1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/RuntimeLibcalls.h" 36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/KnownBits.h" 60 #include "llvm/Support/MachineValueType.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 93 cl::Hidden, cl::init(true), 94 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 95 96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 97 cl::desc("Number limit for gluing ld/st of memcpy."), 98 cl::Hidden, cl::init(0)); 99 100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 101 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 102 } 103 104 //===----------------------------------------------------------------------===// 105 // ConstantFPSDNode Class 106 //===----------------------------------------------------------------------===// 107 108 /// isExactlyValue - We don't rely on operator== working on double values, as 109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 110 /// As such, this method can be used to do an exact bit-for-bit comparison of 111 /// two floating point values. 112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 113 return getValueAPF().bitwiseIsEqual(V); 114 } 115 116 bool ConstantFPSDNode::isValueValidForType(EVT VT, 117 const APFloat& Val) { 118 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 119 120 // convert modifies in place, so make a copy. 121 APFloat Val2 = APFloat(Val); 122 bool losesInfo; 123 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 124 APFloat::rmNearestTiesToEven, 125 &losesInfo); 126 return !losesInfo; 127 } 128 129 //===----------------------------------------------------------------------===// 130 // ISD Namespace 131 //===----------------------------------------------------------------------===// 132 133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 134 auto *BV = dyn_cast<BuildVectorSDNode>(N); 135 if (!BV) 136 return false; 137 138 APInt SplatUndef; 139 unsigned SplatBitSize; 140 bool HasUndefs; 141 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 142 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 143 EltSize) && 144 EltSize == SplatBitSize; 145 } 146 147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 148 // specializations of the more general isConstantSplatVector()? 149 150 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 151 // Look through a bit convert. 152 while (N->getOpcode() == ISD::BITCAST) 153 N = N->getOperand(0).getNode(); 154 155 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 156 157 unsigned i = 0, e = N->getNumOperands(); 158 159 // Skip over all of the undef values. 160 while (i != e && N->getOperand(i).isUndef()) 161 ++i; 162 163 // Do not accept an all-undef vector. 164 if (i == e) return false; 165 166 // Do not accept build_vectors that aren't all constants or which have non-~0 167 // elements. We have to be a bit careful here, as the type of the constant 168 // may not be the same as the type of the vector elements due to type 169 // legalization (the elements are promoted to a legal type for the target and 170 // a vector of a type may be legal when the base element type is not). 171 // We only want to check enough bits to cover the vector elements, because 172 // we care if the resultant vector is all ones, not whether the individual 173 // constants are. 174 SDValue NotZero = N->getOperand(i); 175 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 176 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 177 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 178 return false; 179 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 180 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 181 return false; 182 } else 183 return false; 184 185 // Okay, we have at least one ~0 value, check to see if the rest match or are 186 // undefs. Even with the above element type twiddling, this should be OK, as 187 // the same type legalization should have applied to all the elements. 188 for (++i; i != e; ++i) 189 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 190 return false; 191 return true; 192 } 193 194 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 195 // Look through a bit convert. 196 while (N->getOpcode() == ISD::BITCAST) 197 N = N->getOperand(0).getNode(); 198 199 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 200 201 bool IsAllUndef = true; 202 for (const SDValue &Op : N->op_values()) { 203 if (Op.isUndef()) 204 continue; 205 IsAllUndef = false; 206 // Do not accept build_vectors that aren't all constants or which have non-0 207 // elements. We have to be a bit careful here, as the type of the constant 208 // may not be the same as the type of the vector elements due to type 209 // legalization (the elements are promoted to a legal type for the target 210 // and a vector of a type may be legal when the base element type is not). 211 // We only want to check enough bits to cover the vector elements, because 212 // we care if the resultant vector is all zeros, not whether the individual 213 // constants are. 214 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 215 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 216 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 217 return false; 218 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 219 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 220 return false; 221 } else 222 return false; 223 } 224 225 // Do not accept an all-undef vector. 226 if (IsAllUndef) 227 return false; 228 return true; 229 } 230 231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 232 if (N->getOpcode() != ISD::BUILD_VECTOR) 233 return false; 234 235 for (const SDValue &Op : N->op_values()) { 236 if (Op.isUndef()) 237 continue; 238 if (!isa<ConstantSDNode>(Op)) 239 return false; 240 } 241 return true; 242 } 243 244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 245 if (N->getOpcode() != ISD::BUILD_VECTOR) 246 return false; 247 248 for (const SDValue &Op : N->op_values()) { 249 if (Op.isUndef()) 250 continue; 251 if (!isa<ConstantFPSDNode>(Op)) 252 return false; 253 } 254 return true; 255 } 256 257 bool ISD::allOperandsUndef(const SDNode *N) { 258 // Return false if the node has no operands. 259 // This is "logically inconsistent" with the definition of "all" but 260 // is probably the desired behavior. 261 if (N->getNumOperands() == 0) 262 return false; 263 264 for (const SDValue &Op : N->op_values()) 265 if (!Op.isUndef()) 266 return false; 267 268 return true; 269 } 270 271 bool ISD::matchUnaryPredicate(SDValue Op, 272 std::function<bool(ConstantSDNode *)> Match, 273 bool AllowUndefs) { 274 // FIXME: Add support for scalar UNDEF cases? 275 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 276 return Match(Cst); 277 278 // FIXME: Add support for vector UNDEF cases? 279 if (ISD::BUILD_VECTOR != Op.getOpcode()) 280 return false; 281 282 EVT SVT = Op.getValueType().getScalarType(); 283 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 284 if (AllowUndefs && Op.getOperand(i).isUndef()) { 285 if (!Match(nullptr)) 286 return false; 287 continue; 288 } 289 290 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 291 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::matchBinaryPredicate( 298 SDValue LHS, SDValue RHS, 299 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 300 bool AllowUndefs) { 301 if (LHS.getValueType() != RHS.getValueType()) 302 return false; 303 304 // TODO: Add support for scalar UNDEF cases? 305 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 306 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 307 return Match(LHSCst, RHSCst); 308 309 // TODO: Add support for vector UNDEF cases? 310 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 311 ISD::BUILD_VECTOR != RHS.getOpcode()) 312 return false; 313 314 EVT SVT = LHS.getValueType().getScalarType(); 315 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 316 SDValue LHSOp = LHS.getOperand(i); 317 SDValue RHSOp = RHS.getOperand(i); 318 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 319 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 320 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 321 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 322 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 323 return false; 324 if (LHSOp.getValueType() != SVT || 325 LHSOp.getValueType() != RHSOp.getValueType()) 326 return false; 327 if (!Match(LHSCst, RHSCst)) 328 return false; 329 } 330 return true; 331 } 332 333 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 334 switch (ExtType) { 335 case ISD::EXTLOAD: 336 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 337 case ISD::SEXTLOAD: 338 return ISD::SIGN_EXTEND; 339 case ISD::ZEXTLOAD: 340 return ISD::ZERO_EXTEND; 341 default: 342 break; 343 } 344 345 llvm_unreachable("Invalid LoadExtType"); 346 } 347 348 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 349 // To perform this operation, we just need to swap the L and G bits of the 350 // operation. 351 unsigned OldL = (Operation >> 2) & 1; 352 unsigned OldG = (Operation >> 1) & 1; 353 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 354 (OldL << 1) | // New G bit 355 (OldG << 2)); // New L bit. 356 } 357 358 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 359 unsigned Operation = Op; 360 if (isInteger) 361 Operation ^= 7; // Flip L, G, E bits, but not U. 362 else 363 Operation ^= 15; // Flip all of the condition bits. 364 365 if (Operation > ISD::SETTRUE2) 366 Operation &= ~8; // Don't let N and U bits get set. 367 368 return ISD::CondCode(Operation); 369 } 370 371 /// For an integer comparison, return 1 if the comparison is a signed operation 372 /// and 2 if the result is an unsigned comparison. Return zero if the operation 373 /// does not depend on the sign of the input (setne and seteq). 374 static int isSignedOp(ISD::CondCode Opcode) { 375 switch (Opcode) { 376 default: llvm_unreachable("Illegal integer setcc operation!"); 377 case ISD::SETEQ: 378 case ISD::SETNE: return 0; 379 case ISD::SETLT: 380 case ISD::SETLE: 381 case ISD::SETGT: 382 case ISD::SETGE: return 1; 383 case ISD::SETULT: 384 case ISD::SETULE: 385 case ISD::SETUGT: 386 case ISD::SETUGE: return 2; 387 } 388 } 389 390 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 391 bool IsInteger) { 392 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 393 // Cannot fold a signed integer setcc with an unsigned integer setcc. 394 return ISD::SETCC_INVALID; 395 396 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 397 398 // If the N and U bits get set, then the resultant comparison DOES suddenly 399 // care about orderedness, and it is true when ordered. 400 if (Op > ISD::SETTRUE2) 401 Op &= ~16; // Clear the U bit if the N bit is set. 402 403 // Canonicalize illegal integer setcc's. 404 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 405 Op = ISD::SETNE; 406 407 return ISD::CondCode(Op); 408 } 409 410 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 411 bool IsInteger) { 412 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 413 // Cannot fold a signed setcc with an unsigned setcc. 414 return ISD::SETCC_INVALID; 415 416 // Combine all of the condition bits. 417 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 418 419 // Canonicalize illegal integer setcc's. 420 if (IsInteger) { 421 switch (Result) { 422 default: break; 423 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 424 case ISD::SETOEQ: // SETEQ & SETU[LG]E 425 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 426 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 427 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 428 } 429 } 430 431 return Result; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // SDNode Profile Support 436 //===----------------------------------------------------------------------===// 437 438 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 439 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 440 ID.AddInteger(OpC); 441 } 442 443 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 444 /// solely with their pointer. 445 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 446 ID.AddPointer(VTList.VTs); 447 } 448 449 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 450 static void AddNodeIDOperands(FoldingSetNodeID &ID, 451 ArrayRef<SDValue> Ops) { 452 for (auto& Op : Ops) { 453 ID.AddPointer(Op.getNode()); 454 ID.AddInteger(Op.getResNo()); 455 } 456 } 457 458 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 459 static void AddNodeIDOperands(FoldingSetNodeID &ID, 460 ArrayRef<SDUse> Ops) { 461 for (auto& Op : Ops) { 462 ID.AddPointer(Op.getNode()); 463 ID.AddInteger(Op.getResNo()); 464 } 465 } 466 467 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 468 SDVTList VTList, ArrayRef<SDValue> OpList) { 469 AddNodeIDOpcode(ID, OpC); 470 AddNodeIDValueTypes(ID, VTList); 471 AddNodeIDOperands(ID, OpList); 472 } 473 474 /// If this is an SDNode with special info, add this info to the NodeID data. 475 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 476 switch (N->getOpcode()) { 477 case ISD::TargetExternalSymbol: 478 case ISD::ExternalSymbol: 479 case ISD::MCSymbol: 480 llvm_unreachable("Should only be used on nodes with operands"); 481 default: break; // Normal nodes don't need extra info. 482 case ISD::TargetConstant: 483 case ISD::Constant: { 484 const ConstantSDNode *C = cast<ConstantSDNode>(N); 485 ID.AddPointer(C->getConstantIntValue()); 486 ID.AddBoolean(C->isOpaque()); 487 break; 488 } 489 case ISD::TargetConstantFP: 490 case ISD::ConstantFP: 491 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 492 break; 493 case ISD::TargetGlobalAddress: 494 case ISD::GlobalAddress: 495 case ISD::TargetGlobalTLSAddress: 496 case ISD::GlobalTLSAddress: { 497 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 498 ID.AddPointer(GA->getGlobal()); 499 ID.AddInteger(GA->getOffset()); 500 ID.AddInteger(GA->getTargetFlags()); 501 break; 502 } 503 case ISD::BasicBlock: 504 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 505 break; 506 case ISD::Register: 507 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 508 break; 509 case ISD::RegisterMask: 510 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 511 break; 512 case ISD::SRCVALUE: 513 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 514 break; 515 case ISD::FrameIndex: 516 case ISD::TargetFrameIndex: 517 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 518 break; 519 case ISD::JumpTable: 520 case ISD::TargetJumpTable: 521 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 522 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 523 break; 524 case ISD::ConstantPool: 525 case ISD::TargetConstantPool: { 526 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 527 ID.AddInteger(CP->getAlignment()); 528 ID.AddInteger(CP->getOffset()); 529 if (CP->isMachineConstantPoolEntry()) 530 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 531 else 532 ID.AddPointer(CP->getConstVal()); 533 ID.AddInteger(CP->getTargetFlags()); 534 break; 535 } 536 case ISD::TargetIndex: { 537 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 538 ID.AddInteger(TI->getIndex()); 539 ID.AddInteger(TI->getOffset()); 540 ID.AddInteger(TI->getTargetFlags()); 541 break; 542 } 543 case ISD::LOAD: { 544 const LoadSDNode *LD = cast<LoadSDNode>(N); 545 ID.AddInteger(LD->getMemoryVT().getRawBits()); 546 ID.AddInteger(LD->getRawSubclassData()); 547 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 548 break; 549 } 550 case ISD::STORE: { 551 const StoreSDNode *ST = cast<StoreSDNode>(N); 552 ID.AddInteger(ST->getMemoryVT().getRawBits()); 553 ID.AddInteger(ST->getRawSubclassData()); 554 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 555 break; 556 } 557 case ISD::MLOAD: { 558 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 559 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 560 ID.AddInteger(MLD->getRawSubclassData()); 561 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 562 break; 563 } 564 case ISD::MSTORE: { 565 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 566 ID.AddInteger(MST->getMemoryVT().getRawBits()); 567 ID.AddInteger(MST->getRawSubclassData()); 568 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 569 break; 570 } 571 case ISD::MGATHER: { 572 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 573 ID.AddInteger(MG->getMemoryVT().getRawBits()); 574 ID.AddInteger(MG->getRawSubclassData()); 575 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 576 break; 577 } 578 case ISD::MSCATTER: { 579 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 580 ID.AddInteger(MS->getMemoryVT().getRawBits()); 581 ID.AddInteger(MS->getRawSubclassData()); 582 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 583 break; 584 } 585 case ISD::ATOMIC_CMP_SWAP: 586 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 587 case ISD::ATOMIC_SWAP: 588 case ISD::ATOMIC_LOAD_ADD: 589 case ISD::ATOMIC_LOAD_SUB: 590 case ISD::ATOMIC_LOAD_AND: 591 case ISD::ATOMIC_LOAD_CLR: 592 case ISD::ATOMIC_LOAD_OR: 593 case ISD::ATOMIC_LOAD_XOR: 594 case ISD::ATOMIC_LOAD_NAND: 595 case ISD::ATOMIC_LOAD_MIN: 596 case ISD::ATOMIC_LOAD_MAX: 597 case ISD::ATOMIC_LOAD_UMIN: 598 case ISD::ATOMIC_LOAD_UMAX: 599 case ISD::ATOMIC_LOAD: 600 case ISD::ATOMIC_STORE: { 601 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 602 ID.AddInteger(AT->getMemoryVT().getRawBits()); 603 ID.AddInteger(AT->getRawSubclassData()); 604 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 605 break; 606 } 607 case ISD::PREFETCH: { 608 const MemSDNode *PF = cast<MemSDNode>(N); 609 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 610 break; 611 } 612 case ISD::VECTOR_SHUFFLE: { 613 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 614 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 615 i != e; ++i) 616 ID.AddInteger(SVN->getMaskElt(i)); 617 break; 618 } 619 case ISD::TargetBlockAddress: 620 case ISD::BlockAddress: { 621 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 622 ID.AddPointer(BA->getBlockAddress()); 623 ID.AddInteger(BA->getOffset()); 624 ID.AddInteger(BA->getTargetFlags()); 625 break; 626 } 627 } // end switch (N->getOpcode()) 628 629 // Target specific memory nodes could also have address spaces to check. 630 if (N->isTargetMemoryOpcode()) 631 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 632 } 633 634 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 635 /// data. 636 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 637 AddNodeIDOpcode(ID, N->getOpcode()); 638 // Add the return value info. 639 AddNodeIDValueTypes(ID, N->getVTList()); 640 // Add the operand info. 641 AddNodeIDOperands(ID, N->ops()); 642 643 // Handle SDNode leafs with special info. 644 AddNodeIDCustom(ID, N); 645 } 646 647 //===----------------------------------------------------------------------===// 648 // SelectionDAG Class 649 //===----------------------------------------------------------------------===// 650 651 /// doNotCSE - Return true if CSE should not be performed for this node. 652 static bool doNotCSE(SDNode *N) { 653 if (N->getValueType(0) == MVT::Glue) 654 return true; // Never CSE anything that produces a flag. 655 656 switch (N->getOpcode()) { 657 default: break; 658 case ISD::HANDLENODE: 659 case ISD::EH_LABEL: 660 return true; // Never CSE these nodes. 661 } 662 663 // Check that remaining values produced are not flags. 664 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 665 if (N->getValueType(i) == MVT::Glue) 666 return true; // Never CSE anything that produces a flag. 667 668 return false; 669 } 670 671 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 672 /// SelectionDAG. 673 void SelectionDAG::RemoveDeadNodes() { 674 // Create a dummy node (which is not added to allnodes), that adds a reference 675 // to the root node, preventing it from being deleted. 676 HandleSDNode Dummy(getRoot()); 677 678 SmallVector<SDNode*, 128> DeadNodes; 679 680 // Add all obviously-dead nodes to the DeadNodes worklist. 681 for (SDNode &Node : allnodes()) 682 if (Node.use_empty()) 683 DeadNodes.push_back(&Node); 684 685 RemoveDeadNodes(DeadNodes); 686 687 // If the root changed (e.g. it was a dead load, update the root). 688 setRoot(Dummy.getValue()); 689 } 690 691 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 692 /// given list, and any nodes that become unreachable as a result. 693 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 694 695 // Process the worklist, deleting the nodes and adding their uses to the 696 // worklist. 697 while (!DeadNodes.empty()) { 698 SDNode *N = DeadNodes.pop_back_val(); 699 // Skip to next node if we've already managed to delete the node. This could 700 // happen if replacing a node causes a node previously added to the node to 701 // be deleted. 702 if (N->getOpcode() == ISD::DELETED_NODE) 703 continue; 704 705 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 706 DUL->NodeDeleted(N, nullptr); 707 708 // Take the node out of the appropriate CSE map. 709 RemoveNodeFromCSEMaps(N); 710 711 // Next, brutally remove the operand list. This is safe to do, as there are 712 // no cycles in the graph. 713 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 714 SDUse &Use = *I++; 715 SDNode *Operand = Use.getNode(); 716 Use.set(SDValue()); 717 718 // Now that we removed this operand, see if there are no uses of it left. 719 if (Operand->use_empty()) 720 DeadNodes.push_back(Operand); 721 } 722 723 DeallocateNode(N); 724 } 725 } 726 727 void SelectionDAG::RemoveDeadNode(SDNode *N){ 728 SmallVector<SDNode*, 16> DeadNodes(1, N); 729 730 // Create a dummy node that adds a reference to the root node, preventing 731 // it from being deleted. (This matters if the root is an operand of the 732 // dead node.) 733 HandleSDNode Dummy(getRoot()); 734 735 RemoveDeadNodes(DeadNodes); 736 } 737 738 void SelectionDAG::DeleteNode(SDNode *N) { 739 // First take this out of the appropriate CSE map. 740 RemoveNodeFromCSEMaps(N); 741 742 // Finally, remove uses due to operands of this node, remove from the 743 // AllNodes list, and delete the node. 744 DeleteNodeNotInCSEMaps(N); 745 } 746 747 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 748 assert(N->getIterator() != AllNodes.begin() && 749 "Cannot delete the entry node!"); 750 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 751 752 // Drop all of the operands and decrement used node's use counts. 753 N->DropOperands(); 754 755 DeallocateNode(N); 756 } 757 758 void SDDbgInfo::erase(const SDNode *Node) { 759 DbgValMapType::iterator I = DbgValMap.find(Node); 760 if (I == DbgValMap.end()) 761 return; 762 for (auto &Val: I->second) 763 Val->setIsInvalidated(); 764 DbgValMap.erase(I); 765 } 766 767 void SelectionDAG::DeallocateNode(SDNode *N) { 768 // If we have operands, deallocate them. 769 removeOperands(N); 770 771 NodeAllocator.Deallocate(AllNodes.remove(N)); 772 773 // Set the opcode to DELETED_NODE to help catch bugs when node 774 // memory is reallocated. 775 // FIXME: There are places in SDag that have grown a dependency on the opcode 776 // value in the released node. 777 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 778 N->NodeType = ISD::DELETED_NODE; 779 780 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 781 // them and forget about that node. 782 DbgInfo->erase(N); 783 } 784 785 #ifndef NDEBUG 786 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 787 static void VerifySDNode(SDNode *N) { 788 switch (N->getOpcode()) { 789 default: 790 break; 791 case ISD::BUILD_PAIR: { 792 EVT VT = N->getValueType(0); 793 assert(N->getNumValues() == 1 && "Too many results!"); 794 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 795 "Wrong return type!"); 796 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 797 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 798 "Mismatched operand types!"); 799 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 800 "Wrong operand type!"); 801 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 802 "Wrong return type size"); 803 break; 804 } 805 case ISD::BUILD_VECTOR: { 806 assert(N->getNumValues() == 1 && "Too many results!"); 807 assert(N->getValueType(0).isVector() && "Wrong return type!"); 808 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 809 "Wrong number of operands!"); 810 EVT EltVT = N->getValueType(0).getVectorElementType(); 811 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 812 assert((I->getValueType() == EltVT || 813 (EltVT.isInteger() && I->getValueType().isInteger() && 814 EltVT.bitsLE(I->getValueType()))) && 815 "Wrong operand type!"); 816 assert(I->getValueType() == N->getOperand(0).getValueType() && 817 "Operands must all have the same type"); 818 } 819 break; 820 } 821 } 822 } 823 #endif // NDEBUG 824 825 /// Insert a newly allocated node into the DAG. 826 /// 827 /// Handles insertion into the all nodes list and CSE map, as well as 828 /// verification and other common operations when a new node is allocated. 829 void SelectionDAG::InsertNode(SDNode *N) { 830 AllNodes.push_back(N); 831 #ifndef NDEBUG 832 N->PersistentId = NextPersistentId++; 833 VerifySDNode(N); 834 #endif 835 } 836 837 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 838 /// correspond to it. This is useful when we're about to delete or repurpose 839 /// the node. We don't want future request for structurally identical nodes 840 /// to return N anymore. 841 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 842 bool Erased = false; 843 switch (N->getOpcode()) { 844 case ISD::HANDLENODE: return false; // noop. 845 case ISD::CONDCODE: 846 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 847 "Cond code doesn't exist!"); 848 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 849 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 850 break; 851 case ISD::ExternalSymbol: 852 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 853 break; 854 case ISD::TargetExternalSymbol: { 855 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 856 Erased = TargetExternalSymbols.erase( 857 std::pair<std::string,unsigned char>(ESN->getSymbol(), 858 ESN->getTargetFlags())); 859 break; 860 } 861 case ISD::MCSymbol: { 862 auto *MCSN = cast<MCSymbolSDNode>(N); 863 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 864 break; 865 } 866 case ISD::VALUETYPE: { 867 EVT VT = cast<VTSDNode>(N)->getVT(); 868 if (VT.isExtended()) { 869 Erased = ExtendedValueTypeNodes.erase(VT); 870 } else { 871 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 872 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 873 } 874 break; 875 } 876 default: 877 // Remove it from the CSE Map. 878 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 879 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 880 Erased = CSEMap.RemoveNode(N); 881 break; 882 } 883 #ifndef NDEBUG 884 // Verify that the node was actually in one of the CSE maps, unless it has a 885 // flag result (which cannot be CSE'd) or is one of the special cases that are 886 // not subject to CSE. 887 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 888 !N->isMachineOpcode() && !doNotCSE(N)) { 889 N->dump(this); 890 dbgs() << "\n"; 891 llvm_unreachable("Node is not in map!"); 892 } 893 #endif 894 return Erased; 895 } 896 897 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 898 /// maps and modified in place. Add it back to the CSE maps, unless an identical 899 /// node already exists, in which case transfer all its users to the existing 900 /// node. This transfer can potentially trigger recursive merging. 901 void 902 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 903 // For node types that aren't CSE'd, just act as if no identical node 904 // already exists. 905 if (!doNotCSE(N)) { 906 SDNode *Existing = CSEMap.GetOrInsertNode(N); 907 if (Existing != N) { 908 // If there was already an existing matching node, use ReplaceAllUsesWith 909 // to replace the dead one with the existing one. This can cause 910 // recursive merging of other unrelated nodes down the line. 911 ReplaceAllUsesWith(N, Existing); 912 913 // N is now dead. Inform the listeners and delete it. 914 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 915 DUL->NodeDeleted(N, Existing); 916 DeleteNodeNotInCSEMaps(N); 917 return; 918 } 919 } 920 921 // If the node doesn't already exist, we updated it. Inform listeners. 922 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 923 DUL->NodeUpdated(N); 924 } 925 926 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 927 /// were replaced with those specified. If this node is never memoized, 928 /// return null, otherwise return a pointer to the slot it would take. If a 929 /// node already exists with these operands, the slot will be non-null. 930 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 931 void *&InsertPos) { 932 if (doNotCSE(N)) 933 return nullptr; 934 935 SDValue Ops[] = { Op }; 936 FoldingSetNodeID ID; 937 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 938 AddNodeIDCustom(ID, N); 939 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 940 if (Node) 941 Node->intersectFlagsWith(N->getFlags()); 942 return Node; 943 } 944 945 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 946 /// were replaced with those specified. If this node is never memoized, 947 /// return null, otherwise return a pointer to the slot it would take. If a 948 /// node already exists with these operands, the slot will be non-null. 949 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 950 SDValue Op1, SDValue Op2, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op1, Op2 }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 970 void *&InsertPos) { 971 if (doNotCSE(N)) 972 return nullptr; 973 974 FoldingSetNodeID ID; 975 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 976 AddNodeIDCustom(ID, N); 977 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 978 if (Node) 979 Node->intersectFlagsWith(N->getFlags()); 980 return Node; 981 } 982 983 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 984 Type *Ty = VT == MVT::iPTR ? 985 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 986 VT.getTypeForEVT(*getContext()); 987 988 return getDataLayout().getABITypeAlignment(Ty); 989 } 990 991 // EntryNode could meaningfully have debug info if we can find it... 992 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 993 : TM(tm), OptLevel(OL), 994 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 995 Root(getEntryNode()) { 996 InsertNode(&EntryNode); 997 DbgInfo = new SDDbgInfo(); 998 } 999 1000 void SelectionDAG::init(MachineFunction &NewMF, 1001 OptimizationRemarkEmitter &NewORE, 1002 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1003 LegacyDivergenceAnalysis * Divergence) { 1004 MF = &NewMF; 1005 SDAGISelPass = PassPtr; 1006 ORE = &NewORE; 1007 TLI = getSubtarget().getTargetLowering(); 1008 TSI = getSubtarget().getSelectionDAGInfo(); 1009 LibInfo = LibraryInfo; 1010 Context = &MF->getFunction().getContext(); 1011 DA = Divergence; 1012 } 1013 1014 SelectionDAG::~SelectionDAG() { 1015 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1016 allnodes_clear(); 1017 OperandRecycler.clear(OperandAllocator); 1018 delete DbgInfo; 1019 } 1020 1021 void SelectionDAG::allnodes_clear() { 1022 assert(&*AllNodes.begin() == &EntryNode); 1023 AllNodes.remove(AllNodes.begin()); 1024 while (!AllNodes.empty()) 1025 DeallocateNode(&AllNodes.front()); 1026 #ifndef NDEBUG 1027 NextPersistentId = 0; 1028 #endif 1029 } 1030 1031 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1032 void *&InsertPos) { 1033 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1034 if (N) { 1035 switch (N->getOpcode()) { 1036 default: break; 1037 case ISD::Constant: 1038 case ISD::ConstantFP: 1039 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1040 "debug location. Use another overload."); 1041 } 1042 } 1043 return N; 1044 } 1045 1046 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1047 const SDLoc &DL, void *&InsertPos) { 1048 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1049 if (N) { 1050 switch (N->getOpcode()) { 1051 case ISD::Constant: 1052 case ISD::ConstantFP: 1053 // Erase debug location from the node if the node is used at several 1054 // different places. Do not propagate one location to all uses as it 1055 // will cause a worse single stepping debugging experience. 1056 if (N->getDebugLoc() != DL.getDebugLoc()) 1057 N->setDebugLoc(DebugLoc()); 1058 break; 1059 default: 1060 // When the node's point of use is located earlier in the instruction 1061 // sequence than its prior point of use, update its debug info to the 1062 // earlier location. 1063 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1064 N->setDebugLoc(DL.getDebugLoc()); 1065 break; 1066 } 1067 } 1068 return N; 1069 } 1070 1071 void SelectionDAG::clear() { 1072 allnodes_clear(); 1073 OperandRecycler.clear(OperandAllocator); 1074 OperandAllocator.Reset(); 1075 CSEMap.clear(); 1076 1077 ExtendedValueTypeNodes.clear(); 1078 ExternalSymbols.clear(); 1079 TargetExternalSymbols.clear(); 1080 MCSymbols.clear(); 1081 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1082 static_cast<CondCodeSDNode*>(nullptr)); 1083 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1084 static_cast<SDNode*>(nullptr)); 1085 1086 EntryNode.UseList = nullptr; 1087 InsertNode(&EntryNode); 1088 Root = getEntryNode(); 1089 DbgInfo->clear(); 1090 } 1091 1092 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1093 return VT.bitsGT(Op.getValueType()) 1094 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1095 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1096 } 1097 1098 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) ? 1100 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1101 getNode(ISD::TRUNCATE, DL, VT, Op); 1102 } 1103 1104 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1117 EVT OpVT) { 1118 if (VT.bitsLE(Op.getValueType())) 1119 return getNode(ISD::TRUNCATE, SL, VT, Op); 1120 1121 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1122 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1123 } 1124 1125 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1126 assert(!VT.isVector() && 1127 "getZeroExtendInReg should use the vector element type instead of " 1128 "the vector type!"); 1129 if (Op.getValueType().getScalarType() == VT) return Op; 1130 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1131 APInt Imm = APInt::getLowBitsSet(BitWidth, 1132 VT.getSizeInBits()); 1133 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1134 getConstant(Imm, DL, Op.getValueType())); 1135 } 1136 1137 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1138 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1139 EVT EltVT = VT.getScalarType(); 1140 SDValue NegOne = 1141 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1142 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1143 } 1144 1145 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1146 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1147 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1148 } 1149 1150 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1151 EVT OpVT) { 1152 if (!V) 1153 return getConstant(0, DL, VT); 1154 1155 switch (TLI->getBooleanContents(OpVT)) { 1156 case TargetLowering::ZeroOrOneBooleanContent: 1157 case TargetLowering::UndefinedBooleanContent: 1158 return getConstant(1, DL, VT); 1159 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1160 return getAllOnesConstant(DL, VT); 1161 } 1162 llvm_unreachable("Unexpected boolean content enum!"); 1163 } 1164 1165 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1166 bool isT, bool isO) { 1167 EVT EltVT = VT.getScalarType(); 1168 assert((EltVT.getSizeInBits() >= 64 || 1169 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1170 "getConstant with a uint64_t value that doesn't fit in the type!"); 1171 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1172 } 1173 1174 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1175 bool isT, bool isO) { 1176 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1177 } 1178 1179 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1180 EVT VT, bool isT, bool isO) { 1181 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1182 1183 EVT EltVT = VT.getScalarType(); 1184 const ConstantInt *Elt = &Val; 1185 1186 // In some cases the vector type is legal but the element type is illegal and 1187 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1188 // inserted value (the type does not need to match the vector element type). 1189 // Any extra bits introduced will be truncated away. 1190 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1191 TargetLowering::TypePromoteInteger) { 1192 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1193 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1194 Elt = ConstantInt::get(*getContext(), NewVal); 1195 } 1196 // In other cases the element type is illegal and needs to be expanded, for 1197 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1198 // the value into n parts and use a vector type with n-times the elements. 1199 // Then bitcast to the type requested. 1200 // Legalizing constants too early makes the DAGCombiner's job harder so we 1201 // only legalize if the DAG tells us we must produce legal types. 1202 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1203 TLI->getTypeAction(*getContext(), EltVT) == 1204 TargetLowering::TypeExpandInteger) { 1205 const APInt &NewVal = Elt->getValue(); 1206 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1207 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1208 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1209 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1210 1211 // Check the temporary vector is the correct size. If this fails then 1212 // getTypeToTransformTo() probably returned a type whose size (in bits) 1213 // isn't a power-of-2 factor of the requested type size. 1214 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1215 1216 SmallVector<SDValue, 2> EltParts; 1217 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1218 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1219 .zextOrTrunc(ViaEltSizeInBits), DL, 1220 ViaEltVT, isT, isO)); 1221 } 1222 1223 // EltParts is currently in little endian order. If we actually want 1224 // big-endian order then reverse it now. 1225 if (getDataLayout().isBigEndian()) 1226 std::reverse(EltParts.begin(), EltParts.end()); 1227 1228 // The elements must be reversed when the element order is different 1229 // to the endianness of the elements (because the BITCAST is itself a 1230 // vector shuffle in this situation). However, we do not need any code to 1231 // perform this reversal because getConstant() is producing a vector 1232 // splat. 1233 // This situation occurs in MIPS MSA. 1234 1235 SmallVector<SDValue, 8> Ops; 1236 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1237 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1238 1239 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1240 return V; 1241 } 1242 1243 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1244 "APInt size does not match type size!"); 1245 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1246 FoldingSetNodeID ID; 1247 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1248 ID.AddPointer(Elt); 1249 ID.AddBoolean(isO); 1250 void *IP = nullptr; 1251 SDNode *N = nullptr; 1252 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1253 if (!VT.isVector()) 1254 return SDValue(N, 0); 1255 1256 if (!N) { 1257 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1258 CSEMap.InsertNode(N, IP); 1259 InsertNode(N); 1260 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1261 } 1262 1263 SDValue Result(N, 0); 1264 if (VT.isVector()) 1265 Result = getSplatBuildVector(VT, DL, Result); 1266 1267 return Result; 1268 } 1269 1270 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1271 bool isTarget) { 1272 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1273 } 1274 1275 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1276 bool isTarget) { 1277 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1278 } 1279 1280 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1281 EVT VT, bool isTarget) { 1282 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1283 1284 EVT EltVT = VT.getScalarType(); 1285 1286 // Do the map lookup using the actual bit pattern for the floating point 1287 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1288 // we don't have issues with SNANs. 1289 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1290 FoldingSetNodeID ID; 1291 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1292 ID.AddPointer(&V); 1293 void *IP = nullptr; 1294 SDNode *N = nullptr; 1295 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1296 if (!VT.isVector()) 1297 return SDValue(N, 0); 1298 1299 if (!N) { 1300 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1301 CSEMap.InsertNode(N, IP); 1302 InsertNode(N); 1303 } 1304 1305 SDValue Result(N, 0); 1306 if (VT.isVector()) 1307 Result = getSplatBuildVector(VT, DL, Result); 1308 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1309 return Result; 1310 } 1311 1312 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1313 bool isTarget) { 1314 EVT EltVT = VT.getScalarType(); 1315 if (EltVT == MVT::f32) 1316 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1317 else if (EltVT == MVT::f64) 1318 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1319 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1320 EltVT == MVT::f16) { 1321 bool Ignored; 1322 APFloat APF = APFloat(Val); 1323 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1324 &Ignored); 1325 return getConstantFP(APF, DL, VT, isTarget); 1326 } else 1327 llvm_unreachable("Unsupported type in getConstantFP"); 1328 } 1329 1330 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1331 EVT VT, int64_t Offset, bool isTargetGA, 1332 unsigned char TargetFlags) { 1333 assert((TargetFlags == 0 || isTargetGA) && 1334 "Cannot set target flags on target-independent globals"); 1335 1336 // Truncate (with sign-extension) the offset value to the pointer size. 1337 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1338 if (BitWidth < 64) 1339 Offset = SignExtend64(Offset, BitWidth); 1340 1341 unsigned Opc; 1342 if (GV->isThreadLocal()) 1343 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1344 else 1345 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1346 1347 FoldingSetNodeID ID; 1348 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1349 ID.AddPointer(GV); 1350 ID.AddInteger(Offset); 1351 ID.AddInteger(TargetFlags); 1352 void *IP = nullptr; 1353 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1354 return SDValue(E, 0); 1355 1356 auto *N = newSDNode<GlobalAddressSDNode>( 1357 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1358 CSEMap.InsertNode(N, IP); 1359 InsertNode(N); 1360 return SDValue(N, 0); 1361 } 1362 1363 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1364 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(FI); 1368 void *IP = nullptr; 1369 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1370 return SDValue(E, 0); 1371 1372 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1373 CSEMap.InsertNode(N, IP); 1374 InsertNode(N); 1375 return SDValue(N, 0); 1376 } 1377 1378 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1379 unsigned char TargetFlags) { 1380 assert((TargetFlags == 0 || isTarget) && 1381 "Cannot set target flags on target-independent jump tables"); 1382 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1383 FoldingSetNodeID ID; 1384 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1385 ID.AddInteger(JTI); 1386 ID.AddInteger(TargetFlags); 1387 void *IP = nullptr; 1388 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1389 return SDValue(E, 0); 1390 1391 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1392 CSEMap.InsertNode(N, IP); 1393 InsertNode(N); 1394 return SDValue(N, 0); 1395 } 1396 1397 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1398 unsigned Alignment, int Offset, 1399 bool isTarget, 1400 unsigned char TargetFlags) { 1401 assert((TargetFlags == 0 || isTarget) && 1402 "Cannot set target flags on target-independent globals"); 1403 if (Alignment == 0) 1404 Alignment = MF->getFunction().optForSize() 1405 ? getDataLayout().getABITypeAlignment(C->getType()) 1406 : getDataLayout().getPrefTypeAlignment(C->getType()); 1407 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1408 FoldingSetNodeID ID; 1409 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1410 ID.AddInteger(Alignment); 1411 ID.AddInteger(Offset); 1412 ID.AddPointer(C); 1413 ID.AddInteger(TargetFlags); 1414 void *IP = nullptr; 1415 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1416 return SDValue(E, 0); 1417 1418 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1419 TargetFlags); 1420 CSEMap.InsertNode(N, IP); 1421 InsertNode(N); 1422 return SDValue(N, 0); 1423 } 1424 1425 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1426 unsigned Alignment, int Offset, 1427 bool isTarget, 1428 unsigned char TargetFlags) { 1429 assert((TargetFlags == 0 || isTarget) && 1430 "Cannot set target flags on target-independent globals"); 1431 if (Alignment == 0) 1432 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1433 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1434 FoldingSetNodeID ID; 1435 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1436 ID.AddInteger(Alignment); 1437 ID.AddInteger(Offset); 1438 C->addSelectionDAGCSEId(ID); 1439 ID.AddInteger(TargetFlags); 1440 void *IP = nullptr; 1441 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1442 return SDValue(E, 0); 1443 1444 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1445 TargetFlags); 1446 CSEMap.InsertNode(N, IP); 1447 InsertNode(N); 1448 return SDValue(N, 0); 1449 } 1450 1451 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1452 unsigned char TargetFlags) { 1453 FoldingSetNodeID ID; 1454 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1455 ID.AddInteger(Index); 1456 ID.AddInteger(Offset); 1457 ID.AddInteger(TargetFlags); 1458 void *IP = nullptr; 1459 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1460 return SDValue(E, 0); 1461 1462 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1463 CSEMap.InsertNode(N, IP); 1464 InsertNode(N); 1465 return SDValue(N, 0); 1466 } 1467 1468 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1469 FoldingSetNodeID ID; 1470 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1471 ID.AddPointer(MBB); 1472 void *IP = nullptr; 1473 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1474 return SDValue(E, 0); 1475 1476 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1477 CSEMap.InsertNode(N, IP); 1478 InsertNode(N); 1479 return SDValue(N, 0); 1480 } 1481 1482 SDValue SelectionDAG::getValueType(EVT VT) { 1483 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1484 ValueTypeNodes.size()) 1485 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1486 1487 SDNode *&N = VT.isExtended() ? 1488 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1489 1490 if (N) return SDValue(N, 0); 1491 N = newSDNode<VTSDNode>(VT); 1492 InsertNode(N); 1493 return SDValue(N, 0); 1494 } 1495 1496 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1497 SDNode *&N = ExternalSymbols[Sym]; 1498 if (N) return SDValue(N, 0); 1499 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1500 InsertNode(N); 1501 return SDValue(N, 0); 1502 } 1503 1504 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1505 SDNode *&N = MCSymbols[Sym]; 1506 if (N) 1507 return SDValue(N, 0); 1508 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1509 InsertNode(N); 1510 return SDValue(N, 0); 1511 } 1512 1513 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1514 unsigned char TargetFlags) { 1515 SDNode *&N = 1516 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1517 TargetFlags)]; 1518 if (N) return SDValue(N, 0); 1519 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1520 InsertNode(N); 1521 return SDValue(N, 0); 1522 } 1523 1524 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1525 if ((unsigned)Cond >= CondCodeNodes.size()) 1526 CondCodeNodes.resize(Cond+1); 1527 1528 if (!CondCodeNodes[Cond]) { 1529 auto *N = newSDNode<CondCodeSDNode>(Cond); 1530 CondCodeNodes[Cond] = N; 1531 InsertNode(N); 1532 } 1533 1534 return SDValue(CondCodeNodes[Cond], 0); 1535 } 1536 1537 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1538 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1539 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1540 std::swap(N1, N2); 1541 ShuffleVectorSDNode::commuteMask(M); 1542 } 1543 1544 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1545 SDValue N2, ArrayRef<int> Mask) { 1546 assert(VT.getVectorNumElements() == Mask.size() && 1547 "Must have the same number of vector elements as mask elements!"); 1548 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1549 "Invalid VECTOR_SHUFFLE"); 1550 1551 // Canonicalize shuffle undef, undef -> undef 1552 if (N1.isUndef() && N2.isUndef()) 1553 return getUNDEF(VT); 1554 1555 // Validate that all indices in Mask are within the range of the elements 1556 // input to the shuffle. 1557 int NElts = Mask.size(); 1558 assert(llvm::all_of(Mask, 1559 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1560 "Index out of range"); 1561 1562 // Copy the mask so we can do any needed cleanup. 1563 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1564 1565 // Canonicalize shuffle v, v -> v, undef 1566 if (N1 == N2) { 1567 N2 = getUNDEF(VT); 1568 for (int i = 0; i != NElts; ++i) 1569 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1570 } 1571 1572 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1573 if (N1.isUndef()) 1574 commuteShuffle(N1, N2, MaskVec); 1575 1576 if (TLI->hasVectorBlend()) { 1577 // If shuffling a splat, try to blend the splat instead. We do this here so 1578 // that even when this arises during lowering we don't have to re-handle it. 1579 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1580 BitVector UndefElements; 1581 SDValue Splat = BV->getSplatValue(&UndefElements); 1582 if (!Splat) 1583 return; 1584 1585 for (int i = 0; i < NElts; ++i) { 1586 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1587 continue; 1588 1589 // If this input comes from undef, mark it as such. 1590 if (UndefElements[MaskVec[i] - Offset]) { 1591 MaskVec[i] = -1; 1592 continue; 1593 } 1594 1595 // If we can blend a non-undef lane, use that instead. 1596 if (!UndefElements[i]) 1597 MaskVec[i] = i + Offset; 1598 } 1599 }; 1600 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1601 BlendSplat(N1BV, 0); 1602 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1603 BlendSplat(N2BV, NElts); 1604 } 1605 1606 // Canonicalize all index into lhs, -> shuffle lhs, undef 1607 // Canonicalize all index into rhs, -> shuffle rhs, undef 1608 bool AllLHS = true, AllRHS = true; 1609 bool N2Undef = N2.isUndef(); 1610 for (int i = 0; i != NElts; ++i) { 1611 if (MaskVec[i] >= NElts) { 1612 if (N2Undef) 1613 MaskVec[i] = -1; 1614 else 1615 AllLHS = false; 1616 } else if (MaskVec[i] >= 0) { 1617 AllRHS = false; 1618 } 1619 } 1620 if (AllLHS && AllRHS) 1621 return getUNDEF(VT); 1622 if (AllLHS && !N2Undef) 1623 N2 = getUNDEF(VT); 1624 if (AllRHS) { 1625 N1 = getUNDEF(VT); 1626 commuteShuffle(N1, N2, MaskVec); 1627 } 1628 // Reset our undef status after accounting for the mask. 1629 N2Undef = N2.isUndef(); 1630 // Re-check whether both sides ended up undef. 1631 if (N1.isUndef() && N2Undef) 1632 return getUNDEF(VT); 1633 1634 // If Identity shuffle return that node. 1635 bool Identity = true, AllSame = true; 1636 for (int i = 0; i != NElts; ++i) { 1637 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1638 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1639 } 1640 if (Identity && NElts) 1641 return N1; 1642 1643 // Shuffling a constant splat doesn't change the result. 1644 if (N2Undef) { 1645 SDValue V = N1; 1646 1647 // Look through any bitcasts. We check that these don't change the number 1648 // (and size) of elements and just changes their types. 1649 while (V.getOpcode() == ISD::BITCAST) 1650 V = V->getOperand(0); 1651 1652 // A splat should always show up as a build vector node. 1653 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1654 BitVector UndefElements; 1655 SDValue Splat = BV->getSplatValue(&UndefElements); 1656 // If this is a splat of an undef, shuffling it is also undef. 1657 if (Splat && Splat.isUndef()) 1658 return getUNDEF(VT); 1659 1660 bool SameNumElts = 1661 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1662 1663 // We only have a splat which can skip shuffles if there is a splatted 1664 // value and no undef lanes rearranged by the shuffle. 1665 if (Splat && UndefElements.none()) { 1666 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1667 // number of elements match or the value splatted is a zero constant. 1668 if (SameNumElts) 1669 return N1; 1670 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1671 if (C->isNullValue()) 1672 return N1; 1673 } 1674 1675 // If the shuffle itself creates a splat, build the vector directly. 1676 if (AllSame && SameNumElts) { 1677 EVT BuildVT = BV->getValueType(0); 1678 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1679 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1680 1681 // We may have jumped through bitcasts, so the type of the 1682 // BUILD_VECTOR may not match the type of the shuffle. 1683 if (BuildVT != VT) 1684 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1685 return NewBV; 1686 } 1687 } 1688 } 1689 1690 FoldingSetNodeID ID; 1691 SDValue Ops[2] = { N1, N2 }; 1692 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1693 for (int i = 0; i != NElts; ++i) 1694 ID.AddInteger(MaskVec[i]); 1695 1696 void* IP = nullptr; 1697 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1698 return SDValue(E, 0); 1699 1700 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1701 // SDNode doesn't have access to it. This memory will be "leaked" when 1702 // the node is deallocated, but recovered when the NodeAllocator is released. 1703 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1704 llvm::copy(MaskVec, MaskAlloc); 1705 1706 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1707 dl.getDebugLoc(), MaskAlloc); 1708 createOperands(N, Ops); 1709 1710 CSEMap.InsertNode(N, IP); 1711 InsertNode(N); 1712 SDValue V = SDValue(N, 0); 1713 NewSDValueDbgMsg(V, "Creating new node: ", this); 1714 return V; 1715 } 1716 1717 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1718 EVT VT = SV.getValueType(0); 1719 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1720 ShuffleVectorSDNode::commuteMask(MaskVec); 1721 1722 SDValue Op0 = SV.getOperand(0); 1723 SDValue Op1 = SV.getOperand(1); 1724 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1725 } 1726 1727 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1728 FoldingSetNodeID ID; 1729 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1730 ID.AddInteger(RegNo); 1731 void *IP = nullptr; 1732 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1733 return SDValue(E, 0); 1734 1735 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1736 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1737 CSEMap.InsertNode(N, IP); 1738 InsertNode(N); 1739 return SDValue(N, 0); 1740 } 1741 1742 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1743 FoldingSetNodeID ID; 1744 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1745 ID.AddPointer(RegMask); 1746 void *IP = nullptr; 1747 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1748 return SDValue(E, 0); 1749 1750 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1751 CSEMap.InsertNode(N, IP); 1752 InsertNode(N); 1753 return SDValue(N, 0); 1754 } 1755 1756 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1757 MCSymbol *Label) { 1758 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1759 } 1760 1761 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1762 SDValue Root, MCSymbol *Label) { 1763 FoldingSetNodeID ID; 1764 SDValue Ops[] = { Root }; 1765 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1766 ID.AddPointer(Label); 1767 void *IP = nullptr; 1768 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1769 return SDValue(E, 0); 1770 1771 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1772 createOperands(N, Ops); 1773 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1780 int64_t Offset, 1781 bool isTarget, 1782 unsigned char TargetFlags) { 1783 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1784 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1787 ID.AddPointer(BA); 1788 ID.AddInteger(Offset); 1789 ID.AddInteger(TargetFlags); 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1795 CSEMap.InsertNode(N, IP); 1796 InsertNode(N); 1797 return SDValue(N, 0); 1798 } 1799 1800 SDValue SelectionDAG::getSrcValue(const Value *V) { 1801 assert((!V || V->getType()->isPointerTy()) && 1802 "SrcValue is not a pointer?"); 1803 1804 FoldingSetNodeID ID; 1805 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1806 ID.AddPointer(V); 1807 1808 void *IP = nullptr; 1809 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1810 return SDValue(E, 0); 1811 1812 auto *N = newSDNode<SrcValueSDNode>(V); 1813 CSEMap.InsertNode(N, IP); 1814 InsertNode(N); 1815 return SDValue(N, 0); 1816 } 1817 1818 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1819 FoldingSetNodeID ID; 1820 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1821 ID.AddPointer(MD); 1822 1823 void *IP = nullptr; 1824 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1825 return SDValue(E, 0); 1826 1827 auto *N = newSDNode<MDNodeSDNode>(MD); 1828 CSEMap.InsertNode(N, IP); 1829 InsertNode(N); 1830 return SDValue(N, 0); 1831 } 1832 1833 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1834 if (VT == V.getValueType()) 1835 return V; 1836 1837 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1838 } 1839 1840 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1841 unsigned SrcAS, unsigned DestAS) { 1842 SDValue Ops[] = {Ptr}; 1843 FoldingSetNodeID ID; 1844 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1845 ID.AddInteger(SrcAS); 1846 ID.AddInteger(DestAS); 1847 1848 void *IP = nullptr; 1849 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1850 return SDValue(E, 0); 1851 1852 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1853 VT, SrcAS, DestAS); 1854 createOperands(N, Ops); 1855 1856 CSEMap.InsertNode(N, IP); 1857 InsertNode(N); 1858 return SDValue(N, 0); 1859 } 1860 1861 /// getShiftAmountOperand - Return the specified value casted to 1862 /// the target's desired shift amount type. 1863 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1864 EVT OpTy = Op.getValueType(); 1865 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1866 if (OpTy == ShTy || OpTy.isVector()) return Op; 1867 1868 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1869 } 1870 1871 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1872 SDLoc dl(Node); 1873 const TargetLowering &TLI = getTargetLoweringInfo(); 1874 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1875 EVT VT = Node->getValueType(0); 1876 SDValue Tmp1 = Node->getOperand(0); 1877 SDValue Tmp2 = Node->getOperand(1); 1878 unsigned Align = Node->getConstantOperandVal(3); 1879 1880 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1881 Tmp2, MachinePointerInfo(V)); 1882 SDValue VAList = VAListLoad; 1883 1884 if (Align > TLI.getMinStackArgumentAlignment()) { 1885 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1886 1887 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1888 getConstant(Align - 1, dl, VAList.getValueType())); 1889 1890 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1891 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1892 } 1893 1894 // Increment the pointer, VAList, to the next vaarg 1895 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1896 getConstant(getDataLayout().getTypeAllocSize( 1897 VT.getTypeForEVT(*getContext())), 1898 dl, VAList.getValueType())); 1899 // Store the incremented VAList to the legalized pointer 1900 Tmp1 = 1901 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1902 // Load the actual argument out of the pointer VAList 1903 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1904 } 1905 1906 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1907 SDLoc dl(Node); 1908 const TargetLowering &TLI = getTargetLoweringInfo(); 1909 // This defaults to loading a pointer from the input and storing it to the 1910 // output, returning the chain. 1911 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1912 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1913 SDValue Tmp1 = 1914 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1915 Node->getOperand(2), MachinePointerInfo(VS)); 1916 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1917 MachinePointerInfo(VD)); 1918 } 1919 1920 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1921 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1922 unsigned ByteSize = VT.getStoreSize(); 1923 Type *Ty = VT.getTypeForEVT(*getContext()); 1924 unsigned StackAlign = 1925 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1926 1927 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1928 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1929 } 1930 1931 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1932 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1933 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1934 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1935 const DataLayout &DL = getDataLayout(); 1936 unsigned Align = 1937 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1938 1939 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1940 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1941 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1942 } 1943 1944 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1945 ISD::CondCode Cond, const SDLoc &dl) { 1946 EVT OpVT = N1.getValueType(); 1947 1948 // These setcc operations always fold. 1949 switch (Cond) { 1950 default: break; 1951 case ISD::SETFALSE: 1952 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1953 case ISD::SETTRUE: 1954 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1955 1956 case ISD::SETOEQ: 1957 case ISD::SETOGT: 1958 case ISD::SETOGE: 1959 case ISD::SETOLT: 1960 case ISD::SETOLE: 1961 case ISD::SETONE: 1962 case ISD::SETO: 1963 case ISD::SETUO: 1964 case ISD::SETUEQ: 1965 case ISD::SETUNE: 1966 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1967 break; 1968 } 1969 1970 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1971 const APInt &C2 = N2C->getAPIntValue(); 1972 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1973 const APInt &C1 = N1C->getAPIntValue(); 1974 1975 switch (Cond) { 1976 default: llvm_unreachable("Unknown integer setcc!"); 1977 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 1978 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 1979 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 1980 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 1981 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 1982 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 1983 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 1984 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 1985 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 1986 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 1987 } 1988 } 1989 } 1990 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1991 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1992 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1993 switch (Cond) { 1994 default: break; 1995 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1996 return getUNDEF(VT); 1997 LLVM_FALLTHROUGH; 1998 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 1999 OpVT); 2000 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2001 return getUNDEF(VT); 2002 LLVM_FALLTHROUGH; 2003 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2004 R==APFloat::cmpLessThan, dl, VT, 2005 OpVT); 2006 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2007 return getUNDEF(VT); 2008 LLVM_FALLTHROUGH; 2009 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2010 OpVT); 2011 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2012 return getUNDEF(VT); 2013 LLVM_FALLTHROUGH; 2014 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2015 VT, OpVT); 2016 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2017 return getUNDEF(VT); 2018 LLVM_FALLTHROUGH; 2019 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2020 R==APFloat::cmpEqual, dl, VT, 2021 OpVT); 2022 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2023 return getUNDEF(VT); 2024 LLVM_FALLTHROUGH; 2025 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2026 R==APFloat::cmpEqual, dl, VT, OpVT); 2027 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2028 OpVT); 2029 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2030 OpVT); 2031 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2032 R==APFloat::cmpEqual, dl, VT, 2033 OpVT); 2034 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2035 OpVT); 2036 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2037 R==APFloat::cmpLessThan, dl, VT, 2038 OpVT); 2039 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2040 R==APFloat::cmpUnordered, dl, VT, 2041 OpVT); 2042 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2043 VT, OpVT); 2044 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2045 OpVT); 2046 } 2047 } else { 2048 // Ensure that the constant occurs on the RHS. 2049 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2050 MVT CompVT = N1.getValueType().getSimpleVT(); 2051 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 2052 return SDValue(); 2053 2054 return getSetCC(dl, VT, N2, N1, SwappedCond); 2055 } 2056 } 2057 2058 // Could not fold it. 2059 return SDValue(); 2060 } 2061 2062 /// See if the specified operand can be simplified with the knowledge that only 2063 /// the bits specified by Mask are used. 2064 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 2065 switch (V.getOpcode()) { 2066 default: 2067 break; 2068 case ISD::Constant: { 2069 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 2070 assert(CV && "Const value should be ConstSDNode."); 2071 const APInt &CVal = CV->getAPIntValue(); 2072 APInt NewVal = CVal & Mask; 2073 if (NewVal != CVal) 2074 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2075 break; 2076 } 2077 case ISD::OR: 2078 case ISD::XOR: 2079 // If the LHS or RHS don't contribute bits to the or, drop them. 2080 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2081 return V.getOperand(1); 2082 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2083 return V.getOperand(0); 2084 break; 2085 case ISD::SRL: 2086 // Only look at single-use SRLs. 2087 if (!V.getNode()->hasOneUse()) 2088 break; 2089 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2090 // See if we can recursively simplify the LHS. 2091 unsigned Amt = RHSC->getZExtValue(); 2092 2093 // Watch out for shift count overflow though. 2094 if (Amt >= Mask.getBitWidth()) 2095 break; 2096 APInt NewMask = Mask << Amt; 2097 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2098 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2099 V.getOperand(1)); 2100 } 2101 break; 2102 case ISD::AND: { 2103 // X & -1 -> X (ignoring bits which aren't demanded). 2104 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2105 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2106 return V.getOperand(0); 2107 break; 2108 } 2109 case ISD::ANY_EXTEND: { 2110 SDValue Src = V.getOperand(0); 2111 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2112 // Being conservative here - only peek through if we only demand bits in the 2113 // non-extended source (even though the extended bits are technically undef). 2114 if (Mask.getActiveBits() > SrcBitWidth) 2115 break; 2116 APInt SrcMask = Mask.trunc(SrcBitWidth); 2117 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2118 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2119 break; 2120 } 2121 } 2122 return SDValue(); 2123 } 2124 2125 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2126 /// use this predicate to simplify operations downstream. 2127 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2128 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2129 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2130 } 2131 2132 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2133 /// this predicate to simplify operations downstream. Mask is known to be zero 2134 /// for bits that V cannot have. 2135 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2136 unsigned Depth) const { 2137 return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero); 2138 } 2139 2140 /// isSplatValue - Return true if the vector V has the same value 2141 /// across all DemandedElts. 2142 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2143 APInt &UndefElts) { 2144 if (!DemandedElts) 2145 return false; // No demanded elts, better to assume we don't know anything. 2146 2147 EVT VT = V.getValueType(); 2148 assert(VT.isVector() && "Vector type expected"); 2149 2150 unsigned NumElts = VT.getVectorNumElements(); 2151 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2152 UndefElts = APInt::getNullValue(NumElts); 2153 2154 switch (V.getOpcode()) { 2155 case ISD::BUILD_VECTOR: { 2156 SDValue Scl; 2157 for (unsigned i = 0; i != NumElts; ++i) { 2158 SDValue Op = V.getOperand(i); 2159 if (Op.isUndef()) { 2160 UndefElts.setBit(i); 2161 continue; 2162 } 2163 if (!DemandedElts[i]) 2164 continue; 2165 if (Scl && Scl != Op) 2166 return false; 2167 Scl = Op; 2168 } 2169 return true; 2170 } 2171 case ISD::VECTOR_SHUFFLE: { 2172 // Check if this is a shuffle node doing a splat. 2173 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2174 int SplatIndex = -1; 2175 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2176 for (int i = 0; i != (int)NumElts; ++i) { 2177 int M = Mask[i]; 2178 if (M < 0) { 2179 UndefElts.setBit(i); 2180 continue; 2181 } 2182 if (!DemandedElts[i]) 2183 continue; 2184 if (0 <= SplatIndex && SplatIndex != M) 2185 return false; 2186 SplatIndex = M; 2187 } 2188 return true; 2189 } 2190 case ISD::EXTRACT_SUBVECTOR: { 2191 SDValue Src = V.getOperand(0); 2192 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2193 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2194 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2195 // Offset the demanded elts by the subvector index. 2196 uint64_t Idx = SubIdx->getZExtValue(); 2197 APInt UndefSrcElts; 2198 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2199 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2200 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2201 return true; 2202 } 2203 } 2204 break; 2205 } 2206 case ISD::ADD: 2207 case ISD::SUB: 2208 case ISD::AND: { 2209 APInt UndefLHS, UndefRHS; 2210 SDValue LHS = V.getOperand(0); 2211 SDValue RHS = V.getOperand(1); 2212 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2213 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2214 UndefElts = UndefLHS | UndefRHS; 2215 return true; 2216 } 2217 break; 2218 } 2219 } 2220 2221 return false; 2222 } 2223 2224 /// Helper wrapper to main isSplatValue function. 2225 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2226 EVT VT = V.getValueType(); 2227 assert(VT.isVector() && "Vector type expected"); 2228 unsigned NumElts = VT.getVectorNumElements(); 2229 2230 APInt UndefElts; 2231 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2232 return isSplatValue(V, DemandedElts, UndefElts) && 2233 (AllowUndefs || !UndefElts); 2234 } 2235 2236 /// Helper function that checks to see if a node is a constant or a 2237 /// build vector of splat constants at least within the demanded elts. 2238 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2239 const APInt &DemandedElts) { 2240 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2241 return CN; 2242 if (N.getOpcode() != ISD::BUILD_VECTOR) 2243 return nullptr; 2244 EVT VT = N.getValueType(); 2245 ConstantSDNode *Cst = nullptr; 2246 unsigned NumElts = VT.getVectorNumElements(); 2247 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2248 for (unsigned i = 0; i != NumElts; ++i) { 2249 if (!DemandedElts[i]) 2250 continue; 2251 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2252 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2253 C->getValueType(0) != VT.getScalarType()) 2254 return nullptr; 2255 Cst = C; 2256 } 2257 return Cst; 2258 } 2259 2260 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2261 /// is less than the element bit-width of the shift node, return it. 2262 static const APInt *getValidShiftAmountConstant(SDValue V) { 2263 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2264 // Shifting more than the bitwidth is not valid. 2265 const APInt &ShAmt = SA->getAPIntValue(); 2266 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2267 return &ShAmt; 2268 } 2269 return nullptr; 2270 } 2271 2272 /// Determine which bits of Op are known to be either zero or one and return 2273 /// them in Known. For vectors, the known bits are those that are shared by 2274 /// every vector element. 2275 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2276 EVT VT = Op.getValueType(); 2277 APInt DemandedElts = VT.isVector() 2278 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2279 : APInt(1, 1); 2280 return computeKnownBits(Op, DemandedElts, Depth); 2281 } 2282 2283 /// Determine which bits of Op are known to be either zero or one and return 2284 /// them in Known. The DemandedElts argument allows us to only collect the known 2285 /// bits that are shared by the requested vector elements. 2286 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2287 unsigned Depth) const { 2288 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2289 2290 KnownBits Known(BitWidth); // Don't know anything. 2291 2292 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2293 // We know all of the bits for a constant! 2294 Known.One = C->getAPIntValue(); 2295 Known.Zero = ~Known.One; 2296 return Known; 2297 } 2298 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2299 // We know all of the bits for a constant fp! 2300 Known.One = C->getValueAPF().bitcastToAPInt(); 2301 Known.Zero = ~Known.One; 2302 return Known; 2303 } 2304 2305 if (Depth == 6) 2306 return Known; // Limit search depth. 2307 2308 KnownBits Known2; 2309 unsigned NumElts = DemandedElts.getBitWidth(); 2310 assert((!Op.getValueType().isVector() || 2311 NumElts == Op.getValueType().getVectorNumElements()) && 2312 "Unexpected vector size"); 2313 2314 if (!DemandedElts) 2315 return Known; // No demanded elts, better to assume we don't know anything. 2316 2317 unsigned Opcode = Op.getOpcode(); 2318 switch (Opcode) { 2319 case ISD::BUILD_VECTOR: 2320 // Collect the known bits that are shared by every demanded vector element. 2321 Known.Zero.setAllBits(); Known.One.setAllBits(); 2322 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2323 if (!DemandedElts[i]) 2324 continue; 2325 2326 SDValue SrcOp = Op.getOperand(i); 2327 Known2 = computeKnownBits(SrcOp, Depth + 1); 2328 2329 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2330 if (SrcOp.getValueSizeInBits() != BitWidth) { 2331 assert(SrcOp.getValueSizeInBits() > BitWidth && 2332 "Expected BUILD_VECTOR implicit truncation"); 2333 Known2 = Known2.trunc(BitWidth); 2334 } 2335 2336 // Known bits are the values that are shared by every demanded element. 2337 Known.One &= Known2.One; 2338 Known.Zero &= Known2.Zero; 2339 2340 // If we don't know any bits, early out. 2341 if (Known.isUnknown()) 2342 break; 2343 } 2344 break; 2345 case ISD::VECTOR_SHUFFLE: { 2346 // Collect the known bits that are shared by every vector element referenced 2347 // by the shuffle. 2348 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2349 Known.Zero.setAllBits(); Known.One.setAllBits(); 2350 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2351 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2352 for (unsigned i = 0; i != NumElts; ++i) { 2353 if (!DemandedElts[i]) 2354 continue; 2355 2356 int M = SVN->getMaskElt(i); 2357 if (M < 0) { 2358 // For UNDEF elements, we don't know anything about the common state of 2359 // the shuffle result. 2360 Known.resetAll(); 2361 DemandedLHS.clearAllBits(); 2362 DemandedRHS.clearAllBits(); 2363 break; 2364 } 2365 2366 if ((unsigned)M < NumElts) 2367 DemandedLHS.setBit((unsigned)M % NumElts); 2368 else 2369 DemandedRHS.setBit((unsigned)M % NumElts); 2370 } 2371 // Known bits are the values that are shared by every demanded element. 2372 if (!!DemandedLHS) { 2373 SDValue LHS = Op.getOperand(0); 2374 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2375 Known.One &= Known2.One; 2376 Known.Zero &= Known2.Zero; 2377 } 2378 // If we don't know any bits, early out. 2379 if (Known.isUnknown()) 2380 break; 2381 if (!!DemandedRHS) { 2382 SDValue RHS = Op.getOperand(1); 2383 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2384 Known.One &= Known2.One; 2385 Known.Zero &= Known2.Zero; 2386 } 2387 break; 2388 } 2389 case ISD::CONCAT_VECTORS: { 2390 // Split DemandedElts and test each of the demanded subvectors. 2391 Known.Zero.setAllBits(); Known.One.setAllBits(); 2392 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2393 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2394 unsigned NumSubVectors = Op.getNumOperands(); 2395 for (unsigned i = 0; i != NumSubVectors; ++i) { 2396 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2397 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2398 if (!!DemandedSub) { 2399 SDValue Sub = Op.getOperand(i); 2400 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2401 Known.One &= Known2.One; 2402 Known.Zero &= Known2.Zero; 2403 } 2404 // If we don't know any bits, early out. 2405 if (Known.isUnknown()) 2406 break; 2407 } 2408 break; 2409 } 2410 case ISD::INSERT_SUBVECTOR: { 2411 // If we know the element index, demand any elements from the subvector and 2412 // the remainder from the src its inserted into, otherwise demand them all. 2413 SDValue Src = Op.getOperand(0); 2414 SDValue Sub = Op.getOperand(1); 2415 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2416 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2417 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2418 Known.One.setAllBits(); 2419 Known.Zero.setAllBits(); 2420 uint64_t Idx = SubIdx->getZExtValue(); 2421 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2422 if (!!DemandedSubElts) { 2423 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2424 if (Known.isUnknown()) 2425 break; // early-out. 2426 } 2427 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2428 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2429 if (!!DemandedSrcElts) { 2430 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2431 Known.One &= Known2.One; 2432 Known.Zero &= Known2.Zero; 2433 } 2434 } else { 2435 Known = computeKnownBits(Sub, Depth + 1); 2436 if (Known.isUnknown()) 2437 break; // early-out. 2438 Known2 = computeKnownBits(Src, Depth + 1); 2439 Known.One &= Known2.One; 2440 Known.Zero &= Known2.Zero; 2441 } 2442 break; 2443 } 2444 case ISD::EXTRACT_SUBVECTOR: { 2445 // If we know the element index, just demand that subvector elements, 2446 // otherwise demand them all. 2447 SDValue Src = Op.getOperand(0); 2448 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2449 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2450 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2451 // Offset the demanded elts by the subvector index. 2452 uint64_t Idx = SubIdx->getZExtValue(); 2453 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2454 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2455 } else { 2456 Known = computeKnownBits(Src, Depth + 1); 2457 } 2458 break; 2459 } 2460 case ISD::SCALAR_TO_VECTOR: { 2461 // We know about scalar_to_vector as much as we know about it source, 2462 // which becomes the first element of otherwise unknown vector. 2463 if (DemandedElts != 1) 2464 break; 2465 2466 SDValue N0 = Op.getOperand(0); 2467 Known = computeKnownBits(N0, Depth + 1); 2468 if (N0.getValueSizeInBits() != BitWidth) 2469 Known = Known.trunc(BitWidth); 2470 2471 break; 2472 } 2473 case ISD::BITCAST: { 2474 SDValue N0 = Op.getOperand(0); 2475 EVT SubVT = N0.getValueType(); 2476 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2477 2478 // Ignore bitcasts from unsupported types. 2479 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2480 break; 2481 2482 // Fast handling of 'identity' bitcasts. 2483 if (BitWidth == SubBitWidth) { 2484 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2485 break; 2486 } 2487 2488 bool IsLE = getDataLayout().isLittleEndian(); 2489 2490 // Bitcast 'small element' vector to 'large element' scalar/vector. 2491 if ((BitWidth % SubBitWidth) == 0) { 2492 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2493 2494 // Collect known bits for the (larger) output by collecting the known 2495 // bits from each set of sub elements and shift these into place. 2496 // We need to separately call computeKnownBits for each set of 2497 // sub elements as the knownbits for each is likely to be different. 2498 unsigned SubScale = BitWidth / SubBitWidth; 2499 APInt SubDemandedElts(NumElts * SubScale, 0); 2500 for (unsigned i = 0; i != NumElts; ++i) 2501 if (DemandedElts[i]) 2502 SubDemandedElts.setBit(i * SubScale); 2503 2504 for (unsigned i = 0; i != SubScale; ++i) { 2505 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2506 Depth + 1); 2507 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2508 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2509 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2510 } 2511 } 2512 2513 // Bitcast 'large element' scalar/vector to 'small element' vector. 2514 if ((SubBitWidth % BitWidth) == 0) { 2515 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2516 2517 // Collect known bits for the (smaller) output by collecting the known 2518 // bits from the overlapping larger input elements and extracting the 2519 // sub sections we actually care about. 2520 unsigned SubScale = SubBitWidth / BitWidth; 2521 APInt SubDemandedElts(NumElts / SubScale, 0); 2522 for (unsigned i = 0; i != NumElts; ++i) 2523 if (DemandedElts[i]) 2524 SubDemandedElts.setBit(i / SubScale); 2525 2526 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2527 2528 Known.Zero.setAllBits(); Known.One.setAllBits(); 2529 for (unsigned i = 0; i != NumElts; ++i) 2530 if (DemandedElts[i]) { 2531 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2532 unsigned Offset = (Shifts % SubScale) * BitWidth; 2533 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2534 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2535 // If we don't know any bits, early out. 2536 if (Known.isUnknown()) 2537 break; 2538 } 2539 } 2540 break; 2541 } 2542 case ISD::AND: 2543 // If either the LHS or the RHS are Zero, the result is zero. 2544 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2545 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2546 2547 // Output known-1 bits are only known if set in both the LHS & RHS. 2548 Known.One &= Known2.One; 2549 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2550 Known.Zero |= Known2.Zero; 2551 break; 2552 case ISD::OR: 2553 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2554 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2555 2556 // Output known-0 bits are only known if clear in both the LHS & RHS. 2557 Known.Zero &= Known2.Zero; 2558 // Output known-1 are known to be set if set in either the LHS | RHS. 2559 Known.One |= Known2.One; 2560 break; 2561 case ISD::XOR: { 2562 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2563 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2564 2565 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2566 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2567 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2568 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2569 Known.Zero = KnownZeroOut; 2570 break; 2571 } 2572 case ISD::MUL: { 2573 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2574 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2575 2576 // If low bits are zero in either operand, output low known-0 bits. 2577 // Also compute a conservative estimate for high known-0 bits. 2578 // More trickiness is possible, but this is sufficient for the 2579 // interesting case of alignment computation. 2580 unsigned TrailZ = Known.countMinTrailingZeros() + 2581 Known2.countMinTrailingZeros(); 2582 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2583 Known2.countMinLeadingZeros(), 2584 BitWidth) - BitWidth; 2585 2586 Known.resetAll(); 2587 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2588 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2589 break; 2590 } 2591 case ISD::UDIV: { 2592 // For the purposes of computing leading zeros we can conservatively 2593 // treat a udiv as a logical right shift by the power of 2 known to 2594 // be less than the denominator. 2595 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2596 unsigned LeadZ = Known2.countMinLeadingZeros(); 2597 2598 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2599 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2600 if (RHSMaxLeadingZeros != BitWidth) 2601 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2602 2603 Known.Zero.setHighBits(LeadZ); 2604 break; 2605 } 2606 case ISD::SELECT: 2607 case ISD::VSELECT: 2608 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2609 // If we don't know any bits, early out. 2610 if (Known.isUnknown()) 2611 break; 2612 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2613 2614 // Only known if known in both the LHS and RHS. 2615 Known.One &= Known2.One; 2616 Known.Zero &= Known2.Zero; 2617 break; 2618 case ISD::SELECT_CC: 2619 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2620 // If we don't know any bits, early out. 2621 if (Known.isUnknown()) 2622 break; 2623 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2624 2625 // Only known if known in both the LHS and RHS. 2626 Known.One &= Known2.One; 2627 Known.Zero &= Known2.Zero; 2628 break; 2629 case ISD::SMULO: 2630 case ISD::UMULO: 2631 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2632 if (Op.getResNo() != 1) 2633 break; 2634 // The boolean result conforms to getBooleanContents. 2635 // If we know the result of a setcc has the top bits zero, use this info. 2636 // We know that we have an integer-based boolean since these operations 2637 // are only available for integer. 2638 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2639 TargetLowering::ZeroOrOneBooleanContent && 2640 BitWidth > 1) 2641 Known.Zero.setBitsFrom(1); 2642 break; 2643 case ISD::SETCC: 2644 // If we know the result of a setcc has the top bits zero, use this info. 2645 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2646 TargetLowering::ZeroOrOneBooleanContent && 2647 BitWidth > 1) 2648 Known.Zero.setBitsFrom(1); 2649 break; 2650 case ISD::SHL: 2651 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2652 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2653 unsigned Shift = ShAmt->getZExtValue(); 2654 Known.Zero <<= Shift; 2655 Known.One <<= Shift; 2656 // Low bits are known zero. 2657 Known.Zero.setLowBits(Shift); 2658 } 2659 break; 2660 case ISD::SRL: 2661 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2662 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2663 unsigned Shift = ShAmt->getZExtValue(); 2664 Known.Zero.lshrInPlace(Shift); 2665 Known.One.lshrInPlace(Shift); 2666 // High bits are known zero. 2667 Known.Zero.setHighBits(Shift); 2668 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2669 // If the shift amount is a vector of constants see if we can bound 2670 // the number of upper zero bits. 2671 unsigned ShiftAmountMin = BitWidth; 2672 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2673 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2674 const APInt &ShAmt = C->getAPIntValue(); 2675 if (ShAmt.ult(BitWidth)) { 2676 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2677 ShAmt.getZExtValue()); 2678 continue; 2679 } 2680 } 2681 // Don't know anything. 2682 ShiftAmountMin = 0; 2683 break; 2684 } 2685 2686 Known.Zero.setHighBits(ShiftAmountMin); 2687 } 2688 break; 2689 case ISD::SRA: 2690 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2691 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2692 unsigned Shift = ShAmt->getZExtValue(); 2693 // Sign extend known zero/one bit (else is unknown). 2694 Known.Zero.ashrInPlace(Shift); 2695 Known.One.ashrInPlace(Shift); 2696 } 2697 break; 2698 case ISD::FSHL: 2699 case ISD::FSHR: 2700 if (ConstantSDNode *C = 2701 isConstOrDemandedConstSplat(Op.getOperand(2), DemandedElts)) { 2702 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2703 2704 // For fshl, 0-shift returns the 1st arg. 2705 // For fshr, 0-shift returns the 2nd arg. 2706 if (Amt == 0) { 2707 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2708 DemandedElts, Depth + 1); 2709 break; 2710 } 2711 2712 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2713 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2714 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2715 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2716 if (Opcode == ISD::FSHL) { 2717 Known.One <<= Amt; 2718 Known.Zero <<= Amt; 2719 Known2.One.lshrInPlace(BitWidth - Amt); 2720 Known2.Zero.lshrInPlace(BitWidth - Amt); 2721 } else { 2722 Known.One <<= BitWidth - Amt; 2723 Known.Zero <<= BitWidth - Amt; 2724 Known2.One.lshrInPlace(Amt); 2725 Known2.Zero.lshrInPlace(Amt); 2726 } 2727 Known.One |= Known2.One; 2728 Known.Zero |= Known2.Zero; 2729 } 2730 break; 2731 case ISD::SIGN_EXTEND_INREG: { 2732 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2733 unsigned EBits = EVT.getScalarSizeInBits(); 2734 2735 // Sign extension. Compute the demanded bits in the result that are not 2736 // present in the input. 2737 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2738 2739 APInt InSignMask = APInt::getSignMask(EBits); 2740 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2741 2742 // If the sign extended bits are demanded, we know that the sign 2743 // bit is demanded. 2744 InSignMask = InSignMask.zext(BitWidth); 2745 if (NewBits.getBoolValue()) 2746 InputDemandedBits |= InSignMask; 2747 2748 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2749 Known.One &= InputDemandedBits; 2750 Known.Zero &= InputDemandedBits; 2751 2752 // If the sign bit of the input is known set or clear, then we know the 2753 // top bits of the result. 2754 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2755 Known.Zero |= NewBits; 2756 Known.One &= ~NewBits; 2757 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2758 Known.One |= NewBits; 2759 Known.Zero &= ~NewBits; 2760 } else { // Input sign bit unknown 2761 Known.Zero &= ~NewBits; 2762 Known.One &= ~NewBits; 2763 } 2764 break; 2765 } 2766 case ISD::CTTZ: 2767 case ISD::CTTZ_ZERO_UNDEF: { 2768 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2769 // If we have a known 1, its position is our upper bound. 2770 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2771 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2772 Known.Zero.setBitsFrom(LowBits); 2773 break; 2774 } 2775 case ISD::CTLZ: 2776 case ISD::CTLZ_ZERO_UNDEF: { 2777 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2778 // If we have a known 1, its position is our upper bound. 2779 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2780 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2781 Known.Zero.setBitsFrom(LowBits); 2782 break; 2783 } 2784 case ISD::CTPOP: { 2785 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2786 // If we know some of the bits are zero, they can't be one. 2787 unsigned PossibleOnes = Known2.countMaxPopulation(); 2788 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2789 break; 2790 } 2791 case ISD::LOAD: { 2792 LoadSDNode *LD = cast<LoadSDNode>(Op); 2793 // If this is a ZEXTLoad and we are looking at the loaded value. 2794 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2795 EVT VT = LD->getMemoryVT(); 2796 unsigned MemBits = VT.getScalarSizeInBits(); 2797 Known.Zero.setBitsFrom(MemBits); 2798 } else if (const MDNode *Ranges = LD->getRanges()) { 2799 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2800 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2801 } 2802 break; 2803 } 2804 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2805 EVT InVT = Op.getOperand(0).getValueType(); 2806 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2807 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2808 Known = Known.zext(BitWidth); 2809 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2810 break; 2811 } 2812 case ISD::ZERO_EXTEND: { 2813 EVT InVT = Op.getOperand(0).getValueType(); 2814 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2815 Known = Known.zext(BitWidth); 2816 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2817 break; 2818 } 2819 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2820 case ISD::SIGN_EXTEND: { 2821 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2822 // If the sign bit is known to be zero or one, then sext will extend 2823 // it to the top bits, else it will just zext. 2824 Known = Known.sext(BitWidth); 2825 break; 2826 } 2827 case ISD::ANY_EXTEND: { 2828 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2829 Known = Known.zext(BitWidth); 2830 break; 2831 } 2832 case ISD::TRUNCATE: { 2833 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2834 Known = Known.trunc(BitWidth); 2835 break; 2836 } 2837 case ISD::AssertZext: { 2838 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2839 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2840 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2841 Known.Zero |= (~InMask); 2842 Known.One &= (~Known.Zero); 2843 break; 2844 } 2845 case ISD::FGETSIGN: 2846 // All bits are zero except the low bit. 2847 Known.Zero.setBitsFrom(1); 2848 break; 2849 case ISD::USUBO: 2850 case ISD::SSUBO: 2851 if (Op.getResNo() == 1) { 2852 // If we know the result of a setcc has the top bits zero, use this info. 2853 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2854 TargetLowering::ZeroOrOneBooleanContent && 2855 BitWidth > 1) 2856 Known.Zero.setBitsFrom(1); 2857 break; 2858 } 2859 LLVM_FALLTHROUGH; 2860 case ISD::SUB: 2861 case ISD::SUBC: { 2862 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2863 // We know that the top bits of C-X are clear if X contains less bits 2864 // than C (i.e. no wrap-around can happen). For example, 20-X is 2865 // positive if we can prove that X is >= 0 and < 16. 2866 if (CLHS->getAPIntValue().isNonNegative()) { 2867 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2868 // NLZ can't be BitWidth with no sign bit 2869 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2870 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, 2871 Depth + 1); 2872 2873 // If all of the MaskV bits are known to be zero, then we know the 2874 // output top bits are zero, because we now know that the output is 2875 // from [0-C]. 2876 if ((Known2.Zero & MaskV) == MaskV) { 2877 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2878 // Top bits known zero. 2879 Known.Zero.setHighBits(NLZ2); 2880 } 2881 } 2882 } 2883 2884 // If low bits are know to be zero in both operands, then we know they are 2885 // going to be 0 in the result. Both addition and complement operations 2886 // preserve the low zero bits. 2887 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2889 if (KnownZeroLow == 0) 2890 break; 2891 2892 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2893 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2894 Known.Zero.setLowBits(KnownZeroLow); 2895 break; 2896 } 2897 case ISD::UADDO: 2898 case ISD::SADDO: 2899 case ISD::ADDCARRY: 2900 if (Op.getResNo() == 1) { 2901 // If we know the result of a setcc has the top bits zero, use this info. 2902 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2903 TargetLowering::ZeroOrOneBooleanContent && 2904 BitWidth > 1) 2905 Known.Zero.setBitsFrom(1); 2906 break; 2907 } 2908 LLVM_FALLTHROUGH; 2909 case ISD::ADD: 2910 case ISD::ADDC: 2911 case ISD::ADDE: { 2912 // Output known-0 bits are known if clear or set in both the low clear bits 2913 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2914 // low 3 bits clear. 2915 // Output known-0 bits are also known if the top bits of each input are 2916 // known to be clear. For example, if one input has the top 10 bits clear 2917 // and the other has the top 8 bits clear, we know the top 7 bits of the 2918 // output must be clear. 2919 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2920 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2921 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2922 2923 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2924 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2925 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2926 2927 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2928 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2929 // use this information if we know (at least) that the low two bits are 2930 // clear. We then return to the caller that the low bit is unknown but 2931 // that other bits are known zero. 2932 if (KnownZeroLow >= 2) 2933 Known.Zero.setBits(1, KnownZeroLow); 2934 break; 2935 } 2936 2937 Known.Zero.setLowBits(KnownZeroLow); 2938 if (KnownZeroHigh > 1) 2939 Known.Zero.setHighBits(KnownZeroHigh - 1); 2940 break; 2941 } 2942 case ISD::SREM: 2943 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2944 const APInt &RA = Rem->getAPIntValue().abs(); 2945 if (RA.isPowerOf2()) { 2946 APInt LowBits = RA - 1; 2947 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2948 2949 // The low bits of the first operand are unchanged by the srem. 2950 Known.Zero = Known2.Zero & LowBits; 2951 Known.One = Known2.One & LowBits; 2952 2953 // If the first operand is non-negative or has all low bits zero, then 2954 // the upper bits are all zero. 2955 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2956 Known.Zero |= ~LowBits; 2957 2958 // If the first operand is negative and not all low bits are zero, then 2959 // the upper bits are all one. 2960 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2961 Known.One |= ~LowBits; 2962 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2963 } 2964 } 2965 break; 2966 case ISD::UREM: { 2967 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2968 const APInt &RA = Rem->getAPIntValue(); 2969 if (RA.isPowerOf2()) { 2970 APInt LowBits = (RA - 1); 2971 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2972 2973 // The upper bits are all zero, the lower ones are unchanged. 2974 Known.Zero = Known2.Zero | ~LowBits; 2975 Known.One = Known2.One & LowBits; 2976 break; 2977 } 2978 } 2979 2980 // Since the result is less than or equal to either operand, any leading 2981 // zero bits in either operand must also exist in the result. 2982 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2983 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2984 2985 uint32_t Leaders = 2986 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2987 Known.resetAll(); 2988 Known.Zero.setHighBits(Leaders); 2989 break; 2990 } 2991 case ISD::EXTRACT_ELEMENT: { 2992 Known = computeKnownBits(Op.getOperand(0), Depth+1); 2993 const unsigned Index = Op.getConstantOperandVal(1); 2994 const unsigned BitWidth = Op.getValueSizeInBits(); 2995 2996 // Remove low part of known bits mask 2997 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2998 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2999 3000 // Remove high part of known bit mask 3001 Known = Known.trunc(BitWidth); 3002 break; 3003 } 3004 case ISD::EXTRACT_VECTOR_ELT: { 3005 SDValue InVec = Op.getOperand(0); 3006 SDValue EltNo = Op.getOperand(1); 3007 EVT VecVT = InVec.getValueType(); 3008 const unsigned BitWidth = Op.getValueSizeInBits(); 3009 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3010 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3011 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3012 // anything about the extended bits. 3013 if (BitWidth > EltBitWidth) 3014 Known = Known.trunc(EltBitWidth); 3015 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3016 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3017 // If we know the element index, just demand that vector element. 3018 unsigned Idx = ConstEltNo->getZExtValue(); 3019 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3020 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3021 } else { 3022 // Unknown element index, so ignore DemandedElts and demand them all. 3023 Known = computeKnownBits(InVec, Depth + 1); 3024 } 3025 if (BitWidth > EltBitWidth) 3026 Known = Known.zext(BitWidth); 3027 break; 3028 } 3029 case ISD::INSERT_VECTOR_ELT: { 3030 SDValue InVec = Op.getOperand(0); 3031 SDValue InVal = Op.getOperand(1); 3032 SDValue EltNo = Op.getOperand(2); 3033 3034 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3035 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3036 // If we know the element index, split the demand between the 3037 // source vector and the inserted element. 3038 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3039 unsigned EltIdx = CEltNo->getZExtValue(); 3040 3041 // If we demand the inserted element then add its common known bits. 3042 if (DemandedElts[EltIdx]) { 3043 Known2 = computeKnownBits(InVal, Depth + 1); 3044 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3045 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3046 } 3047 3048 // If we demand the source vector then add its common known bits, ensuring 3049 // that we don't demand the inserted element. 3050 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3051 if (!!VectorElts) { 3052 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3053 Known.One &= Known2.One; 3054 Known.Zero &= Known2.Zero; 3055 } 3056 } else { 3057 // Unknown element index, so ignore DemandedElts and demand them all. 3058 Known = computeKnownBits(InVec, Depth + 1); 3059 Known2 = computeKnownBits(InVal, Depth + 1); 3060 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3061 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3062 } 3063 break; 3064 } 3065 case ISD::BITREVERSE: { 3066 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3067 Known.Zero = Known2.Zero.reverseBits(); 3068 Known.One = Known2.One.reverseBits(); 3069 break; 3070 } 3071 case ISD::BSWAP: { 3072 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3073 Known.Zero = Known2.Zero.byteSwap(); 3074 Known.One = Known2.One.byteSwap(); 3075 break; 3076 } 3077 case ISD::ABS: { 3078 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3079 3080 // If the source's MSB is zero then we know the rest of the bits already. 3081 if (Known2.isNonNegative()) { 3082 Known.Zero = Known2.Zero; 3083 Known.One = Known2.One; 3084 break; 3085 } 3086 3087 // We only know that the absolute values's MSB will be zero iff there is 3088 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3089 Known2.One.clearSignBit(); 3090 if (Known2.One.getBoolValue()) { 3091 Known.Zero = APInt::getSignMask(BitWidth); 3092 break; 3093 } 3094 break; 3095 } 3096 case ISD::UMIN: { 3097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3099 3100 // UMIN - we know that the result will have the maximum of the 3101 // known zero leading bits of the inputs. 3102 unsigned LeadZero = Known.countMinLeadingZeros(); 3103 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3104 3105 Known.Zero &= Known2.Zero; 3106 Known.One &= Known2.One; 3107 Known.Zero.setHighBits(LeadZero); 3108 break; 3109 } 3110 case ISD::UMAX: { 3111 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3112 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3113 3114 // UMAX - we know that the result will have the maximum of the 3115 // known one leading bits of the inputs. 3116 unsigned LeadOne = Known.countMinLeadingOnes(); 3117 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3118 3119 Known.Zero &= Known2.Zero; 3120 Known.One &= Known2.One; 3121 Known.One.setHighBits(LeadOne); 3122 break; 3123 } 3124 case ISD::SMIN: 3125 case ISD::SMAX: { 3126 // If we have a clamp pattern, we know that the number of sign bits will be 3127 // the minimum of the clamp min/max range. 3128 bool IsMax = (Opcode == ISD::SMAX); 3129 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3130 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 3131 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3132 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 3133 DemandedElts); 3134 if (CstLow && CstHigh) { 3135 if (!IsMax) 3136 std::swap(CstLow, CstHigh); 3137 3138 const APInt &ValueLow = CstLow->getAPIntValue(); 3139 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3140 if (ValueLow.sle(ValueHigh)) { 3141 unsigned LowSignBits = ValueLow.getNumSignBits(); 3142 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3143 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3144 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3145 Known.One.setHighBits(MinSignBits); 3146 break; 3147 } 3148 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3149 Known.Zero.setHighBits(MinSignBits); 3150 break; 3151 } 3152 } 3153 } 3154 3155 // Fallback - just get the shared known bits of the operands. 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 if (Known.isUnknown()) break; // Early-out 3158 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known.Zero &= Known2.Zero; 3160 Known.One &= Known2.One; 3161 break; 3162 } 3163 case ISD::FrameIndex: 3164 case ISD::TargetFrameIndex: 3165 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3166 break; 3167 3168 default: 3169 if (Opcode < ISD::BUILTIN_OP_END) 3170 break; 3171 LLVM_FALLTHROUGH; 3172 case ISD::INTRINSIC_WO_CHAIN: 3173 case ISD::INTRINSIC_W_CHAIN: 3174 case ISD::INTRINSIC_VOID: 3175 // Allow the target to implement this method for its nodes. 3176 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3177 break; 3178 } 3179 3180 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3181 return Known; 3182 } 3183 3184 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3185 SDValue N1) const { 3186 // X + 0 never overflow 3187 if (isNullConstant(N1)) 3188 return OFK_Never; 3189 3190 KnownBits N1Known; 3191 computeKnownBits(N1, N1Known); 3192 if (N1Known.Zero.getBoolValue()) { 3193 KnownBits N0Known; 3194 computeKnownBits(N0, N0Known); 3195 3196 bool overflow; 3197 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3198 if (!overflow) 3199 return OFK_Never; 3200 } 3201 3202 // mulhi + 1 never overflow 3203 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3204 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3205 return OFK_Never; 3206 3207 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3208 KnownBits N0Known; 3209 computeKnownBits(N0, N0Known); 3210 3211 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3212 return OFK_Never; 3213 } 3214 3215 return OFK_Sometime; 3216 } 3217 3218 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3219 EVT OpVT = Val.getValueType(); 3220 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3221 3222 // Is the constant a known power of 2? 3223 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3224 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3225 3226 // A left-shift of a constant one will have exactly one bit set because 3227 // shifting the bit off the end is undefined. 3228 if (Val.getOpcode() == ISD::SHL) { 3229 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3230 if (C && C->getAPIntValue() == 1) 3231 return true; 3232 } 3233 3234 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3235 // one bit set. 3236 if (Val.getOpcode() == ISD::SRL) { 3237 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3238 if (C && C->getAPIntValue().isSignMask()) 3239 return true; 3240 } 3241 3242 // Are all operands of a build vector constant powers of two? 3243 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3244 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3245 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3246 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3247 return false; 3248 })) 3249 return true; 3250 3251 // More could be done here, though the above checks are enough 3252 // to handle some common cases. 3253 3254 // Fall back to computeKnownBits to catch other known cases. 3255 KnownBits Known = computeKnownBits(Val); 3256 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3257 } 3258 3259 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3260 EVT VT = Op.getValueType(); 3261 APInt DemandedElts = VT.isVector() 3262 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3263 : APInt(1, 1); 3264 return ComputeNumSignBits(Op, DemandedElts, Depth); 3265 } 3266 3267 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3268 unsigned Depth) const { 3269 EVT VT = Op.getValueType(); 3270 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3271 unsigned VTBits = VT.getScalarSizeInBits(); 3272 unsigned NumElts = DemandedElts.getBitWidth(); 3273 unsigned Tmp, Tmp2; 3274 unsigned FirstAnswer = 1; 3275 3276 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3277 const APInt &Val = C->getAPIntValue(); 3278 return Val.getNumSignBits(); 3279 } 3280 3281 if (Depth == 6) 3282 return 1; // Limit search depth. 3283 3284 if (!DemandedElts) 3285 return 1; // No demanded elts, better to assume we don't know anything. 3286 3287 unsigned Opcode = Op.getOpcode(); 3288 switch (Opcode) { 3289 default: break; 3290 case ISD::AssertSext: 3291 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3292 return VTBits-Tmp+1; 3293 case ISD::AssertZext: 3294 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3295 return VTBits-Tmp; 3296 3297 case ISD::BUILD_VECTOR: 3298 Tmp = VTBits; 3299 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3300 if (!DemandedElts[i]) 3301 continue; 3302 3303 SDValue SrcOp = Op.getOperand(i); 3304 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3305 3306 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3307 if (SrcOp.getValueSizeInBits() != VTBits) { 3308 assert(SrcOp.getValueSizeInBits() > VTBits && 3309 "Expected BUILD_VECTOR implicit truncation"); 3310 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3311 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3312 } 3313 Tmp = std::min(Tmp, Tmp2); 3314 } 3315 return Tmp; 3316 3317 case ISD::VECTOR_SHUFFLE: { 3318 // Collect the minimum number of sign bits that are shared by every vector 3319 // element referenced by the shuffle. 3320 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3321 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3322 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3323 for (unsigned i = 0; i != NumElts; ++i) { 3324 int M = SVN->getMaskElt(i); 3325 if (!DemandedElts[i]) 3326 continue; 3327 // For UNDEF elements, we don't know anything about the common state of 3328 // the shuffle result. 3329 if (M < 0) 3330 return 1; 3331 if ((unsigned)M < NumElts) 3332 DemandedLHS.setBit((unsigned)M % NumElts); 3333 else 3334 DemandedRHS.setBit((unsigned)M % NumElts); 3335 } 3336 Tmp = std::numeric_limits<unsigned>::max(); 3337 if (!!DemandedLHS) 3338 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3339 if (!!DemandedRHS) { 3340 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3341 Tmp = std::min(Tmp, Tmp2); 3342 } 3343 // If we don't know anything, early out and try computeKnownBits fall-back. 3344 if (Tmp == 1) 3345 break; 3346 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3347 return Tmp; 3348 } 3349 3350 case ISD::BITCAST: { 3351 SDValue N0 = Op.getOperand(0); 3352 EVT SrcVT = N0.getValueType(); 3353 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3354 3355 // Ignore bitcasts from unsupported types.. 3356 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3357 break; 3358 3359 // Fast handling of 'identity' bitcasts. 3360 if (VTBits == SrcBits) 3361 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3362 3363 bool IsLE = getDataLayout().isLittleEndian(); 3364 3365 // Bitcast 'large element' scalar/vector to 'small element' vector. 3366 if ((SrcBits % VTBits) == 0) { 3367 assert(VT.isVector() && "Expected bitcast to vector"); 3368 3369 unsigned Scale = SrcBits / VTBits; 3370 APInt SrcDemandedElts(NumElts / Scale, 0); 3371 for (unsigned i = 0; i != NumElts; ++i) 3372 if (DemandedElts[i]) 3373 SrcDemandedElts.setBit(i / Scale); 3374 3375 // Fast case - sign splat can be simply split across the small elements. 3376 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3377 if (Tmp == SrcBits) 3378 return VTBits; 3379 3380 // Slow case - determine how far the sign extends into each sub-element. 3381 Tmp2 = VTBits; 3382 for (unsigned i = 0; i != NumElts; ++i) 3383 if (DemandedElts[i]) { 3384 unsigned SubOffset = i % Scale; 3385 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3386 SubOffset = SubOffset * VTBits; 3387 if (Tmp <= SubOffset) 3388 return 1; 3389 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3390 } 3391 return Tmp2; 3392 } 3393 break; 3394 } 3395 3396 case ISD::SIGN_EXTEND: 3397 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3398 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3399 case ISD::SIGN_EXTEND_INREG: 3400 // Max of the input and what this extends. 3401 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3402 Tmp = VTBits-Tmp+1; 3403 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3404 return std::max(Tmp, Tmp2); 3405 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3406 SDValue Src = Op.getOperand(0); 3407 EVT SrcVT = Src.getValueType(); 3408 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3409 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3410 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3411 } 3412 3413 case ISD::SRA: 3414 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3415 // SRA X, C -> adds C sign bits. 3416 if (ConstantSDNode *C = 3417 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3418 APInt ShiftVal = C->getAPIntValue(); 3419 ShiftVal += Tmp; 3420 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3421 } 3422 return Tmp; 3423 case ISD::SHL: 3424 if (ConstantSDNode *C = 3425 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3426 // shl destroys sign bits. 3427 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3428 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3429 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3430 return Tmp - C->getZExtValue(); 3431 } 3432 break; 3433 case ISD::AND: 3434 case ISD::OR: 3435 case ISD::XOR: // NOT is handled here. 3436 // Logical binary ops preserve the number of sign bits at the worst. 3437 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3438 if (Tmp != 1) { 3439 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3440 FirstAnswer = std::min(Tmp, Tmp2); 3441 // We computed what we know about the sign bits as our first 3442 // answer. Now proceed to the generic code that uses 3443 // computeKnownBits, and pick whichever answer is better. 3444 } 3445 break; 3446 3447 case ISD::SELECT: 3448 case ISD::VSELECT: 3449 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3450 if (Tmp == 1) return 1; // Early out. 3451 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3452 return std::min(Tmp, Tmp2); 3453 case ISD::SELECT_CC: 3454 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3455 if (Tmp == 1) return 1; // Early out. 3456 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3457 return std::min(Tmp, Tmp2); 3458 3459 case ISD::SMIN: 3460 case ISD::SMAX: { 3461 // If we have a clamp pattern, we know that the number of sign bits will be 3462 // the minimum of the clamp min/max range. 3463 bool IsMax = (Opcode == ISD::SMAX); 3464 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3465 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts))) 3466 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3467 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1), 3468 DemandedElts); 3469 if (CstLow && CstHigh) { 3470 if (!IsMax) 3471 std::swap(CstLow, CstHigh); 3472 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3473 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3474 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3475 return std::min(Tmp, Tmp2); 3476 } 3477 } 3478 3479 // Fallback - just get the minimum number of sign bits of the operands. 3480 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3481 if (Tmp == 1) 3482 return 1; // Early out. 3483 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3484 return std::min(Tmp, Tmp2); 3485 } 3486 case ISD::UMIN: 3487 case ISD::UMAX: 3488 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3489 if (Tmp == 1) 3490 return 1; // Early out. 3491 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3492 return std::min(Tmp, Tmp2); 3493 case ISD::SADDO: 3494 case ISD::UADDO: 3495 case ISD::SSUBO: 3496 case ISD::USUBO: 3497 case ISD::SMULO: 3498 case ISD::UMULO: 3499 if (Op.getResNo() != 1) 3500 break; 3501 // The boolean result conforms to getBooleanContents. Fall through. 3502 // If setcc returns 0/-1, all bits are sign bits. 3503 // We know that we have an integer-based boolean since these operations 3504 // are only available for integer. 3505 if (TLI->getBooleanContents(VT.isVector(), false) == 3506 TargetLowering::ZeroOrNegativeOneBooleanContent) 3507 return VTBits; 3508 break; 3509 case ISD::SETCC: 3510 // If setcc returns 0/-1, all bits are sign bits. 3511 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3512 TargetLowering::ZeroOrNegativeOneBooleanContent) 3513 return VTBits; 3514 break; 3515 case ISD::ROTL: 3516 case ISD::ROTR: 3517 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3518 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3519 3520 // Handle rotate right by N like a rotate left by 32-N. 3521 if (Opcode == ISD::ROTR) 3522 RotAmt = (VTBits - RotAmt) % VTBits; 3523 3524 // If we aren't rotating out all of the known-in sign bits, return the 3525 // number that are left. This handles rotl(sext(x), 1) for example. 3526 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3527 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3528 } 3529 break; 3530 case ISD::ADD: 3531 case ISD::ADDC: 3532 // Add can have at most one carry bit. Thus we know that the output 3533 // is, at worst, one more bit than the inputs. 3534 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3535 if (Tmp == 1) return 1; // Early out. 3536 3537 // Special case decrementing a value (ADD X, -1): 3538 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3539 if (CRHS->isAllOnesValue()) { 3540 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3541 3542 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3543 // sign bits set. 3544 if ((Known.Zero | 1).isAllOnesValue()) 3545 return VTBits; 3546 3547 // If we are subtracting one from a positive number, there is no carry 3548 // out of the result. 3549 if (Known.isNonNegative()) 3550 return Tmp; 3551 } 3552 3553 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3554 if (Tmp2 == 1) return 1; 3555 return std::min(Tmp, Tmp2)-1; 3556 3557 case ISD::SUB: 3558 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3559 if (Tmp2 == 1) return 1; 3560 3561 // Handle NEG. 3562 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3563 if (CLHS->isNullValue()) { 3564 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3565 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3566 // sign bits set. 3567 if ((Known.Zero | 1).isAllOnesValue()) 3568 return VTBits; 3569 3570 // If the input is known to be positive (the sign bit is known clear), 3571 // the output of the NEG has the same number of sign bits as the input. 3572 if (Known.isNonNegative()) 3573 return Tmp2; 3574 3575 // Otherwise, we treat this like a SUB. 3576 } 3577 3578 // Sub can have at most one carry bit. Thus we know that the output 3579 // is, at worst, one more bit than the inputs. 3580 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3581 if (Tmp == 1) return 1; // Early out. 3582 return std::min(Tmp, Tmp2)-1; 3583 case ISD::TRUNCATE: { 3584 // Check if the sign bits of source go down as far as the truncated value. 3585 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3586 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3587 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3588 return NumSrcSignBits - (NumSrcBits - VTBits); 3589 break; 3590 } 3591 case ISD::EXTRACT_ELEMENT: { 3592 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3593 const int BitWidth = Op.getValueSizeInBits(); 3594 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3595 3596 // Get reverse index (starting from 1), Op1 value indexes elements from 3597 // little end. Sign starts at big end. 3598 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3599 3600 // If the sign portion ends in our element the subtraction gives correct 3601 // result. Otherwise it gives either negative or > bitwidth result 3602 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3603 } 3604 case ISD::INSERT_VECTOR_ELT: { 3605 SDValue InVec = Op.getOperand(0); 3606 SDValue InVal = Op.getOperand(1); 3607 SDValue EltNo = Op.getOperand(2); 3608 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3609 3610 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3611 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3612 // If we know the element index, split the demand between the 3613 // source vector and the inserted element. 3614 unsigned EltIdx = CEltNo->getZExtValue(); 3615 3616 // If we demand the inserted element then get its sign bits. 3617 Tmp = std::numeric_limits<unsigned>::max(); 3618 if (DemandedElts[EltIdx]) { 3619 // TODO - handle implicit truncation of inserted elements. 3620 if (InVal.getScalarValueSizeInBits() != VTBits) 3621 break; 3622 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3623 } 3624 3625 // If we demand the source vector then get its sign bits, and determine 3626 // the minimum. 3627 APInt VectorElts = DemandedElts; 3628 VectorElts.clearBit(EltIdx); 3629 if (!!VectorElts) { 3630 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3631 Tmp = std::min(Tmp, Tmp2); 3632 } 3633 } else { 3634 // Unknown element index, so ignore DemandedElts and demand them all. 3635 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3636 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3637 Tmp = std::min(Tmp, Tmp2); 3638 } 3639 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3640 return Tmp; 3641 } 3642 case ISD::EXTRACT_VECTOR_ELT: { 3643 SDValue InVec = Op.getOperand(0); 3644 SDValue EltNo = Op.getOperand(1); 3645 EVT VecVT = InVec.getValueType(); 3646 const unsigned BitWidth = Op.getValueSizeInBits(); 3647 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3648 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3649 3650 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3651 // anything about sign bits. But if the sizes match we can derive knowledge 3652 // about sign bits from the vector operand. 3653 if (BitWidth != EltBitWidth) 3654 break; 3655 3656 // If we know the element index, just demand that vector element, else for 3657 // an unknown element index, ignore DemandedElts and demand them all. 3658 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3659 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3660 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3661 DemandedSrcElts = 3662 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3663 3664 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3665 } 3666 case ISD::EXTRACT_SUBVECTOR: { 3667 // If we know the element index, just demand that subvector elements, 3668 // otherwise demand them all. 3669 SDValue Src = Op.getOperand(0); 3670 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3671 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3672 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3673 // Offset the demanded elts by the subvector index. 3674 uint64_t Idx = SubIdx->getZExtValue(); 3675 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3676 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3677 } 3678 return ComputeNumSignBits(Src, Depth + 1); 3679 } 3680 case ISD::CONCAT_VECTORS: 3681 // Determine the minimum number of sign bits across all demanded 3682 // elts of the input vectors. Early out if the result is already 1. 3683 Tmp = std::numeric_limits<unsigned>::max(); 3684 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3685 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3686 unsigned NumSubVectors = Op.getNumOperands(); 3687 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3688 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3689 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3690 if (!DemandedSub) 3691 continue; 3692 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3693 Tmp = std::min(Tmp, Tmp2); 3694 } 3695 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3696 return Tmp; 3697 } 3698 3699 // If we are looking at the loaded value of the SDNode. 3700 if (Op.getResNo() == 0) { 3701 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3702 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3703 unsigned ExtType = LD->getExtensionType(); 3704 switch (ExtType) { 3705 default: break; 3706 case ISD::SEXTLOAD: // '17' bits known 3707 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3708 return VTBits-Tmp+1; 3709 case ISD::ZEXTLOAD: // '16' bits known 3710 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3711 return VTBits-Tmp; 3712 } 3713 } 3714 } 3715 3716 // Allow the target to implement this method for its nodes. 3717 if (Opcode >= ISD::BUILTIN_OP_END || 3718 Opcode == ISD::INTRINSIC_WO_CHAIN || 3719 Opcode == ISD::INTRINSIC_W_CHAIN || 3720 Opcode == ISD::INTRINSIC_VOID) { 3721 unsigned NumBits = 3722 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3723 if (NumBits > 1) 3724 FirstAnswer = std::max(FirstAnswer, NumBits); 3725 } 3726 3727 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3728 // use this information. 3729 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3730 3731 APInt Mask; 3732 if (Known.isNonNegative()) { // sign bit is 0 3733 Mask = Known.Zero; 3734 } else if (Known.isNegative()) { // sign bit is 1; 3735 Mask = Known.One; 3736 } else { 3737 // Nothing known. 3738 return FirstAnswer; 3739 } 3740 3741 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3742 // the number of identical bits in the top of the input value. 3743 Mask = ~Mask; 3744 Mask <<= Mask.getBitWidth()-VTBits; 3745 // Return # leading zeros. We use 'min' here in case Val was zero before 3746 // shifting. We don't want to return '64' as for an i32 "0". 3747 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3748 } 3749 3750 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3751 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3752 !isa<ConstantSDNode>(Op.getOperand(1))) 3753 return false; 3754 3755 if (Op.getOpcode() == ISD::OR && 3756 !MaskedValueIsZero(Op.getOperand(0), 3757 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3758 return false; 3759 3760 return true; 3761 } 3762 3763 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3764 // If we're told that NaNs won't happen, assume they won't. 3765 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3766 return true; 3767 3768 if (Depth == 6) 3769 return false; // Limit search depth. 3770 3771 // TODO: Handle vectors. 3772 // If the value is a constant, we can obviously see if it is a NaN or not. 3773 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3774 return !C->getValueAPF().isNaN() || 3775 (SNaN && !C->getValueAPF().isSignaling()); 3776 } 3777 3778 unsigned Opcode = Op.getOpcode(); 3779 switch (Opcode) { 3780 case ISD::FADD: 3781 case ISD::FSUB: 3782 case ISD::FMUL: 3783 case ISD::FDIV: 3784 case ISD::FREM: 3785 case ISD::FSIN: 3786 case ISD::FCOS: { 3787 if (SNaN) 3788 return true; 3789 // TODO: Need isKnownNeverInfinity 3790 return false; 3791 } 3792 case ISD::FCANONICALIZE: 3793 case ISD::FEXP: 3794 case ISD::FEXP2: 3795 case ISD::FTRUNC: 3796 case ISD::FFLOOR: 3797 case ISD::FCEIL: 3798 case ISD::FROUND: 3799 case ISD::FRINT: 3800 case ISD::FNEARBYINT: { 3801 if (SNaN) 3802 return true; 3803 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3804 } 3805 case ISD::FABS: 3806 case ISD::FNEG: 3807 case ISD::FCOPYSIGN: { 3808 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3809 } 3810 case ISD::SELECT: 3811 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3812 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3813 case ISD::FP_EXTEND: 3814 case ISD::FP_ROUND: { 3815 if (SNaN) 3816 return true; 3817 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3818 } 3819 case ISD::SINT_TO_FP: 3820 case ISD::UINT_TO_FP: 3821 return true; 3822 case ISD::FMA: 3823 case ISD::FMAD: { 3824 if (SNaN) 3825 return true; 3826 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3827 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 3828 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 3829 } 3830 case ISD::FSQRT: // Need is known positive 3831 case ISD::FLOG: 3832 case ISD::FLOG2: 3833 case ISD::FLOG10: 3834 case ISD::FPOWI: 3835 case ISD::FPOW: { 3836 if (SNaN) 3837 return true; 3838 // TODO: Refine on operand 3839 return false; 3840 } 3841 case ISD::FMINNUM: 3842 case ISD::FMAXNUM: { 3843 // Only one needs to be known not-nan, since it will be returned if the 3844 // other ends up being one. 3845 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 3846 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3847 } 3848 case ISD::FMINNUM_IEEE: 3849 case ISD::FMAXNUM_IEEE: { 3850 if (SNaN) 3851 return true; 3852 // This can return a NaN if either operand is an sNaN, or if both operands 3853 // are NaN. 3854 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 3855 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 3856 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 3857 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 3858 } 3859 case ISD::FMINIMUM: 3860 case ISD::FMAXIMUM: { 3861 // TODO: Does this quiet or return the origina NaN as-is? 3862 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 3863 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 3864 } 3865 case ISD::EXTRACT_VECTOR_ELT: { 3866 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 3867 } 3868 default: 3869 if (Opcode >= ISD::BUILTIN_OP_END || 3870 Opcode == ISD::INTRINSIC_WO_CHAIN || 3871 Opcode == ISD::INTRINSIC_W_CHAIN || 3872 Opcode == ISD::INTRINSIC_VOID) { 3873 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 3874 } 3875 3876 return false; 3877 } 3878 } 3879 3880 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 3881 assert(Op.getValueType().isFloatingPoint() && 3882 "Floating point type expected"); 3883 3884 // If the value is a constant, we can obviously see if it is a zero or not. 3885 // TODO: Add BuildVector support. 3886 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3887 return !C->isZero(); 3888 return false; 3889 } 3890 3891 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3892 assert(!Op.getValueType().isFloatingPoint() && 3893 "Floating point types unsupported - use isKnownNeverZeroFloat"); 3894 3895 // If the value is a constant, we can obviously see if it is a zero or not. 3896 if (ISD::matchUnaryPredicate( 3897 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 3898 return true; 3899 3900 // TODO: Recognize more cases here. 3901 switch (Op.getOpcode()) { 3902 default: break; 3903 case ISD::OR: 3904 if (isKnownNeverZero(Op.getOperand(1)) || 3905 isKnownNeverZero(Op.getOperand(0))) 3906 return true; 3907 break; 3908 } 3909 3910 return false; 3911 } 3912 3913 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3914 // Check the obvious case. 3915 if (A == B) return true; 3916 3917 // For for negative and positive zero. 3918 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3919 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3920 if (CA->isZero() && CB->isZero()) return true; 3921 3922 // Otherwise they may not be equal. 3923 return false; 3924 } 3925 3926 // FIXME: unify with llvm::haveNoCommonBitsSet. 3927 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 3928 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3929 assert(A.getValueType() == B.getValueType() && 3930 "Values must have the same type"); 3931 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 3932 } 3933 3934 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 3935 ArrayRef<SDValue> Ops, 3936 SelectionDAG &DAG) { 3937 int NumOps = Ops.size(); 3938 assert(NumOps != 0 && "Can't build an empty vector!"); 3939 assert(VT.getVectorNumElements() == (unsigned)NumOps && 3940 "Incorrect element count in BUILD_VECTOR!"); 3941 3942 // BUILD_VECTOR of UNDEFs is UNDEF. 3943 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3944 return DAG.getUNDEF(VT); 3945 3946 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 3947 SDValue IdentitySrc; 3948 bool IsIdentity = true; 3949 for (int i = 0; i != NumOps; ++i) { 3950 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 3951 Ops[i].getOperand(0).getValueType() != VT || 3952 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 3953 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 3954 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 3955 IsIdentity = false; 3956 break; 3957 } 3958 IdentitySrc = Ops[i].getOperand(0); 3959 } 3960 if (IsIdentity) 3961 return IdentitySrc; 3962 3963 return SDValue(); 3964 } 3965 3966 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3967 ArrayRef<SDValue> Ops, 3968 SelectionDAG &DAG) { 3969 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3970 assert(llvm::all_of(Ops, 3971 [Ops](SDValue Op) { 3972 return Ops[0].getValueType() == Op.getValueType(); 3973 }) && 3974 "Concatenation of vectors with inconsistent value types!"); 3975 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3976 VT.getVectorNumElements() && 3977 "Incorrect element count in vector concatenation!"); 3978 3979 if (Ops.size() == 1) 3980 return Ops[0]; 3981 3982 // Concat of UNDEFs is UNDEF. 3983 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3984 return DAG.getUNDEF(VT); 3985 3986 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3987 // simplified to one big BUILD_VECTOR. 3988 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3989 EVT SVT = VT.getScalarType(); 3990 SmallVector<SDValue, 16> Elts; 3991 for (SDValue Op : Ops) { 3992 EVT OpVT = Op.getValueType(); 3993 if (Op.isUndef()) 3994 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3995 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3996 Elts.append(Op->op_begin(), Op->op_end()); 3997 else 3998 return SDValue(); 3999 } 4000 4001 // BUILD_VECTOR requires all inputs to be of the same type, find the 4002 // maximum type and extend them all. 4003 for (SDValue Op : Elts) 4004 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4005 4006 if (SVT.bitsGT(VT.getScalarType())) 4007 for (SDValue &Op : Elts) 4008 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4009 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4010 : DAG.getSExtOrTrunc(Op, DL, SVT); 4011 4012 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4013 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4014 return V; 4015 } 4016 4017 /// Gets or creates the specified node. 4018 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4019 FoldingSetNodeID ID; 4020 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4021 void *IP = nullptr; 4022 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4023 return SDValue(E, 0); 4024 4025 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4026 getVTList(VT)); 4027 CSEMap.InsertNode(N, IP); 4028 4029 InsertNode(N); 4030 SDValue V = SDValue(N, 0); 4031 NewSDValueDbgMsg(V, "Creating new node: ", this); 4032 return V; 4033 } 4034 4035 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4036 SDValue Operand, const SDNodeFlags Flags) { 4037 // Constant fold unary operations with an integer constant operand. Even 4038 // opaque constant will be folded, because the folding of unary operations 4039 // doesn't create new constants with different values. Nevertheless, the 4040 // opaque flag is preserved during folding to prevent future folding with 4041 // other constants. 4042 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4043 const APInt &Val = C->getAPIntValue(); 4044 switch (Opcode) { 4045 default: break; 4046 case ISD::SIGN_EXTEND: 4047 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4048 C->isTargetOpcode(), C->isOpaque()); 4049 case ISD::TRUNCATE: 4050 if (C->isOpaque()) 4051 break; 4052 LLVM_FALLTHROUGH; 4053 case ISD::ANY_EXTEND: 4054 case ISD::ZERO_EXTEND: 4055 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4056 C->isTargetOpcode(), C->isOpaque()); 4057 case ISD::UINT_TO_FP: 4058 case ISD::SINT_TO_FP: { 4059 APFloat apf(EVTToAPFloatSemantics(VT), 4060 APInt::getNullValue(VT.getSizeInBits())); 4061 (void)apf.convertFromAPInt(Val, 4062 Opcode==ISD::SINT_TO_FP, 4063 APFloat::rmNearestTiesToEven); 4064 return getConstantFP(apf, DL, VT); 4065 } 4066 case ISD::BITCAST: 4067 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4068 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4069 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4070 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4071 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4072 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4073 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4074 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4075 break; 4076 case ISD::ABS: 4077 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4078 C->isOpaque()); 4079 case ISD::BITREVERSE: 4080 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4081 C->isOpaque()); 4082 case ISD::BSWAP: 4083 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4084 C->isOpaque()); 4085 case ISD::CTPOP: 4086 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4087 C->isOpaque()); 4088 case ISD::CTLZ: 4089 case ISD::CTLZ_ZERO_UNDEF: 4090 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4091 C->isOpaque()); 4092 case ISD::CTTZ: 4093 case ISD::CTTZ_ZERO_UNDEF: 4094 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4095 C->isOpaque()); 4096 case ISD::FP16_TO_FP: { 4097 bool Ignored; 4098 APFloat FPV(APFloat::IEEEhalf(), 4099 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4100 4101 // This can return overflow, underflow, or inexact; we don't care. 4102 // FIXME need to be more flexible about rounding mode. 4103 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4104 APFloat::rmNearestTiesToEven, &Ignored); 4105 return getConstantFP(FPV, DL, VT); 4106 } 4107 } 4108 } 4109 4110 // Constant fold unary operations with a floating point constant operand. 4111 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4112 APFloat V = C->getValueAPF(); // make copy 4113 switch (Opcode) { 4114 case ISD::FNEG: 4115 V.changeSign(); 4116 return getConstantFP(V, DL, VT); 4117 case ISD::FABS: 4118 V.clearSign(); 4119 return getConstantFP(V, DL, VT); 4120 case ISD::FCEIL: { 4121 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4122 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4123 return getConstantFP(V, DL, VT); 4124 break; 4125 } 4126 case ISD::FTRUNC: { 4127 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4128 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4129 return getConstantFP(V, DL, VT); 4130 break; 4131 } 4132 case ISD::FFLOOR: { 4133 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4134 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4135 return getConstantFP(V, DL, VT); 4136 break; 4137 } 4138 case ISD::FP_EXTEND: { 4139 bool ignored; 4140 // This can return overflow, underflow, or inexact; we don't care. 4141 // FIXME need to be more flexible about rounding mode. 4142 (void)V.convert(EVTToAPFloatSemantics(VT), 4143 APFloat::rmNearestTiesToEven, &ignored); 4144 return getConstantFP(V, DL, VT); 4145 } 4146 case ISD::FP_TO_SINT: 4147 case ISD::FP_TO_UINT: { 4148 bool ignored; 4149 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4150 // FIXME need to be more flexible about rounding mode. 4151 APFloat::opStatus s = 4152 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4153 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4154 break; 4155 return getConstant(IntVal, DL, VT); 4156 } 4157 case ISD::BITCAST: 4158 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4159 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4160 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4161 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4162 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4163 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4164 break; 4165 case ISD::FP_TO_FP16: { 4166 bool Ignored; 4167 // This can return overflow, underflow, or inexact; we don't care. 4168 // FIXME need to be more flexible about rounding mode. 4169 (void)V.convert(APFloat::IEEEhalf(), 4170 APFloat::rmNearestTiesToEven, &Ignored); 4171 return getConstant(V.bitcastToAPInt(), DL, VT); 4172 } 4173 } 4174 } 4175 4176 // Constant fold unary operations with a vector integer or float operand. 4177 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4178 if (BV->isConstant()) { 4179 switch (Opcode) { 4180 default: 4181 // FIXME: Entirely reasonable to perform folding of other unary 4182 // operations here as the need arises. 4183 break; 4184 case ISD::FNEG: 4185 case ISD::FABS: 4186 case ISD::FCEIL: 4187 case ISD::FTRUNC: 4188 case ISD::FFLOOR: 4189 case ISD::FP_EXTEND: 4190 case ISD::FP_TO_SINT: 4191 case ISD::FP_TO_UINT: 4192 case ISD::TRUNCATE: 4193 case ISD::ANY_EXTEND: 4194 case ISD::ZERO_EXTEND: 4195 case ISD::SIGN_EXTEND: 4196 case ISD::UINT_TO_FP: 4197 case ISD::SINT_TO_FP: 4198 case ISD::ABS: 4199 case ISD::BITREVERSE: 4200 case ISD::BSWAP: 4201 case ISD::CTLZ: 4202 case ISD::CTLZ_ZERO_UNDEF: 4203 case ISD::CTTZ: 4204 case ISD::CTTZ_ZERO_UNDEF: 4205 case ISD::CTPOP: { 4206 SDValue Ops = { Operand }; 4207 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4208 return Fold; 4209 } 4210 } 4211 } 4212 } 4213 4214 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4215 switch (Opcode) { 4216 case ISD::TokenFactor: 4217 case ISD::MERGE_VALUES: 4218 case ISD::CONCAT_VECTORS: 4219 return Operand; // Factor, merge or concat of one node? No need. 4220 case ISD::BUILD_VECTOR: { 4221 // Attempt to simplify BUILD_VECTOR. 4222 SDValue Ops[] = {Operand}; 4223 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4224 return V; 4225 break; 4226 } 4227 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4228 case ISD::FP_EXTEND: 4229 assert(VT.isFloatingPoint() && 4230 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4231 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4232 assert((!VT.isVector() || 4233 VT.getVectorNumElements() == 4234 Operand.getValueType().getVectorNumElements()) && 4235 "Vector element count mismatch!"); 4236 assert(Operand.getValueType().bitsLT(VT) && 4237 "Invalid fpext node, dst < src!"); 4238 if (Operand.isUndef()) 4239 return getUNDEF(VT); 4240 break; 4241 case ISD::SIGN_EXTEND: 4242 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4243 "Invalid SIGN_EXTEND!"); 4244 if (Operand.getValueType() == VT) return Operand; // noop extension 4245 assert((!VT.isVector() || 4246 VT.getVectorNumElements() == 4247 Operand.getValueType().getVectorNumElements()) && 4248 "Vector element count mismatch!"); 4249 assert(Operand.getValueType().bitsLT(VT) && 4250 "Invalid sext node, dst < src!"); 4251 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4252 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4253 else if (OpOpcode == ISD::UNDEF) 4254 // sext(undef) = 0, because the top bits will all be the same. 4255 return getConstant(0, DL, VT); 4256 break; 4257 case ISD::ZERO_EXTEND: 4258 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4259 "Invalid ZERO_EXTEND!"); 4260 if (Operand.getValueType() == VT) return Operand; // noop extension 4261 assert((!VT.isVector() || 4262 VT.getVectorNumElements() == 4263 Operand.getValueType().getVectorNumElements()) && 4264 "Vector element count mismatch!"); 4265 assert(Operand.getValueType().bitsLT(VT) && 4266 "Invalid zext node, dst < src!"); 4267 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4268 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4269 else if (OpOpcode == ISD::UNDEF) 4270 // zext(undef) = 0, because the top bits will be zero. 4271 return getConstant(0, DL, VT); 4272 break; 4273 case ISD::ANY_EXTEND: 4274 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4275 "Invalid ANY_EXTEND!"); 4276 if (Operand.getValueType() == VT) return Operand; // noop extension 4277 assert((!VT.isVector() || 4278 VT.getVectorNumElements() == 4279 Operand.getValueType().getVectorNumElements()) && 4280 "Vector element count mismatch!"); 4281 assert(Operand.getValueType().bitsLT(VT) && 4282 "Invalid anyext node, dst < src!"); 4283 4284 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4285 OpOpcode == ISD::ANY_EXTEND) 4286 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4287 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4288 else if (OpOpcode == ISD::UNDEF) 4289 return getUNDEF(VT); 4290 4291 // (ext (trunc x)) -> x 4292 if (OpOpcode == ISD::TRUNCATE) { 4293 SDValue OpOp = Operand.getOperand(0); 4294 if (OpOp.getValueType() == VT) { 4295 transferDbgValues(Operand, OpOp); 4296 return OpOp; 4297 } 4298 } 4299 break; 4300 case ISD::TRUNCATE: 4301 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4302 "Invalid TRUNCATE!"); 4303 if (Operand.getValueType() == VT) return Operand; // noop truncate 4304 assert((!VT.isVector() || 4305 VT.getVectorNumElements() == 4306 Operand.getValueType().getVectorNumElements()) && 4307 "Vector element count mismatch!"); 4308 assert(Operand.getValueType().bitsGT(VT) && 4309 "Invalid truncate node, src < dst!"); 4310 if (OpOpcode == ISD::TRUNCATE) 4311 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4312 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4313 OpOpcode == ISD::ANY_EXTEND) { 4314 // If the source is smaller than the dest, we still need an extend. 4315 if (Operand.getOperand(0).getValueType().getScalarType() 4316 .bitsLT(VT.getScalarType())) 4317 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4318 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4319 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4320 return Operand.getOperand(0); 4321 } 4322 if (OpOpcode == ISD::UNDEF) 4323 return getUNDEF(VT); 4324 break; 4325 case ISD::ANY_EXTEND_VECTOR_INREG: 4326 case ISD::ZERO_EXTEND_VECTOR_INREG: 4327 case ISD::SIGN_EXTEND_VECTOR_INREG: 4328 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4329 assert(Operand.getValueType().bitsLE(VT) && 4330 "The input must be the same size or smaller than the result."); 4331 assert(VT.getVectorNumElements() < 4332 Operand.getValueType().getVectorNumElements() && 4333 "The destination vector type must have fewer lanes than the input."); 4334 break; 4335 case ISD::ABS: 4336 assert(VT.isInteger() && VT == Operand.getValueType() && 4337 "Invalid ABS!"); 4338 if (OpOpcode == ISD::UNDEF) 4339 return getUNDEF(VT); 4340 break; 4341 case ISD::BSWAP: 4342 assert(VT.isInteger() && VT == Operand.getValueType() && 4343 "Invalid BSWAP!"); 4344 assert((VT.getScalarSizeInBits() % 16 == 0) && 4345 "BSWAP types must be a multiple of 16 bits!"); 4346 if (OpOpcode == ISD::UNDEF) 4347 return getUNDEF(VT); 4348 break; 4349 case ISD::BITREVERSE: 4350 assert(VT.isInteger() && VT == Operand.getValueType() && 4351 "Invalid BITREVERSE!"); 4352 if (OpOpcode == ISD::UNDEF) 4353 return getUNDEF(VT); 4354 break; 4355 case ISD::BITCAST: 4356 // Basic sanity checking. 4357 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4358 "Cannot BITCAST between types of different sizes!"); 4359 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4360 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4361 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4362 if (OpOpcode == ISD::UNDEF) 4363 return getUNDEF(VT); 4364 break; 4365 case ISD::SCALAR_TO_VECTOR: 4366 assert(VT.isVector() && !Operand.getValueType().isVector() && 4367 (VT.getVectorElementType() == Operand.getValueType() || 4368 (VT.getVectorElementType().isInteger() && 4369 Operand.getValueType().isInteger() && 4370 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4371 "Illegal SCALAR_TO_VECTOR node!"); 4372 if (OpOpcode == ISD::UNDEF) 4373 return getUNDEF(VT); 4374 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4375 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4376 isa<ConstantSDNode>(Operand.getOperand(1)) && 4377 Operand.getConstantOperandVal(1) == 0 && 4378 Operand.getOperand(0).getValueType() == VT) 4379 return Operand.getOperand(0); 4380 break; 4381 case ISD::FNEG: 4382 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4383 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && 4384 OpOpcode == ISD::FSUB) 4385 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4386 Operand.getOperand(0), Flags); 4387 if (OpOpcode == ISD::FNEG) // --X -> X 4388 return Operand.getOperand(0); 4389 break; 4390 case ISD::FABS: 4391 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4392 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4393 break; 4394 } 4395 4396 SDNode *N; 4397 SDVTList VTs = getVTList(VT); 4398 SDValue Ops[] = {Operand}; 4399 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4400 FoldingSetNodeID ID; 4401 AddNodeIDNode(ID, Opcode, VTs, Ops); 4402 void *IP = nullptr; 4403 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4404 E->intersectFlagsWith(Flags); 4405 return SDValue(E, 0); 4406 } 4407 4408 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4409 N->setFlags(Flags); 4410 createOperands(N, Ops); 4411 CSEMap.InsertNode(N, IP); 4412 } else { 4413 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4414 createOperands(N, Ops); 4415 } 4416 4417 InsertNode(N); 4418 SDValue V = SDValue(N, 0); 4419 NewSDValueDbgMsg(V, "Creating new node: ", this); 4420 return V; 4421 } 4422 4423 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4424 const APInt &C2) { 4425 switch (Opcode) { 4426 case ISD::ADD: return std::make_pair(C1 + C2, true); 4427 case ISD::SUB: return std::make_pair(C1 - C2, true); 4428 case ISD::MUL: return std::make_pair(C1 * C2, true); 4429 case ISD::AND: return std::make_pair(C1 & C2, true); 4430 case ISD::OR: return std::make_pair(C1 | C2, true); 4431 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4432 case ISD::SHL: return std::make_pair(C1 << C2, true); 4433 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4434 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4435 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4436 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4437 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4438 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4439 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4440 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4441 case ISD::UDIV: 4442 if (!C2.getBoolValue()) 4443 break; 4444 return std::make_pair(C1.udiv(C2), true); 4445 case ISD::UREM: 4446 if (!C2.getBoolValue()) 4447 break; 4448 return std::make_pair(C1.urem(C2), true); 4449 case ISD::SDIV: 4450 if (!C2.getBoolValue()) 4451 break; 4452 return std::make_pair(C1.sdiv(C2), true); 4453 case ISD::SREM: 4454 if (!C2.getBoolValue()) 4455 break; 4456 return std::make_pair(C1.srem(C2), true); 4457 } 4458 return std::make_pair(APInt(1, 0), false); 4459 } 4460 4461 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4462 EVT VT, const ConstantSDNode *Cst1, 4463 const ConstantSDNode *Cst2) { 4464 if (Cst1->isOpaque() || Cst2->isOpaque()) 4465 return SDValue(); 4466 4467 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4468 Cst2->getAPIntValue()); 4469 if (!Folded.second) 4470 return SDValue(); 4471 return getConstant(Folded.first, DL, VT); 4472 } 4473 4474 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4475 const GlobalAddressSDNode *GA, 4476 const SDNode *N2) { 4477 if (GA->getOpcode() != ISD::GlobalAddress) 4478 return SDValue(); 4479 if (!TLI->isOffsetFoldingLegal(GA)) 4480 return SDValue(); 4481 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4482 if (!Cst2) 4483 return SDValue(); 4484 int64_t Offset = Cst2->getSExtValue(); 4485 switch (Opcode) { 4486 case ISD::ADD: break; 4487 case ISD::SUB: Offset = -uint64_t(Offset); break; 4488 default: return SDValue(); 4489 } 4490 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4491 GA->getOffset() + uint64_t(Offset)); 4492 } 4493 4494 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4495 switch (Opcode) { 4496 case ISD::SDIV: 4497 case ISD::UDIV: 4498 case ISD::SREM: 4499 case ISD::UREM: { 4500 // If a divisor is zero/undef or any element of a divisor vector is 4501 // zero/undef, the whole op is undef. 4502 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4503 SDValue Divisor = Ops[1]; 4504 if (Divisor.isUndef() || isNullConstant(Divisor)) 4505 return true; 4506 4507 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4508 llvm::any_of(Divisor->op_values(), 4509 [](SDValue V) { return V.isUndef() || 4510 isNullConstant(V); }); 4511 // TODO: Handle signed overflow. 4512 } 4513 // TODO: Handle oversized shifts. 4514 default: 4515 return false; 4516 } 4517 } 4518 4519 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4520 EVT VT, SDNode *Cst1, 4521 SDNode *Cst2) { 4522 // If the opcode is a target-specific ISD node, there's nothing we can 4523 // do here and the operand rules may not line up with the below, so 4524 // bail early. 4525 if (Opcode >= ISD::BUILTIN_OP_END) 4526 return SDValue(); 4527 4528 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4529 return getUNDEF(VT); 4530 4531 // Handle the case of two scalars. 4532 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4533 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4534 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4535 assert((!Folded || !VT.isVector()) && 4536 "Can't fold vectors ops with scalar operands"); 4537 return Folded; 4538 } 4539 } 4540 4541 // fold (add Sym, c) -> Sym+c 4542 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4543 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4544 if (TLI->isCommutativeBinOp(Opcode)) 4545 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4546 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4547 4548 // For vectors, extract each constant element and fold them individually. 4549 // Either input may be an undef value. 4550 auto *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4551 if (!BV1 && !Cst1->isUndef()) 4552 return SDValue(); 4553 auto *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4554 if (!BV2 && !Cst2->isUndef()) 4555 return SDValue(); 4556 // If both operands are undef, that's handled the same way as scalars. 4557 if (!BV1 && !BV2) 4558 return SDValue(); 4559 4560 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4561 "Vector binop with different number of elements in operands?"); 4562 4563 EVT SVT = VT.getScalarType(); 4564 EVT LegalSVT = SVT; 4565 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4566 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4567 if (LegalSVT.bitsLT(SVT)) 4568 return SDValue(); 4569 } 4570 SmallVector<SDValue, 4> Outputs; 4571 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4572 for (unsigned I = 0; I != NumOps; ++I) { 4573 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4574 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4575 if (SVT.isInteger()) { 4576 if (V1->getValueType(0).bitsGT(SVT)) 4577 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4578 if (V2->getValueType(0).bitsGT(SVT)) 4579 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4580 } 4581 4582 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4583 return SDValue(); 4584 4585 // Fold one vector element. 4586 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4587 if (LegalSVT != SVT) 4588 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4589 4590 // Scalar folding only succeeded if the result is a constant or UNDEF. 4591 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4592 ScalarResult.getOpcode() != ISD::ConstantFP) 4593 return SDValue(); 4594 Outputs.push_back(ScalarResult); 4595 } 4596 4597 assert(VT.getVectorNumElements() == Outputs.size() && 4598 "Vector size mismatch!"); 4599 4600 // We may have a vector type but a scalar result. Create a splat. 4601 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4602 4603 // Build a big vector out of the scalar elements we generated. 4604 return getBuildVector(VT, SDLoc(), Outputs); 4605 } 4606 4607 // TODO: Merge with FoldConstantArithmetic 4608 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4609 const SDLoc &DL, EVT VT, 4610 ArrayRef<SDValue> Ops, 4611 const SDNodeFlags Flags) { 4612 // If the opcode is a target-specific ISD node, there's nothing we can 4613 // do here and the operand rules may not line up with the below, so 4614 // bail early. 4615 if (Opcode >= ISD::BUILTIN_OP_END) 4616 return SDValue(); 4617 4618 if (isUndef(Opcode, Ops)) 4619 return getUNDEF(VT); 4620 4621 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4622 if (!VT.isVector()) 4623 return SDValue(); 4624 4625 unsigned NumElts = VT.getVectorNumElements(); 4626 4627 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4628 return !Op.getValueType().isVector() || 4629 Op.getValueType().getVectorNumElements() == NumElts; 4630 }; 4631 4632 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4633 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4634 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4635 (BV && BV->isConstant()); 4636 }; 4637 4638 // All operands must be vector types with the same number of elements as 4639 // the result type and must be either UNDEF or a build vector of constant 4640 // or UNDEF scalars. 4641 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4642 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4643 return SDValue(); 4644 4645 // If we are comparing vectors, then the result needs to be a i1 boolean 4646 // that is then sign-extended back to the legal result type. 4647 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4648 4649 // Find legal integer scalar type for constant promotion and 4650 // ensure that its scalar size is at least as large as source. 4651 EVT LegalSVT = VT.getScalarType(); 4652 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4653 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4654 if (LegalSVT.bitsLT(VT.getScalarType())) 4655 return SDValue(); 4656 } 4657 4658 // Constant fold each scalar lane separately. 4659 SmallVector<SDValue, 4> ScalarResults; 4660 for (unsigned i = 0; i != NumElts; i++) { 4661 SmallVector<SDValue, 4> ScalarOps; 4662 for (SDValue Op : Ops) { 4663 EVT InSVT = Op.getValueType().getScalarType(); 4664 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4665 if (!InBV) { 4666 // We've checked that this is UNDEF or a constant of some kind. 4667 if (Op.isUndef()) 4668 ScalarOps.push_back(getUNDEF(InSVT)); 4669 else 4670 ScalarOps.push_back(Op); 4671 continue; 4672 } 4673 4674 SDValue ScalarOp = InBV->getOperand(i); 4675 EVT ScalarVT = ScalarOp.getValueType(); 4676 4677 // Build vector (integer) scalar operands may need implicit 4678 // truncation - do this before constant folding. 4679 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4680 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4681 4682 ScalarOps.push_back(ScalarOp); 4683 } 4684 4685 // Constant fold the scalar operands. 4686 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4687 4688 // Legalize the (integer) scalar constant if necessary. 4689 if (LegalSVT != SVT) 4690 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4691 4692 // Scalar folding only succeeded if the result is a constant or UNDEF. 4693 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4694 ScalarResult.getOpcode() != ISD::ConstantFP) 4695 return SDValue(); 4696 ScalarResults.push_back(ScalarResult); 4697 } 4698 4699 SDValue V = getBuildVector(VT, DL, ScalarResults); 4700 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4701 return V; 4702 } 4703 4704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4705 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4706 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4707 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4708 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4709 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4710 4711 // Canonicalize constant to RHS if commutative. 4712 if (TLI->isCommutativeBinOp(Opcode)) { 4713 if (N1C && !N2C) { 4714 std::swap(N1C, N2C); 4715 std::swap(N1, N2); 4716 } else if (N1CFP && !N2CFP) { 4717 std::swap(N1CFP, N2CFP); 4718 std::swap(N1, N2); 4719 } 4720 } 4721 4722 switch (Opcode) { 4723 default: break; 4724 case ISD::TokenFactor: 4725 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4726 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4727 // Fold trivial token factors. 4728 if (N1.getOpcode() == ISD::EntryToken) return N2; 4729 if (N2.getOpcode() == ISD::EntryToken) return N1; 4730 if (N1 == N2) return N1; 4731 break; 4732 case ISD::BUILD_VECTOR: { 4733 // Attempt to simplify BUILD_VECTOR. 4734 SDValue Ops[] = {N1, N2}; 4735 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4736 return V; 4737 break; 4738 } 4739 case ISD::CONCAT_VECTORS: { 4740 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4741 SDValue Ops[] = {N1, N2}; 4742 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4743 return V; 4744 break; 4745 } 4746 case ISD::AND: 4747 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4748 assert(N1.getValueType() == N2.getValueType() && 4749 N1.getValueType() == VT && "Binary operator types must match!"); 4750 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4751 // worth handling here. 4752 if (N2C && N2C->isNullValue()) 4753 return N2; 4754 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4755 return N1; 4756 break; 4757 case ISD::OR: 4758 case ISD::XOR: 4759 case ISD::ADD: 4760 case ISD::SUB: 4761 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4762 assert(N1.getValueType() == N2.getValueType() && 4763 N1.getValueType() == VT && "Binary operator types must match!"); 4764 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4765 // it's worth handling here. 4766 if (N2C && N2C->isNullValue()) 4767 return N1; 4768 break; 4769 case ISD::UDIV: 4770 case ISD::UREM: 4771 case ISD::MULHU: 4772 case ISD::MULHS: 4773 case ISD::MUL: 4774 case ISD::SDIV: 4775 case ISD::SREM: 4776 case ISD::SMIN: 4777 case ISD::SMAX: 4778 case ISD::UMIN: 4779 case ISD::UMAX: 4780 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4781 assert(N1.getValueType() == N2.getValueType() && 4782 N1.getValueType() == VT && "Binary operator types must match!"); 4783 break; 4784 case ISD::FADD: 4785 case ISD::FSUB: 4786 case ISD::FMUL: 4787 case ISD::FDIV: 4788 case ISD::FREM: 4789 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4790 assert(N1.getValueType() == N2.getValueType() && 4791 N1.getValueType() == VT && "Binary operator types must match!"); 4792 break; 4793 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4794 assert(N1.getValueType() == VT && 4795 N1.getValueType().isFloatingPoint() && 4796 N2.getValueType().isFloatingPoint() && 4797 "Invalid FCOPYSIGN!"); 4798 break; 4799 case ISD::SHL: 4800 case ISD::SRA: 4801 case ISD::SRL: 4802 if (SDValue V = simplifyShift(N1, N2)) 4803 return V; 4804 LLVM_FALLTHROUGH; 4805 case ISD::ROTL: 4806 case ISD::ROTR: 4807 assert(VT == N1.getValueType() && 4808 "Shift operators return type must be the same as their first arg"); 4809 assert(VT.isInteger() && N2.getValueType().isInteger() && 4810 "Shifts only work on integers"); 4811 assert((!VT.isVector() || VT == N2.getValueType()) && 4812 "Vector shift amounts must be in the same as their first arg"); 4813 // Verify that the shift amount VT is big enough to hold valid shift 4814 // amounts. This catches things like trying to shift an i1024 value by an 4815 // i8, which is easy to fall into in generic code that uses 4816 // TLI.getShiftAmount(). 4817 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4818 "Invalid use of small shift amount with oversized value!"); 4819 4820 // Always fold shifts of i1 values so the code generator doesn't need to 4821 // handle them. Since we know the size of the shift has to be less than the 4822 // size of the value, the shift/rotate count is guaranteed to be zero. 4823 if (VT == MVT::i1) 4824 return N1; 4825 if (N2C && N2C->isNullValue()) 4826 return N1; 4827 break; 4828 case ISD::FP_ROUND_INREG: { 4829 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4830 assert(VT == N1.getValueType() && "Not an inreg round!"); 4831 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4832 "Cannot FP_ROUND_INREG integer types"); 4833 assert(EVT.isVector() == VT.isVector() && 4834 "FP_ROUND_INREG type should be vector iff the operand " 4835 "type is vector!"); 4836 assert((!EVT.isVector() || 4837 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4838 "Vector element counts must match in FP_ROUND_INREG"); 4839 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4840 (void)EVT; 4841 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4842 break; 4843 } 4844 case ISD::FP_ROUND: 4845 assert(VT.isFloatingPoint() && 4846 N1.getValueType().isFloatingPoint() && 4847 VT.bitsLE(N1.getValueType()) && 4848 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4849 "Invalid FP_ROUND!"); 4850 if (N1.getValueType() == VT) return N1; // noop conversion. 4851 break; 4852 case ISD::AssertSext: 4853 case ISD::AssertZext: { 4854 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4855 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4856 assert(VT.isInteger() && EVT.isInteger() && 4857 "Cannot *_EXTEND_INREG FP types"); 4858 assert(!EVT.isVector() && 4859 "AssertSExt/AssertZExt type should be the vector element type " 4860 "rather than the vector type!"); 4861 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 4862 if (VT.getScalarType() == EVT) return N1; // noop assertion. 4863 break; 4864 } 4865 case ISD::SIGN_EXTEND_INREG: { 4866 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4867 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4868 assert(VT.isInteger() && EVT.isInteger() && 4869 "Cannot *_EXTEND_INREG FP types"); 4870 assert(EVT.isVector() == VT.isVector() && 4871 "SIGN_EXTEND_INREG type should be vector iff the operand " 4872 "type is vector!"); 4873 assert((!EVT.isVector() || 4874 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4875 "Vector element counts must match in SIGN_EXTEND_INREG"); 4876 assert(EVT.bitsLE(VT) && "Not extending!"); 4877 if (EVT == VT) return N1; // Not actually extending 4878 4879 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4880 unsigned FromBits = EVT.getScalarSizeInBits(); 4881 Val <<= Val.getBitWidth() - FromBits; 4882 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4883 return getConstant(Val, DL, ConstantVT); 4884 }; 4885 4886 if (N1C) { 4887 const APInt &Val = N1C->getAPIntValue(); 4888 return SignExtendInReg(Val, VT); 4889 } 4890 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4891 SmallVector<SDValue, 8> Ops; 4892 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4893 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4894 SDValue Op = N1.getOperand(i); 4895 if (Op.isUndef()) { 4896 Ops.push_back(getUNDEF(OpVT)); 4897 continue; 4898 } 4899 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4900 APInt Val = C->getAPIntValue(); 4901 Ops.push_back(SignExtendInReg(Val, OpVT)); 4902 } 4903 return getBuildVector(VT, DL, Ops); 4904 } 4905 break; 4906 } 4907 case ISD::EXTRACT_VECTOR_ELT: 4908 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 4909 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 4910 element type of the vector."); 4911 4912 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4913 if (N1.isUndef()) 4914 return getUNDEF(VT); 4915 4916 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4917 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 4918 return getUNDEF(VT); 4919 4920 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4921 // expanding copies of large vectors from registers. 4922 if (N2C && 4923 N1.getOpcode() == ISD::CONCAT_VECTORS && 4924 N1.getNumOperands() > 0) { 4925 unsigned Factor = 4926 N1.getOperand(0).getValueType().getVectorNumElements(); 4927 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4928 N1.getOperand(N2C->getZExtValue() / Factor), 4929 getConstant(N2C->getZExtValue() % Factor, DL, 4930 N2.getValueType())); 4931 } 4932 4933 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4934 // expanding large vector constants. 4935 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4936 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4937 4938 if (VT != Elt.getValueType()) 4939 // If the vector element type is not legal, the BUILD_VECTOR operands 4940 // are promoted and implicitly truncated, and the result implicitly 4941 // extended. Make that explicit here. 4942 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4943 4944 return Elt; 4945 } 4946 4947 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4948 // operations are lowered to scalars. 4949 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4950 // If the indices are the same, return the inserted element else 4951 // if the indices are known different, extract the element from 4952 // the original vector. 4953 SDValue N1Op2 = N1.getOperand(2); 4954 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4955 4956 if (N1Op2C && N2C) { 4957 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4958 if (VT == N1.getOperand(1).getValueType()) 4959 return N1.getOperand(1); 4960 else 4961 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4962 } 4963 4964 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4965 } 4966 } 4967 4968 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4969 // when vector types are scalarized and v1iX is legal. 4970 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4971 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4972 N1.getValueType().getVectorNumElements() == 1) { 4973 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4974 N1.getOperand(1)); 4975 } 4976 break; 4977 case ISD::EXTRACT_ELEMENT: 4978 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4979 assert(!N1.getValueType().isVector() && !VT.isVector() && 4980 (N1.getValueType().isInteger() == VT.isInteger()) && 4981 N1.getValueType() != VT && 4982 "Wrong types for EXTRACT_ELEMENT!"); 4983 4984 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4985 // 64-bit integers into 32-bit parts. Instead of building the extract of 4986 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4987 if (N1.getOpcode() == ISD::BUILD_PAIR) 4988 return N1.getOperand(N2C->getZExtValue()); 4989 4990 // EXTRACT_ELEMENT of a constant int is also very common. 4991 if (N1C) { 4992 unsigned ElementSize = VT.getSizeInBits(); 4993 unsigned Shift = ElementSize * N2C->getZExtValue(); 4994 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4995 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4996 } 4997 break; 4998 case ISD::EXTRACT_SUBVECTOR: 4999 if (VT.isSimple() && N1.getValueType().isSimple()) { 5000 assert(VT.isVector() && N1.getValueType().isVector() && 5001 "Extract subvector VTs must be a vectors!"); 5002 assert(VT.getVectorElementType() == 5003 N1.getValueType().getVectorElementType() && 5004 "Extract subvector VTs must have the same element type!"); 5005 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5006 "Extract subvector must be from larger vector to smaller vector!"); 5007 5008 if (N2C) { 5009 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5010 <= N1.getValueType().getVectorNumElements()) 5011 && "Extract subvector overflow!"); 5012 } 5013 5014 // Trivial extraction. 5015 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5016 return N1; 5017 5018 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5019 if (N1.isUndef()) 5020 return getUNDEF(VT); 5021 5022 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5023 // the concat have the same type as the extract. 5024 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5025 N1.getNumOperands() > 0 && 5026 VT == N1.getOperand(0).getValueType()) { 5027 unsigned Factor = VT.getVectorNumElements(); 5028 return N1.getOperand(N2C->getZExtValue() / Factor); 5029 } 5030 5031 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5032 // during shuffle legalization. 5033 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5034 VT == N1.getOperand(1).getValueType()) 5035 return N1.getOperand(1); 5036 } 5037 break; 5038 } 5039 5040 // Perform trivial constant folding. 5041 if (SDValue SV = 5042 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5043 return SV; 5044 5045 // Constant fold FP operations. 5046 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 5047 if (N1CFP) { 5048 if (N2CFP) { 5049 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 5050 APFloat::opStatus s; 5051 switch (Opcode) { 5052 case ISD::FADD: 5053 s = V1.add(V2, APFloat::rmNearestTiesToEven); 5054 if (!HasFPExceptions || s != APFloat::opInvalidOp) 5055 return getConstantFP(V1, DL, VT); 5056 break; 5057 case ISD::FSUB: 5058 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 5059 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 5060 return getConstantFP(V1, DL, VT); 5061 break; 5062 case ISD::FMUL: 5063 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 5064 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 5065 return getConstantFP(V1, DL, VT); 5066 break; 5067 case ISD::FDIV: 5068 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 5069 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 5070 s!=APFloat::opDivByZero)) { 5071 return getConstantFP(V1, DL, VT); 5072 } 5073 break; 5074 case ISD::FREM : 5075 s = V1.mod(V2); 5076 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 5077 s!=APFloat::opDivByZero)) { 5078 return getConstantFP(V1, DL, VT); 5079 } 5080 break; 5081 case ISD::FCOPYSIGN: 5082 V1.copySign(V2); 5083 return getConstantFP(V1, DL, VT); 5084 default: break; 5085 } 5086 } 5087 5088 if (Opcode == ISD::FP_ROUND) { 5089 APFloat V = N1CFP->getValueAPF(); // make copy 5090 bool ignored; 5091 // This can return overflow, underflow, or inexact; we don't care. 5092 // FIXME need to be more flexible about rounding mode. 5093 (void)V.convert(EVTToAPFloatSemantics(VT), 5094 APFloat::rmNearestTiesToEven, &ignored); 5095 return getConstantFP(V, DL, VT); 5096 } 5097 } 5098 5099 switch (Opcode) { 5100 case ISD::FADD: 5101 case ISD::FSUB: 5102 case ISD::FMUL: 5103 case ISD::FDIV: 5104 case ISD::FREM: 5105 // If both operands are undef, the result is undef. If 1 operand is undef, 5106 // the result is NaN. This should match the behavior of the IR optimizer. 5107 if (N1.isUndef() && N2.isUndef()) 5108 return getUNDEF(VT); 5109 if (N1.isUndef() || N2.isUndef()) 5110 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5111 } 5112 5113 // Canonicalize an UNDEF to the RHS, even over a constant. 5114 if (N1.isUndef()) { 5115 if (TLI->isCommutativeBinOp(Opcode)) { 5116 std::swap(N1, N2); 5117 } else { 5118 switch (Opcode) { 5119 case ISD::FP_ROUND_INREG: 5120 case ISD::SIGN_EXTEND_INREG: 5121 case ISD::SUB: 5122 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5123 case ISD::UDIV: 5124 case ISD::SDIV: 5125 case ISD::UREM: 5126 case ISD::SREM: 5127 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5128 } 5129 } 5130 } 5131 5132 // Fold a bunch of operators when the RHS is undef. 5133 if (N2.isUndef()) { 5134 switch (Opcode) { 5135 case ISD::XOR: 5136 if (N1.isUndef()) 5137 // Handle undef ^ undef -> 0 special case. This is a common 5138 // idiom (misuse). 5139 return getConstant(0, DL, VT); 5140 LLVM_FALLTHROUGH; 5141 case ISD::ADD: 5142 case ISD::SUB: 5143 case ISD::UDIV: 5144 case ISD::SDIV: 5145 case ISD::UREM: 5146 case ISD::SREM: 5147 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5148 case ISD::MUL: 5149 case ISD::AND: 5150 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5151 case ISD::OR: 5152 return getAllOnesConstant(DL, VT); 5153 } 5154 } 5155 5156 // Memoize this node if possible. 5157 SDNode *N; 5158 SDVTList VTs = getVTList(VT); 5159 SDValue Ops[] = {N1, N2}; 5160 if (VT != MVT::Glue) { 5161 FoldingSetNodeID ID; 5162 AddNodeIDNode(ID, Opcode, VTs, Ops); 5163 void *IP = nullptr; 5164 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5165 E->intersectFlagsWith(Flags); 5166 return SDValue(E, 0); 5167 } 5168 5169 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5170 N->setFlags(Flags); 5171 createOperands(N, Ops); 5172 CSEMap.InsertNode(N, IP); 5173 } else { 5174 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5175 createOperands(N, Ops); 5176 } 5177 5178 InsertNode(N); 5179 SDValue V = SDValue(N, 0); 5180 NewSDValueDbgMsg(V, "Creating new node: ", this); 5181 return V; 5182 } 5183 5184 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5185 SDValue N1, SDValue N2, SDValue N3, 5186 const SDNodeFlags Flags) { 5187 // Perform various simplifications. 5188 switch (Opcode) { 5189 case ISD::FMA: { 5190 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5191 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5192 N3.getValueType() == VT && "FMA types must match!"); 5193 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5194 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5195 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5196 if (N1CFP && N2CFP && N3CFP) { 5197 APFloat V1 = N1CFP->getValueAPF(); 5198 const APFloat &V2 = N2CFP->getValueAPF(); 5199 const APFloat &V3 = N3CFP->getValueAPF(); 5200 APFloat::opStatus s = 5201 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5202 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 5203 return getConstantFP(V1, DL, VT); 5204 } 5205 break; 5206 } 5207 case ISD::BUILD_VECTOR: { 5208 // Attempt to simplify BUILD_VECTOR. 5209 SDValue Ops[] = {N1, N2, N3}; 5210 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5211 return V; 5212 break; 5213 } 5214 case ISD::CONCAT_VECTORS: { 5215 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5216 SDValue Ops[] = {N1, N2, N3}; 5217 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5218 return V; 5219 break; 5220 } 5221 case ISD::SETCC: { 5222 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5223 assert(N1.getValueType() == N2.getValueType() && 5224 "SETCC operands must have the same type!"); 5225 assert(VT.isVector() == N1.getValueType().isVector() && 5226 "SETCC type should be vector iff the operand type is vector!"); 5227 assert((!VT.isVector() || 5228 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5229 "SETCC vector element counts must match!"); 5230 // Use FoldSetCC to simplify SETCC's. 5231 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5232 return V; 5233 // Vector constant folding. 5234 SDValue Ops[] = {N1, N2, N3}; 5235 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5236 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5237 return V; 5238 } 5239 break; 5240 } 5241 case ISD::SELECT: 5242 case ISD::VSELECT: 5243 if (SDValue V = simplifySelect(N1, N2, N3)) 5244 return V; 5245 break; 5246 case ISD::VECTOR_SHUFFLE: 5247 llvm_unreachable("should use getVectorShuffle constructor!"); 5248 case ISD::INSERT_VECTOR_ELT: { 5249 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5250 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5251 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5252 return getUNDEF(VT); 5253 break; 5254 } 5255 case ISD::INSERT_SUBVECTOR: { 5256 SDValue Index = N3; 5257 if (VT.isSimple() && N1.getValueType().isSimple() 5258 && N2.getValueType().isSimple()) { 5259 assert(VT.isVector() && N1.getValueType().isVector() && 5260 N2.getValueType().isVector() && 5261 "Insert subvector VTs must be a vectors"); 5262 assert(VT == N1.getValueType() && 5263 "Dest and insert subvector source types must match!"); 5264 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5265 "Insert subvector must be from smaller vector to larger vector!"); 5266 if (isa<ConstantSDNode>(Index)) { 5267 assert((N2.getValueType().getVectorNumElements() + 5268 cast<ConstantSDNode>(Index)->getZExtValue() 5269 <= VT.getVectorNumElements()) 5270 && "Insert subvector overflow!"); 5271 } 5272 5273 // Trivial insertion. 5274 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5275 return N2; 5276 } 5277 break; 5278 } 5279 case ISD::BITCAST: 5280 // Fold bit_convert nodes from a type to themselves. 5281 if (N1.getValueType() == VT) 5282 return N1; 5283 break; 5284 } 5285 5286 // Memoize node if it doesn't produce a flag. 5287 SDNode *N; 5288 SDVTList VTs = getVTList(VT); 5289 SDValue Ops[] = {N1, N2, N3}; 5290 if (VT != MVT::Glue) { 5291 FoldingSetNodeID ID; 5292 AddNodeIDNode(ID, Opcode, VTs, Ops); 5293 void *IP = nullptr; 5294 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5295 E->intersectFlagsWith(Flags); 5296 return SDValue(E, 0); 5297 } 5298 5299 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5300 N->setFlags(Flags); 5301 createOperands(N, Ops); 5302 CSEMap.InsertNode(N, IP); 5303 } else { 5304 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5305 createOperands(N, Ops); 5306 } 5307 5308 InsertNode(N); 5309 SDValue V = SDValue(N, 0); 5310 NewSDValueDbgMsg(V, "Creating new node: ", this); 5311 return V; 5312 } 5313 5314 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5315 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5316 SDValue Ops[] = { N1, N2, N3, N4 }; 5317 return getNode(Opcode, DL, VT, Ops); 5318 } 5319 5320 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5321 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5322 SDValue N5) { 5323 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5324 return getNode(Opcode, DL, VT, Ops); 5325 } 5326 5327 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5328 /// the incoming stack arguments to be loaded from the stack. 5329 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5330 SmallVector<SDValue, 8> ArgChains; 5331 5332 // Include the original chain at the beginning of the list. When this is 5333 // used by target LowerCall hooks, this helps legalize find the 5334 // CALLSEQ_BEGIN node. 5335 ArgChains.push_back(Chain); 5336 5337 // Add a chain value for each stack argument. 5338 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5339 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5340 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5341 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5342 if (FI->getIndex() < 0) 5343 ArgChains.push_back(SDValue(L, 1)); 5344 5345 // Build a tokenfactor for all the chains. 5346 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5347 } 5348 5349 /// getMemsetValue - Vectorized representation of the memset value 5350 /// operand. 5351 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5352 const SDLoc &dl) { 5353 assert(!Value.isUndef()); 5354 5355 unsigned NumBits = VT.getScalarSizeInBits(); 5356 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5357 assert(C->getAPIntValue().getBitWidth() == 8); 5358 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5359 if (VT.isInteger()) { 5360 bool IsOpaque = VT.getSizeInBits() > 64 || 5361 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5362 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5363 } 5364 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5365 VT); 5366 } 5367 5368 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5369 EVT IntVT = VT.getScalarType(); 5370 if (!IntVT.isInteger()) 5371 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5372 5373 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5374 if (NumBits > 8) { 5375 // Use a multiplication with 0x010101... to extend the input to the 5376 // required length. 5377 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5378 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5379 DAG.getConstant(Magic, dl, IntVT)); 5380 } 5381 5382 if (VT != Value.getValueType() && !VT.isInteger()) 5383 Value = DAG.getBitcast(VT.getScalarType(), Value); 5384 if (VT != Value.getValueType()) 5385 Value = DAG.getSplatBuildVector(VT, dl, Value); 5386 5387 return Value; 5388 } 5389 5390 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5391 /// used when a memcpy is turned into a memset when the source is a constant 5392 /// string ptr. 5393 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5394 const TargetLowering &TLI, 5395 const ConstantDataArraySlice &Slice) { 5396 // Handle vector with all elements zero. 5397 if (Slice.Array == nullptr) { 5398 if (VT.isInteger()) 5399 return DAG.getConstant(0, dl, VT); 5400 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5401 return DAG.getConstantFP(0.0, dl, VT); 5402 else if (VT.isVector()) { 5403 unsigned NumElts = VT.getVectorNumElements(); 5404 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5405 return DAG.getNode(ISD::BITCAST, dl, VT, 5406 DAG.getConstant(0, dl, 5407 EVT::getVectorVT(*DAG.getContext(), 5408 EltVT, NumElts))); 5409 } else 5410 llvm_unreachable("Expected type!"); 5411 } 5412 5413 assert(!VT.isVector() && "Can't handle vector type here!"); 5414 unsigned NumVTBits = VT.getSizeInBits(); 5415 unsigned NumVTBytes = NumVTBits / 8; 5416 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5417 5418 APInt Val(NumVTBits, 0); 5419 if (DAG.getDataLayout().isLittleEndian()) { 5420 for (unsigned i = 0; i != NumBytes; ++i) 5421 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5422 } else { 5423 for (unsigned i = 0; i != NumBytes; ++i) 5424 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5425 } 5426 5427 // If the "cost" of materializing the integer immediate is less than the cost 5428 // of a load, then it is cost effective to turn the load into the immediate. 5429 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5430 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5431 return DAG.getConstant(Val, dl, VT); 5432 return SDValue(nullptr, 0); 5433 } 5434 5435 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5436 const SDLoc &DL) { 5437 EVT VT = Base.getValueType(); 5438 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5439 } 5440 5441 /// Returns true if memcpy source is constant data. 5442 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5443 uint64_t SrcDelta = 0; 5444 GlobalAddressSDNode *G = nullptr; 5445 if (Src.getOpcode() == ISD::GlobalAddress) 5446 G = cast<GlobalAddressSDNode>(Src); 5447 else if (Src.getOpcode() == ISD::ADD && 5448 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5449 Src.getOperand(1).getOpcode() == ISD::Constant) { 5450 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5451 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5452 } 5453 if (!G) 5454 return false; 5455 5456 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5457 SrcDelta + G->getOffset()); 5458 } 5459 5460 /// Determines the optimal series of memory ops to replace the memset / memcpy. 5461 /// Return true if the number of memory ops is below the threshold (Limit). 5462 /// It returns the types of the sequence of memory ops to perform 5463 /// memset / memcpy by reference. 5464 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5465 unsigned Limit, uint64_t Size, 5466 unsigned DstAlign, unsigned SrcAlign, 5467 bool IsMemset, 5468 bool ZeroMemset, 5469 bool MemcpyStrSrc, 5470 bool AllowOverlap, 5471 unsigned DstAS, unsigned SrcAS, 5472 SelectionDAG &DAG, 5473 const TargetLowering &TLI) { 5474 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5475 "Expecting memcpy / memset source to meet alignment requirement!"); 5476 // If 'SrcAlign' is zero, that means the memory operation does not need to 5477 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5478 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5479 // is the specified alignment of the memory operation. If it is zero, that 5480 // means it's possible to change the alignment of the destination. 5481 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5482 // not need to be loaded. 5483 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5484 IsMemset, ZeroMemset, MemcpyStrSrc, 5485 DAG.getMachineFunction()); 5486 5487 if (VT == MVT::Other) { 5488 // Use the largest integer type whose alignment constraints are satisfied. 5489 // We only need to check DstAlign here as SrcAlign is always greater or 5490 // equal to DstAlign (or zero). 5491 VT = MVT::i64; 5492 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5493 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5494 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5495 assert(VT.isInteger()); 5496 5497 // Find the largest legal integer type. 5498 MVT LVT = MVT::i64; 5499 while (!TLI.isTypeLegal(LVT)) 5500 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5501 assert(LVT.isInteger()); 5502 5503 // If the type we've chosen is larger than the largest legal integer type 5504 // then use that instead. 5505 if (VT.bitsGT(LVT)) 5506 VT = LVT; 5507 } 5508 5509 unsigned NumMemOps = 0; 5510 while (Size != 0) { 5511 unsigned VTSize = VT.getSizeInBits() / 8; 5512 while (VTSize > Size) { 5513 // For now, only use non-vector load / store's for the left-over pieces. 5514 EVT NewVT = VT; 5515 unsigned NewVTSize; 5516 5517 bool Found = false; 5518 if (VT.isVector() || VT.isFloatingPoint()) { 5519 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5520 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5521 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5522 Found = true; 5523 else if (NewVT == MVT::i64 && 5524 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5525 TLI.isSafeMemOpType(MVT::f64)) { 5526 // i64 is usually not legal on 32-bit targets, but f64 may be. 5527 NewVT = MVT::f64; 5528 Found = true; 5529 } 5530 } 5531 5532 if (!Found) { 5533 do { 5534 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5535 if (NewVT == MVT::i8) 5536 break; 5537 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5538 } 5539 NewVTSize = NewVT.getSizeInBits() / 8; 5540 5541 // If the new VT cannot cover all of the remaining bits, then consider 5542 // issuing a (or a pair of) unaligned and overlapping load / store. 5543 bool Fast; 5544 if (NumMemOps && AllowOverlap && NewVTSize < Size && 5545 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && 5546 Fast) 5547 VTSize = Size; 5548 else { 5549 VT = NewVT; 5550 VTSize = NewVTSize; 5551 } 5552 } 5553 5554 if (++NumMemOps > Limit) 5555 return false; 5556 5557 MemOps.push_back(VT); 5558 Size -= VTSize; 5559 } 5560 5561 return true; 5562 } 5563 5564 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5565 // On Darwin, -Os means optimize for size without hurting performance, so 5566 // only really optimize for size when -Oz (MinSize) is used. 5567 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5568 return MF.getFunction().optForMinSize(); 5569 return MF.getFunction().optForSize(); 5570 } 5571 5572 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5573 SmallVector<SDValue, 32> &OutChains, unsigned From, 5574 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5575 SmallVector<SDValue, 16> &OutStoreChains) { 5576 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5577 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5578 SmallVector<SDValue, 16> GluedLoadChains; 5579 for (unsigned i = From; i < To; ++i) { 5580 OutChains.push_back(OutLoadChains[i]); 5581 GluedLoadChains.push_back(OutLoadChains[i]); 5582 } 5583 5584 // Chain for all loads. 5585 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5586 GluedLoadChains); 5587 5588 for (unsigned i = From; i < To; ++i) { 5589 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5590 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5591 ST->getBasePtr(), ST->getMemoryVT(), 5592 ST->getMemOperand()); 5593 OutChains.push_back(NewStore); 5594 } 5595 } 5596 5597 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5598 SDValue Chain, SDValue Dst, SDValue Src, 5599 uint64_t Size, unsigned Align, 5600 bool isVol, bool AlwaysInline, 5601 MachinePointerInfo DstPtrInfo, 5602 MachinePointerInfo SrcPtrInfo) { 5603 // Turn a memcpy of undef to nop. 5604 if (Src.isUndef()) 5605 return Chain; 5606 5607 // Expand memcpy to a series of load and store ops if the size operand falls 5608 // below a certain threshold. 5609 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5610 // rather than maybe a humongous number of loads and stores. 5611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5612 const DataLayout &DL = DAG.getDataLayout(); 5613 LLVMContext &C = *DAG.getContext(); 5614 std::vector<EVT> MemOps; 5615 bool DstAlignCanChange = false; 5616 MachineFunction &MF = DAG.getMachineFunction(); 5617 MachineFrameInfo &MFI = MF.getFrameInfo(); 5618 bool OptSize = shouldLowerMemFuncForSize(MF); 5619 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5620 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5621 DstAlignCanChange = true; 5622 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5623 if (Align > SrcAlign) 5624 SrcAlign = Align; 5625 ConstantDataArraySlice Slice; 5626 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5627 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5628 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5629 5630 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5631 (DstAlignCanChange ? 0 : Align), 5632 (isZeroConstant ? 0 : SrcAlign), 5633 false, false, CopyFromConstant, true, 5634 DstPtrInfo.getAddrSpace(), 5635 SrcPtrInfo.getAddrSpace(), 5636 DAG, TLI)) 5637 return SDValue(); 5638 5639 if (DstAlignCanChange) { 5640 Type *Ty = MemOps[0].getTypeForEVT(C); 5641 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5642 5643 // Don't promote to an alignment that would require dynamic stack 5644 // realignment. 5645 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5646 if (!TRI->needsStackRealignment(MF)) 5647 while (NewAlign > Align && 5648 DL.exceedsNaturalStackAlignment(NewAlign)) 5649 NewAlign /= 2; 5650 5651 if (NewAlign > Align) { 5652 // Give the stack frame object a larger alignment if needed. 5653 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5654 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5655 Align = NewAlign; 5656 } 5657 } 5658 5659 MachineMemOperand::Flags MMOFlags = 5660 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5661 SmallVector<SDValue, 16> OutLoadChains; 5662 SmallVector<SDValue, 16> OutStoreChains; 5663 SmallVector<SDValue, 32> OutChains; 5664 unsigned NumMemOps = MemOps.size(); 5665 uint64_t SrcOff = 0, DstOff = 0; 5666 for (unsigned i = 0; i != NumMemOps; ++i) { 5667 EVT VT = MemOps[i]; 5668 unsigned VTSize = VT.getSizeInBits() / 8; 5669 SDValue Value, Store; 5670 5671 if (VTSize > Size) { 5672 // Issuing an unaligned load / store pair that overlaps with the previous 5673 // pair. Adjust the offset accordingly. 5674 assert(i == NumMemOps-1 && i != 0); 5675 SrcOff -= VTSize - Size; 5676 DstOff -= VTSize - Size; 5677 } 5678 5679 if (CopyFromConstant && 5680 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5681 // It's unlikely a store of a vector immediate can be done in a single 5682 // instruction. It would require a load from a constantpool first. 5683 // We only handle zero vectors here. 5684 // FIXME: Handle other cases where store of vector immediate is done in 5685 // a single instruction. 5686 ConstantDataArraySlice SubSlice; 5687 if (SrcOff < Slice.Length) { 5688 SubSlice = Slice; 5689 SubSlice.move(SrcOff); 5690 } else { 5691 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5692 SubSlice.Array = nullptr; 5693 SubSlice.Offset = 0; 5694 SubSlice.Length = VTSize; 5695 } 5696 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5697 if (Value.getNode()) { 5698 Store = DAG.getStore(Chain, dl, Value, 5699 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5700 DstPtrInfo.getWithOffset(DstOff), Align, 5701 MMOFlags); 5702 OutChains.push_back(Store); 5703 } 5704 } 5705 5706 if (!Store.getNode()) { 5707 // The type might not be legal for the target. This should only happen 5708 // if the type is smaller than a legal type, as on PPC, so the right 5709 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5710 // to Load/Store if NVT==VT. 5711 // FIXME does the case above also need this? 5712 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5713 assert(NVT.bitsGE(VT)); 5714 5715 bool isDereferenceable = 5716 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5717 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5718 if (isDereferenceable) 5719 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5720 5721 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5722 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5723 SrcPtrInfo.getWithOffset(SrcOff), VT, 5724 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5725 OutLoadChains.push_back(Value.getValue(1)); 5726 5727 Store = DAG.getTruncStore( 5728 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5729 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5730 OutStoreChains.push_back(Store); 5731 } 5732 SrcOff += VTSize; 5733 DstOff += VTSize; 5734 Size -= VTSize; 5735 } 5736 5737 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5738 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5739 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5740 5741 if (NumLdStInMemcpy) { 5742 // It may be that memcpy might be converted to memset if it's memcpy 5743 // of constants. In such a case, we won't have loads and stores, but 5744 // just stores. In the absence of loads, there is nothing to gang up. 5745 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5746 // If target does not care, just leave as it. 5747 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5748 OutChains.push_back(OutLoadChains[i]); 5749 OutChains.push_back(OutStoreChains[i]); 5750 } 5751 } else { 5752 // Ld/St less than/equal limit set by target. 5753 if (NumLdStInMemcpy <= GluedLdStLimit) { 5754 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5755 NumLdStInMemcpy, OutLoadChains, 5756 OutStoreChains); 5757 } else { 5758 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5759 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5760 unsigned GlueIter = 0; 5761 5762 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5763 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5764 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5765 5766 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5767 OutLoadChains, OutStoreChains); 5768 GlueIter += GluedLdStLimit; 5769 } 5770 5771 // Residual ld/st. 5772 if (RemainingLdStInMemcpy) { 5773 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5774 RemainingLdStInMemcpy, OutLoadChains, 5775 OutStoreChains); 5776 } 5777 } 5778 } 5779 } 5780 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5781 } 5782 5783 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5784 SDValue Chain, SDValue Dst, SDValue Src, 5785 uint64_t Size, unsigned Align, 5786 bool isVol, bool AlwaysInline, 5787 MachinePointerInfo DstPtrInfo, 5788 MachinePointerInfo SrcPtrInfo) { 5789 // Turn a memmove of undef to nop. 5790 if (Src.isUndef()) 5791 return Chain; 5792 5793 // Expand memmove to a series of load and store ops if the size operand falls 5794 // below a certain threshold. 5795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5796 const DataLayout &DL = DAG.getDataLayout(); 5797 LLVMContext &C = *DAG.getContext(); 5798 std::vector<EVT> MemOps; 5799 bool DstAlignCanChange = false; 5800 MachineFunction &MF = DAG.getMachineFunction(); 5801 MachineFrameInfo &MFI = MF.getFrameInfo(); 5802 bool OptSize = shouldLowerMemFuncForSize(MF); 5803 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5804 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5805 DstAlignCanChange = true; 5806 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5807 if (Align > SrcAlign) 5808 SrcAlign = Align; 5809 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5810 5811 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5812 (DstAlignCanChange ? 0 : Align), SrcAlign, 5813 false, false, false, false, 5814 DstPtrInfo.getAddrSpace(), 5815 SrcPtrInfo.getAddrSpace(), 5816 DAG, TLI)) 5817 return SDValue(); 5818 5819 if (DstAlignCanChange) { 5820 Type *Ty = MemOps[0].getTypeForEVT(C); 5821 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5822 if (NewAlign > Align) { 5823 // Give the stack frame object a larger alignment if needed. 5824 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5825 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5826 Align = NewAlign; 5827 } 5828 } 5829 5830 MachineMemOperand::Flags MMOFlags = 5831 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5832 uint64_t SrcOff = 0, DstOff = 0; 5833 SmallVector<SDValue, 8> LoadValues; 5834 SmallVector<SDValue, 8> LoadChains; 5835 SmallVector<SDValue, 8> OutChains; 5836 unsigned NumMemOps = MemOps.size(); 5837 for (unsigned i = 0; i < NumMemOps; i++) { 5838 EVT VT = MemOps[i]; 5839 unsigned VTSize = VT.getSizeInBits() / 8; 5840 SDValue Value; 5841 5842 bool isDereferenceable = 5843 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5844 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5845 if (isDereferenceable) 5846 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5847 5848 Value = 5849 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5850 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5851 LoadValues.push_back(Value); 5852 LoadChains.push_back(Value.getValue(1)); 5853 SrcOff += VTSize; 5854 } 5855 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5856 OutChains.clear(); 5857 for (unsigned i = 0; i < NumMemOps; i++) { 5858 EVT VT = MemOps[i]; 5859 unsigned VTSize = VT.getSizeInBits() / 8; 5860 SDValue Store; 5861 5862 Store = DAG.getStore(Chain, dl, LoadValues[i], 5863 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5864 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5865 OutChains.push_back(Store); 5866 DstOff += VTSize; 5867 } 5868 5869 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5870 } 5871 5872 /// Lower the call to 'memset' intrinsic function into a series of store 5873 /// operations. 5874 /// 5875 /// \param DAG Selection DAG where lowered code is placed. 5876 /// \param dl Link to corresponding IR location. 5877 /// \param Chain Control flow dependency. 5878 /// \param Dst Pointer to destination memory location. 5879 /// \param Src Value of byte to write into the memory. 5880 /// \param Size Number of bytes to write. 5881 /// \param Align Alignment of the destination in bytes. 5882 /// \param isVol True if destination is volatile. 5883 /// \param DstPtrInfo IR information on the memory pointer. 5884 /// \returns New head in the control flow, if lowering was successful, empty 5885 /// SDValue otherwise. 5886 /// 5887 /// The function tries to replace 'llvm.memset' intrinsic with several store 5888 /// operations and value calculation code. This is usually profitable for small 5889 /// memory size. 5890 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5891 SDValue Chain, SDValue Dst, SDValue Src, 5892 uint64_t Size, unsigned Align, bool isVol, 5893 MachinePointerInfo DstPtrInfo) { 5894 // Turn a memset of undef to nop. 5895 if (Src.isUndef()) 5896 return Chain; 5897 5898 // Expand memset to a series of load/store ops if the size operand 5899 // falls below a certain threshold. 5900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5901 std::vector<EVT> MemOps; 5902 bool DstAlignCanChange = false; 5903 MachineFunction &MF = DAG.getMachineFunction(); 5904 MachineFrameInfo &MFI = MF.getFrameInfo(); 5905 bool OptSize = shouldLowerMemFuncForSize(MF); 5906 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5907 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5908 DstAlignCanChange = true; 5909 bool IsZeroVal = 5910 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5911 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5912 Size, (DstAlignCanChange ? 0 : Align), 0, 5913 true, IsZeroVal, false, true, 5914 DstPtrInfo.getAddrSpace(), ~0u, 5915 DAG, TLI)) 5916 return SDValue(); 5917 5918 if (DstAlignCanChange) { 5919 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5920 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5921 if (NewAlign > Align) { 5922 // Give the stack frame object a larger alignment if needed. 5923 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5924 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5925 Align = NewAlign; 5926 } 5927 } 5928 5929 SmallVector<SDValue, 8> OutChains; 5930 uint64_t DstOff = 0; 5931 unsigned NumMemOps = MemOps.size(); 5932 5933 // Find the largest store and generate the bit pattern for it. 5934 EVT LargestVT = MemOps[0]; 5935 for (unsigned i = 1; i < NumMemOps; i++) 5936 if (MemOps[i].bitsGT(LargestVT)) 5937 LargestVT = MemOps[i]; 5938 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5939 5940 for (unsigned i = 0; i < NumMemOps; i++) { 5941 EVT VT = MemOps[i]; 5942 unsigned VTSize = VT.getSizeInBits() / 8; 5943 if (VTSize > Size) { 5944 // Issuing an unaligned load / store pair that overlaps with the previous 5945 // pair. Adjust the offset accordingly. 5946 assert(i == NumMemOps-1 && i != 0); 5947 DstOff -= VTSize - Size; 5948 } 5949 5950 // If this store is smaller than the largest store see whether we can get 5951 // the smaller value for free with a truncate. 5952 SDValue Value = MemSetValue; 5953 if (VT.bitsLT(LargestVT)) { 5954 if (!LargestVT.isVector() && !VT.isVector() && 5955 TLI.isTruncateFree(LargestVT, VT)) 5956 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5957 else 5958 Value = getMemsetValue(Src, VT, DAG, dl); 5959 } 5960 assert(Value.getValueType() == VT && "Value with wrong type."); 5961 SDValue Store = DAG.getStore( 5962 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5963 DstPtrInfo.getWithOffset(DstOff), Align, 5964 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5965 OutChains.push_back(Store); 5966 DstOff += VT.getSizeInBits() / 8; 5967 Size -= VTSize; 5968 } 5969 5970 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5971 } 5972 5973 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5974 unsigned AS) { 5975 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5976 // pointer operands can be losslessly bitcasted to pointers of address space 0 5977 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5978 report_fatal_error("cannot lower memory intrinsic in address space " + 5979 Twine(AS)); 5980 } 5981 } 5982 5983 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5984 SDValue Src, SDValue Size, unsigned Align, 5985 bool isVol, bool AlwaysInline, bool isTailCall, 5986 MachinePointerInfo DstPtrInfo, 5987 MachinePointerInfo SrcPtrInfo) { 5988 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5989 5990 // Check to see if we should lower the memcpy to loads and stores first. 5991 // For cases within the target-specified limits, this is the best choice. 5992 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5993 if (ConstantSize) { 5994 // Memcpy with size zero? Just return the original chain. 5995 if (ConstantSize->isNullValue()) 5996 return Chain; 5997 5998 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5999 ConstantSize->getZExtValue(),Align, 6000 isVol, false, DstPtrInfo, SrcPtrInfo); 6001 if (Result.getNode()) 6002 return Result; 6003 } 6004 6005 // Then check to see if we should lower the memcpy with target-specific 6006 // code. If the target chooses to do this, this is the next best. 6007 if (TSI) { 6008 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6009 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6010 DstPtrInfo, SrcPtrInfo); 6011 if (Result.getNode()) 6012 return Result; 6013 } 6014 6015 // If we really need inline code and the target declined to provide it, 6016 // use a (potentially long) sequence of loads and stores. 6017 if (AlwaysInline) { 6018 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6019 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6020 ConstantSize->getZExtValue(), Align, isVol, 6021 true, DstPtrInfo, SrcPtrInfo); 6022 } 6023 6024 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6025 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6026 6027 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6028 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6029 // respect volatile, so they may do things like read or write memory 6030 // beyond the given memory regions. But fixing this isn't easy, and most 6031 // people don't care. 6032 6033 // Emit a library call. 6034 TargetLowering::ArgListTy Args; 6035 TargetLowering::ArgListEntry Entry; 6036 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6037 Entry.Node = Dst; Args.push_back(Entry); 6038 Entry.Node = Src; Args.push_back(Entry); 6039 Entry.Node = Size; Args.push_back(Entry); 6040 // FIXME: pass in SDLoc 6041 TargetLowering::CallLoweringInfo CLI(*this); 6042 CLI.setDebugLoc(dl) 6043 .setChain(Chain) 6044 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6045 Dst.getValueType().getTypeForEVT(*getContext()), 6046 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6047 TLI->getPointerTy(getDataLayout())), 6048 std::move(Args)) 6049 .setDiscardResult() 6050 .setTailCall(isTailCall); 6051 6052 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6053 return CallResult.second; 6054 } 6055 6056 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6057 SDValue Dst, unsigned DstAlign, 6058 SDValue Src, unsigned SrcAlign, 6059 SDValue Size, Type *SizeTy, 6060 unsigned ElemSz, bool isTailCall, 6061 MachinePointerInfo DstPtrInfo, 6062 MachinePointerInfo SrcPtrInfo) { 6063 // Emit a library call. 6064 TargetLowering::ArgListTy Args; 6065 TargetLowering::ArgListEntry Entry; 6066 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6067 Entry.Node = Dst; 6068 Args.push_back(Entry); 6069 6070 Entry.Node = Src; 6071 Args.push_back(Entry); 6072 6073 Entry.Ty = SizeTy; 6074 Entry.Node = Size; 6075 Args.push_back(Entry); 6076 6077 RTLIB::Libcall LibraryCall = 6078 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6079 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6080 report_fatal_error("Unsupported element size"); 6081 6082 TargetLowering::CallLoweringInfo CLI(*this); 6083 CLI.setDebugLoc(dl) 6084 .setChain(Chain) 6085 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6086 Type::getVoidTy(*getContext()), 6087 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6088 TLI->getPointerTy(getDataLayout())), 6089 std::move(Args)) 6090 .setDiscardResult() 6091 .setTailCall(isTailCall); 6092 6093 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6094 return CallResult.second; 6095 } 6096 6097 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6098 SDValue Src, SDValue Size, unsigned Align, 6099 bool isVol, bool isTailCall, 6100 MachinePointerInfo DstPtrInfo, 6101 MachinePointerInfo SrcPtrInfo) { 6102 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6103 6104 // Check to see if we should lower the memmove to loads and stores first. 6105 // For cases within the target-specified limits, this is the best choice. 6106 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6107 if (ConstantSize) { 6108 // Memmove with size zero? Just return the original chain. 6109 if (ConstantSize->isNullValue()) 6110 return Chain; 6111 6112 SDValue Result = 6113 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6114 ConstantSize->getZExtValue(), Align, isVol, 6115 false, DstPtrInfo, SrcPtrInfo); 6116 if (Result.getNode()) 6117 return Result; 6118 } 6119 6120 // Then check to see if we should lower the memmove with target-specific 6121 // code. If the target chooses to do this, this is the next best. 6122 if (TSI) { 6123 SDValue Result = TSI->EmitTargetCodeForMemmove( 6124 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6125 if (Result.getNode()) 6126 return Result; 6127 } 6128 6129 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6130 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6131 6132 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6133 // not be safe. See memcpy above for more details. 6134 6135 // Emit a library call. 6136 TargetLowering::ArgListTy Args; 6137 TargetLowering::ArgListEntry Entry; 6138 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6139 Entry.Node = Dst; Args.push_back(Entry); 6140 Entry.Node = Src; Args.push_back(Entry); 6141 Entry.Node = Size; Args.push_back(Entry); 6142 // FIXME: pass in SDLoc 6143 TargetLowering::CallLoweringInfo CLI(*this); 6144 CLI.setDebugLoc(dl) 6145 .setChain(Chain) 6146 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6147 Dst.getValueType().getTypeForEVT(*getContext()), 6148 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6149 TLI->getPointerTy(getDataLayout())), 6150 std::move(Args)) 6151 .setDiscardResult() 6152 .setTailCall(isTailCall); 6153 6154 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6155 return CallResult.second; 6156 } 6157 6158 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6159 SDValue Dst, unsigned DstAlign, 6160 SDValue Src, unsigned SrcAlign, 6161 SDValue Size, Type *SizeTy, 6162 unsigned ElemSz, bool isTailCall, 6163 MachinePointerInfo DstPtrInfo, 6164 MachinePointerInfo SrcPtrInfo) { 6165 // Emit a library call. 6166 TargetLowering::ArgListTy Args; 6167 TargetLowering::ArgListEntry Entry; 6168 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6169 Entry.Node = Dst; 6170 Args.push_back(Entry); 6171 6172 Entry.Node = Src; 6173 Args.push_back(Entry); 6174 6175 Entry.Ty = SizeTy; 6176 Entry.Node = Size; 6177 Args.push_back(Entry); 6178 6179 RTLIB::Libcall LibraryCall = 6180 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6181 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6182 report_fatal_error("Unsupported element size"); 6183 6184 TargetLowering::CallLoweringInfo CLI(*this); 6185 CLI.setDebugLoc(dl) 6186 .setChain(Chain) 6187 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6188 Type::getVoidTy(*getContext()), 6189 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6190 TLI->getPointerTy(getDataLayout())), 6191 std::move(Args)) 6192 .setDiscardResult() 6193 .setTailCall(isTailCall); 6194 6195 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6196 return CallResult.second; 6197 } 6198 6199 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6200 SDValue Src, SDValue Size, unsigned Align, 6201 bool isVol, bool isTailCall, 6202 MachinePointerInfo DstPtrInfo) { 6203 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6204 6205 // Check to see if we should lower the memset to stores first. 6206 // For cases within the target-specified limits, this is the best choice. 6207 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6208 if (ConstantSize) { 6209 // Memset with size zero? Just return the original chain. 6210 if (ConstantSize->isNullValue()) 6211 return Chain; 6212 6213 SDValue Result = 6214 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6215 Align, isVol, DstPtrInfo); 6216 6217 if (Result.getNode()) 6218 return Result; 6219 } 6220 6221 // Then check to see if we should lower the memset with target-specific 6222 // code. If the target chooses to do this, this is the next best. 6223 if (TSI) { 6224 SDValue Result = TSI->EmitTargetCodeForMemset( 6225 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6226 if (Result.getNode()) 6227 return Result; 6228 } 6229 6230 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6231 6232 // Emit a library call. 6233 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 6234 TargetLowering::ArgListTy Args; 6235 TargetLowering::ArgListEntry Entry; 6236 Entry.Node = Dst; Entry.Ty = IntPtrTy; 6237 Args.push_back(Entry); 6238 Entry.Node = Src; 6239 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6240 Args.push_back(Entry); 6241 Entry.Node = Size; 6242 Entry.Ty = IntPtrTy; 6243 Args.push_back(Entry); 6244 6245 // FIXME: pass in SDLoc 6246 TargetLowering::CallLoweringInfo CLI(*this); 6247 CLI.setDebugLoc(dl) 6248 .setChain(Chain) 6249 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6250 Dst.getValueType().getTypeForEVT(*getContext()), 6251 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6252 TLI->getPointerTy(getDataLayout())), 6253 std::move(Args)) 6254 .setDiscardResult() 6255 .setTailCall(isTailCall); 6256 6257 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6258 return CallResult.second; 6259 } 6260 6261 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6262 SDValue Dst, unsigned DstAlign, 6263 SDValue Value, SDValue Size, Type *SizeTy, 6264 unsigned ElemSz, bool isTailCall, 6265 MachinePointerInfo DstPtrInfo) { 6266 // Emit a library call. 6267 TargetLowering::ArgListTy Args; 6268 TargetLowering::ArgListEntry Entry; 6269 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6270 Entry.Node = Dst; 6271 Args.push_back(Entry); 6272 6273 Entry.Ty = Type::getInt8Ty(*getContext()); 6274 Entry.Node = Value; 6275 Args.push_back(Entry); 6276 6277 Entry.Ty = SizeTy; 6278 Entry.Node = Size; 6279 Args.push_back(Entry); 6280 6281 RTLIB::Libcall LibraryCall = 6282 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6283 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6284 report_fatal_error("Unsupported element size"); 6285 6286 TargetLowering::CallLoweringInfo CLI(*this); 6287 CLI.setDebugLoc(dl) 6288 .setChain(Chain) 6289 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6290 Type::getVoidTy(*getContext()), 6291 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6292 TLI->getPointerTy(getDataLayout())), 6293 std::move(Args)) 6294 .setDiscardResult() 6295 .setTailCall(isTailCall); 6296 6297 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6298 return CallResult.second; 6299 } 6300 6301 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6302 SDVTList VTList, ArrayRef<SDValue> Ops, 6303 MachineMemOperand *MMO) { 6304 FoldingSetNodeID ID; 6305 ID.AddInteger(MemVT.getRawBits()); 6306 AddNodeIDNode(ID, Opcode, VTList, Ops); 6307 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6308 void* IP = nullptr; 6309 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6310 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6311 return SDValue(E, 0); 6312 } 6313 6314 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6315 VTList, MemVT, MMO); 6316 createOperands(N, Ops); 6317 6318 CSEMap.InsertNode(N, IP); 6319 InsertNode(N); 6320 return SDValue(N, 0); 6321 } 6322 6323 SDValue SelectionDAG::getAtomicCmpSwap( 6324 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 6325 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 6326 unsigned Alignment, AtomicOrdering SuccessOrdering, 6327 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 6328 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6329 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6330 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6331 6332 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6333 Alignment = getEVTAlignment(MemVT); 6334 6335 MachineFunction &MF = getMachineFunction(); 6336 6337 // FIXME: Volatile isn't really correct; we should keep track of atomic 6338 // orderings in the memoperand. 6339 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 6340 MachineMemOperand::MOStore; 6341 MachineMemOperand *MMO = 6342 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 6343 AAMDNodes(), nullptr, SSID, SuccessOrdering, 6344 FailureOrdering); 6345 6346 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 6347 } 6348 6349 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6350 EVT MemVT, SDVTList VTs, SDValue Chain, 6351 SDValue Ptr, SDValue Cmp, SDValue Swp, 6352 MachineMemOperand *MMO) { 6353 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6354 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6355 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6356 6357 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6358 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6359 } 6360 6361 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6362 SDValue Chain, SDValue Ptr, SDValue Val, 6363 const Value *PtrVal, unsigned Alignment, 6364 AtomicOrdering Ordering, 6365 SyncScope::ID SSID) { 6366 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6367 Alignment = getEVTAlignment(MemVT); 6368 6369 MachineFunction &MF = getMachineFunction(); 6370 // An atomic store does not load. An atomic load does not store. 6371 // (An atomicrmw obviously both loads and stores.) 6372 // For now, atomics are considered to be volatile always, and they are 6373 // chained as such. 6374 // FIXME: Volatile isn't really correct; we should keep track of atomic 6375 // orderings in the memoperand. 6376 auto Flags = MachineMemOperand::MOVolatile; 6377 if (Opcode != ISD::ATOMIC_STORE) 6378 Flags |= MachineMemOperand::MOLoad; 6379 if (Opcode != ISD::ATOMIC_LOAD) 6380 Flags |= MachineMemOperand::MOStore; 6381 6382 MachineMemOperand *MMO = 6383 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 6384 MemVT.getStoreSize(), Alignment, AAMDNodes(), 6385 nullptr, SSID, Ordering); 6386 6387 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 6388 } 6389 6390 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6391 SDValue Chain, SDValue Ptr, SDValue Val, 6392 MachineMemOperand *MMO) { 6393 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6394 Opcode == ISD::ATOMIC_LOAD_SUB || 6395 Opcode == ISD::ATOMIC_LOAD_AND || 6396 Opcode == ISD::ATOMIC_LOAD_CLR || 6397 Opcode == ISD::ATOMIC_LOAD_OR || 6398 Opcode == ISD::ATOMIC_LOAD_XOR || 6399 Opcode == ISD::ATOMIC_LOAD_NAND || 6400 Opcode == ISD::ATOMIC_LOAD_MIN || 6401 Opcode == ISD::ATOMIC_LOAD_MAX || 6402 Opcode == ISD::ATOMIC_LOAD_UMIN || 6403 Opcode == ISD::ATOMIC_LOAD_UMAX || 6404 Opcode == ISD::ATOMIC_SWAP || 6405 Opcode == ISD::ATOMIC_STORE) && 6406 "Invalid Atomic Op"); 6407 6408 EVT VT = Val.getValueType(); 6409 6410 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6411 getVTList(VT, MVT::Other); 6412 SDValue Ops[] = {Chain, Ptr, Val}; 6413 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6414 } 6415 6416 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6417 EVT VT, SDValue Chain, SDValue Ptr, 6418 MachineMemOperand *MMO) { 6419 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6420 6421 SDVTList VTs = getVTList(VT, MVT::Other); 6422 SDValue Ops[] = {Chain, Ptr}; 6423 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6424 } 6425 6426 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6427 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6428 if (Ops.size() == 1) 6429 return Ops[0]; 6430 6431 SmallVector<EVT, 4> VTs; 6432 VTs.reserve(Ops.size()); 6433 for (unsigned i = 0; i < Ops.size(); ++i) 6434 VTs.push_back(Ops[i].getValueType()); 6435 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6436 } 6437 6438 SDValue SelectionDAG::getMemIntrinsicNode( 6439 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6440 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6441 MachineMemOperand::Flags Flags, unsigned Size) { 6442 if (Align == 0) // Ensure that codegen never sees alignment 0 6443 Align = getEVTAlignment(MemVT); 6444 6445 if (!Size) 6446 Size = MemVT.getStoreSize(); 6447 6448 MachineFunction &MF = getMachineFunction(); 6449 MachineMemOperand *MMO = 6450 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 6451 6452 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6453 } 6454 6455 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6456 SDVTList VTList, 6457 ArrayRef<SDValue> Ops, EVT MemVT, 6458 MachineMemOperand *MMO) { 6459 assert((Opcode == ISD::INTRINSIC_VOID || 6460 Opcode == ISD::INTRINSIC_W_CHAIN || 6461 Opcode == ISD::PREFETCH || 6462 Opcode == ISD::LIFETIME_START || 6463 Opcode == ISD::LIFETIME_END || 6464 ((int)Opcode <= std::numeric_limits<int>::max() && 6465 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6466 "Opcode is not a memory-accessing opcode!"); 6467 6468 // Memoize the node unless it returns a flag. 6469 MemIntrinsicSDNode *N; 6470 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6471 FoldingSetNodeID ID; 6472 AddNodeIDNode(ID, Opcode, VTList, Ops); 6473 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6474 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6475 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6476 void *IP = nullptr; 6477 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6478 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6479 return SDValue(E, 0); 6480 } 6481 6482 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6483 VTList, MemVT, MMO); 6484 createOperands(N, Ops); 6485 6486 CSEMap.InsertNode(N, IP); 6487 } else { 6488 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6489 VTList, MemVT, MMO); 6490 createOperands(N, Ops); 6491 } 6492 InsertNode(N); 6493 return SDValue(N, 0); 6494 } 6495 6496 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6497 /// MachinePointerInfo record from it. This is particularly useful because the 6498 /// code generator has many cases where it doesn't bother passing in a 6499 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6500 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6501 SelectionDAG &DAG, SDValue Ptr, 6502 int64_t Offset = 0) { 6503 // If this is FI+Offset, we can model it. 6504 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6505 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6506 FI->getIndex(), Offset); 6507 6508 // If this is (FI+Offset1)+Offset2, we can model it. 6509 if (Ptr.getOpcode() != ISD::ADD || 6510 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6511 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6512 return Info; 6513 6514 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6515 return MachinePointerInfo::getFixedStack( 6516 DAG.getMachineFunction(), FI, 6517 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6518 } 6519 6520 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6521 /// MachinePointerInfo record from it. This is particularly useful because the 6522 /// code generator has many cases where it doesn't bother passing in a 6523 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6524 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6525 SelectionDAG &DAG, SDValue Ptr, 6526 SDValue OffsetOp) { 6527 // If the 'Offset' value isn't a constant, we can't handle this. 6528 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6529 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6530 if (OffsetOp.isUndef()) 6531 return InferPointerInfo(Info, DAG, Ptr); 6532 return Info; 6533 } 6534 6535 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6536 EVT VT, const SDLoc &dl, SDValue Chain, 6537 SDValue Ptr, SDValue Offset, 6538 MachinePointerInfo PtrInfo, EVT MemVT, 6539 unsigned Alignment, 6540 MachineMemOperand::Flags MMOFlags, 6541 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6542 assert(Chain.getValueType() == MVT::Other && 6543 "Invalid chain type"); 6544 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6545 Alignment = getEVTAlignment(MemVT); 6546 6547 MMOFlags |= MachineMemOperand::MOLoad; 6548 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6549 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6550 // clients. 6551 if (PtrInfo.V.isNull()) 6552 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6553 6554 MachineFunction &MF = getMachineFunction(); 6555 MachineMemOperand *MMO = MF.getMachineMemOperand( 6556 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6557 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6558 } 6559 6560 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6561 EVT VT, const SDLoc &dl, SDValue Chain, 6562 SDValue Ptr, SDValue Offset, EVT MemVT, 6563 MachineMemOperand *MMO) { 6564 if (VT == MemVT) { 6565 ExtType = ISD::NON_EXTLOAD; 6566 } else if (ExtType == ISD::NON_EXTLOAD) { 6567 assert(VT == MemVT && "Non-extending load from different memory type!"); 6568 } else { 6569 // Extending load. 6570 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6571 "Should only be an extending load, not truncating!"); 6572 assert(VT.isInteger() == MemVT.isInteger() && 6573 "Cannot convert from FP to Int or Int -> FP!"); 6574 assert(VT.isVector() == MemVT.isVector() && 6575 "Cannot use an ext load to convert to or from a vector!"); 6576 assert((!VT.isVector() || 6577 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6578 "Cannot use an ext load to change the number of vector elements!"); 6579 } 6580 6581 bool Indexed = AM != ISD::UNINDEXED; 6582 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6583 6584 SDVTList VTs = Indexed ? 6585 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6586 SDValue Ops[] = { Chain, Ptr, Offset }; 6587 FoldingSetNodeID ID; 6588 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6589 ID.AddInteger(MemVT.getRawBits()); 6590 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6591 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6592 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6593 void *IP = nullptr; 6594 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6595 cast<LoadSDNode>(E)->refineAlignment(MMO); 6596 return SDValue(E, 0); 6597 } 6598 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6599 ExtType, MemVT, MMO); 6600 createOperands(N, Ops); 6601 6602 CSEMap.InsertNode(N, IP); 6603 InsertNode(N); 6604 SDValue V(N, 0); 6605 NewSDValueDbgMsg(V, "Creating new node: ", this); 6606 return V; 6607 } 6608 6609 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6610 SDValue Ptr, MachinePointerInfo PtrInfo, 6611 unsigned Alignment, 6612 MachineMemOperand::Flags MMOFlags, 6613 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6614 SDValue Undef = getUNDEF(Ptr.getValueType()); 6615 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6616 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6617 } 6618 6619 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6620 SDValue Ptr, MachineMemOperand *MMO) { 6621 SDValue Undef = getUNDEF(Ptr.getValueType()); 6622 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6623 VT, MMO); 6624 } 6625 6626 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6627 EVT VT, SDValue Chain, SDValue Ptr, 6628 MachinePointerInfo PtrInfo, EVT MemVT, 6629 unsigned Alignment, 6630 MachineMemOperand::Flags MMOFlags, 6631 const AAMDNodes &AAInfo) { 6632 SDValue Undef = getUNDEF(Ptr.getValueType()); 6633 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6634 MemVT, Alignment, MMOFlags, AAInfo); 6635 } 6636 6637 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6638 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6639 MachineMemOperand *MMO) { 6640 SDValue Undef = getUNDEF(Ptr.getValueType()); 6641 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6642 MemVT, MMO); 6643 } 6644 6645 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6646 SDValue Base, SDValue Offset, 6647 ISD::MemIndexedMode AM) { 6648 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6649 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6650 // Don't propagate the invariant or dereferenceable flags. 6651 auto MMOFlags = 6652 LD->getMemOperand()->getFlags() & 6653 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6654 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6655 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6656 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6657 LD->getAAInfo()); 6658 } 6659 6660 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6661 SDValue Ptr, MachinePointerInfo PtrInfo, 6662 unsigned Alignment, 6663 MachineMemOperand::Flags MMOFlags, 6664 const AAMDNodes &AAInfo) { 6665 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6666 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6667 Alignment = getEVTAlignment(Val.getValueType()); 6668 6669 MMOFlags |= MachineMemOperand::MOStore; 6670 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6671 6672 if (PtrInfo.V.isNull()) 6673 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6674 6675 MachineFunction &MF = getMachineFunction(); 6676 MachineMemOperand *MMO = MF.getMachineMemOperand( 6677 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6678 return getStore(Chain, dl, Val, Ptr, MMO); 6679 } 6680 6681 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6682 SDValue Ptr, MachineMemOperand *MMO) { 6683 assert(Chain.getValueType() == MVT::Other && 6684 "Invalid chain type"); 6685 EVT VT = Val.getValueType(); 6686 SDVTList VTs = getVTList(MVT::Other); 6687 SDValue Undef = getUNDEF(Ptr.getValueType()); 6688 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6689 FoldingSetNodeID ID; 6690 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6691 ID.AddInteger(VT.getRawBits()); 6692 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6693 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6694 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6695 void *IP = nullptr; 6696 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6697 cast<StoreSDNode>(E)->refineAlignment(MMO); 6698 return SDValue(E, 0); 6699 } 6700 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6701 ISD::UNINDEXED, false, VT, MMO); 6702 createOperands(N, Ops); 6703 6704 CSEMap.InsertNode(N, IP); 6705 InsertNode(N); 6706 SDValue V(N, 0); 6707 NewSDValueDbgMsg(V, "Creating new node: ", this); 6708 return V; 6709 } 6710 6711 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6712 SDValue Ptr, MachinePointerInfo PtrInfo, 6713 EVT SVT, unsigned Alignment, 6714 MachineMemOperand::Flags MMOFlags, 6715 const AAMDNodes &AAInfo) { 6716 assert(Chain.getValueType() == MVT::Other && 6717 "Invalid chain type"); 6718 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6719 Alignment = getEVTAlignment(SVT); 6720 6721 MMOFlags |= MachineMemOperand::MOStore; 6722 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6723 6724 if (PtrInfo.V.isNull()) 6725 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6726 6727 MachineFunction &MF = getMachineFunction(); 6728 MachineMemOperand *MMO = MF.getMachineMemOperand( 6729 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6730 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6731 } 6732 6733 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6734 SDValue Ptr, EVT SVT, 6735 MachineMemOperand *MMO) { 6736 EVT VT = Val.getValueType(); 6737 6738 assert(Chain.getValueType() == MVT::Other && 6739 "Invalid chain type"); 6740 if (VT == SVT) 6741 return getStore(Chain, dl, Val, Ptr, MMO); 6742 6743 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6744 "Should only be a truncating store, not extending!"); 6745 assert(VT.isInteger() == SVT.isInteger() && 6746 "Can't do FP-INT conversion!"); 6747 assert(VT.isVector() == SVT.isVector() && 6748 "Cannot use trunc store to convert to or from a vector!"); 6749 assert((!VT.isVector() || 6750 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6751 "Cannot use trunc store to change the number of vector elements!"); 6752 6753 SDVTList VTs = getVTList(MVT::Other); 6754 SDValue Undef = getUNDEF(Ptr.getValueType()); 6755 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6756 FoldingSetNodeID ID; 6757 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6758 ID.AddInteger(SVT.getRawBits()); 6759 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6760 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6761 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6762 void *IP = nullptr; 6763 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6764 cast<StoreSDNode>(E)->refineAlignment(MMO); 6765 return SDValue(E, 0); 6766 } 6767 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6768 ISD::UNINDEXED, true, SVT, MMO); 6769 createOperands(N, Ops); 6770 6771 CSEMap.InsertNode(N, IP); 6772 InsertNode(N); 6773 SDValue V(N, 0); 6774 NewSDValueDbgMsg(V, "Creating new node: ", this); 6775 return V; 6776 } 6777 6778 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6779 SDValue Base, SDValue Offset, 6780 ISD::MemIndexedMode AM) { 6781 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6782 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6783 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6784 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6785 FoldingSetNodeID ID; 6786 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6787 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6788 ID.AddInteger(ST->getRawSubclassData()); 6789 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6790 void *IP = nullptr; 6791 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6792 return SDValue(E, 0); 6793 6794 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6795 ST->isTruncatingStore(), ST->getMemoryVT(), 6796 ST->getMemOperand()); 6797 createOperands(N, Ops); 6798 6799 CSEMap.InsertNode(N, IP); 6800 InsertNode(N); 6801 SDValue V(N, 0); 6802 NewSDValueDbgMsg(V, "Creating new node: ", this); 6803 return V; 6804 } 6805 6806 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6807 SDValue Ptr, SDValue Mask, SDValue PassThru, 6808 EVT MemVT, MachineMemOperand *MMO, 6809 ISD::LoadExtType ExtTy, bool isExpanding) { 6810 SDVTList VTs = getVTList(VT, MVT::Other); 6811 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6812 FoldingSetNodeID ID; 6813 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6814 ID.AddInteger(VT.getRawBits()); 6815 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6816 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6817 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6818 void *IP = nullptr; 6819 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6820 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6821 return SDValue(E, 0); 6822 } 6823 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6824 ExtTy, isExpanding, MemVT, MMO); 6825 createOperands(N, Ops); 6826 6827 CSEMap.InsertNode(N, IP); 6828 InsertNode(N); 6829 SDValue V(N, 0); 6830 NewSDValueDbgMsg(V, "Creating new node: ", this); 6831 return V; 6832 } 6833 6834 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6835 SDValue Val, SDValue Ptr, SDValue Mask, 6836 EVT MemVT, MachineMemOperand *MMO, 6837 bool IsTruncating, bool IsCompressing) { 6838 assert(Chain.getValueType() == MVT::Other && 6839 "Invalid chain type"); 6840 EVT VT = Val.getValueType(); 6841 SDVTList VTs = getVTList(MVT::Other); 6842 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6843 FoldingSetNodeID ID; 6844 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6845 ID.AddInteger(VT.getRawBits()); 6846 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6847 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6848 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6849 void *IP = nullptr; 6850 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6851 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6852 return SDValue(E, 0); 6853 } 6854 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6855 IsTruncating, IsCompressing, MemVT, MMO); 6856 createOperands(N, Ops); 6857 6858 CSEMap.InsertNode(N, IP); 6859 InsertNode(N); 6860 SDValue V(N, 0); 6861 NewSDValueDbgMsg(V, "Creating new node: ", this); 6862 return V; 6863 } 6864 6865 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6866 ArrayRef<SDValue> Ops, 6867 MachineMemOperand *MMO) { 6868 assert(Ops.size() == 6 && "Incompatible number of operands"); 6869 6870 FoldingSetNodeID ID; 6871 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6872 ID.AddInteger(VT.getRawBits()); 6873 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6874 dl.getIROrder(), VTs, VT, MMO)); 6875 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6876 void *IP = nullptr; 6877 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6878 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6879 return SDValue(E, 0); 6880 } 6881 6882 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6883 VTs, VT, MMO); 6884 createOperands(N, Ops); 6885 6886 assert(N->getPassThru().getValueType() == N->getValueType(0) && 6887 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6888 assert(N->getMask().getValueType().getVectorNumElements() == 6889 N->getValueType(0).getVectorNumElements() && 6890 "Vector width mismatch between mask and data"); 6891 assert(N->getIndex().getValueType().getVectorNumElements() >= 6892 N->getValueType(0).getVectorNumElements() && 6893 "Vector width mismatch between index and data"); 6894 assert(isa<ConstantSDNode>(N->getScale()) && 6895 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6896 "Scale should be a constant power of 2"); 6897 6898 CSEMap.InsertNode(N, IP); 6899 InsertNode(N); 6900 SDValue V(N, 0); 6901 NewSDValueDbgMsg(V, "Creating new node: ", this); 6902 return V; 6903 } 6904 6905 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6906 ArrayRef<SDValue> Ops, 6907 MachineMemOperand *MMO) { 6908 assert(Ops.size() == 6 && "Incompatible number of operands"); 6909 6910 FoldingSetNodeID ID; 6911 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6912 ID.AddInteger(VT.getRawBits()); 6913 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6914 dl.getIROrder(), VTs, VT, MMO)); 6915 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6916 void *IP = nullptr; 6917 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6918 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6919 return SDValue(E, 0); 6920 } 6921 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6922 VTs, VT, MMO); 6923 createOperands(N, Ops); 6924 6925 assert(N->getMask().getValueType().getVectorNumElements() == 6926 N->getValue().getValueType().getVectorNumElements() && 6927 "Vector width mismatch between mask and data"); 6928 assert(N->getIndex().getValueType().getVectorNumElements() >= 6929 N->getValue().getValueType().getVectorNumElements() && 6930 "Vector width mismatch between index and data"); 6931 assert(isa<ConstantSDNode>(N->getScale()) && 6932 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6933 "Scale should be a constant power of 2"); 6934 6935 CSEMap.InsertNode(N, IP); 6936 InsertNode(N); 6937 SDValue V(N, 0); 6938 NewSDValueDbgMsg(V, "Creating new node: ", this); 6939 return V; 6940 } 6941 6942 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 6943 // select undef, T, F --> T (if T is a constant), otherwise F 6944 // select, ?, undef, F --> F 6945 // select, ?, T, undef --> T 6946 if (Cond.isUndef()) 6947 return isConstantValueOfAnyType(T) ? T : F; 6948 if (T.isUndef()) 6949 return F; 6950 if (F.isUndef()) 6951 return T; 6952 6953 // select true, T, F --> T 6954 // select false, T, F --> F 6955 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 6956 return CondC->isNullValue() ? F : T; 6957 6958 // TODO: This should simplify VSELECT with constant condition using something 6959 // like this (but check boolean contents to be complete?): 6960 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 6961 // return T; 6962 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 6963 // return F; 6964 6965 // select ?, T, T --> T 6966 if (T == F) 6967 return T; 6968 6969 return SDValue(); 6970 } 6971 6972 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 6973 // shift undef, Y --> 0 (can always assume that the undef value is 0) 6974 if (X.isUndef()) 6975 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 6976 // shift X, undef --> undef (because it may shift by the bitwidth) 6977 if (Y.isUndef()) 6978 return getUNDEF(X.getValueType()); 6979 6980 // shift 0, Y --> 0 6981 // shift X, 0 --> X 6982 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 6983 return X; 6984 6985 // shift X, C >= bitwidth(X) --> undef 6986 // All vector elements must be too big (or undef) to avoid partial undefs. 6987 auto isShiftTooBig = [X](ConstantSDNode *Val) { 6988 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 6989 }; 6990 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 6991 return getUNDEF(X.getValueType()); 6992 6993 return SDValue(); 6994 } 6995 6996 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6997 SDValue Ptr, SDValue SV, unsigned Align) { 6998 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6999 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7000 } 7001 7002 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7003 ArrayRef<SDUse> Ops) { 7004 switch (Ops.size()) { 7005 case 0: return getNode(Opcode, DL, VT); 7006 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7007 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7008 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7009 default: break; 7010 } 7011 7012 // Copy from an SDUse array into an SDValue array for use with 7013 // the regular getNode logic. 7014 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7015 return getNode(Opcode, DL, VT, NewOps); 7016 } 7017 7018 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7019 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7020 unsigned NumOps = Ops.size(); 7021 switch (NumOps) { 7022 case 0: return getNode(Opcode, DL, VT); 7023 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7024 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7025 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7026 default: break; 7027 } 7028 7029 switch (Opcode) { 7030 default: break; 7031 case ISD::BUILD_VECTOR: 7032 // Attempt to simplify BUILD_VECTOR. 7033 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7034 return V; 7035 break; 7036 case ISD::CONCAT_VECTORS: 7037 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 7038 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 7039 return V; 7040 break; 7041 case ISD::SELECT_CC: 7042 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7043 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7044 "LHS and RHS of condition must have same type!"); 7045 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7046 "True and False arms of SelectCC must have same type!"); 7047 assert(Ops[2].getValueType() == VT && 7048 "select_cc node must be of same type as true and false value!"); 7049 break; 7050 case ISD::BR_CC: 7051 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7052 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7053 "LHS/RHS of comparison should match types!"); 7054 break; 7055 } 7056 7057 // Memoize nodes. 7058 SDNode *N; 7059 SDVTList VTs = getVTList(VT); 7060 7061 if (VT != MVT::Glue) { 7062 FoldingSetNodeID ID; 7063 AddNodeIDNode(ID, Opcode, VTs, Ops); 7064 void *IP = nullptr; 7065 7066 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7067 return SDValue(E, 0); 7068 7069 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7070 createOperands(N, Ops); 7071 7072 CSEMap.InsertNode(N, IP); 7073 } else { 7074 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7075 createOperands(N, Ops); 7076 } 7077 7078 InsertNode(N); 7079 SDValue V(N, 0); 7080 NewSDValueDbgMsg(V, "Creating new node: ", this); 7081 return V; 7082 } 7083 7084 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7085 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7086 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7087 } 7088 7089 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7090 ArrayRef<SDValue> Ops) { 7091 if (VTList.NumVTs == 1) 7092 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7093 7094 #if 0 7095 switch (Opcode) { 7096 // FIXME: figure out how to safely handle things like 7097 // int foo(int x) { return 1 << (x & 255); } 7098 // int bar() { return foo(256); } 7099 case ISD::SRA_PARTS: 7100 case ISD::SRL_PARTS: 7101 case ISD::SHL_PARTS: 7102 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7103 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7104 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7105 else if (N3.getOpcode() == ISD::AND) 7106 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7107 // If the and is only masking out bits that cannot effect the shift, 7108 // eliminate the and. 7109 unsigned NumBits = VT.getScalarSizeInBits()*2; 7110 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7111 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7112 } 7113 break; 7114 } 7115 #endif 7116 7117 // Memoize the node unless it returns a flag. 7118 SDNode *N; 7119 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7120 FoldingSetNodeID ID; 7121 AddNodeIDNode(ID, Opcode, VTList, Ops); 7122 void *IP = nullptr; 7123 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7124 return SDValue(E, 0); 7125 7126 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7127 createOperands(N, Ops); 7128 CSEMap.InsertNode(N, IP); 7129 } else { 7130 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7131 createOperands(N, Ops); 7132 } 7133 InsertNode(N); 7134 SDValue V(N, 0); 7135 NewSDValueDbgMsg(V, "Creating new node: ", this); 7136 return V; 7137 } 7138 7139 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7140 SDVTList VTList) { 7141 return getNode(Opcode, DL, VTList, None); 7142 } 7143 7144 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7145 SDValue N1) { 7146 SDValue Ops[] = { N1 }; 7147 return getNode(Opcode, DL, VTList, Ops); 7148 } 7149 7150 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7151 SDValue N1, SDValue N2) { 7152 SDValue Ops[] = { N1, N2 }; 7153 return getNode(Opcode, DL, VTList, Ops); 7154 } 7155 7156 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7157 SDValue N1, SDValue N2, SDValue N3) { 7158 SDValue Ops[] = { N1, N2, N3 }; 7159 return getNode(Opcode, DL, VTList, Ops); 7160 } 7161 7162 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7163 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7164 SDValue Ops[] = { N1, N2, N3, N4 }; 7165 return getNode(Opcode, DL, VTList, Ops); 7166 } 7167 7168 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7169 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7170 SDValue N5) { 7171 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7172 return getNode(Opcode, DL, VTList, Ops); 7173 } 7174 7175 SDVTList SelectionDAG::getVTList(EVT VT) { 7176 return makeVTList(SDNode::getValueTypeList(VT), 1); 7177 } 7178 7179 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7180 FoldingSetNodeID ID; 7181 ID.AddInteger(2U); 7182 ID.AddInteger(VT1.getRawBits()); 7183 ID.AddInteger(VT2.getRawBits()); 7184 7185 void *IP = nullptr; 7186 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7187 if (!Result) { 7188 EVT *Array = Allocator.Allocate<EVT>(2); 7189 Array[0] = VT1; 7190 Array[1] = VT2; 7191 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7192 VTListMap.InsertNode(Result, IP); 7193 } 7194 return Result->getSDVTList(); 7195 } 7196 7197 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7198 FoldingSetNodeID ID; 7199 ID.AddInteger(3U); 7200 ID.AddInteger(VT1.getRawBits()); 7201 ID.AddInteger(VT2.getRawBits()); 7202 ID.AddInteger(VT3.getRawBits()); 7203 7204 void *IP = nullptr; 7205 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7206 if (!Result) { 7207 EVT *Array = Allocator.Allocate<EVT>(3); 7208 Array[0] = VT1; 7209 Array[1] = VT2; 7210 Array[2] = VT3; 7211 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7212 VTListMap.InsertNode(Result, IP); 7213 } 7214 return Result->getSDVTList(); 7215 } 7216 7217 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7218 FoldingSetNodeID ID; 7219 ID.AddInteger(4U); 7220 ID.AddInteger(VT1.getRawBits()); 7221 ID.AddInteger(VT2.getRawBits()); 7222 ID.AddInteger(VT3.getRawBits()); 7223 ID.AddInteger(VT4.getRawBits()); 7224 7225 void *IP = nullptr; 7226 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7227 if (!Result) { 7228 EVT *Array = Allocator.Allocate<EVT>(4); 7229 Array[0] = VT1; 7230 Array[1] = VT2; 7231 Array[2] = VT3; 7232 Array[3] = VT4; 7233 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7234 VTListMap.InsertNode(Result, IP); 7235 } 7236 return Result->getSDVTList(); 7237 } 7238 7239 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7240 unsigned NumVTs = VTs.size(); 7241 FoldingSetNodeID ID; 7242 ID.AddInteger(NumVTs); 7243 for (unsigned index = 0; index < NumVTs; index++) { 7244 ID.AddInteger(VTs[index].getRawBits()); 7245 } 7246 7247 void *IP = nullptr; 7248 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7249 if (!Result) { 7250 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7251 llvm::copy(VTs, Array); 7252 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7253 VTListMap.InsertNode(Result, IP); 7254 } 7255 return Result->getSDVTList(); 7256 } 7257 7258 7259 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7260 /// specified operands. If the resultant node already exists in the DAG, 7261 /// this does not modify the specified node, instead it returns the node that 7262 /// already exists. If the resultant node does not exist in the DAG, the 7263 /// input node is returned. As a degenerate case, if you specify the same 7264 /// input operands as the node already has, the input node is returned. 7265 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7266 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7267 7268 // Check to see if there is no change. 7269 if (Op == N->getOperand(0)) return N; 7270 7271 // See if the modified node already exists. 7272 void *InsertPos = nullptr; 7273 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7274 return Existing; 7275 7276 // Nope it doesn't. Remove the node from its current place in the maps. 7277 if (InsertPos) 7278 if (!RemoveNodeFromCSEMaps(N)) 7279 InsertPos = nullptr; 7280 7281 // Now we update the operands. 7282 N->OperandList[0].set(Op); 7283 7284 updateDivergence(N); 7285 // If this gets put into a CSE map, add it. 7286 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7287 return N; 7288 } 7289 7290 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7291 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7292 7293 // Check to see if there is no change. 7294 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7295 return N; // No operands changed, just return the input node. 7296 7297 // See if the modified node already exists. 7298 void *InsertPos = nullptr; 7299 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7300 return Existing; 7301 7302 // Nope it doesn't. Remove the node from its current place in the maps. 7303 if (InsertPos) 7304 if (!RemoveNodeFromCSEMaps(N)) 7305 InsertPos = nullptr; 7306 7307 // Now we update the operands. 7308 if (N->OperandList[0] != Op1) 7309 N->OperandList[0].set(Op1); 7310 if (N->OperandList[1] != Op2) 7311 N->OperandList[1].set(Op2); 7312 7313 updateDivergence(N); 7314 // If this gets put into a CSE map, add it. 7315 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7316 return N; 7317 } 7318 7319 SDNode *SelectionDAG:: 7320 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7321 SDValue Ops[] = { Op1, Op2, Op3 }; 7322 return UpdateNodeOperands(N, Ops); 7323 } 7324 7325 SDNode *SelectionDAG:: 7326 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7327 SDValue Op3, SDValue Op4) { 7328 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7329 return UpdateNodeOperands(N, Ops); 7330 } 7331 7332 SDNode *SelectionDAG:: 7333 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7334 SDValue Op3, SDValue Op4, SDValue Op5) { 7335 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7336 return UpdateNodeOperands(N, Ops); 7337 } 7338 7339 SDNode *SelectionDAG:: 7340 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7341 unsigned NumOps = Ops.size(); 7342 assert(N->getNumOperands() == NumOps && 7343 "Update with wrong number of operands"); 7344 7345 // If no operands changed just return the input node. 7346 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7347 return N; 7348 7349 // See if the modified node already exists. 7350 void *InsertPos = nullptr; 7351 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7352 return Existing; 7353 7354 // Nope it doesn't. Remove the node from its current place in the maps. 7355 if (InsertPos) 7356 if (!RemoveNodeFromCSEMaps(N)) 7357 InsertPos = nullptr; 7358 7359 // Now we update the operands. 7360 for (unsigned i = 0; i != NumOps; ++i) 7361 if (N->OperandList[i] != Ops[i]) 7362 N->OperandList[i].set(Ops[i]); 7363 7364 updateDivergence(N); 7365 // If this gets put into a CSE map, add it. 7366 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7367 return N; 7368 } 7369 7370 /// DropOperands - Release the operands and set this node to have 7371 /// zero operands. 7372 void SDNode::DropOperands() { 7373 // Unlike the code in MorphNodeTo that does this, we don't need to 7374 // watch for dead nodes here. 7375 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7376 SDUse &Use = *I++; 7377 Use.set(SDValue()); 7378 } 7379 } 7380 7381 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7382 ArrayRef<MachineMemOperand *> NewMemRefs) { 7383 if (NewMemRefs.empty()) { 7384 N->clearMemRefs(); 7385 return; 7386 } 7387 7388 // Check if we can avoid allocating by storing a single reference directly. 7389 if (NewMemRefs.size() == 1) { 7390 N->MemRefs = NewMemRefs[0]; 7391 N->NumMemRefs = 1; 7392 return; 7393 } 7394 7395 MachineMemOperand **MemRefsBuffer = 7396 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7397 llvm::copy(NewMemRefs, MemRefsBuffer); 7398 N->MemRefs = MemRefsBuffer; 7399 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7400 } 7401 7402 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7403 /// machine opcode. 7404 /// 7405 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7406 EVT VT) { 7407 SDVTList VTs = getVTList(VT); 7408 return SelectNodeTo(N, MachineOpc, VTs, None); 7409 } 7410 7411 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7412 EVT VT, SDValue Op1) { 7413 SDVTList VTs = getVTList(VT); 7414 SDValue Ops[] = { Op1 }; 7415 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7416 } 7417 7418 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7419 EVT VT, SDValue Op1, 7420 SDValue Op2) { 7421 SDVTList VTs = getVTList(VT); 7422 SDValue Ops[] = { Op1, Op2 }; 7423 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7424 } 7425 7426 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7427 EVT VT, SDValue Op1, 7428 SDValue Op2, SDValue Op3) { 7429 SDVTList VTs = getVTList(VT); 7430 SDValue Ops[] = { Op1, Op2, Op3 }; 7431 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7432 } 7433 7434 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7435 EVT VT, ArrayRef<SDValue> Ops) { 7436 SDVTList VTs = getVTList(VT); 7437 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7438 } 7439 7440 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7441 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7442 SDVTList VTs = getVTList(VT1, VT2); 7443 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7444 } 7445 7446 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7447 EVT VT1, EVT VT2) { 7448 SDVTList VTs = getVTList(VT1, VT2); 7449 return SelectNodeTo(N, MachineOpc, VTs, None); 7450 } 7451 7452 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7453 EVT VT1, EVT VT2, EVT VT3, 7454 ArrayRef<SDValue> Ops) { 7455 SDVTList VTs = getVTList(VT1, VT2, VT3); 7456 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7457 } 7458 7459 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7460 EVT VT1, EVT VT2, 7461 SDValue Op1, SDValue Op2) { 7462 SDVTList VTs = getVTList(VT1, VT2); 7463 SDValue Ops[] = { Op1, Op2 }; 7464 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7465 } 7466 7467 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7468 SDVTList VTs,ArrayRef<SDValue> Ops) { 7469 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7470 // Reset the NodeID to -1. 7471 New->setNodeId(-1); 7472 if (New != N) { 7473 ReplaceAllUsesWith(N, New); 7474 RemoveDeadNode(N); 7475 } 7476 return New; 7477 } 7478 7479 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7480 /// the line number information on the merged node since it is not possible to 7481 /// preserve the information that operation is associated with multiple lines. 7482 /// This will make the debugger working better at -O0, were there is a higher 7483 /// probability having other instructions associated with that line. 7484 /// 7485 /// For IROrder, we keep the smaller of the two 7486 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7487 DebugLoc NLoc = N->getDebugLoc(); 7488 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7489 N->setDebugLoc(DebugLoc()); 7490 } 7491 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7492 N->setIROrder(Order); 7493 return N; 7494 } 7495 7496 /// MorphNodeTo - This *mutates* the specified node to have the specified 7497 /// return type, opcode, and operands. 7498 /// 7499 /// Note that MorphNodeTo returns the resultant node. If there is already a 7500 /// node of the specified opcode and operands, it returns that node instead of 7501 /// the current one. Note that the SDLoc need not be the same. 7502 /// 7503 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7504 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7505 /// node, and because it doesn't require CSE recalculation for any of 7506 /// the node's users. 7507 /// 7508 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7509 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7510 /// the legalizer which maintain worklists that would need to be updated when 7511 /// deleting things. 7512 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7513 SDVTList VTs, ArrayRef<SDValue> Ops) { 7514 // If an identical node already exists, use it. 7515 void *IP = nullptr; 7516 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7517 FoldingSetNodeID ID; 7518 AddNodeIDNode(ID, Opc, VTs, Ops); 7519 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7520 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7521 } 7522 7523 if (!RemoveNodeFromCSEMaps(N)) 7524 IP = nullptr; 7525 7526 // Start the morphing. 7527 N->NodeType = Opc; 7528 N->ValueList = VTs.VTs; 7529 N->NumValues = VTs.NumVTs; 7530 7531 // Clear the operands list, updating used nodes to remove this from their 7532 // use list. Keep track of any operands that become dead as a result. 7533 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7534 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7535 SDUse &Use = *I++; 7536 SDNode *Used = Use.getNode(); 7537 Use.set(SDValue()); 7538 if (Used->use_empty()) 7539 DeadNodeSet.insert(Used); 7540 } 7541 7542 // For MachineNode, initialize the memory references information. 7543 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7544 MN->clearMemRefs(); 7545 7546 // Swap for an appropriately sized array from the recycler. 7547 removeOperands(N); 7548 createOperands(N, Ops); 7549 7550 // Delete any nodes that are still dead after adding the uses for the 7551 // new operands. 7552 if (!DeadNodeSet.empty()) { 7553 SmallVector<SDNode *, 16> DeadNodes; 7554 for (SDNode *N : DeadNodeSet) 7555 if (N->use_empty()) 7556 DeadNodes.push_back(N); 7557 RemoveDeadNodes(DeadNodes); 7558 } 7559 7560 if (IP) 7561 CSEMap.InsertNode(N, IP); // Memoize the new node. 7562 return N; 7563 } 7564 7565 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7566 unsigned OrigOpc = Node->getOpcode(); 7567 unsigned NewOpc; 7568 bool IsUnary = false; 7569 bool IsTernary = false; 7570 switch (OrigOpc) { 7571 default: 7572 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7573 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7574 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7575 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7576 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7577 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7578 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 7579 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 7580 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7581 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7582 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 7583 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 7584 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 7585 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 7586 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 7587 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 7588 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 7589 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 7590 case ISD::STRICT_FNEARBYINT: 7591 NewOpc = ISD::FNEARBYINT; 7592 IsUnary = true; 7593 break; 7594 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7595 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7596 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break; 7597 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break; 7598 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break; 7599 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break; 7600 } 7601 7602 // We're taking this node out of the chain, so we need to re-link things. 7603 SDValue InputChain = Node->getOperand(0); 7604 SDValue OutputChain = SDValue(Node, 1); 7605 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7606 7607 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 7608 SDNode *Res = nullptr; 7609 if (IsUnary) 7610 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 7611 else if (IsTernary) 7612 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7613 Node->getOperand(2), 7614 Node->getOperand(3)}); 7615 else 7616 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 7617 Node->getOperand(2) }); 7618 7619 // MorphNodeTo can operate in two ways: if an existing node with the 7620 // specified operands exists, it can just return it. Otherwise, it 7621 // updates the node in place to have the requested operands. 7622 if (Res == Node) { 7623 // If we updated the node in place, reset the node ID. To the isel, 7624 // this should be just like a newly allocated machine node. 7625 Res->setNodeId(-1); 7626 } else { 7627 ReplaceAllUsesWith(Node, Res); 7628 RemoveDeadNode(Node); 7629 } 7630 7631 return Res; 7632 } 7633 7634 /// getMachineNode - These are used for target selectors to create a new node 7635 /// with specified return type(s), MachineInstr opcode, and operands. 7636 /// 7637 /// Note that getMachineNode returns the resultant node. If there is already a 7638 /// node of the specified opcode and operands, it returns that node instead of 7639 /// the current one. 7640 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7641 EVT VT) { 7642 SDVTList VTs = getVTList(VT); 7643 return getMachineNode(Opcode, dl, VTs, None); 7644 } 7645 7646 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7647 EVT VT, SDValue Op1) { 7648 SDVTList VTs = getVTList(VT); 7649 SDValue Ops[] = { Op1 }; 7650 return getMachineNode(Opcode, dl, VTs, Ops); 7651 } 7652 7653 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7654 EVT VT, SDValue Op1, SDValue Op2) { 7655 SDVTList VTs = getVTList(VT); 7656 SDValue Ops[] = { Op1, Op2 }; 7657 return getMachineNode(Opcode, dl, VTs, Ops); 7658 } 7659 7660 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7661 EVT VT, SDValue Op1, SDValue Op2, 7662 SDValue Op3) { 7663 SDVTList VTs = getVTList(VT); 7664 SDValue Ops[] = { Op1, Op2, Op3 }; 7665 return getMachineNode(Opcode, dl, VTs, Ops); 7666 } 7667 7668 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7669 EVT VT, ArrayRef<SDValue> Ops) { 7670 SDVTList VTs = getVTList(VT); 7671 return getMachineNode(Opcode, dl, VTs, Ops); 7672 } 7673 7674 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7675 EVT VT1, EVT VT2, SDValue Op1, 7676 SDValue Op2) { 7677 SDVTList VTs = getVTList(VT1, VT2); 7678 SDValue Ops[] = { Op1, Op2 }; 7679 return getMachineNode(Opcode, dl, VTs, Ops); 7680 } 7681 7682 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7683 EVT VT1, EVT VT2, SDValue Op1, 7684 SDValue Op2, SDValue Op3) { 7685 SDVTList VTs = getVTList(VT1, VT2); 7686 SDValue Ops[] = { Op1, Op2, Op3 }; 7687 return getMachineNode(Opcode, dl, VTs, Ops); 7688 } 7689 7690 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7691 EVT VT1, EVT VT2, 7692 ArrayRef<SDValue> Ops) { 7693 SDVTList VTs = getVTList(VT1, VT2); 7694 return getMachineNode(Opcode, dl, VTs, Ops); 7695 } 7696 7697 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7698 EVT VT1, EVT VT2, EVT VT3, 7699 SDValue Op1, SDValue Op2) { 7700 SDVTList VTs = getVTList(VT1, VT2, VT3); 7701 SDValue Ops[] = { Op1, Op2 }; 7702 return getMachineNode(Opcode, dl, VTs, Ops); 7703 } 7704 7705 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7706 EVT VT1, EVT VT2, EVT VT3, 7707 SDValue Op1, SDValue Op2, 7708 SDValue Op3) { 7709 SDVTList VTs = getVTList(VT1, VT2, VT3); 7710 SDValue Ops[] = { Op1, Op2, Op3 }; 7711 return getMachineNode(Opcode, dl, VTs, Ops); 7712 } 7713 7714 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7715 EVT VT1, EVT VT2, EVT VT3, 7716 ArrayRef<SDValue> Ops) { 7717 SDVTList VTs = getVTList(VT1, VT2, VT3); 7718 return getMachineNode(Opcode, dl, VTs, Ops); 7719 } 7720 7721 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7722 ArrayRef<EVT> ResultTys, 7723 ArrayRef<SDValue> Ops) { 7724 SDVTList VTs = getVTList(ResultTys); 7725 return getMachineNode(Opcode, dl, VTs, Ops); 7726 } 7727 7728 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7729 SDVTList VTs, 7730 ArrayRef<SDValue> Ops) { 7731 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7732 MachineSDNode *N; 7733 void *IP = nullptr; 7734 7735 if (DoCSE) { 7736 FoldingSetNodeID ID; 7737 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7738 IP = nullptr; 7739 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7740 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7741 } 7742 } 7743 7744 // Allocate a new MachineSDNode. 7745 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7746 createOperands(N, Ops); 7747 7748 if (DoCSE) 7749 CSEMap.InsertNode(N, IP); 7750 7751 InsertNode(N); 7752 return N; 7753 } 7754 7755 /// getTargetExtractSubreg - A convenience function for creating 7756 /// TargetOpcode::EXTRACT_SUBREG nodes. 7757 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7758 SDValue Operand) { 7759 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7760 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7761 VT, Operand, SRIdxVal); 7762 return SDValue(Subreg, 0); 7763 } 7764 7765 /// getTargetInsertSubreg - A convenience function for creating 7766 /// TargetOpcode::INSERT_SUBREG nodes. 7767 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7768 SDValue Operand, SDValue Subreg) { 7769 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7770 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7771 VT, Operand, Subreg, SRIdxVal); 7772 return SDValue(Result, 0); 7773 } 7774 7775 /// getNodeIfExists - Get the specified node if it's already available, or 7776 /// else return NULL. 7777 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7778 ArrayRef<SDValue> Ops, 7779 const SDNodeFlags Flags) { 7780 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7781 FoldingSetNodeID ID; 7782 AddNodeIDNode(ID, Opcode, VTList, Ops); 7783 void *IP = nullptr; 7784 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7785 E->intersectFlagsWith(Flags); 7786 return E; 7787 } 7788 } 7789 return nullptr; 7790 } 7791 7792 /// getDbgValue - Creates a SDDbgValue node. 7793 /// 7794 /// SDNode 7795 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7796 SDNode *N, unsigned R, bool IsIndirect, 7797 const DebugLoc &DL, unsigned O) { 7798 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7799 "Expected inlined-at fields to agree"); 7800 return new (DbgInfo->getAlloc()) 7801 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7802 } 7803 7804 /// Constant 7805 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7806 DIExpression *Expr, 7807 const Value *C, 7808 const DebugLoc &DL, unsigned O) { 7809 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7810 "Expected inlined-at fields to agree"); 7811 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7812 } 7813 7814 /// FrameIndex 7815 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7816 DIExpression *Expr, unsigned FI, 7817 bool IsIndirect, 7818 const DebugLoc &DL, 7819 unsigned O) { 7820 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7821 "Expected inlined-at fields to agree"); 7822 return new (DbgInfo->getAlloc()) 7823 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7824 } 7825 7826 /// VReg 7827 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 7828 DIExpression *Expr, 7829 unsigned VReg, bool IsIndirect, 7830 const DebugLoc &DL, unsigned O) { 7831 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7832 "Expected inlined-at fields to agree"); 7833 return new (DbgInfo->getAlloc()) 7834 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 7835 } 7836 7837 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7838 unsigned OffsetInBits, unsigned SizeInBits, 7839 bool InvalidateDbg) { 7840 SDNode *FromNode = From.getNode(); 7841 SDNode *ToNode = To.getNode(); 7842 assert(FromNode && ToNode && "Can't modify dbg values"); 7843 7844 // PR35338 7845 // TODO: assert(From != To && "Redundant dbg value transfer"); 7846 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7847 if (From == To || FromNode == ToNode) 7848 return; 7849 7850 if (!FromNode->getHasDebugValue()) 7851 return; 7852 7853 SmallVector<SDDbgValue *, 2> ClonedDVs; 7854 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7855 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7856 continue; 7857 7858 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7859 7860 // Just transfer the dbg value attached to From. 7861 if (Dbg->getResNo() != From.getResNo()) 7862 continue; 7863 7864 DIVariable *Var = Dbg->getVariable(); 7865 auto *Expr = Dbg->getExpression(); 7866 // If a fragment is requested, update the expression. 7867 if (SizeInBits) { 7868 // When splitting a larger (e.g., sign-extended) value whose 7869 // lower bits are described with an SDDbgValue, do not attempt 7870 // to transfer the SDDbgValue to the upper bits. 7871 if (auto FI = Expr->getFragmentInfo()) 7872 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7873 continue; 7874 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7875 SizeInBits); 7876 if (!Fragment) 7877 continue; 7878 Expr = *Fragment; 7879 } 7880 // Clone the SDDbgValue and move it to To. 7881 SDDbgValue *Clone = 7882 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7883 Dbg->getDebugLoc(), Dbg->getOrder()); 7884 ClonedDVs.push_back(Clone); 7885 7886 if (InvalidateDbg) { 7887 // Invalidate value and indicate the SDDbgValue should not be emitted. 7888 Dbg->setIsInvalidated(); 7889 Dbg->setIsEmitted(); 7890 } 7891 } 7892 7893 for (SDDbgValue *Dbg : ClonedDVs) 7894 AddDbgValue(Dbg, ToNode, false); 7895 } 7896 7897 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7898 if (!N.getHasDebugValue()) 7899 return; 7900 7901 SmallVector<SDDbgValue *, 2> ClonedDVs; 7902 for (auto DV : GetDbgValues(&N)) { 7903 if (DV->isInvalidated()) 7904 continue; 7905 switch (N.getOpcode()) { 7906 default: 7907 break; 7908 case ISD::ADD: 7909 SDValue N0 = N.getOperand(0); 7910 SDValue N1 = N.getOperand(1); 7911 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7912 isConstantIntBuildVectorOrConstantInt(N1)) { 7913 uint64_t Offset = N.getConstantOperandVal(1); 7914 // Rewrite an ADD constant node into a DIExpression. Since we are 7915 // performing arithmetic to compute the variable's *value* in the 7916 // DIExpression, we need to mark the expression with a 7917 // DW_OP_stack_value. 7918 auto *DIExpr = DV->getExpression(); 7919 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7920 DIExpression::NoDeref, 7921 DIExpression::WithStackValue); 7922 SDDbgValue *Clone = 7923 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7924 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7925 ClonedDVs.push_back(Clone); 7926 DV->setIsInvalidated(); 7927 DV->setIsEmitted(); 7928 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 7929 N0.getNode()->dumprFull(this); 7930 dbgs() << " into " << *DIExpr << '\n'); 7931 } 7932 } 7933 } 7934 7935 for (SDDbgValue *Dbg : ClonedDVs) 7936 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7937 } 7938 7939 /// Creates a SDDbgLabel node. 7940 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 7941 const DebugLoc &DL, unsigned O) { 7942 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 7943 "Expected inlined-at fields to agree"); 7944 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 7945 } 7946 7947 namespace { 7948 7949 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7950 /// pointed to by a use iterator is deleted, increment the use iterator 7951 /// so that it doesn't dangle. 7952 /// 7953 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7954 SDNode::use_iterator &UI; 7955 SDNode::use_iterator &UE; 7956 7957 void NodeDeleted(SDNode *N, SDNode *E) override { 7958 // Increment the iterator as needed. 7959 while (UI != UE && N == *UI) 7960 ++UI; 7961 } 7962 7963 public: 7964 RAUWUpdateListener(SelectionDAG &d, 7965 SDNode::use_iterator &ui, 7966 SDNode::use_iterator &ue) 7967 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7968 }; 7969 7970 } // end anonymous namespace 7971 7972 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7973 /// This can cause recursive merging of nodes in the DAG. 7974 /// 7975 /// This version assumes From has a single result value. 7976 /// 7977 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7978 SDNode *From = FromN.getNode(); 7979 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7980 "Cannot replace with this method!"); 7981 assert(From != To.getNode() && "Cannot replace uses of with self"); 7982 7983 // Preserve Debug Values 7984 transferDbgValues(FromN, To); 7985 7986 // Iterate over all the existing uses of From. New uses will be added 7987 // to the beginning of the use list, which we avoid visiting. 7988 // This specifically avoids visiting uses of From that arise while the 7989 // replacement is happening, because any such uses would be the result 7990 // of CSE: If an existing node looks like From after one of its operands 7991 // is replaced by To, we don't want to replace of all its users with To 7992 // too. See PR3018 for more info. 7993 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7994 RAUWUpdateListener Listener(*this, UI, UE); 7995 while (UI != UE) { 7996 SDNode *User = *UI; 7997 7998 // This node is about to morph, remove its old self from the CSE maps. 7999 RemoveNodeFromCSEMaps(User); 8000 8001 // A user can appear in a use list multiple times, and when this 8002 // happens the uses are usually next to each other in the list. 8003 // To help reduce the number of CSE recomputations, process all 8004 // the uses of this user that we can find this way. 8005 do { 8006 SDUse &Use = UI.getUse(); 8007 ++UI; 8008 Use.set(To); 8009 if (To->isDivergent() != From->isDivergent()) 8010 updateDivergence(User); 8011 } while (UI != UE && *UI == User); 8012 // Now that we have modified User, add it back to the CSE maps. If it 8013 // already exists there, recursively merge the results together. 8014 AddModifiedNodeToCSEMaps(User); 8015 } 8016 8017 // If we just RAUW'd the root, take note. 8018 if (FromN == getRoot()) 8019 setRoot(To); 8020 } 8021 8022 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8023 /// This can cause recursive merging of nodes in the DAG. 8024 /// 8025 /// This version assumes that for each value of From, there is a 8026 /// corresponding value in To in the same position with the same type. 8027 /// 8028 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8029 #ifndef NDEBUG 8030 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8031 assert((!From->hasAnyUseOfValue(i) || 8032 From->getValueType(i) == To->getValueType(i)) && 8033 "Cannot use this version of ReplaceAllUsesWith!"); 8034 #endif 8035 8036 // Handle the trivial case. 8037 if (From == To) 8038 return; 8039 8040 // Preserve Debug Info. Only do this if there's a use. 8041 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8042 if (From->hasAnyUseOfValue(i)) { 8043 assert((i < To->getNumValues()) && "Invalid To location"); 8044 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8045 } 8046 8047 // Iterate over just the existing users of From. See the comments in 8048 // the ReplaceAllUsesWith above. 8049 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8050 RAUWUpdateListener Listener(*this, UI, UE); 8051 while (UI != UE) { 8052 SDNode *User = *UI; 8053 8054 // This node is about to morph, remove its old self from the CSE maps. 8055 RemoveNodeFromCSEMaps(User); 8056 8057 // A user can appear in a use list multiple times, and when this 8058 // happens the uses are usually next to each other in the list. 8059 // To help reduce the number of CSE recomputations, process all 8060 // the uses of this user that we can find this way. 8061 do { 8062 SDUse &Use = UI.getUse(); 8063 ++UI; 8064 Use.setNode(To); 8065 if (To->isDivergent() != From->isDivergent()) 8066 updateDivergence(User); 8067 } while (UI != UE && *UI == User); 8068 8069 // Now that we have modified User, add it back to the CSE maps. If it 8070 // already exists there, recursively merge the results together. 8071 AddModifiedNodeToCSEMaps(User); 8072 } 8073 8074 // If we just RAUW'd the root, take note. 8075 if (From == getRoot().getNode()) 8076 setRoot(SDValue(To, getRoot().getResNo())); 8077 } 8078 8079 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8080 /// This can cause recursive merging of nodes in the DAG. 8081 /// 8082 /// This version can replace From with any result values. To must match the 8083 /// number and types of values returned by From. 8084 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8085 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8086 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8087 8088 // Preserve Debug Info. 8089 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8090 transferDbgValues(SDValue(From, i), To[i]); 8091 8092 // Iterate over just the existing users of From. See the comments in 8093 // the ReplaceAllUsesWith above. 8094 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8095 RAUWUpdateListener Listener(*this, UI, UE); 8096 while (UI != UE) { 8097 SDNode *User = *UI; 8098 8099 // This node is about to morph, remove its old self from the CSE maps. 8100 RemoveNodeFromCSEMaps(User); 8101 8102 // A user can appear in a use list multiple times, and when this happens the 8103 // uses are usually next to each other in the list. To help reduce the 8104 // number of CSE and divergence recomputations, process all the uses of this 8105 // user that we can find this way. 8106 bool To_IsDivergent = false; 8107 do { 8108 SDUse &Use = UI.getUse(); 8109 const SDValue &ToOp = To[Use.getResNo()]; 8110 ++UI; 8111 Use.set(ToOp); 8112 To_IsDivergent |= ToOp->isDivergent(); 8113 } while (UI != UE && *UI == User); 8114 8115 if (To_IsDivergent != From->isDivergent()) 8116 updateDivergence(User); 8117 8118 // Now that we have modified User, add it back to the CSE maps. If it 8119 // already exists there, recursively merge the results together. 8120 AddModifiedNodeToCSEMaps(User); 8121 } 8122 8123 // If we just RAUW'd the root, take note. 8124 if (From == getRoot().getNode()) 8125 setRoot(SDValue(To[getRoot().getResNo()])); 8126 } 8127 8128 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8129 /// uses of other values produced by From.getNode() alone. The Deleted 8130 /// vector is handled the same way as for ReplaceAllUsesWith. 8131 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8132 // Handle the really simple, really trivial case efficiently. 8133 if (From == To) return; 8134 8135 // Handle the simple, trivial, case efficiently. 8136 if (From.getNode()->getNumValues() == 1) { 8137 ReplaceAllUsesWith(From, To); 8138 return; 8139 } 8140 8141 // Preserve Debug Info. 8142 transferDbgValues(From, To); 8143 8144 // Iterate over just the existing users of From. See the comments in 8145 // the ReplaceAllUsesWith above. 8146 SDNode::use_iterator UI = From.getNode()->use_begin(), 8147 UE = From.getNode()->use_end(); 8148 RAUWUpdateListener Listener(*this, UI, UE); 8149 while (UI != UE) { 8150 SDNode *User = *UI; 8151 bool UserRemovedFromCSEMaps = false; 8152 8153 // A user can appear in a use list multiple times, and when this 8154 // happens the uses are usually next to each other in the list. 8155 // To help reduce the number of CSE recomputations, process all 8156 // the uses of this user that we can find this way. 8157 do { 8158 SDUse &Use = UI.getUse(); 8159 8160 // Skip uses of different values from the same node. 8161 if (Use.getResNo() != From.getResNo()) { 8162 ++UI; 8163 continue; 8164 } 8165 8166 // If this node hasn't been modified yet, it's still in the CSE maps, 8167 // so remove its old self from the CSE maps. 8168 if (!UserRemovedFromCSEMaps) { 8169 RemoveNodeFromCSEMaps(User); 8170 UserRemovedFromCSEMaps = true; 8171 } 8172 8173 ++UI; 8174 Use.set(To); 8175 if (To->isDivergent() != From->isDivergent()) 8176 updateDivergence(User); 8177 } while (UI != UE && *UI == User); 8178 // We are iterating over all uses of the From node, so if a use 8179 // doesn't use the specific value, no changes are made. 8180 if (!UserRemovedFromCSEMaps) 8181 continue; 8182 8183 // Now that we have modified User, add it back to the CSE maps. If it 8184 // already exists there, recursively merge the results together. 8185 AddModifiedNodeToCSEMaps(User); 8186 } 8187 8188 // If we just RAUW'd the root, take note. 8189 if (From == getRoot()) 8190 setRoot(To); 8191 } 8192 8193 namespace { 8194 8195 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8196 /// to record information about a use. 8197 struct UseMemo { 8198 SDNode *User; 8199 unsigned Index; 8200 SDUse *Use; 8201 }; 8202 8203 /// operator< - Sort Memos by User. 8204 bool operator<(const UseMemo &L, const UseMemo &R) { 8205 return (intptr_t)L.User < (intptr_t)R.User; 8206 } 8207 8208 } // end anonymous namespace 8209 8210 void SelectionDAG::updateDivergence(SDNode * N) 8211 { 8212 if (TLI->isSDNodeAlwaysUniform(N)) 8213 return; 8214 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8215 for (auto &Op : N->ops()) { 8216 if (Op.Val.getValueType() != MVT::Other) 8217 IsDivergent |= Op.getNode()->isDivergent(); 8218 } 8219 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8220 N->SDNodeBits.IsDivergent = IsDivergent; 8221 for (auto U : N->uses()) { 8222 updateDivergence(U); 8223 } 8224 } 8225 } 8226 8227 8228 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) { 8229 DenseMap<SDNode *, unsigned> Degree; 8230 Order.reserve(AllNodes.size()); 8231 for (auto & N : allnodes()) { 8232 unsigned NOps = N.getNumOperands(); 8233 Degree[&N] = NOps; 8234 if (0 == NOps) 8235 Order.push_back(&N); 8236 } 8237 for (std::vector<SDNode *>::iterator I = Order.begin(); 8238 I!=Order.end();++I) { 8239 SDNode * N = *I; 8240 for (auto U : N->uses()) { 8241 unsigned &UnsortedOps = Degree[U]; 8242 if (0 == --UnsortedOps) 8243 Order.push_back(U); 8244 } 8245 } 8246 } 8247 8248 #ifndef NDEBUG 8249 void SelectionDAG::VerifyDAGDiverence() 8250 { 8251 std::vector<SDNode*> TopoOrder; 8252 CreateTopologicalOrder(TopoOrder); 8253 const TargetLowering &TLI = getTargetLoweringInfo(); 8254 DenseMap<const SDNode *, bool> DivergenceMap; 8255 for (auto &N : allnodes()) { 8256 DivergenceMap[&N] = false; 8257 } 8258 for (auto N : TopoOrder) { 8259 bool IsDivergent = DivergenceMap[N]; 8260 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8261 for (auto &Op : N->ops()) { 8262 if (Op.Val.getValueType() != MVT::Other) 8263 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8264 } 8265 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8266 DivergenceMap[N] = true; 8267 } 8268 } 8269 for (auto &N : allnodes()) { 8270 (void)N; 8271 assert(DivergenceMap[&N] == N.isDivergent() && 8272 "Divergence bit inconsistency detected\n"); 8273 } 8274 } 8275 #endif 8276 8277 8278 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8279 /// uses of other values produced by From.getNode() alone. The same value 8280 /// may appear in both the From and To list. The Deleted vector is 8281 /// handled the same way as for ReplaceAllUsesWith. 8282 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8283 const SDValue *To, 8284 unsigned Num){ 8285 // Handle the simple, trivial case efficiently. 8286 if (Num == 1) 8287 return ReplaceAllUsesOfValueWith(*From, *To); 8288 8289 transferDbgValues(*From, *To); 8290 8291 // Read up all the uses and make records of them. This helps 8292 // processing new uses that are introduced during the 8293 // replacement process. 8294 SmallVector<UseMemo, 4> Uses; 8295 for (unsigned i = 0; i != Num; ++i) { 8296 unsigned FromResNo = From[i].getResNo(); 8297 SDNode *FromNode = From[i].getNode(); 8298 for (SDNode::use_iterator UI = FromNode->use_begin(), 8299 E = FromNode->use_end(); UI != E; ++UI) { 8300 SDUse &Use = UI.getUse(); 8301 if (Use.getResNo() == FromResNo) { 8302 UseMemo Memo = { *UI, i, &Use }; 8303 Uses.push_back(Memo); 8304 } 8305 } 8306 } 8307 8308 // Sort the uses, so that all the uses from a given User are together. 8309 llvm::sort(Uses); 8310 8311 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8312 UseIndex != UseIndexEnd; ) { 8313 // We know that this user uses some value of From. If it is the right 8314 // value, update it. 8315 SDNode *User = Uses[UseIndex].User; 8316 8317 // This node is about to morph, remove its old self from the CSE maps. 8318 RemoveNodeFromCSEMaps(User); 8319 8320 // The Uses array is sorted, so all the uses for a given User 8321 // are next to each other in the list. 8322 // To help reduce the number of CSE recomputations, process all 8323 // the uses of this user that we can find this way. 8324 do { 8325 unsigned i = Uses[UseIndex].Index; 8326 SDUse &Use = *Uses[UseIndex].Use; 8327 ++UseIndex; 8328 8329 Use.set(To[i]); 8330 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8331 8332 // Now that we have modified User, add it back to the CSE maps. If it 8333 // already exists there, recursively merge the results together. 8334 AddModifiedNodeToCSEMaps(User); 8335 } 8336 } 8337 8338 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8339 /// based on their topological order. It returns the maximum id and a vector 8340 /// of the SDNodes* in assigned order by reference. 8341 unsigned SelectionDAG::AssignTopologicalOrder() { 8342 unsigned DAGSize = 0; 8343 8344 // SortedPos tracks the progress of the algorithm. Nodes before it are 8345 // sorted, nodes after it are unsorted. When the algorithm completes 8346 // it is at the end of the list. 8347 allnodes_iterator SortedPos = allnodes_begin(); 8348 8349 // Visit all the nodes. Move nodes with no operands to the front of 8350 // the list immediately. Annotate nodes that do have operands with their 8351 // operand count. Before we do this, the Node Id fields of the nodes 8352 // may contain arbitrary values. After, the Node Id fields for nodes 8353 // before SortedPos will contain the topological sort index, and the 8354 // Node Id fields for nodes At SortedPos and after will contain the 8355 // count of outstanding operands. 8356 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8357 SDNode *N = &*I++; 8358 checkForCycles(N, this); 8359 unsigned Degree = N->getNumOperands(); 8360 if (Degree == 0) { 8361 // A node with no uses, add it to the result array immediately. 8362 N->setNodeId(DAGSize++); 8363 allnodes_iterator Q(N); 8364 if (Q != SortedPos) 8365 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8366 assert(SortedPos != AllNodes.end() && "Overran node list"); 8367 ++SortedPos; 8368 } else { 8369 // Temporarily use the Node Id as scratch space for the degree count. 8370 N->setNodeId(Degree); 8371 } 8372 } 8373 8374 // Visit all the nodes. As we iterate, move nodes into sorted order, 8375 // such that by the time the end is reached all nodes will be sorted. 8376 for (SDNode &Node : allnodes()) { 8377 SDNode *N = &Node; 8378 checkForCycles(N, this); 8379 // N is in sorted position, so all its uses have one less operand 8380 // that needs to be sorted. 8381 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8382 UI != UE; ++UI) { 8383 SDNode *P = *UI; 8384 unsigned Degree = P->getNodeId(); 8385 assert(Degree != 0 && "Invalid node degree"); 8386 --Degree; 8387 if (Degree == 0) { 8388 // All of P's operands are sorted, so P may sorted now. 8389 P->setNodeId(DAGSize++); 8390 if (P->getIterator() != SortedPos) 8391 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8392 assert(SortedPos != AllNodes.end() && "Overran node list"); 8393 ++SortedPos; 8394 } else { 8395 // Update P's outstanding operand count. 8396 P->setNodeId(Degree); 8397 } 8398 } 8399 if (Node.getIterator() == SortedPos) { 8400 #ifndef NDEBUG 8401 allnodes_iterator I(N); 8402 SDNode *S = &*++I; 8403 dbgs() << "Overran sorted position:\n"; 8404 S->dumprFull(this); dbgs() << "\n"; 8405 dbgs() << "Checking if this is due to cycles\n"; 8406 checkForCycles(this, true); 8407 #endif 8408 llvm_unreachable(nullptr); 8409 } 8410 } 8411 8412 assert(SortedPos == AllNodes.end() && 8413 "Topological sort incomplete!"); 8414 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8415 "First node in topological sort is not the entry token!"); 8416 assert(AllNodes.front().getNodeId() == 0 && 8417 "First node in topological sort has non-zero id!"); 8418 assert(AllNodes.front().getNumOperands() == 0 && 8419 "First node in topological sort has operands!"); 8420 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8421 "Last node in topologic sort has unexpected id!"); 8422 assert(AllNodes.back().use_empty() && 8423 "Last node in topologic sort has users!"); 8424 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8425 return DAGSize; 8426 } 8427 8428 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8429 /// value is produced by SD. 8430 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8431 if (SD) { 8432 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8433 SD->setHasDebugValue(true); 8434 } 8435 DbgInfo->add(DB, SD, isParameter); 8436 } 8437 8438 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8439 DbgInfo->add(DB); 8440 } 8441 8442 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8443 SDValue NewMemOp) { 8444 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8445 // The new memory operation must have the same position as the old load in 8446 // terms of memory dependency. Create a TokenFactor for the old load and new 8447 // memory operation and update uses of the old load's output chain to use that 8448 // TokenFactor. 8449 SDValue OldChain = SDValue(OldLoad, 1); 8450 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8451 if (!OldLoad->hasAnyUseOfValue(1)) 8452 return NewChain; 8453 8454 SDValue TokenFactor = 8455 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8456 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8457 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8458 return TokenFactor; 8459 } 8460 8461 //===----------------------------------------------------------------------===// 8462 // SDNode Class 8463 //===----------------------------------------------------------------------===// 8464 8465 bool llvm::isNullConstant(SDValue V) { 8466 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8467 return Const != nullptr && Const->isNullValue(); 8468 } 8469 8470 bool llvm::isNullFPConstant(SDValue V) { 8471 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8472 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8473 } 8474 8475 bool llvm::isAllOnesConstant(SDValue V) { 8476 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8477 return Const != nullptr && Const->isAllOnesValue(); 8478 } 8479 8480 bool llvm::isOneConstant(SDValue V) { 8481 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8482 return Const != nullptr && Const->isOne(); 8483 } 8484 8485 SDValue llvm::peekThroughBitcasts(SDValue V) { 8486 while (V.getOpcode() == ISD::BITCAST) 8487 V = V.getOperand(0); 8488 return V; 8489 } 8490 8491 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8492 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8493 V = V.getOperand(0); 8494 return V; 8495 } 8496 8497 bool llvm::isBitwiseNot(SDValue V) { 8498 if (V.getOpcode() != ISD::XOR) 8499 return false; 8500 ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1))); 8501 return C && C->isAllOnesValue(); 8502 } 8503 8504 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) { 8505 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8506 return CN; 8507 8508 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8509 BitVector UndefElements; 8510 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8511 8512 // BuildVectors can truncate their operands. Ignore that case here. 8513 if (CN && (UndefElements.none() || AllowUndefs) && 8514 CN->getValueType(0) == N.getValueType().getScalarType()) 8515 return CN; 8516 } 8517 8518 return nullptr; 8519 } 8520 8521 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8522 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8523 return CN; 8524 8525 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8526 BitVector UndefElements; 8527 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8528 if (CN && (UndefElements.none() || AllowUndefs)) 8529 return CN; 8530 } 8531 8532 return nullptr; 8533 } 8534 8535 bool llvm::isNullOrNullSplat(SDValue N) { 8536 // TODO: may want to use peekThroughBitcast() here. 8537 ConstantSDNode *C = isConstOrConstSplat(N); 8538 return C && C->isNullValue(); 8539 } 8540 8541 bool llvm::isOneOrOneSplat(SDValue N) { 8542 // TODO: may want to use peekThroughBitcast() here. 8543 unsigned BitWidth = N.getScalarValueSizeInBits(); 8544 ConstantSDNode *C = isConstOrConstSplat(N); 8545 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8546 } 8547 8548 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8549 N = peekThroughBitcasts(N); 8550 unsigned BitWidth = N.getScalarValueSizeInBits(); 8551 ConstantSDNode *C = isConstOrConstSplat(N); 8552 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8553 } 8554 8555 HandleSDNode::~HandleSDNode() { 8556 DropOperands(); 8557 } 8558 8559 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8560 const DebugLoc &DL, 8561 const GlobalValue *GA, EVT VT, 8562 int64_t o, unsigned char TF) 8563 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8564 TheGlobal = GA; 8565 } 8566 8567 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8568 EVT VT, unsigned SrcAS, 8569 unsigned DestAS) 8570 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8571 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8572 8573 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8574 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8575 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8576 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8577 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8578 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8579 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8580 8581 // We check here that the size of the memory operand fits within the size of 8582 // the MMO. This is because the MMO might indicate only a possible address 8583 // range instead of specifying the affected memory addresses precisely. 8584 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8585 } 8586 8587 /// Profile - Gather unique data for the node. 8588 /// 8589 void SDNode::Profile(FoldingSetNodeID &ID) const { 8590 AddNodeIDNode(ID, this); 8591 } 8592 8593 namespace { 8594 8595 struct EVTArray { 8596 std::vector<EVT> VTs; 8597 8598 EVTArray() { 8599 VTs.reserve(MVT::LAST_VALUETYPE); 8600 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8601 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8602 } 8603 }; 8604 8605 } // end anonymous namespace 8606 8607 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8608 static ManagedStatic<EVTArray> SimpleVTArray; 8609 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8610 8611 /// getValueTypeList - Return a pointer to the specified value type. 8612 /// 8613 const EVT *SDNode::getValueTypeList(EVT VT) { 8614 if (VT.isExtended()) { 8615 sys::SmartScopedLock<true> Lock(*VTMutex); 8616 return &(*EVTs->insert(VT).first); 8617 } else { 8618 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8619 "Value type out of range!"); 8620 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8621 } 8622 } 8623 8624 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8625 /// indicated value. This method ignores uses of other values defined by this 8626 /// operation. 8627 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8628 assert(Value < getNumValues() && "Bad value!"); 8629 8630 // TODO: Only iterate over uses of a given value of the node 8631 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8632 if (UI.getUse().getResNo() == Value) { 8633 if (NUses == 0) 8634 return false; 8635 --NUses; 8636 } 8637 } 8638 8639 // Found exactly the right number of uses? 8640 return NUses == 0; 8641 } 8642 8643 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8644 /// value. This method ignores uses of other values defined by this operation. 8645 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8646 assert(Value < getNumValues() && "Bad value!"); 8647 8648 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8649 if (UI.getUse().getResNo() == Value) 8650 return true; 8651 8652 return false; 8653 } 8654 8655 /// isOnlyUserOf - Return true if this node is the only use of N. 8656 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8657 bool Seen = false; 8658 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8659 SDNode *User = *I; 8660 if (User == this) 8661 Seen = true; 8662 else 8663 return false; 8664 } 8665 8666 return Seen; 8667 } 8668 8669 /// Return true if the only users of N are contained in Nodes. 8670 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8671 bool Seen = false; 8672 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8673 SDNode *User = *I; 8674 if (llvm::any_of(Nodes, 8675 [&User](const SDNode *Node) { return User == Node; })) 8676 Seen = true; 8677 else 8678 return false; 8679 } 8680 8681 return Seen; 8682 } 8683 8684 /// isOperand - Return true if this node is an operand of N. 8685 bool SDValue::isOperandOf(const SDNode *N) const { 8686 for (const SDValue &Op : N->op_values()) 8687 if (*this == Op) 8688 return true; 8689 return false; 8690 } 8691 8692 bool SDNode::isOperandOf(const SDNode *N) const { 8693 for (const SDValue &Op : N->op_values()) 8694 if (this == Op.getNode()) 8695 return true; 8696 return false; 8697 } 8698 8699 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8700 /// be a chain) reaches the specified operand without crossing any 8701 /// side-effecting instructions on any chain path. In practice, this looks 8702 /// through token factors and non-volatile loads. In order to remain efficient, 8703 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8704 /// 8705 /// Note that we only need to examine chains when we're searching for 8706 /// side-effects; SelectionDAG requires that all side-effects are represented 8707 /// by chains, even if another operand would force a specific ordering. This 8708 /// constraint is necessary to allow transformations like splitting loads. 8709 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8710 unsigned Depth) const { 8711 if (*this == Dest) return true; 8712 8713 // Don't search too deeply, we just want to be able to see through 8714 // TokenFactor's etc. 8715 if (Depth == 0) return false; 8716 8717 // If this is a token factor, all inputs to the TF happen in parallel. 8718 if (getOpcode() == ISD::TokenFactor) { 8719 // First, try a shallow search. 8720 if (is_contained((*this)->ops(), Dest)) { 8721 // We found the chain we want as an operand of this TokenFactor. 8722 // Essentially, we reach the chain without side-effects if we could 8723 // serialize the TokenFactor into a simple chain of operations with 8724 // Dest as the last operation. This is automatically true if the 8725 // chain has one use: there are no other ordering constraints. 8726 // If the chain has more than one use, we give up: some other 8727 // use of Dest might force a side-effect between Dest and the current 8728 // node. 8729 if (Dest.hasOneUse()) 8730 return true; 8731 } 8732 // Next, try a deep search: check whether every operand of the TokenFactor 8733 // reaches Dest. 8734 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8735 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8736 }); 8737 } 8738 8739 // Loads don't have side effects, look through them. 8740 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8741 if (!Ld->isVolatile()) 8742 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8743 } 8744 return false; 8745 } 8746 8747 bool SDNode::hasPredecessor(const SDNode *N) const { 8748 SmallPtrSet<const SDNode *, 32> Visited; 8749 SmallVector<const SDNode *, 16> Worklist; 8750 Worklist.push_back(this); 8751 return hasPredecessorHelper(N, Visited, Worklist); 8752 } 8753 8754 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 8755 this->Flags.intersectWith(Flags); 8756 } 8757 8758 SDValue 8759 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 8760 ArrayRef<ISD::NodeType> CandidateBinOps) { 8761 // The pattern must end in an extract from index 0. 8762 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8763 !isNullConstant(Extract->getOperand(1))) 8764 return SDValue(); 8765 8766 SDValue Op = Extract->getOperand(0); 8767 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 8768 8769 // Match against one of the candidate binary ops. 8770 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 8771 return Op.getOpcode() == unsigned(BinOp); 8772 })) 8773 return SDValue(); 8774 8775 // At each stage, we're looking for something that looks like: 8776 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 8777 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 8778 // i32 undef, i32 undef, i32 undef, i32 undef> 8779 // %a = binop <8 x i32> %op, %s 8780 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 8781 // we expect something like: 8782 // <4,5,6,7,u,u,u,u> 8783 // <2,3,u,u,u,u,u,u> 8784 // <1,u,u,u,u,u,u,u> 8785 unsigned CandidateBinOp = Op.getOpcode(); 8786 for (unsigned i = 0; i < Stages; ++i) { 8787 if (Op.getOpcode() != CandidateBinOp) 8788 return SDValue(); 8789 8790 SDValue Op0 = Op.getOperand(0); 8791 SDValue Op1 = Op.getOperand(1); 8792 8793 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 8794 if (Shuffle) { 8795 Op = Op1; 8796 } else { 8797 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 8798 Op = Op0; 8799 } 8800 8801 // The first operand of the shuffle should be the same as the other operand 8802 // of the binop. 8803 if (!Shuffle || Shuffle->getOperand(0) != Op) 8804 return SDValue(); 8805 8806 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 8807 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) 8808 if (Shuffle->getMaskElt(Index) != MaskEnd + Index) 8809 return SDValue(); 8810 } 8811 8812 BinOp = (ISD::NodeType)CandidateBinOp; 8813 return Op; 8814 } 8815 8816 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 8817 assert(N->getNumValues() == 1 && 8818 "Can't unroll a vector with multiple results!"); 8819 8820 EVT VT = N->getValueType(0); 8821 unsigned NE = VT.getVectorNumElements(); 8822 EVT EltVT = VT.getVectorElementType(); 8823 SDLoc dl(N); 8824 8825 SmallVector<SDValue, 8> Scalars; 8826 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 8827 8828 // If ResNE is 0, fully unroll the vector op. 8829 if (ResNE == 0) 8830 ResNE = NE; 8831 else if (NE > ResNE) 8832 NE = ResNE; 8833 8834 unsigned i; 8835 for (i= 0; i != NE; ++i) { 8836 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 8837 SDValue Operand = N->getOperand(j); 8838 EVT OperandVT = Operand.getValueType(); 8839 if (OperandVT.isVector()) { 8840 // A vector operand; extract a single element. 8841 EVT OperandEltVT = OperandVT.getVectorElementType(); 8842 Operands[j] = 8843 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 8844 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 8845 } else { 8846 // A scalar operand; just use it as is. 8847 Operands[j] = Operand; 8848 } 8849 } 8850 8851 switch (N->getOpcode()) { 8852 default: { 8853 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 8854 N->getFlags())); 8855 break; 8856 } 8857 case ISD::VSELECT: 8858 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 8859 break; 8860 case ISD::SHL: 8861 case ISD::SRA: 8862 case ISD::SRL: 8863 case ISD::ROTL: 8864 case ISD::ROTR: 8865 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 8866 getShiftAmountOperand(Operands[0].getValueType(), 8867 Operands[1]))); 8868 break; 8869 case ISD::SIGN_EXTEND_INREG: 8870 case ISD::FP_ROUND_INREG: { 8871 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 8872 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 8873 Operands[0], 8874 getValueType(ExtVT))); 8875 } 8876 } 8877 } 8878 8879 for (; i < ResNE; ++i) 8880 Scalars.push_back(getUNDEF(EltVT)); 8881 8882 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 8883 return getBuildVector(VecVT, dl, Scalars); 8884 } 8885 8886 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 8887 LoadSDNode *Base, 8888 unsigned Bytes, 8889 int Dist) const { 8890 if (LD->isVolatile() || Base->isVolatile()) 8891 return false; 8892 if (LD->isIndexed() || Base->isIndexed()) 8893 return false; 8894 if (LD->getChain() != Base->getChain()) 8895 return false; 8896 EVT VT = LD->getValueType(0); 8897 if (VT.getSizeInBits() / 8 != Bytes) 8898 return false; 8899 8900 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 8901 auto LocDecomp = BaseIndexOffset::match(LD, *this); 8902 8903 int64_t Offset = 0; 8904 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 8905 return (Dist * Bytes == Offset); 8906 return false; 8907 } 8908 8909 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 8910 /// it cannot be inferred. 8911 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 8912 // If this is a GlobalAddress + cst, return the alignment. 8913 const GlobalValue *GV; 8914 int64_t GVOffset = 0; 8915 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 8916 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 8917 KnownBits Known(IdxWidth); 8918 llvm::computeKnownBits(GV, Known, getDataLayout()); 8919 unsigned AlignBits = Known.countMinTrailingZeros(); 8920 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 8921 if (Align) 8922 return MinAlign(Align, GVOffset); 8923 } 8924 8925 // If this is a direct reference to a stack slot, use information about the 8926 // stack slot's alignment. 8927 int FrameIdx = 1 << 31; 8928 int64_t FrameOffset = 0; 8929 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 8930 FrameIdx = FI->getIndex(); 8931 } else if (isBaseWithConstantOffset(Ptr) && 8932 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 8933 // Handle FI+Cst 8934 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 8935 FrameOffset = Ptr.getConstantOperandVal(1); 8936 } 8937 8938 if (FrameIdx != (1 << 31)) { 8939 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 8940 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 8941 FrameOffset); 8942 return FIInfoAlign; 8943 } 8944 8945 return 0; 8946 } 8947 8948 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 8949 /// which is split (or expanded) into two not necessarily identical pieces. 8950 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 8951 // Currently all types are split in half. 8952 EVT LoVT, HiVT; 8953 if (!VT.isVector()) 8954 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 8955 else 8956 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 8957 8958 return std::make_pair(LoVT, HiVT); 8959 } 8960 8961 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 8962 /// low/high part. 8963 std::pair<SDValue, SDValue> 8964 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 8965 const EVT &HiVT) { 8966 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 8967 N.getValueType().getVectorNumElements() && 8968 "More vector elements requested than available!"); 8969 SDValue Lo, Hi; 8970 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8971 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8972 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8973 getConstant(LoVT.getVectorNumElements(), DL, 8974 TLI->getVectorIdxTy(getDataLayout()))); 8975 return std::make_pair(Lo, Hi); 8976 } 8977 8978 void SelectionDAG::ExtractVectorElements(SDValue Op, 8979 SmallVectorImpl<SDValue> &Args, 8980 unsigned Start, unsigned Count) { 8981 EVT VT = Op.getValueType(); 8982 if (Count == 0) 8983 Count = VT.getVectorNumElements(); 8984 8985 EVT EltVT = VT.getVectorElementType(); 8986 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8987 SDLoc SL(Op); 8988 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8989 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8990 Op, getConstant(i, SL, IdxTy))); 8991 } 8992 } 8993 8994 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8995 unsigned GlobalAddressSDNode::getAddressSpace() const { 8996 return getGlobal()->getType()->getAddressSpace(); 8997 } 8998 8999 Type *ConstantPoolSDNode::getType() const { 9000 if (isMachineConstantPoolEntry()) 9001 return Val.MachineCPVal->getType(); 9002 return Val.ConstVal->getType(); 9003 } 9004 9005 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9006 unsigned &SplatBitSize, 9007 bool &HasAnyUndefs, 9008 unsigned MinSplatBits, 9009 bool IsBigEndian) const { 9010 EVT VT = getValueType(0); 9011 assert(VT.isVector() && "Expected a vector type"); 9012 unsigned VecWidth = VT.getSizeInBits(); 9013 if (MinSplatBits > VecWidth) 9014 return false; 9015 9016 // FIXME: The widths are based on this node's type, but build vectors can 9017 // truncate their operands. 9018 SplatValue = APInt(VecWidth, 0); 9019 SplatUndef = APInt(VecWidth, 0); 9020 9021 // Get the bits. Bits with undefined values (when the corresponding element 9022 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9023 // in SplatValue. If any of the values are not constant, give up and return 9024 // false. 9025 unsigned int NumOps = getNumOperands(); 9026 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9027 unsigned EltWidth = VT.getScalarSizeInBits(); 9028 9029 for (unsigned j = 0; j < NumOps; ++j) { 9030 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9031 SDValue OpVal = getOperand(i); 9032 unsigned BitPos = j * EltWidth; 9033 9034 if (OpVal.isUndef()) 9035 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9036 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9037 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9038 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9039 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9040 else 9041 return false; 9042 } 9043 9044 // The build_vector is all constants or undefs. Find the smallest element 9045 // size that splats the vector. 9046 HasAnyUndefs = (SplatUndef != 0); 9047 9048 // FIXME: This does not work for vectors with elements less than 8 bits. 9049 while (VecWidth > 8) { 9050 unsigned HalfSize = VecWidth / 2; 9051 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9052 APInt LowValue = SplatValue.trunc(HalfSize); 9053 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9054 APInt LowUndef = SplatUndef.trunc(HalfSize); 9055 9056 // If the two halves do not match (ignoring undef bits), stop here. 9057 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9058 MinSplatBits > HalfSize) 9059 break; 9060 9061 SplatValue = HighValue | LowValue; 9062 SplatUndef = HighUndef & LowUndef; 9063 9064 VecWidth = HalfSize; 9065 } 9066 9067 SplatBitSize = VecWidth; 9068 return true; 9069 } 9070 9071 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9072 if (UndefElements) { 9073 UndefElements->clear(); 9074 UndefElements->resize(getNumOperands()); 9075 } 9076 SDValue Splatted; 9077 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9078 SDValue Op = getOperand(i); 9079 if (Op.isUndef()) { 9080 if (UndefElements) 9081 (*UndefElements)[i] = true; 9082 } else if (!Splatted) { 9083 Splatted = Op; 9084 } else if (Splatted != Op) { 9085 return SDValue(); 9086 } 9087 } 9088 9089 if (!Splatted) { 9090 assert(getOperand(0).isUndef() && 9091 "Can only have a splat without a constant for all undefs."); 9092 return getOperand(0); 9093 } 9094 9095 return Splatted; 9096 } 9097 9098 ConstantSDNode * 9099 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9100 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9101 } 9102 9103 ConstantFPSDNode * 9104 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9105 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9106 } 9107 9108 int32_t 9109 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9110 uint32_t BitWidth) const { 9111 if (ConstantFPSDNode *CN = 9112 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9113 bool IsExact; 9114 APSInt IntVal(BitWidth); 9115 const APFloat &APF = CN->getValueAPF(); 9116 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9117 APFloat::opOK || 9118 !IsExact) 9119 return -1; 9120 9121 return IntVal.exactLogBase2(); 9122 } 9123 return -1; 9124 } 9125 9126 bool BuildVectorSDNode::isConstant() const { 9127 for (const SDValue &Op : op_values()) { 9128 unsigned Opc = Op.getOpcode(); 9129 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9130 return false; 9131 } 9132 return true; 9133 } 9134 9135 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9136 // Find the first non-undef value in the shuffle mask. 9137 unsigned i, e; 9138 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9139 /* search */; 9140 9141 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 9142 9143 // Make sure all remaining elements are either undef or the same as the first 9144 // non-undef value. 9145 for (int Idx = Mask[i]; i != e; ++i) 9146 if (Mask[i] >= 0 && Mask[i] != Idx) 9147 return false; 9148 return true; 9149 } 9150 9151 // Returns the SDNode if it is a constant integer BuildVector 9152 // or constant integer. 9153 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9154 if (isa<ConstantSDNode>(N)) 9155 return N.getNode(); 9156 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9157 return N.getNode(); 9158 // Treat a GlobalAddress supporting constant offset folding as a 9159 // constant integer. 9160 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9161 if (GA->getOpcode() == ISD::GlobalAddress && 9162 TLI->isOffsetFoldingLegal(GA)) 9163 return GA; 9164 return nullptr; 9165 } 9166 9167 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9168 if (isa<ConstantFPSDNode>(N)) 9169 return N.getNode(); 9170 9171 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9172 return N.getNode(); 9173 9174 return nullptr; 9175 } 9176 9177 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9178 assert(!Node->OperandList && "Node already has operands"); 9179 assert(std::numeric_limits<decltype(SDNode::NumOperands)>::max() > 9180 Vals.size() && 9181 "too many operands to fit into SDNode"); 9182 SDUse *Ops = OperandRecycler.allocate( 9183 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9184 9185 bool IsDivergent = false; 9186 for (unsigned I = 0; I != Vals.size(); ++I) { 9187 Ops[I].setUser(Node); 9188 Ops[I].setInitial(Vals[I]); 9189 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9190 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9191 } 9192 Node->NumOperands = Vals.size(); 9193 Node->OperandList = Ops; 9194 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9195 if (!TLI->isSDNodeAlwaysUniform(Node)) 9196 Node->SDNodeBits.IsDivergent = IsDivergent; 9197 checkForCycles(Node); 9198 } 9199 9200 #ifndef NDEBUG 9201 static void checkForCyclesHelper(const SDNode *N, 9202 SmallPtrSetImpl<const SDNode*> &Visited, 9203 SmallPtrSetImpl<const SDNode*> &Checked, 9204 const llvm::SelectionDAG *DAG) { 9205 // If this node has already been checked, don't check it again. 9206 if (Checked.count(N)) 9207 return; 9208 9209 // If a node has already been visited on this depth-first walk, reject it as 9210 // a cycle. 9211 if (!Visited.insert(N).second) { 9212 errs() << "Detected cycle in SelectionDAG\n"; 9213 dbgs() << "Offending node:\n"; 9214 N->dumprFull(DAG); dbgs() << "\n"; 9215 abort(); 9216 } 9217 9218 for (const SDValue &Op : N->op_values()) 9219 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9220 9221 Checked.insert(N); 9222 Visited.erase(N); 9223 } 9224 #endif 9225 9226 void llvm::checkForCycles(const llvm::SDNode *N, 9227 const llvm::SelectionDAG *DAG, 9228 bool force) { 9229 #ifndef NDEBUG 9230 bool check = force; 9231 #ifdef EXPENSIVE_CHECKS 9232 check = true; 9233 #endif // EXPENSIVE_CHECKS 9234 if (check) { 9235 assert(N && "Checking nonexistent SDNode"); 9236 SmallPtrSet<const SDNode*, 32> visited; 9237 SmallPtrSet<const SDNode*, 32> checked; 9238 checkForCyclesHelper(N, visited, checked, DAG); 9239 } 9240 #endif // !NDEBUG 9241 } 9242 9243 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9244 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9245 } 9246