidth); 1551 1552 unsigned Opc; 1553 if (GV->isThreadLocal()) 1554 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1555 else 1556 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1557 1558 FoldingSetNodeID ID; 1559 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1560 ID.AddPointer(GV); 1561 ID.AddInteger(Offset); 1562 ID.AddInteger(TargetFlags); 1563 void *IP = nullptr; 1564 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1565 return SDValue(E, 0); 1566 1567 auto *N = newSDNode<GlobalAddressSDNode>( 1568 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1569 CSEMap.InsertNode(N, IP); 1570 InsertNode(N); 1571 return SDValue(N, 0); 1572 } 1573 1574 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1575 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1576 FoldingSetNodeID ID; 1577 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1578 ID.AddInteger(FI); 1579 void *IP = nullptr; 1580 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1581 return SDValue(E, 0); 1582 1583 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1584 CSEMap.InsertNode(N, IP); 1585 InsertNode(N); 1586 return SDValue(N, 0); 1587 } 1588 1589 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1590 unsigned TargetFlags) { 1591 assert((TargetFlags == 0 || isTarget) && 1592 "Cannot set target flags on target-independent jump tables"); 1593 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1594 FoldingSetNodeID ID; 1595 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1596 ID.AddInteger(JTI); 1597 ID.AddInteger(TargetFlags); 1598 void *IP = nullptr; 1599 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1600 return SDValue(E, 0); 1601 1602 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1603 CSEMap.InsertNode(N, IP); 1604 InsertNode(N); 1605 return SDValue(N, 0); 1606 } 1607 1608 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1609 MaybeAlign Alignment, int Offset, 1610 bool isTarget, unsigned TargetFlags) { 1611 assert((TargetFlags == 0 || isTarget) && 1612 "Cannot set target flags on target-independent globals"); 1613 if (!Alignment) 1614 Alignment = shouldOptForSize() 1615 ? getDataLayout().getABITypeAlign(C->getType()) 1616 : getDataLayout().getPrefTypeAlign(C->getType()); 1617 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1618 FoldingSetNodeID ID; 1619 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1620 ID.AddInteger(Alignment->value()); 1621 ID.AddInteger(Offset); 1622 ID.AddPointer(C); 1623 ID.AddInteger(TargetFlags); 1624 void *IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1626 return SDValue(E, 0); 1627 1628 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1629 TargetFlags); 1630 CSEMap.InsertNode(N, IP); 1631 InsertNode(N); 1632 SDValue V = SDValue(N, 0); 1633 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1634 return V; 1635 } 1636 1637 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1638 MaybeAlign Alignment, int Offset, 1639 bool isTarget, unsigned TargetFlags) { 1640 assert((TargetFlags == 0 || isTarget) && 1641 "Cannot set target flags on target-independent globals"); 1642 if (!Alignment) 1643 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1644 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(Alignment->value()); 1648 ID.AddInteger(Offset); 1649 C->addSelectionDAGCSEId(ID); 1650 ID.AddInteger(TargetFlags); 1651 void *IP = nullptr; 1652 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1653 return SDValue(E, 0); 1654 1655 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1656 TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1663 unsigned TargetFlags) { 1664 FoldingSetNodeID ID; 1665 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1666 ID.AddInteger(Index); 1667 ID.AddInteger(Offset); 1668 ID.AddInteger(TargetFlags); 1669 void *IP = nullptr; 1670 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1671 return SDValue(E, 0); 1672 1673 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1680 FoldingSetNodeID ID; 1681 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1682 ID.AddPointer(MBB); 1683 void *IP = nullptr; 1684 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1685 return SDValue(E, 0); 1686 1687 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1688 CSEMap.InsertNode(N, IP); 1689 InsertNode(N); 1690 return SDValue(N, 0); 1691 } 1692 1693 SDValue SelectionDAG::getValueType(EVT VT) { 1694 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1695 ValueTypeNodes.size()) 1696 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1697 1698 SDNode *&N = VT.isExtended() ? 1699 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1700 1701 if (N) return SDValue(N, 0); 1702 N = newSDNode<VTSDNode>(VT); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1708 SDNode *&N = ExternalSymbols[Sym]; 1709 if (N) return SDValue(N, 0); 1710 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1711 InsertNode(N); 1712 return SDValue(N, 0); 1713 } 1714 1715 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1716 SDNode *&N = MCSymbols[Sym]; 1717 if (N) 1718 return SDValue(N, 0); 1719 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1720 InsertNode(N); 1721 return SDValue(N, 0); 1722 } 1723 1724 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1725 unsigned TargetFlags) { 1726 SDNode *&N = 1727 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1728 if (N) return SDValue(N, 0); 1729 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1730 InsertNode(N); 1731 return SDValue(N, 0); 1732 } 1733 1734 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1735 if ((unsigned)Cond >= CondCodeNodes.size()) 1736 CondCodeNodes.resize(Cond+1); 1737 1738 if (!CondCodeNodes[Cond]) { 1739 auto *N = newSDNode<CondCodeSDNode>(Cond); 1740 CondCodeNodes[Cond] = N; 1741 InsertNode(N); 1742 } 1743 1744 return SDValue(CondCodeNodes[Cond], 0); 1745 } 1746 1747 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1748 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1749 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1750 std::swap(N1, N2); 1751 ShuffleVectorSDNode::commuteMask(M); 1752 } 1753 1754 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1755 SDValue N2, ArrayRef<int> Mask) { 1756 assert(VT.getVectorNumElements() == Mask.size() && 1757 "Must have the same number of vector elements as mask elements!"); 1758 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1759 "Invalid VECTOR_SHUFFLE"); 1760 1761 // Canonicalize shuffle undef, undef -> undef 1762 if (N1.isUndef() && N2.isUndef()) 1763 return getUNDEF(VT); 1764 1765 // Validate that all indices in Mask are within the range of the elements 1766 // input to the shuffle. 1767 int NElts = Mask.size(); 1768 assert(llvm::all_of(Mask, 1769 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1770 "Index out of range"); 1771 1772 // Copy the mask so we can do any needed cleanup. 1773 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1774 1775 // Canonicalize shuffle v, v -> v, undef 1776 if (N1 == N2) { 1777 N2 = getUNDEF(VT); 1778 for (int i = 0; i != NElts; ++i) 1779 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1780 } 1781 1782 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1783 if (N1.isUndef()) 1784 commuteShuffle(N1, N2, MaskVec); 1785 1786 if (TLI->hasVectorBlend()) { 1787 // If shuffling a splat, try to blend the splat instead. We do this here so 1788 // that even when this arises during lowering we don't have to re-handle it. 1789 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1790 BitVector UndefElements; 1791 SDValue Splat = BV->getSplatValue(&UndefElements); 1792 if (!Splat) 1793 return; 1794 1795 for (int i = 0; i < NElts; ++i) { 1796 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1797 continue; 1798 1799 // If this input comes from undef, mark it as such. 1800 if (UndefElements[MaskVec[i] - Offset]) { 1801 MaskVec[i] = -1; 1802 continue; 1803 } 1804 1805 // If we can blend a non-undef lane, use that instead. 1806 if (!UndefElements[i]) 1807 MaskVec[i] = i + Offset; 1808 } 1809 }; 1810 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1811 BlendSplat(N1BV, 0); 1812 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1813 BlendSplat(N2BV, NElts); 1814 } 1815 1816 // Canonicalize all index into lhs, -> shuffle lhs, undef 1817 // Canonicalize all index into rhs, -> shuffle rhs, undef 1818 bool AllLHS = true, AllRHS = true; 1819 bool N2Undef = N2.isUndef(); 1820 for (int i = 0; i != NElts; ++i) { 1821 if (MaskVec[i] >= NElts) { 1822 if (N2Undef) 1823 MaskVec[i] = -1; 1824 else 1825 AllLHS = false; 1826 } else if (MaskVec[i] >= 0) { 1827 AllRHS = false; 1828 } 1829 } 1830 if (AllLHS && AllRHS) 1831 return getUNDEF(VT); 1832 if (AllLHS && !N2Undef) 1833 N2 = getUNDEF(VT); 1834 if (AllRHS) { 1835 N1 = getUNDEF(VT); 1836 commuteShuffle(N1, N2, MaskVec); 1837 } 1838 // Reset our undef status after accounting for the mask. 1839 N2Undef = N2.isUndef(); 1840 // Re-check whether both sides ended up undef. 1841 if (N1.isUndef() && N2Undef) 1842 return getUNDEF(VT); 1843 1844 // If Identity shuffle return that node. 1845 bool Identity = true, AllSame = true; 1846 for (int i = 0; i != NElts; ++i) { 1847 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1848 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1849 } 1850 if (Identity && NElts) 1851 return N1; 1852 1853 // Shuffling a constant splat doesn't change the result. 1854 if (N2Undef) { 1855 SDValue V = N1; 1856 1857 // Look through any bitcasts. We check that these don't change the number 1858 // (and size) of elements and just changes their types. 1859 while (V.getOpcode() == ISD::BITCAST) 1860 V = V->getOperand(0); 1861 1862 // A splat should always show up as a build vector node. 1863 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1864 BitVector UndefElements; 1865 SDValue Splat = BV->getSplatValue(&UndefElements); 1866 // If this is a splat of an undef, shuffling it is also undef. 1867 if (Splat && Splat.isUndef()) 1868 return getUNDEF(VT); 1869 1870 bool SameNumElts = 1871 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1872 1873 // We only have a splat which can skip shuffles if there is a splatted 1874 // value and no undef lanes rearranged by the shuffle. 1875 if (Splat && UndefElements.none()) { 1876 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1877 // number of elements match or the value splatted is a zero constant. 1878 if (SameNumElts) 1879 return N1; 1880 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1881 if (C->isNullValue()) 1882 return N1; 1883 } 1884 1885 // If the shuffle itself creates a splat, build the vector directly. 1886 if (AllSame && SameNumElts) { 1887 EVT BuildVT = BV->getValueType(0); 1888 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1889 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1890 1891 // We may have jumped through bitcasts, so the type of the 1892 // BUILD_VECTOR may not match the type of the shuffle. 1893 if (BuildVT != VT) 1894 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1895 return NewBV; 1896 } 1897 } 1898 } 1899 1900 FoldingSetNodeID ID; 1901 SDValue Ops[2] = { N1, N2 }; 1902 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1903 for (int i = 0; i != NElts; ++i) 1904 ID.AddInteger(MaskVec[i]); 1905 1906 void* IP = nullptr; 1907 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1908 return SDValue(E, 0); 1909 1910 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1911 // SDNode doesn't have access to it. This memory will be "leaked" when 1912 // the node is deallocated, but recovered when the NodeAllocator is released. 1913 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1914 llvm::copy(MaskVec, MaskAlloc); 1915 1916 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1917 dl.getDebugLoc(), MaskAlloc); 1918 createOperands(N, Ops); 1919 1920 CSEMap.InsertNode(N, IP); 1921 InsertNode(N); 1922 SDValue V = SDValue(N, 0); 1923 NewSDValueDbgMsg(V, "Creating new node: ", this); 1924 return V; 1925 } 1926 1927 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1928 EVT VT = SV.getValueType(0); 1929 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1930 ShuffleVectorSDNode::commuteMask(MaskVec); 1931 1932 SDValue Op0 = SV.getOperand(0); 1933 SDValue Op1 = SV.getOperand(1); 1934 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1935 } 1936 1937 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1938 FoldingSetNodeID ID; 1939 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1940 ID.AddInteger(RegNo); 1941 void *IP = nullptr; 1942 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1943 return SDValue(E, 0); 1944 1945 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1946 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1947 CSEMap.InsertNode(N, IP); 1948 InsertNode(N); 1949 return SDValue(N, 0); 1950 } 1951 1952 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1953 FoldingSetNodeID ID; 1954 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1955 ID.AddPointer(RegMask); 1956 void *IP = nullptr; 1957 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1958 return SDValue(E, 0); 1959 1960 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1961 CSEMap.InsertNode(N, IP); 1962 InsertNode(N); 1963 return SDValue(N, 0); 1964 } 1965 1966 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1967 MCSymbol *Label) { 1968 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1969 } 1970 1971 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1972 SDValue Root, MCSymbol *Label) { 1973 FoldingSetNodeID ID; 1974 SDValue Ops[] = { Root }; 1975 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1976 ID.AddPointer(Label); 1977 void *IP = nullptr; 1978 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1979 return SDValue(E, 0); 1980 1981 auto *N = 1982 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1983 createOperands(N, Ops); 1984 1985 CSEMap.InsertNode(N, IP); 1986 InsertNode(N); 1987 return SDValue(N, 0); 1988 } 1989 1990 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1991 int64_t Offset, bool isTarget, 1992 unsigned TargetFlags) { 1993 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1994 1995 FoldingSetNodeID ID; 1996 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1997 ID.AddPointer(BA); 1998 ID.AddInteger(Offset); 1999 ID.AddInteger(TargetFlags); 2000 void *IP = nullptr; 2001 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2002 return SDValue(E, 0); 2003 2004 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2005 CSEMap.InsertNode(N, IP); 2006 InsertNode(N); 2007 return SDValue(N, 0); 2008 } 2009 2010 SDValue SelectionDAG::getSrcValue(const Value *V) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2013 ID.AddPointer(V); 2014 2015 void *IP = nullptr; 2016 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2017 return SDValue(E, 0); 2018 2019 auto *N = newSDNode<SrcValueSDNode>(V); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2028 ID.AddPointer(MD); 2029 2030 void *IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2032 return SDValue(E, 0); 2033 2034 auto *N = newSDNode<MDNodeSDNode>(MD); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2041 if (VT == V.getValueType()) 2042 return V; 2043 2044 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2045 } 2046 2047 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2048 unsigned SrcAS, unsigned DestAS) { 2049 SDValue Ops[] = {Ptr}; 2050 FoldingSetNodeID ID; 2051 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2052 ID.AddInteger(SrcAS); 2053 ID.AddInteger(DestAS); 2054 2055 void *IP = nullptr; 2056 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2057 return SDValue(E, 0); 2058 2059 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2060 VT, SrcAS, DestAS); 2061 createOperands(N, Ops); 2062 2063 CSEMap.InsertNode(N, IP); 2064 InsertNode(N); 2065 return SDValue(N, 0); 2066 } 2067 2068 SDValue SelectionDAG::getFreeze(SDValue V) { 2069 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2070 } 2071 2072 /// getShiftAmountOperand - Return the specified value casted to 2073 /// the target's desired shift amount type. 2074 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2075 EVT OpTy = Op.getValueType(); 2076 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2077 if (OpTy == ShTy || OpTy.isVector()) return Op; 2078 2079 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2080 } 2081 2082 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2083 SDLoc dl(Node); 2084 const TargetLowering &TLI = getTargetLoweringInfo(); 2085 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2086 EVT VT = Node->getValueType(0); 2087 SDValue Tmp1 = Node->getOperand(0); 2088 SDValue Tmp2 = Node->getOperand(1); 2089 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2090 2091 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2092 Tmp2, MachinePointerInfo(V)); 2093 SDValue VAList = VAListLoad; 2094 2095 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2096 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2097 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2098 2099 VAList = 2100 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2101 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2102 } 2103 2104 // Increment the pointer, VAList, to the next vaarg 2105 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2106 getConstant(getDataLayout().getTypeAllocSize( 2107 VT.getTypeForEVT(*getContext())), 2108 dl, VAList.getValueType())); 2109 // Store the incremented VAList to the legalized pointer 2110 Tmp1 = 2111 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2112 // Load the actual argument out of the pointer VAList 2113 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2114 } 2115 2116 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2117 SDLoc dl(Node); 2118 const TargetLowering &TLI = getTargetLoweringInfo(); 2119 // This defaults to loading a pointer from the input and storing it to the 2120 // output, returning the chain. 2121 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2122 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2123 SDValue Tmp1 = 2124 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2125 Node->getOperand(2), MachinePointerInfo(VS)); 2126 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2127 MachinePointerInfo(VD)); 2128 } 2129 2130 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2131 const DataLayout &DL = getDataLayout(); 2132 Type *Ty = VT.getTypeForEVT(*getContext()); 2133 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2134 2135 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2136 return RedAlign; 2137 2138 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2139 const Align StackAlign = TFI->getStackAlign(); 2140 2141 // See if we can choose a smaller ABI alignment in cases where it's an 2142 // illegal vector type that will get broken down. 2143 if (RedAlign > StackAlign) { 2144 EVT IntermediateVT; 2145 MVT RegisterVT; 2146 unsigned NumIntermediates; 2147 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2148 NumIntermediates, RegisterVT); 2149 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2150 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2151 if (RedAlign2 < RedAlign) 2152 RedAlign = RedAlign2; 2153 } 2154 2155 return RedAlign; 2156 } 2157 2158 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2159 MachineFrameInfo &MFI = MF->getFrameInfo(); 2160 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2161 int StackID = 0; 2162 if (Bytes.isScalable()) 2163 StackID = TFI->getStackIDForScalableVectors(); 2164 // The stack id gives an indication of whether the object is scalable or 2165 // not, so it's safe to pass in the minimum size here. 2166 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2167 false, nullptr, StackID); 2168 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2169 } 2170 2171 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2172 Type *Ty = VT.getTypeForEVT(*getContext()); 2173 Align StackAlign = 2174 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2175 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2176 } 2177 2178 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2179 TypeSize VT1Size = VT1.getStoreSize(); 2180 TypeSize VT2Size = VT2.getStoreSize(); 2181 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2182 "Don't know how to choose the maximum size when creating a stack " 2183 "temporary"); 2184 TypeSize Bytes = 2185 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2186 2187 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2188 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2189 const DataLayout &DL = getDataLayout(); 2190 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2191 return CreateStackTemporary(Bytes, Align); 2192 } 2193 2194 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2195 ISD::CondCode Cond, const SDLoc &dl) { 2196 EVT OpVT = N1.getValueType(); 2197 2198 // These setcc operations always fold. 2199 switch (Cond) { 2200 default: break; 2201 case ISD::SETFALSE: 2202 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2203 case ISD::SETTRUE: 2204 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2205 2206 case ISD::SETOEQ: 2207 case ISD::SETOGT: 2208 case ISD::SETOGE: 2209 case ISD::SETOLT: 2210 case ISD::SETOLE: 2211 case ISD::SETONE: 2212 case ISD::SETO: 2213 case ISD::SETUO: 2214 case ISD::SETUEQ: 2215 case ISD::SETUNE: 2216 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2217 break; 2218 } 2219 2220 if (OpVT.isInteger()) { 2221 // For EQ and NE, we can always pick a value for the undef to make the 2222 // predicate pass or fail, so we can return undef. 2223 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2224 // icmp eq/ne X, undef -> undef. 2225 if ((N1.isUndef() || N2.isUndef()) && 2226 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2227 return getUNDEF(VT); 2228 2229 // If both operands are undef, we can return undef for int comparison. 2230 // icmp undef, undef -> undef. 2231 if (N1.isUndef() && N2.isUndef()) 2232 return getUNDEF(VT); 2233 2234 // icmp X, X -> true/false 2235 // icmp X, undef -> true/false because undef could be X. 2236 if (N1 == N2) 2237 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2238 } 2239 2240 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2241 const APInt &C2 = N2C->getAPIntValue(); 2242 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2243 const APInt &C1 = N1C->getAPIntValue(); 2244 2245 switch (Cond) { 2246 default: llvm_unreachable("Unknown integer setcc!"); 2247 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2248 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2249 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2250 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2251 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2252 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2253 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2254 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2255 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2256 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2257 } 2258 } 2259 } 2260 2261 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2262 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2263 2264 if (N1CFP && N2CFP) { 2265 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2266 switch (Cond) { 2267 default: break; 2268 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2269 return getUNDEF(VT); 2270 LLVM_FALLTHROUGH; 2271 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2272 OpVT); 2273 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2274 return getUNDEF(VT); 2275 LLVM_FALLTHROUGH; 2276 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2277 R==APFloat::cmpLessThan, dl, VT, 2278 OpVT); 2279 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2280 return getUNDEF(VT); 2281 LLVM_FALLTHROUGH; 2282 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2283 OpVT); 2284 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2285 return getUNDEF(VT); 2286 LLVM_FALLTHROUGH; 2287 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2288 VT, OpVT); 2289 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2290 return getUNDEF(VT); 2291 LLVM_FALLTHROUGH; 2292 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2293 R==APFloat::cmpEqual, dl, VT, 2294 OpVT); 2295 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2296 return getUNDEF(VT); 2297 LLVM_FALLTHROUGH; 2298 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2299 R==APFloat::cmpEqual, dl, VT, OpVT); 2300 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2301 OpVT); 2302 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2303 OpVT); 2304 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2305 R==APFloat::cmpEqual, dl, VT, 2306 OpVT); 2307 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2308 OpVT); 2309 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2310 R==APFloat::cmpLessThan, dl, VT, 2311 OpVT); 2312 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2313 R==APFloat::cmpUnordered, dl, VT, 2314 OpVT); 2315 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2316 VT, OpVT); 2317 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2318 OpVT); 2319 } 2320 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2321 // Ensure that the constant occurs on the RHS. 2322 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2323 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2324 return SDValue(); 2325 return getSetCC(dl, VT, N2, N1, SwappedCond); 2326 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2327 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2328 // If an operand is known to be a nan (or undef that could be a nan), we can 2329 // fold it. 2330 // Choosing NaN for the undef will always make unordered comparison succeed 2331 // and ordered comparison fails. 2332 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2333 switch (ISD::getUnorderedFlavor(Cond)) { 2334 default: 2335 llvm_unreachable("Unknown flavor!"); 2336 case 0: // Known false. 2337 return getBoolConstant(false, dl, VT, OpVT); 2338 case 1: // Known true. 2339 return getBoolConstant(true, dl, VT, OpVT); 2340 case 2: // Undefined. 2341 return getUNDEF(VT); 2342 } 2343 } 2344 2345 // Could not fold it. 2346 return SDValue(); 2347 } 2348 2349 /// See if the specified operand can be simplified with the knowledge that only 2350 /// the bits specified by DemandedBits are used. 2351 /// TODO: really we should be making this into the DAG equivalent of 2352 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2353 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2354 EVT VT = V.getValueType(); 2355 2356 if (VT.isScalableVector()) 2357 return SDValue(); 2358 2359 APInt DemandedElts = VT.isVector() 2360 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2361 : APInt(1, 1); 2362 return GetDemandedBits(V, DemandedBits, DemandedElts); 2363 } 2364 2365 /// See if the specified operand can be simplified with the knowledge that only 2366 /// the bits specified by DemandedBits are used in the elements specified by 2367 /// DemandedElts. 2368 /// TODO: really we should be making this into the DAG equivalent of 2369 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2370 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2371 const APInt &DemandedElts) { 2372 switch (V.getOpcode()) { 2373 default: 2374 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2375 *this, 0); 2376 case ISD::Constant: { 2377 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2378 APInt NewVal = CVal & DemandedBits; 2379 if (NewVal != CVal) 2380 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2381 break; 2382 } 2383 case ISD::SRL: 2384 // Only look at single-use SRLs. 2385 if (!V.getNode()->hasOneUse()) 2386 break; 2387 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2388 // See if we can recursively simplify the LHS. 2389 unsigned Amt = RHSC->getZExtValue(); 2390 2391 // Watch out for shift count overflow though. 2392 if (Amt >= DemandedBits.getBitWidth()) 2393 break; 2394 APInt SrcDemandedBits = DemandedBits << Amt; 2395 if (SDValue SimplifyLHS = 2396 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2397 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2398 V.getOperand(1)); 2399 } 2400 break; 2401 } 2402 return SDValue(); 2403 } 2404 2405 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2406 /// use this predicate to simplify operations downstream. 2407 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2408 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2409 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2410 } 2411 2412 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2413 /// this predicate to simplify operations downstream. Mask is known to be zero 2414 /// for bits that V cannot have. 2415 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2416 unsigned Depth) const { 2417 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2418 } 2419 2420 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2421 /// DemandedElts. We use this predicate to simplify operations downstream. 2422 /// Mask is known to be zero for bits that V cannot have. 2423 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2424 const APInt &DemandedElts, 2425 unsigned Depth) const { 2426 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2427 } 2428 2429 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2430 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2431 unsigned Depth) const { 2432 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2433 } 2434 2435 /// isSplatValue - Return true if the vector V has the same value 2436 /// across all DemandedElts. For scalable vectors it does not make 2437 /// sense to specify which elements are demanded or undefined, therefore 2438 /// they are simply ignored. 2439 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2440 APInt &UndefElts, unsigned Depth) { 2441 EVT VT = V.getValueType(); 2442 assert(VT.isVector() && "Vector type expected"); 2443 2444 if (!VT.isScalableVector() && !DemandedElts) 2445 return false; // No demanded elts, better to assume we don't know anything. 2446 2447 if (Depth >= MaxRecursionDepth) 2448 return false; // Limit search depth. 2449 2450 // Deal with some common cases here that work for both fixed and scalable 2451 // vector types. 2452 switch (V.getOpcode()) { 2453 case ISD::SPLAT_VECTOR: 2454 UndefElts = V.getOperand(0).isUndef() 2455 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2456 : APInt(DemandedElts.getBitWidth(), 0); 2457 return true; 2458 case ISD::ADD: 2459 case ISD::SUB: 2460 case ISD::AND: 2461 case ISD::XOR: 2462 case ISD::OR: { 2463 APInt UndefLHS, UndefRHS; 2464 SDValue LHS = V.getOperand(0); 2465 SDValue RHS = V.getOperand(1); 2466 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2467 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2468 UndefElts = UndefLHS | UndefRHS; 2469 return true; 2470 } 2471 break; 2472 } 2473 case ISD::ABS: 2474 case ISD::TRUNCATE: 2475 case ISD::SIGN_EXTEND: 2476 case ISD::ZERO_EXTEND: 2477 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2478 } 2479 2480 // We don't support other cases than those above for scalable vectors at 2481 // the moment. 2482 if (VT.isScalableVector()) 2483 return false; 2484 2485 unsigned NumElts = VT.getVectorNumElements(); 2486 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2487 UndefElts = APInt::getNullValue(NumElts); 2488 2489 switch (V.getOpcode()) { 2490 case ISD::BUILD_VECTOR: { 2491 SDValue Scl; 2492 for (unsigned i = 0; i != NumElts; ++i) { 2493 SDValue Op = V.getOperand(i); 2494 if (Op.isUndef()) { 2495 UndefElts.setBit(i); 2496 continue; 2497 } 2498 if (!DemandedElts[i]) 2499 continue; 2500 if (Scl && Scl != Op) 2501 return false; 2502 Scl = Op; 2503 } 2504 return true; 2505 } 2506 case ISD::VECTOR_SHUFFLE: { 2507 // Check if this is a shuffle node doing a splat. 2508 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2509 int SplatIndex = -1; 2510 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2511 for (int i = 0; i != (int)NumElts; ++i) { 2512 int M = Mask[i]; 2513 if (M < 0) { 2514 UndefElts.setBit(i); 2515 continue; 2516 } 2517 if (!DemandedElts[i]) 2518 continue; 2519 if (0 <= SplatIndex && SplatIndex != M) 2520 return false; 2521 SplatIndex = M; 2522 } 2523 return true; 2524 } 2525 case ISD::EXTRACT_SUBVECTOR: { 2526 // Offset the demanded elts by the subvector index. 2527 SDValue Src = V.getOperand(0); 2528 // We don't support scalable vectors at the moment. 2529 if (Src.getValueType().isScalableVector()) 2530 return false; 2531 uint64_t Idx = V.getConstantOperandVal(1); 2532 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2533 APInt UndefSrcElts; 2534 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2535 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2536 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2537 return true; 2538 } 2539 break; 2540 } 2541 } 2542 2543 return false; 2544 } 2545 2546 /// Helper wrapper to main isSplatValue function. 2547 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2548 EVT VT = V.getValueType(); 2549 assert(VT.isVector() && "Vector type expected"); 2550 2551 APInt UndefElts; 2552 APInt DemandedElts; 2553 2554 // For now we don't support this with scalable vectors. 2555 if (!VT.isScalableVector()) 2556 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2557 return isSplatValue(V, DemandedElts, UndefElts) && 2558 (AllowUndefs || !UndefElts); 2559 } 2560 2561 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2562 V = peekThroughExtractSubvectors(V); 2563 2564 EVT VT = V.getValueType(); 2565 unsigned Opcode = V.getOpcode(); 2566 switch (Opcode) { 2567 default: { 2568 APInt UndefElts; 2569 APInt DemandedElts; 2570 2571 if (!VT.isScalableVector()) 2572 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2573 2574 if (isSplatValue(V, DemandedElts, UndefElts)) { 2575 if (VT.isScalableVector()) { 2576 // DemandedElts and UndefElts are ignored for scalable vectors, since 2577 // the only supported cases are SPLAT_VECTOR nodes. 2578 SplatIdx = 0; 2579 } else { 2580 // Handle case where all demanded elements are UNDEF. 2581 if (DemandedElts.isSubsetOf(UndefElts)) { 2582 SplatIdx = 0; 2583 return getUNDEF(VT); 2584 } 2585 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2586 } 2587 return V; 2588 } 2589 break; 2590 } 2591 case ISD::SPLAT_VECTOR: 2592 SplatIdx = 0; 2593 return V; 2594 case ISD::VECTOR_SHUFFLE: { 2595 if (VT.isScalableVector()) 2596 return SDValue(); 2597 2598 // Check if this is a shuffle node doing a splat. 2599 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2600 // getTargetVShiftNode currently struggles without the splat source. 2601 auto *SVN = cast<ShuffleVectorSDNode>(V); 2602 if (!SVN->isSplat()) 2603 break; 2604 int Idx = SVN->getSplatIndex(); 2605 int NumElts = V.getValueType().getVectorNumElements(); 2606 SplatIdx = Idx % NumElts; 2607 return V.getOperand(Idx / NumElts); 2608 } 2609 } 2610 2611 return SDValue(); 2612 } 2613 2614 SDValue SelectionDAG::getSplatValue(SDValue V) { 2615 int SplatIdx; 2616 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2617 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2618 SrcVector.getValueType().getScalarType(), SrcVector, 2619 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2620 return SDValue(); 2621 } 2622 2623 const APInt * 2624 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2625 const APInt &DemandedElts) const { 2626 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2627 V.getOpcode() == ISD::SRA) && 2628 "Unknown shift node"); 2629 unsigned BitWidth = V.getScalarValueSizeInBits(); 2630 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2631 // Shifting more than the bitwidth is not valid. 2632 const APInt &ShAmt = SA->getAPIntValue(); 2633 if (ShAmt.ult(BitWidth)) 2634 return &ShAmt; 2635 } 2636 return nullptr; 2637 } 2638 2639 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2640 SDValue V, const APInt &DemandedElts) const { 2641 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2642 V.getOpcode() == ISD::SRA) && 2643 "Unknown shift node"); 2644 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2645 return ValidAmt; 2646 unsigned BitWidth = V.getScalarValueSizeInBits(); 2647 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2648 if (!BV) 2649 return nullptr; 2650 const APInt *MinShAmt = nullptr; 2651 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2652 if (!DemandedElts[i]) 2653 continue; 2654 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2655 if (!SA) 2656 return nullptr; 2657 // Shifting more than the bitwidth is not valid. 2658 const APInt &ShAmt = SA->getAPIntValue(); 2659 if (ShAmt.uge(BitWidth)) 2660 return nullptr; 2661 if (MinShAmt && MinShAmt->ule(ShAmt)) 2662 continue; 2663 MinShAmt = &ShAmt; 2664 } 2665 return MinShAmt; 2666 } 2667 2668 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2669 SDValue V, const APInt &DemandedElts) const { 2670 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2671 V.getOpcode() == ISD::SRA) && 2672 "Unknown shift node"); 2673 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2674 return ValidAmt; 2675 unsigned BitWidth = V.getScalarValueSizeInBits(); 2676 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2677 if (!BV) 2678 return nullptr; 2679 const APInt *MaxShAmt = nullptr; 2680 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2681 if (!DemandedElts[i]) 2682 continue; 2683 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2684 if (!SA) 2685 return nullptr; 2686 // Shifting more than the bitwidth is not valid. 2687 const APInt &ShAmt = SA->getAPIntValue(); 2688 if (ShAmt.uge(BitWidth)) 2689 return nullptr; 2690 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2691 continue; 2692 MaxShAmt = &ShAmt; 2693 } 2694 return MaxShAmt; 2695 } 2696 2697 /// Determine which bits of Op are known to be either zero or one and return 2698 /// them in Known. For vectors, the known bits are those that are shared by 2699 /// every vector element. 2700 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2701 EVT VT = Op.getValueType(); 2702 2703 // TOOD: Until we have a plan for how to represent demanded elements for 2704 // scalable vectors, we can just bail out for now. 2705 if (Op.getValueType().isScalableVector()) { 2706 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2707 return KnownBits(BitWidth); 2708 } 2709 2710 APInt DemandedElts = VT.isVector() 2711 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2712 : APInt(1, 1); 2713 return computeKnownBits(Op, DemandedElts, Depth); 2714 } 2715 2716 /// Determine which bits of Op are known to be either zero or one and return 2717 /// them in Known. The DemandedElts argument allows us to only collect the known 2718 /// bits that are shared by the requested vector elements. 2719 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2720 unsigned Depth) const { 2721 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2722 2723 KnownBits Known(BitWidth); // Don't know anything. 2724 2725 // TOOD: Until we have a plan for how to represent demanded elements for 2726 // scalable vectors, we can just bail out for now. 2727 if (Op.getValueType().isScalableVector()) 2728 return Known; 2729 2730 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2731 // We know all of the bits for a constant! 2732 return KnownBits::makeConstant(C->getAPIntValue()); 2733 } 2734 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2735 // We know all of the bits for a constant fp! 2736 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2737 } 2738 2739 if (Depth >= MaxRecursionDepth) 2740 return Known; // Limit search depth. 2741 2742 KnownBits Known2; 2743 unsigned NumElts = DemandedElts.getBitWidth(); 2744 assert((!Op.getValueType().isVector() || 2745 NumElts == Op.getValueType().getVectorNumElements()) && 2746 "Unexpected vector size"); 2747 2748 if (!DemandedElts) 2749 return Known; // No demanded elts, better to assume we don't know anything. 2750 2751 unsigned Opcode = Op.getOpcode(); 2752 switch (Opcode) { 2753 case ISD::BUILD_VECTOR: 2754 // Collect the known bits that are shared by every demanded vector element. 2755 Known.Zero.setAllBits(); Known.One.setAllBits(); 2756 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2757 if (!DemandedElts[i]) 2758 continue; 2759 2760 SDValue SrcOp = Op.getOperand(i); 2761 Known2 = computeKnownBits(SrcOp, Depth + 1); 2762 2763 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2764 if (SrcOp.getValueSizeInBits() != BitWidth) { 2765 assert(SrcOp.getValueSizeInBits() > BitWidth && 2766 "Expected BUILD_VECTOR implicit truncation"); 2767 Known2 = Known2.trunc(BitWidth); 2768 } 2769 2770 // Known bits are the values that are shared by every demanded element. 2771 Known = KnownBits::commonBits(Known, Known2); 2772 2773 // If we don't know any bits, early out. 2774 if (Known.isUnknown()) 2775 break; 2776 } 2777 break; 2778 case ISD::VECTOR_SHUFFLE: { 2779 // Collect the known bits that are shared by every vector element referenced 2780 // by the shuffle. 2781 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2782 Known.Zero.setAllBits(); Known.One.setAllBits(); 2783 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2784 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2785 for (unsigned i = 0; i != NumElts; ++i) { 2786 if (!DemandedElts[i]) 2787 continue; 2788 2789 int M = SVN->getMaskElt(i); 2790 if (M < 0) { 2791 // For UNDEF elements, we don't know anything about the common state of 2792 // the shuffle result. 2793 Known.resetAll(); 2794 DemandedLHS.clearAllBits(); 2795 DemandedRHS.clearAllBits(); 2796 break; 2797 } 2798 2799 if ((unsigned)M < NumElts) 2800 DemandedLHS.setBit((unsigned)M % NumElts); 2801 else 2802 DemandedRHS.setBit((unsigned)M % NumElts); 2803 } 2804 // Known bits are the values that are shared by every demanded element. 2805 if (!!DemandedLHS) { 2806 SDValue LHS = Op.getOperand(0); 2807 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2808 Known = KnownBits::commonBits(Known, Known2); 2809 } 2810 // If we don't know any bits, early out. 2811 if (Known.isUnknown()) 2812 break; 2813 if (!!DemandedRHS) { 2814 SDValue RHS = Op.getOperand(1); 2815 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2816 Known = KnownBits::commonBits(Known, Known2); 2817 } 2818 break; 2819 } 2820 case ISD::CONCAT_VECTORS: { 2821 // Split DemandedElts and test each of the demanded subvectors. 2822 Known.Zero.setAllBits(); Known.One.setAllBits(); 2823 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2824 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2825 unsigned NumSubVectors = Op.getNumOperands(); 2826 for (unsigned i = 0; i != NumSubVectors; ++i) { 2827 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2828 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2829 if (!!DemandedSub) { 2830 SDValue Sub = Op.getOperand(i); 2831 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2832 Known = KnownBits::commonBits(Known, Known2); 2833 } 2834 // If we don't know any bits, early out. 2835 if (Known.isUnknown()) 2836 break; 2837 } 2838 break; 2839 } 2840 case ISD::INSERT_SUBVECTOR: { 2841 // Demand any elements from the subvector and the remainder from the src its 2842 // inserted into. 2843 SDValue Src = Op.getOperand(0); 2844 SDValue Sub = Op.getOperand(1); 2845 uint64_t Idx = Op.getConstantOperandVal(2); 2846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2848 APInt DemandedSrcElts = DemandedElts; 2849 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2850 2851 Known.One.setAllBits(); 2852 Known.Zero.setAllBits(); 2853 if (!!DemandedSubElts) { 2854 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2855 if (Known.isUnknown()) 2856 break; // early-out. 2857 } 2858 if (!!DemandedSrcElts) { 2859 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2860 Known = KnownBits::commonBits(Known, Known2); 2861 } 2862 break; 2863 } 2864 case ISD::EXTRACT_SUBVECTOR: { 2865 // Offset the demanded elts by the subvector index. 2866 SDValue Src = Op.getOperand(0); 2867 // Bail until we can represent demanded elements for scalable vectors. 2868 if (Src.getValueType().isScalableVector()) 2869 break; 2870 uint64_t Idx = Op.getConstantOperandVal(1); 2871 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2872 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2873 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2874 break; 2875 } 2876 case ISD::SCALAR_TO_VECTOR: { 2877 // We know about scalar_to_vector as much as we know about it source, 2878 // which becomes the first element of otherwise unknown vector. 2879 if (DemandedElts != 1) 2880 break; 2881 2882 SDValue N0 = Op.getOperand(0); 2883 Known = computeKnownBits(N0, Depth + 1); 2884 if (N0.getValueSizeInBits() != BitWidth) 2885 Known = Known.trunc(BitWidth); 2886 2887 break; 2888 } 2889 case ISD::BITCAST: { 2890 SDValue N0 = Op.getOperand(0); 2891 EVT SubVT = N0.getValueType(); 2892 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2893 2894 // Ignore bitcasts from unsupported types. 2895 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2896 break; 2897 2898 // Fast handling of 'identity' bitcasts. 2899 if (BitWidth == SubBitWidth) { 2900 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2901 break; 2902 } 2903 2904 bool IsLE = getDataLayout().isLittleEndian(); 2905 2906 // Bitcast 'small element' vector to 'large element' scalar/vector. 2907 if ((BitWidth % SubBitWidth) == 0) { 2908 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2909 2910 // Collect known bits for the (larger) output by collecting the known 2911 // bits from each set of sub elements and shift these into place. 2912 // We need to separately call computeKnownBits for each set of 2913 // sub elements as the knownbits for each is likely to be different. 2914 unsigned SubScale = BitWidth / SubBitWidth; 2915 APInt SubDemandedElts(NumElts * SubScale, 0); 2916 for (unsigned i = 0; i != NumElts; ++i) 2917 if (DemandedElts[i]) 2918 SubDemandedElts.setBit(i * SubScale); 2919 2920 for (unsigned i = 0; i != SubScale; ++i) { 2921 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2922 Depth + 1); 2923 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2924 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2925 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2926 } 2927 } 2928 2929 // Bitcast 'large element' scalar/vector to 'small element' vector. 2930 if ((SubBitWidth % BitWidth) == 0) { 2931 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2932 2933 // Collect known bits for the (smaller) output by collecting the known 2934 // bits from the overlapping larger input elements and extracting the 2935 // sub sections we actually care about. 2936 unsigned SubScale = SubBitWidth / BitWidth; 2937 APInt SubDemandedElts(NumElts / SubScale, 0); 2938 for (unsigned i = 0; i != NumElts; ++i) 2939 if (DemandedElts[i]) 2940 SubDemandedElts.setBit(i / SubScale); 2941 2942 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2943 2944 Known.Zero.setAllBits(); Known.One.setAllBits(); 2945 for (unsigned i = 0; i != NumElts; ++i) 2946 if (DemandedElts[i]) { 2947 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2948 unsigned Offset = (Shifts % SubScale) * BitWidth; 2949 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2950 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2951 // If we don't know any bits, early out. 2952 if (Known.isUnknown()) 2953 break; 2954 } 2955 } 2956 break; 2957 } 2958 case ISD::AND: 2959 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2960 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2961 2962 Known &= Known2; 2963 break; 2964 case ISD::OR: 2965 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2966 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2967 2968 Known |= Known2; 2969 break; 2970 case ISD::XOR: 2971 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2972 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2973 2974 Known ^= Known2; 2975 break; 2976 case ISD::MUL: { 2977 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2978 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2979 Known = KnownBits::computeForMul(Known, Known2); 2980 break; 2981 } 2982 case ISD::UDIV: { 2983 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2984 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2985 Known = KnownBits::udiv(Known, Known2); 2986 break; 2987 } 2988 case ISD::SELECT: 2989 case ISD::VSELECT: 2990 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2991 // If we don't know any bits, early out. 2992 if (Known.isUnknown()) 2993 break; 2994 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2995 2996 // Only known if known in both the LHS and RHS. 2997 Known = KnownBits::commonBits(Known, Known2); 2998 break; 2999 case ISD::SELECT_CC: 3000 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3001 // If we don't know any bits, early out. 3002 if (Known.isUnknown()) 3003 break; 3004 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3005 3006 // Only known if known in both the LHS and RHS. 3007 Known = KnownBits::commonBits(Known, Known2); 3008 break; 3009 case ISD::SMULO: 3010 case ISD::UMULO: 3011 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3012 if (Op.getResNo() != 1) 3013 break; 3014 // The boolean result conforms to getBooleanContents. 3015 // If we know the result of a setcc has the top bits zero, use this info. 3016 // We know that we have an integer-based boolean since these operations 3017 // are only available for integer. 3018 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3019 TargetLowering::ZeroOrOneBooleanContent && 3020 BitWidth > 1) 3021 Known.Zero.setBitsFrom(1); 3022 break; 3023 case ISD::SETCC: 3024 case ISD::STRICT_FSETCC: 3025 case ISD::STRICT_FSETCCS: { 3026 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3027 // If we know the result of a setcc has the top bits zero, use this info. 3028 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3029 TargetLowering::ZeroOrOneBooleanContent && 3030 BitWidth > 1) 3031 Known.Zero.setBitsFrom(1); 3032 break; 3033 } 3034 case ISD::SHL: 3035 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3036 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known = KnownBits::shl(Known, Known2); 3038 3039 // Minimum shift low bits are known zero. 3040 if (const APInt *ShMinAmt = 3041 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3042 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3043 break; 3044 case ISD::SRL: 3045 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3046 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3047 Known = KnownBits::lshr(Known, Known2); 3048 3049 // Minimum shift high bits are known zero. 3050 if (const APInt *ShMinAmt = 3051 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3052 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3053 break; 3054 case ISD::SRA: 3055 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3057 Known = KnownBits::ashr(Known, Known2); 3058 // TODO: Add minimum shift high known sign bits. 3059 break; 3060 case ISD::FSHL: 3061 case ISD::FSHR: 3062 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3063 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3064 3065 // For fshl, 0-shift returns the 1st arg. 3066 // For fshr, 0-shift returns the 2nd arg. 3067 if (Amt == 0) { 3068 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3069 DemandedElts, Depth + 1); 3070 break; 3071 } 3072 3073 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3074 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3075 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3076 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 if (Opcode == ISD::FSHL) { 3078 Known.One <<= Amt; 3079 Known.Zero <<= Amt; 3080 Known2.One.lshrInPlace(BitWidth - Amt); 3081 Known2.Zero.lshrInPlace(BitWidth - Amt); 3082 } else { 3083 Known.One <<= BitWidth - Amt; 3084 Known.Zero <<= BitWidth - Amt; 3085 Known2.One.lshrInPlace(Amt); 3086 Known2.Zero.lshrInPlace(Amt); 3087 } 3088 Known.One |= Known2.One; 3089 Known.Zero |= Known2.Zero; 3090 } 3091 break; 3092 case ISD::SIGN_EXTEND_INREG: { 3093 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3094 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3095 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3096 break; 3097 } 3098 case ISD::CTTZ: 3099 case ISD::CTTZ_ZERO_UNDEF: { 3100 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3101 // If we have a known 1, its position is our upper bound. 3102 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3103 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3104 Known.Zero.setBitsFrom(LowBits); 3105 break; 3106 } 3107 case ISD::CTLZ: 3108 case ISD::CTLZ_ZERO_UNDEF: { 3109 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3110 // If we have a known 1, its position is our upper bound. 3111 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3112 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3113 Known.Zero.setBitsFrom(LowBits); 3114 break; 3115 } 3116 case ISD::CTPOP: { 3117 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3118 // If we know some of the bits are zero, they can't be one. 3119 unsigned PossibleOnes = Known2.countMaxPopulation(); 3120 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3121 break; 3122 } 3123 case ISD::PARITY: { 3124 // Parity returns 0 everywhere but the LSB. 3125 Known.Zero.setBitsFrom(1); 3126 break; 3127 } 3128 case ISD::LOAD: { 3129 LoadSDNode *LD = cast<LoadSDNode>(Op); 3130 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3131 if (ISD::isNON_EXTLoad(LD) && Cst) { 3132 // Determine any common known bits from the loaded constant pool value. 3133 Type *CstTy = Cst->getType(); 3134 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3135 // If its a vector splat, then we can (quickly) reuse the scalar path. 3136 // NOTE: We assume all elements match and none are UNDEF. 3137 if (CstTy->isVectorTy()) { 3138 if (const Constant *Splat = Cst->getSplatValue()) { 3139 Cst = Splat; 3140 CstTy = Cst->getType(); 3141 } 3142 } 3143 // TODO - do we need to handle different bitwidths? 3144 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3145 // Iterate across all vector elements finding common known bits. 3146 Known.One.setAllBits(); 3147 Known.Zero.setAllBits(); 3148 for (unsigned i = 0; i != NumElts; ++i) { 3149 if (!DemandedElts[i]) 3150 continue; 3151 if (Constant *Elt = Cst->getAggregateElement(i)) { 3152 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3153 const APInt &Value = CInt->getValue(); 3154 Known.One &= Value; 3155 Known.Zero &= ~Value; 3156 continue; 3157 } 3158 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3159 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3160 Known.One &= Value; 3161 Known.Zero &= ~Value; 3162 continue; 3163 } 3164 } 3165 Known.One.clearAllBits(); 3166 Known.Zero.clearAllBits(); 3167 break; 3168 } 3169 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3170 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3171 Known = KnownBits::makeConstant(CInt->getValue()); 3172 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3173 Known = 3174 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3175 } 3176 } 3177 } 3178 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3179 // If this is a ZEXTLoad and we are looking at the loaded value. 3180 EVT VT = LD->getMemoryVT(); 3181 unsigned MemBits = VT.getScalarSizeInBits(); 3182 Known.Zero.setBitsFrom(MemBits); 3183 } else if (const MDNode *Ranges = LD->getRanges()) { 3184 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3185 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3186 } 3187 break; 3188 } 3189 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3190 EVT InVT = Op.getOperand(0).getValueType(); 3191 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3192 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3193 Known = Known.zext(BitWidth); 3194 break; 3195 } 3196 case ISD::ZERO_EXTEND: { 3197 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3198 Known = Known.zext(BitWidth); 3199 break; 3200 } 3201 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3202 EVT InVT = Op.getOperand(0).getValueType(); 3203 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3204 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3205 // If the sign bit is known to be zero or one, then sext will extend 3206 // it to the top bits, else it will just zext. 3207 Known = Known.sext(BitWidth); 3208 break; 3209 } 3210 case ISD::SIGN_EXTEND: { 3211 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3212 // If the sign bit is known to be zero or one, then sext will extend 3213 // it to the top bits, else it will just zext. 3214 Known = Known.sext(BitWidth); 3215 break; 3216 } 3217 case ISD::ANY_EXTEND_VECTOR_INREG: { 3218 EVT InVT = Op.getOperand(0).getValueType(); 3219 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3220 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3221 Known = Known.anyext(BitWidth); 3222 break; 3223 } 3224 case ISD::ANY_EXTEND: { 3225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3226 Known = Known.anyext(BitWidth); 3227 break; 3228 } 3229 case ISD::TRUNCATE: { 3230 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 Known = Known.trunc(BitWidth); 3232 break; 3233 } 3234 case ISD::AssertZext: { 3235 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3236 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3237 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3238 Known.Zero |= (~InMask); 3239 Known.One &= (~Known.Zero); 3240 break; 3241 } 3242 case ISD::AssertAlign: { 3243 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3244 assert(LogOfAlign != 0); 3245 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3246 // well as clearing one bits. 3247 Known.Zero.setLowBits(LogOfAlign); 3248 Known.One.clearLowBits(LogOfAlign); 3249 break; 3250 } 3251 case ISD::FGETSIGN: 3252 // All bits are zero except the low bit. 3253 Known.Zero.setBitsFrom(1); 3254 break; 3255 case ISD::USUBO: 3256 case ISD::SSUBO: 3257 if (Op.getResNo() == 1) { 3258 // If we know the result of a setcc has the top bits zero, use this info. 3259 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3260 TargetLowering::ZeroOrOneBooleanContent && 3261 BitWidth > 1) 3262 Known.Zero.setBitsFrom(1); 3263 break; 3264 } 3265 LLVM_FALLTHROUGH; 3266 case ISD::SUB: 3267 case ISD::SUBC: { 3268 assert(Op.getResNo() == 0 && 3269 "We only compute knownbits for the difference here."); 3270 3271 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3272 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3273 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3274 Known, Known2); 3275 break; 3276 } 3277 case ISD::UADDO: 3278 case ISD::SADDO: 3279 case ISD::ADDCARRY: 3280 if (Op.getResNo() == 1) { 3281 // If we know the result of a setcc has the top bits zero, use this info. 3282 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3283 TargetLowering::ZeroOrOneBooleanContent && 3284 BitWidth > 1) 3285 Known.Zero.setBitsFrom(1); 3286 break; 3287 } 3288 LLVM_FALLTHROUGH; 3289 case ISD::ADD: 3290 case ISD::ADDC: 3291 case ISD::ADDE: { 3292 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3293 3294 // With ADDE and ADDCARRY, a carry bit may be added in. 3295 KnownBits Carry(1); 3296 if (Opcode == ISD::ADDE) 3297 // Can't track carry from glue, set carry to unknown. 3298 Carry.resetAll(); 3299 else if (Opcode == ISD::ADDCARRY) 3300 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3301 // the trouble (how often will we find a known carry bit). And I haven't 3302 // tested this very much yet, but something like this might work: 3303 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3304 // Carry = Carry.zextOrTrunc(1, false); 3305 Carry.resetAll(); 3306 else 3307 Carry.setAllZero(); 3308 3309 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3310 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3311 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3312 break; 3313 } 3314 case ISD::SREM: { 3315 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3316 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3317 Known = KnownBits::srem(Known, Known2); 3318 break; 3319 } 3320 case ISD::UREM: { 3321 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3322 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3323 Known = KnownBits::urem(Known, Known2); 3324 break; 3325 } 3326 case ISD::EXTRACT_ELEMENT: { 3327 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3328 const unsigned Index = Op.getConstantOperandVal(1); 3329 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3330 3331 // Remove low part of known bits mask 3332 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3333 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3334 3335 // Remove high part of known bit mask 3336 Known = Known.trunc(EltBitWidth); 3337 break; 3338 } 3339 case ISD::EXTRACT_VECTOR_ELT: { 3340 SDValue InVec = Op.getOperand(0); 3341 SDValue EltNo = Op.getOperand(1); 3342 EVT VecVT = InVec.getValueType(); 3343 // computeKnownBits not yet implemented for scalable vectors. 3344 if (VecVT.isScalableVector()) 3345 break; 3346 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3347 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3348 3349 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3350 // anything about the extended bits. 3351 if (BitWidth > EltBitWidth) 3352 Known = Known.trunc(EltBitWidth); 3353 3354 // If we know the element index, just demand that vector element, else for 3355 // an unknown element index, ignore DemandedElts and demand them all. 3356 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3357 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3358 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3359 DemandedSrcElts = 3360 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3361 3362 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3363 if (BitWidth > EltBitWidth) 3364 Known = Known.anyext(BitWidth); 3365 break; 3366 } 3367 case ISD::INSERT_VECTOR_ELT: { 3368 // If we know the element index, split the demand between the 3369 // source vector and the inserted element, otherwise assume we need 3370 // the original demanded vector elements and the value. 3371 SDValue InVec = Op.getOperand(0); 3372 SDValue InVal = Op.getOperand(1); 3373 SDValue EltNo = Op.getOperand(2); 3374 bool DemandedVal = true; 3375 APInt DemandedVecElts = DemandedElts; 3376 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3377 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3378 unsigned EltIdx = CEltNo->getZExtValue(); 3379 DemandedVal = !!DemandedElts[EltIdx]; 3380 DemandedVecElts.clearBit(EltIdx); 3381 } 3382 Known.One.setAllBits(); 3383 Known.Zero.setAllBits(); 3384 if (DemandedVal) { 3385 Known2 = computeKnownBits(InVal, Depth + 1); 3386 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3387 } 3388 if (!!DemandedVecElts) { 3389 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3390 Known = KnownBits::commonBits(Known, Known2); 3391 } 3392 break; 3393 } 3394 case ISD::BITREVERSE: { 3395 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3396 Known = Known2.reverseBits(); 3397 break; 3398 } 3399 case ISD::BSWAP: { 3400 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3401 Known = Known2.byteSwap(); 3402 break; 3403 } 3404 case ISD::ABS: { 3405 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3406 Known = Known2.abs(); 3407 break; 3408 } 3409 case ISD::USUBSAT: { 3410 // The result of usubsat will never be larger than the LHS. 3411 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3413 break; 3414 } 3415 case ISD::UMIN: { 3416 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3417 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3418 Known = KnownBits::umin(Known, Known2); 3419 break; 3420 } 3421 case ISD::UMAX: { 3422 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3423 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3424 Known = KnownBits::umax(Known, Known2); 3425 break; 3426 } 3427 case ISD::SMIN: 3428 case ISD::SMAX: { 3429 // If we have a clamp pattern, we know that the number of sign bits will be 3430 // the minimum of the clamp min/max range. 3431 bool IsMax = (Opcode == ISD::SMAX); 3432 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3433 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3434 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3435 CstHigh = 3436 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3437 if (CstLow && CstHigh) { 3438 if (!IsMax) 3439 std::swap(CstLow, CstHigh); 3440 3441 const APInt &ValueLow = CstLow->getAPIntValue(); 3442 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3443 if (ValueLow.sle(ValueHigh)) { 3444 unsigned LowSignBits = ValueLow.getNumSignBits(); 3445 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3446 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3447 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3448 Known.One.setHighBits(MinSignBits); 3449 break; 3450 } 3451 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3452 Known.Zero.setHighBits(MinSignBits); 3453 break; 3454 } 3455 } 3456 } 3457 3458 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3460 if (IsMax) 3461 Known = KnownBits::smax(Known, Known2); 3462 else 3463 Known = KnownBits::smin(Known, Known2); 3464 break; 3465 } 3466 case ISD::FrameIndex: 3467 case ISD::TargetFrameIndex: 3468 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3469 Known, getMachineFunction()); 3470 break; 3471 3472 default: 3473 if (Opcode < ISD::BUILTIN_OP_END) 3474 break; 3475 LLVM_FALLTHROUGH; 3476 case ISD::INTRINSIC_WO_CHAIN: 3477 case ISD::INTRINSIC_W_CHAIN: 3478 case ISD::INTRINSIC_VOID: 3479 // Allow the target to implement this method for its nodes. 3480 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3481 break; 3482 } 3483 3484 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3485 return Known; 3486 } 3487 3488 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3489 SDValue N1) const { 3490 // X + 0 never overflow 3491 if (isNullConstant(N1)) 3492 return OFK_Never; 3493 3494 KnownBits N1Known = computeKnownBits(N1); 3495 if (N1Known.Zero.getBoolValue()) { 3496 KnownBits N0Known = computeKnownBits(N0); 3497 3498 bool overflow; 3499 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3500 if (!overflow) 3501 return OFK_Never; 3502 } 3503 3504 // mulhi + 1 never overflow 3505 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3506 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3507 return OFK_Never; 3508 3509 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3510 KnownBits N0Known = computeKnownBits(N0); 3511 3512 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3513 return OFK_Never; 3514 } 3515 3516 return OFK_Sometime; 3517 } 3518 3519 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3520 EVT OpVT = Val.getValueType(); 3521 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3522 3523 // Is the constant a known power of 2? 3524 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3525 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3526 3527 // A left-shift of a constant one will have exactly one bit set because 3528 // shifting the bit off the end is undefined. 3529 if (Val.getOpcode() == ISD::SHL) { 3530 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3531 if (C && C->getAPIntValue() == 1) 3532 return true; 3533 } 3534 3535 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3536 // one bit set. 3537 if (Val.getOpcode() == ISD::SRL) { 3538 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3539 if (C && C->getAPIntValue().isSignMask()) 3540 return true; 3541 } 3542 3543 // Are all operands of a build vector constant powers of two? 3544 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3545 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3547 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3548 return false; 3549 })) 3550 return true; 3551 3552 // More could be done here, though the above checks are enough 3553 // to handle some common cases. 3554 3555 // Fall back to computeKnownBits to catch other known cases. 3556 KnownBits Known = computeKnownBits(Val); 3557 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3558 } 3559 3560 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3561 EVT VT = Op.getValueType(); 3562 3563 // TODO: Assume we don't know anything for now. 3564 if (VT.isScalableVector()) 3565 return 1; 3566 3567 APInt DemandedElts = VT.isVector() 3568 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3569 : APInt(1, 1); 3570 return ComputeNumSignBits(Op, DemandedElts, Depth); 3571 } 3572 3573 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3574 unsigned Depth) const { 3575 EVT VT = Op.getValueType(); 3576 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3577 unsigned VTBits = VT.getScalarSizeInBits(); 3578 unsigned NumElts = DemandedElts.getBitWidth(); 3579 unsigned Tmp, Tmp2; 3580 unsigned FirstAnswer = 1; 3581 3582 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3583 const APInt &Val = C->getAPIntValue(); 3584 return Val.getNumSignBits(); 3585 } 3586 3587 if (Depth >= MaxRecursionDepth) 3588 return 1; // Limit search depth. 3589 3590 if (!DemandedElts || VT.isScalableVector()) 3591 return 1; // No demanded elts, better to assume we don't know anything. 3592 3593 unsigned Opcode = Op.getOpcode(); 3594 switch (Opcode) { 3595 default: break; 3596 case ISD::AssertSext: 3597 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3598 return VTBits-Tmp+1; 3599 case ISD::AssertZext: 3600 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3601 return VTBits-Tmp; 3602 3603 case ISD::BUILD_VECTOR: 3604 Tmp = VTBits; 3605 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3606 if (!DemandedElts[i]) 3607 continue; 3608 3609 SDValue SrcOp = Op.getOperand(i); 3610 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3611 3612 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3613 if (SrcOp.getValueSizeInBits() != VTBits) { 3614 assert(SrcOp.getValueSizeInBits() > VTBits && 3615 "Expected BUILD_VECTOR implicit truncation"); 3616 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3617 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3618 } 3619 Tmp = std::min(Tmp, Tmp2); 3620 } 3621 return Tmp; 3622 3623 case ISD::VECTOR_SHUFFLE: { 3624 // Collect the minimum number of sign bits that are shared by every vector 3625 // element referenced by the shuffle. 3626 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3627 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3628 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3629 for (unsigned i = 0; i != NumElts; ++i) { 3630 int M = SVN->getMaskElt(i); 3631 if (!DemandedElts[i]) 3632 continue; 3633 // For UNDEF elements, we don't know anything about the common state of 3634 // the shuffle result. 3635 if (M < 0) 3636 return 1; 3637 if ((unsigned)M < NumElts) 3638 DemandedLHS.setBit((unsigned)M % NumElts); 3639 else 3640 DemandedRHS.setBit((unsigned)M % NumElts); 3641 } 3642 Tmp = std::numeric_limits<unsigned>::max(); 3643 if (!!DemandedLHS) 3644 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3645 if (!!DemandedRHS) { 3646 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3647 Tmp = std::min(Tmp, Tmp2); 3648 } 3649 // If we don't know anything, early out and try computeKnownBits fall-back. 3650 if (Tmp == 1) 3651 break; 3652 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3653 return Tmp; 3654 } 3655 3656 case ISD::BITCAST: { 3657 SDValue N0 = Op.getOperand(0); 3658 EVT SrcVT = N0.getValueType(); 3659 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3660 3661 // Ignore bitcasts from unsupported types.. 3662 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3663 break; 3664 3665 // Fast handling of 'identity' bitcasts. 3666 if (VTBits == SrcBits) 3667 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3668 3669 bool IsLE = getDataLayout().isLittleEndian(); 3670 3671 // Bitcast 'large element' scalar/vector to 'small element' vector. 3672 if ((SrcBits % VTBits) == 0) { 3673 assert(VT.isVector() && "Expected bitcast to vector"); 3674 3675 unsigned Scale = SrcBits / VTBits; 3676 APInt SrcDemandedElts(NumElts / Scale, 0); 3677 for (unsigned i = 0; i != NumElts; ++i) 3678 if (DemandedElts[i]) 3679 SrcDemandedElts.setBit(i / Scale); 3680 3681 // Fast case - sign splat can be simply split across the small elements. 3682 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3683 if (Tmp == SrcBits) 3684 return VTBits; 3685 3686 // Slow case - determine how far the sign extends into each sub-element. 3687 Tmp2 = VTBits; 3688 for (unsigned i = 0; i != NumElts; ++i) 3689 if (DemandedElts[i]) { 3690 unsigned SubOffset = i % Scale; 3691 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3692 SubOffset = SubOffset * VTBits; 3693 if (Tmp <= SubOffset) 3694 return 1; 3695 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3696 } 3697 return Tmp2; 3698 } 3699 break; 3700 } 3701 3702 case ISD::SIGN_EXTEND: 3703 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3704 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3705 case ISD::SIGN_EXTEND_INREG: 3706 // Max of the input and what this extends. 3707 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3708 Tmp = VTBits-Tmp+1; 3709 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3710 return std::max(Tmp, Tmp2); 3711 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3712 SDValue Src = Op.getOperand(0); 3713 EVT SrcVT = Src.getValueType(); 3714 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3715 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3716 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3717 } 3718 case ISD::SRA: 3719 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3720 // SRA X, C -> adds C sign bits. 3721 if (const APInt *ShAmt = 3722 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3723 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3724 return Tmp; 3725 case ISD::SHL: 3726 if (const APInt *ShAmt = 3727 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3728 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3729 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3730 if (ShAmt->ult(Tmp)) 3731 return Tmp - ShAmt->getZExtValue(); 3732 } 3733 break; 3734 case ISD::AND: 3735 case ISD::OR: 3736 case ISD::XOR: // NOT is handled here. 3737 // Logical binary ops preserve the number of sign bits at the worst. 3738 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3739 if (Tmp != 1) { 3740 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3741 FirstAnswer = std::min(Tmp, Tmp2); 3742 // We computed what we know about the sign bits as our first 3743 // answer. Now proceed to the generic code that uses 3744 // computeKnownBits, and pick whichever answer is better. 3745 } 3746 break; 3747 3748 case ISD::SELECT: 3749 case ISD::VSELECT: 3750 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3751 if (Tmp == 1) return 1; // Early out. 3752 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3753 return std::min(Tmp, Tmp2); 3754 case ISD::SELECT_CC: 3755 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3756 if (Tmp == 1) return 1; // Early out. 3757 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3758 return std::min(Tmp, Tmp2); 3759 3760 case ISD::SMIN: 3761 case ISD::SMAX: { 3762 // If we have a clamp pattern, we know that the number of sign bits will be 3763 // the minimum of the clamp min/max range. 3764 bool IsMax = (Opcode == ISD::SMAX); 3765 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3766 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3767 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3768 CstHigh = 3769 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3770 if (CstLow && CstHigh) { 3771 if (!IsMax) 3772 std::swap(CstLow, CstHigh); 3773 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3774 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3775 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3776 return std::min(Tmp, Tmp2); 3777 } 3778 } 3779 3780 // Fallback - just get the minimum number of sign bits of the operands. 3781 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3782 if (Tmp == 1) 3783 return 1; // Early out. 3784 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3785 return std::min(Tmp, Tmp2); 3786 } 3787 case ISD::UMIN: 3788 case ISD::UMAX: 3789 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3790 if (Tmp == 1) 3791 return 1; // Early out. 3792 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3793 return std::min(Tmp, Tmp2); 3794 case ISD::SADDO: 3795 case ISD::UADDO: 3796 case ISD::SSUBO: 3797 case ISD::USUBO: 3798 case ISD::SMULO: 3799 case ISD::UMULO: 3800 if (Op.getResNo() != 1) 3801 break; 3802 // The boolean result conforms to getBooleanContents. Fall through. 3803 // If setcc returns 0/-1, all bits are sign bits. 3804 // We know that we have an integer-based boolean since these operations 3805 // are only available for integer. 3806 if (TLI->getBooleanContents(VT.isVector(), false) == 3807 TargetLowering::ZeroOrNegativeOneBooleanContent) 3808 return VTBits; 3809 break; 3810 case ISD::SETCC: 3811 case ISD::STRICT_FSETCC: 3812 case ISD::STRICT_FSETCCS: { 3813 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3814 // If setcc returns 0/-1, all bits are sign bits. 3815 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3816 TargetLowering::ZeroOrNegativeOneBooleanContent) 3817 return VTBits; 3818 break; 3819 } 3820 case ISD::ROTL: 3821 case ISD::ROTR: 3822 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3823 3824 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3825 if (Tmp == VTBits) 3826 return VTBits; 3827 3828 if (ConstantSDNode *C = 3829 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3830 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3831 3832 // Handle rotate right by N like a rotate left by 32-N. 3833 if (Opcode == ISD::ROTR) 3834 RotAmt = (VTBits - RotAmt) % VTBits; 3835 3836 // If we aren't rotating out all of the known-in sign bits, return the 3837 // number that are left. This handles rotl(sext(x), 1) for example. 3838 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3839 } 3840 break; 3841 case ISD::ADD: 3842 case ISD::ADDC: 3843 // Add can have at most one carry bit. Thus we know that the output 3844 // is, at worst, one more bit than the inputs. 3845 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3846 if (Tmp == 1) return 1; // Early out. 3847 3848 // Special case decrementing a value (ADD X, -1): 3849 if (ConstantSDNode *CRHS = 3850 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3851 if (CRHS->isAllOnesValue()) { 3852 KnownBits Known = 3853 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3854 3855 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3856 // sign bits set. 3857 if ((Known.Zero | 1).isAllOnesValue()) 3858 return VTBits; 3859 3860 // If we are subtracting one from a positive number, there is no carry 3861 // out of the result. 3862 if (Known.isNonNegative()) 3863 return Tmp; 3864 } 3865 3866 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3867 if (Tmp2 == 1) return 1; // Early out. 3868 return std::min(Tmp, Tmp2) - 1; 3869 case ISD::SUB: 3870 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3871 if (Tmp2 == 1) return 1; // Early out. 3872 3873 // Handle NEG. 3874 if (ConstantSDNode *CLHS = 3875 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3876 if (CLHS->isNullValue()) { 3877 KnownBits Known = 3878 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3879 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3880 // sign bits set. 3881 if ((Known.Zero | 1).isAllOnesValue()) 3882 return VTBits; 3883 3884 // If the input is known to be positive (the sign bit is known clear), 3885 // the output of the NEG has the same number of sign bits as the input. 3886 if (Known.isNonNegative()) 3887 return Tmp2; 3888 3889 // Otherwise, we treat this like a SUB. 3890 } 3891 3892 // Sub can have at most one carry bit. Thus we know that the output 3893 // is, at worst, one more bit than the inputs. 3894 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3895 if (Tmp == 1) return 1; // Early out. 3896 return std::min(Tmp, Tmp2) - 1; 3897 case ISD::MUL: { 3898 // The output of the Mul can be at most twice the valid bits in the inputs. 3899 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3900 if (SignBitsOp0 == 1) 3901 break; 3902 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3903 if (SignBitsOp1 == 1) 3904 break; 3905 unsigned OutValidBits = 3906 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3907 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3908 } 3909 case ISD::SREM: 3910 // The sign bit is the LHS's sign bit, except when the result of the 3911 // remainder is zero. The magnitude of the result should be less than or 3912 // equal to the magnitude of the LHS. Therefore, the result should have 3913 // at least as many sign bits as the left hand side. 3914 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3915 case ISD::TRUNCATE: { 3916 // Check if the sign bits of source go down as far as the truncated value. 3917 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3918 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3919 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3920 return NumSrcSignBits - (NumSrcBits - VTBits); 3921 break; 3922 } 3923 case ISD::EXTRACT_ELEMENT: { 3924 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3925 const int BitWidth = Op.getValueSizeInBits(); 3926 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3927 3928 // Get reverse index (starting from 1), Op1 value indexes elements from 3929 // little end. Sign starts at big end. 3930 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3931 3932 // If the sign portion ends in our element the subtraction gives correct 3933 // result. Otherwise it gives either negative or > bitwidth result 3934 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3935 } 3936 case ISD::INSERT_VECTOR_ELT: { 3937 // If we know the element index, split the demand between the 3938 // source vector and the inserted element, otherwise assume we need 3939 // the original demanded vector elements and the value. 3940 SDValue InVec = Op.getOperand(0); 3941 SDValue InVal = Op.getOperand(1); 3942 SDValue EltNo = Op.getOperand(2); 3943 bool DemandedVal = true; 3944 APInt DemandedVecElts = DemandedElts; 3945 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3946 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3947 unsigned EltIdx = CEltNo->getZExtValue(); 3948 DemandedVal = !!DemandedElts[EltIdx]; 3949 DemandedVecElts.clearBit(EltIdx); 3950 } 3951 Tmp = std::numeric_limits<unsigned>::max(); 3952 if (DemandedVal) { 3953 // TODO - handle implicit truncation of inserted elements. 3954 if (InVal.getScalarValueSizeInBits() != VTBits) 3955 break; 3956 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3957 Tmp = std::min(Tmp, Tmp2); 3958 } 3959 if (!!DemandedVecElts) { 3960 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3961 Tmp = std::min(Tmp, Tmp2); 3962 } 3963 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3964 return Tmp; 3965 } 3966 case ISD::EXTRACT_VECTOR_ELT: { 3967 SDValue InVec = Op.getOperand(0); 3968 SDValue EltNo = Op.getOperand(1); 3969 EVT VecVT = InVec.getValueType(); 3970 // ComputeNumSignBits not yet implemented for scalable vectors. 3971 if (VecVT.isScalableVector()) 3972 break; 3973 const unsigned BitWidth = Op.getValueSizeInBits(); 3974 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3975 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3976 3977 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3978 // anything about sign bits. But if the sizes match we can derive knowledge 3979 // about sign bits from the vector operand. 3980 if (BitWidth != EltBitWidth) 3981 break; 3982 3983 // If we know the element index, just demand that vector element, else for 3984 // an unknown element index, ignore DemandedElts and demand them all. 3985 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3986 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3987 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3988 DemandedSrcElts = 3989 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3990 3991 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3992 } 3993 case ISD::EXTRACT_SUBVECTOR: { 3994 // Offset the demanded elts by the subvector index. 3995 SDValue Src = Op.getOperand(0); 3996 // Bail until we can represent demanded elements for scalable vectors. 3997 if (Src.getValueType().isScalableVector()) 3998 break; 3999 uint64_t Idx = Op.getConstantOperandVal(1); 4000 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4001 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4002 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4003 } 4004 case ISD::CONCAT_VECTORS: { 4005 // Determine the minimum number of sign bits across all demanded 4006 // elts of the input vectors. Early out if the result is already 1. 4007 Tmp = std::numeric_limits<unsigned>::max(); 4008 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4009 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4010 unsigned NumSubVectors = Op.getNumOperands(); 4011 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4012 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 4013 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 4014 if (!DemandedSub) 4015 continue; 4016 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4017 Tmp = std::min(Tmp, Tmp2); 4018 } 4019 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4020 return Tmp; 4021 } 4022 case ISD::INSERT_SUBVECTOR: { 4023 // Demand any elements from the subvector and the remainder from the src its 4024 // inserted into. 4025 SDValue Src = Op.getOperand(0); 4026 SDValue Sub = Op.getOperand(1); 4027 uint64_t Idx = Op.getConstantOperandVal(2); 4028 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4029 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4030 APInt DemandedSrcElts = DemandedElts; 4031 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4032 4033 Tmp = std::numeric_limits<unsigned>::max(); 4034 if (!!DemandedSubElts) { 4035 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4036 if (Tmp == 1) 4037 return 1; // early-out 4038 } 4039 if (!!DemandedSrcElts) { 4040 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4041 Tmp = std::min(Tmp, Tmp2); 4042 } 4043 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4044 return Tmp; 4045 } 4046 } 4047 4048 // If we are looking at the loaded value of the SDNode. 4049 if (Op.getResNo() == 0) { 4050 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4051 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4052 unsigned ExtType = LD->getExtensionType(); 4053 switch (ExtType) { 4054 default: break; 4055 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4056 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4057 return VTBits - Tmp + 1; 4058 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4059 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4060 return VTBits - Tmp; 4061 case ISD::NON_EXTLOAD: 4062 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4063 // We only need to handle vectors - computeKnownBits should handle 4064 // scalar cases. 4065 Type *CstTy = Cst->getType(); 4066 if (CstTy->isVectorTy() && 4067 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4068 Tmp = VTBits; 4069 for (unsigned i = 0; i != NumElts; ++i) { 4070 if (!DemandedElts[i]) 4071 continue; 4072 if (Constant *Elt = Cst->getAggregateElement(i)) { 4073 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4074 const APInt &Value = CInt->getValue(); 4075 Tmp = std::min(Tmp, Value.getNumSignBits()); 4076 continue; 4077 } 4078 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4079 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4080 Tmp = std::min(Tmp, Value.getNumSignBits()); 4081 continue; 4082 } 4083 } 4084 // Unknown type. Conservatively assume no bits match sign bit. 4085 return 1; 4086 } 4087 return Tmp; 4088 } 4089 } 4090 break; 4091 } 4092 } 4093 } 4094 4095 // Allow the target to implement this method for its nodes. 4096 if (Opcode >= ISD::BUILTIN_OP_END || 4097 Opcode == ISD::INTRINSIC_WO_CHAIN || 4098 Opcode == ISD::INTRINSIC_W_CHAIN || 4099 Opcode == ISD::INTRINSIC_VOID) { 4100 unsigned NumBits = 4101 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4102 if (NumBits > 1) 4103 FirstAnswer = std::max(FirstAnswer, NumBits); 4104 } 4105 4106 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4107 // use this information. 4108 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4109 4110 APInt Mask; 4111 if (Known.isNonNegative()) { // sign bit is 0 4112 Mask = Known.Zero; 4113 } else if (Known.isNegative()) { // sign bit is 1; 4114 Mask = Known.One; 4115 } else { 4116 // Nothing known. 4117 return FirstAnswer; 4118 } 4119 4120 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4121 // the number of identical bits in the top of the input value. 4122 Mask <<= Mask.getBitWidth()-VTBits; 4123 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4124 } 4125 4126 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4127 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4128 !isa<ConstantSDNode>(Op.getOperand(1))) 4129 return false; 4130 4131 if (Op.getOpcode() == ISD::OR && 4132 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4133 return false; 4134 4135 return true; 4136 } 4137 4138 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4139 // If we're told that NaNs won't happen, assume they won't. 4140 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4141 return true; 4142 4143 if (Depth >= MaxRecursionDepth) 4144 return false; // Limit search depth. 4145 4146 // TODO: Handle vectors. 4147 // If the value is a constant, we can obviously see if it is a NaN or not. 4148 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4149 return !C->getValueAPF().isNaN() || 4150 (SNaN && !C->getValueAPF().isSignaling()); 4151 } 4152 4153 unsigned Opcode = Op.getOpcode(); 4154 switch (Opcode) { 4155 case ISD::FADD: 4156 case ISD::FSUB: 4157 case ISD::FMUL: 4158 case ISD::FDIV: 4159 case ISD::FREM: 4160 case ISD::FSIN: 4161 case ISD::FCOS: { 4162 if (SNaN) 4163 return true; 4164 // TODO: Need isKnownNeverInfinity 4165 return false; 4166 } 4167 case ISD::FCANONICALIZE: 4168 case ISD::FEXP: 4169 case ISD::FEXP2: 4170 case ISD::FTRUNC: 4171 case ISD::FFLOOR: 4172 case ISD::FCEIL: 4173 case ISD::FROUND: 4174 case ISD::FROUNDEVEN: 4175 case ISD::FRINT: 4176 case ISD::FNEARBYINT: { 4177 if (SNaN) 4178 return true; 4179 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4180 } 4181 case ISD::FABS: 4182 case ISD::FNEG: 4183 case ISD::FCOPYSIGN: { 4184 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4185 } 4186 case ISD::SELECT: 4187 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4188 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4189 case ISD::FP_EXTEND: 4190 case ISD::FP_ROUND: { 4191 if (SNaN) 4192 return true; 4193 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4194 } 4195 case ISD::SINT_TO_FP: 4196 case ISD::UINT_TO_FP: 4197 return true; 4198 case ISD::FMA: 4199 case ISD::FMAD: { 4200 if (SNaN) 4201 return true; 4202 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4203 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4204 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4205 } 4206 case ISD::FSQRT: // Need is known positive 4207 case ISD::FLOG: 4208 case ISD::FLOG2: 4209 case ISD::FLOG10: 4210 case ISD::FPOWI: 4211 case ISD::FPOW: { 4212 if (SNaN) 4213 return true; 4214 // TODO: Refine on operand 4215 return false; 4216 } 4217 case ISD::FMINNUM: 4218 case ISD::FMAXNUM: { 4219 // Only one needs to be known not-nan, since it will be returned if the 4220 // other ends up being one. 4221 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4222 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4223 } 4224 case ISD::FMINNUM_IEEE: 4225 case ISD::FMAXNUM_IEEE: { 4226 if (SNaN) 4227 return true; 4228 // This can return a NaN if either operand is an sNaN, or if both operands 4229 // are NaN. 4230 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4231 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4232 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4233 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4234 } 4235 case ISD::FMINIMUM: 4236 case ISD::FMAXIMUM: { 4237 // TODO: Does this quiet or return the origina NaN as-is? 4238 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4239 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4240 } 4241 case ISD::EXTRACT_VECTOR_ELT: { 4242 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4243 } 4244 default: 4245 if (Opcode >= ISD::BUILTIN_OP_END || 4246 Opcode == ISD::INTRINSIC_WO_CHAIN || 4247 Opcode == ISD::INTRINSIC_W_CHAIN || 4248 Opcode == ISD::INTRINSIC_VOID) { 4249 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4250 } 4251 4252 return false; 4253 } 4254 } 4255 4256 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4257 assert(Op.getValueType().isFloatingPoint() && 4258 "Floating point type expected"); 4259 4260 // If the value is a constant, we can obviously see if it is a zero or not. 4261 // TODO: Add BuildVector support. 4262 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4263 return !C->isZero(); 4264 return false; 4265 } 4266 4267 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4268 assert(!Op.getValueType().isFloatingPoint() && 4269 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4270 4271 // If the value is a constant, we can obviously see if it is a zero or not. 4272 if (ISD::matchUnaryPredicate( 4273 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4274 return true; 4275 4276 // TODO: Recognize more cases here. 4277 switch (Op.getOpcode()) { 4278 default: break; 4279 case ISD::OR: 4280 if (isKnownNeverZero(Op.getOperand(1)) || 4281 isKnownNeverZero(Op.getOperand(0))) 4282 return true; 4283 break; 4284 } 4285 4286 return false; 4287 } 4288 4289 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4290 // Check the obvious case. 4291 if (A == B) return true; 4292 4293 // For for negative and positive zero. 4294 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4295 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4296 if (CA->isZero() && CB->isZero()) return true; 4297 4298 // Otherwise they may not be equal. 4299 return false; 4300 } 4301 4302 // FIXME: unify with llvm::haveNoCommonBitsSet. 4303 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4304 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4305 assert(A.getValueType() == B.getValueType() && 4306 "Values must have the same type"); 4307 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4308 } 4309 4310 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4311 ArrayRef<SDValue> Ops, 4312 SelectionDAG &DAG) { 4313 int NumOps = Ops.size(); 4314 assert(NumOps != 0 && "Can't build an empty vector!"); 4315 assert(!VT.isScalableVector() && 4316 "BUILD_VECTOR cannot be used with scalable types"); 4317 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4318 "Incorrect element count in BUILD_VECTOR!"); 4319 4320 // BUILD_VECTOR of UNDEFs is UNDEF. 4321 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4322 return DAG.getUNDEF(VT); 4323 4324 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4325 SDValue IdentitySrc; 4326 bool IsIdentity = true; 4327 for (int i = 0; i != NumOps; ++i) { 4328 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4329 Ops[i].getOperand(0).getValueType() != VT || 4330 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4331 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4332 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4333 IsIdentity = false; 4334 break; 4335 } 4336 IdentitySrc = Ops[i].getOperand(0); 4337 } 4338 if (IsIdentity) 4339 return IdentitySrc; 4340 4341 return SDValue(); 4342 } 4343 4344 /// Try to simplify vector concatenation to an input value, undef, or build 4345 /// vector. 4346 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4347 ArrayRef<SDValue> Ops, 4348 SelectionDAG &DAG) { 4349 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4350 assert(llvm::all_of(Ops, 4351 [Ops](SDValue Op) { 4352 return Ops[0].getValueType() == Op.getValueType(); 4353 }) && 4354 "Concatenation of vectors with inconsistent value types!"); 4355 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4356 VT.getVectorElementCount() && 4357 "Incorrect element count in vector concatenation!"); 4358 4359 if (Ops.size() == 1) 4360 return Ops[0]; 4361 4362 // Concat of UNDEFs is UNDEF. 4363 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4364 return DAG.getUNDEF(VT); 4365 4366 // Scan the operands and look for extract operations from a single source 4367 // that correspond to insertion at the same location via this concatenation: 4368 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4369 SDValue IdentitySrc; 4370 bool IsIdentity = true; 4371 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4372 SDValue Op = Ops[i]; 4373 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4374 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4375 Op.getOperand(0).getValueType() != VT || 4376 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4377 Op.getConstantOperandVal(1) != IdentityIndex) { 4378 IsIdentity = false; 4379 break; 4380 } 4381 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4382 "Unexpected identity source vector for concat of extracts"); 4383 IdentitySrc = Op.getOperand(0); 4384 } 4385 if (IsIdentity) { 4386 assert(IdentitySrc && "Failed to set source vector of extracts"); 4387 return IdentitySrc; 4388 } 4389 4390 // The code below this point is only designed to work for fixed width 4391 // vectors, so we bail out for now. 4392 if (VT.isScalableVector()) 4393 return SDValue(); 4394 4395 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4396 // simplified to one big BUILD_VECTOR. 4397 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4398 EVT SVT = VT.getScalarType(); 4399 SmallVector<SDValue, 16> Elts; 4400 for (SDValue Op : Ops) { 4401 EVT OpVT = Op.getValueType(); 4402 if (Op.isUndef()) 4403 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4404 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4405 Elts.append(Op->op_begin(), Op->op_end()); 4406 else 4407 return SDValue(); 4408 } 4409 4410 // BUILD_VECTOR requires all inputs to be of the same type, find the 4411 // maximum type and extend them all. 4412 for (SDValue Op : Elts) 4413 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4414 4415 if (SVT.bitsGT(VT.getScalarType())) { 4416 for (SDValue &Op : Elts) { 4417 if (Op.isUndef()) 4418 Op = DAG.getUNDEF(SVT); 4419 else 4420 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4421 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4422 : DAG.getSExtOrTrunc(Op, DL, SVT); 4423 } 4424 } 4425 4426 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4427 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4428 return V; 4429 } 4430 4431 /// Gets or creates the specified node. 4432 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4433 FoldingSetNodeID ID; 4434 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4435 void *IP = nullptr; 4436 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4437 return SDValue(E, 0); 4438 4439 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4440 getVTList(VT)); 4441 CSEMap.InsertNode(N, IP); 4442 4443 InsertNode(N); 4444 SDValue V = SDValue(N, 0); 4445 NewSDValueDbgMsg(V, "Creating new node: ", this); 4446 return V; 4447 } 4448 4449 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4450 SDValue Operand) { 4451 SDNodeFlags Flags; 4452 if (Inserter) 4453 Flags = Inserter->getFlags(); 4454 return getNode(Opcode, DL, VT, Operand, Flags); 4455 } 4456 4457 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4458 SDValue Operand, const SDNodeFlags Flags) { 4459 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4460 "Operand is DELETED_NODE!"); 4461 // Constant fold unary operations with an integer constant operand. Even 4462 // opaque constant will be folded, because the folding of unary operations 4463 // doesn't create new constants with different values. Nevertheless, the 4464 // opaque flag is preserved during folding to prevent future folding with 4465 // other constants. 4466 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4467 const APInt &Val = C->getAPIntValue(); 4468 switch (Opcode) { 4469 default: break; 4470 case ISD::SIGN_EXTEND: 4471 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4472 C->isTargetOpcode(), C->isOpaque()); 4473 case ISD::TRUNCATE: 4474 if (C->isOpaque()) 4475 break; 4476 LLVM_FALLTHROUGH; 4477 case ISD::ANY_EXTEND: 4478 case ISD::ZERO_EXTEND: 4479 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4480 C->isTargetOpcode(), C->isOpaque()); 4481 case ISD::UINT_TO_FP: 4482 case ISD::SINT_TO_FP: { 4483 APFloat apf(EVTToAPFloatSemantics(VT), 4484 APInt::getNullValue(VT.getSizeInBits())); 4485 (void)apf.convertFromAPInt(Val, 4486 Opcode==ISD::SINT_TO_FP, 4487 APFloat::rmNearestTiesToEven); 4488 return getConstantFP(apf, DL, VT); 4489 } 4490 case ISD::BITCAST: 4491 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4492 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4493 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4494 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4495 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4496 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4497 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4498 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4499 break; 4500 case ISD::ABS: 4501 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4502 C->isOpaque()); 4503 case ISD::BITREVERSE: 4504 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4505 C->isOpaque()); 4506 case ISD::BSWAP: 4507 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4508 C->isOpaque()); 4509 case ISD::CTPOP: 4510 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4511 C->isOpaque()); 4512 case ISD::CTLZ: 4513 case ISD::CTLZ_ZERO_UNDEF: 4514 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4515 C->isOpaque()); 4516 case ISD::CTTZ: 4517 case ISD::CTTZ_ZERO_UNDEF: 4518 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4519 C->isOpaque()); 4520 case ISD::FP16_TO_FP: { 4521 bool Ignored; 4522 APFloat FPV(APFloat::IEEEhalf(), 4523 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4524 4525 // This can return overflow, underflow, or inexact; we don't care. 4526 // FIXME need to be more flexible about rounding mode. 4527 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4528 APFloat::rmNearestTiesToEven, &Ignored); 4529 return getConstantFP(FPV, DL, VT); 4530 } 4531 } 4532 } 4533 4534 // Constant fold unary operations with a floating point constant operand. 4535 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4536 APFloat V = C->getValueAPF(); // make copy 4537 switch (Opcode) { 4538 case ISD::FNEG: 4539 V.changeSign(); 4540 return getConstantFP(V, DL, VT); 4541 case ISD::FABS: 4542 V.clearSign(); 4543 return getConstantFP(V, DL, VT); 4544 case ISD::FCEIL: { 4545 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4546 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4547 return getConstantFP(V, DL, VT); 4548 break; 4549 } 4550 case ISD::FTRUNC: { 4551 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4552 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4553 return getConstantFP(V, DL, VT); 4554 break; 4555 } 4556 case ISD::FFLOOR: { 4557 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4558 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4559 return getConstantFP(V, DL, VT); 4560 break; 4561 } 4562 case ISD::FP_EXTEND: { 4563 bool ignored; 4564 // This can return overflow, underflow, or inexact; we don't care. 4565 // FIXME need to be more flexible about rounding mode. 4566 (void)V.convert(EVTToAPFloatSemantics(VT), 4567 APFloat::rmNearestTiesToEven, &ignored); 4568 return getConstantFP(V, DL, VT); 4569 } 4570 case ISD::FP_TO_SINT: 4571 case ISD::FP_TO_UINT: { 4572 bool ignored; 4573 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4574 // FIXME need to be more flexible about rounding mode. 4575 APFloat::opStatus s = 4576 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4577 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4578 break; 4579 return getConstant(IntVal, DL, VT); 4580 } 4581 case ISD::BITCAST: 4582 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4583 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4584 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4585 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4586 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4587 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4588 break; 4589 case ISD::FP_TO_FP16: { 4590 bool Ignored; 4591 // This can return overflow, underflow, or inexact; we don't care. 4592 // FIXME need to be more flexible about rounding mode. 4593 (void)V.convert(APFloat::IEEEhalf(), 4594 APFloat::rmNearestTiesToEven, &Ignored); 4595 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4596 } 4597 } 4598 } 4599 4600 // Constant fold unary operations with a vector integer or float operand. 4601 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4602 if (BV->isConstant()) { 4603 switch (Opcode) { 4604 default: 4605 // FIXME: Entirely reasonable to perform folding of other unary 4606 // operations here as the need arises. 4607 break; 4608 case ISD::FNEG: 4609 case ISD::FABS: 4610 case ISD::FCEIL: 4611 case ISD::FTRUNC: 4612 case ISD::FFLOOR: 4613 case ISD::FP_EXTEND: 4614 case ISD::FP_TO_SINT: 4615 case ISD::FP_TO_UINT: 4616 case ISD::TRUNCATE: 4617 case ISD::ANY_EXTEND: 4618 case ISD::ZERO_EXTEND: 4619 case ISD::SIGN_EXTEND: 4620 case ISD::UINT_TO_FP: 4621 case ISD::SINT_TO_FP: 4622 case ISD::ABS: 4623 case ISD::BITREVERSE: 4624 case ISD::BSWAP: 4625 case ISD::CTLZ: 4626 case ISD::CTLZ_ZERO_UNDEF: 4627 case ISD::CTTZ: 4628 case ISD::CTTZ_ZERO_UNDEF: 4629 case ISD::CTPOP: { 4630 SDValue Ops = { Operand }; 4631 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4632 return Fold; 4633 } 4634 } 4635 } 4636 } 4637 4638 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4639 switch (Opcode) { 4640 case ISD::FREEZE: 4641 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4642 break; 4643 case ISD::TokenFactor: 4644 case ISD::MERGE_VALUES: 4645 case ISD::CONCAT_VECTORS: 4646 return Operand; // Factor, merge or concat of one node? No need. 4647 case ISD::BUILD_VECTOR: { 4648 // Attempt to simplify BUILD_VECTOR. 4649 SDValue Ops[] = {Operand}; 4650 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4651 return V; 4652 break; 4653 } 4654 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4655 case ISD::FP_EXTEND: 4656 assert(VT.isFloatingPoint() && 4657 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4658 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4659 assert((!VT.isVector() || 4660 VT.getVectorElementCount() == 4661 Operand.getValueType().getVectorElementCount()) && 4662 "Vector element count mismatch!"); 4663 assert(Operand.getValueType().bitsLT(VT) && 4664 "Invalid fpext node, dst < src!"); 4665 if (Operand.isUndef()) 4666 return getUNDEF(VT); 4667 break; 4668 case ISD::FP_TO_SINT: 4669 case ISD::FP_TO_UINT: 4670 if (Operand.isUndef()) 4671 return getUNDEF(VT); 4672 break; 4673 case ISD::SINT_TO_FP: 4674 case ISD::UINT_TO_FP: 4675 // [us]itofp(undef) = 0, because the result value is bounded. 4676 if (Operand.isUndef()) 4677 return getConstantFP(0.0, DL, VT); 4678 break; 4679 case ISD::SIGN_EXTEND: 4680 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4681 "Invalid SIGN_EXTEND!"); 4682 assert(VT.isVector() == Operand.getValueType().isVector() && 4683 "SIGN_EXTEND result type type should be vector iff the operand " 4684 "type is vector!"); 4685 if (Operand.getValueType() == VT) return Operand; // noop extension 4686 assert((!VT.isVector() || 4687 VT.getVectorElementCount() == 4688 Operand.getValueType().getVectorElementCount()) && 4689 "Vector element count mismatch!"); 4690 assert(Operand.getValueType().bitsLT(VT) && 4691 "Invalid sext node, dst < src!"); 4692 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4693 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4694 else if (OpOpcode == ISD::UNDEF) 4695 // sext(undef) = 0, because the top bits will all be the same. 4696 return getConstant(0, DL, VT); 4697 break; 4698 case ISD::ZERO_EXTEND: 4699 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4700 "Invalid ZERO_EXTEND!"); 4701 assert(VT.isVector() == Operand.getValueType().isVector() && 4702 "ZERO_EXTEND result type type should be vector iff the operand " 4703 "type is vector!"); 4704 if (Operand.getValueType() == VT) return Operand; // noop extension 4705 assert((!VT.isVector() || 4706 VT.getVectorElementCount() == 4707 Operand.getValueType().getVectorElementCount()) && 4708 "Vector element count mismatch!"); 4709 assert(Operand.getValueType().bitsLT(VT) && 4710 "Invalid zext node, dst < src!"); 4711 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4712 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4713 else if (OpOpcode == ISD::UNDEF) 4714 // zext(undef) = 0, because the top bits will be zero. 4715 return getConstant(0, DL, VT); 4716 break; 4717 case ISD::ANY_EXTEND: 4718 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4719 "Invalid ANY_EXTEND!"); 4720 assert(VT.isVector() == Operand.getValueType().isVector() && 4721 "ANY_EXTEND result type type should be vector iff the operand " 4722 "type is vector!"); 4723 if (Operand.getValueType() == VT) return Operand; // noop extension 4724 assert((!VT.isVector() || 4725 VT.getVectorElementCount() == 4726 Operand.getValueType().getVectorElementCount()) && 4727 "Vector element count mismatch!"); 4728 assert(Operand.getValueType().bitsLT(VT) && 4729 "Invalid anyext node, dst < src!"); 4730 4731 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4732 OpOpcode == ISD::ANY_EXTEND) 4733 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4734 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4735 else if (OpOpcode == ISD::UNDEF) 4736 return getUNDEF(VT); 4737 4738 // (ext (trunc x)) -> x 4739 if (OpOpcode == ISD::TRUNCATE) { 4740 SDValue OpOp = Operand.getOperand(0); 4741 if (OpOp.getValueType() == VT) { 4742 transferDbgValues(Operand, OpOp); 4743 return OpOp; 4744 } 4745 } 4746 break; 4747 case ISD::TRUNCATE: 4748 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4749 "Invalid TRUNCATE!"); 4750 assert(VT.isVector() == Operand.getValueType().isVector() && 4751 "TRUNCATE result type type should be vector iff the operand " 4752 "type is vector!"); 4753 if (Operand.getValueType() == VT) return Operand; // noop truncate 4754 assert((!VT.isVector() || 4755 VT.getVectorElementCount() == 4756 Operand.getValueType().getVectorElementCount()) && 4757 "Vector element count mismatch!"); 4758 assert(Operand.getValueType().bitsGT(VT) && 4759 "Invalid truncate node, src < dst!"); 4760 if (OpOpcode == ISD::TRUNCATE) 4761 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4762 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4763 OpOpcode == ISD::ANY_EXTEND) { 4764 // If the source is smaller than the dest, we still need an extend. 4765 if (Operand.getOperand(0).getValueType().getScalarType() 4766 .bitsLT(VT.getScalarType())) 4767 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4768 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4769 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4770 return Operand.getOperand(0); 4771 } 4772 if (OpOpcode == ISD::UNDEF) 4773 return getUNDEF(VT); 4774 break; 4775 case ISD::ANY_EXTEND_VECTOR_INREG: 4776 case ISD::ZERO_EXTEND_VECTOR_INREG: 4777 case ISD::SIGN_EXTEND_VECTOR_INREG: 4778 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4779 assert(Operand.getValueType().bitsLE(VT) && 4780 "The input must be the same size or smaller than the result."); 4781 assert(VT.getVectorNumElements() < 4782 Operand.getValueType().getVectorNumElements() && 4783 "The destination vector type must have fewer lanes than the input."); 4784 break; 4785 case ISD::ABS: 4786 assert(VT.isInteger() && VT == Operand.getValueType() && 4787 "Invalid ABS!"); 4788 if (OpOpcode == ISD::UNDEF) 4789 return getUNDEF(VT); 4790 break; 4791 case ISD::BSWAP: 4792 assert(VT.isInteger() && VT == Operand.getValueType() && 4793 "Invalid BSWAP!"); 4794 assert((VT.getScalarSizeInBits() % 16 == 0) && 4795 "BSWAP types must be a multiple of 16 bits!"); 4796 if (OpOpcode == ISD::UNDEF) 4797 return getUNDEF(VT); 4798 break; 4799 case ISD::BITREVERSE: 4800 assert(VT.isInteger() && VT == Operand.getValueType() && 4801 "Invalid BITREVERSE!"); 4802 if (OpOpcode == ISD::UNDEF) 4803 return getUNDEF(VT); 4804 break; 4805 case ISD::BITCAST: 4806 // Basic sanity checking. 4807 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4808 "Cannot BITCAST between types of different sizes!"); 4809 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4810 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4811 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4812 if (OpOpcode == ISD::UNDEF) 4813 return getUNDEF(VT); 4814 break; 4815 case ISD::SCALAR_TO_VECTOR: 4816 assert(VT.isVector() && !Operand.getValueType().isVector() && 4817 (VT.getVectorElementType() == Operand.getValueType() || 4818 (VT.getVectorElementType().isInteger() && 4819 Operand.getValueType().isInteger() && 4820 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4821 "Illegal SCALAR_TO_VECTOR node!"); 4822 if (OpOpcode == ISD::UNDEF) 4823 return getUNDEF(VT); 4824 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4825 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4826 isa<ConstantSDNode>(Operand.getOperand(1)) && 4827 Operand.getConstantOperandVal(1) == 0 && 4828 Operand.getOperand(0).getValueType() == VT) 4829 return Operand.getOperand(0); 4830 break; 4831 case ISD::FNEG: 4832 // Negation of an unknown bag of bits is still completely undefined. 4833 if (OpOpcode == ISD::UNDEF) 4834 return getUNDEF(VT); 4835 4836 if (OpOpcode == ISD::FNEG) // --X -> X 4837 return Operand.getOperand(0); 4838 break; 4839 case ISD::FABS: 4840 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4841 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4842 break; 4843 case ISD::VSCALE: 4844 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4845 break; 4846 case ISD::CTPOP: 4847 if (Operand.getValueType().getScalarType() == MVT::i1) 4848 return Operand; 4849 break; 4850 case ISD::CTLZ: 4851 case ISD::CTTZ: 4852 if (Operand.getValueType().getScalarType() == MVT::i1) 4853 return getNOT(DL, Operand, Operand.getValueType()); 4854 break; 4855 case ISD::VECREDUCE_SMIN: 4856 case ISD::VECREDUCE_UMAX: 4857 if (Operand.getValueType().getScalarType() == MVT::i1) 4858 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4859 break; 4860 case ISD::VECREDUCE_SMAX: 4861 case ISD::VECREDUCE_UMIN: 4862 if (Operand.getValueType().getScalarType() == MVT::i1) 4863 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4864 break; 4865 } 4866 4867 SDNode *N; 4868 SDVTList VTs = getVTList(VT); 4869 SDValue Ops[] = {Operand}; 4870 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4871 FoldingSetNodeID ID; 4872 AddNodeIDNode(ID, Opcode, VTs, Ops); 4873 void *IP = nullptr; 4874 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4875 E->intersectFlagsWith(Flags); 4876 return SDValue(E, 0); 4877 } 4878 4879 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4880 N->setFlags(Flags); 4881 createOperands(N, Ops); 4882 CSEMap.InsertNode(N, IP); 4883 } else { 4884 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4885 createOperands(N, Ops); 4886 } 4887 4888 InsertNode(N); 4889 SDValue V = SDValue(N, 0); 4890 NewSDValueDbgMsg(V, "Creating new node: ", this); 4891 return V; 4892 } 4893 4894 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4895 const APInt &C2) { 4896 switch (Opcode) { 4897 case ISD::ADD: return C1 + C2; 4898 case ISD::SUB: return C1 - C2; 4899 case ISD::MUL: return C1 * C2; 4900 case ISD::AND: return C1 & C2; 4901 case ISD::OR: return C1 | C2; 4902 case ISD::XOR: return C1 ^ C2; 4903 case ISD::SHL: return C1 << C2; 4904 case ISD::SRL: return C1.lshr(C2); 4905 case ISD::SRA: return C1.ashr(C2); 4906 case ISD::ROTL: return C1.rotl(C2); 4907 case ISD::ROTR: return C1.rotr(C2); 4908 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4909 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4910 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4911 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4912 case ISD::SADDSAT: return C1.sadd_sat(C2); 4913 case ISD::UADDSAT: return C1.uadd_sat(C2); 4914 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4915 case ISD::USUBSAT: return C1.usub_sat(C2); 4916 case ISD::UDIV: 4917 if (!C2.getBoolValue()) 4918 break; 4919 return C1.udiv(C2); 4920 case ISD::UREM: 4921 if (!C2.getBoolValue()) 4922 break; 4923 return C1.urem(C2); 4924 case ISD::SDIV: 4925 if (!C2.getBoolValue()) 4926 break; 4927 return C1.sdiv(C2); 4928 case ISD::SREM: 4929 if (!C2.getBoolValue()) 4930 break; 4931 return C1.srem(C2); 4932 } 4933 return llvm::None; 4934 } 4935 4936 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4937 const GlobalAddressSDNode *GA, 4938 const SDNode *N2) { 4939 if (GA->getOpcode() != ISD::GlobalAddress) 4940 return SDValue(); 4941 if (!TLI->isOffsetFoldingLegal(GA)) 4942 return SDValue(); 4943 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4944 if (!C2) 4945 return SDValue(); 4946 int64_t Offset = C2->getSExtValue(); 4947 switch (Opcode) { 4948 case ISD::ADD: break; 4949 case ISD::SUB: Offset = -uint64_t(Offset); break; 4950 default: return SDValue(); 4951 } 4952 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4953 GA->getOffset() + uint64_t(Offset)); 4954 } 4955 4956 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4957 switch (Opcode) { 4958 case ISD::SDIV: 4959 case ISD::UDIV: 4960 case ISD::SREM: 4961 case ISD::UREM: { 4962 // If a divisor is zero/undef or any element of a divisor vector is 4963 // zero/undef, the whole op is undef. 4964 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4965 SDValue Divisor = Ops[1]; 4966 if (Divisor.isUndef() || isNullConstant(Divisor)) 4967 return true; 4968 4969 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4970 llvm::any_of(Divisor->op_values(), 4971 [](SDValue V) { return V.isUndef() || 4972 isNullConstant(V); }); 4973 // TODO: Handle signed overflow. 4974 } 4975 // TODO: Handle oversized shifts. 4976 default: 4977 return false; 4978 } 4979 } 4980 4981 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4982 EVT VT, ArrayRef<SDValue> Ops) { 4983 // If the opcode is a target-specific ISD node, there's nothing we can 4984 // do here and the operand rules may not line up with the below, so 4985 // bail early. 4986 if (Opcode >= ISD::BUILTIN_OP_END) 4987 return SDValue(); 4988 4989 // For now, the array Ops should only contain two values. 4990 // This enforcement will be removed once this function is merged with 4991 // FoldConstantVectorArithmetic 4992 if (Ops.size() != 2) 4993 return SDValue(); 4994 4995 if (isUndef(Opcode, Ops)) 4996 return getUNDEF(VT); 4997 4998 SDNode *N1 = Ops[0].getNode(); 4999 SDNode *N2 = Ops[1].getNode(); 5000 5001 // Handle the case of two scalars. 5002 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5003 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5004 if (C1->isOpaque() || C2->isOpaque()) 5005 return SDValue(); 5006 5007 Optional<APInt> FoldAttempt = 5008 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5009 if (!FoldAttempt) 5010 return SDValue(); 5011 5012 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5013 assert((!Folded || !VT.isVector()) && 5014 "Can't fold vectors ops with scalar operands"); 5015 return Folded; 5016 } 5017 } 5018 5019 // fold (add Sym, c) -> Sym+c 5020 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5021 return FoldSymbolOffset(Opcode, VT, GA, N2); 5022 if (TLI->isCommutativeBinOp(Opcode)) 5023 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5024 return FoldSymbolOffset(Opcode, VT, GA, N1); 5025 5026 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5027 // vector width, however we should be able to do constant folds involving 5028 // splat vector nodes too. 5029 if (VT.isScalableVector()) 5030 return SDValue(); 5031 5032 // For fixed width vectors, extract each constant element and fold them 5033 // individually. Either input may be an undef value. 5034 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5035 if (!BV1 && !N1->isUndef()) 5036 return SDValue(); 5037 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5038 if (!BV2 && !N2->isUndef()) 5039 return SDValue(); 5040 // If both operands are undef, that's handled the same way as scalars. 5041 if (!BV1 && !BV2) 5042 return SDValue(); 5043 5044 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5045 "Vector binop with different number of elements in operands?"); 5046 5047 EVT SVT = VT.getScalarType(); 5048 EVT LegalSVT = SVT; 5049 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5050 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5051 if (LegalSVT.bitsLT(SVT)) 5052 return SDValue(); 5053 } 5054 SmallVector<SDValue, 4> Outputs; 5055 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5056 for (unsigned I = 0; I != NumOps; ++I) { 5057 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5058 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5059 if (SVT.isInteger()) { 5060 if (V1->getValueType(0).bitsGT(SVT)) 5061 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5062 if (V2->getValueType(0).bitsGT(SVT)) 5063 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5064 } 5065 5066 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5067 return SDValue(); 5068 5069 // Fold one vector element. 5070 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5071 if (LegalSVT != SVT) 5072 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5073 5074 // Scalar folding only succeeded if the result is a constant or UNDEF. 5075 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5076 ScalarResult.getOpcode() != ISD::ConstantFP) 5077 return SDValue(); 5078 Outputs.push_back(ScalarResult); 5079 } 5080 5081 assert(VT.getVectorNumElements() == Outputs.size() && 5082 "Vector size mismatch!"); 5083 5084 // We may have a vector type but a scalar result. Create a splat. 5085 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5086 5087 // Build a big vector out of the scalar elements we generated. 5088 return getBuildVector(VT, SDLoc(), Outputs); 5089 } 5090 5091 // TODO: Merge with FoldConstantArithmetic 5092 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5093 const SDLoc &DL, EVT VT, 5094 ArrayRef<SDValue> Ops, 5095 const SDNodeFlags Flags) { 5096 // If the opcode is a target-specific ISD node, there's nothing we can 5097 // do here and the operand rules may not line up with the below, so 5098 // bail early. 5099 if (Opcode >= ISD::BUILTIN_OP_END) 5100 return SDValue(); 5101 5102 if (isUndef(Opcode, Ops)) 5103 return getUNDEF(VT); 5104 5105 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5106 if (!VT.isVector()) 5107 return SDValue(); 5108 5109 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5110 // vector width, however we should be able to do constant folds involving 5111 // splat vector nodes too. 5112 if (VT.isScalableVector()) 5113 return SDValue(); 5114 5115 // From this point onwards all vectors are assumed to be fixed width. 5116 unsigned NumElts = VT.getVectorNumElements(); 5117 5118 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5119 return !Op.getValueType().isVector() || 5120 Op.getValueType().getVectorNumElements() == NumElts; 5121 }; 5122 5123 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5124 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5125 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5126 (BV && BV->isConstant()); 5127 }; 5128 5129 // All operands must be vector types with the same number of elements as 5130 // the result type and must be either UNDEF or a build vector of constant 5131 // or UNDEF scalars. 5132 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5133 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5134 return SDValue(); 5135 5136 // If we are comparing vectors, then the result needs to be a i1 boolean 5137 // that is then sign-extended back to the legal result type. 5138 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5139 5140 // Find legal integer scalar type for constant promotion and 5141 // ensure that its scalar size is at least as large as source. 5142 EVT LegalSVT = VT.getScalarType(); 5143 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5144 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5145 if (LegalSVT.bitsLT(VT.getScalarType())) 5146 return SDValue(); 5147 } 5148 5149 // Constant fold each scalar lane separately. 5150 SmallVector<SDValue, 4> ScalarResults; 5151 for (unsigned i = 0; i != NumElts; i++) { 5152 SmallVector<SDValue, 4> ScalarOps; 5153 for (SDValue Op : Ops) { 5154 EVT InSVT = Op.getValueType().getScalarType(); 5155 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5156 if (!InBV) { 5157 // We've checked that this is UNDEF or a constant of some kind. 5158 if (Op.isUndef()) 5159 ScalarOps.push_back(getUNDEF(InSVT)); 5160 else 5161 ScalarOps.push_back(Op); 5162 continue; 5163 } 5164 5165 SDValue ScalarOp = InBV->getOperand(i); 5166 EVT ScalarVT = ScalarOp.getValueType(); 5167 5168 // Build vector (integer) scalar operands may need implicit 5169 // truncation - do this before constant folding. 5170 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5171 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5172 5173 ScalarOps.push_back(ScalarOp); 5174 } 5175 5176 // Constant fold the scalar operands. 5177 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5178 5179 // Legalize the (integer) scalar constant if necessary. 5180 if (LegalSVT != SVT) 5181 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5182 5183 // Scalar folding only succeeded if the result is a constant or UNDEF. 5184 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5185 ScalarResult.getOpcode() != ISD::ConstantFP) 5186 return SDValue(); 5187 ScalarResults.push_back(ScalarResult); 5188 } 5189 5190 SDValue V = getBuildVector(VT, DL, ScalarResults); 5191 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5192 return V; 5193 } 5194 5195 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5196 EVT VT, SDValue N1, SDValue N2) { 5197 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5198 // should. That will require dealing with a potentially non-default 5199 // rounding mode, checking the "opStatus" return value from the APFloat 5200 // math calculations, and possibly other variations. 5201 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5202 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5203 if (N1CFP && N2CFP) { 5204 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5205 switch (Opcode) { 5206 case ISD::FADD: 5207 C1.add(C2, APFloat::rmNearestTiesToEven); 5208 return getConstantFP(C1, DL, VT); 5209 case ISD::FSUB: 5210 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5211 return getConstantFP(C1, DL, VT); 5212 case ISD::FMUL: 5213 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5214 return getConstantFP(C1, DL, VT); 5215 case ISD::FDIV: 5216 C1.divide(C2, APFloat::rmNearestTiesToEven); 5217 return getConstantFP(C1, DL, VT); 5218 case ISD::FREM: 5219 C1.mod(C2); 5220 return getConstantFP(C1, DL, VT); 5221 case ISD::FCOPYSIGN: 5222 C1.copySign(C2); 5223 return getConstantFP(C1, DL, VT); 5224 default: break; 5225 } 5226 } 5227 if (N1CFP && Opcode == ISD::FP_ROUND) { 5228 APFloat C1 = N1CFP->getValueAPF(); // make copy 5229 bool Unused; 5230 // This can return overflow, underflow, or inexact; we don't care. 5231 // FIXME need to be more flexible about rounding mode. 5232 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5233 &Unused); 5234 return getConstantFP(C1, DL, VT); 5235 } 5236 5237 switch (Opcode) { 5238 case ISD::FSUB: 5239 // -0.0 - undef --> undef (consistent with "fneg undef") 5240 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5241 return getUNDEF(VT); 5242 LLVM_FALLTHROUGH; 5243 5244 case ISD::FADD: 5245 case ISD::FMUL: 5246 case ISD::FDIV: 5247 case ISD::FREM: 5248 // If both operands are undef, the result is undef. If 1 operand is undef, 5249 // the result is NaN. This should match the behavior of the IR optimizer. 5250 if (N1.isUndef() && N2.isUndef()) 5251 return getUNDEF(VT); 5252 if (N1.isUndef() || N2.isUndef()) 5253 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5254 } 5255 return SDValue(); 5256 } 5257 5258 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5259 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5260 5261 // There's no need to assert on a byte-aligned pointer. All pointers are at 5262 // least byte aligned. 5263 if (A == Align(1)) 5264 return Val; 5265 5266 FoldingSetNodeID ID; 5267 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5268 ID.AddInteger(A.value()); 5269 5270 void *IP = nullptr; 5271 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5272 return SDValue(E, 0); 5273 5274 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5275 Val.getValueType(), A); 5276 createOperands(N, {Val}); 5277 5278 CSEMap.InsertNode(N, IP); 5279 InsertNode(N); 5280 5281 SDValue V(N, 0); 5282 NewSDValueDbgMsg(V, "Creating new node: ", this); 5283 return V; 5284 } 5285 5286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5287 SDValue N1, SDValue N2) { 5288 SDNodeFlags Flags; 5289 if (Inserter) 5290 Flags = Inserter->getFlags(); 5291 return getNode(Opcode, DL, VT, N1, N2, Flags); 5292 } 5293 5294 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5295 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5296 assert(N1.getOpcode() != ISD::DELETED_NODE && 5297 N2.getOpcode() != ISD::DELETED_NODE && 5298 "Operand is DELETED_NODE!"); 5299 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5300 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5301 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5302 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5303 5304 // Canonicalize constant to RHS if commutative. 5305 if (TLI->isCommutativeBinOp(Opcode)) { 5306 if (N1C && !N2C) { 5307 std::swap(N1C, N2C); 5308 std::swap(N1, N2); 5309 } else if (N1CFP && !N2CFP) { 5310 std::swap(N1CFP, N2CFP); 5311 std::swap(N1, N2); 5312 } 5313 } 5314 5315 switch (Opcode) { 5316 default: break; 5317 case ISD::TokenFactor: 5318 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5319 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5320 // Fold trivial token factors. 5321 if (N1.getOpcode() == ISD::EntryToken) return N2; 5322 if (N2.getOpcode() == ISD::EntryToken) return N1; 5323 if (N1 == N2) return N1; 5324 break; 5325 case ISD::BUILD_VECTOR: { 5326 // Attempt to simplify BUILD_VECTOR. 5327 SDValue Ops[] = {N1, N2}; 5328 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5329 return V; 5330 break; 5331 } 5332 case ISD::CONCAT_VECTORS: { 5333 SDValue Ops[] = {N1, N2}; 5334 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5335 return V; 5336 break; 5337 } 5338 case ISD::AND: 5339 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5340 assert(N1.getValueType() == N2.getValueType() && 5341 N1.getValueType() == VT && "Binary operator types must match!"); 5342 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5343 // worth handling here. 5344 if (N2C && N2C->isNullValue()) 5345 return N2; 5346 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5347 return N1; 5348 break; 5349 case ISD::OR: 5350 case ISD::XOR: 5351 case ISD::ADD: 5352 case ISD::SUB: 5353 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5354 assert(N1.getValueType() == N2.getValueType() && 5355 N1.getValueType() == VT && "Binary operator types must match!"); 5356 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5357 // it's worth handling here. 5358 if (N2C && N2C->isNullValue()) 5359 return N1; 5360 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5361 VT.getVectorElementType() == MVT::i1) 5362 return getNode(ISD::XOR, DL, VT, N1, N2); 5363 break; 5364 case ISD::MUL: 5365 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5366 assert(N1.getValueType() == N2.getValueType() && 5367 N1.getValueType() == VT && "Binary operator types must match!"); 5368 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5369 return getNode(ISD::AND, DL, VT, N1, N2); 5370 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5371 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5372 const APInt &N2CImm = N2C->getAPIntValue(); 5373 return getVScale(DL, VT, MulImm * N2CImm); 5374 } 5375 break; 5376 case ISD::UDIV: 5377 case ISD::UREM: 5378 case ISD::MULHU: 5379 case ISD::MULHS: 5380 case ISD::SDIV: 5381 case ISD::SREM: 5382 case ISD::SADDSAT: 5383 case ISD::SSUBSAT: 5384 case ISD::UADDSAT: 5385 case ISD::USUBSAT: 5386 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5387 assert(N1.getValueType() == N2.getValueType() && 5388 N1.getValueType() == VT && "Binary operator types must match!"); 5389 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5390 // fold (add_sat x, y) -> (or x, y) for bool types. 5391 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5392 return getNode(ISD::OR, DL, VT, N1, N2); 5393 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5394 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5395 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5396 } 5397 break; 5398 case ISD::SMIN: 5399 case ISD::UMAX: 5400 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5401 assert(N1.getValueType() == N2.getValueType() && 5402 N1.getValueType() == VT && "Binary operator types must match!"); 5403 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5404 return getNode(ISD::OR, DL, VT, N1, N2); 5405 break; 5406 case ISD::SMAX: 5407 case ISD::UMIN: 5408 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5409 assert(N1.getValueType() == N2.getValueType() && 5410 N1.getValueType() == VT && "Binary operator types must match!"); 5411 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5412 return getNode(ISD::AND, DL, VT, N1, N2); 5413 break; 5414 case ISD::FADD: 5415 case ISD::FSUB: 5416 case ISD::FMUL: 5417 case ISD::FDIV: 5418 case ISD::FREM: 5419 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5420 assert(N1.getValueType() == N2.getValueType() && 5421 N1.getValueType() == VT && "Binary operator types must match!"); 5422 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5423 return V; 5424 break; 5425 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5426 assert(N1.getValueType() == VT && 5427 N1.getValueType().isFloatingPoint() && 5428 N2.getValueType().isFloatingPoint() && 5429 "Invalid FCOPYSIGN!"); 5430 break; 5431 case ISD::SHL: 5432 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5433 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5434 const APInt &ShiftImm = N2C->getAPIntValue(); 5435 return getVScale(DL, VT, MulImm << ShiftImm); 5436 } 5437 LLVM_FALLTHROUGH; 5438 case ISD::SRA: 5439 case ISD::SRL: 5440 if (SDValue V = simplifyShift(N1, N2)) 5441 return V; 5442 LLVM_FALLTHROUGH; 5443 case ISD::ROTL: 5444 case ISD::ROTR: 5445 assert(VT == N1.getValueType() && 5446 "Shift operators return type must be the same as their first arg"); 5447 assert(VT.isInteger() && N2.getValueType().isInteger() && 5448 "Shifts only work on integers"); 5449 assert((!VT.isVector() || VT == N2.getValueType()) && 5450 "Vector shift amounts must be in the same as their first arg"); 5451 // Verify that the shift amount VT is big enough to hold valid shift 5452 // amounts. This catches things like trying to shift an i1024 value by an 5453 // i8, which is easy to fall into in generic code that uses 5454 // TLI.getShiftAmount(). 5455 assert(N2.getValueType().getScalarSizeInBits() >= 5456 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5457 "Invalid use of small shift amount with oversized value!"); 5458 5459 // Always fold shifts of i1 values so the code generator doesn't need to 5460 // handle them. Since we know the size of the shift has to be less than the 5461 // size of the value, the shift/rotate count is guaranteed to be zero. 5462 if (VT == MVT::i1) 5463 return N1; 5464 if (N2C && N2C->isNullValue()) 5465 return N1; 5466 break; 5467 case ISD::FP_ROUND: 5468 assert(VT.isFloatingPoint() && 5469 N1.getValueType().isFloatingPoint() && 5470 VT.bitsLE(N1.getValueType()) && 5471 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5472 "Invalid FP_ROUND!"); 5473 if (N1.getValueType() == VT) return N1; // noop conversion. 5474 break; 5475 case ISD::AssertSext: 5476 case ISD::AssertZext: { 5477 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5478 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5479 assert(VT.isInteger() && EVT.isInteger() && 5480 "Cannot *_EXTEND_INREG FP types"); 5481 assert(!EVT.isVector() && 5482 "AssertSExt/AssertZExt type should be the vector element type " 5483 "rather than the vector type!"); 5484 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5485 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5486 break; 5487 } 5488 case ISD::SIGN_EXTEND_INREG: { 5489 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5490 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5491 assert(VT.isInteger() && EVT.isInteger() && 5492 "Cannot *_EXTEND_INREG FP types"); 5493 assert(EVT.isVector() == VT.isVector() && 5494 "SIGN_EXTEND_INREG type should be vector iff the operand " 5495 "type is vector!"); 5496 assert((!EVT.isVector() || 5497 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5498 "Vector element counts must match in SIGN_EXTEND_INREG"); 5499 assert(EVT.bitsLE(VT) && "Not extending!"); 5500 if (EVT == VT) return N1; // Not actually extending 5501 5502 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5503 unsigned FromBits = EVT.getScalarSizeInBits(); 5504 Val <<= Val.getBitWidth() - FromBits; 5505 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5506 return getConstant(Val, DL, ConstantVT); 5507 }; 5508 5509 if (N1C) { 5510 const APInt &Val = N1C->getAPIntValue(); 5511 return SignExtendInReg(Val, VT); 5512 } 5513 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5514 SmallVector<SDValue, 8> Ops; 5515 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5516 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5517 SDValue Op = N1.getOperand(i); 5518 if (Op.isUndef()) { 5519 Ops.push_back(getUNDEF(OpVT)); 5520 continue; 5521 } 5522 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5523 APInt Val = C->getAPIntValue(); 5524 Ops.push_back(SignExtendInReg(Val, OpVT)); 5525 } 5526 return getBuildVector(VT, DL, Ops); 5527 } 5528 break; 5529 } 5530 case ISD::EXTRACT_VECTOR_ELT: 5531 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5532 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5533 element type of the vector."); 5534 5535 // Extract from an undefined value or using an undefined index is undefined. 5536 if (N1.isUndef() || N2.isUndef()) 5537 return getUNDEF(VT); 5538 5539 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5540 // vectors. For scalable vectors we will provide appropriate support for 5541 // dealing with arbitrary indices. 5542 if (N2C && N1.getValueType().isFixedLengthVector() && 5543 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5544 return getUNDEF(VT); 5545 5546 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5547 // expanding copies of large vectors from registers. This only works for 5548 // fixed length vectors, since we need to know the exact number of 5549 // elements. 5550 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5551 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5552 unsigned Factor = 5553 N1.getOperand(0).getValueType().getVectorNumElements(); 5554 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5555 N1.getOperand(N2C->getZExtValue() / Factor), 5556 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5557 } 5558 5559 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5560 // lowering is expanding large vector constants. 5561 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5562 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5563 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5564 N1.getValueType().isFixedLengthVector()) && 5565 "BUILD_VECTOR used for scalable vectors"); 5566 unsigned Index = 5567 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5568 SDValue Elt = N1.getOperand(Index); 5569 5570 if (VT != Elt.getValueType()) 5571 // If the vector element type is not legal, the BUILD_VECTOR operands 5572 // are promoted and implicitly truncated, and the result implicitly 5573 // extended. Make that explicit here. 5574 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5575 5576 return Elt; 5577 } 5578 5579 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5580 // operations are lowered to scalars. 5581 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5582 // If the indices are the same, return the inserted element else 5583 // if the indices are known different, extract the element from 5584 // the original vector. 5585 SDValue N1Op2 = N1.getOperand(2); 5586 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5587 5588 if (N1Op2C && N2C) { 5589 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5590 if (VT == N1.getOperand(1).getValueType()) 5591 return N1.getOperand(1); 5592 else 5593 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5594 } 5595 5596 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5597 } 5598 } 5599 5600 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5601 // when vector types are scalarized and v1iX is legal. 5602 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5603 // Here we are completely ignoring the extract element index (N2), 5604 // which is fine for fixed width vectors, since any index other than 0 5605 // is undefined anyway. However, this cannot be ignored for scalable 5606 // vectors - in theory we could support this, but we don't want to do this 5607 // without a profitability check. 5608 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5609 N1.getValueType().isFixedLengthVector() && 5610 N1.getValueType().getVectorNumElements() == 1) { 5611 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5612 N1.getOperand(1)); 5613 } 5614 break; 5615 case ISD::EXTRACT_ELEMENT: 5616 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5617 assert(!N1.getValueType().isVector() && !VT.isVector() && 5618 (N1.getValueType().isInteger() == VT.isInteger()) && 5619 N1.getValueType() != VT && 5620 "Wrong types for EXTRACT_ELEMENT!"); 5621 5622 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5623 // 64-bit integers into 32-bit parts. Instead of building the extract of 5624 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5625 if (N1.getOpcode() == ISD::BUILD_PAIR) 5626 return N1.getOperand(N2C->getZExtValue()); 5627 5628 // EXTRACT_ELEMENT of a constant int is also very common. 5629 if (N1C) { 5630 unsigned ElementSize = VT.getSizeInBits(); 5631 unsigned Shift = ElementSize * N2C->getZExtValue(); 5632 const APInt &Val = N1C->getAPIntValue(); 5633 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5634 } 5635 break; 5636 case ISD::EXTRACT_SUBVECTOR: 5637 EVT N1VT = N1.getValueType(); 5638 assert(VT.isVector() && N1VT.isVector() && 5639 "Extract subvector VTs must be vectors!"); 5640 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5641 "Extract subvector VTs must have the same element type!"); 5642 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5643 "Cannot extract a scalable vector from a fixed length vector!"); 5644 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5645 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5646 "Extract subvector must be from larger vector to smaller vector!"); 5647 assert(N2C && "Extract subvector index must be a constant"); 5648 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5649 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5650 N1VT.getVectorMinNumElements()) && 5651 "Extract subvector overflow!"); 5652 assert(N2C->getAPIntValue().getBitWidth() == 5653 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5654 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5655 5656 // Trivial extraction. 5657 if (VT == N1VT) 5658 return N1; 5659 5660 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5661 if (N1.isUndef()) 5662 return getUNDEF(VT); 5663 5664 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5665 // the concat have the same type as the extract. 5666 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5667 VT == N1.getOperand(0).getValueType()) { 5668 unsigned Factor = VT.getVectorMinNumElements(); 5669 return N1.getOperand(N2C->getZExtValue() / Factor); 5670 } 5671 5672 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5673 // during shuffle legalization. 5674 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5675 VT == N1.getOperand(1).getValueType()) 5676 return N1.getOperand(1); 5677 break; 5678 } 5679 5680 // Perform trivial constant folding. 5681 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5682 return SV; 5683 5684 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5685 return V; 5686 5687 // Canonicalize an UNDEF to the RHS, even over a constant. 5688 if (N1.isUndef()) { 5689 if (TLI->isCommutativeBinOp(Opcode)) { 5690 std::swap(N1, N2); 5691 } else { 5692 switch (Opcode) { 5693 case ISD::SIGN_EXTEND_INREG: 5694 case ISD::SUB: 5695 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5696 case ISD::UDIV: 5697 case ISD::SDIV: 5698 case ISD::UREM: 5699 case ISD::SREM: 5700 case ISD::SSUBSAT: 5701 case ISD::USUBSAT: 5702 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5703 } 5704 } 5705 } 5706 5707 // Fold a bunch of operators when the RHS is undef. 5708 if (N2.isUndef()) { 5709 switch (Opcode) { 5710 case ISD::XOR: 5711 if (N1.isUndef()) 5712 // Handle undef ^ undef -> 0 special case. This is a common 5713 // idiom (misuse). 5714 return getConstant(0, DL, VT); 5715 LLVM_FALLTHROUGH; 5716 case ISD::ADD: 5717 case ISD::SUB: 5718 case ISD::UDIV: 5719 case ISD::SDIV: 5720 case ISD::UREM: 5721 case ISD::SREM: 5722 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5723 case ISD::MUL: 5724 case ISD::AND: 5725 case ISD::SSUBSAT: 5726 case ISD::USUBSAT: 5727 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5728 case ISD::OR: 5729 case ISD::SADDSAT: 5730 case ISD::UADDSAT: 5731 return getAllOnesConstant(DL, VT); 5732 } 5733 } 5734 5735 // Memoize this node if possible. 5736 SDNode *N; 5737 SDVTList VTs = getVTList(VT); 5738 SDValue Ops[] = {N1, N2}; 5739 if (VT != MVT::Glue) { 5740 FoldingSetNodeID ID; 5741 AddNodeIDNode(ID, Opcode, VTs, Ops); 5742 void *IP = nullptr; 5743 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5744 E->intersectFlagsWith(Flags); 5745 return SDValue(E, 0); 5746 } 5747 5748 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5749 N->setFlags(Flags); 5750 createOperands(N, Ops); 5751 CSEMap.InsertNode(N, IP); 5752 } else { 5753 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5754 createOperands(N, Ops); 5755 } 5756 5757 InsertNode(N); 5758 SDValue V = SDValue(N, 0); 5759 NewSDValueDbgMsg(V, "Creating new node: ", this); 5760 return V; 5761 } 5762 5763 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5764 SDValue N1, SDValue N2, SDValue N3) { 5765 SDNodeFlags Flags; 5766 if (Inserter) 5767 Flags = Inserter->getFlags(); 5768 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5769 } 5770 5771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5772 SDValue N1, SDValue N2, SDValue N3, 5773 const SDNodeFlags Flags) { 5774 assert(N1.getOpcode() != ISD::DELETED_NODE && 5775 N2.getOpcode() != ISD::DELETED_NODE && 5776 N3.getOpcode() != ISD::DELETED_NODE && 5777 "Operand is DELETED_NODE!"); 5778 // Perform various simplifications. 5779 switch (Opcode) { 5780 case ISD::FMA: { 5781 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5782 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5783 N3.getValueType() == VT && "FMA types must match!"); 5784 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5785 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5786 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5787 if (N1CFP && N2CFP && N3CFP) { 5788 APFloat V1 = N1CFP->getValueAPF(); 5789 const APFloat &V2 = N2CFP->getValueAPF(); 5790 const APFloat &V3 = N3CFP->getValueAPF(); 5791 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5792 return getConstantFP(V1, DL, VT); 5793 } 5794 break; 5795 } 5796 case ISD::BUILD_VECTOR: { 5797 // Attempt to simplify BUILD_VECTOR. 5798 SDValue Ops[] = {N1, N2, N3}; 5799 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5800 return V; 5801 break; 5802 } 5803 case ISD::CONCAT_VECTORS: { 5804 SDValue Ops[] = {N1, N2, N3}; 5805 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5806 return V; 5807 break; 5808 } 5809 case ISD::SETCC: { 5810 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5811 assert(N1.getValueType() == N2.getValueType() && 5812 "SETCC operands must have the same type!"); 5813 assert(VT.isVector() == N1.getValueType().isVector() && 5814 "SETCC type should be vector iff the operand type is vector!"); 5815 assert((!VT.isVector() || VT.getVectorElementCount() == 5816 N1.getValueType().getVectorElementCount()) && 5817 "SETCC vector element counts must match!"); 5818 // Use FoldSetCC to simplify SETCC's. 5819 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5820 return V; 5821 // Vector constant folding. 5822 SDValue Ops[] = {N1, N2, N3}; 5823 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5824 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5825 return V; 5826 } 5827 break; 5828 } 5829 case ISD::SELECT: 5830 case ISD::VSELECT: 5831 if (SDValue V = simplifySelect(N1, N2, N3)) 5832 return V; 5833 break; 5834 case ISD::VECTOR_SHUFFLE: 5835 llvm_unreachable("should use getVectorShuffle constructor!"); 5836 case ISD::INSERT_VECTOR_ELT: { 5837 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5838 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5839 // for scalable vectors where we will generate appropriate code to 5840 // deal with out-of-bounds cases correctly. 5841 if (N3C && N1.getValueType().isFixedLengthVector() && 5842 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5843 return getUNDEF(VT); 5844 5845 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5846 if (N3.isUndef()) 5847 return getUNDEF(VT); 5848 5849 // If the inserted element is an UNDEF, just use the input vector. 5850 if (N2.isUndef()) 5851 return N1; 5852 5853 break; 5854 } 5855 case ISD::INSERT_SUBVECTOR: { 5856 // Inserting undef into undef is still undef. 5857 if (N1.isUndef() && N2.isUndef()) 5858 return getUNDEF(VT); 5859 5860 EVT N2VT = N2.getValueType(); 5861 assert(VT == N1.getValueType() && 5862 "Dest and insert subvector source types must match!"); 5863 assert(VT.isVector() && N2VT.isVector() && 5864 "Insert subvector VTs must be vectors!"); 5865 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5866 "Cannot insert a scalable vector into a fixed length vector!"); 5867 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5868 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5869 "Insert subvector must be from smaller vector to larger vector!"); 5870 assert(isa<ConstantSDNode>(N3) && 5871 "Insert subvector index must be constant"); 5872 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5873 (N2VT.getVectorMinNumElements() + 5874 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5875 VT.getVectorMinNumElements()) && 5876 "Insert subvector overflow!"); 5877 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 5878 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5879 "Constant index for INSERT_SUBVECTOR has an invalid size"); 5880 5881 // Trivial insertion. 5882 if (VT == N2VT) 5883 return N2; 5884 5885 // If this is an insert of an extracted vector into an undef vector, we 5886 // can just use the input to the extract. 5887 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5888 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5889 return N2.getOperand(0); 5890 break; 5891 } 5892 case ISD::BITCAST: 5893 // Fold bit_convert nodes from a type to themselves. 5894 if (N1.getValueType() == VT) 5895 return N1; 5896 break; 5897 } 5898 5899 // Memoize node if it doesn't produce a flag. 5900 SDNode *N; 5901 SDVTList VTs = getVTList(VT); 5902 SDValue Ops[] = {N1, N2, N3}; 5903 if (VT != MVT::Glue) { 5904 FoldingSetNodeID ID; 5905 AddNodeIDNode(ID, Opcode, VTs, Ops); 5906 void *IP = nullptr; 5907 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5908 E->intersectFlagsWith(Flags); 5909 return SDValue(E, 0); 5910 } 5911 5912 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5913 N->setFlags(Flags); 5914 createOperands(N, Ops); 5915 CSEMap.InsertNode(N, IP); 5916 } else { 5917 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5918 createOperands(N, Ops); 5919 } 5920 5921 InsertNode(N); 5922 SDValue V = SDValue(N, 0); 5923 NewSDValueDbgMsg(V, "Creating new node: ", this); 5924 return V; 5925 } 5926 5927 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5928 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5929 SDValue Ops[] = { N1, N2, N3, N4 }; 5930 return getNode(Opcode, DL, VT, Ops); 5931 } 5932 5933 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5934 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5935 SDValue N5) { 5936 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5937 return getNode(Opcode, DL, VT, Ops); 5938 } 5939 5940 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5941 /// the incoming stack arguments to be loaded from the stack. 5942 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5943 SmallVector<SDValue, 8> ArgChains; 5944 5945 // Include the original chain at the beginning of the list. When this is 5946 // used by target LowerCall hooks, this helps legalize find the 5947 // CALLSEQ_BEGIN node. 5948 ArgChains.push_back(Chain); 5949 5950 // Add a chain value for each stack argument. 5951 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5952 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5953 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5954 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5955 if (FI->getIndex() < 0) 5956 ArgChains.push_back(SDValue(L, 1)); 5957 5958 // Build a tokenfactor for all the chains. 5959 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5960 } 5961 5962 /// getMemsetValue - Vectorized representation of the memset value 5963 /// operand. 5964 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5965 const SDLoc &dl) { 5966 assert(!Value.isUndef()); 5967 5968 unsigned NumBits = VT.getScalarSizeInBits(); 5969 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5970 assert(C->getAPIntValue().getBitWidth() == 8); 5971 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5972 if (VT.isInteger()) { 5973 bool IsOpaque = VT.getSizeInBits() > 64 || 5974 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5975 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5976 } 5977 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5978 VT); 5979 } 5980 5981 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5982 EVT IntVT = VT.getScalarType(); 5983 if (!IntVT.isInteger()) 5984 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5985 5986 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5987 if (NumBits > 8) { 5988 // Use a multiplication with 0x010101... to extend the input to the 5989 // required length. 5990 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5991 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5992 DAG.getConstant(Magic, dl, IntVT)); 5993 } 5994 5995 if (VT != Value.getValueType() && !VT.isInteger()) 5996 Value = DAG.getBitcast(VT.getScalarType(), Value); 5997 if (VT != Value.getValueType()) 5998 Value = DAG.getSplatBuildVector(VT, dl, Value); 5999 6000 return Value; 6001 } 6002 6003 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6004 /// used when a memcpy is turned into a memset when the source is a constant 6005 /// string ptr. 6006 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6007 const TargetLowering &TLI, 6008 const ConstantDataArraySlice &Slice) { 6009 // Handle vector with all elements zero. 6010 if (Slice.Array == nullptr) { 6011 if (VT.isInteger()) 6012 return DAG.getConstant(0, dl, VT); 6013 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6014 return DAG.getConstantFP(0.0, dl, VT); 6015 else if (VT.isVector()) { 6016 unsigned NumElts = VT.getVectorNumElements(); 6017 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6018 return DAG.getNode(ISD::BITCAST, dl, VT, 6019 DAG.getConstant(0, dl, 6020 EVT::getVectorVT(*DAG.getContext(), 6021 EltVT, NumElts))); 6022 } else 6023 llvm_unreachable("Expected type!"); 6024 } 6025 6026 assert(!VT.isVector() && "Can't handle vector type here!"); 6027 unsigned NumVTBits = VT.getSizeInBits(); 6028 unsigned NumVTBytes = NumVTBits / 8; 6029 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6030 6031 APInt Val(NumVTBits, 0); 6032 if (DAG.getDataLayout().isLittleEndian()) { 6033 for (unsigned i = 0; i != NumBytes; ++i) 6034 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6035 } else { 6036 for (unsigned i = 0; i != NumBytes; ++i) 6037 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6038 } 6039 6040 // If the "cost" of materializing the integer immediate is less than the cost 6041 // of a load, then it is cost effective to turn the load into the immediate. 6042 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6043 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6044 return DAG.getConstant(Val, dl, VT); 6045 return SDValue(nullptr, 0); 6046 } 6047 6048 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6049 const SDLoc &DL, 6050 const SDNodeFlags Flags) { 6051 EVT VT = Base.getValueType(); 6052 SDValue Index; 6053 6054 if (Offset.isScalable()) 6055 Index = getVScale(DL, Base.getValueType(), 6056 APInt(Base.getValueSizeInBits().getFixedSize(), 6057 Offset.getKnownMinSize())); 6058 else 6059 Index = getConstant(Offset.getFixedSize(), DL, VT); 6060 6061 return getMemBasePlusOffset(Base, Index, DL, Flags); 6062 } 6063 6064 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6065 const SDLoc &DL, 6066 const SDNodeFlags Flags) { 6067 assert(Offset.getValueType().isInteger()); 6068 EVT BasePtrVT = Ptr.getValueType(); 6069 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6070 } 6071 6072 /// Returns true if memcpy source is constant data. 6073 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6074 uint64_t SrcDelta = 0; 6075 GlobalAddressSDNode *G = nullptr; 6076 if (Src.getOpcode() == ISD::GlobalAddress) 6077 G = cast<GlobalAddressSDNode>(Src); 6078 else if (Src.getOpcode() == ISD::ADD && 6079 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6080 Src.getOperand(1).getOpcode() == ISD::Constant) { 6081 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6082 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6083 } 6084 if (!G) 6085 return false; 6086 6087 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6088 SrcDelta + G->getOffset()); 6089 } 6090 6091 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6092 SelectionDAG &DAG) { 6093 // On Darwin, -Os means optimize for size without hurting performance, so 6094 // only really optimize for size when -Oz (MinSize) is used. 6095 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6096 return MF.getFunction().hasMinSize(); 6097 return DAG.shouldOptForSize(); 6098 } 6099 6100 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6101 SmallVector<SDValue, 32> &OutChains, unsigned From, 6102 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6103 SmallVector<SDValue, 16> &OutStoreChains) { 6104 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6105 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6106 SmallVector<SDValue, 16> GluedLoadChains; 6107 for (unsigned i = From; i < To; ++i) { 6108 OutChains.push_back(OutLoadChains[i]); 6109 GluedLoadChains.push_back(OutLoadChains[i]); 6110 } 6111 6112 // Chain for all loads. 6113 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6114 GluedLoadChains); 6115 6116 for (unsigned i = From; i < To; ++i) { 6117 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6118 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6119 ST->getBasePtr(), ST->getMemoryVT(), 6120 ST->getMemOperand()); 6121 OutChains.push_back(NewStore); 6122 } 6123 } 6124 6125 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6126 SDValue Chain, SDValue Dst, SDValue Src, 6127 uint64_t Size, Align Alignment, 6128 bool isVol, bool AlwaysInline, 6129 MachinePointerInfo DstPtrInfo, 6130 MachinePointerInfo SrcPtrInfo) { 6131 // Turn a memcpy of undef to nop. 6132 // FIXME: We need to honor volatile even is Src is undef. 6133 if (Src.isUndef()) 6134 return Chain; 6135 6136 // Expand memcpy to a series of load and store ops if the size operand falls 6137 // below a certain threshold. 6138 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6139 // rather than maybe a humongous number of loads and stores. 6140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6141 const DataLayout &DL = DAG.getDataLayout(); 6142 LLVMContext &C = *DAG.getContext(); 6143 std::vector<EVT> MemOps; 6144 bool DstAlignCanChange = false; 6145 MachineFunction &MF = DAG.getMachineFunction(); 6146 MachineFrameInfo &MFI = MF.getFrameInfo(); 6147 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6148 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6149 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6150 DstAlignCanChange = true; 6151 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6152 if (!SrcAlign || Alignment > *SrcAlign) 6153 SrcAlign = Alignment; 6154 assert(SrcAlign && "SrcAlign must be set"); 6155 ConstantDataArraySlice Slice; 6156 // If marked as volatile, perform a copy even when marked as constant. 6157 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6158 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6159 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6160 const MemOp Op = isZeroConstant 6161 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6162 /*IsZeroMemset*/ true, isVol) 6163 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6164 *SrcAlign, isVol, CopyFromConstant); 6165 if (!TLI.findOptimalMemOpLowering( 6166 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6167 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6168 return SDValue(); 6169 6170 if (DstAlignCanChange) { 6171 Type *Ty = MemOps[0].getTypeForEVT(C); 6172 Align NewAlign = DL.getABITypeAlign(Ty); 6173 6174 // Don't promote to an alignment that would require dynamic stack 6175 // realignment. 6176 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6177 if (!TRI->needsStackRealignment(MF)) 6178 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6179 NewAlign = NewAlign / 2; 6180 6181 if (NewAlign > Alignment) { 6182 // Give the stack frame object a larger alignment if needed. 6183 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6184 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6185 Alignment = NewAlign; 6186 } 6187 } 6188 6189 MachineMemOperand::Flags MMOFlags = 6190 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6191 SmallVector<SDValue, 16> OutLoadChains; 6192 SmallVector<SDValue, 16> OutStoreChains; 6193 SmallVector<SDValue, 32> OutChains; 6194 unsigned NumMemOps = MemOps.size(); 6195 uint64_t SrcOff = 0, DstOff = 0; 6196 for (unsigned i = 0; i != NumMemOps; ++i) { 6197 EVT VT = MemOps[i]; 6198 unsigned VTSize = VT.getSizeInBits() / 8; 6199 SDValue Value, Store; 6200 6201 if (VTSize > Size) { 6202 // Issuing an unaligned load / store pair that overlaps with the previous 6203 // pair. Adjust the offset accordingly. 6204 assert(i == NumMemOps-1 && i != 0); 6205 SrcOff -= VTSize - Size; 6206 DstOff -= VTSize - Size; 6207 } 6208 6209 if (CopyFromConstant && 6210 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6211 // It's unlikely a store of a vector immediate can be done in a single 6212 // instruction. It would require a load from a constantpool first. 6213 // We only handle zero vectors here. 6214 // FIXME: Handle other cases where store of vector immediate is done in 6215 // a single instruction. 6216 ConstantDataArraySlice SubSlice; 6217 if (SrcOff < Slice.Length) { 6218 SubSlice = Slice; 6219 SubSlice.move(SrcOff); 6220 } else { 6221 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6222 SubSlice.Array = nullptr; 6223 SubSlice.Offset = 0; 6224 SubSlice.Length = VTSize; 6225 } 6226 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6227 if (Value.getNode()) { 6228 Store = DAG.getStore( 6229 Chain, dl, Value, 6230 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6231 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6232 OutChains.push_back(Store); 6233 } 6234 } 6235 6236 if (!Store.getNode()) { 6237 // The type might not be legal for the target. This should only happen 6238 // if the type is smaller than a legal type, as on PPC, so the right 6239 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6240 // to Load/Store if NVT==VT. 6241 // FIXME does the case above also need this? 6242 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6243 assert(NVT.bitsGE(VT)); 6244 6245 bool isDereferenceable = 6246 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6247 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6248 if (isDereferenceable) 6249 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6250 6251 Value = DAG.getExtLoad( 6252 ISD::EXTLOAD, dl, NVT, Chain, 6253 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6254 SrcPtrInfo.getWithOffset(SrcOff), VT, 6255 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6256 OutLoadChains.push_back(Value.getValue(1)); 6257 6258 Store = DAG.getTruncStore( 6259 Chain, dl, Value, 6260 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6261 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6262 OutStoreChains.push_back(Store); 6263 } 6264 SrcOff += VTSize; 6265 DstOff += VTSize; 6266 Size -= VTSize; 6267 } 6268 6269 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6270 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6271 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6272 6273 if (NumLdStInMemcpy) { 6274 // It may be that memcpy might be converted to memset if it's memcpy 6275 // of constants. In such a case, we won't have loads and stores, but 6276 // just stores. In the absence of loads, there is nothing to gang up. 6277 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6278 // If target does not care, just leave as it. 6279 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6280 OutChains.push_back(OutLoadChains[i]); 6281 OutChains.push_back(OutStoreChains[i]); 6282 } 6283 } else { 6284 // Ld/St less than/equal limit set by target. 6285 if (NumLdStInMemcpy <= GluedLdStLimit) { 6286 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6287 NumLdStInMemcpy, OutLoadChains, 6288 OutStoreChains); 6289 } else { 6290 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6291 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6292 unsigned GlueIter = 0; 6293 6294 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6295 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6296 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6297 6298 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6299 OutLoadChains, OutStoreChains); 6300 GlueIter += GluedLdStLimit; 6301 } 6302 6303 // Residual ld/st. 6304 if (RemainingLdStInMemcpy) { 6305 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6306 RemainingLdStInMemcpy, OutLoadChains, 6307 OutStoreChains); 6308 } 6309 } 6310 } 6311 } 6312 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6313 } 6314 6315 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6316 SDValue Chain, SDValue Dst, SDValue Src, 6317 uint64_t Size, Align Alignment, 6318 bool isVol, bool AlwaysInline, 6319 MachinePointerInfo DstPtrInfo, 6320 MachinePointerInfo SrcPtrInfo) { 6321 // Turn a memmove of undef to nop. 6322 // FIXME: We need to honor volatile even is Src is undef. 6323 if (Src.isUndef()) 6324 return Chain; 6325 6326 // Expand memmove to a series of load and store ops if the size operand falls 6327 // below a certain threshold. 6328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6329 const DataLayout &DL = DAG.getDataLayout(); 6330 LLVMContext &C = *DAG.getContext(); 6331 std::vector<EVT> MemOps; 6332 bool DstAlignCanChange = false; 6333 MachineFunction &MF = DAG.getMachineFunction(); 6334 MachineFrameInfo &MFI = MF.getFrameInfo(); 6335 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6336 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6337 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6338 DstAlignCanChange = true; 6339 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6340 if (!SrcAlign || Alignment > *SrcAlign) 6341 SrcAlign = Alignment; 6342 assert(SrcAlign && "SrcAlign must be set"); 6343 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6344 if (!TLI.findOptimalMemOpLowering( 6345 MemOps, Limit, 6346 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6347 /*IsVolatile*/ true), 6348 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6349 MF.getFunction().getAttributes())) 6350 return SDValue(); 6351 6352 if (DstAlignCanChange) { 6353 Type *Ty = MemOps[0].getTypeForEVT(C); 6354 Align NewAlign = DL.getABITypeAlign(Ty); 6355 if (NewAlign > Alignment) { 6356 // Give the stack frame object a larger alignment if needed. 6357 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6358 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6359 Alignment = NewAlign; 6360 } 6361 } 6362 6363 MachineMemOperand::Flags MMOFlags = 6364 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6365 uint64_t SrcOff = 0, DstOff = 0; 6366 SmallVector<SDValue, 8> LoadValues; 6367 SmallVector<SDValue, 8> LoadChains; 6368 SmallVector<SDValue, 8> OutChains; 6369 unsigned NumMemOps = MemOps.size(); 6370 for (unsigned i = 0; i < NumMemOps; i++) { 6371 EVT VT = MemOps[i]; 6372 unsigned VTSize = VT.getSizeInBits() / 8; 6373 SDValue Value; 6374 6375 bool isDereferenceable = 6376 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6377 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6378 if (isDereferenceable) 6379 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6380 6381 Value = 6382 DAG.getLoad(VT, dl, Chain, 6383 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6384 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6385 LoadValues.push_back(Value); 6386 LoadChains.push_back(Value.getValue(1)); 6387 SrcOff += VTSize; 6388 } 6389 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6390 OutChains.clear(); 6391 for (unsigned i = 0; i < NumMemOps; i++) { 6392 EVT VT = MemOps[i]; 6393 unsigned VTSize = VT.getSizeInBits() / 8; 6394 SDValue Store; 6395 6396 Store = 6397 DAG.getStore(Chain, dl, LoadValues[i], 6398 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6399 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6400 OutChains.push_back(Store); 6401 DstOff += VTSize; 6402 } 6403 6404 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6405 } 6406 6407 /// Lower the call to 'memset' intrinsic function into a series of store 6408 /// operations. 6409 /// 6410 /// \param DAG Selection DAG where lowered code is placed. 6411 /// \param dl Link to corresponding IR location. 6412 /// \param Chain Control flow dependency. 6413 /// \param Dst Pointer to destination memory location. 6414 /// \param Src Value of byte to write into the memory. 6415 /// \param Size Number of bytes to write. 6416 /// \param Alignment Alignment of the destination in bytes. 6417 /// \param isVol True if destination is volatile. 6418 /// \param DstPtrInfo IR information on the memory pointer. 6419 /// \returns New head in the control flow, if lowering was successful, empty 6420 /// SDValue otherwise. 6421 /// 6422 /// The function tries to replace 'llvm.memset' intrinsic with several store 6423 /// operations and value calculation code. This is usually profitable for small 6424 /// memory size. 6425 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6426 SDValue Chain, SDValue Dst, SDValue Src, 6427 uint64_t Size, Align Alignment, bool isVol, 6428 MachinePointerInfo DstPtrInfo) { 6429 // Turn a memset of undef to nop. 6430 // FIXME: We need to honor volatile even is Src is undef. 6431 if (Src.isUndef()) 6432 return Chain; 6433 6434 // Expand memset to a series of load/store ops if the size operand 6435 // falls below a certain threshold. 6436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6437 std::vector<EVT> MemOps; 6438 bool DstAlignCanChange = false; 6439 MachineFunction &MF = DAG.getMachineFunction(); 6440 MachineFrameInfo &MFI = MF.getFrameInfo(); 6441 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6442 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6443 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6444 DstAlignCanChange = true; 6445 bool IsZeroVal = 6446 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6447 if (!TLI.findOptimalMemOpLowering( 6448 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6449 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6450 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6451 return SDValue(); 6452 6453 if (DstAlignCanChange) { 6454 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6455 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6456 if (NewAlign > Alignment) { 6457 // Give the stack frame object a larger alignment if needed. 6458 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6459 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6460 Alignment = NewAlign; 6461 } 6462 } 6463 6464 SmallVector<SDValue, 8> OutChains; 6465 uint64_t DstOff = 0; 6466 unsigned NumMemOps = MemOps.size(); 6467 6468 // Find the largest store and generate the bit pattern for it. 6469 EVT LargestVT = MemOps[0]; 6470 for (unsigned i = 1; i < NumMemOps; i++) 6471 if (MemOps[i].bitsGT(LargestVT)) 6472 LargestVT = MemOps[i]; 6473 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6474 6475 for (unsigned i = 0; i < NumMemOps; i++) { 6476 EVT VT = MemOps[i]; 6477 unsigned VTSize = VT.getSizeInBits() / 8; 6478 if (VTSize > Size) { 6479 // Issuing an unaligned load / store pair that overlaps with the previous 6480 // pair. Adjust the offset accordingly. 6481 assert(i == NumMemOps-1 && i != 0); 6482 DstOff -= VTSize - Size; 6483 } 6484 6485 // If this store is smaller than the largest store see whether we can get 6486 // the smaller value for free with a truncate. 6487 SDValue Value = MemSetValue; 6488 if (VT.bitsLT(LargestVT)) { 6489 if (!LargestVT.isVector() && !VT.isVector() && 6490 TLI.isTruncateFree(LargestVT, VT)) 6491 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6492 else 6493 Value = getMemsetValue(Src, VT, DAG, dl); 6494 } 6495 assert(Value.getValueType() == VT && "Value with wrong type."); 6496 SDValue Store = DAG.getStore( 6497 Chain, dl, Value, 6498 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6499 DstPtrInfo.getWithOffset(DstOff), Alignment, 6500 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6501 OutChains.push_back(Store); 6502 DstOff += VT.getSizeInBits() / 8; 6503 Size -= VTSize; 6504 } 6505 6506 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6507 } 6508 6509 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6510 unsigned AS) { 6511 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6512 // pointer operands can be losslessly bitcasted to pointers of address space 0 6513 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6514 report_fatal_error("cannot lower memory intrinsic in address space " + 6515 Twine(AS)); 6516 } 6517 } 6518 6519 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6520 SDValue Src, SDValue Size, Align Alignment, 6521 bool isVol, bool AlwaysInline, bool isTailCall, 6522 MachinePointerInfo DstPtrInfo, 6523 MachinePointerInfo SrcPtrInfo) { 6524 // Check to see if we should lower the memcpy to loads and stores first. 6525 // For cases within the target-specified limits, this is the best choice. 6526 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6527 if (ConstantSize) { 6528 // Memcpy with size zero? Just return the original chain. 6529 if (ConstantSize->isNullValue()) 6530 return Chain; 6531 6532 SDValue Result = getMemcpyLoadsAndStores( 6533 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6534 isVol, false, DstPtrInfo, SrcPtrInfo); 6535 if (Result.getNode()) 6536 return Result; 6537 } 6538 6539 // Then check to see if we should lower the memcpy with target-specific 6540 // code. If the target chooses to do this, this is the next best. 6541 if (TSI) { 6542 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6543 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6544 DstPtrInfo, SrcPtrInfo); 6545 if (Result.getNode()) 6546 return Result; 6547 } 6548 6549 // If we really need inline code and the target declined to provide it, 6550 // use a (potentially long) sequence of loads and stores. 6551 if (AlwaysInline) { 6552 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6553 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6554 ConstantSize->getZExtValue(), Alignment, 6555 isVol, true, DstPtrInfo, SrcPtrInfo); 6556 } 6557 6558 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6559 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6560 6561 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6562 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6563 // respect volatile, so they may do things like read or write memory 6564 // beyond the given memory regions. But fixing this isn't easy, and most 6565 // people don't care. 6566 6567 // Emit a library call. 6568 TargetLowering::ArgListTy Args; 6569 TargetLowering::ArgListEntry Entry; 6570 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6571 Entry.Node = Dst; Args.push_back(Entry); 6572 Entry.Node = Src; Args.push_back(Entry); 6573 6574 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6575 Entry.Node = Size; Args.push_back(Entry); 6576 // FIXME: pass in SDLoc 6577 TargetLowering::CallLoweringInfo CLI(*this); 6578 CLI.setDebugLoc(dl) 6579 .setChain(Chain) 6580 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6581 Dst.getValueType().getTypeForEVT(*getContext()), 6582 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6583 TLI->getPointerTy(getDataLayout())), 6584 std::move(Args)) 6585 .setDiscardResult() 6586 .setTailCall(isTailCall); 6587 6588 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6589 return CallResult.second; 6590 } 6591 6592 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6593 SDValue Dst, unsigned DstAlign, 6594 SDValue Src, unsigned SrcAlign, 6595 SDValue Size, Type *SizeTy, 6596 unsigned ElemSz, bool isTailCall, 6597 MachinePointerInfo DstPtrInfo, 6598 MachinePointerInfo SrcPtrInfo) { 6599 // Emit a library call. 6600 TargetLowering::ArgListTy Args; 6601 TargetLowering::ArgListEntry Entry; 6602 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6603 Entry.Node = Dst; 6604 Args.push_back(Entry); 6605 6606 Entry.Node = Src; 6607 Args.push_back(Entry); 6608 6609 Entry.Ty = SizeTy; 6610 Entry.Node = Size; 6611 Args.push_back(Entry); 6612 6613 RTLIB::Libcall LibraryCall = 6614 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6615 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6616 report_fatal_error("Unsupported element size"); 6617 6618 TargetLowering::CallLoweringInfo CLI(*this); 6619 CLI.setDebugLoc(dl) 6620 .setChain(Chain) 6621 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6622 Type::getVoidTy(*getContext()), 6623 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6624 TLI->getPointerTy(getDataLayout())), 6625 std::move(Args)) 6626 .setDiscardResult() 6627 .setTailCall(isTailCall); 6628 6629 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6630 return CallResult.second; 6631 } 6632 6633 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6634 SDValue Src, SDValue Size, Align Alignment, 6635 bool isVol, bool isTailCall, 6636 MachinePointerInfo DstPtrInfo, 6637 MachinePointerInfo SrcPtrInfo) { 6638 // Check to see if we should lower the memmove to loads and stores first. 6639 // For cases within the target-specified limits, this is the best choice. 6640 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6641 if (ConstantSize) { 6642 // Memmove with size zero? Just return the original chain. 6643 if (ConstantSize->isNullValue()) 6644 return Chain; 6645 6646 SDValue Result = getMemmoveLoadsAndStores( 6647 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6648 isVol, false, DstPtrInfo, SrcPtrInfo); 6649 if (Result.getNode()) 6650 return Result; 6651 } 6652 6653 // Then check to see if we should lower the memmove with target-specific 6654 // code. If the target chooses to do this, this is the next best. 6655 if (TSI) { 6656 SDValue Result = 6657 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6658 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6659 if (Result.getNode()) 6660 return Result; 6661 } 6662 6663 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6664 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6665 6666 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6667 // not be safe. See memcpy above for more details. 6668 6669 // Emit a library call. 6670 TargetLowering::ArgListTy Args; 6671 TargetLowering::ArgListEntry Entry; 6672 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6673 Entry.Node = Dst; Args.push_back(Entry); 6674 Entry.Node = Src; Args.push_back(Entry); 6675 6676 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6677 Entry.Node = Size; Args.push_back(Entry); 6678 // FIXME: pass in SDLoc 6679 TargetLowering::CallLoweringInfo CLI(*this); 6680 CLI.setDebugLoc(dl) 6681 .setChain(Chain) 6682 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6683 Dst.getValueType().getTypeForEVT(*getContext()), 6684 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6685 TLI->getPointerTy(getDataLayout())), 6686 std::move(Args)) 6687 .setDiscardResult() 6688 .setTailCall(isTailCall); 6689 6690 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6691 return CallResult.second; 6692 } 6693 6694 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6695 SDValue Dst, unsigned DstAlign, 6696 SDValue Src, unsigned SrcAlign, 6697 SDValue Size, Type *SizeTy, 6698 unsigned ElemSz, bool isTailCall, 6699 MachinePointerInfo DstPtrInfo, 6700 MachinePointerInfo SrcPtrInfo) { 6701 // Emit a library call. 6702 TargetLowering::ArgListTy Args; 6703 TargetLowering::ArgListEntry Entry; 6704 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6705 Entry.Node = Dst; 6706 Args.push_back(Entry); 6707 6708 Entry.Node = Src; 6709 Args.push_back(Entry); 6710 6711 Entry.Ty = SizeTy; 6712 Entry.Node = Size; 6713 Args.push_back(Entry); 6714 6715 RTLIB::Libcall LibraryCall = 6716 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6717 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6718 report_fatal_error("Unsupported element size"); 6719 6720 TargetLowering::CallLoweringInfo CLI(*this); 6721 CLI.setDebugLoc(dl) 6722 .setChain(Chain) 6723 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6724 Type::getVoidTy(*getContext()), 6725 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6726 TLI->getPointerTy(getDataLayout())), 6727 std::move(Args)) 6728 .setDiscardResult() 6729 .setTailCall(isTailCall); 6730 6731 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6732 return CallResult.second; 6733 } 6734 6735 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6736 SDValue Src, SDValue Size, Align Alignment, 6737 bool isVol, bool isTailCall, 6738 MachinePointerInfo DstPtrInfo) { 6739 // Check to see if we should lower the memset to stores first. 6740 // For cases within the target-specified limits, this is the best choice. 6741 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6742 if (ConstantSize) { 6743 // Memset with size zero? Just return the original chain. 6744 if (ConstantSize->isNullValue()) 6745 return Chain; 6746 6747 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6748 ConstantSize->getZExtValue(), Alignment, 6749 isVol, DstPtrInfo); 6750 6751 if (Result.getNode()) 6752 return Result; 6753 } 6754 6755 // Then check to see if we should lower the memset with target-specific 6756 // code. If the target chooses to do this, this is the next best. 6757 if (TSI) { 6758 SDValue Result = TSI->EmitTargetCodeForMemset( 6759 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6760 if (Result.getNode()) 6761 return Result; 6762 } 6763 6764 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6765 6766 // Emit a library call. 6767 TargetLowering::ArgListTy Args; 6768 TargetLowering::ArgListEntry Entry; 6769 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6770 Args.push_back(Entry); 6771 Entry.Node = Src; 6772 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6773 Args.push_back(Entry); 6774 Entry.Node = Size; 6775 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6776 Args.push_back(Entry); 6777 6778 // FIXME: pass in SDLoc 6779 TargetLowering::CallLoweringInfo CLI(*this); 6780 CLI.setDebugLoc(dl) 6781 .setChain(Chain) 6782 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6783 Dst.getValueType().getTypeForEVT(*getContext()), 6784 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6785 TLI->getPointerTy(getDataLayout())), 6786 std::move(Args)) 6787 .setDiscardResult() 6788 .setTailCall(isTailCall); 6789 6790 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6791 return CallResult.second; 6792 } 6793 6794 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6795 SDValue Dst, unsigned DstAlign, 6796 SDValue Value, SDValue Size, Type *SizeTy, 6797 unsigned ElemSz, bool isTailCall, 6798 MachinePointerInfo DstPtrInfo) { 6799 // Emit a library call. 6800 TargetLowering::ArgListTy Args; 6801 TargetLowering::ArgListEntry Entry; 6802 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6803 Entry.Node = Dst; 6804 Args.push_back(Entry); 6805 6806 Entry.Ty = Type::getInt8Ty(*getContext()); 6807 Entry.Node = Value; 6808 Args.push_back(Entry); 6809 6810 Entry.Ty = SizeTy; 6811 Entry.Node = Size; 6812 Args.push_back(Entry); 6813 6814 RTLIB::Libcall LibraryCall = 6815 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6816 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6817 report_fatal_error("Unsupported element size"); 6818 6819 TargetLowering::CallLoweringInfo CLI(*this); 6820 CLI.setDebugLoc(dl) 6821 .setChain(Chain) 6822 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6823 Type::getVoidTy(*getContext()), 6824 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6825 TLI->getPointerTy(getDataLayout())), 6826 std::move(Args)) 6827 .setDiscardResult() 6828 .setTailCall(isTailCall); 6829 6830 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6831 return CallResult.second; 6832 } 6833 6834 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6835 SDVTList VTList, ArrayRef<SDValue> Ops, 6836 MachineMemOperand *MMO) { 6837 FoldingSetNodeID ID; 6838 ID.AddInteger(MemVT.getRawBits()); 6839 AddNodeIDNode(ID, Opcode, VTList, Ops); 6840 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6841 void* IP = nullptr; 6842 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6843 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6844 return SDValue(E, 0); 6845 } 6846 6847 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6848 VTList, MemVT, MMO); 6849 createOperands(N, Ops); 6850 6851 CSEMap.InsertNode(N, IP); 6852 InsertNode(N); 6853 return SDValue(N, 0); 6854 } 6855 6856 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6857 EVT MemVT, SDVTList VTs, SDValue Chain, 6858 SDValue Ptr, SDValue Cmp, SDValue Swp, 6859 MachineMemOperand *MMO) { 6860 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6861 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6862 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6863 6864 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6865 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6866 } 6867 6868 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6869 SDValue Chain, SDValue Ptr, SDValue Val, 6870 MachineMemOperand *MMO) { 6871 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6872 Opcode == ISD::ATOMIC_LOAD_SUB || 6873 Opcode == ISD::ATOMIC_LOAD_AND || 6874 Opcode == ISD::ATOMIC_LOAD_CLR || 6875 Opcode == ISD::ATOMIC_LOAD_OR || 6876 Opcode == ISD::ATOMIC_LOAD_XOR || 6877 Opcode == ISD::ATOMIC_LOAD_NAND || 6878 Opcode == ISD::ATOMIC_LOAD_MIN || 6879 Opcode == ISD::ATOMIC_LOAD_MAX || 6880 Opcode == ISD::ATOMIC_LOAD_UMIN || 6881 Opcode == ISD::ATOMIC_LOAD_UMAX || 6882 Opcode == ISD::ATOMIC_LOAD_FADD || 6883 Opcode == ISD::ATOMIC_LOAD_FSUB || 6884 Opcode == ISD::ATOMIC_SWAP || 6885 Opcode == ISD::ATOMIC_STORE) && 6886 "Invalid Atomic Op"); 6887 6888 EVT VT = Val.getValueType(); 6889 6890 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6891 getVTList(VT, MVT::Other); 6892 SDValue Ops[] = {Chain, Ptr, Val}; 6893 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6894 } 6895 6896 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6897 EVT VT, SDValue Chain, SDValue Ptr, 6898 MachineMemOperand *MMO) { 6899 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6900 6901 SDVTList VTs = getVTList(VT, MVT::Other); 6902 SDValue Ops[] = {Chain, Ptr}; 6903 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6904 } 6905 6906 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6907 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6908 if (Ops.size() == 1) 6909 return Ops[0]; 6910 6911 SmallVector<EVT, 4> VTs; 6912 VTs.reserve(Ops.size()); 6913 for (const SDValue &Op : Ops) 6914 VTs.push_back(Op.getValueType()); 6915 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6916 } 6917 6918 SDValue SelectionDAG::getMemIntrinsicNode( 6919 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6920 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6921 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6922 if (!Size && MemVT.isScalableVector()) 6923 Size = MemoryLocation::UnknownSize; 6924 else if (!Size) 6925 Size = MemVT.getStoreSize(); 6926 6927 MachineFunction &MF = getMachineFunction(); 6928 MachineMemOperand *MMO = 6929 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6930 6931 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6932 } 6933 6934 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6935 SDVTList VTList, 6936 ArrayRef<SDValue> Ops, EVT MemVT, 6937 MachineMemOperand *MMO) { 6938 assert((Opcode == ISD::INTRINSIC_VOID || 6939 Opcode == ISD::INTRINSIC_W_CHAIN || 6940 Opcode == ISD::PREFETCH || 6941 ((int)Opcode <= std::numeric_limits<int>::max() && 6942 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6943 "Opcode is not a memory-accessing opcode!"); 6944 6945 // Memoize the node unless it returns a flag. 6946 MemIntrinsicSDNode *N; 6947 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6948 FoldingSetNodeID ID; 6949 AddNodeIDNode(ID, Opcode, VTList, Ops); 6950 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6951 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6952 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6953 void *IP = nullptr; 6954 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6955 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6956 return SDValue(E, 0); 6957 } 6958 6959 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6960 VTList, MemVT, MMO); 6961 createOperands(N, Ops); 6962 6963 CSEMap.InsertNode(N, IP); 6964 } else { 6965 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6966 VTList, MemVT, MMO); 6967 createOperands(N, Ops); 6968 } 6969 InsertNode(N); 6970 SDValue V(N, 0); 6971 NewSDValueDbgMsg(V, "Creating new node: ", this); 6972 return V; 6973 } 6974 6975 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6976 SDValue Chain, int FrameIndex, 6977 int64_t Size, int64_t Offset) { 6978 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6979 const auto VTs = getVTList(MVT::Other); 6980 SDValue Ops[2] = { 6981 Chain, 6982 getFrameIndex(FrameIndex, 6983 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6984 true)}; 6985 6986 FoldingSetNodeID ID; 6987 AddNodeIDNode(ID, Opcode, VTs, Ops); 6988 ID.AddInteger(FrameIndex); 6989 ID.AddInteger(Size); 6990 ID.AddInteger(Offset); 6991 void *IP = nullptr; 6992 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6993 return SDValue(E, 0); 6994 6995 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6996 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6997 createOperands(N, Ops); 6998 CSEMap.InsertNode(N, IP); 6999 InsertNode(N); 7000 SDValue V(N, 0); 7001 NewSDValueDbgMsg(V, "Creating new node: ", this); 7002 return V; 7003 } 7004 7005 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7006 uint64_t Guid, uint64_t Index, 7007 uint32_t Attr) { 7008 const unsigned Opcode = ISD::PSEUDO_PROBE; 7009 const auto VTs = getVTList(MVT::Other); 7010 SDValue Ops[] = {Chain}; 7011 FoldingSetNodeID ID; 7012 AddNodeIDNode(ID, Opcode, VTs, Ops); 7013 ID.AddInteger(Guid); 7014 ID.AddInteger(Index); 7015 void *IP = nullptr; 7016 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7017 return SDValue(E, 0); 7018 7019 auto *N = newSDNode<PseudoProbeSDNode>( 7020 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7021 createOperands(N, Ops); 7022 CSEMap.InsertNode(N, IP); 7023 InsertNode(N); 7024 SDValue V(N, 0); 7025 NewSDValueDbgMsg(V, "Creating new node: ", this); 7026 return V; 7027 } 7028 7029 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7030 /// MachinePointerInfo record from it. This is particularly useful because the 7031 /// code generator has many cases where it doesn't bother passing in a 7032 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7033 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7034 SelectionDAG &DAG, SDValue Ptr, 7035 int64_t Offset = 0) { 7036 // If this is FI+Offset, we can model it. 7037 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7038 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7039 FI->getIndex(), Offset); 7040 7041 // If this is (FI+Offset1)+Offset2, we can model it. 7042 if (Ptr.getOpcode() != ISD::ADD || 7043 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7044 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7045 return Info; 7046 7047 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7048 return MachinePointerInfo::getFixedStack( 7049 DAG.getMachineFunction(), FI, 7050 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7051 } 7052 7053 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7054 /// MachinePointerInfo record from it. This is particularly useful because the 7055 /// code generator has many cases where it doesn't bother passing in a 7056 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7057 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7058 SelectionDAG &DAG, SDValue Ptr, 7059 SDValue OffsetOp) { 7060 // If the 'Offset' value isn't a constant, we can't handle this. 7061 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7062 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7063 if (OffsetOp.isUndef()) 7064 return InferPointerInfo(Info, DAG, Ptr); 7065 return Info; 7066 } 7067 7068 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7069 EVT VT, const SDLoc &dl, SDValue Chain, 7070 SDValue Ptr, SDValue Offset, 7071 MachinePointerInfo PtrInfo, EVT MemVT, 7072 Align Alignment, 7073 MachineMemOperand::Flags MMOFlags, 7074 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7075 assert(Chain.getValueType() == MVT::Other && 7076 "Invalid chain type"); 7077 7078 MMOFlags |= MachineMemOperand::MOLoad; 7079 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7080 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7081 // clients. 7082 if (PtrInfo.V.isNull()) 7083 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7084 7085 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7086 MachineFunction &MF = getMachineFunction(); 7087 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7088 Alignment, AAInfo, Ranges); 7089 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7090 } 7091 7092 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7093 EVT VT, const SDLoc &dl, SDValue Chain, 7094 SDValue Ptr, SDValue Offset, EVT MemVT, 7095 MachineMemOperand *MMO) { 7096 if (VT == MemVT) { 7097 ExtType = ISD::NON_EXTLOAD; 7098 } else if (ExtType == ISD::NON_EXTLOAD) { 7099 assert(VT == MemVT && "Non-extending load from different memory type!"); 7100 } else { 7101 // Extending load. 7102 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7103 "Should only be an extending load, not truncating!"); 7104 assert(VT.isInteger() == MemVT.isInteger() && 7105 "Cannot convert from FP to Int or Int -> FP!"); 7106 assert(VT.isVector() == MemVT.isVector() && 7107 "Cannot use an ext load to convert to or from a vector!"); 7108 assert((!VT.isVector() || 7109 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7110 "Cannot use an ext load to change the number of vector elements!"); 7111 } 7112 7113 bool Indexed = AM != ISD::UNINDEXED; 7114 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7115 7116 SDVTList VTs = Indexed ? 7117 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7118 SDValue Ops[] = { Chain, Ptr, Offset }; 7119 FoldingSetNodeID ID; 7120 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7121 ID.AddInteger(MemVT.getRawBits()); 7122 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7123 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7124 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7125 void *IP = nullptr; 7126 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7127 cast<LoadSDNode>(E)->refineAlignment(MMO); 7128 return SDValue(E, 0); 7129 } 7130 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7131 ExtType, MemVT, MMO); 7132 createOperands(N, Ops); 7133 7134 CSEMap.InsertNode(N, IP); 7135 InsertNode(N); 7136 SDValue V(N, 0); 7137 NewSDValueDbgMsg(V, "Creating new node: ", this); 7138 return V; 7139 } 7140 7141 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7142 SDValue Ptr, MachinePointerInfo PtrInfo, 7143 MaybeAlign Alignment, 7144 MachineMemOperand::Flags MMOFlags, 7145 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7146 SDValue Undef = getUNDEF(Ptr.getValueType()); 7147 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7148 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7149 } 7150 7151 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7152 SDValue Ptr, MachineMemOperand *MMO) { 7153 SDValue Undef = getUNDEF(Ptr.getValueType()); 7154 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7155 VT, MMO); 7156 } 7157 7158 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7159 EVT VT, SDValue Chain, SDValue Ptr, 7160 MachinePointerInfo PtrInfo, EVT MemVT, 7161 MaybeAlign Alignment, 7162 MachineMemOperand::Flags MMOFlags, 7163 const AAMDNodes &AAInfo) { 7164 SDValue Undef = getUNDEF(Ptr.getValueType()); 7165 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7166 MemVT, Alignment, MMOFlags, AAInfo); 7167 } 7168 7169 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7170 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7171 MachineMemOperand *MMO) { 7172 SDValue Undef = getUNDEF(Ptr.getValueType()); 7173 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7174 MemVT, MMO); 7175 } 7176 7177 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7178 SDValue Base, SDValue Offset, 7179 ISD::MemIndexedMode AM) { 7180 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7181 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7182 // Don't propagate the invariant or dereferenceable flags. 7183 auto MMOFlags = 7184 LD->getMemOperand()->getFlags() & 7185 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7186 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7187 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7188 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7189 } 7190 7191 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7192 SDValue Ptr, MachinePointerInfo PtrInfo, 7193 Align Alignment, 7194 MachineMemOperand::Flags MMOFlags, 7195 const AAMDNodes &AAInfo) { 7196 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7197 7198 MMOFlags |= MachineMemOperand::MOStore; 7199 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7200 7201 if (PtrInfo.V.isNull()) 7202 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7203 7204 MachineFunction &MF = getMachineFunction(); 7205 uint64_t Size = 7206 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7207 MachineMemOperand *MMO = 7208 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7209 return getStore(Chain, dl, Val, Ptr, MMO); 7210 } 7211 7212 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7213 SDValue Ptr, MachineMemOperand *MMO) { 7214 assert(Chain.getValueType() == MVT::Other && 7215 "Invalid chain type"); 7216 EVT VT = Val.getValueType(); 7217 SDVTList VTs = getVTList(MVT::Other); 7218 SDValue Undef = getUNDEF(Ptr.getValueType()); 7219 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7220 FoldingSetNodeID ID; 7221 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7222 ID.AddInteger(VT.getRawBits()); 7223 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7224 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7225 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7226 void *IP = nullptr; 7227 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7228 cast<StoreSDNode>(E)->refineAlignment(MMO); 7229 return SDValue(E, 0); 7230 } 7231 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7232 ISD::UNINDEXED, false, VT, MMO); 7233 createOperands(N, Ops); 7234 7235 CSEMap.InsertNode(N, IP); 7236 InsertNode(N); 7237 SDValue V(N, 0); 7238 NewSDValueDbgMsg(V, "Creating new node: ", this); 7239 return V; 7240 } 7241 7242 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7243 SDValue Ptr, MachinePointerInfo PtrInfo, 7244 EVT SVT, Align Alignment, 7245 MachineMemOperand::Flags MMOFlags, 7246 const AAMDNodes &AAInfo) { 7247 assert(Chain.getValueType() == MVT::Other && 7248 "Invalid chain type"); 7249 7250 MMOFlags |= MachineMemOperand::MOStore; 7251 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7252 7253 if (PtrInfo.V.isNull()) 7254 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7255 7256 MachineFunction &MF = getMachineFunction(); 7257 MachineMemOperand *MMO = MF.getMachineMemOperand( 7258 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7259 Alignment, AAInfo); 7260 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7261 } 7262 7263 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7264 SDValue Ptr, EVT SVT, 7265 MachineMemOperand *MMO) { 7266 EVT VT = Val.getValueType(); 7267 7268 assert(Chain.getValueType() == MVT::Other && 7269 "Invalid chain type"); 7270 if (VT == SVT) 7271 return getStore(Chain, dl, Val, Ptr, MMO); 7272 7273 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7274 "Should only be a truncating store, not extending!"); 7275 assert(VT.isInteger() == SVT.isInteger() && 7276 "Can't do FP-INT conversion!"); 7277 assert(VT.isVector() == SVT.isVector() && 7278 "Cannot use trunc store to convert to or from a vector!"); 7279 assert((!VT.isVector() || 7280 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7281 "Cannot use trunc store to change the number of vector elements!"); 7282 7283 SDVTList VTs = getVTList(MVT::Other); 7284 SDValue Undef = getUNDEF(Ptr.getValueType()); 7285 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7286 FoldingSetNodeID ID; 7287 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7288 ID.AddInteger(SVT.getRawBits()); 7289 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7290 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7291 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7292 void *IP = nullptr; 7293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7294 cast<StoreSDNode>(E)->refineAlignment(MMO); 7295 return SDValue(E, 0); 7296 } 7297 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7298 ISD::UNINDEXED, true, SVT, MMO); 7299 createOperands(N, Ops); 7300 7301 CSEMap.InsertNode(N, IP); 7302 InsertNode(N); 7303 SDValue V(N, 0); 7304 NewSDValueDbgMsg(V, "Creating new node: ", this); 7305 return V; 7306 } 7307 7308 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7309 SDValue Base, SDValue Offset, 7310 ISD::MemIndexedMode AM) { 7311 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7312 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7313 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7314 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7315 FoldingSetNodeID ID; 7316 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7317 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7318 ID.AddInteger(ST->getRawSubclassData()); 7319 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7320 void *IP = nullptr; 7321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7322 return SDValue(E, 0); 7323 7324 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7325 ST->isTruncatingStore(), ST->getMemoryVT(), 7326 ST->getMemOperand()); 7327 createOperands(N, Ops); 7328 7329 CSEMap.InsertNode(N, IP); 7330 InsertNode(N); 7331 SDValue V(N, 0); 7332 NewSDValueDbgMsg(V, "Creating new node: ", this); 7333 return V; 7334 } 7335 7336 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7337 SDValue Base, SDValue Offset, SDValue Mask, 7338 SDValue PassThru, EVT MemVT, 7339 MachineMemOperand *MMO, 7340 ISD::MemIndexedMode AM, 7341 ISD::LoadExtType ExtTy, bool isExpanding) { 7342 bool Indexed = AM != ISD::UNINDEXED; 7343 assert((Indexed || Offset.isUndef()) && 7344 "Unindexed masked load with an offset!"); 7345 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7346 : getVTList(VT, MVT::Other); 7347 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7348 FoldingSetNodeID ID; 7349 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7350 ID.AddInteger(MemVT.getRawBits()); 7351 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7352 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7353 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7354 void *IP = nullptr; 7355 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7356 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7357 return SDValue(E, 0); 7358 } 7359 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7360 AM, ExtTy, isExpanding, MemVT, MMO); 7361 createOperands(N, Ops); 7362 7363 CSEMap.InsertNode(N, IP); 7364 InsertNode(N); 7365 SDValue V(N, 0); 7366 NewSDValueDbgMsg(V, "Creating new node: ", this); 7367 return V; 7368 } 7369 7370 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7371 SDValue Base, SDValue Offset, 7372 ISD::MemIndexedMode AM) { 7373 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7374 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7375 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7376 Offset, LD->getMask(), LD->getPassThru(), 7377 LD->getMemoryVT(), LD->getMemOperand(), AM, 7378 LD->getExtensionType(), LD->isExpandingLoad()); 7379 } 7380 7381 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7382 SDValue Val, SDValue Base, SDValue Offset, 7383 SDValue Mask, EVT MemVT, 7384 MachineMemOperand *MMO, 7385 ISD::MemIndexedMode AM, bool IsTruncating, 7386 bool IsCompressing) { 7387 assert(Chain.getValueType() == MVT::Other && 7388 "Invalid chain type"); 7389 bool Indexed = AM != ISD::UNINDEXED; 7390 assert((Indexed || Offset.isUndef()) && 7391 "Unindexed masked store with an offset!"); 7392 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7393 : getVTList(MVT::Other); 7394 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7395 FoldingSetNodeID ID; 7396 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7397 ID.AddInteger(MemVT.getRawBits()); 7398 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7399 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7400 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7401 void *IP = nullptr; 7402 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7403 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7404 return SDValue(E, 0); 7405 } 7406 auto *N = 7407 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7408 IsTruncating, IsCompressing, MemVT, MMO); 7409 createOperands(N, Ops); 7410 7411 CSEMap.InsertNode(N, IP); 7412 InsertNode(N); 7413 SDValue V(N, 0); 7414 NewSDValueDbgMsg(V, "Creating new node: ", this); 7415 return V; 7416 } 7417 7418 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7419 SDValue Base, SDValue Offset, 7420 ISD::MemIndexedMode AM) { 7421 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7422 assert(ST->getOffset().isUndef() && 7423 "Masked store is already a indexed store!"); 7424 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7425 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7426 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7427 } 7428 7429 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7430 ArrayRef<SDValue> Ops, 7431 MachineMemOperand *MMO, 7432 ISD::MemIndexType IndexType, 7433 ISD::LoadExtType ExtTy) { 7434 assert(Ops.size() == 6 && "Incompatible number of operands"); 7435 7436 FoldingSetNodeID ID; 7437 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7438 ID.AddInteger(VT.getRawBits()); 7439 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7440 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7441 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7442 void *IP = nullptr; 7443 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7444 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7445 return SDValue(E, 0); 7446 } 7447 7448 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7449 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7450 VTs, VT, MMO, IndexType, ExtTy); 7451 createOperands(N, Ops); 7452 7453 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7454 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7455 assert(N->getMask().getValueType().getVectorElementCount() == 7456 N->getValueType(0).getVectorElementCount() && 7457 "Vector width mismatch between mask and data"); 7458 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7459 N->getValueType(0).getVectorElementCount().isScalable() && 7460 "Scalable flags of index and data do not match"); 7461 assert(ElementCount::isKnownGE( 7462 N->getIndex().getValueType().getVectorElementCount(), 7463 N->getValueType(0).getVectorElementCount()) && 7464 "Vector width mismatch between index and data"); 7465 assert(isa<ConstantSDNode>(N->getScale()) && 7466 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7467 "Scale should be a constant power of 2"); 7468 7469 CSEMap.InsertNode(N, IP); 7470 InsertNode(N); 7471 SDValue V(N, 0); 7472 NewSDValueDbgMsg(V, "Creating new node: ", this); 7473 return V; 7474 } 7475 7476 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7477 ArrayRef<SDValue> Ops, 7478 MachineMemOperand *MMO, 7479 ISD::MemIndexType IndexType, 7480 bool IsTrunc) { 7481 assert(Ops.size() == 6 && "Incompatible number of operands"); 7482 7483 FoldingSetNodeID ID; 7484 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7485 ID.AddInteger(VT.getRawBits()); 7486 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7487 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7488 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7489 void *IP = nullptr; 7490 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7491 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7492 return SDValue(E, 0); 7493 } 7494 7495 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7496 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7497 VTs, VT, MMO, IndexType, IsTrunc); 7498 createOperands(N, Ops); 7499 7500 assert(N->getMask().getValueType().getVectorElementCount() == 7501 N->getValue().getValueType().getVectorElementCount() && 7502 "Vector width mismatch between mask and data"); 7503 assert( 7504 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7505 N->getValue().getValueType().getVectorElementCount().isScalable() && 7506 "Scalable flags of index and data do not match"); 7507 assert(ElementCount::isKnownGE( 7508 N->getIndex().getValueType().getVectorElementCount(), 7509 N->getValue().getValueType().getVectorElementCount()) && 7510 "Vector width mismatch between index and data"); 7511 assert(isa<ConstantSDNode>(N->getScale()) && 7512 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7513 "Scale should be a constant power of 2"); 7514 7515 CSEMap.InsertNode(N, IP); 7516 InsertNode(N); 7517 SDValue V(N, 0); 7518 NewSDValueDbgMsg(V, "Creating new node: ", this); 7519 return V; 7520 } 7521 7522 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7523 // select undef, T, F --> T (if T is a constant), otherwise F 7524 // select, ?, undef, F --> F 7525 // select, ?, T, undef --> T 7526 if (Cond.isUndef()) 7527 return isConstantValueOfAnyType(T) ? T : F; 7528 if (T.isUndef()) 7529 return F; 7530 if (F.isUndef()) 7531 return T; 7532 7533 // select true, T, F --> T 7534 // select false, T, F --> F 7535 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7536 return CondC->isNullValue() ? F : T; 7537 7538 // TODO: This should simplify VSELECT with constant condition using something 7539 // like this (but check boolean contents to be complete?): 7540 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7541 // return T; 7542 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7543 // return F; 7544 7545 // select ?, T, T --> T 7546 if (T == F) 7547 return T; 7548 7549 return SDValue(); 7550 } 7551 7552 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7553 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7554 if (X.isUndef()) 7555 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7556 // shift X, undef --> undef (because it may shift by the bitwidth) 7557 if (Y.isUndef()) 7558 return getUNDEF(X.getValueType()); 7559 7560 // shift 0, Y --> 0 7561 // shift X, 0 --> X 7562 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7563 return X; 7564 7565 // shift X, C >= bitwidth(X) --> undef 7566 // All vector elements must be too big (or undef) to avoid partial undefs. 7567 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7568 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7569 }; 7570 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7571 return getUNDEF(X.getValueType()); 7572 7573 return SDValue(); 7574 } 7575 7576 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7577 SDNodeFlags Flags) { 7578 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7579 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7580 // operation is poison. That result can be relaxed to undef. 7581 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7582 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7583 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7584 (YC && YC->getValueAPF().isNaN()); 7585 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7586 (YC && YC->getValueAPF().isInfinity()); 7587 7588 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7589 return getUNDEF(X.getValueType()); 7590 7591 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7592 return getUNDEF(X.getValueType()); 7593 7594 if (!YC) 7595 return SDValue(); 7596 7597 // X + -0.0 --> X 7598 if (Opcode == ISD::FADD) 7599 if (YC->getValueAPF().isNegZero()) 7600 return X; 7601 7602 // X - +0.0 --> X 7603 if (Opcode == ISD::FSUB) 7604 if (YC->getValueAPF().isPosZero()) 7605 return X; 7606 7607 // X * 1.0 --> X 7608 // X / 1.0 --> X 7609 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7610 if (YC->getValueAPF().isExactlyValue(1.0)) 7611 return X; 7612 7613 // X * 0.0 --> 0.0 7614 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7615 if (YC->getValueAPF().isZero()) 7616 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7617 7618 return SDValue(); 7619 } 7620 7621 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7622 SDValue Ptr, SDValue SV, unsigned Align) { 7623 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7624 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7625 } 7626 7627 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7628 ArrayRef<SDUse> Ops) { 7629 switch (Ops.size()) { 7630 case 0: return getNode(Opcode, DL, VT); 7631 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7632 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7633 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7634 default: break; 7635 } 7636 7637 // Copy from an SDUse array into an SDValue array for use with 7638 // the regular getNode logic. 7639 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7640 return getNode(Opcode, DL, VT, NewOps); 7641 } 7642 7643 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7644 ArrayRef<SDValue> Ops) { 7645 SDNodeFlags Flags; 7646 if (Inserter) 7647 Flags = Inserter->getFlags(); 7648 return getNode(Opcode, DL, VT, Ops, Flags); 7649 } 7650 7651 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7652 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7653 unsigned NumOps = Ops.size(); 7654 switch (NumOps) { 7655 case 0: return getNode(Opcode, DL, VT); 7656 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7657 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7658 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7659 default: break; 7660 } 7661 7662 #ifndef NDEBUG 7663 for (auto &Op : Ops) 7664 assert(Op.getOpcode() != ISD::DELETED_NODE && 7665 "Operand is DELETED_NODE!"); 7666 #endif 7667 7668 switch (Opcode) { 7669 default: break; 7670 case ISD::BUILD_VECTOR: 7671 // Attempt to simplify BUILD_VECTOR. 7672 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7673 return V; 7674 break; 7675 case ISD::CONCAT_VECTORS: 7676 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7677 return V; 7678 break; 7679 case ISD::SELECT_CC: 7680 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7681 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7682 "LHS and RHS of condition must have same type!"); 7683 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7684 "True and False arms of SelectCC must have same type!"); 7685 assert(Ops[2].getValueType() == VT && 7686 "select_cc node must be of same type as true and false value!"); 7687 break; 7688 case ISD::BR_CC: 7689 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7690 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7691 "LHS/RHS of comparison should match types!"); 7692 break; 7693 } 7694 7695 // Memoize nodes. 7696 SDNode *N; 7697 SDVTList VTs = getVTList(VT); 7698 7699 if (VT != MVT::Glue) { 7700 FoldingSetNodeID ID; 7701 AddNodeIDNode(ID, Opcode, VTs, Ops); 7702 void *IP = nullptr; 7703 7704 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7705 return SDValue(E, 0); 7706 7707 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7708 createOperands(N, Ops); 7709 7710 CSEMap.InsertNode(N, IP); 7711 } else { 7712 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7713 createOperands(N, Ops); 7714 } 7715 7716 N->setFlags(Flags); 7717 InsertNode(N); 7718 SDValue V(N, 0); 7719 NewSDValueDbgMsg(V, "Creating new node: ", this); 7720 return V; 7721 } 7722 7723 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7724 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7725 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7726 } 7727 7728 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7729 ArrayRef<SDValue> Ops) { 7730 SDNodeFlags Flags; 7731 if (Inserter) 7732 Flags = Inserter->getFlags(); 7733 return getNode(Opcode, DL, VTList, Ops, Flags); 7734 } 7735 7736 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7737 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7738 if (VTList.NumVTs == 1) 7739 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7740 7741 #ifndef NDEBUG 7742 for (auto &Op : Ops) 7743 assert(Op.getOpcode() != ISD::DELETED_NODE && 7744 "Operand is DELETED_NODE!"); 7745 #endif 7746 7747 switch (Opcode) { 7748 case ISD::STRICT_FP_EXTEND: 7749 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7750 "Invalid STRICT_FP_EXTEND!"); 7751 assert(VTList.VTs[0].isFloatingPoint() && 7752 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7753 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7754 "STRICT_FP_EXTEND result type should be vector iff the operand " 7755 "type is vector!"); 7756 assert((!VTList.VTs[0].isVector() || 7757 VTList.VTs[0].getVectorNumElements() == 7758 Ops[1].getValueType().getVectorNumElements()) && 7759 "Vector element count mismatch!"); 7760 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7761 "Invalid fpext node, dst <= src!"); 7762 break; 7763 case ISD::STRICT_FP_ROUND: 7764 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7765 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7766 "STRICT_FP_ROUND result type should be vector iff the operand " 7767 "type is vector!"); 7768 assert((!VTList.VTs[0].isVector() || 7769 VTList.VTs[0].getVectorNumElements() == 7770 Ops[1].getValueType().getVectorNumElements()) && 7771 "Vector element count mismatch!"); 7772 assert(VTList.VTs[0].isFloatingPoint() && 7773 Ops[1].getValueType().isFloatingPoint() && 7774 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7775 isa<ConstantSDNode>(Ops[2]) && 7776 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7777 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7778 "Invalid STRICT_FP_ROUND!"); 7779 break; 7780 #if 0 7781 // FIXME: figure out how to safely handle things like 7782 // int foo(int x) { return 1 << (x & 255); } 7783 // int bar() { return foo(256); } 7784 case ISD::SRA_PARTS: 7785 case ISD::SRL_PARTS: 7786 case ISD::SHL_PARTS: 7787 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7788 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7789 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7790 else if (N3.getOpcode() == ISD::AND) 7791 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7792 // If the and is only masking out bits that cannot effect the shift, 7793 // eliminate the and. 7794 unsigned NumBits = VT.getScalarSizeInBits()*2; 7795 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7796 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7797 } 7798 break; 7799 #endif 7800 } 7801 7802 // Memoize the node unless it returns a flag. 7803 SDNode *N; 7804 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7805 FoldingSetNodeID ID; 7806 AddNodeIDNode(ID, Opcode, VTList, Ops); 7807 void *IP = nullptr; 7808 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7809 return SDValue(E, 0); 7810 7811 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7812 createOperands(N, Ops); 7813 CSEMap.InsertNode(N, IP); 7814 } else { 7815 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7816 createOperands(N, Ops); 7817 } 7818 7819 N->setFlags(Flags); 7820 InsertNode(N); 7821 SDValue V(N, 0); 7822 NewSDValueDbgMsg(V, "Creating new node: ", this); 7823 return V; 7824 } 7825 7826 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7827 SDVTList VTList) { 7828 return getNode(Opcode, DL, VTList, None); 7829 } 7830 7831 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7832 SDValue N1) { 7833 SDValue Ops[] = { N1 }; 7834 return getNode(Opcode, DL, VTList, Ops); 7835 } 7836 7837 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7838 SDValue N1, SDValue N2) { 7839 SDValue Ops[] = { N1, N2 }; 7840 return getNode(Opcode, DL, VTList, Ops); 7841 } 7842 7843 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7844 SDValue N1, SDValue N2, SDValue N3) { 7845 SDValue Ops[] = { N1, N2, N3 }; 7846 return getNode(Opcode, DL, VTList, Ops); 7847 } 7848 7849 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7850 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7851 SDValue Ops[] = { N1, N2, N3, N4 }; 7852 return getNode(Opcode, DL, VTList, Ops); 7853 } 7854 7855 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7856 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7857 SDValue N5) { 7858 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7859 return getNode(Opcode, DL, VTList, Ops); 7860 } 7861 7862 SDVTList SelectionDAG::getVTList(EVT VT) { 7863 return makeVTList(SDNode::getValueTypeList(VT), 1); 7864 } 7865 7866 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7867 FoldingSetNodeID ID; 7868 ID.AddInteger(2U); 7869 ID.AddInteger(VT1.getRawBits()); 7870 ID.AddInteger(VT2.getRawBits()); 7871 7872 void *IP = nullptr; 7873 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7874 if (!Result) { 7875 EVT *Array = Allocator.Allocate<EVT>(2); 7876 Array[0] = VT1; 7877 Array[1] = VT2; 7878 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7879 VTListMap.InsertNode(Result, IP); 7880 } 7881 return Result->getSDVTList(); 7882 } 7883 7884 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7885 FoldingSetNodeID ID; 7886 ID.AddInteger(3U); 7887 ID.AddInteger(VT1.getRawBits()); 7888 ID.AddInteger(VT2.getRawBits()); 7889 ID.AddInteger(VT3.getRawBits()); 7890 7891 void *IP = nullptr; 7892 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7893 if (!Result) { 7894 EVT *Array = Allocator.Allocate<EVT>(3); 7895 Array[0] = VT1; 7896 Array[1] = VT2; 7897 Array[2] = VT3; 7898 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7899 VTListMap.InsertNode(Result, IP); 7900 } 7901 return Result->getSDVTList(); 7902 } 7903 7904 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7905 FoldingSetNodeID ID; 7906 ID.AddInteger(4U); 7907 ID.AddInteger(VT1.getRawBits()); 7908 ID.AddInteger(VT2.getRawBits()); 7909 ID.AddInteger(VT3.getRawBits()); 7910 ID.AddInteger(VT4.getRawBits()); 7911 7912 void *IP = nullptr; 7913 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7914 if (!Result) { 7915 EVT *Array = Allocator.Allocate<EVT>(4); 7916 Array[0] = VT1; 7917 Array[1] = VT2; 7918 Array[2] = VT3; 7919 Array[3] = VT4; 7920 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7921 VTListMap.InsertNode(Result, IP); 7922 } 7923 return Result->getSDVTList(); 7924 } 7925 7926 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7927 unsigned NumVTs = VTs.size(); 7928 FoldingSetNodeID ID; 7929 ID.AddInteger(NumVTs); 7930 for (unsigned index = 0; index < NumVTs; index++) { 7931 ID.AddInteger(VTs[index].getRawBits()); 7932 } 7933 7934 void *IP = nullptr; 7935 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7936 if (!Result) { 7937 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7938 llvm::copy(VTs, Array); 7939 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7940 VTListMap.InsertNode(Result, IP); 7941 } 7942 return Result->getSDVTList(); 7943 } 7944 7945 7946 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7947 /// specified operands. If the resultant node already exists in the DAG, 7948 /// this does not modify the specified node, instead it returns the node that 7949 /// already exists. If the resultant node does not exist in the DAG, the 7950 /// input node is returned. As a degenerate case, if you specify the same 7951 /// input operands as the node already has, the input node is returned. 7952 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7953 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7954 7955 // Check to see if there is no change. 7956 if (Op == N->getOperand(0)) return N; 7957 7958 // See if the modified node already exists. 7959 void *InsertPos = nullptr; 7960 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7961 return Existing; 7962 7963 // Nope it doesn't. Remove the node from its current place in the maps. 7964 if (InsertPos) 7965 if (!RemoveNodeFromCSEMaps(N)) 7966 InsertPos = nullptr; 7967 7968 // Now we update the operands. 7969 N->OperandList[0].set(Op); 7970 7971 updateDivergence(N); 7972 // If this gets put into a CSE map, add it. 7973 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7974 return N; 7975 } 7976 7977 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7978 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7979 7980 // Check to see if there is no change. 7981 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7982 return N; // No operands changed, just return the input node. 7983 7984 // See if the modified node already exists. 7985 void *InsertPos = nullptr; 7986 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7987 return Existing; 7988 7989 // Nope it doesn't. Remove the node from its current place in the maps. 7990 if (InsertPos) 7991 if (!RemoveNodeFromCSEMaps(N)) 7992 InsertPos = nullptr; 7993 7994 // Now we update the operands. 7995 if (N->OperandList[0] != Op1) 7996 N->OperandList[0].set(Op1); 7997 if (N->OperandList[1] != Op2) 7998 N->OperandList[1].set(Op2); 7999 8000 updateDivergence(N); 8001 // If this gets put into a CSE map, add it. 8002 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8003 return N; 8004 } 8005 8006 SDNode *SelectionDAG:: 8007 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8008 SDValue Ops[] = { Op1, Op2, Op3 }; 8009 return UpdateNodeOperands(N, Ops); 8010 } 8011 8012 SDNode *SelectionDAG:: 8013 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8014 SDValue Op3, SDValue Op4) { 8015 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8016 return UpdateNodeOperands(N, Ops); 8017 } 8018 8019 SDNode *SelectionDAG:: 8020 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8021 SDValue Op3, SDValue Op4, SDValue Op5) { 8022 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8023 return UpdateNodeOperands(N, Ops); 8024 } 8025 8026 SDNode *SelectionDAG:: 8027 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8028 unsigned NumOps = Ops.size(); 8029 assert(N->getNumOperands() == NumOps && 8030 "Update with wrong number of operands"); 8031 8032 // If no operands changed just return the input node. 8033 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8034 return N; 8035 8036 // See if the modified node already exists. 8037 void *InsertPos = nullptr; 8038 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8039 return Existing; 8040 8041 // Nope it doesn't. Remove the node from its current place in the maps. 8042 if (InsertPos) 8043 if (!RemoveNodeFromCSEMaps(N)) 8044 InsertPos = nullptr; 8045 8046 // Now we update the operands. 8047 for (unsigned i = 0; i != NumOps; ++i) 8048 if (N->OperandList[i] != Ops[i]) 8049 N->OperandList[i].set(Ops[i]); 8050 8051 updateDivergence(N); 8052 // If this gets put into a CSE map, add it. 8053 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8054 return N; 8055 } 8056 8057 /// DropOperands - Release the operands and set this node to have 8058 /// zero operands. 8059 void SDNode::DropOperands() { 8060 // Unlike the code in MorphNodeTo that does this, we don't need to 8061 // watch for dead nodes here. 8062 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8063 SDUse &Use = *I++; 8064 Use.set(SDValue()); 8065 } 8066 } 8067 8068 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8069 ArrayRef<MachineMemOperand *> NewMemRefs) { 8070 if (NewMemRefs.empty()) { 8071 N->clearMemRefs(); 8072 return; 8073 } 8074 8075 // Check if we can avoid allocating by storing a single reference directly. 8076 if (NewMemRefs.size() == 1) { 8077 N->MemRefs = NewMemRefs[0]; 8078 N->NumMemRefs = 1; 8079 return; 8080 } 8081 8082 MachineMemOperand **MemRefsBuffer = 8083 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8084 llvm::copy(NewMemRefs, MemRefsBuffer); 8085 N->MemRefs = MemRefsBuffer; 8086 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8087 } 8088 8089 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8090 /// machine opcode. 8091 /// 8092 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8093 EVT VT) { 8094 SDVTList VTs = getVTList(VT); 8095 return SelectNodeTo(N, MachineOpc, VTs, None); 8096 } 8097 8098 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8099 EVT VT, SDValue Op1) { 8100 SDVTList VTs = getVTList(VT); 8101 SDValue Ops[] = { Op1 }; 8102 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8103 } 8104 8105 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8106 EVT VT, SDValue Op1, 8107 SDValue Op2) { 8108 SDVTList VTs = getVTList(VT); 8109 SDValue Ops[] = { Op1, Op2 }; 8110 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8111 } 8112 8113 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8114 EVT VT, SDValue Op1, 8115 SDValue Op2, SDValue Op3) { 8116 SDVTList VTs = getVTList(VT); 8117 SDValue Ops[] = { Op1, Op2, Op3 }; 8118 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8119 } 8120 8121 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8122 EVT VT, ArrayRef<SDValue> Ops) { 8123 SDVTList VTs = getVTList(VT); 8124 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8125 } 8126 8127 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8128 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8129 SDVTList VTs = getVTList(VT1, VT2); 8130 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8131 } 8132 8133 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8134 EVT VT1, EVT VT2) { 8135 SDVTList VTs = getVTList(VT1, VT2); 8136 return SelectNodeTo(N, MachineOpc, VTs, None); 8137 } 8138 8139 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8140 EVT VT1, EVT VT2, EVT VT3, 8141 ArrayRef<SDValue> Ops) { 8142 SDVTList VTs = getVTList(VT1, VT2, VT3); 8143 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8144 } 8145 8146 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8147 EVT VT1, EVT VT2, 8148 SDValue Op1, SDValue Op2) { 8149 SDVTList VTs = getVTList(VT1, VT2); 8150 SDValue Ops[] = { Op1, Op2 }; 8151 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8152 } 8153 8154 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8155 SDVTList VTs,ArrayRef<SDValue> Ops) { 8156 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8157 // Reset the NodeID to -1. 8158 New->setNodeId(-1); 8159 if (New != N) { 8160 ReplaceAllUsesWith(N, New); 8161 RemoveDeadNode(N); 8162 } 8163 return New; 8164 } 8165 8166 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8167 /// the line number information on the merged node since it is not possible to 8168 /// preserve the information that operation is associated with multiple lines. 8169 /// This will make the debugger working better at -O0, were there is a higher 8170 /// probability having other instructions associated with that line. 8171 /// 8172 /// For IROrder, we keep the smaller of the two 8173 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8174 DebugLoc NLoc = N->getDebugLoc(); 8175 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8176 N->setDebugLoc(DebugLoc()); 8177 } 8178 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8179 N->setIROrder(Order); 8180 return N; 8181 } 8182 8183 /// MorphNodeTo - This *mutates* the specified node to have the specified 8184 /// return type, opcode, and operands. 8185 /// 8186 /// Note that MorphNodeTo returns the resultant node. If there is already a 8187 /// node of the specified opcode and operands, it returns that node instead of 8188 /// the current one. Note that the SDLoc need not be the same. 8189 /// 8190 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8191 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8192 /// node, and because it doesn't require CSE recalculation for any of 8193 /// the node's users. 8194 /// 8195 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8196 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8197 /// the legalizer which maintain worklists that would need to be updated when 8198 /// deleting things. 8199 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8200 SDVTList VTs, ArrayRef<SDValue> Ops) { 8201 // If an identical node already exists, use it. 8202 void *IP = nullptr; 8203 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8204 FoldingSetNodeID ID; 8205 AddNodeIDNode(ID, Opc, VTs, Ops); 8206 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8207 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8208 } 8209 8210 if (!RemoveNodeFromCSEMaps(N)) 8211 IP = nullptr; 8212 8213 // Start the morphing. 8214 N->NodeType = Opc; 8215 N->ValueList = VTs.VTs; 8216 N->NumValues = VTs.NumVTs; 8217 8218 // Clear the operands list, updating used nodes to remove this from their 8219 // use list. Keep track of any operands that become dead as a result. 8220 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8221 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8222 SDUse &Use = *I++; 8223 SDNode *Used = Use.getNode(); 8224 Use.set(SDValue()); 8225 if (Used->use_empty()) 8226 DeadNodeSet.insert(Used); 8227 } 8228 8229 // For MachineNode, initialize the memory references information. 8230 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8231 MN->clearMemRefs(); 8232 8233 // Swap for an appropriately sized array from the recycler. 8234 removeOperands(N); 8235 createOperands(N, Ops); 8236 8237 // Delete any nodes that are still dead after adding the uses for the 8238 // new operands. 8239 if (!DeadNodeSet.empty()) { 8240 SmallVector<SDNode *, 16> DeadNodes; 8241 for (SDNode *N : DeadNodeSet) 8242 if (N->use_empty()) 8243 DeadNodes.push_back(N); 8244 RemoveDeadNodes(DeadNodes); 8245 } 8246 8247 if (IP) 8248 CSEMap.InsertNode(N, IP); // Memoize the new node. 8249 return N; 8250 } 8251 8252 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8253 unsigned OrigOpc = Node->getOpcode(); 8254 unsigned NewOpc; 8255 switch (OrigOpc) { 8256 default: 8257 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8258 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8259 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8260 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8261 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8262 #include "llvm/IR/ConstrainedOps.def" 8263 } 8264 8265 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8266 8267 // We're taking this node out of the chain, so we need to re-link things. 8268 SDValue InputChain = Node->getOperand(0); 8269 SDValue OutputChain = SDValue(Node, 1); 8270 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8271 8272 SmallVector<SDValue, 3> Ops; 8273 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8274 Ops.push_back(Node->getOperand(i)); 8275 8276 SDVTList VTs = getVTList(Node->getValueType(0)); 8277 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8278 8279 // MorphNodeTo can operate in two ways: if an existing node with the 8280 // specified operands exists, it can just return it. Otherwise, it 8281 // updates the node in place to have the requested operands. 8282 if (Res == Node) { 8283 // If we updated the node in place, reset the node ID. To the isel, 8284 // this should be just like a newly allocated machine node. 8285 Res->setNodeId(-1); 8286 } else { 8287 ReplaceAllUsesWith(Node, Res); 8288 RemoveDeadNode(Node); 8289 } 8290 8291 return Res; 8292 } 8293 8294 /// getMachineNode - These are used for target selectors to create a new node 8295 /// with specified return type(s), MachineInstr opcode, and operands. 8296 /// 8297 /// Note that getMachineNode returns the resultant node. If there is already a 8298 /// node of the specified opcode and operands, it returns that node instead of 8299 /// the current one. 8300 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8301 EVT VT) { 8302 SDVTList VTs = getVTList(VT); 8303 return getMachineNode(Opcode, dl, VTs, None); 8304 } 8305 8306 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8307 EVT VT, SDValue Op1) { 8308 SDVTList VTs = getVTList(VT); 8309 SDValue Ops[] = { Op1 }; 8310 return getMachineNode(Opcode, dl, VTs, Ops); 8311 } 8312 8313 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8314 EVT VT, SDValue Op1, SDValue Op2) { 8315 SDVTList VTs = getVTList(VT); 8316 SDValue Ops[] = { Op1, Op2 }; 8317 return getMachineNode(Opcode, dl, VTs, Ops); 8318 } 8319 8320 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8321 EVT VT, SDValue Op1, SDValue Op2, 8322 SDValue Op3) { 8323 SDVTList VTs = getVTList(VT); 8324 SDValue Ops[] = { Op1, Op2, Op3 }; 8325 return getMachineNode(Opcode, dl, VTs, Ops); 8326 } 8327 8328 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8329 EVT VT, ArrayRef<SDValue> Ops) { 8330 SDVTList VTs = getVTList(VT); 8331 return getMachineNode(Opcode, dl, VTs, Ops); 8332 } 8333 8334 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8335 EVT VT1, EVT VT2, SDValue Op1, 8336 SDValue Op2) { 8337 SDVTList VTs = getVTList(VT1, VT2); 8338 SDValue Ops[] = { Op1, Op2 }; 8339 return getMachineNode(Opcode, dl, VTs, Ops); 8340 } 8341 8342 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8343 EVT VT1, EVT VT2, SDValue Op1, 8344 SDValue Op2, SDValue Op3) { 8345 SDVTList VTs = getVTList(VT1, VT2); 8346 SDValue Ops[] = { Op1, Op2, Op3 }; 8347 return getMachineNode(Opcode, dl, VTs, Ops); 8348 } 8349 8350 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8351 EVT VT1, EVT VT2, 8352 ArrayRef<SDValue> Ops) { 8353 SDVTList VTs = getVTList(VT1, VT2); 8354 return getMachineNode(Opcode, dl, VTs, Ops); 8355 } 8356 8357 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8358 EVT VT1, EVT VT2, EVT VT3, 8359 SDValue Op1, SDValue Op2) { 8360 SDVTList VTs = getVTList(VT1, VT2, VT3); 8361 SDValue Ops[] = { Op1, Op2 }; 8362 return getMachineNode(Opcode, dl, VTs, Ops); 8363 } 8364 8365 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8366 EVT VT1, EVT VT2, EVT VT3, 8367 SDValue Op1, SDValue Op2, 8368 SDValue Op3) { 8369 SDVTList VTs = getVTList(VT1, VT2, VT3); 8370 SDValue Ops[] = { Op1, Op2, Op3 }; 8371 return getMachineNode(Opcode, dl, VTs, Ops); 8372 } 8373 8374 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8375 EVT VT1, EVT VT2, EVT VT3, 8376 ArrayRef<SDValue> Ops) { 8377 SDVTList VTs = getVTList(VT1, VT2, VT3); 8378 return getMachineNode(Opcode, dl, VTs, Ops); 8379 } 8380 8381 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8382 ArrayRef<EVT> ResultTys, 8383 ArrayRef<SDValue> Ops) { 8384 SDVTList VTs = getVTList(ResultTys); 8385 return getMachineNode(Opcode, dl, VTs, Ops); 8386 } 8387 8388 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8389 SDVTList VTs, 8390 ArrayRef<SDValue> Ops) { 8391 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8392 MachineSDNode *N; 8393 void *IP = nullptr; 8394 8395 if (DoCSE) { 8396 FoldingSetNodeID ID; 8397 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8398 IP = nullptr; 8399 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8400 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8401 } 8402 } 8403 8404 // Allocate a new MachineSDNode. 8405 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8406 createOperands(N, Ops); 8407 8408 if (DoCSE) 8409 CSEMap.InsertNode(N, IP); 8410 8411 InsertNode(N); 8412 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8413 return N; 8414 } 8415 8416 /// getTargetExtractSubreg - A convenience function for creating 8417 /// TargetOpcode::EXTRACT_SUBREG nodes. 8418 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8419 SDValue Operand) { 8420 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8421 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8422 VT, Operand, SRIdxVal); 8423 return SDValue(Subreg, 0); 8424 } 8425 8426 /// getTargetInsertSubreg - A convenience function for creating 8427 /// TargetOpcode::INSERT_SUBREG nodes. 8428 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8429 SDValue Operand, SDValue Subreg) { 8430 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8431 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8432 VT, Operand, Subreg, SRIdxVal); 8433 return SDValue(Result, 0); 8434 } 8435 8436 /// getNodeIfExists - Get the specified node if it's already available, or 8437 /// else return NULL. 8438 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8439 ArrayRef<SDValue> Ops) { 8440 SDNodeFlags Flags; 8441 if (Inserter) 8442 Flags = Inserter->getFlags(); 8443 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8444 } 8445 8446 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8447 ArrayRef<SDValue> Ops, 8448 const SDNodeFlags Flags) { 8449 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8450 FoldingSetNodeID ID; 8451 AddNodeIDNode(ID, Opcode, VTList, Ops); 8452 void *IP = nullptr; 8453 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8454 E->intersectFlagsWith(Flags); 8455 return E; 8456 } 8457 } 8458 return nullptr; 8459 } 8460 8461 /// doesNodeExist - Check if a node exists without modifying its flags. 8462 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8463 ArrayRef<SDValue> Ops) { 8464 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8465 FoldingSetNodeID ID; 8466 AddNodeIDNode(ID, Opcode, VTList, Ops); 8467 void *IP = nullptr; 8468 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8469 return true; 8470 } 8471 return false; 8472 } 8473 8474 /// getDbgValue - Creates a SDDbgValue node. 8475 /// 8476 /// SDNode 8477 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8478 SDNode *N, unsigned R, bool IsIndirect, 8479 const DebugLoc &DL, unsigned O) { 8480 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8481 "Expected inlined-at fields to agree"); 8482 return new (DbgInfo->getAlloc()) 8483 SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O, 8484 /*IsVariadic=*/false); 8485 } 8486 8487 /// Constant 8488 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8489 DIExpression *Expr, 8490 const Value *C, 8491 const DebugLoc &DL, unsigned O) { 8492 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8493 "Expected inlined-at fields to agree"); 8494 return new (DbgInfo->getAlloc()) SDDbgValue( 8495 Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O, 8496 /*IsVariadic=*/false); 8497 } 8498 8499 /// FrameIndex 8500 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8501 DIExpression *Expr, unsigned FI, 8502 bool IsIndirect, 8503 const DebugLoc &DL, 8504 unsigned O) { 8505 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8506 "Expected inlined-at fields to agree"); 8507 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 8508 } 8509 8510 /// FrameIndex with dependencies 8511 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8512 DIExpression *Expr, unsigned FI, 8513 ArrayRef<SDNode *> Dependencies, 8514 bool IsIndirect, 8515 const DebugLoc &DL, 8516 unsigned O) { 8517 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8518 "Expected inlined-at fields to agree"); 8519 return new (DbgInfo->getAlloc()) 8520 SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies, 8521 IsIndirect, DL, O, 8522 /*IsVariadic=*/false); 8523 } 8524 8525 /// VReg 8526 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 8527 unsigned VReg, bool IsIndirect, 8528 const DebugLoc &DL, unsigned O) { 8529 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8530 "Expected inlined-at fields to agree"); 8531 return new (DbgInfo->getAlloc()) 8532 SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O, 8533 /*IsVariadic=*/false); 8534 } 8535 8536 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 8537 ArrayRef<SDDbgOperand> Locs, 8538 ArrayRef<SDNode *> Dependencies, 8539 bool IsIndirect, const DebugLoc &DL, 8540 unsigned O, bool IsVariadic) { 8541 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8542 "Expected inlined-at fields to agree"); 8543 return new (DbgInfo->getAlloc()) 8544 SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic); 8545 } 8546 8547 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8548 unsigned OffsetInBits, unsigned SizeInBits, 8549 bool InvalidateDbg) { 8550 SDNode *FromNode = From.getNode(); 8551 SDNode *ToNode = To.getNode(); 8552 assert(FromNode && ToNode && "Can't modify dbg values"); 8553 8554 // PR35338 8555 // TODO: assert(From != To && "Redundant dbg value transfer"); 8556 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8557 if (From == To || FromNode == ToNode) 8558 return; 8559 8560 if (!FromNode->getHasDebugValue()) 8561 return; 8562 8563 SDDbgOperand FromLocOp = 8564 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 8565 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 8566 8567 SmallVector<SDDbgValue *, 2> ClonedDVs; 8568 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8569 if (Dbg->isInvalidated()) 8570 continue; 8571 8572 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8573 8574 // Create a new location ops vector that is equal to the old vector, but 8575 // with each instance of FromLocOp replaced with ToLocOp. 8576 bool Changed = false; 8577 auto NewLocOps = Dbg->copyLocationOps(); 8578 std::replace_if( 8579 NewLocOps.begin(), NewLocOps.end(), 8580 [&Changed, FromLocOp](const SDDbgOperand &Op) { 8581 bool Match = Op == FromLocOp; 8582 Changed |= Match; 8583 return Match; 8584 }, 8585 ToLocOp); 8586 // Ignore this SDDbgValue if we didn't find a matching location. 8587 if (!Changed) 8588 continue; 8589 8590 DIVariable *Var = Dbg->getVariable(); 8591 auto *Expr = Dbg->getExpression(); 8592 // If a fragment is requested, update the expression. 8593 if (SizeInBits) { 8594 // When splitting a larger (e.g., sign-extended) value whose 8595 // lower bits are described with an SDDbgValue, do not attempt 8596 // to transfer the SDDbgValue to the upper bits. 8597 if (auto FI = Expr->getFragmentInfo()) 8598 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8599 continue; 8600 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8601 SizeInBits); 8602 if (!Fragment) 8603 continue; 8604 Expr = *Fragment; 8605 } 8606 8607 auto NewDependencies = Dbg->copySDNodes(); 8608 std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode, 8609 ToNode); 8610 // Clone the SDDbgValue and move it to To. 8611 SDDbgValue *Clone = getDbgValueList( 8612 Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(), 8613 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 8614 Dbg->isVariadic()); 8615 ClonedDVs.push_back(Clone); 8616 8617 if (InvalidateDbg) { 8618 // Invalidate value and indicate the SDDbgValue should not be emitted. 8619 Dbg->setIsInvalidated(); 8620 Dbg->setIsEmitted(); 8621 } 8622 } 8623 8624 for (SDDbgValue *Dbg : ClonedDVs) { 8625 assert(is_contained(Dbg->getSDNodes(), ToNode) && 8626 "Transferred DbgValues should depend on the new SDNode"); 8627 AddDbgValue(Dbg, false); 8628 } 8629 } 8630 8631 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8632 if (!N.getHasDebugValue()) 8633 return; 8634 8635 SmallVector<SDDbgValue *, 2> ClonedDVs; 8636 for (auto DV : GetDbgValues(&N)) { 8637 if (DV->isInvalidated()) 8638 continue; 8639 switch (N.getOpcode()) { 8640 default: 8641 break; 8642 case ISD::ADD: 8643 SDValue N0 = N.getOperand(0); 8644 SDValue N1 = N.getOperand(1); 8645 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8646 isConstantIntBuildVectorOrConstantInt(N1)) { 8647 uint64_t Offset = N.getConstantOperandVal(1); 8648 8649 // Rewrite an ADD constant node into a DIExpression. Since we are 8650 // performing arithmetic to compute the variable's *value* in the 8651 // DIExpression, we need to mark the expression with a 8652 // DW_OP_stack_value. 8653 auto *DIExpr = DV->getExpression(); 8654 auto NewLocOps = DV->copyLocationOps(); 8655 bool Changed = false; 8656 for (size_t i = 0; i < NewLocOps.size(); ++i) { 8657 // We're not given a ResNo to compare against because the whole 8658 // node is going away. We know that any ISD::ADD only has one 8659 // result, so we can assume any node match is using the result. 8660 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 8661 NewLocOps[i].getSDNode() != &N) 8662 continue; 8663 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 8664 SmallVector<uint64_t, 3> ExprOps; 8665 DIExpression::appendOffset(ExprOps, Offset); 8666 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 8667 Changed = true; 8668 } 8669 (void)Changed; 8670 assert(Changed && "Salvage target doesn't use N"); 8671 8672 auto NewDependencies = DV->copySDNodes(); 8673 std::replace(NewDependencies.begin(), NewDependencies.end(), &N, 8674 N0.getNode()); 8675 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 8676 NewLocOps, NewDependencies, 8677 DV->isIndirect(), DV->getDebugLoc(), 8678 DV->getOrder(), DV->isVariadic()); 8679 ClonedDVs.push_back(Clone); 8680 DV->setIsInvalidated(); 8681 DV->setIsEmitted(); 8682 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8683 N0.getNode()->dumprFull(this); 8684 dbgs() << " into " << *DIExpr << '\n'); 8685 } 8686 } 8687 } 8688 8689 for (SDDbgValue *Dbg : ClonedDVs) { 8690 assert(!Dbg->getSDNodes().empty() && 8691 "Salvaged DbgValue should depend on a new SDNode"); 8692 AddDbgValue(Dbg, false); 8693 } 8694 } 8695 8696 /// Creates a SDDbgLabel node. 8697 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8698 const DebugLoc &DL, unsigned O) { 8699 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8700 "Expected inlined-at fields to agree"); 8701 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8702 } 8703 8704 namespace { 8705 8706 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8707 /// pointed to by a use iterator is deleted, increment the use iterator 8708 /// so that it doesn't dangle. 8709 /// 8710 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8711 SDNode::use_iterator &UI; 8712 SDNode::use_iterator &UE; 8713 8714 void NodeDeleted(SDNode *N, SDNode *E) override { 8715 // Increment the iterator as needed. 8716 while (UI != UE && N == *UI) 8717 ++UI; 8718 } 8719 8720 public: 8721 RAUWUpdateListener(SelectionDAG &d, 8722 SDNode::use_iterator &ui, 8723 SDNode::use_iterator &ue) 8724 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8725 }; 8726 8727 } // end anonymous namespace 8728 8729 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8730 /// This can cause recursive merging of nodes in the DAG. 8731 /// 8732 /// This version assumes From has a single result value. 8733 /// 8734 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8735 SDNode *From = FromN.getNode(); 8736 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8737 "Cannot replace with this method!"); 8738 assert(From != To.getNode() && "Cannot replace uses of with self"); 8739 8740 // Preserve Debug Values 8741 transferDbgValues(FromN, To); 8742 8743 // Iterate over all the existing uses of From. New uses will be added 8744 // to the beginning of the use list, which we avoid visiting. 8745 // This specifically avoids visiting uses of From that arise while the 8746 // replacement is happening, because any such uses would be the result 8747 // of CSE: If an existing node looks like From after one of its operands 8748 // is replaced by To, we don't want to replace of all its users with To 8749 // too. See PR3018 for more info. 8750 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8751 RAUWUpdateListener Listener(*this, UI, UE); 8752 while (UI != UE) { 8753 SDNode *User = *UI; 8754 8755 // This node is about to morph, remove its old self from the CSE maps. 8756 RemoveNodeFromCSEMaps(User); 8757 8758 // A user can appear in a use list multiple times, and when this 8759 // happens the uses are usually next to each other in the list. 8760 // To help reduce the number of CSE recomputations, process all 8761 // the uses of this user that we can find this way. 8762 do { 8763 SDUse &Use = UI.getUse(); 8764 ++UI; 8765 Use.set(To); 8766 if (To->isDivergent() != From->isDivergent()) 8767 updateDivergence(User); 8768 } while (UI != UE && *UI == User); 8769 // Now that we have modified User, add it back to the CSE maps. If it 8770 // already exists there, recursively merge the results together. 8771 AddModifiedNodeToCSEMaps(User); 8772 } 8773 8774 // If we just RAUW'd the root, take note. 8775 if (FromN == getRoot()) 8776 setRoot(To); 8777 } 8778 8779 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8780 /// This can cause recursive merging of nodes in the DAG. 8781 /// 8782 /// This version assumes that for each value of From, there is a 8783 /// corresponding value in To in the same position with the same type. 8784 /// 8785 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8786 #ifndef NDEBUG 8787 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8788 assert((!From->hasAnyUseOfValue(i) || 8789 From->getValueType(i) == To->getValueType(i)) && 8790 "Cannot use this version of ReplaceAllUsesWith!"); 8791 #endif 8792 8793 // Handle the trivial case. 8794 if (From == To) 8795 return; 8796 8797 // Preserve Debug Info. Only do this if there's a use. 8798 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8799 if (From->hasAnyUseOfValue(i)) { 8800 assert((i < To->getNumValues()) && "Invalid To location"); 8801 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8802 } 8803 8804 // Iterate over just the existing users of From. See the comments in 8805 // the ReplaceAllUsesWith above. 8806 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8807 RAUWUpdateListener Listener(*this, UI, UE); 8808 while (UI != UE) { 8809 SDNode *User = *UI; 8810 8811 // This node is about to morph, remove its old self from the CSE maps. 8812 RemoveNodeFromCSEMaps(User); 8813 8814 // A user can appear in a use list multiple times, and when this 8815 // happens the uses are usually next to each other in the list. 8816 // To help reduce the number of CSE recomputations, process all 8817 // the uses of this user that we can find this way. 8818 do { 8819 SDUse &Use = UI.getUse(); 8820 ++UI; 8821 Use.setNode(To); 8822 if (To->isDivergent() != From->isDivergent()) 8823 updateDivergence(User); 8824 } while (UI != UE && *UI == User); 8825 8826 // Now that we have modified User, add it back to the CSE maps. If it 8827 // already exists there, recursively merge the results together. 8828 AddModifiedNodeToCSEMaps(User); 8829 } 8830 8831 // If we just RAUW'd the root, take note. 8832 if (From == getRoot().getNode()) 8833 setRoot(SDValue(To, getRoot().getResNo())); 8834 } 8835 8836 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8837 /// This can cause recursive merging of nodes in the DAG. 8838 /// 8839 /// This version can replace From with any result values. To must match the 8840 /// number and types of values returned by From. 8841 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8842 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8843 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8844 8845 // Preserve Debug Info. 8846 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8847 transferDbgValues(SDValue(From, i), To[i]); 8848 8849 // Iterate over just the existing users of From. See the comments in 8850 // the ReplaceAllUsesWith above. 8851 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8852 RAUWUpdateListener Listener(*this, UI, UE); 8853 while (UI != UE) { 8854 SDNode *User = *UI; 8855 8856 // This node is about to morph, remove its old self from the CSE maps. 8857 RemoveNodeFromCSEMaps(User); 8858 8859 // A user can appear in a use list multiple times, and when this happens the 8860 // uses are usually next to each other in the list. To help reduce the 8861 // number of CSE and divergence recomputations, process all the uses of this 8862 // user that we can find this way. 8863 bool To_IsDivergent = false; 8864 do { 8865 SDUse &Use = UI.getUse(); 8866 const SDValue &ToOp = To[Use.getResNo()]; 8867 ++UI; 8868 Use.set(ToOp); 8869 To_IsDivergent |= ToOp->isDivergent(); 8870 } while (UI != UE && *UI == User); 8871 8872 if (To_IsDivergent != From->isDivergent()) 8873 updateDivergence(User); 8874 8875 // Now that we have modified User, add it back to the CSE maps. If it 8876 // already exists there, recursively merge the results together. 8877 AddModifiedNodeToCSEMaps(User); 8878 } 8879 8880 // If we just RAUW'd the root, take note. 8881 if (From == getRoot().getNode()) 8882 setRoot(SDValue(To[getRoot().getResNo()])); 8883 } 8884 8885 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8886 /// uses of other values produced by From.getNode() alone. The Deleted 8887 /// vector is handled the same way as for ReplaceAllUsesWith. 8888 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8889 // Handle the really simple, really trivial case efficiently. 8890 if (From == To) return; 8891 8892 // Handle the simple, trivial, case efficiently. 8893 if (From.getNode()->getNumValues() == 1) { 8894 ReplaceAllUsesWith(From, To); 8895 return; 8896 } 8897 8898 // Preserve Debug Info. 8899 transferDbgValues(From, To); 8900 8901 // Iterate over just the existing users of From. See the comments in 8902 // the ReplaceAllUsesWith above. 8903 SDNode::use_iterator UI = From.getNode()->use_begin(), 8904 UE = From.getNode()->use_end(); 8905 RAUWUpdateListener Listener(*this, UI, UE); 8906 while (UI != UE) { 8907 SDNode *User = *UI; 8908 bool UserRemovedFromCSEMaps = false; 8909 8910 // A user can appear in a use list multiple times, and when this 8911 // happens the uses are usually next to each other in the list. 8912 // To help reduce the number of CSE recomputations, process all 8913 // the uses of this user that we can find this way. 8914 do { 8915 SDUse &Use = UI.getUse(); 8916 8917 // Skip uses of different values from the same node. 8918 if (Use.getResNo() != From.getResNo()) { 8919 ++UI; 8920 continue; 8921 } 8922 8923 // If this node hasn't been modified yet, it's still in the CSE maps, 8924 // so remove its old self from the CSE maps. 8925 if (!UserRemovedFromCSEMaps) { 8926 RemoveNodeFromCSEMaps(User); 8927 UserRemovedFromCSEMaps = true; 8928 } 8929 8930 ++UI; 8931 Use.set(To); 8932 if (To->isDivergent() != From->isDivergent()) 8933 updateDivergence(User); 8934 } while (UI != UE && *UI == User); 8935 // We are iterating over all uses of the From node, so if a use 8936 // doesn't use the specific value, no changes are made. 8937 if (!UserRemovedFromCSEMaps) 8938 continue; 8939 8940 // Now that we have modified User, add it back to the CSE maps. If it 8941 // already exists there, recursively merge the results together. 8942 AddModifiedNodeToCSEMaps(User); 8943 } 8944 8945 // If we just RAUW'd the root, take note. 8946 if (From == getRoot()) 8947 setRoot(To); 8948 } 8949 8950 namespace { 8951 8952 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8953 /// to record information about a use. 8954 struct UseMemo { 8955 SDNode *User; 8956 unsigned Index; 8957 SDUse *Use; 8958 }; 8959 8960 /// operator< - Sort Memos by User. 8961 bool operator<(const UseMemo &L, const UseMemo &R) { 8962 return (intptr_t)L.User < (intptr_t)R.User; 8963 } 8964 8965 } // end anonymous namespace 8966 8967 bool SelectionDAG::calculateDivergence(SDNode *N) { 8968 if (TLI->isSDNodeAlwaysUniform(N)) { 8969 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8970 "Conflicting divergence information!"); 8971 return false; 8972 } 8973 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8974 return true; 8975 for (auto &Op : N->ops()) { 8976 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8977 return true; 8978 } 8979 return false; 8980 } 8981 8982 void SelectionDAG::updateDivergence(SDNode *N) { 8983 SmallVector<SDNode *, 16> Worklist(1, N); 8984 do { 8985 N = Worklist.pop_back_val(); 8986 bool IsDivergent = calculateDivergence(N); 8987 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8988 N->SDNodeBits.IsDivergent = IsDivergent; 8989 llvm::append_range(Worklist, N->uses()); 8990 } 8991 } while (!Worklist.empty()); 8992 } 8993 8994 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8995 DenseMap<SDNode *, unsigned> Degree; 8996 Order.reserve(AllNodes.size()); 8997 for (auto &N : allnodes()) { 8998 unsigned NOps = N.getNumOperands(); 8999 Degree[&N] = NOps; 9000 if (0 == NOps) 9001 Order.push_back(&N); 9002 } 9003 for (size_t I = 0; I != Order.size(); ++I) { 9004 SDNode *N = Order[I]; 9005 for (auto U : N->uses()) { 9006 unsigned &UnsortedOps = Degree[U]; 9007 if (0 == --UnsortedOps) 9008 Order.push_back(U); 9009 } 9010 } 9011 } 9012 9013 #ifndef NDEBUG 9014 void SelectionDAG::VerifyDAGDiverence() { 9015 std::vector<SDNode *> TopoOrder; 9016 CreateTopologicalOrder(TopoOrder); 9017 for (auto *N : TopoOrder) { 9018 assert(calculateDivergence(N) == N->isDivergent() && 9019 "Divergence bit inconsistency detected"); 9020 } 9021 } 9022 #endif 9023 9024 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9025 /// uses of other values produced by From.getNode() alone. The same value 9026 /// may appear in both the From and To list. The Deleted vector is 9027 /// handled the same way as for ReplaceAllUsesWith. 9028 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9029 const SDValue *To, 9030 unsigned Num){ 9031 // Handle the simple, trivial case efficiently. 9032 if (Num == 1) 9033 return ReplaceAllUsesOfValueWith(*From, *To); 9034 9035 transferDbgValues(*From, *To); 9036 9037 // Read up all the uses and make records of them. This helps 9038 // processing new uses that are introduced during the 9039 // replacement process. 9040 SmallVector<UseMemo, 4> Uses; 9041 for (unsigned i = 0; i != Num; ++i) { 9042 unsigned FromResNo = From[i].getResNo(); 9043 SDNode *FromNode = From[i].getNode(); 9044 for (SDNode::use_iterator UI = FromNode->use_begin(), 9045 E = FromNode->use_end(); UI != E; ++UI) { 9046 SDUse &Use = UI.getUse(); 9047 if (Use.getResNo() == FromResNo) { 9048 UseMemo Memo = { *UI, i, &Use }; 9049 Uses.push_back(Memo); 9050 } 9051 } 9052 } 9053 9054 // Sort the uses, so that all the uses from a given User are together. 9055 llvm::sort(Uses); 9056 9057 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9058 UseIndex != UseIndexEnd; ) { 9059 // We know that this user uses some value of From. If it is the right 9060 // value, update it. 9061 SDNode *User = Uses[UseIndex].User; 9062 9063 // This node is about to morph, remove its old self from the CSE maps. 9064 RemoveNodeFromCSEMaps(User); 9065 9066 // The Uses array is sorted, so all the uses for a given User 9067 // are next to each other in the list. 9068 // To help reduce the number of CSE recomputations, process all 9069 // the uses of this user that we can find this way. 9070 do { 9071 unsigned i = Uses[UseIndex].Index; 9072 SDUse &Use = *Uses[UseIndex].Use; 9073 ++UseIndex; 9074 9075 Use.set(To[i]); 9076 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9077 9078 // Now that we have modified User, add it back to the CSE maps. If it 9079 // already exists there, recursively merge the results together. 9080 AddModifiedNodeToCSEMaps(User); 9081 } 9082 } 9083 9084 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9085 /// based on their topological order. It returns the maximum id and a vector 9086 /// of the SDNodes* in assigned order by reference. 9087 unsigned SelectionDAG::AssignTopologicalOrder() { 9088 unsigned DAGSize = 0; 9089 9090 // SortedPos tracks the progress of the algorithm. Nodes before it are 9091 // sorted, nodes after it are unsorted. When the algorithm completes 9092 // it is at the end of the list. 9093 allnodes_iterator SortedPos = allnodes_begin(); 9094 9095 // Visit all the nodes. Move nodes with no operands to the front of 9096 // the list immediately. Annotate nodes that do have operands with their 9097 // operand count. Before we do this, the Node Id fields of the nodes 9098 // may contain arbitrary values. After, the Node Id fields for nodes 9099 // before SortedPos will contain the topological sort index, and the 9100 // Node Id fields for nodes At SortedPos and after will contain the 9101 // count of outstanding operands. 9102 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9103 SDNode *N = &*I++; 9104 checkForCycles(N, this); 9105 unsigned Degree = N->getNumOperands(); 9106 if (Degree == 0) { 9107 // A node with no uses, add it to the result array immediately. 9108 N->setNodeId(DAGSize++); 9109 allnodes_iterator Q(N); 9110 if (Q != SortedPos) 9111 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9112 assert(SortedPos != AllNodes.end() && "Overran node list"); 9113 ++SortedPos; 9114 } else { 9115 // Temporarily use the Node Id as scratch space for the degree count. 9116 N->setNodeId(Degree); 9117 } 9118 } 9119 9120 // Visit all the nodes. As we iterate, move nodes into sorted order, 9121 // such that by the time the end is reached all nodes will be sorted. 9122 for (SDNode &Node : allnodes()) { 9123 SDNode *N = &Node; 9124 checkForCycles(N, this); 9125 // N is in sorted position, so all its uses have one less operand 9126 // that needs to be sorted. 9127 for (SDNode *P : N->uses()) { 9128 unsigned Degree = P->getNodeId(); 9129 assert(Degree != 0 && "Invalid node degree"); 9130 --Degree; 9131 if (Degree == 0) { 9132 // All of P's operands are sorted, so P may sorted now. 9133 P->setNodeId(DAGSize++); 9134 if (P->getIterator() != SortedPos) 9135 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9136 assert(SortedPos != AllNodes.end() && "Overran node list"); 9137 ++SortedPos; 9138 } else { 9139 // Update P's outstanding operand count. 9140 P->setNodeId(Degree); 9141 } 9142 } 9143 if (Node.getIterator() == SortedPos) { 9144 #ifndef NDEBUG 9145 allnodes_iterator I(N); 9146 SDNode *S = &*++I; 9147 dbgs() << "Overran sorted position:\n"; 9148 S->dumprFull(this); dbgs() << "\n"; 9149 dbgs() << "Checking if this is due to cycles\n"; 9150 checkForCycles(this, true); 9151 #endif 9152 llvm_unreachable(nullptr); 9153 } 9154 } 9155 9156 assert(SortedPos == AllNodes.end() && 9157 "Topological sort incomplete!"); 9158 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9159 "First node in topological sort is not the entry token!"); 9160 assert(AllNodes.front().getNodeId() == 0 && 9161 "First node in topological sort has non-zero id!"); 9162 assert(AllNodes.front().getNumOperands() == 0 && 9163 "First node in topological sort has operands!"); 9164 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9165 "Last node in topologic sort has unexpected id!"); 9166 assert(AllNodes.back().use_empty() && 9167 "Last node in topologic sort has users!"); 9168 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9169 return DAGSize; 9170 } 9171 9172 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9173 /// value is produced by SD. 9174 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9175 for (SDNode *SD : DB->getSDNodes()) { 9176 if (!SD) 9177 continue; 9178 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9179 SD->setHasDebugValue(true); 9180 } 9181 DbgInfo->add(DB, isParameter); 9182 } 9183 9184 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9185 9186 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9187 SDValue NewMemOpChain) { 9188 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9189 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9190 // The new memory operation must have the same position as the old load in 9191 // terms of memory dependency. Create a TokenFactor for the old load and new 9192 // memory operation and update uses of the old load's output chain to use that 9193 // TokenFactor. 9194 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9195 return NewMemOpChain; 9196 9197 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9198 OldChain, NewMemOpChain); 9199 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9200 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9201 return TokenFactor; 9202 } 9203 9204 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9205 SDValue NewMemOp) { 9206 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9207 SDValue OldChain = SDValue(OldLoad, 1); 9208 SDValue NewMemOpChain = NewMemOp.getValue(1); 9209 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9210 } 9211 9212 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9213 Function **OutFunction) { 9214 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9215 9216 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9217 auto *Module = MF->getFunction().getParent(); 9218 auto *Function = Module->getFunction(Symbol); 9219 9220 if (OutFunction != nullptr) 9221 *OutFunction = Function; 9222 9223 if (Function != nullptr) { 9224 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9225 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9226 } 9227 9228 std::string ErrorStr; 9229 raw_string_ostream ErrorFormatter(ErrorStr); 9230 9231 ErrorFormatter << "Undefined external symbol "; 9232 ErrorFormatter << '"' << Symbol << '"'; 9233 ErrorFormatter.flush(); 9234 9235 report_fatal_error(ErrorStr); 9236 } 9237 9238 //===----------------------------------------------------------------------===// 9239 // SDNode Class 9240 //===----------------------------------------------------------------------===// 9241 9242 bool llvm::isNullConstant(SDValue V) { 9243 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9244 return Const != nullptr && Const->isNullValue(); 9245 } 9246 9247 bool llvm::isNullFPConstant(SDValue V) { 9248 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9249 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9250 } 9251 9252 bool llvm::isAllOnesConstant(SDValue V) { 9253 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9254 return Const != nullptr && Const->isAllOnesValue(); 9255 } 9256 9257 bool llvm::isOneConstant(SDValue V) { 9258 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9259 return Const != nullptr && Const->isOne(); 9260 } 9261 9262 SDValue llvm::peekThroughBitcasts(SDValue V) { 9263 while (V.getOpcode() == ISD::BITCAST) 9264 V = V.getOperand(0); 9265 return V; 9266 } 9267 9268 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9269 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9270 V = V.getOperand(0); 9271 return V; 9272 } 9273 9274 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9275 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9276 V = V.getOperand(0); 9277 return V; 9278 } 9279 9280 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9281 if (V.getOpcode() != ISD::XOR) 9282 return false; 9283 V = peekThroughBitcasts(V.getOperand(1)); 9284 unsigned NumBits = V.getScalarValueSizeInBits(); 9285 ConstantSDNode *C = 9286 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9287 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9288 } 9289 9290 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9291 bool AllowTruncation) { 9292 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9293 return CN; 9294 9295 // SplatVectors can truncate their operands. Ignore that case here unless 9296 // AllowTruncation is set. 9297 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9298 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9299 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9300 EVT CVT = CN->getValueType(0); 9301 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9302 if (AllowTruncation || CVT == VecEltVT) 9303 return CN; 9304 } 9305 } 9306 9307 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9308 BitVector UndefElements; 9309 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9310 9311 // BuildVectors can truncate their operands. Ignore that case here unless 9312 // AllowTruncation is set. 9313 if (CN && (UndefElements.none() || AllowUndefs)) { 9314 EVT CVT = CN->getValueType(0); 9315 EVT NSVT = N.getValueType().getScalarType(); 9316 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9317 if (AllowTruncation || (CVT == NSVT)) 9318 return CN; 9319 } 9320 } 9321 9322 return nullptr; 9323 } 9324 9325 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9326 bool AllowUndefs, 9327 bool AllowTruncation) { 9328 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9329 return CN; 9330 9331 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9332 BitVector UndefElements; 9333 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9334 9335 // BuildVectors can truncate their operands. Ignore that case here unless 9336 // AllowTruncation is set. 9337 if (CN && (UndefElements.none() || AllowUndefs)) { 9338 EVT CVT = CN->getValueType(0); 9339 EVT NSVT = N.getValueType().getScalarType(); 9340 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9341 if (AllowTruncation || (CVT == NSVT)) 9342 return CN; 9343 } 9344 } 9345 9346 return nullptr; 9347 } 9348 9349 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9350 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9351 return CN; 9352 9353 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9354 BitVector UndefElements; 9355 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9356 if (CN && (UndefElements.none() || AllowUndefs)) 9357 return CN; 9358 } 9359 9360 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9361 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9362 return CN; 9363 9364 return nullptr; 9365 } 9366 9367 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9368 const APInt &DemandedElts, 9369 bool AllowUndefs) { 9370 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9371 return CN; 9372 9373 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9374 BitVector UndefElements; 9375 ConstantFPSDNode *CN = 9376 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9377 if (CN && (UndefElements.none() || AllowUndefs)) 9378 return CN; 9379 } 9380 9381 return nullptr; 9382 } 9383 9384 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9385 // TODO: may want to use peekThroughBitcast() here. 9386 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9387 return C && C->isNullValue(); 9388 } 9389 9390 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 9391 // TODO: may want to use peekThroughBitcast() here. 9392 unsigned BitWidth = N.getScalarValueSizeInBits(); 9393 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9394 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9395 } 9396 9397 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 9398 N = peekThroughBitcasts(N); 9399 unsigned BitWidth = N.getScalarValueSizeInBits(); 9400 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9401 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9402 } 9403 9404 HandleSDNode::~HandleSDNode() { 9405 DropOperands(); 9406 } 9407 9408 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9409 const DebugLoc &DL, 9410 const GlobalValue *GA, EVT VT, 9411 int64_t o, unsigned TF) 9412 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9413 TheGlobal = GA; 9414 } 9415 9416 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9417 EVT VT, unsigned SrcAS, 9418 unsigned DestAS) 9419 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9420 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9421 9422 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9423 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9424 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9425 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9426 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9427 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9428 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9429 9430 // We check here that the size of the memory operand fits within the size of 9431 // the MMO. This is because the MMO might indicate only a possible address 9432 // range instead of specifying the affected memory addresses precisely. 9433 // TODO: Make MachineMemOperands aware of scalable vectors. 9434 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9435 "Size mismatch!"); 9436 } 9437 9438 /// Profile - Gather unique data for the node. 9439 /// 9440 void SDNode::Profile(FoldingSetNodeID &ID) const { 9441 AddNodeIDNode(ID, this); 9442 } 9443 9444 namespace { 9445 9446 struct EVTArray { 9447 std::vector<EVT> VTs; 9448 9449 EVTArray() { 9450 VTs.reserve(MVT::LAST_VALUETYPE); 9451 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9452 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9453 } 9454 }; 9455 9456 } // end anonymous namespace 9457 9458 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9459 static ManagedStatic<EVTArray> SimpleVTArray; 9460 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9461 9462 /// getValueTypeList - Return a pointer to the specified value type. 9463 /// 9464 const EVT *SDNode::getValueTypeList(EVT VT) { 9465 if (VT.isExtended()) { 9466 sys::SmartScopedLock<true> Lock(*VTMutex); 9467 return &(*EVTs->insert(VT).first); 9468 } else { 9469 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9470 "Value type out of range!"); 9471 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9472 } 9473 } 9474 9475 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9476 /// indicated value. This method ignores uses of other values defined by this 9477 /// operation. 9478 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9479 assert(Value < getNumValues() && "Bad value!"); 9480 9481 // TODO: Only iterate over uses of a given value of the node 9482 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9483 if (UI.getUse().getResNo() == Value) { 9484 if (NUses == 0) 9485 return false; 9486 --NUses; 9487 } 9488 } 9489 9490 // Found exactly the right number of uses? 9491 return NUses == 0; 9492 } 9493 9494 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9495 /// value. This method ignores uses of other values defined by this operation. 9496 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9497 assert(Value < getNumValues() && "Bad value!"); 9498 9499 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9500 if (UI.getUse().getResNo() == Value) 9501 return true; 9502 9503 return false; 9504 } 9505 9506 /// isOnlyUserOf - Return true if this node is the only use of N. 9507 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9508 bool Seen = false; 9509 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9510 SDNode *User = *I; 9511 if (User == this) 9512 Seen = true; 9513 else 9514 return false; 9515 } 9516 9517 return Seen; 9518 } 9519 9520 /// Return true if the only users of N are contained in Nodes. 9521 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9522 bool Seen = false; 9523 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9524 SDNode *User = *I; 9525 if (llvm::is_contained(Nodes, User)) 9526 Seen = true; 9527 else 9528 return false; 9529 } 9530 9531 return Seen; 9532 } 9533 9534 /// isOperand - Return true if this node is an operand of N. 9535 bool SDValue::isOperandOf(const SDNode *N) const { 9536 return is_contained(N->op_values(), *this); 9537 } 9538 9539 bool SDNode::isOperandOf(const SDNode *N) const { 9540 return any_of(N->op_values(), 9541 [this](SDValue Op) { return this == Op.getNode(); }); 9542 } 9543 9544 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9545 /// be a chain) reaches the specified operand without crossing any 9546 /// side-effecting instructions on any chain path. In practice, this looks 9547 /// through token factors and non-volatile loads. In order to remain efficient, 9548 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9549 /// 9550 /// Note that we only need to examine chains when we're searching for 9551 /// side-effects; SelectionDAG requires that all side-effects are represented 9552 /// by chains, even if another operand would force a specific ordering. This 9553 /// constraint is necessary to allow transformations like splitting loads. 9554 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9555 unsigned Depth) const { 9556 if (*this == Dest) return true; 9557 9558 // Don't search too deeply, we just want to be able to see through 9559 // TokenFactor's etc. 9560 if (Depth == 0) return false; 9561 9562 // If this is a token factor, all inputs to the TF happen in parallel. 9563 if (getOpcode() == ISD::TokenFactor) { 9564 // First, try a shallow search. 9565 if (is_contained((*this)->ops(), Dest)) { 9566 // We found the chain we want as an operand of this TokenFactor. 9567 // Essentially, we reach the chain without side-effects if we could 9568 // serialize the TokenFactor into a simple chain of operations with 9569 // Dest as the last operation. This is automatically true if the 9570 // chain has one use: there are no other ordering constraints. 9571 // If the chain has more than one use, we give up: some other 9572 // use of Dest might force a side-effect between Dest and the current 9573 // node. 9574 if (Dest.hasOneUse()) 9575 return true; 9576 } 9577 // Next, try a deep search: check whether every operand of the TokenFactor 9578 // reaches Dest. 9579 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9580 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9581 }); 9582 } 9583 9584 // Loads don't have side effects, look through them. 9585 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9586 if (Ld->isUnordered()) 9587 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9588 } 9589 return false; 9590 } 9591 9592 bool SDNode::hasPredecessor(const SDNode *N) const { 9593 SmallPtrSet<const SDNode *, 32> Visited; 9594 SmallVector<const SDNode *, 16> Worklist; 9595 Worklist.push_back(this); 9596 return hasPredecessorHelper(N, Visited, Worklist); 9597 } 9598 9599 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9600 this->Flags.intersectWith(Flags); 9601 } 9602 9603 SDValue 9604 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9605 ArrayRef<ISD::NodeType> CandidateBinOps, 9606 bool AllowPartials) { 9607 // The pattern must end in an extract from index 0. 9608 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9609 !isNullConstant(Extract->getOperand(1))) 9610 return SDValue(); 9611 9612 // Match against one of the candidate binary ops. 9613 SDValue Op = Extract->getOperand(0); 9614 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9615 return Op.getOpcode() == unsigned(BinOp); 9616 })) 9617 return SDValue(); 9618 9619 // Floating-point reductions may require relaxed constraints on the final step 9620 // of the reduction because they may reorder intermediate operations. 9621 unsigned CandidateBinOp = Op.getOpcode(); 9622 if (Op.getValueType().isFloatingPoint()) { 9623 SDNodeFlags Flags = Op->getFlags(); 9624 switch (CandidateBinOp) { 9625 case ISD::FADD: 9626 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9627 return SDValue(); 9628 break; 9629 default: 9630 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9631 } 9632 } 9633 9634 // Matching failed - attempt to see if we did enough stages that a partial 9635 // reduction from a subvector is possible. 9636 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9637 if (!AllowPartials || !Op) 9638 return SDValue(); 9639 EVT OpVT = Op.getValueType(); 9640 EVT OpSVT = OpVT.getScalarType(); 9641 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9642 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9643 return SDValue(); 9644 BinOp = (ISD::NodeType)CandidateBinOp; 9645 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9646 getVectorIdxConstant(0, SDLoc(Op))); 9647 }; 9648 9649 // At each stage, we're looking for something that looks like: 9650 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9651 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9652 // i32 undef, i32 undef, i32 undef, i32 undef> 9653 // %a = binop <8 x i32> %op, %s 9654 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9655 // we expect something like: 9656 // <4,5,6,7,u,u,u,u> 9657 // <2,3,u,u,u,u,u,u> 9658 // <1,u,u,u,u,u,u,u> 9659 // While a partial reduction match would be: 9660 // <2,3,u,u,u,u,u,u> 9661 // <1,u,u,u,u,u,u,u> 9662 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9663 SDValue PrevOp; 9664 for (unsigned i = 0; i < Stages; ++i) { 9665 unsigned MaskEnd = (1 << i); 9666 9667 if (Op.getOpcode() != CandidateBinOp) 9668 return PartialReduction(PrevOp, MaskEnd); 9669 9670 SDValue Op0 = Op.getOperand(0); 9671 SDValue Op1 = Op.getOperand(1); 9672 9673 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9674 if (Shuffle) { 9675 Op = Op1; 9676 } else { 9677 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9678 Op = Op0; 9679 } 9680 9681 // The first operand of the shuffle should be the same as the other operand 9682 // of the binop. 9683 if (!Shuffle || Shuffle->getOperand(0) != Op) 9684 return PartialReduction(PrevOp, MaskEnd); 9685 9686 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9687 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9688 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9689 return PartialReduction(PrevOp, MaskEnd); 9690 9691 PrevOp = Op; 9692 } 9693 9694 // Handle subvector reductions, which tend to appear after the shuffle 9695 // reduction stages. 9696 while (Op.getOpcode() == CandidateBinOp) { 9697 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9698 SDValue Op0 = Op.getOperand(0); 9699 SDValue Op1 = Op.getOperand(1); 9700 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9701 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9702 Op0.getOperand(0) != Op1.getOperand(0)) 9703 break; 9704 SDValue Src = Op0.getOperand(0); 9705 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9706 if (NumSrcElts != (2 * NumElts)) 9707 break; 9708 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9709 Op1.getConstantOperandAPInt(1) == NumElts) && 9710 !(Op1.getConstantOperandAPInt(1) == 0 && 9711 Op0.getConstantOperandAPInt(1) == NumElts)) 9712 break; 9713 Op = Src; 9714 } 9715 9716 BinOp = (ISD::NodeType)CandidateBinOp; 9717 return Op; 9718 } 9719 9720 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9721 assert(N->getNumValues() == 1 && 9722 "Can't unroll a vector with multiple results!"); 9723 9724 EVT VT = N->getValueType(0); 9725 unsigned NE = VT.getVectorNumElements(); 9726 EVT EltVT = VT.getVectorElementType(); 9727 SDLoc dl(N); 9728 9729 SmallVector<SDValue, 8> Scalars; 9730 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9731 9732 // If ResNE is 0, fully unroll the vector op. 9733 if (ResNE == 0) 9734 ResNE = NE; 9735 else if (NE > ResNE) 9736 NE = ResNE; 9737 9738 unsigned i; 9739 for (i= 0; i != NE; ++i) { 9740 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9741 SDValue Operand = N->getOperand(j); 9742 EVT OperandVT = Operand.getValueType(); 9743 if (OperandVT.isVector()) { 9744 // A vector operand; extract a single element. 9745 EVT OperandEltVT = OperandVT.getVectorElementType(); 9746 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9747 Operand, getVectorIdxConstant(i, dl)); 9748 } else { 9749 // A scalar operand; just use it as is. 9750 Operands[j] = Operand; 9751 } 9752 } 9753 9754 switch (N->getOpcode()) { 9755 default: { 9756 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9757 N->getFlags())); 9758 break; 9759 } 9760 case ISD::VSELECT: 9761 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9762 break; 9763 case ISD::SHL: 9764 case ISD::SRA: 9765 case ISD::SRL: 9766 case ISD::ROTL: 9767 case ISD::ROTR: 9768 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9769 getShiftAmountOperand(Operands[0].getValueType(), 9770 Operands[1]))); 9771 break; 9772 case ISD::SIGN_EXTEND_INREG: { 9773 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9774 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9775 Operands[0], 9776 getValueType(ExtVT))); 9777 } 9778 } 9779 } 9780 9781 for (; i < ResNE; ++i) 9782 Scalars.push_back(getUNDEF(EltVT)); 9783 9784 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9785 return getBuildVector(VecVT, dl, Scalars); 9786 } 9787 9788 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9789 SDNode *N, unsigned ResNE) { 9790 unsigned Opcode = N->getOpcode(); 9791 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9792 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9793 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9794 "Expected an overflow opcode"); 9795 9796 EVT ResVT = N->getValueType(0); 9797 EVT OvVT = N->getValueType(1); 9798 EVT ResEltVT = ResVT.getVectorElementType(); 9799 EVT OvEltVT = OvVT.getVectorElementType(); 9800 SDLoc dl(N); 9801 9802 // If ResNE is 0, fully unroll the vector op. 9803 unsigned NE = ResVT.getVectorNumElements(); 9804 if (ResNE == 0) 9805 ResNE = NE; 9806 else if (NE > ResNE) 9807 NE = ResNE; 9808 9809 SmallVector<SDValue, 8> LHSScalars; 9810 SmallVector<SDValue, 8> RHSScalars; 9811 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9812 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9813 9814 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9815 SDVTList VTs = getVTList(ResEltVT, SVT); 9816 SmallVector<SDValue, 8> ResScalars; 9817 SmallVector<SDValue, 8> OvScalars; 9818 for (unsigned i = 0; i < NE; ++i) { 9819 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9820 SDValue Ov = 9821 getSelect(dl, OvEltVT, Res.getValue(1), 9822 getBoolConstant(true, dl, OvEltVT, ResVT), 9823 getConstant(0, dl, OvEltVT)); 9824 9825 ResScalars.push_back(Res); 9826 OvScalars.push_back(Ov); 9827 } 9828 9829 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9830 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9831 9832 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9833 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9834 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9835 getBuildVector(NewOvVT, dl, OvScalars)); 9836 } 9837 9838 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9839 LoadSDNode *Base, 9840 unsigned Bytes, 9841 int Dist) const { 9842 if (LD->isVolatile() || Base->isVolatile()) 9843 return false; 9844 // TODO: probably too restrictive for atomics, revisit 9845 if (!LD->isSimple()) 9846 return false; 9847 if (LD->isIndexed() || Base->isIndexed()) 9848 return false; 9849 if (LD->getChain() != Base->getChain()) 9850 return false; 9851 EVT VT = LD->getValueType(0); 9852 if (VT.getSizeInBits() / 8 != Bytes) 9853 return false; 9854 9855 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9856 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9857 9858 int64_t Offset = 0; 9859 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9860 return (Dist * Bytes == Offset); 9861 return false; 9862 } 9863 9864 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9865 /// if it cannot be inferred. 9866 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9867 // If this is a GlobalAddress + cst, return the alignment. 9868 const GlobalValue *GV = nullptr; 9869 int64_t GVOffset = 0; 9870 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9871 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9872 KnownBits Known(PtrWidth); 9873 llvm::computeKnownBits(GV, Known, getDataLayout()); 9874 unsigned AlignBits = Known.countMinTrailingZeros(); 9875 if (AlignBits) 9876 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9877 } 9878 9879 // If this is a direct reference to a stack slot, use information about the 9880 // stack slot's alignment. 9881 int FrameIdx = INT_MIN; 9882 int64_t FrameOffset = 0; 9883 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9884 FrameIdx = FI->getIndex(); 9885 } else if (isBaseWithConstantOffset(Ptr) && 9886 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9887 // Handle FI+Cst 9888 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9889 FrameOffset = Ptr.getConstantOperandVal(1); 9890 } 9891 9892 if (FrameIdx != INT_MIN) { 9893 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9894 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9895 } 9896 9897 return None; 9898 } 9899 9900 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9901 /// which is split (or expanded) into two not necessarily identical pieces. 9902 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9903 // Currently all types are split in half. 9904 EVT LoVT, HiVT; 9905 if (!VT.isVector()) 9906 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9907 else 9908 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9909 9910 return std::make_pair(LoVT, HiVT); 9911 } 9912 9913 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9914 /// type, dependent on an enveloping VT that has been split into two identical 9915 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9916 std::pair<EVT, EVT> 9917 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9918 bool *HiIsEmpty) const { 9919 EVT EltTp = VT.getVectorElementType(); 9920 // Examples: 9921 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9922 // custom VL=9 with enveloping VL=8/8 yields 8/1 9923 // custom VL=10 with enveloping VL=8/8 yields 8/2 9924 // etc. 9925 ElementCount VTNumElts = VT.getVectorElementCount(); 9926 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9927 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9928 "Mixing fixed width and scalable vectors when enveloping a type"); 9929 EVT LoVT, HiVT; 9930 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9931 LoVT = EnvVT; 9932 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9933 *HiIsEmpty = false; 9934 } else { 9935 // Flag that hi type has zero storage size, but return split envelop type 9936 // (this would be easier if vector types with zero elements were allowed). 9937 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9938 HiVT = EnvVT; 9939 *HiIsEmpty = true; 9940 } 9941 return std::make_pair(LoVT, HiVT); 9942 } 9943 9944 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9945 /// low/high part. 9946 std::pair<SDValue, SDValue> 9947 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9948 const EVT &HiVT) { 9949 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9950 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9951 "Splitting vector with an invalid mixture of fixed and scalable " 9952 "vector types"); 9953 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9954 N.getValueType().getVectorMinNumElements() && 9955 "More vector elements requested than available!"); 9956 SDValue Lo, Hi; 9957 Lo = 9958 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9959 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9960 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9961 // IDX with the runtime scaling factor of the result vector type. For 9962 // fixed-width result vectors, that runtime scaling factor is 1. 9963 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9964 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9965 return std::make_pair(Lo, Hi); 9966 } 9967 9968 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9969 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9970 EVT VT = N.getValueType(); 9971 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9972 NextPowerOf2(VT.getVectorNumElements())); 9973 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9974 getVectorIdxConstant(0, DL)); 9975 } 9976 9977 void SelectionDAG::ExtractVectorElements(SDValue Op, 9978 SmallVectorImpl<SDValue> &Args, 9979 unsigned Start, unsigned Count, 9980 EVT EltVT) { 9981 EVT VT = Op.getValueType(); 9982 if (Count == 0) 9983 Count = VT.getVectorNumElements(); 9984 if (EltVT == EVT()) 9985 EltVT = VT.getVectorElementType(); 9986 SDLoc SL(Op); 9987 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9988 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9989 getVectorIdxConstant(i, SL))); 9990 } 9991 } 9992 9993 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9994 unsigned GlobalAddressSDNode::getAddressSpace() const { 9995 return getGlobal()->getType()->getAddressSpace(); 9996 } 9997 9998 Type *ConstantPoolSDNode::getType() const { 9999 if (isMachineConstantPoolEntry()) 10000 return Val.MachineCPVal->getType(); 10001 return Val.ConstVal->getType(); 10002 } 10003 10004 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10005 unsigned &SplatBitSize, 10006 bool &HasAnyUndefs, 10007 unsigned MinSplatBits, 10008 bool IsBigEndian) const { 10009 EVT VT = getValueType(0); 10010 assert(VT.isVector() && "Expected a vector type"); 10011 unsigned VecWidth = VT.getSizeInBits(); 10012 if (MinSplatBits > VecWidth) 10013 return false; 10014 10015 // FIXME: The widths are based on this node's type, but build vectors can 10016 // truncate their operands. 10017 SplatValue = APInt(VecWidth, 0); 10018 SplatUndef = APInt(VecWidth, 0); 10019 10020 // Get the bits. Bits with undefined values (when the corresponding element 10021 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10022 // in SplatValue. If any of the values are not constant, give up and return 10023 // false. 10024 unsigned int NumOps = getNumOperands(); 10025 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10026 unsigned EltWidth = VT.getScalarSizeInBits(); 10027 10028 for (unsigned j = 0; j < NumOps; ++j) { 10029 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10030 SDValue OpVal = getOperand(i); 10031 unsigned BitPos = j * EltWidth; 10032 10033 if (OpVal.isUndef()) 10034 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10035 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10036 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10037 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10038 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10039 else 10040 return false; 10041 } 10042 10043 // The build_vector is all constants or undefs. Find the smallest element 10044 // size that splats the vector. 10045 HasAnyUndefs = (SplatUndef != 0); 10046 10047 // FIXME: This does not work for vectors with elements less than 8 bits. 10048 while (VecWidth > 8) { 10049 unsigned HalfSize = VecWidth / 2; 10050 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 10051 APInt LowValue = SplatValue.trunc(HalfSize); 10052 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 10053 APInt LowUndef = SplatUndef.trunc(HalfSize); 10054 10055 // If the two halves do not match (ignoring undef bits), stop here. 10056 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10057 MinSplatBits > HalfSize) 10058 break; 10059 10060 SplatValue = HighValue | LowValue; 10061 SplatUndef = HighUndef & LowUndef; 10062 10063 VecWidth = HalfSize; 10064 } 10065 10066 SplatBitSize = VecWidth; 10067 return true; 10068 } 10069 10070 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10071 BitVector *UndefElements) const { 10072 unsigned NumOps = getNumOperands(); 10073 if (UndefElements) { 10074 UndefElements->clear(); 10075 UndefElements->resize(NumOps); 10076 } 10077 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10078 if (!DemandedElts) 10079 return SDValue(); 10080 SDValue Splatted; 10081 for (unsigned i = 0; i != NumOps; ++i) { 10082 if (!DemandedElts[i]) 10083 continue; 10084 SDValue Op = getOperand(i); 10085 if (Op.isUndef()) { 10086 if (UndefElements) 10087 (*UndefElements)[i] = true; 10088 } else if (!Splatted) { 10089 Splatted = Op; 10090 } else if (Splatted != Op) { 10091 return SDValue(); 10092 } 10093 } 10094 10095 if (!Splatted) { 10096 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10097 assert(getOperand(FirstDemandedIdx).isUndef() && 10098 "Can only have a splat without a constant for all undefs."); 10099 return getOperand(FirstDemandedIdx); 10100 } 10101 10102 return Splatted; 10103 } 10104 10105 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10106 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10107 return getSplatValue(DemandedElts, UndefElements); 10108 } 10109 10110 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10111 SmallVectorImpl<SDValue> &Sequence, 10112 BitVector *UndefElements) const { 10113 unsigned NumOps = getNumOperands(); 10114 Sequence.clear(); 10115 if (UndefElements) { 10116 UndefElements->clear(); 10117 UndefElements->resize(NumOps); 10118 } 10119 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10120 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10121 return false; 10122 10123 // Set the undefs even if we don't find a sequence (like getSplatValue). 10124 if (UndefElements) 10125 for (unsigned I = 0; I != NumOps; ++I) 10126 if (DemandedElts[I] && getOperand(I).isUndef()) 10127 (*UndefElements)[I] = true; 10128 10129 // Iteratively widen the sequence length looking for repetitions. 10130 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10131 Sequence.append(SeqLen, SDValue()); 10132 for (unsigned I = 0; I != NumOps; ++I) { 10133 if (!DemandedElts[I]) 10134 continue; 10135 SDValue &SeqOp = Sequence[I % SeqLen]; 10136 SDValue Op = getOperand(I); 10137 if (Op.isUndef()) { 10138 if (!SeqOp) 10139 SeqOp = Op; 10140 continue; 10141 } 10142 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10143 Sequence.clear(); 10144 break; 10145 } 10146 SeqOp = Op; 10147 } 10148 if (!Sequence.empty()) 10149 return true; 10150 } 10151 10152 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10153 return false; 10154 } 10155 10156 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10157 BitVector *UndefElements) const { 10158 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10159 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10160 } 10161 10162 ConstantSDNode * 10163 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10164 BitVector *UndefElements) const { 10165 return dyn_cast_or_null<ConstantSDNode>( 10166 getSplatValue(DemandedElts, UndefElements)); 10167 } 10168 10169 ConstantSDNode * 10170 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10171 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10172 } 10173 10174 ConstantFPSDNode * 10175 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10176 BitVector *UndefElements) const { 10177 return dyn_cast_or_null<ConstantFPSDNode>( 10178 getSplatValue(DemandedElts, UndefElements)); 10179 } 10180 10181 ConstantFPSDNode * 10182 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10183 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10184 } 10185 10186 int32_t 10187 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10188 uint32_t BitWidth) const { 10189 if (ConstantFPSDNode *CN = 10190 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10191 bool IsExact; 10192 APSInt IntVal(BitWidth); 10193 const APFloat &APF = CN->getValueAPF(); 10194 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10195 APFloat::opOK || 10196 !IsExact) 10197 return -1; 10198 10199 return IntVal.exactLogBase2(); 10200 } 10201 return -1; 10202 } 10203 10204 bool BuildVectorSDNode::isConstant() const { 10205 for (const SDValue &Op : op_values()) { 10206 unsigned Opc = Op.getOpcode(); 10207 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10208 return false; 10209 } 10210 return true; 10211 } 10212 10213 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10214 // Find the first non-undef value in the shuffle mask. 10215 unsigned i, e; 10216 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10217 /* search */; 10218 10219 // If all elements are undefined, this shuffle can be considered a splat 10220 // (although it should eventually get simplified away completely). 10221 if (i == e) 10222 return true; 10223 10224 // Make sure all remaining elements are either undef or the same as the first 10225 // non-undef value. 10226 for (int Idx = Mask[i]; i != e; ++i) 10227 if (Mask[i] >= 0 && Mask[i] != Idx) 10228 return false; 10229 return true; 10230 } 10231 10232 // Returns the SDNode if it is a constant integer BuildVector 10233 // or constant integer. 10234 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10235 if (isa<ConstantSDNode>(N)) 10236 return N.getNode(); 10237 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10238 return N.getNode(); 10239 // Treat a GlobalAddress supporting constant offset folding as a 10240 // constant integer. 10241 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10242 if (GA->getOpcode() == ISD::GlobalAddress && 10243 TLI->isOffsetFoldingLegal(GA)) 10244 return GA; 10245 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10246 isa<ConstantSDNode>(N.getOperand(0))) 10247 return N.getNode(); 10248 return nullptr; 10249 } 10250 10251 // Returns the SDNode if it is a constant float BuildVector 10252 // or constant float. 10253 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10254 if (isa<ConstantFPSDNode>(N)) 10255 return N.getNode(); 10256 10257 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10258 return N.getNode(); 10259 10260 return nullptr; 10261 } 10262 10263 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10264 assert(!Node->OperandList && "Node already has operands"); 10265 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10266 "too many operands to fit into SDNode"); 10267 SDUse *Ops = OperandRecycler.allocate( 10268 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10269 10270 bool IsDivergent = false; 10271 for (unsigned I = 0; I != Vals.size(); ++I) { 10272 Ops[I].setUser(Node); 10273 Ops[I].setInitial(Vals[I]); 10274 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10275 IsDivergent |= Ops[I].getNode()->isDivergent(); 10276 } 10277 Node->NumOperands = Vals.size(); 10278 Node->OperandList = Ops; 10279 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10280 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10281 Node->SDNodeBits.IsDivergent = IsDivergent; 10282 } 10283 checkForCycles(Node); 10284 } 10285 10286 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10287 SmallVectorImpl<SDValue> &Vals) { 10288 size_t Limit = SDNode::getMaxNumOperands(); 10289 while (Vals.size() > Limit) { 10290 unsigned SliceIdx = Vals.size() - Limit; 10291 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10292 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10293 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10294 Vals.emplace_back(NewTF); 10295 } 10296 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10297 } 10298 10299 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10300 EVT VT, SDNodeFlags Flags) { 10301 switch (Opcode) { 10302 default: 10303 return SDValue(); 10304 case ISD::ADD: 10305 case ISD::OR: 10306 case ISD::XOR: 10307 case ISD::UMAX: 10308 return getConstant(0, DL, VT); 10309 case ISD::MUL: 10310 return getConstant(1, DL, VT); 10311 case ISD::AND: 10312 case ISD::UMIN: 10313 return getAllOnesConstant(DL, VT); 10314 case ISD::SMAX: 10315 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10316 case ISD::SMIN: 10317 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10318 case ISD::FADD: 10319 return getConstantFP(-0.0, DL, VT); 10320 case ISD::FMUL: 10321 return getConstantFP(1.0, DL, VT); 10322 case ISD::FMINNUM: 10323 case ISD::FMAXNUM: { 10324 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10325 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10326 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10327 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10328 APFloat::getLargest(Semantics); 10329 if (Opcode == ISD::FMAXNUM) 10330 NeutralAF.changeSign(); 10331 10332 return getConstantFP(NeutralAF, DL, VT); 10333 } 10334 } 10335 } 10336 10337 #ifndef NDEBUG 10338 static void checkForCyclesHelper(const SDNode *N, 10339 SmallPtrSetImpl<const SDNode*> &Visited, 10340 SmallPtrSetImpl<const SDNode*> &Checked, 10341 const llvm::SelectionDAG *DAG) { 10342 // If this node has already been checked, don't check it again. 10343 if (Checked.count(N)) 10344 return; 10345 10346 // If a node has already been visited on this depth-first walk, reject it as 10347 // a cycle. 10348 if (!Visited.insert(N).second) { 10349 errs() << "Detected cycle in SelectionDAG\n"; 10350 dbgs() << "Offending node:\n"; 10351 N->dumprFull(DAG); dbgs() << "\n"; 10352 abort(); 10353 } 10354 10355 for (const SDValue &Op : N->op_values()) 10356 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10357 10358 Checked.insert(N); 10359 Visited.erase(N); 10360 } 10361 #endif 10362 10363 void llvm::checkForCycles(const llvm::SDNode *N, 10364 const llvm::SelectionDAG *DAG, 10365 bool force) { 10366 #ifndef NDEBUG 10367 bool check = force; 10368 #ifdef EXPENSIVE_CHECKS 10369 check = true; 10370 #endif // EXPENSIVE_CHECKS 10371 if (check) { 10372 assert(N && "Checking nonexistent SDNode"); 10373 SmallPtrSet<const SDNode*, 32> visited; 10374 SmallPtrSet<const SDNode*, 32> checked; 10375 checkForCyclesHelper(N, visited, checked, DAG); 10376 } 10377 #endif // !NDEBUG 10378 } 10379 10380 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10381 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10382 } 10383