1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
173 
174   unsigned i = 0, e = N->getNumOperands();
175 
176   // Skip over all of the undef values.
177   while (i != e && N->getOperand(i).isUndef())
178     ++i;
179 
180   // Do not accept an all-undef vector.
181   if (i == e) return false;
182 
183   // Do not accept build_vectors that aren't all constants or which have non-~0
184   // elements. We have to be a bit careful here, as the type of the constant
185   // may not be the same as the type of the vector elements due to type
186   // legalization (the elements are promoted to a legal type for the target and
187   // a vector of a type may be legal when the base element type is not).
188   // We only want to check enough bits to cover the vector elements, because
189   // we care if the resultant vector is all ones, not whether the individual
190   // constants are.
191   SDValue NotZero = N->getOperand(i);
192   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
193   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
194     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
195       return false;
196   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
197     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
198       return false;
199   } else
200     return false;
201 
202   // Okay, we have at least one ~0 value, check to see if the rest match or are
203   // undefs. Even with the above element type twiddling, this should be OK, as
204   // the same type legalization should have applied to all the elements.
205   for (++i; i != e; ++i)
206     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
207       return false;
208   return true;
209 }
210 
211 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
212   // Look through a bit convert.
213   while (N->getOpcode() == ISD::BITCAST)
214     N = N->getOperand(0).getNode();
215 
216   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
217 
218   bool IsAllUndef = true;
219   for (const SDValue &Op : N->op_values()) {
220     if (Op.isUndef())
221       continue;
222     IsAllUndef = false;
223     // Do not accept build_vectors that aren't all constants or which have non-0
224     // elements. We have to be a bit careful here, as the type of the constant
225     // may not be the same as the type of the vector elements due to type
226     // legalization (the elements are promoted to a legal type for the target
227     // and a vector of a type may be legal when the base element type is not).
228     // We only want to check enough bits to cover the vector elements, because
229     // we care if the resultant vector is all zeros, not whether the individual
230     // constants are.
231     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
232     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
233       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
234         return false;
235     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
236       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
237         return false;
238     } else
239       return false;
240   }
241 
242   // Do not accept an all-undef vector.
243   if (IsAllUndef)
244     return false;
245   return true;
246 }
247 
248 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
249   if (N->getOpcode() != ISD::BUILD_VECTOR)
250     return false;
251 
252   for (const SDValue &Op : N->op_values()) {
253     if (Op.isUndef())
254       continue;
255     if (!isa<ConstantSDNode>(Op))
256       return false;
257   }
258   return true;
259 }
260 
261 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
262   if (N->getOpcode() != ISD::BUILD_VECTOR)
263     return false;
264 
265   for (const SDValue &Op : N->op_values()) {
266     if (Op.isUndef())
267       continue;
268     if (!isa<ConstantFPSDNode>(Op))
269       return false;
270   }
271   return true;
272 }
273 
274 bool ISD::allOperandsUndef(const SDNode *N) {
275   // Return false if the node has no operands.
276   // This is "logically inconsistent" with the definition of "all" but
277   // is probably the desired behavior.
278   if (N->getNumOperands() == 0)
279     return false;
280   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
281 }
282 
283 bool ISD::matchUnaryPredicate(SDValue Op,
284                               std::function<bool(ConstantSDNode *)> Match,
285                               bool AllowUndefs) {
286   // FIXME: Add support for scalar UNDEF cases?
287   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
288     return Match(Cst);
289 
290   // FIXME: Add support for vector UNDEF cases?
291   if (ISD::BUILD_VECTOR != Op.getOpcode())
292     return false;
293 
294   EVT SVT = Op.getValueType().getScalarType();
295   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
296     if (AllowUndefs && Op.getOperand(i).isUndef()) {
297       if (!Match(nullptr))
298         return false;
299       continue;
300     }
301 
302     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
303     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
304       return false;
305   }
306   return true;
307 }
308 
309 bool ISD::matchBinaryPredicate(
310     SDValue LHS, SDValue RHS,
311     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
312     bool AllowUndefs, bool AllowTypeMismatch) {
313   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
314     return false;
315 
316   // TODO: Add support for scalar UNDEF cases?
317   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
318     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
319       return Match(LHSCst, RHSCst);
320 
321   // TODO: Add support for vector UNDEF cases?
322   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
323       ISD::BUILD_VECTOR != RHS.getOpcode())
324     return false;
325 
326   EVT SVT = LHS.getValueType().getScalarType();
327   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
328     SDValue LHSOp = LHS.getOperand(i);
329     SDValue RHSOp = RHS.getOperand(i);
330     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
331     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
332     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
333     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
334     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
335       return false;
336     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
337                                LHSOp.getValueType() != RHSOp.getValueType()))
338       return false;
339     if (!Match(LHSCst, RHSCst))
340       return false;
341   }
342   return true;
343 }
344 
345 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
346   switch (VecReduceOpcode) {
347   default:
348     llvm_unreachable("Expected VECREDUCE opcode");
349   case ISD::VECREDUCE_FADD:
350   case ISD::VECREDUCE_SEQ_FADD:
351     return ISD::FADD;
352   case ISD::VECREDUCE_FMUL:
353   case ISD::VECREDUCE_SEQ_FMUL:
354     return ISD::FMUL;
355   case ISD::VECREDUCE_ADD:
356     return ISD::ADD;
357   case ISD::VECREDUCE_MUL:
358     return ISD::MUL;
359   case ISD::VECREDUCE_AND:
360     return ISD::AND;
361   case ISD::VECREDUCE_OR:
362     return ISD::OR;
363   case ISD::VECREDUCE_XOR:
364     return ISD::XOR;
365   case ISD::VECREDUCE_SMAX:
366     return ISD::SMAX;
367   case ISD::VECREDUCE_SMIN:
368     return ISD::SMIN;
369   case ISD::VECREDUCE_UMAX:
370     return ISD::UMAX;
371   case ISD::VECREDUCE_UMIN:
372     return ISD::UMIN;
373   case ISD::VECREDUCE_FMAX:
374     return ISD::FMAXNUM;
375   case ISD::VECREDUCE_FMIN:
376     return ISD::FMINNUM;
377   }
378 }
379 
380 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
381   switch (ExtType) {
382   case ISD::EXTLOAD:
383     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
384   case ISD::SEXTLOAD:
385     return ISD::SIGN_EXTEND;
386   case ISD::ZEXTLOAD:
387     return ISD::ZERO_EXTEND;
388   default:
389     break;
390   }
391 
392   llvm_unreachable("Invalid LoadExtType");
393 }
394 
395 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
396   // To perform this operation, we just need to swap the L and G bits of the
397   // operation.
398   unsigned OldL = (Operation >> 2) & 1;
399   unsigned OldG = (Operation >> 1) & 1;
400   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
401                        (OldL << 1) |       // New G bit
402                        (OldG << 2));       // New L bit.
403 }
404 
405 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
406   unsigned Operation = Op;
407   if (isIntegerLike)
408     Operation ^= 7;   // Flip L, G, E bits, but not U.
409   else
410     Operation ^= 15;  // Flip all of the condition bits.
411 
412   if (Operation > ISD::SETTRUE2)
413     Operation &= ~8;  // Don't let N and U bits get set.
414 
415   return ISD::CondCode(Operation);
416 }
417 
418 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
419   return getSetCCInverseImpl(Op, Type.isInteger());
420 }
421 
422 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
423                                                bool isIntegerLike) {
424   return getSetCCInverseImpl(Op, isIntegerLike);
425 }
426 
427 /// For an integer comparison, return 1 if the comparison is a signed operation
428 /// and 2 if the result is an unsigned comparison. Return zero if the operation
429 /// does not depend on the sign of the input (setne and seteq).
430 static int isSignedOp(ISD::CondCode Opcode) {
431   switch (Opcode) {
432   default: llvm_unreachable("Illegal integer setcc operation!");
433   case ISD::SETEQ:
434   case ISD::SETNE: return 0;
435   case ISD::SETLT:
436   case ISD::SETLE:
437   case ISD::SETGT:
438   case ISD::SETGE: return 1;
439   case ISD::SETULT:
440   case ISD::SETULE:
441   case ISD::SETUGT:
442   case ISD::SETUGE: return 2;
443   }
444 }
445 
446 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
447                                        EVT Type) {
448   bool IsInteger = Type.isInteger();
449   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
450     // Cannot fold a signed integer setcc with an unsigned integer setcc.
451     return ISD::SETCC_INVALID;
452 
453   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
454 
455   // If the N and U bits get set, then the resultant comparison DOES suddenly
456   // care about orderedness, and it is true when ordered.
457   if (Op > ISD::SETTRUE2)
458     Op &= ~16;     // Clear the U bit if the N bit is set.
459 
460   // Canonicalize illegal integer setcc's.
461   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
462     Op = ISD::SETNE;
463 
464   return ISD::CondCode(Op);
465 }
466 
467 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
468                                         EVT Type) {
469   bool IsInteger = Type.isInteger();
470   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
471     // Cannot fold a signed setcc with an unsigned setcc.
472     return ISD::SETCC_INVALID;
473 
474   // Combine all of the condition bits.
475   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
476 
477   // Canonicalize illegal integer setcc's.
478   if (IsInteger) {
479     switch (Result) {
480     default: break;
481     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
482     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
483     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
484     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
485     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
486     }
487   }
488 
489   return Result;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //                           SDNode Profile Support
494 //===----------------------------------------------------------------------===//
495 
496 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
497 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
498   ID.AddInteger(OpC);
499 }
500 
501 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
502 /// solely with their pointer.
503 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
504   ID.AddPointer(VTList.VTs);
505 }
506 
507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
508 static void AddNodeIDOperands(FoldingSetNodeID &ID,
509                               ArrayRef<SDValue> Ops) {
510   for (auto& Op : Ops) {
511     ID.AddPointer(Op.getNode());
512     ID.AddInteger(Op.getResNo());
513   }
514 }
515 
516 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
517 static void AddNodeIDOperands(FoldingSetNodeID &ID,
518                               ArrayRef<SDUse> Ops) {
519   for (auto& Op : Ops) {
520     ID.AddPointer(Op.getNode());
521     ID.AddInteger(Op.getResNo());
522   }
523 }
524 
525 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
526                           SDVTList VTList, ArrayRef<SDValue> OpList) {
527   AddNodeIDOpcode(ID, OpC);
528   AddNodeIDValueTypes(ID, VTList);
529   AddNodeIDOperands(ID, OpList);
530 }
531 
532 /// If this is an SDNode with special info, add this info to the NodeID data.
533 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
534   switch (N->getOpcode()) {
535   case ISD::TargetExternalSymbol:
536   case ISD::ExternalSymbol:
537   case ISD::MCSymbol:
538     llvm_unreachable("Should only be used on nodes with operands");
539   default: break;  // Normal nodes don't need extra info.
540   case ISD::TargetConstant:
541   case ISD::Constant: {
542     const ConstantSDNode *C = cast<ConstantSDNode>(N);
543     ID.AddPointer(C->getConstantIntValue());
544     ID.AddBoolean(C->isOpaque());
545     break;
546   }
547   case ISD::TargetConstantFP:
548   case ISD::ConstantFP:
549     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
550     break;
551   case ISD::TargetGlobalAddress:
552   case ISD::GlobalAddress:
553   case ISD::TargetGlobalTLSAddress:
554   case ISD::GlobalTLSAddress: {
555     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
556     ID.AddPointer(GA->getGlobal());
557     ID.AddInteger(GA->getOffset());
558     ID.AddInteger(GA->getTargetFlags());
559     break;
560   }
561   case ISD::BasicBlock:
562     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
563     break;
564   case ISD::Register:
565     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
566     break;
567   case ISD::RegisterMask:
568     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
569     break;
570   case ISD::SRCVALUE:
571     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
572     break;
573   case ISD::FrameIndex:
574   case ISD::TargetFrameIndex:
575     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
576     break;
577   case ISD::LIFETIME_START:
578   case ISD::LIFETIME_END:
579     if (cast<LifetimeSDNode>(N)->hasOffset()) {
580       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
581       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
582     }
583     break;
584   case ISD::PSEUDO_PROBE:
585     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
586     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
587     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
588     break;
589   case ISD::JumpTable:
590   case ISD::TargetJumpTable:
591     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
592     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
593     break;
594   case ISD::ConstantPool:
595   case ISD::TargetConstantPool: {
596     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
597     ID.AddInteger(CP->getAlign().value());
598     ID.AddInteger(CP->getOffset());
599     if (CP->isMachineConstantPoolEntry())
600       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
601     else
602       ID.AddPointer(CP->getConstVal());
603     ID.AddInteger(CP->getTargetFlags());
604     break;
605   }
606   case ISD::TargetIndex: {
607     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
608     ID.AddInteger(TI->getIndex());
609     ID.AddInteger(TI->getOffset());
610     ID.AddInteger(TI->getTargetFlags());
611     break;
612   }
613   case ISD::LOAD: {
614     const LoadSDNode *LD = cast<LoadSDNode>(N);
615     ID.AddInteger(LD->getMemoryVT().getRawBits());
616     ID.AddInteger(LD->getRawSubclassData());
617     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
618     break;
619   }
620   case ISD::STORE: {
621     const StoreSDNode *ST = cast<StoreSDNode>(N);
622     ID.AddInteger(ST->getMemoryVT().getRawBits());
623     ID.AddInteger(ST->getRawSubclassData());
624     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::MLOAD: {
628     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
629     ID.AddInteger(MLD->getMemoryVT().getRawBits());
630     ID.AddInteger(MLD->getRawSubclassData());
631     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
632     break;
633   }
634   case ISD::MSTORE: {
635     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
636     ID.AddInteger(MST->getMemoryVT().getRawBits());
637     ID.AddInteger(MST->getRawSubclassData());
638     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
639     break;
640   }
641   case ISD::MGATHER: {
642     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
643     ID.AddInteger(MG->getMemoryVT().getRawBits());
644     ID.AddInteger(MG->getRawSubclassData());
645     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
646     break;
647   }
648   case ISD::MSCATTER: {
649     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
650     ID.AddInteger(MS->getMemoryVT().getRawBits());
651     ID.AddInteger(MS->getRawSubclassData());
652     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
653     break;
654   }
655   case ISD::ATOMIC_CMP_SWAP:
656   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
657   case ISD::ATOMIC_SWAP:
658   case ISD::ATOMIC_LOAD_ADD:
659   case ISD::ATOMIC_LOAD_SUB:
660   case ISD::ATOMIC_LOAD_AND:
661   case ISD::ATOMIC_LOAD_CLR:
662   case ISD::ATOMIC_LOAD_OR:
663   case ISD::ATOMIC_LOAD_XOR:
664   case ISD::ATOMIC_LOAD_NAND:
665   case ISD::ATOMIC_LOAD_MIN:
666   case ISD::ATOMIC_LOAD_MAX:
667   case ISD::ATOMIC_LOAD_UMIN:
668   case ISD::ATOMIC_LOAD_UMAX:
669   case ISD::ATOMIC_LOAD:
670   case ISD::ATOMIC_STORE: {
671     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
672     ID.AddInteger(AT->getMemoryVT().getRawBits());
673     ID.AddInteger(AT->getRawSubclassData());
674     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
675     break;
676   }
677   case ISD::PREFETCH: {
678     const MemSDNode *PF = cast<MemSDNode>(N);
679     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
680     break;
681   }
682   case ISD::VECTOR_SHUFFLE: {
683     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
684     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
685          i != e; ++i)
686       ID.AddInteger(SVN->getMaskElt(i));
687     break;
688   }
689   case ISD::TargetBlockAddress:
690   case ISD::BlockAddress: {
691     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
692     ID.AddPointer(BA->getBlockAddress());
693     ID.AddInteger(BA->getOffset());
694     ID.AddInteger(BA->getTargetFlags());
695     break;
696   }
697   } // end switch (N->getOpcode())
698 
699   // Target specific memory nodes could also have address spaces to check.
700   if (N->isTargetMemoryOpcode())
701     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
702 }
703 
704 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
705 /// data.
706 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
707   AddNodeIDOpcode(ID, N->getOpcode());
708   // Add the return value info.
709   AddNodeIDValueTypes(ID, N->getVTList());
710   // Add the operand info.
711   AddNodeIDOperands(ID, N->ops());
712 
713   // Handle SDNode leafs with special info.
714   AddNodeIDCustom(ID, N);
715 }
716 
717 //===----------------------------------------------------------------------===//
718 //                              SelectionDAG Class
719 //===----------------------------------------------------------------------===//
720 
721 /// doNotCSE - Return true if CSE should not be performed for this node.
722 static bool doNotCSE(SDNode *N) {
723   if (N->getValueType(0) == MVT::Glue)
724     return true; // Never CSE anything that produces a flag.
725 
726   switch (N->getOpcode()) {
727   default: break;
728   case ISD::HANDLENODE:
729   case ISD::EH_LABEL:
730     return true;   // Never CSE these nodes.
731   }
732 
733   // Check that remaining values produced are not flags.
734   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
735     if (N->getValueType(i) == MVT::Glue)
736       return true; // Never CSE anything that produces a flag.
737 
738   return false;
739 }
740 
741 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
742 /// SelectionDAG.
743 void SelectionDAG::RemoveDeadNodes() {
744   // Create a dummy node (which is not added to allnodes), that adds a reference
745   // to the root node, preventing it from being deleted.
746   HandleSDNode Dummy(getRoot());
747 
748   SmallVector<SDNode*, 128> DeadNodes;
749 
750   // Add all obviously-dead nodes to the DeadNodes worklist.
751   for (SDNode &Node : allnodes())
752     if (Node.use_empty())
753       DeadNodes.push_back(&Node);
754 
755   RemoveDeadNodes(DeadNodes);
756 
757   // If the root changed (e.g. it was a dead load, update the root).
758   setRoot(Dummy.getValue());
759 }
760 
761 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
762 /// given list, and any nodes that become unreachable as a result.
763 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
764 
765   // Process the worklist, deleting the nodes and adding their uses to the
766   // worklist.
767   while (!DeadNodes.empty()) {
768     SDNode *N = DeadNodes.pop_back_val();
769     // Skip to next node if we've already managed to delete the node. This could
770     // happen if replacing a node causes a node previously added to the node to
771     // be deleted.
772     if (N->getOpcode() == ISD::DELETED_NODE)
773       continue;
774 
775     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
776       DUL->NodeDeleted(N, nullptr);
777 
778     // Take the node out of the appropriate CSE map.
779     RemoveNodeFromCSEMaps(N);
780 
781     // Next, brutally remove the operand list.  This is safe to do, as there are
782     // no cycles in the graph.
783     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
784       SDUse &Use = *I++;
785       SDNode *Operand = Use.getNode();
786       Use.set(SDValue());
787 
788       // Now that we removed this operand, see if there are no uses of it left.
789       if (Operand->use_empty())
790         DeadNodes.push_back(Operand);
791     }
792 
793     DeallocateNode(N);
794   }
795 }
796 
797 void SelectionDAG::RemoveDeadNode(SDNode *N){
798   SmallVector<SDNode*, 16> DeadNodes(1, N);
799 
800   // Create a dummy node that adds a reference to the root node, preventing
801   // it from being deleted.  (This matters if the root is an operand of the
802   // dead node.)
803   HandleSDNode Dummy(getRoot());
804 
805   RemoveDeadNodes(DeadNodes);
806 }
807 
808 void SelectionDAG::DeleteNode(SDNode *N) {
809   // First take this out of the appropriate CSE map.
810   RemoveNodeFromCSEMaps(N);
811 
812   // Finally, remove uses due to operands of this node, remove from the
813   // AllNodes list, and delete the node.
814   DeleteNodeNotInCSEMaps(N);
815 }
816 
817 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
818   assert(N->getIterator() != AllNodes.begin() &&
819          "Cannot delete the entry node!");
820   assert(N->use_empty() && "Cannot delete a node that is not dead!");
821 
822   // Drop all of the operands and decrement used node's use counts.
823   N->DropOperands();
824 
825   DeallocateNode(N);
826 }
827 
828 void SDDbgInfo::erase(const SDNode *Node) {
829   DbgValMapType::iterator I = DbgValMap.find(Node);
830   if (I == DbgValMap.end())
831     return;
832   for (auto &Val: I->second)
833     Val->setIsInvalidated();
834   DbgValMap.erase(I);
835 }
836 
837 void SelectionDAG::DeallocateNode(SDNode *N) {
838   // If we have operands, deallocate them.
839   removeOperands(N);
840 
841   NodeAllocator.Deallocate(AllNodes.remove(N));
842 
843   // Set the opcode to DELETED_NODE to help catch bugs when node
844   // memory is reallocated.
845   // FIXME: There are places in SDag that have grown a dependency on the opcode
846   // value in the released node.
847   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
848   N->NodeType = ISD::DELETED_NODE;
849 
850   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
851   // them and forget about that node.
852   DbgInfo->erase(N);
853 }
854 
855 #ifndef NDEBUG
856 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
857 static void VerifySDNode(SDNode *N) {
858   switch (N->getOpcode()) {
859   default:
860     break;
861   case ISD::BUILD_PAIR: {
862     EVT VT = N->getValueType(0);
863     assert(N->getNumValues() == 1 && "Too many results!");
864     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
865            "Wrong return type!");
866     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
867     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
868            "Mismatched operand types!");
869     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
870            "Wrong operand type!");
871     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
872            "Wrong return type size");
873     break;
874   }
875   case ISD::BUILD_VECTOR: {
876     assert(N->getNumValues() == 1 && "Too many results!");
877     assert(N->getValueType(0).isVector() && "Wrong return type!");
878     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
879            "Wrong number of operands!");
880     EVT EltVT = N->getValueType(0).getVectorElementType();
881     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
882       assert((I->getValueType() == EltVT ||
883              (EltVT.isInteger() && I->getValueType().isInteger() &&
884               EltVT.bitsLE(I->getValueType()))) &&
885             "Wrong operand type!");
886       assert(I->getValueType() == N->getOperand(0).getValueType() &&
887              "Operands must all have the same type");
888     }
889     break;
890   }
891   }
892 }
893 #endif // NDEBUG
894 
895 /// Insert a newly allocated node into the DAG.
896 ///
897 /// Handles insertion into the all nodes list and CSE map, as well as
898 /// verification and other common operations when a new node is allocated.
899 void SelectionDAG::InsertNode(SDNode *N) {
900   AllNodes.push_back(N);
901 #ifndef NDEBUG
902   N->PersistentId = NextPersistentId++;
903   VerifySDNode(N);
904 #endif
905   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
906     DUL->NodeInserted(N);
907 }
908 
909 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
910 /// correspond to it.  This is useful when we're about to delete or repurpose
911 /// the node.  We don't want future request for structurally identical nodes
912 /// to return N anymore.
913 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
914   bool Erased = false;
915   switch (N->getOpcode()) {
916   case ISD::HANDLENODE: return false;  // noop.
917   case ISD::CONDCODE:
918     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
919            "Cond code doesn't exist!");
920     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
921     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
922     break;
923   case ISD::ExternalSymbol:
924     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
925     break;
926   case ISD::TargetExternalSymbol: {
927     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
928     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
929         ESN->getSymbol(), ESN->getTargetFlags()));
930     break;
931   }
932   case ISD::MCSymbol: {
933     auto *MCSN = cast<MCSymbolSDNode>(N);
934     Erased = MCSymbols.erase(MCSN->getMCSymbol());
935     break;
936   }
937   case ISD::VALUETYPE: {
938     EVT VT = cast<VTSDNode>(N)->getVT();
939     if (VT.isExtended()) {
940       Erased = ExtendedValueTypeNodes.erase(VT);
941     } else {
942       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
943       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
944     }
945     break;
946   }
947   default:
948     // Remove it from the CSE Map.
949     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
950     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
951     Erased = CSEMap.RemoveNode(N);
952     break;
953   }
954 #ifndef NDEBUG
955   // Verify that the node was actually in one of the CSE maps, unless it has a
956   // flag result (which cannot be CSE'd) or is one of the special cases that are
957   // not subject to CSE.
958   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
959       !N->isMachineOpcode() && !doNotCSE(N)) {
960     N->dump(this);
961     dbgs() << "\n";
962     llvm_unreachable("Node is not in map!");
963   }
964 #endif
965   return Erased;
966 }
967 
968 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
969 /// maps and modified in place. Add it back to the CSE maps, unless an identical
970 /// node already exists, in which case transfer all its users to the existing
971 /// node. This transfer can potentially trigger recursive merging.
972 void
973 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
974   // For node types that aren't CSE'd, just act as if no identical node
975   // already exists.
976   if (!doNotCSE(N)) {
977     SDNode *Existing = CSEMap.GetOrInsertNode(N);
978     if (Existing != N) {
979       // If there was already an existing matching node, use ReplaceAllUsesWith
980       // to replace the dead one with the existing one.  This can cause
981       // recursive merging of other unrelated nodes down the line.
982       ReplaceAllUsesWith(N, Existing);
983 
984       // N is now dead. Inform the listeners and delete it.
985       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
986         DUL->NodeDeleted(N, Existing);
987       DeleteNodeNotInCSEMaps(N);
988       return;
989     }
990   }
991 
992   // If the node doesn't already exist, we updated it.  Inform listeners.
993   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
994     DUL->NodeUpdated(N);
995 }
996 
997 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
998 /// were replaced with those specified.  If this node is never memoized,
999 /// return null, otherwise return a pointer to the slot it would take.  If a
1000 /// node already exists with these operands, the slot will be non-null.
1001 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1002                                            void *&InsertPos) {
1003   if (doNotCSE(N))
1004     return nullptr;
1005 
1006   SDValue Ops[] = { Op };
1007   FoldingSetNodeID ID;
1008   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1009   AddNodeIDCustom(ID, N);
1010   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1011   if (Node)
1012     Node->intersectFlagsWith(N->getFlags());
1013   return Node;
1014 }
1015 
1016 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1017 /// were replaced with those specified.  If this node is never memoized,
1018 /// return null, otherwise return a pointer to the slot it would take.  If a
1019 /// node already exists with these operands, the slot will be non-null.
1020 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1021                                            SDValue Op1, SDValue Op2,
1022                                            void *&InsertPos) {
1023   if (doNotCSE(N))
1024     return nullptr;
1025 
1026   SDValue Ops[] = { Op1, Op2 };
1027   FoldingSetNodeID ID;
1028   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1029   AddNodeIDCustom(ID, N);
1030   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1031   if (Node)
1032     Node->intersectFlagsWith(N->getFlags());
1033   return Node;
1034 }
1035 
1036 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1037 /// were replaced with those specified.  If this node is never memoized,
1038 /// return null, otherwise return a pointer to the slot it would take.  If a
1039 /// node already exists with these operands, the slot will be non-null.
1040 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1041                                            void *&InsertPos) {
1042   if (doNotCSE(N))
1043     return nullptr;
1044 
1045   FoldingSetNodeID ID;
1046   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1047   AddNodeIDCustom(ID, N);
1048   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1049   if (Node)
1050     Node->intersectFlagsWith(N->getFlags());
1051   return Node;
1052 }
1053 
1054 Align SelectionDAG::getEVTAlign(EVT VT) const {
1055   Type *Ty = VT == MVT::iPTR ?
1056                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1057                    VT.getTypeForEVT(*getContext());
1058 
1059   return getDataLayout().getABITypeAlign(Ty);
1060 }
1061 
1062 // EntryNode could meaningfully have debug info if we can find it...
1063 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1064     : TM(tm), OptLevel(OL),
1065       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1066       Root(getEntryNode()) {
1067   InsertNode(&EntryNode);
1068   DbgInfo = new SDDbgInfo();
1069 }
1070 
1071 void SelectionDAG::init(MachineFunction &NewMF,
1072                         OptimizationRemarkEmitter &NewORE,
1073                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1074                         LegacyDivergenceAnalysis * Divergence,
1075                         ProfileSummaryInfo *PSIin,
1076                         BlockFrequencyInfo *BFIin) {
1077   MF = &NewMF;
1078   SDAGISelPass = PassPtr;
1079   ORE = &NewORE;
1080   TLI = getSubtarget().getTargetLowering();
1081   TSI = getSubtarget().getSelectionDAGInfo();
1082   LibInfo = LibraryInfo;
1083   Context = &MF->getFunction().getContext();
1084   DA = Divergence;
1085   PSI = PSIin;
1086   BFI = BFIin;
1087 }
1088 
1089 SelectionDAG::~SelectionDAG() {
1090   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1091   allnodes_clear();
1092   OperandRecycler.clear(OperandAllocator);
1093   delete DbgInfo;
1094 }
1095 
1096 bool SelectionDAG::shouldOptForSize() const {
1097   return MF->getFunction().hasOptSize() ||
1098       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1099 }
1100 
1101 void SelectionDAG::allnodes_clear() {
1102   assert(&*AllNodes.begin() == &EntryNode);
1103   AllNodes.remove(AllNodes.begin());
1104   while (!AllNodes.empty())
1105     DeallocateNode(&AllNodes.front());
1106 #ifndef NDEBUG
1107   NextPersistentId = 0;
1108 #endif
1109 }
1110 
1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1112                                           void *&InsertPos) {
1113   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1114   if (N) {
1115     switch (N->getOpcode()) {
1116     default: break;
1117     case ISD::Constant:
1118     case ISD::ConstantFP:
1119       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1120                        "debug location.  Use another overload.");
1121     }
1122   }
1123   return N;
1124 }
1125 
1126 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1127                                           const SDLoc &DL, void *&InsertPos) {
1128   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1129   if (N) {
1130     switch (N->getOpcode()) {
1131     case ISD::Constant:
1132     case ISD::ConstantFP:
1133       // Erase debug location from the node if the node is used at several
1134       // different places. Do not propagate one location to all uses as it
1135       // will cause a worse single stepping debugging experience.
1136       if (N->getDebugLoc() != DL.getDebugLoc())
1137         N->setDebugLoc(DebugLoc());
1138       break;
1139     default:
1140       // When the node's point of use is located earlier in the instruction
1141       // sequence than its prior point of use, update its debug info to the
1142       // earlier location.
1143       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1144         N->setDebugLoc(DL.getDebugLoc());
1145       break;
1146     }
1147   }
1148   return N;
1149 }
1150 
1151 void SelectionDAG::clear() {
1152   allnodes_clear();
1153   OperandRecycler.clear(OperandAllocator);
1154   OperandAllocator.Reset();
1155   CSEMap.clear();
1156 
1157   ExtendedValueTypeNodes.clear();
1158   ExternalSymbols.clear();
1159   TargetExternalSymbols.clear();
1160   MCSymbols.clear();
1161   SDCallSiteDbgInfo.clear();
1162   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1163             static_cast<CondCodeSDNode*>(nullptr));
1164   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1165             static_cast<SDNode*>(nullptr));
1166 
1167   EntryNode.UseList = nullptr;
1168   InsertNode(&EntryNode);
1169   Root = getEntryNode();
1170   DbgInfo->clear();
1171 }
1172 
1173 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1174   return VT.bitsGT(Op.getValueType())
1175              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1176              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1177 }
1178 
1179 std::pair<SDValue, SDValue>
1180 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1181                                        const SDLoc &DL, EVT VT) {
1182   assert(!VT.bitsEq(Op.getValueType()) &&
1183          "Strict no-op FP extend/round not allowed.");
1184   SDValue Res =
1185       VT.bitsGT(Op.getValueType())
1186           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1187           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1188                     {Chain, Op, getIntPtrConstant(0, DL)});
1189 
1190   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1191 }
1192 
1193 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1194   return VT.bitsGT(Op.getValueType()) ?
1195     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1196     getNode(ISD::TRUNCATE, DL, VT, Op);
1197 }
1198 
1199 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1200   return VT.bitsGT(Op.getValueType()) ?
1201     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1202     getNode(ISD::TRUNCATE, DL, VT, Op);
1203 }
1204 
1205 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1206   return VT.bitsGT(Op.getValueType()) ?
1207     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1208     getNode(ISD::TRUNCATE, DL, VT, Op);
1209 }
1210 
1211 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1212                                         EVT OpVT) {
1213   if (VT.bitsLE(Op.getValueType()))
1214     return getNode(ISD::TRUNCATE, SL, VT, Op);
1215 
1216   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1217   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1218 }
1219 
1220 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1221   EVT OpVT = Op.getValueType();
1222   assert(VT.isInteger() && OpVT.isInteger() &&
1223          "Cannot getZeroExtendInReg FP types");
1224   assert(VT.isVector() == OpVT.isVector() &&
1225          "getZeroExtendInReg type should be vector iff the operand "
1226          "type is vector!");
1227   assert((!VT.isVector() ||
1228           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1229          "Vector element counts must match in getZeroExtendInReg");
1230   assert(VT.bitsLE(OpVT) && "Not extending!");
1231   if (OpVT == VT)
1232     return Op;
1233   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1234                                    VT.getScalarSizeInBits());
1235   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1236 }
1237 
1238 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1239   // Only unsigned pointer semantics are supported right now. In the future this
1240   // might delegate to TLI to check pointer signedness.
1241   return getZExtOrTrunc(Op, DL, VT);
1242 }
1243 
1244 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1245   // Only unsigned pointer semantics are supported right now. In the future this
1246   // might delegate to TLI to check pointer signedness.
1247   return getZeroExtendInReg(Op, DL, VT);
1248 }
1249 
1250 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1251 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1252   EVT EltVT = VT.getScalarType();
1253   SDValue NegOne =
1254     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1255   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1256 }
1257 
1258 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1259   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1260   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1261 }
1262 
1263 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1264                                       EVT OpVT) {
1265   if (!V)
1266     return getConstant(0, DL, VT);
1267 
1268   switch (TLI->getBooleanContents(OpVT)) {
1269   case TargetLowering::ZeroOrOneBooleanContent:
1270   case TargetLowering::UndefinedBooleanContent:
1271     return getConstant(1, DL, VT);
1272   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1273     return getAllOnesConstant(DL, VT);
1274   }
1275   llvm_unreachable("Unexpected boolean content enum!");
1276 }
1277 
1278 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1279                                   bool isT, bool isO) {
1280   EVT EltVT = VT.getScalarType();
1281   assert((EltVT.getSizeInBits() >= 64 ||
1282          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1283          "getConstant with a uint64_t value that doesn't fit in the type!");
1284   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1285 }
1286 
1287 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1288                                   bool isT, bool isO) {
1289   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1290 }
1291 
1292 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1293                                   EVT VT, bool isT, bool isO) {
1294   assert(VT.isInteger() && "Cannot create FP integer constant!");
1295 
1296   EVT EltVT = VT.getScalarType();
1297   const ConstantInt *Elt = &Val;
1298 
1299   // In some cases the vector type is legal but the element type is illegal and
1300   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1301   // inserted value (the type does not need to match the vector element type).
1302   // Any extra bits introduced will be truncated away.
1303   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1304       TargetLowering::TypePromoteInteger) {
1305    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1306    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1307    Elt = ConstantInt::get(*getContext(), NewVal);
1308   }
1309   // In other cases the element type is illegal and needs to be expanded, for
1310   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1311   // the value into n parts and use a vector type with n-times the elements.
1312   // Then bitcast to the type requested.
1313   // Legalizing constants too early makes the DAGCombiner's job harder so we
1314   // only legalize if the DAG tells us we must produce legal types.
1315   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1316            TLI->getTypeAction(*getContext(), EltVT) ==
1317            TargetLowering::TypeExpandInteger) {
1318     const APInt &NewVal = Elt->getValue();
1319     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1320     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1321     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1322     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1323 
1324     // Check the temporary vector is the correct size. If this fails then
1325     // getTypeToTransformTo() probably returned a type whose size (in bits)
1326     // isn't a power-of-2 factor of the requested type size.
1327     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1328 
1329     SmallVector<SDValue, 2> EltParts;
1330     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1331       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1332                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1333                                      ViaEltVT, isT, isO));
1334     }
1335 
1336     // EltParts is currently in little endian order. If we actually want
1337     // big-endian order then reverse it now.
1338     if (getDataLayout().isBigEndian())
1339       std::reverse(EltParts.begin(), EltParts.end());
1340 
1341     // The elements must be reversed when the element order is different
1342     // to the endianness of the elements (because the BITCAST is itself a
1343     // vector shuffle in this situation). However, we do not need any code to
1344     // perform this reversal because getConstant() is producing a vector
1345     // splat.
1346     // This situation occurs in MIPS MSA.
1347 
1348     SmallVector<SDValue, 8> Ops;
1349     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1350       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1351 
1352     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1353     return V;
1354   }
1355 
1356   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1357          "APInt size does not match type size!");
1358   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1359   FoldingSetNodeID ID;
1360   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1361   ID.AddPointer(Elt);
1362   ID.AddBoolean(isO);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1374   }
1375 
1376   SDValue Result(N, 0);
1377   if (VT.isScalableVector())
1378     Result = getSplatVector(VT, DL, Result);
1379   else if (VT.isVector())
1380     Result = getSplatBuildVector(VT, DL, Result);
1381 
1382   return Result;
1383 }
1384 
1385 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1386                                         bool isTarget) {
1387   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1388 }
1389 
1390 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1391                                              const SDLoc &DL, bool LegalTypes) {
1392   assert(VT.isInteger() && "Shift amount is not an integer type!");
1393   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1394   return getConstant(Val, DL, ShiftVT);
1395 }
1396 
1397 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1398                                            bool isTarget) {
1399   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1400 }
1401 
1402 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1403                                     bool isTarget) {
1404   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1405 }
1406 
1407 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1408                                     EVT VT, bool isTarget) {
1409   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1410 
1411   EVT EltVT = VT.getScalarType();
1412 
1413   // Do the map lookup using the actual bit pattern for the floating point
1414   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1415   // we don't have issues with SNANs.
1416   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1419   ID.AddPointer(&V);
1420   void *IP = nullptr;
1421   SDNode *N = nullptr;
1422   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1423     if (!VT.isVector())
1424       return SDValue(N, 0);
1425 
1426   if (!N) {
1427     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1428     CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   }
1431 
1432   SDValue Result(N, 0);
1433   if (VT.isScalableVector())
1434     Result = getSplatVector(VT, DL, Result);
1435   else if (VT.isVector())
1436     Result = getSplatBuildVector(VT, DL, Result);
1437   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1438   return Result;
1439 }
1440 
1441 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1442                                     bool isTarget) {
1443   EVT EltVT = VT.getScalarType();
1444   if (EltVT == MVT::f32)
1445     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1446   else if (EltVT == MVT::f64)
1447     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1448   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1449            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1450     bool Ignored;
1451     APFloat APF = APFloat(Val);
1452     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1453                 &Ignored);
1454     return getConstantFP(APF, DL, VT, isTarget);
1455   } else
1456     llvm_unreachable("Unsupported type in getConstantFP");
1457 }
1458 
1459 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1460                                        EVT VT, int64_t Offset, bool isTargetGA,
1461                                        unsigned TargetFlags) {
1462   assert((TargetFlags == 0 || isTargetGA) &&
1463          "Cannot set target flags on target-independent globals");
1464 
1465   // Truncate (with sign-extension) the offset value to the pointer size.
1466   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1467   if (BitWidth < 64)
1468     Offset = SignExtend64(Offset, BitWidth);
1469 
1470   unsigned Opc;
1471   if (GV->isThreadLocal())
1472     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1473   else
1474     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1475 
1476   FoldingSetNodeID ID;
1477   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1478   ID.AddPointer(GV);
1479   ID.AddInteger(Offset);
1480   ID.AddInteger(TargetFlags);
1481   void *IP = nullptr;
1482   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1483     return SDValue(E, 0);
1484 
1485   auto *N = newSDNode<GlobalAddressSDNode>(
1486       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488     InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1493   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1494   FoldingSetNodeID ID;
1495   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1496   ID.AddInteger(FI);
1497   void *IP = nullptr;
1498   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1499     return SDValue(E, 0);
1500 
1501   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1502   CSEMap.InsertNode(N, IP);
1503   InsertNode(N);
1504   return SDValue(N, 0);
1505 }
1506 
1507 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1508                                    unsigned TargetFlags) {
1509   assert((TargetFlags == 0 || isTarget) &&
1510          "Cannot set target flags on target-independent jump tables");
1511   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1512   FoldingSetNodeID ID;
1513   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1514   ID.AddInteger(JTI);
1515   ID.AddInteger(TargetFlags);
1516   void *IP = nullptr;
1517   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1518     return SDValue(E, 0);
1519 
1520   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1521   CSEMap.InsertNode(N, IP);
1522   InsertNode(N);
1523   return SDValue(N, 0);
1524 }
1525 
1526 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1527                                       MaybeAlign Alignment, int Offset,
1528                                       bool isTarget, unsigned TargetFlags) {
1529   assert((TargetFlags == 0 || isTarget) &&
1530          "Cannot set target flags on target-independent globals");
1531   if (!Alignment)
1532     Alignment = shouldOptForSize()
1533                     ? getDataLayout().getABITypeAlign(C->getType())
1534                     : getDataLayout().getPrefTypeAlign(C->getType());
1535   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1536   FoldingSetNodeID ID;
1537   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1538   ID.AddInteger(Alignment->value());
1539   ID.AddInteger(Offset);
1540   ID.AddPointer(C);
1541   ID.AddInteger(TargetFlags);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1547                                           TargetFlags);
1548   CSEMap.InsertNode(N, IP);
1549   InsertNode(N);
1550   SDValue V = SDValue(N, 0);
1551   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1552   return V;
1553 }
1554 
1555 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1556                                       MaybeAlign Alignment, int Offset,
1557                                       bool isTarget, unsigned TargetFlags) {
1558   assert((TargetFlags == 0 || isTarget) &&
1559          "Cannot set target flags on target-independent globals");
1560   if (!Alignment)
1561     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1562   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1563   FoldingSetNodeID ID;
1564   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1565   ID.AddInteger(Alignment->value());
1566   ID.AddInteger(Offset);
1567   C->addSelectionDAGCSEId(ID);
1568   ID.AddInteger(TargetFlags);
1569   void *IP = nullptr;
1570   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1571     return SDValue(E, 0);
1572 
1573   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1574                                           TargetFlags);
1575   CSEMap.InsertNode(N, IP);
1576   InsertNode(N);
1577   return SDValue(N, 0);
1578 }
1579 
1580 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1581                                      unsigned TargetFlags) {
1582   FoldingSetNodeID ID;
1583   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1584   ID.AddInteger(Index);
1585   ID.AddInteger(Offset);
1586   ID.AddInteger(TargetFlags);
1587   void *IP = nullptr;
1588   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1589     return SDValue(E, 0);
1590 
1591   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1592   CSEMap.InsertNode(N, IP);
1593   InsertNode(N);
1594   return SDValue(N, 0);
1595 }
1596 
1597 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1600   ID.AddPointer(MBB);
1601   void *IP = nullptr;
1602   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1603     return SDValue(E, 0);
1604 
1605   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1606   CSEMap.InsertNode(N, IP);
1607   InsertNode(N);
1608   return SDValue(N, 0);
1609 }
1610 
1611 SDValue SelectionDAG::getValueType(EVT VT) {
1612   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1613       ValueTypeNodes.size())
1614     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1615 
1616   SDNode *&N = VT.isExtended() ?
1617     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1618 
1619   if (N) return SDValue(N, 0);
1620   N = newSDNode<VTSDNode>(VT);
1621   InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1626   SDNode *&N = ExternalSymbols[Sym];
1627   if (N) return SDValue(N, 0);
1628   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1629   InsertNode(N);
1630   return SDValue(N, 0);
1631 }
1632 
1633 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1634   SDNode *&N = MCSymbols[Sym];
1635   if (N)
1636     return SDValue(N, 0);
1637   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1638   InsertNode(N);
1639   return SDValue(N, 0);
1640 }
1641 
1642 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1643                                               unsigned TargetFlags) {
1644   SDNode *&N =
1645       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1646   if (N) return SDValue(N, 0);
1647   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1648   InsertNode(N);
1649   return SDValue(N, 0);
1650 }
1651 
1652 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1653   if ((unsigned)Cond >= CondCodeNodes.size())
1654     CondCodeNodes.resize(Cond+1);
1655 
1656   if (!CondCodeNodes[Cond]) {
1657     auto *N = newSDNode<CondCodeSDNode>(Cond);
1658     CondCodeNodes[Cond] = N;
1659     InsertNode(N);
1660   }
1661 
1662   return SDValue(CondCodeNodes[Cond], 0);
1663 }
1664 
1665 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1666 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1667 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1668   std::swap(N1, N2);
1669   ShuffleVectorSDNode::commuteMask(M);
1670 }
1671 
1672 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1673                                        SDValue N2, ArrayRef<int> Mask) {
1674   assert(VT.getVectorNumElements() == Mask.size() &&
1675            "Must have the same number of vector elements as mask elements!");
1676   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1677          "Invalid VECTOR_SHUFFLE");
1678 
1679   // Canonicalize shuffle undef, undef -> undef
1680   if (N1.isUndef() && N2.isUndef())
1681     return getUNDEF(VT);
1682 
1683   // Validate that all indices in Mask are within the range of the elements
1684   // input to the shuffle.
1685   int NElts = Mask.size();
1686   assert(llvm::all_of(Mask,
1687                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1688          "Index out of range");
1689 
1690   // Copy the mask so we can do any needed cleanup.
1691   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1692 
1693   // Canonicalize shuffle v, v -> v, undef
1694   if (N1 == N2) {
1695     N2 = getUNDEF(VT);
1696     for (int i = 0; i != NElts; ++i)
1697       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1698   }
1699 
1700   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1701   if (N1.isUndef())
1702     commuteShuffle(N1, N2, MaskVec);
1703 
1704   if (TLI->hasVectorBlend()) {
1705     // If shuffling a splat, try to blend the splat instead. We do this here so
1706     // that even when this arises during lowering we don't have to re-handle it.
1707     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1708       BitVector UndefElements;
1709       SDValue Splat = BV->getSplatValue(&UndefElements);
1710       if (!Splat)
1711         return;
1712 
1713       for (int i = 0; i < NElts; ++i) {
1714         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1715           continue;
1716 
1717         // If this input comes from undef, mark it as such.
1718         if (UndefElements[MaskVec[i] - Offset]) {
1719           MaskVec[i] = -1;
1720           continue;
1721         }
1722 
1723         // If we can blend a non-undef lane, use that instead.
1724         if (!UndefElements[i])
1725           MaskVec[i] = i + Offset;
1726       }
1727     };
1728     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1729       BlendSplat(N1BV, 0);
1730     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1731       BlendSplat(N2BV, NElts);
1732   }
1733 
1734   // Canonicalize all index into lhs, -> shuffle lhs, undef
1735   // Canonicalize all index into rhs, -> shuffle rhs, undef
1736   bool AllLHS = true, AllRHS = true;
1737   bool N2Undef = N2.isUndef();
1738   for (int i = 0; i != NElts; ++i) {
1739     if (MaskVec[i] >= NElts) {
1740       if (N2Undef)
1741         MaskVec[i] = -1;
1742       else
1743         AllLHS = false;
1744     } else if (MaskVec[i] >= 0) {
1745       AllRHS = false;
1746     }
1747   }
1748   if (AllLHS && AllRHS)
1749     return getUNDEF(VT);
1750   if (AllLHS && !N2Undef)
1751     N2 = getUNDEF(VT);
1752   if (AllRHS) {
1753     N1 = getUNDEF(VT);
1754     commuteShuffle(N1, N2, MaskVec);
1755   }
1756   // Reset our undef status after accounting for the mask.
1757   N2Undef = N2.isUndef();
1758   // Re-check whether both sides ended up undef.
1759   if (N1.isUndef() && N2Undef)
1760     return getUNDEF(VT);
1761 
1762   // If Identity shuffle return that node.
1763   bool Identity = true, AllSame = true;
1764   for (int i = 0; i != NElts; ++i) {
1765     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1766     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1767   }
1768   if (Identity && NElts)
1769     return N1;
1770 
1771   // Shuffling a constant splat doesn't change the result.
1772   if (N2Undef) {
1773     SDValue V = N1;
1774 
1775     // Look through any bitcasts. We check that these don't change the number
1776     // (and size) of elements and just changes their types.
1777     while (V.getOpcode() == ISD::BITCAST)
1778       V = V->getOperand(0);
1779 
1780     // A splat should always show up as a build vector node.
1781     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1782       BitVector UndefElements;
1783       SDValue Splat = BV->getSplatValue(&UndefElements);
1784       // If this is a splat of an undef, shuffling it is also undef.
1785       if (Splat && Splat.isUndef())
1786         return getUNDEF(VT);
1787 
1788       bool SameNumElts =
1789           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1790 
1791       // We only have a splat which can skip shuffles if there is a splatted
1792       // value and no undef lanes rearranged by the shuffle.
1793       if (Splat && UndefElements.none()) {
1794         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1795         // number of elements match or the value splatted is a zero constant.
1796         if (SameNumElts)
1797           return N1;
1798         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1799           if (C->isNullValue())
1800             return N1;
1801       }
1802 
1803       // If the shuffle itself creates a splat, build the vector directly.
1804       if (AllSame && SameNumElts) {
1805         EVT BuildVT = BV->getValueType(0);
1806         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1807         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1808 
1809         // We may have jumped through bitcasts, so the type of the
1810         // BUILD_VECTOR may not match the type of the shuffle.
1811         if (BuildVT != VT)
1812           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1813         return NewBV;
1814       }
1815     }
1816   }
1817 
1818   FoldingSetNodeID ID;
1819   SDValue Ops[2] = { N1, N2 };
1820   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1821   for (int i = 0; i != NElts; ++i)
1822     ID.AddInteger(MaskVec[i]);
1823 
1824   void* IP = nullptr;
1825   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1826     return SDValue(E, 0);
1827 
1828   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1829   // SDNode doesn't have access to it.  This memory will be "leaked" when
1830   // the node is deallocated, but recovered when the NodeAllocator is released.
1831   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1832   llvm::copy(MaskVec, MaskAlloc);
1833 
1834   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1835                                            dl.getDebugLoc(), MaskAlloc);
1836   createOperands(N, Ops);
1837 
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   SDValue V = SDValue(N, 0);
1841   NewSDValueDbgMsg(V, "Creating new node: ", this);
1842   return V;
1843 }
1844 
1845 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1846   EVT VT = SV.getValueType(0);
1847   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1848   ShuffleVectorSDNode::commuteMask(MaskVec);
1849 
1850   SDValue Op0 = SV.getOperand(0);
1851   SDValue Op1 = SV.getOperand(1);
1852   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1853 }
1854 
1855 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1856   FoldingSetNodeID ID;
1857   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1858   ID.AddInteger(RegNo);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1864   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1865   CSEMap.InsertNode(N, IP);
1866   InsertNode(N);
1867   return SDValue(N, 0);
1868 }
1869 
1870 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1871   FoldingSetNodeID ID;
1872   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1873   ID.AddPointer(RegMask);
1874   void *IP = nullptr;
1875   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1876     return SDValue(E, 0);
1877 
1878   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1885                                  MCSymbol *Label) {
1886   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1887 }
1888 
1889 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1890                                    SDValue Root, MCSymbol *Label) {
1891   FoldingSetNodeID ID;
1892   SDValue Ops[] = { Root };
1893   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1894   ID.AddPointer(Label);
1895   void *IP = nullptr;
1896   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1897     return SDValue(E, 0);
1898 
1899   auto *N =
1900       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1901   createOperands(N, Ops);
1902 
1903   CSEMap.InsertNode(N, IP);
1904   InsertNode(N);
1905   return SDValue(N, 0);
1906 }
1907 
1908 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1909                                       int64_t Offset, bool isTarget,
1910                                       unsigned TargetFlags) {
1911   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1912 
1913   FoldingSetNodeID ID;
1914   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1915   ID.AddPointer(BA);
1916   ID.AddInteger(Offset);
1917   ID.AddInteger(TargetFlags);
1918   void *IP = nullptr;
1919   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1920     return SDValue(E, 0);
1921 
1922   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1923   CSEMap.InsertNode(N, IP);
1924   InsertNode(N);
1925   return SDValue(N, 0);
1926 }
1927 
1928 SDValue SelectionDAG::getSrcValue(const Value *V) {
1929   FoldingSetNodeID ID;
1930   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1931   ID.AddPointer(V);
1932 
1933   void *IP = nullptr;
1934   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1935     return SDValue(E, 0);
1936 
1937   auto *N = newSDNode<SrcValueSDNode>(V);
1938   CSEMap.InsertNode(N, IP);
1939   InsertNode(N);
1940   return SDValue(N, 0);
1941 }
1942 
1943 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1944   FoldingSetNodeID ID;
1945   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1946   ID.AddPointer(MD);
1947 
1948   void *IP = nullptr;
1949   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1950     return SDValue(E, 0);
1951 
1952   auto *N = newSDNode<MDNodeSDNode>(MD);
1953   CSEMap.InsertNode(N, IP);
1954   InsertNode(N);
1955   return SDValue(N, 0);
1956 }
1957 
1958 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1959   if (VT == V.getValueType())
1960     return V;
1961 
1962   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1963 }
1964 
1965 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1966                                        unsigned SrcAS, unsigned DestAS) {
1967   SDValue Ops[] = {Ptr};
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1970   ID.AddInteger(SrcAS);
1971   ID.AddInteger(DestAS);
1972 
1973   void *IP = nullptr;
1974   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1975     return SDValue(E, 0);
1976 
1977   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1978                                            VT, SrcAS, DestAS);
1979   createOperands(N, Ops);
1980 
1981   CSEMap.InsertNode(N, IP);
1982   InsertNode(N);
1983   return SDValue(N, 0);
1984 }
1985 
1986 SDValue SelectionDAG::getFreeze(SDValue V) {
1987   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1988 }
1989 
1990 /// getShiftAmountOperand - Return the specified value casted to
1991 /// the target's desired shift amount type.
1992 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1993   EVT OpTy = Op.getValueType();
1994   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1995   if (OpTy == ShTy || OpTy.isVector()) return Op;
1996 
1997   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1998 }
1999 
2000 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2001   SDLoc dl(Node);
2002   const TargetLowering &TLI = getTargetLoweringInfo();
2003   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2004   EVT VT = Node->getValueType(0);
2005   SDValue Tmp1 = Node->getOperand(0);
2006   SDValue Tmp2 = Node->getOperand(1);
2007   const MaybeAlign MA(Node->getConstantOperandVal(3));
2008 
2009   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2010                                Tmp2, MachinePointerInfo(V));
2011   SDValue VAList = VAListLoad;
2012 
2013   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2014     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2015                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2016 
2017     VAList =
2018         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2019                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2020   }
2021 
2022   // Increment the pointer, VAList, to the next vaarg
2023   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2024                  getConstant(getDataLayout().getTypeAllocSize(
2025                                                VT.getTypeForEVT(*getContext())),
2026                              dl, VAList.getValueType()));
2027   // Store the incremented VAList to the legalized pointer
2028   Tmp1 =
2029       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2030   // Load the actual argument out of the pointer VAList
2031   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2032 }
2033 
2034 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2035   SDLoc dl(Node);
2036   const TargetLowering &TLI = getTargetLoweringInfo();
2037   // This defaults to loading a pointer from the input and storing it to the
2038   // output, returning the chain.
2039   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2040   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2041   SDValue Tmp1 =
2042       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2043               Node->getOperand(2), MachinePointerInfo(VS));
2044   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2045                   MachinePointerInfo(VD));
2046 }
2047 
2048 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2049   const DataLayout &DL = getDataLayout();
2050   Type *Ty = VT.getTypeForEVT(*getContext());
2051   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2052 
2053   if (TLI->isTypeLegal(VT) || !VT.isVector())
2054     return RedAlign;
2055 
2056   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2057   const Align StackAlign = TFI->getStackAlign();
2058 
2059   // See if we can choose a smaller ABI alignment in cases where it's an
2060   // illegal vector type that will get broken down.
2061   if (RedAlign > StackAlign) {
2062     EVT IntermediateVT;
2063     MVT RegisterVT;
2064     unsigned NumIntermediates;
2065     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2066                                 NumIntermediates, RegisterVT);
2067     Ty = IntermediateVT.getTypeForEVT(*getContext());
2068     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2069     if (RedAlign2 < RedAlign)
2070       RedAlign = RedAlign2;
2071   }
2072 
2073   return RedAlign;
2074 }
2075 
2076 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2077   MachineFrameInfo &MFI = MF->getFrameInfo();
2078   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2079   int StackID = 0;
2080   if (Bytes.isScalable())
2081     StackID = TFI->getStackIDForScalableVectors();
2082   // The stack id gives an indication of whether the object is scalable or
2083   // not, so it's safe to pass in the minimum size here.
2084   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2085                                        false, nullptr, StackID);
2086   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2087 }
2088 
2089 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2090   Type *Ty = VT.getTypeForEVT(*getContext());
2091   Align StackAlign =
2092       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2093   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2094 }
2095 
2096 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2097   TypeSize VT1Size = VT1.getStoreSize();
2098   TypeSize VT2Size = VT2.getStoreSize();
2099   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2100          "Don't know how to choose the maximum size when creating a stack "
2101          "temporary");
2102   TypeSize Bytes =
2103       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2104 
2105   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2106   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2107   const DataLayout &DL = getDataLayout();
2108   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2109   return CreateStackTemporary(Bytes, Align);
2110 }
2111 
2112 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2113                                 ISD::CondCode Cond, const SDLoc &dl) {
2114   EVT OpVT = N1.getValueType();
2115 
2116   // These setcc operations always fold.
2117   switch (Cond) {
2118   default: break;
2119   case ISD::SETFALSE:
2120   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2121   case ISD::SETTRUE:
2122   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2123 
2124   case ISD::SETOEQ:
2125   case ISD::SETOGT:
2126   case ISD::SETOGE:
2127   case ISD::SETOLT:
2128   case ISD::SETOLE:
2129   case ISD::SETONE:
2130   case ISD::SETO:
2131   case ISD::SETUO:
2132   case ISD::SETUEQ:
2133   case ISD::SETUNE:
2134     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2135     break;
2136   }
2137 
2138   if (OpVT.isInteger()) {
2139     // For EQ and NE, we can always pick a value for the undef to make the
2140     // predicate pass or fail, so we can return undef.
2141     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2142     // icmp eq/ne X, undef -> undef.
2143     if ((N1.isUndef() || N2.isUndef()) &&
2144         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2145       return getUNDEF(VT);
2146 
2147     // If both operands are undef, we can return undef for int comparison.
2148     // icmp undef, undef -> undef.
2149     if (N1.isUndef() && N2.isUndef())
2150       return getUNDEF(VT);
2151 
2152     // icmp X, X -> true/false
2153     // icmp X, undef -> true/false because undef could be X.
2154     if (N1 == N2)
2155       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2156   }
2157 
2158   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2159     const APInt &C2 = N2C->getAPIntValue();
2160     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2161       const APInt &C1 = N1C->getAPIntValue();
2162 
2163       switch (Cond) {
2164       default: llvm_unreachable("Unknown integer setcc!");
2165       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2166       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2167       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2168       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2169       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2170       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2171       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2172       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2173       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2174       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2175       }
2176     }
2177   }
2178 
2179   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2180   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2181 
2182   if (N1CFP && N2CFP) {
2183     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2184     switch (Cond) {
2185     default: break;
2186     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2187                         return getUNDEF(VT);
2188                       LLVM_FALLTHROUGH;
2189     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2190                                              OpVT);
2191     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2192                         return getUNDEF(VT);
2193                       LLVM_FALLTHROUGH;
2194     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2195                                              R==APFloat::cmpLessThan, dl, VT,
2196                                              OpVT);
2197     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2198                         return getUNDEF(VT);
2199                       LLVM_FALLTHROUGH;
2200     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2201                                              OpVT);
2202     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2203                         return getUNDEF(VT);
2204                       LLVM_FALLTHROUGH;
2205     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2206                                              VT, OpVT);
2207     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2208                         return getUNDEF(VT);
2209                       LLVM_FALLTHROUGH;
2210     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2211                                              R==APFloat::cmpEqual, dl, VT,
2212                                              OpVT);
2213     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2214                         return getUNDEF(VT);
2215                       LLVM_FALLTHROUGH;
2216     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2217                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2218     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2219                                              OpVT);
2220     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2221                                              OpVT);
2222     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2223                                              R==APFloat::cmpEqual, dl, VT,
2224                                              OpVT);
2225     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2226                                              OpVT);
2227     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2228                                              R==APFloat::cmpLessThan, dl, VT,
2229                                              OpVT);
2230     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2231                                              R==APFloat::cmpUnordered, dl, VT,
2232                                              OpVT);
2233     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2234                                              VT, OpVT);
2235     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2236                                              OpVT);
2237     }
2238   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2239     // Ensure that the constant occurs on the RHS.
2240     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2241     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2242       return SDValue();
2243     return getSetCC(dl, VT, N2, N1, SwappedCond);
2244   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2245              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2246     // If an operand is known to be a nan (or undef that could be a nan), we can
2247     // fold it.
2248     // Choosing NaN for the undef will always make unordered comparison succeed
2249     // and ordered comparison fails.
2250     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2251     switch (ISD::getUnorderedFlavor(Cond)) {
2252     default:
2253       llvm_unreachable("Unknown flavor!");
2254     case 0: // Known false.
2255       return getBoolConstant(false, dl, VT, OpVT);
2256     case 1: // Known true.
2257       return getBoolConstant(true, dl, VT, OpVT);
2258     case 2: // Undefined.
2259       return getUNDEF(VT);
2260     }
2261   }
2262 
2263   // Could not fold it.
2264   return SDValue();
2265 }
2266 
2267 /// See if the specified operand can be simplified with the knowledge that only
2268 /// the bits specified by DemandedBits are used.
2269 /// TODO: really we should be making this into the DAG equivalent of
2270 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2271 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2272   EVT VT = V.getValueType();
2273 
2274   if (VT.isScalableVector())
2275     return SDValue();
2276 
2277   APInt DemandedElts = VT.isVector()
2278                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2279                            : APInt(1, 1);
2280   return GetDemandedBits(V, DemandedBits, DemandedElts);
2281 }
2282 
2283 /// See if the specified operand can be simplified with the knowledge that only
2284 /// the bits specified by DemandedBits are used in the elements specified by
2285 /// DemandedElts.
2286 /// TODO: really we should be making this into the DAG equivalent of
2287 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2288 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2289                                       const APInt &DemandedElts) {
2290   switch (V.getOpcode()) {
2291   default:
2292     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2293                                                 *this, 0);
2294   case ISD::Constant: {
2295     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2296     APInt NewVal = CVal & DemandedBits;
2297     if (NewVal != CVal)
2298       return getConstant(NewVal, SDLoc(V), V.getValueType());
2299     break;
2300   }
2301   case ISD::SRL:
2302     // Only look at single-use SRLs.
2303     if (!V.getNode()->hasOneUse())
2304       break;
2305     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2306       // See if we can recursively simplify the LHS.
2307       unsigned Amt = RHSC->getZExtValue();
2308 
2309       // Watch out for shift count overflow though.
2310       if (Amt >= DemandedBits.getBitWidth())
2311         break;
2312       APInt SrcDemandedBits = DemandedBits << Amt;
2313       if (SDValue SimplifyLHS =
2314               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2315         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2316                        V.getOperand(1));
2317     }
2318     break;
2319   }
2320   return SDValue();
2321 }
2322 
2323 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2324 /// use this predicate to simplify operations downstream.
2325 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2326   unsigned BitWidth = Op.getScalarValueSizeInBits();
2327   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2328 }
2329 
2330 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2331 /// this predicate to simplify operations downstream.  Mask is known to be zero
2332 /// for bits that V cannot have.
2333 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2334                                      unsigned Depth) const {
2335   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2336 }
2337 
2338 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2339 /// DemandedElts.  We use this predicate to simplify operations downstream.
2340 /// Mask is known to be zero for bits that V cannot have.
2341 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2342                                      const APInt &DemandedElts,
2343                                      unsigned Depth) const {
2344   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2345 }
2346 
2347 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2348 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2349                                         unsigned Depth) const {
2350   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2351 }
2352 
2353 /// isSplatValue - Return true if the vector V has the same value
2354 /// across all DemandedElts. For scalable vectors it does not make
2355 /// sense to specify which elements are demanded or undefined, therefore
2356 /// they are simply ignored.
2357 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2358                                 APInt &UndefElts, unsigned Depth) {
2359   EVT VT = V.getValueType();
2360   assert(VT.isVector() && "Vector type expected");
2361 
2362   if (!VT.isScalableVector() && !DemandedElts)
2363     return false; // No demanded elts, better to assume we don't know anything.
2364 
2365   if (Depth >= MaxRecursionDepth)
2366     return false; // Limit search depth.
2367 
2368   // Deal with some common cases here that work for both fixed and scalable
2369   // vector types.
2370   switch (V.getOpcode()) {
2371   case ISD::SPLAT_VECTOR:
2372     UndefElts = V.getOperand(0).isUndef()
2373                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2374                     : APInt(DemandedElts.getBitWidth(), 0);
2375     return true;
2376   case ISD::ADD:
2377   case ISD::SUB:
2378   case ISD::AND: {
2379     APInt UndefLHS, UndefRHS;
2380     SDValue LHS = V.getOperand(0);
2381     SDValue RHS = V.getOperand(1);
2382     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2383         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2384       UndefElts = UndefLHS | UndefRHS;
2385       return true;
2386     }
2387     break;
2388   }
2389   case ISD::TRUNCATE:
2390   case ISD::SIGN_EXTEND:
2391   case ISD::ZERO_EXTEND:
2392     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2393   }
2394 
2395   // We don't support other cases than those above for scalable vectors at
2396   // the moment.
2397   if (VT.isScalableVector())
2398     return false;
2399 
2400   unsigned NumElts = VT.getVectorNumElements();
2401   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2402   UndefElts = APInt::getNullValue(NumElts);
2403 
2404   switch (V.getOpcode()) {
2405   case ISD::BUILD_VECTOR: {
2406     SDValue Scl;
2407     for (unsigned i = 0; i != NumElts; ++i) {
2408       SDValue Op = V.getOperand(i);
2409       if (Op.isUndef()) {
2410         UndefElts.setBit(i);
2411         continue;
2412       }
2413       if (!DemandedElts[i])
2414         continue;
2415       if (Scl && Scl != Op)
2416         return false;
2417       Scl = Op;
2418     }
2419     return true;
2420   }
2421   case ISD::VECTOR_SHUFFLE: {
2422     // Check if this is a shuffle node doing a splat.
2423     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2424     int SplatIndex = -1;
2425     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2426     for (int i = 0; i != (int)NumElts; ++i) {
2427       int M = Mask[i];
2428       if (M < 0) {
2429         UndefElts.setBit(i);
2430         continue;
2431       }
2432       if (!DemandedElts[i])
2433         continue;
2434       if (0 <= SplatIndex && SplatIndex != M)
2435         return false;
2436       SplatIndex = M;
2437     }
2438     return true;
2439   }
2440   case ISD::EXTRACT_SUBVECTOR: {
2441     // Offset the demanded elts by the subvector index.
2442     SDValue Src = V.getOperand(0);
2443     uint64_t Idx = V.getConstantOperandVal(1);
2444     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2445     APInt UndefSrcElts;
2446     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2447     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2448       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2449       return true;
2450     }
2451     break;
2452   }
2453   }
2454 
2455   return false;
2456 }
2457 
2458 /// Helper wrapper to main isSplatValue function.
2459 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2460   EVT VT = V.getValueType();
2461   assert(VT.isVector() && "Vector type expected");
2462 
2463   APInt UndefElts;
2464   APInt DemandedElts;
2465 
2466   // For now we don't support this with scalable vectors.
2467   if (!VT.isScalableVector())
2468     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2469   return isSplatValue(V, DemandedElts, UndefElts) &&
2470          (AllowUndefs || !UndefElts);
2471 }
2472 
2473 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2474   V = peekThroughExtractSubvectors(V);
2475 
2476   EVT VT = V.getValueType();
2477   unsigned Opcode = V.getOpcode();
2478   switch (Opcode) {
2479   default: {
2480     APInt UndefElts;
2481     APInt DemandedElts;
2482 
2483     if (!VT.isScalableVector())
2484       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2485 
2486     if (isSplatValue(V, DemandedElts, UndefElts)) {
2487       if (VT.isScalableVector()) {
2488         // DemandedElts and UndefElts are ignored for scalable vectors, since
2489         // the only supported cases are SPLAT_VECTOR nodes.
2490         SplatIdx = 0;
2491       } else {
2492         // Handle case where all demanded elements are UNDEF.
2493         if (DemandedElts.isSubsetOf(UndefElts)) {
2494           SplatIdx = 0;
2495           return getUNDEF(VT);
2496         }
2497         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2498       }
2499       return V;
2500     }
2501     break;
2502   }
2503   case ISD::SPLAT_VECTOR:
2504     SplatIdx = 0;
2505     return V;
2506   case ISD::VECTOR_SHUFFLE: {
2507     if (VT.isScalableVector())
2508       return SDValue();
2509 
2510     // Check if this is a shuffle node doing a splat.
2511     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2512     // getTargetVShiftNode currently struggles without the splat source.
2513     auto *SVN = cast<ShuffleVectorSDNode>(V);
2514     if (!SVN->isSplat())
2515       break;
2516     int Idx = SVN->getSplatIndex();
2517     int NumElts = V.getValueType().getVectorNumElements();
2518     SplatIdx = Idx % NumElts;
2519     return V.getOperand(Idx / NumElts);
2520   }
2521   }
2522 
2523   return SDValue();
2524 }
2525 
2526 SDValue SelectionDAG::getSplatValue(SDValue V) {
2527   int SplatIdx;
2528   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2529     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2530                    SrcVector.getValueType().getScalarType(), SrcVector,
2531                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2532   return SDValue();
2533 }
2534 
2535 const APInt *
2536 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2537                                           const APInt &DemandedElts) const {
2538   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2539           V.getOpcode() == ISD::SRA) &&
2540          "Unknown shift node");
2541   unsigned BitWidth = V.getScalarValueSizeInBits();
2542   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2543     // Shifting more than the bitwidth is not valid.
2544     const APInt &ShAmt = SA->getAPIntValue();
2545     if (ShAmt.ult(BitWidth))
2546       return &ShAmt;
2547   }
2548   return nullptr;
2549 }
2550 
2551 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2552     SDValue V, const APInt &DemandedElts) const {
2553   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2554           V.getOpcode() == ISD::SRA) &&
2555          "Unknown shift node");
2556   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2557     return ValidAmt;
2558   unsigned BitWidth = V.getScalarValueSizeInBits();
2559   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2560   if (!BV)
2561     return nullptr;
2562   const APInt *MinShAmt = nullptr;
2563   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2564     if (!DemandedElts[i])
2565       continue;
2566     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2567     if (!SA)
2568       return nullptr;
2569     // Shifting more than the bitwidth is not valid.
2570     const APInt &ShAmt = SA->getAPIntValue();
2571     if (ShAmt.uge(BitWidth))
2572       return nullptr;
2573     if (MinShAmt && MinShAmt->ule(ShAmt))
2574       continue;
2575     MinShAmt = &ShAmt;
2576   }
2577   return MinShAmt;
2578 }
2579 
2580 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2581     SDValue V, const APInt &DemandedElts) const {
2582   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2583           V.getOpcode() == ISD::SRA) &&
2584          "Unknown shift node");
2585   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2586     return ValidAmt;
2587   unsigned BitWidth = V.getScalarValueSizeInBits();
2588   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2589   if (!BV)
2590     return nullptr;
2591   const APInt *MaxShAmt = nullptr;
2592   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2593     if (!DemandedElts[i])
2594       continue;
2595     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2596     if (!SA)
2597       return nullptr;
2598     // Shifting more than the bitwidth is not valid.
2599     const APInt &ShAmt = SA->getAPIntValue();
2600     if (ShAmt.uge(BitWidth))
2601       return nullptr;
2602     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2603       continue;
2604     MaxShAmt = &ShAmt;
2605   }
2606   return MaxShAmt;
2607 }
2608 
2609 /// Determine which bits of Op are known to be either zero or one and return
2610 /// them in Known. For vectors, the known bits are those that are shared by
2611 /// every vector element.
2612 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2613   EVT VT = Op.getValueType();
2614 
2615   // TOOD: Until we have a plan for how to represent demanded elements for
2616   // scalable vectors, we can just bail out for now.
2617   if (Op.getValueType().isScalableVector()) {
2618     unsigned BitWidth = Op.getScalarValueSizeInBits();
2619     return KnownBits(BitWidth);
2620   }
2621 
2622   APInt DemandedElts = VT.isVector()
2623                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2624                            : APInt(1, 1);
2625   return computeKnownBits(Op, DemandedElts, Depth);
2626 }
2627 
2628 /// Determine which bits of Op are known to be either zero or one and return
2629 /// them in Known. The DemandedElts argument allows us to only collect the known
2630 /// bits that are shared by the requested vector elements.
2631 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2632                                          unsigned Depth) const {
2633   unsigned BitWidth = Op.getScalarValueSizeInBits();
2634 
2635   KnownBits Known(BitWidth);   // Don't know anything.
2636 
2637   // TOOD: Until we have a plan for how to represent demanded elements for
2638   // scalable vectors, we can just bail out for now.
2639   if (Op.getValueType().isScalableVector())
2640     return Known;
2641 
2642   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2643     // We know all of the bits for a constant!
2644     return KnownBits::makeConstant(C->getAPIntValue());
2645   }
2646   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2647     // We know all of the bits for a constant fp!
2648     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2649   }
2650 
2651   if (Depth >= MaxRecursionDepth)
2652     return Known;  // Limit search depth.
2653 
2654   KnownBits Known2;
2655   unsigned NumElts = DemandedElts.getBitWidth();
2656   assert((!Op.getValueType().isVector() ||
2657           NumElts == Op.getValueType().getVectorNumElements()) &&
2658          "Unexpected vector size");
2659 
2660   if (!DemandedElts)
2661     return Known;  // No demanded elts, better to assume we don't know anything.
2662 
2663   unsigned Opcode = Op.getOpcode();
2664   switch (Opcode) {
2665   case ISD::BUILD_VECTOR:
2666     // Collect the known bits that are shared by every demanded vector element.
2667     Known.Zero.setAllBits(); Known.One.setAllBits();
2668     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2669       if (!DemandedElts[i])
2670         continue;
2671 
2672       SDValue SrcOp = Op.getOperand(i);
2673       Known2 = computeKnownBits(SrcOp, Depth + 1);
2674 
2675       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2676       if (SrcOp.getValueSizeInBits() != BitWidth) {
2677         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2678                "Expected BUILD_VECTOR implicit truncation");
2679         Known2 = Known2.trunc(BitWidth);
2680       }
2681 
2682       // Known bits are the values that are shared by every demanded element.
2683       Known = KnownBits::commonBits(Known, Known2);
2684 
2685       // If we don't know any bits, early out.
2686       if (Known.isUnknown())
2687         break;
2688     }
2689     break;
2690   case ISD::VECTOR_SHUFFLE: {
2691     // Collect the known bits that are shared by every vector element referenced
2692     // by the shuffle.
2693     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2694     Known.Zero.setAllBits(); Known.One.setAllBits();
2695     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2696     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2697     for (unsigned i = 0; i != NumElts; ++i) {
2698       if (!DemandedElts[i])
2699         continue;
2700 
2701       int M = SVN->getMaskElt(i);
2702       if (M < 0) {
2703         // For UNDEF elements, we don't know anything about the common state of
2704         // the shuffle result.
2705         Known.resetAll();
2706         DemandedLHS.clearAllBits();
2707         DemandedRHS.clearAllBits();
2708         break;
2709       }
2710 
2711       if ((unsigned)M < NumElts)
2712         DemandedLHS.setBit((unsigned)M % NumElts);
2713       else
2714         DemandedRHS.setBit((unsigned)M % NumElts);
2715     }
2716     // Known bits are the values that are shared by every demanded element.
2717     if (!!DemandedLHS) {
2718       SDValue LHS = Op.getOperand(0);
2719       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2720       Known = KnownBits::commonBits(Known, Known2);
2721     }
2722     // If we don't know any bits, early out.
2723     if (Known.isUnknown())
2724       break;
2725     if (!!DemandedRHS) {
2726       SDValue RHS = Op.getOperand(1);
2727       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2728       Known = KnownBits::commonBits(Known, Known2);
2729     }
2730     break;
2731   }
2732   case ISD::CONCAT_VECTORS: {
2733     // Split DemandedElts and test each of the demanded subvectors.
2734     Known.Zero.setAllBits(); Known.One.setAllBits();
2735     EVT SubVectorVT = Op.getOperand(0).getValueType();
2736     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2737     unsigned NumSubVectors = Op.getNumOperands();
2738     for (unsigned i = 0; i != NumSubVectors; ++i) {
2739       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2740       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2741       if (!!DemandedSub) {
2742         SDValue Sub = Op.getOperand(i);
2743         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2744         Known = KnownBits::commonBits(Known, Known2);
2745       }
2746       // If we don't know any bits, early out.
2747       if (Known.isUnknown())
2748         break;
2749     }
2750     break;
2751   }
2752   case ISD::INSERT_SUBVECTOR: {
2753     // Demand any elements from the subvector and the remainder from the src its
2754     // inserted into.
2755     SDValue Src = Op.getOperand(0);
2756     SDValue Sub = Op.getOperand(1);
2757     uint64_t Idx = Op.getConstantOperandVal(2);
2758     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2759     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2760     APInt DemandedSrcElts = DemandedElts;
2761     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2762 
2763     Known.One.setAllBits();
2764     Known.Zero.setAllBits();
2765     if (!!DemandedSubElts) {
2766       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2767       if (Known.isUnknown())
2768         break; // early-out.
2769     }
2770     if (!!DemandedSrcElts) {
2771       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2772       Known = KnownBits::commonBits(Known, Known2);
2773     }
2774     break;
2775   }
2776   case ISD::EXTRACT_SUBVECTOR: {
2777     // Offset the demanded elts by the subvector index.
2778     SDValue Src = Op.getOperand(0);
2779     // Bail until we can represent demanded elements for scalable vectors.
2780     if (Src.getValueType().isScalableVector())
2781       break;
2782     uint64_t Idx = Op.getConstantOperandVal(1);
2783     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2784     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2785     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2786     break;
2787   }
2788   case ISD::SCALAR_TO_VECTOR: {
2789     // We know about scalar_to_vector as much as we know about it source,
2790     // which becomes the first element of otherwise unknown vector.
2791     if (DemandedElts != 1)
2792       break;
2793 
2794     SDValue N0 = Op.getOperand(0);
2795     Known = computeKnownBits(N0, Depth + 1);
2796     if (N0.getValueSizeInBits() != BitWidth)
2797       Known = Known.trunc(BitWidth);
2798 
2799     break;
2800   }
2801   case ISD::BITCAST: {
2802     SDValue N0 = Op.getOperand(0);
2803     EVT SubVT = N0.getValueType();
2804     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2805 
2806     // Ignore bitcasts from unsupported types.
2807     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2808       break;
2809 
2810     // Fast handling of 'identity' bitcasts.
2811     if (BitWidth == SubBitWidth) {
2812       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2813       break;
2814     }
2815 
2816     bool IsLE = getDataLayout().isLittleEndian();
2817 
2818     // Bitcast 'small element' vector to 'large element' scalar/vector.
2819     if ((BitWidth % SubBitWidth) == 0) {
2820       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2821 
2822       // Collect known bits for the (larger) output by collecting the known
2823       // bits from each set of sub elements and shift these into place.
2824       // We need to separately call computeKnownBits for each set of
2825       // sub elements as the knownbits for each is likely to be different.
2826       unsigned SubScale = BitWidth / SubBitWidth;
2827       APInt SubDemandedElts(NumElts * SubScale, 0);
2828       for (unsigned i = 0; i != NumElts; ++i)
2829         if (DemandedElts[i])
2830           SubDemandedElts.setBit(i * SubScale);
2831 
2832       for (unsigned i = 0; i != SubScale; ++i) {
2833         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2834                          Depth + 1);
2835         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2836         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2837         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2838       }
2839     }
2840 
2841     // Bitcast 'large element' scalar/vector to 'small element' vector.
2842     if ((SubBitWidth % BitWidth) == 0) {
2843       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2844 
2845       // Collect known bits for the (smaller) output by collecting the known
2846       // bits from the overlapping larger input elements and extracting the
2847       // sub sections we actually care about.
2848       unsigned SubScale = SubBitWidth / BitWidth;
2849       APInt SubDemandedElts(NumElts / SubScale, 0);
2850       for (unsigned i = 0; i != NumElts; ++i)
2851         if (DemandedElts[i])
2852           SubDemandedElts.setBit(i / SubScale);
2853 
2854       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2855 
2856       Known.Zero.setAllBits(); Known.One.setAllBits();
2857       for (unsigned i = 0; i != NumElts; ++i)
2858         if (DemandedElts[i]) {
2859           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2860           unsigned Offset = (Shifts % SubScale) * BitWidth;
2861           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2862           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2863           // If we don't know any bits, early out.
2864           if (Known.isUnknown())
2865             break;
2866         }
2867     }
2868     break;
2869   }
2870   case ISD::AND:
2871     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2872     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2873 
2874     Known &= Known2;
2875     break;
2876   case ISD::OR:
2877     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2878     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2879 
2880     Known |= Known2;
2881     break;
2882   case ISD::XOR:
2883     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2884     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2885 
2886     Known ^= Known2;
2887     break;
2888   case ISD::MUL: {
2889     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2890     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2891     Known = KnownBits::computeForMul(Known, Known2);
2892     break;
2893   }
2894   case ISD::UDIV: {
2895     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2896     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2897     Known = KnownBits::udiv(Known, Known2);
2898     break;
2899   }
2900   case ISD::SELECT:
2901   case ISD::VSELECT:
2902     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2903     // If we don't know any bits, early out.
2904     if (Known.isUnknown())
2905       break;
2906     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2907 
2908     // Only known if known in both the LHS and RHS.
2909     Known = KnownBits::commonBits(Known, Known2);
2910     break;
2911   case ISD::SELECT_CC:
2912     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2913     // If we don't know any bits, early out.
2914     if (Known.isUnknown())
2915       break;
2916     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2917 
2918     // Only known if known in both the LHS and RHS.
2919     Known = KnownBits::commonBits(Known, Known2);
2920     break;
2921   case ISD::SMULO:
2922   case ISD::UMULO:
2923   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2924     if (Op.getResNo() != 1)
2925       break;
2926     // The boolean result conforms to getBooleanContents.
2927     // If we know the result of a setcc has the top bits zero, use this info.
2928     // We know that we have an integer-based boolean since these operations
2929     // are only available for integer.
2930     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2931             TargetLowering::ZeroOrOneBooleanContent &&
2932         BitWidth > 1)
2933       Known.Zero.setBitsFrom(1);
2934     break;
2935   case ISD::SETCC:
2936   case ISD::STRICT_FSETCC:
2937   case ISD::STRICT_FSETCCS: {
2938     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2939     // If we know the result of a setcc has the top bits zero, use this info.
2940     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2941             TargetLowering::ZeroOrOneBooleanContent &&
2942         BitWidth > 1)
2943       Known.Zero.setBitsFrom(1);
2944     break;
2945   }
2946   case ISD::SHL:
2947     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2948     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2949     Known = KnownBits::shl(Known, Known2);
2950 
2951     // Minimum shift low bits are known zero.
2952     if (const APInt *ShMinAmt =
2953             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2954       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2955     break;
2956   case ISD::SRL:
2957     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2958     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2959     Known = KnownBits::lshr(Known, Known2);
2960 
2961     // Minimum shift high bits are known zero.
2962     if (const APInt *ShMinAmt =
2963             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2964       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2965     break;
2966   case ISD::SRA:
2967     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2968     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2969     Known = KnownBits::ashr(Known, Known2);
2970     // TODO: Add minimum shift high known sign bits.
2971     break;
2972   case ISD::FSHL:
2973   case ISD::FSHR:
2974     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2975       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2976 
2977       // For fshl, 0-shift returns the 1st arg.
2978       // For fshr, 0-shift returns the 2nd arg.
2979       if (Amt == 0) {
2980         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2981                                  DemandedElts, Depth + 1);
2982         break;
2983       }
2984 
2985       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2986       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2987       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2988       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2989       if (Opcode == ISD::FSHL) {
2990         Known.One <<= Amt;
2991         Known.Zero <<= Amt;
2992         Known2.One.lshrInPlace(BitWidth - Amt);
2993         Known2.Zero.lshrInPlace(BitWidth - Amt);
2994       } else {
2995         Known.One <<= BitWidth - Amt;
2996         Known.Zero <<= BitWidth - Amt;
2997         Known2.One.lshrInPlace(Amt);
2998         Known2.Zero.lshrInPlace(Amt);
2999       }
3000       Known.One |= Known2.One;
3001       Known.Zero |= Known2.Zero;
3002     }
3003     break;
3004   case ISD::SIGN_EXTEND_INREG: {
3005     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3006     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3007     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3008     break;
3009   }
3010   case ISD::CTTZ:
3011   case ISD::CTTZ_ZERO_UNDEF: {
3012     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     // If we have a known 1, its position is our upper bound.
3014     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3015     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3016     Known.Zero.setBitsFrom(LowBits);
3017     break;
3018   }
3019   case ISD::CTLZ:
3020   case ISD::CTLZ_ZERO_UNDEF: {
3021     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3022     // If we have a known 1, its position is our upper bound.
3023     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3024     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3025     Known.Zero.setBitsFrom(LowBits);
3026     break;
3027   }
3028   case ISD::CTPOP: {
3029     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3030     // If we know some of the bits are zero, they can't be one.
3031     unsigned PossibleOnes = Known2.countMaxPopulation();
3032     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3033     break;
3034   }
3035   case ISD::PARITY: {
3036     // Parity returns 0 everywhere but the LSB.
3037     Known.Zero.setBitsFrom(1);
3038     break;
3039   }
3040   case ISD::LOAD: {
3041     LoadSDNode *LD = cast<LoadSDNode>(Op);
3042     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3043     if (ISD::isNON_EXTLoad(LD) && Cst) {
3044       // Determine any common known bits from the loaded constant pool value.
3045       Type *CstTy = Cst->getType();
3046       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3047         // If its a vector splat, then we can (quickly) reuse the scalar path.
3048         // NOTE: We assume all elements match and none are UNDEF.
3049         if (CstTy->isVectorTy()) {
3050           if (const Constant *Splat = Cst->getSplatValue()) {
3051             Cst = Splat;
3052             CstTy = Cst->getType();
3053           }
3054         }
3055         // TODO - do we need to handle different bitwidths?
3056         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3057           // Iterate across all vector elements finding common known bits.
3058           Known.One.setAllBits();
3059           Known.Zero.setAllBits();
3060           for (unsigned i = 0; i != NumElts; ++i) {
3061             if (!DemandedElts[i])
3062               continue;
3063             if (Constant *Elt = Cst->getAggregateElement(i)) {
3064               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3065                 const APInt &Value = CInt->getValue();
3066                 Known.One &= Value;
3067                 Known.Zero &= ~Value;
3068                 continue;
3069               }
3070               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3071                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3072                 Known.One &= Value;
3073                 Known.Zero &= ~Value;
3074                 continue;
3075               }
3076             }
3077             Known.One.clearAllBits();
3078             Known.Zero.clearAllBits();
3079             break;
3080           }
3081         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3082           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3083             const APInt &Value = CInt->getValue();
3084             Known.One = Value;
3085             Known.Zero = ~Value;
3086           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3087             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3088             Known.One = Value;
3089             Known.Zero = ~Value;
3090           }
3091         }
3092       }
3093     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3094       // If this is a ZEXTLoad and we are looking at the loaded value.
3095       EVT VT = LD->getMemoryVT();
3096       unsigned MemBits = VT.getScalarSizeInBits();
3097       Known.Zero.setBitsFrom(MemBits);
3098     } else if (const MDNode *Ranges = LD->getRanges()) {
3099       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3100         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3101     }
3102     break;
3103   }
3104   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3105     EVT InVT = Op.getOperand(0).getValueType();
3106     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3107     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3108     Known = Known.zext(BitWidth);
3109     break;
3110   }
3111   case ISD::ZERO_EXTEND: {
3112     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3113     Known = Known.zext(BitWidth);
3114     break;
3115   }
3116   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3117     EVT InVT = Op.getOperand(0).getValueType();
3118     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3119     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3120     // If the sign bit is known to be zero or one, then sext will extend
3121     // it to the top bits, else it will just zext.
3122     Known = Known.sext(BitWidth);
3123     break;
3124   }
3125   case ISD::SIGN_EXTEND: {
3126     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3127     // If the sign bit is known to be zero or one, then sext will extend
3128     // it to the top bits, else it will just zext.
3129     Known = Known.sext(BitWidth);
3130     break;
3131   }
3132   case ISD::ANY_EXTEND_VECTOR_INREG: {
3133     EVT InVT = Op.getOperand(0).getValueType();
3134     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3135     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3136     Known = Known.anyext(BitWidth);
3137     break;
3138   }
3139   case ISD::ANY_EXTEND: {
3140     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3141     Known = Known.anyext(BitWidth);
3142     break;
3143   }
3144   case ISD::TRUNCATE: {
3145     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3146     Known = Known.trunc(BitWidth);
3147     break;
3148   }
3149   case ISD::AssertZext: {
3150     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3151     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3152     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3153     Known.Zero |= (~InMask);
3154     Known.One  &= (~Known.Zero);
3155     break;
3156   }
3157   case ISD::AssertAlign: {
3158     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3159     assert(LogOfAlign != 0);
3160     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3161     // well as clearing one bits.
3162     Known.Zero.setLowBits(LogOfAlign);
3163     Known.One.clearLowBits(LogOfAlign);
3164     break;
3165   }
3166   case ISD::FGETSIGN:
3167     // All bits are zero except the low bit.
3168     Known.Zero.setBitsFrom(1);
3169     break;
3170   case ISD::USUBO:
3171   case ISD::SSUBO:
3172     if (Op.getResNo() == 1) {
3173       // If we know the result of a setcc has the top bits zero, use this info.
3174       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3175               TargetLowering::ZeroOrOneBooleanContent &&
3176           BitWidth > 1)
3177         Known.Zero.setBitsFrom(1);
3178       break;
3179     }
3180     LLVM_FALLTHROUGH;
3181   case ISD::SUB:
3182   case ISD::SUBC: {
3183     assert(Op.getResNo() == 0 &&
3184            "We only compute knownbits for the difference here.");
3185 
3186     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3187     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3188     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3189                                         Known, Known2);
3190     break;
3191   }
3192   case ISD::UADDO:
3193   case ISD::SADDO:
3194   case ISD::ADDCARRY:
3195     if (Op.getResNo() == 1) {
3196       // If we know the result of a setcc has the top bits zero, use this info.
3197       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3198               TargetLowering::ZeroOrOneBooleanContent &&
3199           BitWidth > 1)
3200         Known.Zero.setBitsFrom(1);
3201       break;
3202     }
3203     LLVM_FALLTHROUGH;
3204   case ISD::ADD:
3205   case ISD::ADDC:
3206   case ISD::ADDE: {
3207     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3208 
3209     // With ADDE and ADDCARRY, a carry bit may be added in.
3210     KnownBits Carry(1);
3211     if (Opcode == ISD::ADDE)
3212       // Can't track carry from glue, set carry to unknown.
3213       Carry.resetAll();
3214     else if (Opcode == ISD::ADDCARRY)
3215       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3216       // the trouble (how often will we find a known carry bit). And I haven't
3217       // tested this very much yet, but something like this might work:
3218       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3219       //   Carry = Carry.zextOrTrunc(1, false);
3220       Carry.resetAll();
3221     else
3222       Carry.setAllZero();
3223 
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3226     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3227     break;
3228   }
3229   case ISD::SREM: {
3230     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3231     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3232     Known = KnownBits::srem(Known, Known2);
3233     break;
3234   }
3235   case ISD::UREM: {
3236     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3237     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3238     Known = KnownBits::urem(Known, Known2);
3239     break;
3240   }
3241   case ISD::EXTRACT_ELEMENT: {
3242     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3243     const unsigned Index = Op.getConstantOperandVal(1);
3244     const unsigned EltBitWidth = Op.getValueSizeInBits();
3245 
3246     // Remove low part of known bits mask
3247     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3248     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3249 
3250     // Remove high part of known bit mask
3251     Known = Known.trunc(EltBitWidth);
3252     break;
3253   }
3254   case ISD::EXTRACT_VECTOR_ELT: {
3255     SDValue InVec = Op.getOperand(0);
3256     SDValue EltNo = Op.getOperand(1);
3257     EVT VecVT = InVec.getValueType();
3258     // computeKnownBits not yet implemented for scalable vectors.
3259     if (VecVT.isScalableVector())
3260       break;
3261     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3262     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3263 
3264     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3265     // anything about the extended bits.
3266     if (BitWidth > EltBitWidth)
3267       Known = Known.trunc(EltBitWidth);
3268 
3269     // If we know the element index, just demand that vector element, else for
3270     // an unknown element index, ignore DemandedElts and demand them all.
3271     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3272     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3273     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3274       DemandedSrcElts =
3275           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3276 
3277     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3278     if (BitWidth > EltBitWidth)
3279       Known = Known.anyext(BitWidth);
3280     break;
3281   }
3282   case ISD::INSERT_VECTOR_ELT: {
3283     // If we know the element index, split the demand between the
3284     // source vector and the inserted element, otherwise assume we need
3285     // the original demanded vector elements and the value.
3286     SDValue InVec = Op.getOperand(0);
3287     SDValue InVal = Op.getOperand(1);
3288     SDValue EltNo = Op.getOperand(2);
3289     bool DemandedVal = true;
3290     APInt DemandedVecElts = DemandedElts;
3291     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3292     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3293       unsigned EltIdx = CEltNo->getZExtValue();
3294       DemandedVal = !!DemandedElts[EltIdx];
3295       DemandedVecElts.clearBit(EltIdx);
3296     }
3297     Known.One.setAllBits();
3298     Known.Zero.setAllBits();
3299     if (DemandedVal) {
3300       Known2 = computeKnownBits(InVal, Depth + 1);
3301       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3302     }
3303     if (!!DemandedVecElts) {
3304       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3305       Known = KnownBits::commonBits(Known, Known2);
3306     }
3307     break;
3308   }
3309   case ISD::BITREVERSE: {
3310     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3311     Known = Known2.reverseBits();
3312     break;
3313   }
3314   case ISD::BSWAP: {
3315     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316     Known = Known2.byteSwap();
3317     break;
3318   }
3319   case ISD::ABS: {
3320     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3321     Known = Known2.abs();
3322     break;
3323   }
3324   case ISD::UMIN: {
3325     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3326     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3327     Known = KnownBits::umin(Known, Known2);
3328     break;
3329   }
3330   case ISD::UMAX: {
3331     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3332     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3333     Known = KnownBits::umax(Known, Known2);
3334     break;
3335   }
3336   case ISD::SMIN:
3337   case ISD::SMAX: {
3338     // If we have a clamp pattern, we know that the number of sign bits will be
3339     // the minimum of the clamp min/max range.
3340     bool IsMax = (Opcode == ISD::SMAX);
3341     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3342     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3343       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3344         CstHigh =
3345             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3346     if (CstLow && CstHigh) {
3347       if (!IsMax)
3348         std::swap(CstLow, CstHigh);
3349 
3350       const APInt &ValueLow = CstLow->getAPIntValue();
3351       const APInt &ValueHigh = CstHigh->getAPIntValue();
3352       if (ValueLow.sle(ValueHigh)) {
3353         unsigned LowSignBits = ValueLow.getNumSignBits();
3354         unsigned HighSignBits = ValueHigh.getNumSignBits();
3355         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3356         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3357           Known.One.setHighBits(MinSignBits);
3358           break;
3359         }
3360         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3361           Known.Zero.setHighBits(MinSignBits);
3362           break;
3363         }
3364       }
3365     }
3366 
3367     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     if (Known.isUnknown()) break; // Early-out
3369     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3370     if (IsMax)
3371       Known = KnownBits::smax(Known, Known2);
3372     else
3373       Known = KnownBits::smin(Known, Known2);
3374     break;
3375   }
3376   case ISD::FrameIndex:
3377   case ISD::TargetFrameIndex:
3378     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3379                                        Known, getMachineFunction());
3380     break;
3381 
3382   default:
3383     if (Opcode < ISD::BUILTIN_OP_END)
3384       break;
3385     LLVM_FALLTHROUGH;
3386   case ISD::INTRINSIC_WO_CHAIN:
3387   case ISD::INTRINSIC_W_CHAIN:
3388   case ISD::INTRINSIC_VOID:
3389     // Allow the target to implement this method for its nodes.
3390     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3391     break;
3392   }
3393 
3394   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3395   return Known;
3396 }
3397 
3398 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3399                                                              SDValue N1) const {
3400   // X + 0 never overflow
3401   if (isNullConstant(N1))
3402     return OFK_Never;
3403 
3404   KnownBits N1Known = computeKnownBits(N1);
3405   if (N1Known.Zero.getBoolValue()) {
3406     KnownBits N0Known = computeKnownBits(N0);
3407 
3408     bool overflow;
3409     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3410     if (!overflow)
3411       return OFK_Never;
3412   }
3413 
3414   // mulhi + 1 never overflow
3415   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3416       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3417     return OFK_Never;
3418 
3419   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3420     KnownBits N0Known = computeKnownBits(N0);
3421 
3422     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3423       return OFK_Never;
3424   }
3425 
3426   return OFK_Sometime;
3427 }
3428 
3429 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3430   EVT OpVT = Val.getValueType();
3431   unsigned BitWidth = OpVT.getScalarSizeInBits();
3432 
3433   // Is the constant a known power of 2?
3434   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3435     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3436 
3437   // A left-shift of a constant one will have exactly one bit set because
3438   // shifting the bit off the end is undefined.
3439   if (Val.getOpcode() == ISD::SHL) {
3440     auto *C = isConstOrConstSplat(Val.getOperand(0));
3441     if (C && C->getAPIntValue() == 1)
3442       return true;
3443   }
3444 
3445   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3446   // one bit set.
3447   if (Val.getOpcode() == ISD::SRL) {
3448     auto *C = isConstOrConstSplat(Val.getOperand(0));
3449     if (C && C->getAPIntValue().isSignMask())
3450       return true;
3451   }
3452 
3453   // Are all operands of a build vector constant powers of two?
3454   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3455     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3456           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3457             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3458           return false;
3459         }))
3460       return true;
3461 
3462   // More could be done here, though the above checks are enough
3463   // to handle some common cases.
3464 
3465   // Fall back to computeKnownBits to catch other known cases.
3466   KnownBits Known = computeKnownBits(Val);
3467   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3468 }
3469 
3470 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3471   EVT VT = Op.getValueType();
3472 
3473   // TODO: Assume we don't know anything for now.
3474   if (VT.isScalableVector())
3475     return 1;
3476 
3477   APInt DemandedElts = VT.isVector()
3478                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3479                            : APInt(1, 1);
3480   return ComputeNumSignBits(Op, DemandedElts, Depth);
3481 }
3482 
3483 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3484                                           unsigned Depth) const {
3485   EVT VT = Op.getValueType();
3486   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3487   unsigned VTBits = VT.getScalarSizeInBits();
3488   unsigned NumElts = DemandedElts.getBitWidth();
3489   unsigned Tmp, Tmp2;
3490   unsigned FirstAnswer = 1;
3491 
3492   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3493     const APInt &Val = C->getAPIntValue();
3494     return Val.getNumSignBits();
3495   }
3496 
3497   if (Depth >= MaxRecursionDepth)
3498     return 1;  // Limit search depth.
3499 
3500   if (!DemandedElts || VT.isScalableVector())
3501     return 1;  // No demanded elts, better to assume we don't know anything.
3502 
3503   unsigned Opcode = Op.getOpcode();
3504   switch (Opcode) {
3505   default: break;
3506   case ISD::AssertSext:
3507     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3508     return VTBits-Tmp+1;
3509   case ISD::AssertZext:
3510     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3511     return VTBits-Tmp;
3512 
3513   case ISD::BUILD_VECTOR:
3514     Tmp = VTBits;
3515     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3516       if (!DemandedElts[i])
3517         continue;
3518 
3519       SDValue SrcOp = Op.getOperand(i);
3520       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3521 
3522       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3523       if (SrcOp.getValueSizeInBits() != VTBits) {
3524         assert(SrcOp.getValueSizeInBits() > VTBits &&
3525                "Expected BUILD_VECTOR implicit truncation");
3526         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3527         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3528       }
3529       Tmp = std::min(Tmp, Tmp2);
3530     }
3531     return Tmp;
3532 
3533   case ISD::VECTOR_SHUFFLE: {
3534     // Collect the minimum number of sign bits that are shared by every vector
3535     // element referenced by the shuffle.
3536     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3537     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3538     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3539     for (unsigned i = 0; i != NumElts; ++i) {
3540       int M = SVN->getMaskElt(i);
3541       if (!DemandedElts[i])
3542         continue;
3543       // For UNDEF elements, we don't know anything about the common state of
3544       // the shuffle result.
3545       if (M < 0)
3546         return 1;
3547       if ((unsigned)M < NumElts)
3548         DemandedLHS.setBit((unsigned)M % NumElts);
3549       else
3550         DemandedRHS.setBit((unsigned)M % NumElts);
3551     }
3552     Tmp = std::numeric_limits<unsigned>::max();
3553     if (!!DemandedLHS)
3554       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3555     if (!!DemandedRHS) {
3556       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3557       Tmp = std::min(Tmp, Tmp2);
3558     }
3559     // If we don't know anything, early out and try computeKnownBits fall-back.
3560     if (Tmp == 1)
3561       break;
3562     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3563     return Tmp;
3564   }
3565 
3566   case ISD::BITCAST: {
3567     SDValue N0 = Op.getOperand(0);
3568     EVT SrcVT = N0.getValueType();
3569     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3570 
3571     // Ignore bitcasts from unsupported types..
3572     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3573       break;
3574 
3575     // Fast handling of 'identity' bitcasts.
3576     if (VTBits == SrcBits)
3577       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3578 
3579     bool IsLE = getDataLayout().isLittleEndian();
3580 
3581     // Bitcast 'large element' scalar/vector to 'small element' vector.
3582     if ((SrcBits % VTBits) == 0) {
3583       assert(VT.isVector() && "Expected bitcast to vector");
3584 
3585       unsigned Scale = SrcBits / VTBits;
3586       APInt SrcDemandedElts(NumElts / Scale, 0);
3587       for (unsigned i = 0; i != NumElts; ++i)
3588         if (DemandedElts[i])
3589           SrcDemandedElts.setBit(i / Scale);
3590 
3591       // Fast case - sign splat can be simply split across the small elements.
3592       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3593       if (Tmp == SrcBits)
3594         return VTBits;
3595 
3596       // Slow case - determine how far the sign extends into each sub-element.
3597       Tmp2 = VTBits;
3598       for (unsigned i = 0; i != NumElts; ++i)
3599         if (DemandedElts[i]) {
3600           unsigned SubOffset = i % Scale;
3601           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3602           SubOffset = SubOffset * VTBits;
3603           if (Tmp <= SubOffset)
3604             return 1;
3605           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3606         }
3607       return Tmp2;
3608     }
3609     break;
3610   }
3611 
3612   case ISD::SIGN_EXTEND:
3613     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3614     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3615   case ISD::SIGN_EXTEND_INREG:
3616     // Max of the input and what this extends.
3617     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3618     Tmp = VTBits-Tmp+1;
3619     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3620     return std::max(Tmp, Tmp2);
3621   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3622     SDValue Src = Op.getOperand(0);
3623     EVT SrcVT = Src.getValueType();
3624     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3625     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3626     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3627   }
3628   case ISD::SRA:
3629     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3630     // SRA X, C -> adds C sign bits.
3631     if (const APInt *ShAmt =
3632             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3633       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3634     return Tmp;
3635   case ISD::SHL:
3636     if (const APInt *ShAmt =
3637             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3638       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3639       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3640       if (ShAmt->ult(Tmp))
3641         return Tmp - ShAmt->getZExtValue();
3642     }
3643     break;
3644   case ISD::AND:
3645   case ISD::OR:
3646   case ISD::XOR:    // NOT is handled here.
3647     // Logical binary ops preserve the number of sign bits at the worst.
3648     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3649     if (Tmp != 1) {
3650       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3651       FirstAnswer = std::min(Tmp, Tmp2);
3652       // We computed what we know about the sign bits as our first
3653       // answer. Now proceed to the generic code that uses
3654       // computeKnownBits, and pick whichever answer is better.
3655     }
3656     break;
3657 
3658   case ISD::SELECT:
3659   case ISD::VSELECT:
3660     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3661     if (Tmp == 1) return 1;  // Early out.
3662     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3663     return std::min(Tmp, Tmp2);
3664   case ISD::SELECT_CC:
3665     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3666     if (Tmp == 1) return 1;  // Early out.
3667     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3668     return std::min(Tmp, Tmp2);
3669 
3670   case ISD::SMIN:
3671   case ISD::SMAX: {
3672     // If we have a clamp pattern, we know that the number of sign bits will be
3673     // the minimum of the clamp min/max range.
3674     bool IsMax = (Opcode == ISD::SMAX);
3675     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3676     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3677       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3678         CstHigh =
3679             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3680     if (CstLow && CstHigh) {
3681       if (!IsMax)
3682         std::swap(CstLow, CstHigh);
3683       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3684         Tmp = CstLow->getAPIntValue().getNumSignBits();
3685         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3686         return std::min(Tmp, Tmp2);
3687       }
3688     }
3689 
3690     // Fallback - just get the minimum number of sign bits of the operands.
3691     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3692     if (Tmp == 1)
3693       return 1;  // Early out.
3694     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3695     return std::min(Tmp, Tmp2);
3696   }
3697   case ISD::UMIN:
3698   case ISD::UMAX:
3699     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3700     if (Tmp == 1)
3701       return 1;  // Early out.
3702     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3703     return std::min(Tmp, Tmp2);
3704   case ISD::SADDO:
3705   case ISD::UADDO:
3706   case ISD::SSUBO:
3707   case ISD::USUBO:
3708   case ISD::SMULO:
3709   case ISD::UMULO:
3710     if (Op.getResNo() != 1)
3711       break;
3712     // The boolean result conforms to getBooleanContents.  Fall through.
3713     // If setcc returns 0/-1, all bits are sign bits.
3714     // We know that we have an integer-based boolean since these operations
3715     // are only available for integer.
3716     if (TLI->getBooleanContents(VT.isVector(), false) ==
3717         TargetLowering::ZeroOrNegativeOneBooleanContent)
3718       return VTBits;
3719     break;
3720   case ISD::SETCC:
3721   case ISD::STRICT_FSETCC:
3722   case ISD::STRICT_FSETCCS: {
3723     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3724     // If setcc returns 0/-1, all bits are sign bits.
3725     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3726         TargetLowering::ZeroOrNegativeOneBooleanContent)
3727       return VTBits;
3728     break;
3729   }
3730   case ISD::ROTL:
3731   case ISD::ROTR:
3732     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3733 
3734     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3735     if (Tmp == VTBits)
3736       return VTBits;
3737 
3738     if (ConstantSDNode *C =
3739             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3740       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3741 
3742       // Handle rotate right by N like a rotate left by 32-N.
3743       if (Opcode == ISD::ROTR)
3744         RotAmt = (VTBits - RotAmt) % VTBits;
3745 
3746       // If we aren't rotating out all of the known-in sign bits, return the
3747       // number that are left.  This handles rotl(sext(x), 1) for example.
3748       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3749     }
3750     break;
3751   case ISD::ADD:
3752   case ISD::ADDC:
3753     // Add can have at most one carry bit.  Thus we know that the output
3754     // is, at worst, one more bit than the inputs.
3755     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3756     if (Tmp == 1) return 1; // Early out.
3757 
3758     // Special case decrementing a value (ADD X, -1):
3759     if (ConstantSDNode *CRHS =
3760             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3761       if (CRHS->isAllOnesValue()) {
3762         KnownBits Known =
3763             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3764 
3765         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3766         // sign bits set.
3767         if ((Known.Zero | 1).isAllOnesValue())
3768           return VTBits;
3769 
3770         // If we are subtracting one from a positive number, there is no carry
3771         // out of the result.
3772         if (Known.isNonNegative())
3773           return Tmp;
3774       }
3775 
3776     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3777     if (Tmp2 == 1) return 1; // Early out.
3778     return std::min(Tmp, Tmp2) - 1;
3779   case ISD::SUB:
3780     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3781     if (Tmp2 == 1) return 1; // Early out.
3782 
3783     // Handle NEG.
3784     if (ConstantSDNode *CLHS =
3785             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3786       if (CLHS->isNullValue()) {
3787         KnownBits Known =
3788             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3789         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3790         // sign bits set.
3791         if ((Known.Zero | 1).isAllOnesValue())
3792           return VTBits;
3793 
3794         // If the input is known to be positive (the sign bit is known clear),
3795         // the output of the NEG has the same number of sign bits as the input.
3796         if (Known.isNonNegative())
3797           return Tmp2;
3798 
3799         // Otherwise, we treat this like a SUB.
3800       }
3801 
3802     // Sub can have at most one carry bit.  Thus we know that the output
3803     // is, at worst, one more bit than the inputs.
3804     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3805     if (Tmp == 1) return 1; // Early out.
3806     return std::min(Tmp, Tmp2) - 1;
3807   case ISD::MUL: {
3808     // The output of the Mul can be at most twice the valid bits in the inputs.
3809     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3810     if (SignBitsOp0 == 1)
3811       break;
3812     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3813     if (SignBitsOp1 == 1)
3814       break;
3815     unsigned OutValidBits =
3816         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3817     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3818   }
3819   case ISD::TRUNCATE: {
3820     // Check if the sign bits of source go down as far as the truncated value.
3821     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3822     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3823     if (NumSrcSignBits > (NumSrcBits - VTBits))
3824       return NumSrcSignBits - (NumSrcBits - VTBits);
3825     break;
3826   }
3827   case ISD::EXTRACT_ELEMENT: {
3828     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3829     const int BitWidth = Op.getValueSizeInBits();
3830     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3831 
3832     // Get reverse index (starting from 1), Op1 value indexes elements from
3833     // little end. Sign starts at big end.
3834     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3835 
3836     // If the sign portion ends in our element the subtraction gives correct
3837     // result. Otherwise it gives either negative or > bitwidth result
3838     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3839   }
3840   case ISD::INSERT_VECTOR_ELT: {
3841     // If we know the element index, split the demand between the
3842     // source vector and the inserted element, otherwise assume we need
3843     // the original demanded vector elements and the value.
3844     SDValue InVec = Op.getOperand(0);
3845     SDValue InVal = Op.getOperand(1);
3846     SDValue EltNo = Op.getOperand(2);
3847     bool DemandedVal = true;
3848     APInt DemandedVecElts = DemandedElts;
3849     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3850     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3851       unsigned EltIdx = CEltNo->getZExtValue();
3852       DemandedVal = !!DemandedElts[EltIdx];
3853       DemandedVecElts.clearBit(EltIdx);
3854     }
3855     Tmp = std::numeric_limits<unsigned>::max();
3856     if (DemandedVal) {
3857       // TODO - handle implicit truncation of inserted elements.
3858       if (InVal.getScalarValueSizeInBits() != VTBits)
3859         break;
3860       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3861       Tmp = std::min(Tmp, Tmp2);
3862     }
3863     if (!!DemandedVecElts) {
3864       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3865       Tmp = std::min(Tmp, Tmp2);
3866     }
3867     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3868     return Tmp;
3869   }
3870   case ISD::EXTRACT_VECTOR_ELT: {
3871     SDValue InVec = Op.getOperand(0);
3872     SDValue EltNo = Op.getOperand(1);
3873     EVT VecVT = InVec.getValueType();
3874     const unsigned BitWidth = Op.getValueSizeInBits();
3875     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3876     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3877 
3878     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3879     // anything about sign bits. But if the sizes match we can derive knowledge
3880     // about sign bits from the vector operand.
3881     if (BitWidth != EltBitWidth)
3882       break;
3883 
3884     // If we know the element index, just demand that vector element, else for
3885     // an unknown element index, ignore DemandedElts and demand them all.
3886     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3887     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3888     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3889       DemandedSrcElts =
3890           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3891 
3892     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3893   }
3894   case ISD::EXTRACT_SUBVECTOR: {
3895     // Offset the demanded elts by the subvector index.
3896     SDValue Src = Op.getOperand(0);
3897     // Bail until we can represent demanded elements for scalable vectors.
3898     if (Src.getValueType().isScalableVector())
3899       break;
3900     uint64_t Idx = Op.getConstantOperandVal(1);
3901     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3902     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3903     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3904   }
3905   case ISD::CONCAT_VECTORS: {
3906     // Determine the minimum number of sign bits across all demanded
3907     // elts of the input vectors. Early out if the result is already 1.
3908     Tmp = std::numeric_limits<unsigned>::max();
3909     EVT SubVectorVT = Op.getOperand(0).getValueType();
3910     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3911     unsigned NumSubVectors = Op.getNumOperands();
3912     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3913       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3914       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3915       if (!DemandedSub)
3916         continue;
3917       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3918       Tmp = std::min(Tmp, Tmp2);
3919     }
3920     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3921     return Tmp;
3922   }
3923   case ISD::INSERT_SUBVECTOR: {
3924     // Demand any elements from the subvector and the remainder from the src its
3925     // inserted into.
3926     SDValue Src = Op.getOperand(0);
3927     SDValue Sub = Op.getOperand(1);
3928     uint64_t Idx = Op.getConstantOperandVal(2);
3929     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3930     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3931     APInt DemandedSrcElts = DemandedElts;
3932     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3933 
3934     Tmp = std::numeric_limits<unsigned>::max();
3935     if (!!DemandedSubElts) {
3936       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3937       if (Tmp == 1)
3938         return 1; // early-out
3939     }
3940     if (!!DemandedSrcElts) {
3941       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3942       Tmp = std::min(Tmp, Tmp2);
3943     }
3944     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3945     return Tmp;
3946   }
3947   }
3948 
3949   // If we are looking at the loaded value of the SDNode.
3950   if (Op.getResNo() == 0) {
3951     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3952     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3953       unsigned ExtType = LD->getExtensionType();
3954       switch (ExtType) {
3955       default: break;
3956       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3957         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3958         return VTBits - Tmp + 1;
3959       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3960         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3961         return VTBits - Tmp;
3962       case ISD::NON_EXTLOAD:
3963         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3964           // We only need to handle vectors - computeKnownBits should handle
3965           // scalar cases.
3966           Type *CstTy = Cst->getType();
3967           if (CstTy->isVectorTy() &&
3968               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3969             Tmp = VTBits;
3970             for (unsigned i = 0; i != NumElts; ++i) {
3971               if (!DemandedElts[i])
3972                 continue;
3973               if (Constant *Elt = Cst->getAggregateElement(i)) {
3974                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3975                   const APInt &Value = CInt->getValue();
3976                   Tmp = std::min(Tmp, Value.getNumSignBits());
3977                   continue;
3978                 }
3979                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3980                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3981                   Tmp = std::min(Tmp, Value.getNumSignBits());
3982                   continue;
3983                 }
3984               }
3985               // Unknown type. Conservatively assume no bits match sign bit.
3986               return 1;
3987             }
3988             return Tmp;
3989           }
3990         }
3991         break;
3992       }
3993     }
3994   }
3995 
3996   // Allow the target to implement this method for its nodes.
3997   if (Opcode >= ISD::BUILTIN_OP_END ||
3998       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3999       Opcode == ISD::INTRINSIC_W_CHAIN ||
4000       Opcode == ISD::INTRINSIC_VOID) {
4001     unsigned NumBits =
4002         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4003     if (NumBits > 1)
4004       FirstAnswer = std::max(FirstAnswer, NumBits);
4005   }
4006 
4007   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4008   // use this information.
4009   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4010 
4011   APInt Mask;
4012   if (Known.isNonNegative()) {        // sign bit is 0
4013     Mask = Known.Zero;
4014   } else if (Known.isNegative()) {  // sign bit is 1;
4015     Mask = Known.One;
4016   } else {
4017     // Nothing known.
4018     return FirstAnswer;
4019   }
4020 
4021   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4022   // the number of identical bits in the top of the input value.
4023   Mask <<= Mask.getBitWidth()-VTBits;
4024   return std::max(FirstAnswer, Mask.countLeadingOnes());
4025 }
4026 
4027 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4028   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4029       !isa<ConstantSDNode>(Op.getOperand(1)))
4030     return false;
4031 
4032   if (Op.getOpcode() == ISD::OR &&
4033       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4034     return false;
4035 
4036   return true;
4037 }
4038 
4039 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4040   // If we're told that NaNs won't happen, assume they won't.
4041   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4042     return true;
4043 
4044   if (Depth >= MaxRecursionDepth)
4045     return false; // Limit search depth.
4046 
4047   // TODO: Handle vectors.
4048   // If the value is a constant, we can obviously see if it is a NaN or not.
4049   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4050     return !C->getValueAPF().isNaN() ||
4051            (SNaN && !C->getValueAPF().isSignaling());
4052   }
4053 
4054   unsigned Opcode = Op.getOpcode();
4055   switch (Opcode) {
4056   case ISD::FADD:
4057   case ISD::FSUB:
4058   case ISD::FMUL:
4059   case ISD::FDIV:
4060   case ISD::FREM:
4061   case ISD::FSIN:
4062   case ISD::FCOS: {
4063     if (SNaN)
4064       return true;
4065     // TODO: Need isKnownNeverInfinity
4066     return false;
4067   }
4068   case ISD::FCANONICALIZE:
4069   case ISD::FEXP:
4070   case ISD::FEXP2:
4071   case ISD::FTRUNC:
4072   case ISD::FFLOOR:
4073   case ISD::FCEIL:
4074   case ISD::FROUND:
4075   case ISD::FROUNDEVEN:
4076   case ISD::FRINT:
4077   case ISD::FNEARBYINT: {
4078     if (SNaN)
4079       return true;
4080     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4081   }
4082   case ISD::FABS:
4083   case ISD::FNEG:
4084   case ISD::FCOPYSIGN: {
4085     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4086   }
4087   case ISD::SELECT:
4088     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4089            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4090   case ISD::FP_EXTEND:
4091   case ISD::FP_ROUND: {
4092     if (SNaN)
4093       return true;
4094     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4095   }
4096   case ISD::SINT_TO_FP:
4097   case ISD::UINT_TO_FP:
4098     return true;
4099   case ISD::FMA:
4100   case ISD::FMAD: {
4101     if (SNaN)
4102       return true;
4103     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4104            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4105            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4106   }
4107   case ISD::FSQRT: // Need is known positive
4108   case ISD::FLOG:
4109   case ISD::FLOG2:
4110   case ISD::FLOG10:
4111   case ISD::FPOWI:
4112   case ISD::FPOW: {
4113     if (SNaN)
4114       return true;
4115     // TODO: Refine on operand
4116     return false;
4117   }
4118   case ISD::FMINNUM:
4119   case ISD::FMAXNUM: {
4120     // Only one needs to be known not-nan, since it will be returned if the
4121     // other ends up being one.
4122     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4123            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4124   }
4125   case ISD::FMINNUM_IEEE:
4126   case ISD::FMAXNUM_IEEE: {
4127     if (SNaN)
4128       return true;
4129     // This can return a NaN if either operand is an sNaN, or if both operands
4130     // are NaN.
4131     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4132             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4133            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4134             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4135   }
4136   case ISD::FMINIMUM:
4137   case ISD::FMAXIMUM: {
4138     // TODO: Does this quiet or return the origina NaN as-is?
4139     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4140            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4141   }
4142   case ISD::EXTRACT_VECTOR_ELT: {
4143     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4144   }
4145   default:
4146     if (Opcode >= ISD::BUILTIN_OP_END ||
4147         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4148         Opcode == ISD::INTRINSIC_W_CHAIN ||
4149         Opcode == ISD::INTRINSIC_VOID) {
4150       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4151     }
4152 
4153     return false;
4154   }
4155 }
4156 
4157 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4158   assert(Op.getValueType().isFloatingPoint() &&
4159          "Floating point type expected");
4160 
4161   // If the value is a constant, we can obviously see if it is a zero or not.
4162   // TODO: Add BuildVector support.
4163   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4164     return !C->isZero();
4165   return false;
4166 }
4167 
4168 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4169   assert(!Op.getValueType().isFloatingPoint() &&
4170          "Floating point types unsupported - use isKnownNeverZeroFloat");
4171 
4172   // If the value is a constant, we can obviously see if it is a zero or not.
4173   if (ISD::matchUnaryPredicate(
4174           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4175     return true;
4176 
4177   // TODO: Recognize more cases here.
4178   switch (Op.getOpcode()) {
4179   default: break;
4180   case ISD::OR:
4181     if (isKnownNeverZero(Op.getOperand(1)) ||
4182         isKnownNeverZero(Op.getOperand(0)))
4183       return true;
4184     break;
4185   }
4186 
4187   return false;
4188 }
4189 
4190 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4191   // Check the obvious case.
4192   if (A == B) return true;
4193 
4194   // For for negative and positive zero.
4195   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4196     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4197       if (CA->isZero() && CB->isZero()) return true;
4198 
4199   // Otherwise they may not be equal.
4200   return false;
4201 }
4202 
4203 // FIXME: unify with llvm::haveNoCommonBitsSet.
4204 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4205 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4206   assert(A.getValueType() == B.getValueType() &&
4207          "Values must have the same type");
4208   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4209 }
4210 
4211 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4212                                 ArrayRef<SDValue> Ops,
4213                                 SelectionDAG &DAG) {
4214   int NumOps = Ops.size();
4215   assert(NumOps != 0 && "Can't build an empty vector!");
4216   assert(!VT.isScalableVector() &&
4217          "BUILD_VECTOR cannot be used with scalable types");
4218   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4219          "Incorrect element count in BUILD_VECTOR!");
4220 
4221   // BUILD_VECTOR of UNDEFs is UNDEF.
4222   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4223     return DAG.getUNDEF(VT);
4224 
4225   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4226   SDValue IdentitySrc;
4227   bool IsIdentity = true;
4228   for (int i = 0; i != NumOps; ++i) {
4229     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4230         Ops[i].getOperand(0).getValueType() != VT ||
4231         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4232         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4233         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4234       IsIdentity = false;
4235       break;
4236     }
4237     IdentitySrc = Ops[i].getOperand(0);
4238   }
4239   if (IsIdentity)
4240     return IdentitySrc;
4241 
4242   return SDValue();
4243 }
4244 
4245 /// Try to simplify vector concatenation to an input value, undef, or build
4246 /// vector.
4247 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4248                                   ArrayRef<SDValue> Ops,
4249                                   SelectionDAG &DAG) {
4250   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4251   assert(llvm::all_of(Ops,
4252                       [Ops](SDValue Op) {
4253                         return Ops[0].getValueType() == Op.getValueType();
4254                       }) &&
4255          "Concatenation of vectors with inconsistent value types!");
4256   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4257              VT.getVectorElementCount() &&
4258          "Incorrect element count in vector concatenation!");
4259 
4260   if (Ops.size() == 1)
4261     return Ops[0];
4262 
4263   // Concat of UNDEFs is UNDEF.
4264   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4265     return DAG.getUNDEF(VT);
4266 
4267   // Scan the operands and look for extract operations from a single source
4268   // that correspond to insertion at the same location via this concatenation:
4269   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4270   SDValue IdentitySrc;
4271   bool IsIdentity = true;
4272   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4273     SDValue Op = Ops[i];
4274     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4275     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4276         Op.getOperand(0).getValueType() != VT ||
4277         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4278         Op.getConstantOperandVal(1) != IdentityIndex) {
4279       IsIdentity = false;
4280       break;
4281     }
4282     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4283            "Unexpected identity source vector for concat of extracts");
4284     IdentitySrc = Op.getOperand(0);
4285   }
4286   if (IsIdentity) {
4287     assert(IdentitySrc && "Failed to set source vector of extracts");
4288     return IdentitySrc;
4289   }
4290 
4291   // The code below this point is only designed to work for fixed width
4292   // vectors, so we bail out for now.
4293   if (VT.isScalableVector())
4294     return SDValue();
4295 
4296   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4297   // simplified to one big BUILD_VECTOR.
4298   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4299   EVT SVT = VT.getScalarType();
4300   SmallVector<SDValue, 16> Elts;
4301   for (SDValue Op : Ops) {
4302     EVT OpVT = Op.getValueType();
4303     if (Op.isUndef())
4304       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4305     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4306       Elts.append(Op->op_begin(), Op->op_end());
4307     else
4308       return SDValue();
4309   }
4310 
4311   // BUILD_VECTOR requires all inputs to be of the same type, find the
4312   // maximum type and extend them all.
4313   for (SDValue Op : Elts)
4314     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4315 
4316   if (SVT.bitsGT(VT.getScalarType())) {
4317     for (SDValue &Op : Elts) {
4318       if (Op.isUndef())
4319         Op = DAG.getUNDEF(SVT);
4320       else
4321         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4322                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4323                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4324     }
4325   }
4326 
4327   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4328   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4329   return V;
4330 }
4331 
4332 /// Gets or creates the specified node.
4333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4334   FoldingSetNodeID ID;
4335   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4336   void *IP = nullptr;
4337   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4338     return SDValue(E, 0);
4339 
4340   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4341                               getVTList(VT));
4342   CSEMap.InsertNode(N, IP);
4343 
4344   InsertNode(N);
4345   SDValue V = SDValue(N, 0);
4346   NewSDValueDbgMsg(V, "Creating new node: ", this);
4347   return V;
4348 }
4349 
4350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4351                               SDValue Operand) {
4352   SDNodeFlags Flags;
4353   if (Inserter)
4354     Flags = Inserter->getFlags();
4355   return getNode(Opcode, DL, VT, Operand, Flags);
4356 }
4357 
4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4359                               SDValue Operand, const SDNodeFlags Flags) {
4360   // Constant fold unary operations with an integer constant operand. Even
4361   // opaque constant will be folded, because the folding of unary operations
4362   // doesn't create new constants with different values. Nevertheless, the
4363   // opaque flag is preserved during folding to prevent future folding with
4364   // other constants.
4365   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4366     const APInt &Val = C->getAPIntValue();
4367     switch (Opcode) {
4368     default: break;
4369     case ISD::SIGN_EXTEND:
4370       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4371                          C->isTargetOpcode(), C->isOpaque());
4372     case ISD::TRUNCATE:
4373       if (C->isOpaque())
4374         break;
4375       LLVM_FALLTHROUGH;
4376     case ISD::ANY_EXTEND:
4377     case ISD::ZERO_EXTEND:
4378       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4379                          C->isTargetOpcode(), C->isOpaque());
4380     case ISD::UINT_TO_FP:
4381     case ISD::SINT_TO_FP: {
4382       APFloat apf(EVTToAPFloatSemantics(VT),
4383                   APInt::getNullValue(VT.getSizeInBits()));
4384       (void)apf.convertFromAPInt(Val,
4385                                  Opcode==ISD::SINT_TO_FP,
4386                                  APFloat::rmNearestTiesToEven);
4387       return getConstantFP(apf, DL, VT);
4388     }
4389     case ISD::BITCAST:
4390       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4391         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4392       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4393         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4394       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4395         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4396       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4397         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4398       break;
4399     case ISD::ABS:
4400       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4401                          C->isOpaque());
4402     case ISD::BITREVERSE:
4403       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4404                          C->isOpaque());
4405     case ISD::BSWAP:
4406       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4407                          C->isOpaque());
4408     case ISD::CTPOP:
4409       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4410                          C->isOpaque());
4411     case ISD::CTLZ:
4412     case ISD::CTLZ_ZERO_UNDEF:
4413       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4414                          C->isOpaque());
4415     case ISD::CTTZ:
4416     case ISD::CTTZ_ZERO_UNDEF:
4417       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4418                          C->isOpaque());
4419     case ISD::FP16_TO_FP: {
4420       bool Ignored;
4421       APFloat FPV(APFloat::IEEEhalf(),
4422                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4423 
4424       // This can return overflow, underflow, or inexact; we don't care.
4425       // FIXME need to be more flexible about rounding mode.
4426       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4427                         APFloat::rmNearestTiesToEven, &Ignored);
4428       return getConstantFP(FPV, DL, VT);
4429     }
4430     }
4431   }
4432 
4433   // Constant fold unary operations with a floating point constant operand.
4434   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4435     APFloat V = C->getValueAPF();    // make copy
4436     switch (Opcode) {
4437     case ISD::FNEG:
4438       V.changeSign();
4439       return getConstantFP(V, DL, VT);
4440     case ISD::FABS:
4441       V.clearSign();
4442       return getConstantFP(V, DL, VT);
4443     case ISD::FCEIL: {
4444       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4445       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4446         return getConstantFP(V, DL, VT);
4447       break;
4448     }
4449     case ISD::FTRUNC: {
4450       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4451       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4452         return getConstantFP(V, DL, VT);
4453       break;
4454     }
4455     case ISD::FFLOOR: {
4456       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4457       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4458         return getConstantFP(V, DL, VT);
4459       break;
4460     }
4461     case ISD::FP_EXTEND: {
4462       bool ignored;
4463       // This can return overflow, underflow, or inexact; we don't care.
4464       // FIXME need to be more flexible about rounding mode.
4465       (void)V.convert(EVTToAPFloatSemantics(VT),
4466                       APFloat::rmNearestTiesToEven, &ignored);
4467       return getConstantFP(V, DL, VT);
4468     }
4469     case ISD::FP_TO_SINT:
4470     case ISD::FP_TO_UINT: {
4471       bool ignored;
4472       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4473       // FIXME need to be more flexible about rounding mode.
4474       APFloat::opStatus s =
4475           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4476       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4477         break;
4478       return getConstant(IntVal, DL, VT);
4479     }
4480     case ISD::BITCAST:
4481       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4482         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4483       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4484         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4485       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4486         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4487       break;
4488     case ISD::FP_TO_FP16: {
4489       bool Ignored;
4490       // This can return overflow, underflow, or inexact; we don't care.
4491       // FIXME need to be more flexible about rounding mode.
4492       (void)V.convert(APFloat::IEEEhalf(),
4493                       APFloat::rmNearestTiesToEven, &Ignored);
4494       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4495     }
4496     }
4497   }
4498 
4499   // Constant fold unary operations with a vector integer or float operand.
4500   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4501     if (BV->isConstant()) {
4502       switch (Opcode) {
4503       default:
4504         // FIXME: Entirely reasonable to perform folding of other unary
4505         // operations here as the need arises.
4506         break;
4507       case ISD::FNEG:
4508       case ISD::FABS:
4509       case ISD::FCEIL:
4510       case ISD::FTRUNC:
4511       case ISD::FFLOOR:
4512       case ISD::FP_EXTEND:
4513       case ISD::FP_TO_SINT:
4514       case ISD::FP_TO_UINT:
4515       case ISD::TRUNCATE:
4516       case ISD::ANY_EXTEND:
4517       case ISD::ZERO_EXTEND:
4518       case ISD::SIGN_EXTEND:
4519       case ISD::UINT_TO_FP:
4520       case ISD::SINT_TO_FP:
4521       case ISD::ABS:
4522       case ISD::BITREVERSE:
4523       case ISD::BSWAP:
4524       case ISD::CTLZ:
4525       case ISD::CTLZ_ZERO_UNDEF:
4526       case ISD::CTTZ:
4527       case ISD::CTTZ_ZERO_UNDEF:
4528       case ISD::CTPOP: {
4529         SDValue Ops = { Operand };
4530         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4531           return Fold;
4532       }
4533       }
4534     }
4535   }
4536 
4537   unsigned OpOpcode = Operand.getNode()->getOpcode();
4538   switch (Opcode) {
4539   case ISD::FREEZE:
4540     assert(VT == Operand.getValueType() && "Unexpected VT!");
4541     break;
4542   case ISD::TokenFactor:
4543   case ISD::MERGE_VALUES:
4544   case ISD::CONCAT_VECTORS:
4545     return Operand;         // Factor, merge or concat of one node?  No need.
4546   case ISD::BUILD_VECTOR: {
4547     // Attempt to simplify BUILD_VECTOR.
4548     SDValue Ops[] = {Operand};
4549     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4550       return V;
4551     break;
4552   }
4553   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4554   case ISD::FP_EXTEND:
4555     assert(VT.isFloatingPoint() &&
4556            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4557     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4558     assert((!VT.isVector() ||
4559             VT.getVectorElementCount() ==
4560             Operand.getValueType().getVectorElementCount()) &&
4561            "Vector element count mismatch!");
4562     assert(Operand.getValueType().bitsLT(VT) &&
4563            "Invalid fpext node, dst < src!");
4564     if (Operand.isUndef())
4565       return getUNDEF(VT);
4566     break;
4567   case ISD::FP_TO_SINT:
4568   case ISD::FP_TO_UINT:
4569     if (Operand.isUndef())
4570       return getUNDEF(VT);
4571     break;
4572   case ISD::SINT_TO_FP:
4573   case ISD::UINT_TO_FP:
4574     // [us]itofp(undef) = 0, because the result value is bounded.
4575     if (Operand.isUndef())
4576       return getConstantFP(0.0, DL, VT);
4577     break;
4578   case ISD::SIGN_EXTEND:
4579     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4580            "Invalid SIGN_EXTEND!");
4581     assert(VT.isVector() == Operand.getValueType().isVector() &&
4582            "SIGN_EXTEND result type type should be vector iff the operand "
4583            "type is vector!");
4584     if (Operand.getValueType() == VT) return Operand;   // noop extension
4585     assert((!VT.isVector() ||
4586             VT.getVectorElementCount() ==
4587                 Operand.getValueType().getVectorElementCount()) &&
4588            "Vector element count mismatch!");
4589     assert(Operand.getValueType().bitsLT(VT) &&
4590            "Invalid sext node, dst < src!");
4591     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4592       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4593     else if (OpOpcode == ISD::UNDEF)
4594       // sext(undef) = 0, because the top bits will all be the same.
4595       return getConstant(0, DL, VT);
4596     break;
4597   case ISD::ZERO_EXTEND:
4598     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4599            "Invalid ZERO_EXTEND!");
4600     assert(VT.isVector() == Operand.getValueType().isVector() &&
4601            "ZERO_EXTEND result type type should be vector iff the operand "
4602            "type is vector!");
4603     if (Operand.getValueType() == VT) return Operand;   // noop extension
4604     assert((!VT.isVector() ||
4605             VT.getVectorElementCount() ==
4606                 Operand.getValueType().getVectorElementCount()) &&
4607            "Vector element count mismatch!");
4608     assert(Operand.getValueType().bitsLT(VT) &&
4609            "Invalid zext node, dst < src!");
4610     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4611       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4612     else if (OpOpcode == ISD::UNDEF)
4613       // zext(undef) = 0, because the top bits will be zero.
4614       return getConstant(0, DL, VT);
4615     break;
4616   case ISD::ANY_EXTEND:
4617     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4618            "Invalid ANY_EXTEND!");
4619     assert(VT.isVector() == Operand.getValueType().isVector() &&
4620            "ANY_EXTEND result type type should be vector iff the operand "
4621            "type is vector!");
4622     if (Operand.getValueType() == VT) return Operand;   // noop extension
4623     assert((!VT.isVector() ||
4624             VT.getVectorElementCount() ==
4625                 Operand.getValueType().getVectorElementCount()) &&
4626            "Vector element count mismatch!");
4627     assert(Operand.getValueType().bitsLT(VT) &&
4628            "Invalid anyext node, dst < src!");
4629 
4630     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4631         OpOpcode == ISD::ANY_EXTEND)
4632       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4633       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4634     else if (OpOpcode == ISD::UNDEF)
4635       return getUNDEF(VT);
4636 
4637     // (ext (trunc x)) -> x
4638     if (OpOpcode == ISD::TRUNCATE) {
4639       SDValue OpOp = Operand.getOperand(0);
4640       if (OpOp.getValueType() == VT) {
4641         transferDbgValues(Operand, OpOp);
4642         return OpOp;
4643       }
4644     }
4645     break;
4646   case ISD::TRUNCATE:
4647     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4648            "Invalid TRUNCATE!");
4649     assert(VT.isVector() == Operand.getValueType().isVector() &&
4650            "TRUNCATE result type type should be vector iff the operand "
4651            "type is vector!");
4652     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4653     assert((!VT.isVector() ||
4654             VT.getVectorElementCount() ==
4655                 Operand.getValueType().getVectorElementCount()) &&
4656            "Vector element count mismatch!");
4657     assert(Operand.getValueType().bitsGT(VT) &&
4658            "Invalid truncate node, src < dst!");
4659     if (OpOpcode == ISD::TRUNCATE)
4660       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4661     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4662         OpOpcode == ISD::ANY_EXTEND) {
4663       // If the source is smaller than the dest, we still need an extend.
4664       if (Operand.getOperand(0).getValueType().getScalarType()
4665             .bitsLT(VT.getScalarType()))
4666         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4667       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4668         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4669       return Operand.getOperand(0);
4670     }
4671     if (OpOpcode == ISD::UNDEF)
4672       return getUNDEF(VT);
4673     break;
4674   case ISD::ANY_EXTEND_VECTOR_INREG:
4675   case ISD::ZERO_EXTEND_VECTOR_INREG:
4676   case ISD::SIGN_EXTEND_VECTOR_INREG:
4677     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4678     assert(Operand.getValueType().bitsLE(VT) &&
4679            "The input must be the same size or smaller than the result.");
4680     assert(VT.getVectorNumElements() <
4681              Operand.getValueType().getVectorNumElements() &&
4682            "The destination vector type must have fewer lanes than the input.");
4683     break;
4684   case ISD::ABS:
4685     assert(VT.isInteger() && VT == Operand.getValueType() &&
4686            "Invalid ABS!");
4687     if (OpOpcode == ISD::UNDEF)
4688       return getUNDEF(VT);
4689     break;
4690   case ISD::BSWAP:
4691     assert(VT.isInteger() && VT == Operand.getValueType() &&
4692            "Invalid BSWAP!");
4693     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4694            "BSWAP types must be a multiple of 16 bits!");
4695     if (OpOpcode == ISD::UNDEF)
4696       return getUNDEF(VT);
4697     break;
4698   case ISD::BITREVERSE:
4699     assert(VT.isInteger() && VT == Operand.getValueType() &&
4700            "Invalid BITREVERSE!");
4701     if (OpOpcode == ISD::UNDEF)
4702       return getUNDEF(VT);
4703     break;
4704   case ISD::BITCAST:
4705     // Basic sanity checking.
4706     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4707            "Cannot BITCAST between types of different sizes!");
4708     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4709     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4710       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4711     if (OpOpcode == ISD::UNDEF)
4712       return getUNDEF(VT);
4713     break;
4714   case ISD::SCALAR_TO_VECTOR:
4715     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4716            (VT.getVectorElementType() == Operand.getValueType() ||
4717             (VT.getVectorElementType().isInteger() &&
4718              Operand.getValueType().isInteger() &&
4719              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4720            "Illegal SCALAR_TO_VECTOR node!");
4721     if (OpOpcode == ISD::UNDEF)
4722       return getUNDEF(VT);
4723     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4724     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4725         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4726         Operand.getConstantOperandVal(1) == 0 &&
4727         Operand.getOperand(0).getValueType() == VT)
4728       return Operand.getOperand(0);
4729     break;
4730   case ISD::FNEG:
4731     // Negation of an unknown bag of bits is still completely undefined.
4732     if (OpOpcode == ISD::UNDEF)
4733       return getUNDEF(VT);
4734 
4735     if (OpOpcode == ISD::FNEG)  // --X -> X
4736       return Operand.getOperand(0);
4737     break;
4738   case ISD::FABS:
4739     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4740       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4741     break;
4742   case ISD::VSCALE:
4743     assert(VT == Operand.getValueType() && "Unexpected VT!");
4744     break;
4745   case ISD::VECREDUCE_SMIN:
4746   case ISD::VECREDUCE_UMAX:
4747     if (Operand.getValueType().getScalarType() == MVT::i1)
4748       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4749     break;
4750   case ISD::VECREDUCE_SMAX:
4751   case ISD::VECREDUCE_UMIN:
4752     if (Operand.getValueType().getScalarType() == MVT::i1)
4753       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4754     break;
4755   }
4756 
4757   SDNode *N;
4758   SDVTList VTs = getVTList(VT);
4759   SDValue Ops[] = {Operand};
4760   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4761     FoldingSetNodeID ID;
4762     AddNodeIDNode(ID, Opcode, VTs, Ops);
4763     void *IP = nullptr;
4764     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4765       E->intersectFlagsWith(Flags);
4766       return SDValue(E, 0);
4767     }
4768 
4769     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4770     N->setFlags(Flags);
4771     createOperands(N, Ops);
4772     CSEMap.InsertNode(N, IP);
4773   } else {
4774     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4775     createOperands(N, Ops);
4776   }
4777 
4778   InsertNode(N);
4779   SDValue V = SDValue(N, 0);
4780   NewSDValueDbgMsg(V, "Creating new node: ", this);
4781   return V;
4782 }
4783 
4784 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4785                                        const APInt &C2) {
4786   switch (Opcode) {
4787   case ISD::ADD:  return C1 + C2;
4788   case ISD::SUB:  return C1 - C2;
4789   case ISD::MUL:  return C1 * C2;
4790   case ISD::AND:  return C1 & C2;
4791   case ISD::OR:   return C1 | C2;
4792   case ISD::XOR:  return C1 ^ C2;
4793   case ISD::SHL:  return C1 << C2;
4794   case ISD::SRL:  return C1.lshr(C2);
4795   case ISD::SRA:  return C1.ashr(C2);
4796   case ISD::ROTL: return C1.rotl(C2);
4797   case ISD::ROTR: return C1.rotr(C2);
4798   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4799   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4800   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4801   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4802   case ISD::SADDSAT: return C1.sadd_sat(C2);
4803   case ISD::UADDSAT: return C1.uadd_sat(C2);
4804   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4805   case ISD::USUBSAT: return C1.usub_sat(C2);
4806   case ISD::UDIV:
4807     if (!C2.getBoolValue())
4808       break;
4809     return C1.udiv(C2);
4810   case ISD::UREM:
4811     if (!C2.getBoolValue())
4812       break;
4813     return C1.urem(C2);
4814   case ISD::SDIV:
4815     if (!C2.getBoolValue())
4816       break;
4817     return C1.sdiv(C2);
4818   case ISD::SREM:
4819     if (!C2.getBoolValue())
4820       break;
4821     return C1.srem(C2);
4822   }
4823   return llvm::None;
4824 }
4825 
4826 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4827                                        const GlobalAddressSDNode *GA,
4828                                        const SDNode *N2) {
4829   if (GA->getOpcode() != ISD::GlobalAddress)
4830     return SDValue();
4831   if (!TLI->isOffsetFoldingLegal(GA))
4832     return SDValue();
4833   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4834   if (!C2)
4835     return SDValue();
4836   int64_t Offset = C2->getSExtValue();
4837   switch (Opcode) {
4838   case ISD::ADD: break;
4839   case ISD::SUB: Offset = -uint64_t(Offset); break;
4840   default: return SDValue();
4841   }
4842   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4843                           GA->getOffset() + uint64_t(Offset));
4844 }
4845 
4846 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4847   switch (Opcode) {
4848   case ISD::SDIV:
4849   case ISD::UDIV:
4850   case ISD::SREM:
4851   case ISD::UREM: {
4852     // If a divisor is zero/undef or any element of a divisor vector is
4853     // zero/undef, the whole op is undef.
4854     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4855     SDValue Divisor = Ops[1];
4856     if (Divisor.isUndef() || isNullConstant(Divisor))
4857       return true;
4858 
4859     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4860            llvm::any_of(Divisor->op_values(),
4861                         [](SDValue V) { return V.isUndef() ||
4862                                         isNullConstant(V); });
4863     // TODO: Handle signed overflow.
4864   }
4865   // TODO: Handle oversized shifts.
4866   default:
4867     return false;
4868   }
4869 }
4870 
4871 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4872                                              EVT VT, ArrayRef<SDValue> Ops) {
4873   // If the opcode is a target-specific ISD node, there's nothing we can
4874   // do here and the operand rules may not line up with the below, so
4875   // bail early.
4876   if (Opcode >= ISD::BUILTIN_OP_END)
4877     return SDValue();
4878 
4879   // For now, the array Ops should only contain two values.
4880   // This enforcement will be removed once this function is merged with
4881   // FoldConstantVectorArithmetic
4882   if (Ops.size() != 2)
4883     return SDValue();
4884 
4885   if (isUndef(Opcode, Ops))
4886     return getUNDEF(VT);
4887 
4888   SDNode *N1 = Ops[0].getNode();
4889   SDNode *N2 = Ops[1].getNode();
4890 
4891   // Handle the case of two scalars.
4892   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4893     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4894       if (C1->isOpaque() || C2->isOpaque())
4895         return SDValue();
4896 
4897       Optional<APInt> FoldAttempt =
4898           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4899       if (!FoldAttempt)
4900         return SDValue();
4901 
4902       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4903       assert((!Folded || !VT.isVector()) &&
4904              "Can't fold vectors ops with scalar operands");
4905       return Folded;
4906     }
4907   }
4908 
4909   // fold (add Sym, c) -> Sym+c
4910   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4911     return FoldSymbolOffset(Opcode, VT, GA, N2);
4912   if (TLI->isCommutativeBinOp(Opcode))
4913     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4914       return FoldSymbolOffset(Opcode, VT, GA, N1);
4915 
4916   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4917   // vector width, however we should be able to do constant folds involving
4918   // splat vector nodes too.
4919   if (VT.isScalableVector())
4920     return SDValue();
4921 
4922   // For fixed width vectors, extract each constant element and fold them
4923   // individually. Either input may be an undef value.
4924   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4925   if (!BV1 && !N1->isUndef())
4926     return SDValue();
4927   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4928   if (!BV2 && !N2->isUndef())
4929     return SDValue();
4930   // If both operands are undef, that's handled the same way as scalars.
4931   if (!BV1 && !BV2)
4932     return SDValue();
4933 
4934   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4935          "Vector binop with different number of elements in operands?");
4936 
4937   EVT SVT = VT.getScalarType();
4938   EVT LegalSVT = SVT;
4939   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4940     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4941     if (LegalSVT.bitsLT(SVT))
4942       return SDValue();
4943   }
4944   SmallVector<SDValue, 4> Outputs;
4945   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4946   for (unsigned I = 0; I != NumOps; ++I) {
4947     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4948     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4949     if (SVT.isInteger()) {
4950       if (V1->getValueType(0).bitsGT(SVT))
4951         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4952       if (V2->getValueType(0).bitsGT(SVT))
4953         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4954     }
4955 
4956     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4957       return SDValue();
4958 
4959     // Fold one vector element.
4960     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4961     if (LegalSVT != SVT)
4962       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4963 
4964     // Scalar folding only succeeded if the result is a constant or UNDEF.
4965     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4966         ScalarResult.getOpcode() != ISD::ConstantFP)
4967       return SDValue();
4968     Outputs.push_back(ScalarResult);
4969   }
4970 
4971   assert(VT.getVectorNumElements() == Outputs.size() &&
4972          "Vector size mismatch!");
4973 
4974   // We may have a vector type but a scalar result. Create a splat.
4975   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4976 
4977   // Build a big vector out of the scalar elements we generated.
4978   return getBuildVector(VT, SDLoc(), Outputs);
4979 }
4980 
4981 // TODO: Merge with FoldConstantArithmetic
4982 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4983                                                    const SDLoc &DL, EVT VT,
4984                                                    ArrayRef<SDValue> Ops,
4985                                                    const SDNodeFlags Flags) {
4986   // If the opcode is a target-specific ISD node, there's nothing we can
4987   // do here and the operand rules may not line up with the below, so
4988   // bail early.
4989   if (Opcode >= ISD::BUILTIN_OP_END)
4990     return SDValue();
4991 
4992   if (isUndef(Opcode, Ops))
4993     return getUNDEF(VT);
4994 
4995   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4996   if (!VT.isVector())
4997     return SDValue();
4998 
4999   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5000   // vector width, however we should be able to do constant folds involving
5001   // splat vector nodes too.
5002   if (VT.isScalableVector())
5003     return SDValue();
5004 
5005   // From this point onwards all vectors are assumed to be fixed width.
5006   unsigned NumElts = VT.getVectorNumElements();
5007 
5008   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5009     return !Op.getValueType().isVector() ||
5010            Op.getValueType().getVectorNumElements() == NumElts;
5011   };
5012 
5013   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5014     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5015     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5016            (BV && BV->isConstant());
5017   };
5018 
5019   // All operands must be vector types with the same number of elements as
5020   // the result type and must be either UNDEF or a build vector of constant
5021   // or UNDEF scalars.
5022   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5023       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5024     return SDValue();
5025 
5026   // If we are comparing vectors, then the result needs to be a i1 boolean
5027   // that is then sign-extended back to the legal result type.
5028   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5029 
5030   // Find legal integer scalar type for constant promotion and
5031   // ensure that its scalar size is at least as large as source.
5032   EVT LegalSVT = VT.getScalarType();
5033   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5034     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5035     if (LegalSVT.bitsLT(VT.getScalarType()))
5036       return SDValue();
5037   }
5038 
5039   // Constant fold each scalar lane separately.
5040   SmallVector<SDValue, 4> ScalarResults;
5041   for (unsigned i = 0; i != NumElts; i++) {
5042     SmallVector<SDValue, 4> ScalarOps;
5043     for (SDValue Op : Ops) {
5044       EVT InSVT = Op.getValueType().getScalarType();
5045       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5046       if (!InBV) {
5047         // We've checked that this is UNDEF or a constant of some kind.
5048         if (Op.isUndef())
5049           ScalarOps.push_back(getUNDEF(InSVT));
5050         else
5051           ScalarOps.push_back(Op);
5052         continue;
5053       }
5054 
5055       SDValue ScalarOp = InBV->getOperand(i);
5056       EVT ScalarVT = ScalarOp.getValueType();
5057 
5058       // Build vector (integer) scalar operands may need implicit
5059       // truncation - do this before constant folding.
5060       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5061         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5062 
5063       ScalarOps.push_back(ScalarOp);
5064     }
5065 
5066     // Constant fold the scalar operands.
5067     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5068 
5069     // Legalize the (integer) scalar constant if necessary.
5070     if (LegalSVT != SVT)
5071       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5072 
5073     // Scalar folding only succeeded if the result is a constant or UNDEF.
5074     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5075         ScalarResult.getOpcode() != ISD::ConstantFP)
5076       return SDValue();
5077     ScalarResults.push_back(ScalarResult);
5078   }
5079 
5080   SDValue V = getBuildVector(VT, DL, ScalarResults);
5081   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5082   return V;
5083 }
5084 
5085 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5086                                          EVT VT, SDValue N1, SDValue N2) {
5087   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5088   //       should. That will require dealing with a potentially non-default
5089   //       rounding mode, checking the "opStatus" return value from the APFloat
5090   //       math calculations, and possibly other variations.
5091   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5092   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5093   if (N1CFP && N2CFP) {
5094     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5095     switch (Opcode) {
5096     case ISD::FADD:
5097       C1.add(C2, APFloat::rmNearestTiesToEven);
5098       return getConstantFP(C1, DL, VT);
5099     case ISD::FSUB:
5100       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5101       return getConstantFP(C1, DL, VT);
5102     case ISD::FMUL:
5103       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5104       return getConstantFP(C1, DL, VT);
5105     case ISD::FDIV:
5106       C1.divide(C2, APFloat::rmNearestTiesToEven);
5107       return getConstantFP(C1, DL, VT);
5108     case ISD::FREM:
5109       C1.mod(C2);
5110       return getConstantFP(C1, DL, VT);
5111     case ISD::FCOPYSIGN:
5112       C1.copySign(C2);
5113       return getConstantFP(C1, DL, VT);
5114     default: break;
5115     }
5116   }
5117   if (N1CFP && Opcode == ISD::FP_ROUND) {
5118     APFloat C1 = N1CFP->getValueAPF();    // make copy
5119     bool Unused;
5120     // This can return overflow, underflow, or inexact; we don't care.
5121     // FIXME need to be more flexible about rounding mode.
5122     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5123                       &Unused);
5124     return getConstantFP(C1, DL, VT);
5125   }
5126 
5127   switch (Opcode) {
5128   case ISD::FSUB:
5129     // -0.0 - undef --> undef (consistent with "fneg undef")
5130     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5131       return getUNDEF(VT);
5132     LLVM_FALLTHROUGH;
5133 
5134   case ISD::FADD:
5135   case ISD::FMUL:
5136   case ISD::FDIV:
5137   case ISD::FREM:
5138     // If both operands are undef, the result is undef. If 1 operand is undef,
5139     // the result is NaN. This should match the behavior of the IR optimizer.
5140     if (N1.isUndef() && N2.isUndef())
5141       return getUNDEF(VT);
5142     if (N1.isUndef() || N2.isUndef())
5143       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5144   }
5145   return SDValue();
5146 }
5147 
5148 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5149   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5150 
5151   // There's no need to assert on a byte-aligned pointer. All pointers are at
5152   // least byte aligned.
5153   if (A == Align(1))
5154     return Val;
5155 
5156   FoldingSetNodeID ID;
5157   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5158   ID.AddInteger(A.value());
5159 
5160   void *IP = nullptr;
5161   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5162     return SDValue(E, 0);
5163 
5164   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5165                                          Val.getValueType(), A);
5166   createOperands(N, {Val});
5167 
5168   CSEMap.InsertNode(N, IP);
5169   InsertNode(N);
5170 
5171   SDValue V(N, 0);
5172   NewSDValueDbgMsg(V, "Creating new node: ", this);
5173   return V;
5174 }
5175 
5176 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5177                               SDValue N1, SDValue N2) {
5178   SDNodeFlags Flags;
5179   if (Inserter)
5180     Flags = Inserter->getFlags();
5181   return getNode(Opcode, DL, VT, N1, N2, Flags);
5182 }
5183 
5184 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5185                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5186   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5187   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5188   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5189   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5190 
5191   // Canonicalize constant to RHS if commutative.
5192   if (TLI->isCommutativeBinOp(Opcode)) {
5193     if (N1C && !N2C) {
5194       std::swap(N1C, N2C);
5195       std::swap(N1, N2);
5196     } else if (N1CFP && !N2CFP) {
5197       std::swap(N1CFP, N2CFP);
5198       std::swap(N1, N2);
5199     }
5200   }
5201 
5202   switch (Opcode) {
5203   default: break;
5204   case ISD::TokenFactor:
5205     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5206            N2.getValueType() == MVT::Other && "Invalid token factor!");
5207     // Fold trivial token factors.
5208     if (N1.getOpcode() == ISD::EntryToken) return N2;
5209     if (N2.getOpcode() == ISD::EntryToken) return N1;
5210     if (N1 == N2) return N1;
5211     break;
5212   case ISD::BUILD_VECTOR: {
5213     // Attempt to simplify BUILD_VECTOR.
5214     SDValue Ops[] = {N1, N2};
5215     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5216       return V;
5217     break;
5218   }
5219   case ISD::CONCAT_VECTORS: {
5220     SDValue Ops[] = {N1, N2};
5221     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5222       return V;
5223     break;
5224   }
5225   case ISD::AND:
5226     assert(VT.isInteger() && "This operator does not apply to FP types!");
5227     assert(N1.getValueType() == N2.getValueType() &&
5228            N1.getValueType() == VT && "Binary operator types must match!");
5229     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5230     // worth handling here.
5231     if (N2C && N2C->isNullValue())
5232       return N2;
5233     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5234       return N1;
5235     break;
5236   case ISD::OR:
5237   case ISD::XOR:
5238   case ISD::ADD:
5239   case ISD::SUB:
5240     assert(VT.isInteger() && "This operator does not apply to FP types!");
5241     assert(N1.getValueType() == N2.getValueType() &&
5242            N1.getValueType() == VT && "Binary operator types must match!");
5243     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5244     // it's worth handling here.
5245     if (N2C && N2C->isNullValue())
5246       return N1;
5247     break;
5248   case ISD::MUL:
5249     assert(VT.isInteger() && "This operator does not apply to FP types!");
5250     assert(N1.getValueType() == N2.getValueType() &&
5251            N1.getValueType() == VT && "Binary operator types must match!");
5252     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5253       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5254       APInt N2CImm = N2C->getAPIntValue();
5255       return getVScale(DL, VT, MulImm * N2CImm);
5256     }
5257     break;
5258   case ISD::UDIV:
5259   case ISD::UREM:
5260   case ISD::MULHU:
5261   case ISD::MULHS:
5262   case ISD::SDIV:
5263   case ISD::SREM:
5264   case ISD::SADDSAT:
5265   case ISD::SSUBSAT:
5266   case ISD::UADDSAT:
5267   case ISD::USUBSAT:
5268     assert(VT.isInteger() && "This operator does not apply to FP types!");
5269     assert(N1.getValueType() == N2.getValueType() &&
5270            N1.getValueType() == VT && "Binary operator types must match!");
5271     break;
5272   case ISD::SMIN:
5273   case ISD::UMAX:
5274     assert(VT.isInteger() && "This operator does not apply to FP types!");
5275     assert(N1.getValueType() == N2.getValueType() &&
5276            N1.getValueType() == VT && "Binary operator types must match!");
5277     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5278       return getNode(ISD::OR, DL, VT, N1, N2);
5279     break;
5280   case ISD::SMAX:
5281   case ISD::UMIN:
5282     assert(VT.isInteger() && "This operator does not apply to FP types!");
5283     assert(N1.getValueType() == N2.getValueType() &&
5284            N1.getValueType() == VT && "Binary operator types must match!");
5285     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5286       return getNode(ISD::AND, DL, VT, N1, N2);
5287     break;
5288   case ISD::FADD:
5289   case ISD::FSUB:
5290   case ISD::FMUL:
5291   case ISD::FDIV:
5292   case ISD::FREM:
5293     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5294     assert(N1.getValueType() == N2.getValueType() &&
5295            N1.getValueType() == VT && "Binary operator types must match!");
5296     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5297       return V;
5298     break;
5299   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5300     assert(N1.getValueType() == VT &&
5301            N1.getValueType().isFloatingPoint() &&
5302            N2.getValueType().isFloatingPoint() &&
5303            "Invalid FCOPYSIGN!");
5304     break;
5305   case ISD::SHL:
5306     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5307       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5308       APInt ShiftImm = N2C->getAPIntValue();
5309       return getVScale(DL, VT, MulImm << ShiftImm);
5310     }
5311     LLVM_FALLTHROUGH;
5312   case ISD::SRA:
5313   case ISD::SRL:
5314     if (SDValue V = simplifyShift(N1, N2))
5315       return V;
5316     LLVM_FALLTHROUGH;
5317   case ISD::ROTL:
5318   case ISD::ROTR:
5319     assert(VT == N1.getValueType() &&
5320            "Shift operators return type must be the same as their first arg");
5321     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5322            "Shifts only work on integers");
5323     assert((!VT.isVector() || VT == N2.getValueType()) &&
5324            "Vector shift amounts must be in the same as their first arg");
5325     // Verify that the shift amount VT is big enough to hold valid shift
5326     // amounts.  This catches things like trying to shift an i1024 value by an
5327     // i8, which is easy to fall into in generic code that uses
5328     // TLI.getShiftAmount().
5329     assert(N2.getValueType().getScalarSizeInBits() >=
5330                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5331            "Invalid use of small shift amount with oversized value!");
5332 
5333     // Always fold shifts of i1 values so the code generator doesn't need to
5334     // handle them.  Since we know the size of the shift has to be less than the
5335     // size of the value, the shift/rotate count is guaranteed to be zero.
5336     if (VT == MVT::i1)
5337       return N1;
5338     if (N2C && N2C->isNullValue())
5339       return N1;
5340     break;
5341   case ISD::FP_ROUND:
5342     assert(VT.isFloatingPoint() &&
5343            N1.getValueType().isFloatingPoint() &&
5344            VT.bitsLE(N1.getValueType()) &&
5345            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5346            "Invalid FP_ROUND!");
5347     if (N1.getValueType() == VT) return N1;  // noop conversion.
5348     break;
5349   case ISD::AssertSext:
5350   case ISD::AssertZext: {
5351     EVT EVT = cast<VTSDNode>(N2)->getVT();
5352     assert(VT == N1.getValueType() && "Not an inreg extend!");
5353     assert(VT.isInteger() && EVT.isInteger() &&
5354            "Cannot *_EXTEND_INREG FP types");
5355     assert(!EVT.isVector() &&
5356            "AssertSExt/AssertZExt type should be the vector element type "
5357            "rather than the vector type!");
5358     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5359     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5360     break;
5361   }
5362   case ISD::SIGN_EXTEND_INREG: {
5363     EVT EVT = cast<VTSDNode>(N2)->getVT();
5364     assert(VT == N1.getValueType() && "Not an inreg extend!");
5365     assert(VT.isInteger() && EVT.isInteger() &&
5366            "Cannot *_EXTEND_INREG FP types");
5367     assert(EVT.isVector() == VT.isVector() &&
5368            "SIGN_EXTEND_INREG type should be vector iff the operand "
5369            "type is vector!");
5370     assert((!EVT.isVector() ||
5371             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5372            "Vector element counts must match in SIGN_EXTEND_INREG");
5373     assert(EVT.bitsLE(VT) && "Not extending!");
5374     if (EVT == VT) return N1;  // Not actually extending
5375 
5376     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5377       unsigned FromBits = EVT.getScalarSizeInBits();
5378       Val <<= Val.getBitWidth() - FromBits;
5379       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5380       return getConstant(Val, DL, ConstantVT);
5381     };
5382 
5383     if (N1C) {
5384       const APInt &Val = N1C->getAPIntValue();
5385       return SignExtendInReg(Val, VT);
5386     }
5387     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5388       SmallVector<SDValue, 8> Ops;
5389       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5390       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5391         SDValue Op = N1.getOperand(i);
5392         if (Op.isUndef()) {
5393           Ops.push_back(getUNDEF(OpVT));
5394           continue;
5395         }
5396         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5397         APInt Val = C->getAPIntValue();
5398         Ops.push_back(SignExtendInReg(Val, OpVT));
5399       }
5400       return getBuildVector(VT, DL, Ops);
5401     }
5402     break;
5403   }
5404   case ISD::EXTRACT_VECTOR_ELT:
5405     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5406            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5407              element type of the vector.");
5408 
5409     // Extract from an undefined value or using an undefined index is undefined.
5410     if (N1.isUndef() || N2.isUndef())
5411       return getUNDEF(VT);
5412 
5413     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5414     // vectors. For scalable vectors we will provide appropriate support for
5415     // dealing with arbitrary indices.
5416     if (N2C && N1.getValueType().isFixedLengthVector() &&
5417         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5418       return getUNDEF(VT);
5419 
5420     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5421     // expanding copies of large vectors from registers. This only works for
5422     // fixed length vectors, since we need to know the exact number of
5423     // elements.
5424     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5425         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5426       unsigned Factor =
5427         N1.getOperand(0).getValueType().getVectorNumElements();
5428       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5429                      N1.getOperand(N2C->getZExtValue() / Factor),
5430                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5431     }
5432 
5433     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5434     // lowering is expanding large vector constants.
5435     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5436                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5437       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5438               N1.getValueType().isFixedLengthVector()) &&
5439              "BUILD_VECTOR used for scalable vectors");
5440       unsigned Index =
5441           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5442       SDValue Elt = N1.getOperand(Index);
5443 
5444       if (VT != Elt.getValueType())
5445         // If the vector element type is not legal, the BUILD_VECTOR operands
5446         // are promoted and implicitly truncated, and the result implicitly
5447         // extended. Make that explicit here.
5448         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5449 
5450       return Elt;
5451     }
5452 
5453     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5454     // operations are lowered to scalars.
5455     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5456       // If the indices are the same, return the inserted element else
5457       // if the indices are known different, extract the element from
5458       // the original vector.
5459       SDValue N1Op2 = N1.getOperand(2);
5460       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5461 
5462       if (N1Op2C && N2C) {
5463         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5464           if (VT == N1.getOperand(1).getValueType())
5465             return N1.getOperand(1);
5466           else
5467             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5468         }
5469 
5470         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5471       }
5472     }
5473 
5474     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5475     // when vector types are scalarized and v1iX is legal.
5476     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5477     // Here we are completely ignoring the extract element index (N2),
5478     // which is fine for fixed width vectors, since any index other than 0
5479     // is undefined anyway. However, this cannot be ignored for scalable
5480     // vectors - in theory we could support this, but we don't want to do this
5481     // without a profitability check.
5482     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5483         N1.getValueType().isFixedLengthVector() &&
5484         N1.getValueType().getVectorNumElements() == 1) {
5485       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5486                      N1.getOperand(1));
5487     }
5488     break;
5489   case ISD::EXTRACT_ELEMENT:
5490     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5491     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5492            (N1.getValueType().isInteger() == VT.isInteger()) &&
5493            N1.getValueType() != VT &&
5494            "Wrong types for EXTRACT_ELEMENT!");
5495 
5496     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5497     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5498     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5499     if (N1.getOpcode() == ISD::BUILD_PAIR)
5500       return N1.getOperand(N2C->getZExtValue());
5501 
5502     // EXTRACT_ELEMENT of a constant int is also very common.
5503     if (N1C) {
5504       unsigned ElementSize = VT.getSizeInBits();
5505       unsigned Shift = ElementSize * N2C->getZExtValue();
5506       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5507       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5508     }
5509     break;
5510   case ISD::EXTRACT_SUBVECTOR:
5511     EVT N1VT = N1.getValueType();
5512     assert(VT.isVector() && N1VT.isVector() &&
5513            "Extract subvector VTs must be vectors!");
5514     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5515            "Extract subvector VTs must have the same element type!");
5516     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5517            "Cannot extract a scalable vector from a fixed length vector!");
5518     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5519             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5520            "Extract subvector must be from larger vector to smaller vector!");
5521     assert(N2C && "Extract subvector index must be a constant");
5522     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5523             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5524                 N1VT.getVectorMinNumElements()) &&
5525            "Extract subvector overflow!");
5526     assert(N2C->getAPIntValue().getBitWidth() ==
5527                TLI->getVectorIdxTy(getDataLayout())
5528                    .getSizeInBits()
5529                    .getFixedSize() &&
5530            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5531 
5532     // Trivial extraction.
5533     if (VT == N1VT)
5534       return N1;
5535 
5536     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5537     if (N1.isUndef())
5538       return getUNDEF(VT);
5539 
5540     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5541     // the concat have the same type as the extract.
5542     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5543         VT == N1.getOperand(0).getValueType()) {
5544       unsigned Factor = VT.getVectorMinNumElements();
5545       return N1.getOperand(N2C->getZExtValue() / Factor);
5546     }
5547 
5548     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5549     // during shuffle legalization.
5550     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5551         VT == N1.getOperand(1).getValueType())
5552       return N1.getOperand(1);
5553     break;
5554   }
5555 
5556   // Perform trivial constant folding.
5557   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5558     return SV;
5559 
5560   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5561     return V;
5562 
5563   // Canonicalize an UNDEF to the RHS, even over a constant.
5564   if (N1.isUndef()) {
5565     if (TLI->isCommutativeBinOp(Opcode)) {
5566       std::swap(N1, N2);
5567     } else {
5568       switch (Opcode) {
5569       case ISD::SIGN_EXTEND_INREG:
5570       case ISD::SUB:
5571         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5572       case ISD::UDIV:
5573       case ISD::SDIV:
5574       case ISD::UREM:
5575       case ISD::SREM:
5576       case ISD::SSUBSAT:
5577       case ISD::USUBSAT:
5578         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5579       }
5580     }
5581   }
5582 
5583   // Fold a bunch of operators when the RHS is undef.
5584   if (N2.isUndef()) {
5585     switch (Opcode) {
5586     case ISD::XOR:
5587       if (N1.isUndef())
5588         // Handle undef ^ undef -> 0 special case. This is a common
5589         // idiom (misuse).
5590         return getConstant(0, DL, VT);
5591       LLVM_FALLTHROUGH;
5592     case ISD::ADD:
5593     case ISD::SUB:
5594     case ISD::UDIV:
5595     case ISD::SDIV:
5596     case ISD::UREM:
5597     case ISD::SREM:
5598       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5599     case ISD::MUL:
5600     case ISD::AND:
5601     case ISD::SSUBSAT:
5602     case ISD::USUBSAT:
5603       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5604     case ISD::OR:
5605     case ISD::SADDSAT:
5606     case ISD::UADDSAT:
5607       return getAllOnesConstant(DL, VT);
5608     }
5609   }
5610 
5611   // Memoize this node if possible.
5612   SDNode *N;
5613   SDVTList VTs = getVTList(VT);
5614   SDValue Ops[] = {N1, N2};
5615   if (VT != MVT::Glue) {
5616     FoldingSetNodeID ID;
5617     AddNodeIDNode(ID, Opcode, VTs, Ops);
5618     void *IP = nullptr;
5619     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5620       E->intersectFlagsWith(Flags);
5621       return SDValue(E, 0);
5622     }
5623 
5624     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5625     N->setFlags(Flags);
5626     createOperands(N, Ops);
5627     CSEMap.InsertNode(N, IP);
5628   } else {
5629     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5630     createOperands(N, Ops);
5631   }
5632 
5633   InsertNode(N);
5634   SDValue V = SDValue(N, 0);
5635   NewSDValueDbgMsg(V, "Creating new node: ", this);
5636   return V;
5637 }
5638 
5639 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5640                               SDValue N1, SDValue N2, SDValue N3) {
5641   SDNodeFlags Flags;
5642   if (Inserter)
5643     Flags = Inserter->getFlags();
5644   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5645 }
5646 
5647 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5648                               SDValue N1, SDValue N2, SDValue N3,
5649                               const SDNodeFlags Flags) {
5650   // Perform various simplifications.
5651   switch (Opcode) {
5652   case ISD::FMA: {
5653     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5654     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5655            N3.getValueType() == VT && "FMA types must match!");
5656     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5657     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5658     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5659     if (N1CFP && N2CFP && N3CFP) {
5660       APFloat  V1 = N1CFP->getValueAPF();
5661       const APFloat &V2 = N2CFP->getValueAPF();
5662       const APFloat &V3 = N3CFP->getValueAPF();
5663       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5664       return getConstantFP(V1, DL, VT);
5665     }
5666     break;
5667   }
5668   case ISD::BUILD_VECTOR: {
5669     // Attempt to simplify BUILD_VECTOR.
5670     SDValue Ops[] = {N1, N2, N3};
5671     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5672       return V;
5673     break;
5674   }
5675   case ISD::CONCAT_VECTORS: {
5676     SDValue Ops[] = {N1, N2, N3};
5677     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5678       return V;
5679     break;
5680   }
5681   case ISD::SETCC: {
5682     assert(VT.isInteger() && "SETCC result type must be an integer!");
5683     assert(N1.getValueType() == N2.getValueType() &&
5684            "SETCC operands must have the same type!");
5685     assert(VT.isVector() == N1.getValueType().isVector() &&
5686            "SETCC type should be vector iff the operand type is vector!");
5687     assert((!VT.isVector() || VT.getVectorElementCount() ==
5688                                   N1.getValueType().getVectorElementCount()) &&
5689            "SETCC vector element counts must match!");
5690     // Use FoldSetCC to simplify SETCC's.
5691     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5692       return V;
5693     // Vector constant folding.
5694     SDValue Ops[] = {N1, N2, N3};
5695     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5696       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5697       return V;
5698     }
5699     break;
5700   }
5701   case ISD::SELECT:
5702   case ISD::VSELECT:
5703     if (SDValue V = simplifySelect(N1, N2, N3))
5704       return V;
5705     break;
5706   case ISD::VECTOR_SHUFFLE:
5707     llvm_unreachable("should use getVectorShuffle constructor!");
5708   case ISD::INSERT_VECTOR_ELT: {
5709     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5710     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5711     // for scalable vectors where we will generate appropriate code to
5712     // deal with out-of-bounds cases correctly.
5713     if (N3C && N1.getValueType().isFixedLengthVector() &&
5714         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5715       return getUNDEF(VT);
5716 
5717     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5718     if (N3.isUndef())
5719       return getUNDEF(VT);
5720 
5721     // If the inserted element is an UNDEF, just use the input vector.
5722     if (N2.isUndef())
5723       return N1;
5724 
5725     break;
5726   }
5727   case ISD::INSERT_SUBVECTOR: {
5728     // Inserting undef into undef is still undef.
5729     if (N1.isUndef() && N2.isUndef())
5730       return getUNDEF(VT);
5731 
5732     EVT N2VT = N2.getValueType();
5733     assert(VT == N1.getValueType() &&
5734            "Dest and insert subvector source types must match!");
5735     assert(VT.isVector() && N2VT.isVector() &&
5736            "Insert subvector VTs must be vectors!");
5737     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5738            "Cannot insert a scalable vector into a fixed length vector!");
5739     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5740             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5741            "Insert subvector must be from smaller vector to larger vector!");
5742     assert(isa<ConstantSDNode>(N3) &&
5743            "Insert subvector index must be constant");
5744     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5745             (N2VT.getVectorMinNumElements() +
5746              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5747                 VT.getVectorMinNumElements()) &&
5748            "Insert subvector overflow!");
5749 
5750     // Trivial insertion.
5751     if (VT == N2VT)
5752       return N2;
5753 
5754     // If this is an insert of an extracted vector into an undef vector, we
5755     // can just use the input to the extract.
5756     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5757         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5758       return N2.getOperand(0);
5759     break;
5760   }
5761   case ISD::BITCAST:
5762     // Fold bit_convert nodes from a type to themselves.
5763     if (N1.getValueType() == VT)
5764       return N1;
5765     break;
5766   }
5767 
5768   // Memoize node if it doesn't produce a flag.
5769   SDNode *N;
5770   SDVTList VTs = getVTList(VT);
5771   SDValue Ops[] = {N1, N2, N3};
5772   if (VT != MVT::Glue) {
5773     FoldingSetNodeID ID;
5774     AddNodeIDNode(ID, Opcode, VTs, Ops);
5775     void *IP = nullptr;
5776     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5777       E->intersectFlagsWith(Flags);
5778       return SDValue(E, 0);
5779     }
5780 
5781     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5782     N->setFlags(Flags);
5783     createOperands(N, Ops);
5784     CSEMap.InsertNode(N, IP);
5785   } else {
5786     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5787     createOperands(N, Ops);
5788   }
5789 
5790   InsertNode(N);
5791   SDValue V = SDValue(N, 0);
5792   NewSDValueDbgMsg(V, "Creating new node: ", this);
5793   return V;
5794 }
5795 
5796 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5797                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5798   SDValue Ops[] = { N1, N2, N3, N4 };
5799   return getNode(Opcode, DL, VT, Ops);
5800 }
5801 
5802 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5803                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5804                               SDValue N5) {
5805   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5806   return getNode(Opcode, DL, VT, Ops);
5807 }
5808 
5809 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5810 /// the incoming stack arguments to be loaded from the stack.
5811 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5812   SmallVector<SDValue, 8> ArgChains;
5813 
5814   // Include the original chain at the beginning of the list. When this is
5815   // used by target LowerCall hooks, this helps legalize find the
5816   // CALLSEQ_BEGIN node.
5817   ArgChains.push_back(Chain);
5818 
5819   // Add a chain value for each stack argument.
5820   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5821        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5822     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5823       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5824         if (FI->getIndex() < 0)
5825           ArgChains.push_back(SDValue(L, 1));
5826 
5827   // Build a tokenfactor for all the chains.
5828   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5829 }
5830 
5831 /// getMemsetValue - Vectorized representation of the memset value
5832 /// operand.
5833 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5834                               const SDLoc &dl) {
5835   assert(!Value.isUndef());
5836 
5837   unsigned NumBits = VT.getScalarSizeInBits();
5838   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5839     assert(C->getAPIntValue().getBitWidth() == 8);
5840     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5841     if (VT.isInteger()) {
5842       bool IsOpaque = VT.getSizeInBits() > 64 ||
5843           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5844       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5845     }
5846     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5847                              VT);
5848   }
5849 
5850   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5851   EVT IntVT = VT.getScalarType();
5852   if (!IntVT.isInteger())
5853     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5854 
5855   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5856   if (NumBits > 8) {
5857     // Use a multiplication with 0x010101... to extend the input to the
5858     // required length.
5859     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5860     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5861                         DAG.getConstant(Magic, dl, IntVT));
5862   }
5863 
5864   if (VT != Value.getValueType() && !VT.isInteger())
5865     Value = DAG.getBitcast(VT.getScalarType(), Value);
5866   if (VT != Value.getValueType())
5867     Value = DAG.getSplatBuildVector(VT, dl, Value);
5868 
5869   return Value;
5870 }
5871 
5872 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5873 /// used when a memcpy is turned into a memset when the source is a constant
5874 /// string ptr.
5875 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5876                                   const TargetLowering &TLI,
5877                                   const ConstantDataArraySlice &Slice) {
5878   // Handle vector with all elements zero.
5879   if (Slice.Array == nullptr) {
5880     if (VT.isInteger())
5881       return DAG.getConstant(0, dl, VT);
5882     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5883       return DAG.getConstantFP(0.0, dl, VT);
5884     else if (VT.isVector()) {
5885       unsigned NumElts = VT.getVectorNumElements();
5886       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5887       return DAG.getNode(ISD::BITCAST, dl, VT,
5888                          DAG.getConstant(0, dl,
5889                                          EVT::getVectorVT(*DAG.getContext(),
5890                                                           EltVT, NumElts)));
5891     } else
5892       llvm_unreachable("Expected type!");
5893   }
5894 
5895   assert(!VT.isVector() && "Can't handle vector type here!");
5896   unsigned NumVTBits = VT.getSizeInBits();
5897   unsigned NumVTBytes = NumVTBits / 8;
5898   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5899 
5900   APInt Val(NumVTBits, 0);
5901   if (DAG.getDataLayout().isLittleEndian()) {
5902     for (unsigned i = 0; i != NumBytes; ++i)
5903       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5904   } else {
5905     for (unsigned i = 0; i != NumBytes; ++i)
5906       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5907   }
5908 
5909   // If the "cost" of materializing the integer immediate is less than the cost
5910   // of a load, then it is cost effective to turn the load into the immediate.
5911   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5912   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5913     return DAG.getConstant(Val, dl, VT);
5914   return SDValue(nullptr, 0);
5915 }
5916 
5917 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5918                                            const SDLoc &DL,
5919                                            const SDNodeFlags Flags) {
5920   EVT VT = Base.getValueType();
5921   SDValue Index;
5922 
5923   if (Offset.isScalable())
5924     Index = getVScale(DL, Base.getValueType(),
5925                       APInt(Base.getValueSizeInBits().getFixedSize(),
5926                             Offset.getKnownMinSize()));
5927   else
5928     Index = getConstant(Offset.getFixedSize(), DL, VT);
5929 
5930   return getMemBasePlusOffset(Base, Index, DL, Flags);
5931 }
5932 
5933 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5934                                            const SDLoc &DL,
5935                                            const SDNodeFlags Flags) {
5936   assert(Offset.getValueType().isInteger());
5937   EVT BasePtrVT = Ptr.getValueType();
5938   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5939 }
5940 
5941 /// Returns true if memcpy source is constant data.
5942 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5943   uint64_t SrcDelta = 0;
5944   GlobalAddressSDNode *G = nullptr;
5945   if (Src.getOpcode() == ISD::GlobalAddress)
5946     G = cast<GlobalAddressSDNode>(Src);
5947   else if (Src.getOpcode() == ISD::ADD &&
5948            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5949            Src.getOperand(1).getOpcode() == ISD::Constant) {
5950     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5951     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5952   }
5953   if (!G)
5954     return false;
5955 
5956   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5957                                   SrcDelta + G->getOffset());
5958 }
5959 
5960 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5961                                       SelectionDAG &DAG) {
5962   // On Darwin, -Os means optimize for size without hurting performance, so
5963   // only really optimize for size when -Oz (MinSize) is used.
5964   if (MF.getTarget().getTargetTriple().isOSDarwin())
5965     return MF.getFunction().hasMinSize();
5966   return DAG.shouldOptForSize();
5967 }
5968 
5969 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5970                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5971                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5972                           SmallVector<SDValue, 16> &OutStoreChains) {
5973   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5974   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5975   SmallVector<SDValue, 16> GluedLoadChains;
5976   for (unsigned i = From; i < To; ++i) {
5977     OutChains.push_back(OutLoadChains[i]);
5978     GluedLoadChains.push_back(OutLoadChains[i]);
5979   }
5980 
5981   // Chain for all loads.
5982   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5983                                   GluedLoadChains);
5984 
5985   for (unsigned i = From; i < To; ++i) {
5986     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5987     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5988                                   ST->getBasePtr(), ST->getMemoryVT(),
5989                                   ST->getMemOperand());
5990     OutChains.push_back(NewStore);
5991   }
5992 }
5993 
5994 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5995                                        SDValue Chain, SDValue Dst, SDValue Src,
5996                                        uint64_t Size, Align Alignment,
5997                                        bool isVol, bool AlwaysInline,
5998                                        MachinePointerInfo DstPtrInfo,
5999                                        MachinePointerInfo SrcPtrInfo) {
6000   // Turn a memcpy of undef to nop.
6001   // FIXME: We need to honor volatile even is Src is undef.
6002   if (Src.isUndef())
6003     return Chain;
6004 
6005   // Expand memcpy to a series of load and store ops if the size operand falls
6006   // below a certain threshold.
6007   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6008   // rather than maybe a humongous number of loads and stores.
6009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6010   const DataLayout &DL = DAG.getDataLayout();
6011   LLVMContext &C = *DAG.getContext();
6012   std::vector<EVT> MemOps;
6013   bool DstAlignCanChange = false;
6014   MachineFunction &MF = DAG.getMachineFunction();
6015   MachineFrameInfo &MFI = MF.getFrameInfo();
6016   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6017   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6018   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6019     DstAlignCanChange = true;
6020   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6021   if (!SrcAlign || Alignment > *SrcAlign)
6022     SrcAlign = Alignment;
6023   assert(SrcAlign && "SrcAlign must be set");
6024   ConstantDataArraySlice Slice;
6025   // If marked as volatile, perform a copy even when marked as constant.
6026   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6027   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6028   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6029   const MemOp Op = isZeroConstant
6030                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6031                                     /*IsZeroMemset*/ true, isVol)
6032                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6033                                      *SrcAlign, isVol, CopyFromConstant);
6034   if (!TLI.findOptimalMemOpLowering(
6035           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6036           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6037     return SDValue();
6038 
6039   if (DstAlignCanChange) {
6040     Type *Ty = MemOps[0].getTypeForEVT(C);
6041     Align NewAlign = DL.getABITypeAlign(Ty);
6042 
6043     // Don't promote to an alignment that would require dynamic stack
6044     // realignment.
6045     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6046     if (!TRI->needsStackRealignment(MF))
6047       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6048         NewAlign = NewAlign / 2;
6049 
6050     if (NewAlign > Alignment) {
6051       // Give the stack frame object a larger alignment if needed.
6052       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6053         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6054       Alignment = NewAlign;
6055     }
6056   }
6057 
6058   MachineMemOperand::Flags MMOFlags =
6059       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6060   SmallVector<SDValue, 16> OutLoadChains;
6061   SmallVector<SDValue, 16> OutStoreChains;
6062   SmallVector<SDValue, 32> OutChains;
6063   unsigned NumMemOps = MemOps.size();
6064   uint64_t SrcOff = 0, DstOff = 0;
6065   for (unsigned i = 0; i != NumMemOps; ++i) {
6066     EVT VT = MemOps[i];
6067     unsigned VTSize = VT.getSizeInBits() / 8;
6068     SDValue Value, Store;
6069 
6070     if (VTSize > Size) {
6071       // Issuing an unaligned load / store pair  that overlaps with the previous
6072       // pair. Adjust the offset accordingly.
6073       assert(i == NumMemOps-1 && i != 0);
6074       SrcOff -= VTSize - Size;
6075       DstOff -= VTSize - Size;
6076     }
6077 
6078     if (CopyFromConstant &&
6079         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6080       // It's unlikely a store of a vector immediate can be done in a single
6081       // instruction. It would require a load from a constantpool first.
6082       // We only handle zero vectors here.
6083       // FIXME: Handle other cases where store of vector immediate is done in
6084       // a single instruction.
6085       ConstantDataArraySlice SubSlice;
6086       if (SrcOff < Slice.Length) {
6087         SubSlice = Slice;
6088         SubSlice.move(SrcOff);
6089       } else {
6090         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6091         SubSlice.Array = nullptr;
6092         SubSlice.Offset = 0;
6093         SubSlice.Length = VTSize;
6094       }
6095       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6096       if (Value.getNode()) {
6097         Store = DAG.getStore(
6098             Chain, dl, Value,
6099             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6100             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6101         OutChains.push_back(Store);
6102       }
6103     }
6104 
6105     if (!Store.getNode()) {
6106       // The type might not be legal for the target.  This should only happen
6107       // if the type is smaller than a legal type, as on PPC, so the right
6108       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6109       // to Load/Store if NVT==VT.
6110       // FIXME does the case above also need this?
6111       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6112       assert(NVT.bitsGE(VT));
6113 
6114       bool isDereferenceable =
6115         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6116       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6117       if (isDereferenceable)
6118         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6119 
6120       Value = DAG.getExtLoad(
6121           ISD::EXTLOAD, dl, NVT, Chain,
6122           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6123           SrcPtrInfo.getWithOffset(SrcOff), VT,
6124           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6125       OutLoadChains.push_back(Value.getValue(1));
6126 
6127       Store = DAG.getTruncStore(
6128           Chain, dl, Value,
6129           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6130           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6131       OutStoreChains.push_back(Store);
6132     }
6133     SrcOff += VTSize;
6134     DstOff += VTSize;
6135     Size -= VTSize;
6136   }
6137 
6138   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6139                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6140   unsigned NumLdStInMemcpy = OutStoreChains.size();
6141 
6142   if (NumLdStInMemcpy) {
6143     // It may be that memcpy might be converted to memset if it's memcpy
6144     // of constants. In such a case, we won't have loads and stores, but
6145     // just stores. In the absence of loads, there is nothing to gang up.
6146     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6147       // If target does not care, just leave as it.
6148       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6149         OutChains.push_back(OutLoadChains[i]);
6150         OutChains.push_back(OutStoreChains[i]);
6151       }
6152     } else {
6153       // Ld/St less than/equal limit set by target.
6154       if (NumLdStInMemcpy <= GluedLdStLimit) {
6155           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6156                                         NumLdStInMemcpy, OutLoadChains,
6157                                         OutStoreChains);
6158       } else {
6159         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6160         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6161         unsigned GlueIter = 0;
6162 
6163         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6164           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6165           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6166 
6167           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6168                                        OutLoadChains, OutStoreChains);
6169           GlueIter += GluedLdStLimit;
6170         }
6171 
6172         // Residual ld/st.
6173         if (RemainingLdStInMemcpy) {
6174           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6175                                         RemainingLdStInMemcpy, OutLoadChains,
6176                                         OutStoreChains);
6177         }
6178       }
6179     }
6180   }
6181   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6182 }
6183 
6184 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6185                                         SDValue Chain, SDValue Dst, SDValue Src,
6186                                         uint64_t Size, Align Alignment,
6187                                         bool isVol, bool AlwaysInline,
6188                                         MachinePointerInfo DstPtrInfo,
6189                                         MachinePointerInfo SrcPtrInfo) {
6190   // Turn a memmove of undef to nop.
6191   // FIXME: We need to honor volatile even is Src is undef.
6192   if (Src.isUndef())
6193     return Chain;
6194 
6195   // Expand memmove to a series of load and store ops if the size operand falls
6196   // below a certain threshold.
6197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6198   const DataLayout &DL = DAG.getDataLayout();
6199   LLVMContext &C = *DAG.getContext();
6200   std::vector<EVT> MemOps;
6201   bool DstAlignCanChange = false;
6202   MachineFunction &MF = DAG.getMachineFunction();
6203   MachineFrameInfo &MFI = MF.getFrameInfo();
6204   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6205   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6206   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6207     DstAlignCanChange = true;
6208   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6209   if (!SrcAlign || Alignment > *SrcAlign)
6210     SrcAlign = Alignment;
6211   assert(SrcAlign && "SrcAlign must be set");
6212   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6213   if (!TLI.findOptimalMemOpLowering(
6214           MemOps, Limit,
6215           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6216                       /*IsVolatile*/ true),
6217           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6218           MF.getFunction().getAttributes()))
6219     return SDValue();
6220 
6221   if (DstAlignCanChange) {
6222     Type *Ty = MemOps[0].getTypeForEVT(C);
6223     Align NewAlign = DL.getABITypeAlign(Ty);
6224     if (NewAlign > Alignment) {
6225       // Give the stack frame object a larger alignment if needed.
6226       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6227         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6228       Alignment = NewAlign;
6229     }
6230   }
6231 
6232   MachineMemOperand::Flags MMOFlags =
6233       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6234   uint64_t SrcOff = 0, DstOff = 0;
6235   SmallVector<SDValue, 8> LoadValues;
6236   SmallVector<SDValue, 8> LoadChains;
6237   SmallVector<SDValue, 8> OutChains;
6238   unsigned NumMemOps = MemOps.size();
6239   for (unsigned i = 0; i < NumMemOps; i++) {
6240     EVT VT = MemOps[i];
6241     unsigned VTSize = VT.getSizeInBits() / 8;
6242     SDValue Value;
6243 
6244     bool isDereferenceable =
6245       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6246     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6247     if (isDereferenceable)
6248       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6249 
6250     Value =
6251         DAG.getLoad(VT, dl, Chain,
6252                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6253                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6254     LoadValues.push_back(Value);
6255     LoadChains.push_back(Value.getValue(1));
6256     SrcOff += VTSize;
6257   }
6258   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6259   OutChains.clear();
6260   for (unsigned i = 0; i < NumMemOps; i++) {
6261     EVT VT = MemOps[i];
6262     unsigned VTSize = VT.getSizeInBits() / 8;
6263     SDValue Store;
6264 
6265     Store =
6266         DAG.getStore(Chain, dl, LoadValues[i],
6267                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6268                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6269     OutChains.push_back(Store);
6270     DstOff += VTSize;
6271   }
6272 
6273   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6274 }
6275 
6276 /// Lower the call to 'memset' intrinsic function into a series of store
6277 /// operations.
6278 ///
6279 /// \param DAG Selection DAG where lowered code is placed.
6280 /// \param dl Link to corresponding IR location.
6281 /// \param Chain Control flow dependency.
6282 /// \param Dst Pointer to destination memory location.
6283 /// \param Src Value of byte to write into the memory.
6284 /// \param Size Number of bytes to write.
6285 /// \param Alignment Alignment of the destination in bytes.
6286 /// \param isVol True if destination is volatile.
6287 /// \param DstPtrInfo IR information on the memory pointer.
6288 /// \returns New head in the control flow, if lowering was successful, empty
6289 /// SDValue otherwise.
6290 ///
6291 /// The function tries to replace 'llvm.memset' intrinsic with several store
6292 /// operations and value calculation code. This is usually profitable for small
6293 /// memory size.
6294 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6295                                SDValue Chain, SDValue Dst, SDValue Src,
6296                                uint64_t Size, Align Alignment, bool isVol,
6297                                MachinePointerInfo DstPtrInfo) {
6298   // Turn a memset of undef to nop.
6299   // FIXME: We need to honor volatile even is Src is undef.
6300   if (Src.isUndef())
6301     return Chain;
6302 
6303   // Expand memset to a series of load/store ops if the size operand
6304   // falls below a certain threshold.
6305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6306   std::vector<EVT> MemOps;
6307   bool DstAlignCanChange = false;
6308   MachineFunction &MF = DAG.getMachineFunction();
6309   MachineFrameInfo &MFI = MF.getFrameInfo();
6310   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6311   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6312   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6313     DstAlignCanChange = true;
6314   bool IsZeroVal =
6315     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6316   if (!TLI.findOptimalMemOpLowering(
6317           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6318           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6319           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6320     return SDValue();
6321 
6322   if (DstAlignCanChange) {
6323     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6324     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6325     if (NewAlign > Alignment) {
6326       // Give the stack frame object a larger alignment if needed.
6327       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6328         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6329       Alignment = NewAlign;
6330     }
6331   }
6332 
6333   SmallVector<SDValue, 8> OutChains;
6334   uint64_t DstOff = 0;
6335   unsigned NumMemOps = MemOps.size();
6336 
6337   // Find the largest store and generate the bit pattern for it.
6338   EVT LargestVT = MemOps[0];
6339   for (unsigned i = 1; i < NumMemOps; i++)
6340     if (MemOps[i].bitsGT(LargestVT))
6341       LargestVT = MemOps[i];
6342   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6343 
6344   for (unsigned i = 0; i < NumMemOps; i++) {
6345     EVT VT = MemOps[i];
6346     unsigned VTSize = VT.getSizeInBits() / 8;
6347     if (VTSize > Size) {
6348       // Issuing an unaligned load / store pair  that overlaps with the previous
6349       // pair. Adjust the offset accordingly.
6350       assert(i == NumMemOps-1 && i != 0);
6351       DstOff -= VTSize - Size;
6352     }
6353 
6354     // If this store is smaller than the largest store see whether we can get
6355     // the smaller value for free with a truncate.
6356     SDValue Value = MemSetValue;
6357     if (VT.bitsLT(LargestVT)) {
6358       if (!LargestVT.isVector() && !VT.isVector() &&
6359           TLI.isTruncateFree(LargestVT, VT))
6360         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6361       else
6362         Value = getMemsetValue(Src, VT, DAG, dl);
6363     }
6364     assert(Value.getValueType() == VT && "Value with wrong type.");
6365     SDValue Store = DAG.getStore(
6366         Chain, dl, Value,
6367         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6368         DstPtrInfo.getWithOffset(DstOff), Alignment,
6369         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6370     OutChains.push_back(Store);
6371     DstOff += VT.getSizeInBits() / 8;
6372     Size -= VTSize;
6373   }
6374 
6375   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6376 }
6377 
6378 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6379                                             unsigned AS) {
6380   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6381   // pointer operands can be losslessly bitcasted to pointers of address space 0
6382   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6383     report_fatal_error("cannot lower memory intrinsic in address space " +
6384                        Twine(AS));
6385   }
6386 }
6387 
6388 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6389                                 SDValue Src, SDValue Size, Align Alignment,
6390                                 bool isVol, bool AlwaysInline, bool isTailCall,
6391                                 MachinePointerInfo DstPtrInfo,
6392                                 MachinePointerInfo SrcPtrInfo) {
6393   // Check to see if we should lower the memcpy to loads and stores first.
6394   // For cases within the target-specified limits, this is the best choice.
6395   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6396   if (ConstantSize) {
6397     // Memcpy with size zero? Just return the original chain.
6398     if (ConstantSize->isNullValue())
6399       return Chain;
6400 
6401     SDValue Result = getMemcpyLoadsAndStores(
6402         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6403         isVol, false, DstPtrInfo, SrcPtrInfo);
6404     if (Result.getNode())
6405       return Result;
6406   }
6407 
6408   // Then check to see if we should lower the memcpy with target-specific
6409   // code. If the target chooses to do this, this is the next best.
6410   if (TSI) {
6411     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6412         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6413         DstPtrInfo, SrcPtrInfo);
6414     if (Result.getNode())
6415       return Result;
6416   }
6417 
6418   // If we really need inline code and the target declined to provide it,
6419   // use a (potentially long) sequence of loads and stores.
6420   if (AlwaysInline) {
6421     assert(ConstantSize && "AlwaysInline requires a constant size!");
6422     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6423                                    ConstantSize->getZExtValue(), Alignment,
6424                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6425   }
6426 
6427   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6428   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6429 
6430   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6431   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6432   // respect volatile, so they may do things like read or write memory
6433   // beyond the given memory regions. But fixing this isn't easy, and most
6434   // people don't care.
6435 
6436   // Emit a library call.
6437   TargetLowering::ArgListTy Args;
6438   TargetLowering::ArgListEntry Entry;
6439   Entry.Ty = Type::getInt8PtrTy(*getContext());
6440   Entry.Node = Dst; Args.push_back(Entry);
6441   Entry.Node = Src; Args.push_back(Entry);
6442 
6443   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6444   Entry.Node = Size; Args.push_back(Entry);
6445   // FIXME: pass in SDLoc
6446   TargetLowering::CallLoweringInfo CLI(*this);
6447   CLI.setDebugLoc(dl)
6448       .setChain(Chain)
6449       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6450                     Dst.getValueType().getTypeForEVT(*getContext()),
6451                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6452                                       TLI->getPointerTy(getDataLayout())),
6453                     std::move(Args))
6454       .setDiscardResult()
6455       .setTailCall(isTailCall);
6456 
6457   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6458   return CallResult.second;
6459 }
6460 
6461 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6462                                       SDValue Dst, unsigned DstAlign,
6463                                       SDValue Src, unsigned SrcAlign,
6464                                       SDValue Size, Type *SizeTy,
6465                                       unsigned ElemSz, bool isTailCall,
6466                                       MachinePointerInfo DstPtrInfo,
6467                                       MachinePointerInfo SrcPtrInfo) {
6468   // Emit a library call.
6469   TargetLowering::ArgListTy Args;
6470   TargetLowering::ArgListEntry Entry;
6471   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6472   Entry.Node = Dst;
6473   Args.push_back(Entry);
6474 
6475   Entry.Node = Src;
6476   Args.push_back(Entry);
6477 
6478   Entry.Ty = SizeTy;
6479   Entry.Node = Size;
6480   Args.push_back(Entry);
6481 
6482   RTLIB::Libcall LibraryCall =
6483       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6484   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6485     report_fatal_error("Unsupported element size");
6486 
6487   TargetLowering::CallLoweringInfo CLI(*this);
6488   CLI.setDebugLoc(dl)
6489       .setChain(Chain)
6490       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6491                     Type::getVoidTy(*getContext()),
6492                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6493                                       TLI->getPointerTy(getDataLayout())),
6494                     std::move(Args))
6495       .setDiscardResult()
6496       .setTailCall(isTailCall);
6497 
6498   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6499   return CallResult.second;
6500 }
6501 
6502 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6503                                  SDValue Src, SDValue Size, Align Alignment,
6504                                  bool isVol, bool isTailCall,
6505                                  MachinePointerInfo DstPtrInfo,
6506                                  MachinePointerInfo SrcPtrInfo) {
6507   // Check to see if we should lower the memmove to loads and stores first.
6508   // For cases within the target-specified limits, this is the best choice.
6509   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6510   if (ConstantSize) {
6511     // Memmove with size zero? Just return the original chain.
6512     if (ConstantSize->isNullValue())
6513       return Chain;
6514 
6515     SDValue Result = getMemmoveLoadsAndStores(
6516         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6517         isVol, false, DstPtrInfo, SrcPtrInfo);
6518     if (Result.getNode())
6519       return Result;
6520   }
6521 
6522   // Then check to see if we should lower the memmove with target-specific
6523   // code. If the target chooses to do this, this is the next best.
6524   if (TSI) {
6525     SDValue Result =
6526         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6527                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6528     if (Result.getNode())
6529       return Result;
6530   }
6531 
6532   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6533   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6534 
6535   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6536   // not be safe.  See memcpy above for more details.
6537 
6538   // Emit a library call.
6539   TargetLowering::ArgListTy Args;
6540   TargetLowering::ArgListEntry Entry;
6541   Entry.Ty = Type::getInt8PtrTy(*getContext());
6542   Entry.Node = Dst; Args.push_back(Entry);
6543   Entry.Node = Src; Args.push_back(Entry);
6544 
6545   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6546   Entry.Node = Size; Args.push_back(Entry);
6547   // FIXME:  pass in SDLoc
6548   TargetLowering::CallLoweringInfo CLI(*this);
6549   CLI.setDebugLoc(dl)
6550       .setChain(Chain)
6551       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6552                     Dst.getValueType().getTypeForEVT(*getContext()),
6553                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6554                                       TLI->getPointerTy(getDataLayout())),
6555                     std::move(Args))
6556       .setDiscardResult()
6557       .setTailCall(isTailCall);
6558 
6559   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6560   return CallResult.second;
6561 }
6562 
6563 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6564                                        SDValue Dst, unsigned DstAlign,
6565                                        SDValue Src, unsigned SrcAlign,
6566                                        SDValue Size, Type *SizeTy,
6567                                        unsigned ElemSz, bool isTailCall,
6568                                        MachinePointerInfo DstPtrInfo,
6569                                        MachinePointerInfo SrcPtrInfo) {
6570   // Emit a library call.
6571   TargetLowering::ArgListTy Args;
6572   TargetLowering::ArgListEntry Entry;
6573   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6574   Entry.Node = Dst;
6575   Args.push_back(Entry);
6576 
6577   Entry.Node = Src;
6578   Args.push_back(Entry);
6579 
6580   Entry.Ty = SizeTy;
6581   Entry.Node = Size;
6582   Args.push_back(Entry);
6583 
6584   RTLIB::Libcall LibraryCall =
6585       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6586   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6587     report_fatal_error("Unsupported element size");
6588 
6589   TargetLowering::CallLoweringInfo CLI(*this);
6590   CLI.setDebugLoc(dl)
6591       .setChain(Chain)
6592       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6593                     Type::getVoidTy(*getContext()),
6594                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6595                                       TLI->getPointerTy(getDataLayout())),
6596                     std::move(Args))
6597       .setDiscardResult()
6598       .setTailCall(isTailCall);
6599 
6600   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6601   return CallResult.second;
6602 }
6603 
6604 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6605                                 SDValue Src, SDValue Size, Align Alignment,
6606                                 bool isVol, bool isTailCall,
6607                                 MachinePointerInfo DstPtrInfo) {
6608   // Check to see if we should lower the memset to stores first.
6609   // For cases within the target-specified limits, this is the best choice.
6610   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6611   if (ConstantSize) {
6612     // Memset with size zero? Just return the original chain.
6613     if (ConstantSize->isNullValue())
6614       return Chain;
6615 
6616     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6617                                      ConstantSize->getZExtValue(), Alignment,
6618                                      isVol, DstPtrInfo);
6619 
6620     if (Result.getNode())
6621       return Result;
6622   }
6623 
6624   // Then check to see if we should lower the memset with target-specific
6625   // code. If the target chooses to do this, this is the next best.
6626   if (TSI) {
6627     SDValue Result = TSI->EmitTargetCodeForMemset(
6628         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6629     if (Result.getNode())
6630       return Result;
6631   }
6632 
6633   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6634 
6635   // Emit a library call.
6636   TargetLowering::ArgListTy Args;
6637   TargetLowering::ArgListEntry Entry;
6638   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6639   Args.push_back(Entry);
6640   Entry.Node = Src;
6641   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6642   Args.push_back(Entry);
6643   Entry.Node = Size;
6644   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6645   Args.push_back(Entry);
6646 
6647   // FIXME: pass in SDLoc
6648   TargetLowering::CallLoweringInfo CLI(*this);
6649   CLI.setDebugLoc(dl)
6650       .setChain(Chain)
6651       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6652                     Dst.getValueType().getTypeForEVT(*getContext()),
6653                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6654                                       TLI->getPointerTy(getDataLayout())),
6655                     std::move(Args))
6656       .setDiscardResult()
6657       .setTailCall(isTailCall);
6658 
6659   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6660   return CallResult.second;
6661 }
6662 
6663 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6664                                       SDValue Dst, unsigned DstAlign,
6665                                       SDValue Value, SDValue Size, Type *SizeTy,
6666                                       unsigned ElemSz, bool isTailCall,
6667                                       MachinePointerInfo DstPtrInfo) {
6668   // Emit a library call.
6669   TargetLowering::ArgListTy Args;
6670   TargetLowering::ArgListEntry Entry;
6671   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6672   Entry.Node = Dst;
6673   Args.push_back(Entry);
6674 
6675   Entry.Ty = Type::getInt8Ty(*getContext());
6676   Entry.Node = Value;
6677   Args.push_back(Entry);
6678 
6679   Entry.Ty = SizeTy;
6680   Entry.Node = Size;
6681   Args.push_back(Entry);
6682 
6683   RTLIB::Libcall LibraryCall =
6684       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6685   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6686     report_fatal_error("Unsupported element size");
6687 
6688   TargetLowering::CallLoweringInfo CLI(*this);
6689   CLI.setDebugLoc(dl)
6690       .setChain(Chain)
6691       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6692                     Type::getVoidTy(*getContext()),
6693                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6694                                       TLI->getPointerTy(getDataLayout())),
6695                     std::move(Args))
6696       .setDiscardResult()
6697       .setTailCall(isTailCall);
6698 
6699   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6700   return CallResult.second;
6701 }
6702 
6703 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6704                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6705                                 MachineMemOperand *MMO) {
6706   FoldingSetNodeID ID;
6707   ID.AddInteger(MemVT.getRawBits());
6708   AddNodeIDNode(ID, Opcode, VTList, Ops);
6709   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6710   void* IP = nullptr;
6711   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6712     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6713     return SDValue(E, 0);
6714   }
6715 
6716   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6717                                     VTList, MemVT, MMO);
6718   createOperands(N, Ops);
6719 
6720   CSEMap.InsertNode(N, IP);
6721   InsertNode(N);
6722   return SDValue(N, 0);
6723 }
6724 
6725 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6726                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6727                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6728                                        MachineMemOperand *MMO) {
6729   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6730          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6731   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6732 
6733   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6734   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6735 }
6736 
6737 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6738                                 SDValue Chain, SDValue Ptr, SDValue Val,
6739                                 MachineMemOperand *MMO) {
6740   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6741           Opcode == ISD::ATOMIC_LOAD_SUB ||
6742           Opcode == ISD::ATOMIC_LOAD_AND ||
6743           Opcode == ISD::ATOMIC_LOAD_CLR ||
6744           Opcode == ISD::ATOMIC_LOAD_OR ||
6745           Opcode == ISD::ATOMIC_LOAD_XOR ||
6746           Opcode == ISD::ATOMIC_LOAD_NAND ||
6747           Opcode == ISD::ATOMIC_LOAD_MIN ||
6748           Opcode == ISD::ATOMIC_LOAD_MAX ||
6749           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6750           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6751           Opcode == ISD::ATOMIC_LOAD_FADD ||
6752           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6753           Opcode == ISD::ATOMIC_SWAP ||
6754           Opcode == ISD::ATOMIC_STORE) &&
6755          "Invalid Atomic Op");
6756 
6757   EVT VT = Val.getValueType();
6758 
6759   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6760                                                getVTList(VT, MVT::Other);
6761   SDValue Ops[] = {Chain, Ptr, Val};
6762   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6763 }
6764 
6765 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6766                                 EVT VT, SDValue Chain, SDValue Ptr,
6767                                 MachineMemOperand *MMO) {
6768   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6769 
6770   SDVTList VTs = getVTList(VT, MVT::Other);
6771   SDValue Ops[] = {Chain, Ptr};
6772   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6773 }
6774 
6775 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6776 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6777   if (Ops.size() == 1)
6778     return Ops[0];
6779 
6780   SmallVector<EVT, 4> VTs;
6781   VTs.reserve(Ops.size());
6782   for (unsigned i = 0; i < Ops.size(); ++i)
6783     VTs.push_back(Ops[i].getValueType());
6784   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6785 }
6786 
6787 SDValue SelectionDAG::getMemIntrinsicNode(
6788     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6789     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6790     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6791   if (!Size && MemVT.isScalableVector())
6792     Size = MemoryLocation::UnknownSize;
6793   else if (!Size)
6794     Size = MemVT.getStoreSize();
6795 
6796   MachineFunction &MF = getMachineFunction();
6797   MachineMemOperand *MMO =
6798       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6799 
6800   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6801 }
6802 
6803 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6804                                           SDVTList VTList,
6805                                           ArrayRef<SDValue> Ops, EVT MemVT,
6806                                           MachineMemOperand *MMO) {
6807   assert((Opcode == ISD::INTRINSIC_VOID ||
6808           Opcode == ISD::INTRINSIC_W_CHAIN ||
6809           Opcode == ISD::PREFETCH ||
6810           ((int)Opcode <= std::numeric_limits<int>::max() &&
6811            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6812          "Opcode is not a memory-accessing opcode!");
6813 
6814   // Memoize the node unless it returns a flag.
6815   MemIntrinsicSDNode *N;
6816   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6817     FoldingSetNodeID ID;
6818     AddNodeIDNode(ID, Opcode, VTList, Ops);
6819     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6820         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6821     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6822     void *IP = nullptr;
6823     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6824       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6825       return SDValue(E, 0);
6826     }
6827 
6828     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6829                                       VTList, MemVT, MMO);
6830     createOperands(N, Ops);
6831 
6832   CSEMap.InsertNode(N, IP);
6833   } else {
6834     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6835                                       VTList, MemVT, MMO);
6836     createOperands(N, Ops);
6837   }
6838   InsertNode(N);
6839   SDValue V(N, 0);
6840   NewSDValueDbgMsg(V, "Creating new node: ", this);
6841   return V;
6842 }
6843 
6844 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6845                                       SDValue Chain, int FrameIndex,
6846                                       int64_t Size, int64_t Offset) {
6847   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6848   const auto VTs = getVTList(MVT::Other);
6849   SDValue Ops[2] = {
6850       Chain,
6851       getFrameIndex(FrameIndex,
6852                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6853                     true)};
6854 
6855   FoldingSetNodeID ID;
6856   AddNodeIDNode(ID, Opcode, VTs, Ops);
6857   ID.AddInteger(FrameIndex);
6858   ID.AddInteger(Size);
6859   ID.AddInteger(Offset);
6860   void *IP = nullptr;
6861   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6862     return SDValue(E, 0);
6863 
6864   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6865       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6866   createOperands(N, Ops);
6867   CSEMap.InsertNode(N, IP);
6868   InsertNode(N);
6869   SDValue V(N, 0);
6870   NewSDValueDbgMsg(V, "Creating new node: ", this);
6871   return V;
6872 }
6873 
6874 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
6875                                          uint64_t Guid, uint64_t Index,
6876                                          uint32_t Attr) {
6877   const unsigned Opcode = ISD::PSEUDO_PROBE;
6878   const auto VTs = getVTList(MVT::Other);
6879   SDValue Ops[] = {Chain};
6880   FoldingSetNodeID ID;
6881   AddNodeIDNode(ID, Opcode, VTs, Ops);
6882   ID.AddInteger(Guid);
6883   ID.AddInteger(Index);
6884   void *IP = nullptr;
6885   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
6886     return SDValue(E, 0);
6887 
6888   auto *N = newSDNode<PseudoProbeSDNode>(
6889       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
6890   createOperands(N, Ops);
6891   CSEMap.InsertNode(N, IP);
6892   InsertNode(N);
6893   SDValue V(N, 0);
6894   NewSDValueDbgMsg(V, "Creating new node: ", this);
6895   return V;
6896 }
6897 
6898 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6899 /// MachinePointerInfo record from it.  This is particularly useful because the
6900 /// code generator has many cases where it doesn't bother passing in a
6901 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6902 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6903                                            SelectionDAG &DAG, SDValue Ptr,
6904                                            int64_t Offset = 0) {
6905   // If this is FI+Offset, we can model it.
6906   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6907     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6908                                              FI->getIndex(), Offset);
6909 
6910   // If this is (FI+Offset1)+Offset2, we can model it.
6911   if (Ptr.getOpcode() != ISD::ADD ||
6912       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6913       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6914     return Info;
6915 
6916   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6917   return MachinePointerInfo::getFixedStack(
6918       DAG.getMachineFunction(), FI,
6919       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6920 }
6921 
6922 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6923 /// MachinePointerInfo record from it.  This is particularly useful because the
6924 /// code generator has many cases where it doesn't bother passing in a
6925 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6926 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6927                                            SelectionDAG &DAG, SDValue Ptr,
6928                                            SDValue OffsetOp) {
6929   // If the 'Offset' value isn't a constant, we can't handle this.
6930   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6931     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6932   if (OffsetOp.isUndef())
6933     return InferPointerInfo(Info, DAG, Ptr);
6934   return Info;
6935 }
6936 
6937 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6938                               EVT VT, const SDLoc &dl, SDValue Chain,
6939                               SDValue Ptr, SDValue Offset,
6940                               MachinePointerInfo PtrInfo, EVT MemVT,
6941                               Align Alignment,
6942                               MachineMemOperand::Flags MMOFlags,
6943                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6944   assert(Chain.getValueType() == MVT::Other &&
6945         "Invalid chain type");
6946 
6947   MMOFlags |= MachineMemOperand::MOLoad;
6948   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6949   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6950   // clients.
6951   if (PtrInfo.V.isNull())
6952     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6953 
6954   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6955   MachineFunction &MF = getMachineFunction();
6956   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6957                                                    Alignment, AAInfo, Ranges);
6958   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6959 }
6960 
6961 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6962                               EVT VT, const SDLoc &dl, SDValue Chain,
6963                               SDValue Ptr, SDValue Offset, EVT MemVT,
6964                               MachineMemOperand *MMO) {
6965   if (VT == MemVT) {
6966     ExtType = ISD::NON_EXTLOAD;
6967   } else if (ExtType == ISD::NON_EXTLOAD) {
6968     assert(VT == MemVT && "Non-extending load from different memory type!");
6969   } else {
6970     // Extending load.
6971     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6972            "Should only be an extending load, not truncating!");
6973     assert(VT.isInteger() == MemVT.isInteger() &&
6974            "Cannot convert from FP to Int or Int -> FP!");
6975     assert(VT.isVector() == MemVT.isVector() &&
6976            "Cannot use an ext load to convert to or from a vector!");
6977     assert((!VT.isVector() ||
6978             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
6979            "Cannot use an ext load to change the number of vector elements!");
6980   }
6981 
6982   bool Indexed = AM != ISD::UNINDEXED;
6983   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6984 
6985   SDVTList VTs = Indexed ?
6986     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6987   SDValue Ops[] = { Chain, Ptr, Offset };
6988   FoldingSetNodeID ID;
6989   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6990   ID.AddInteger(MemVT.getRawBits());
6991   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6992       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6993   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6994   void *IP = nullptr;
6995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6996     cast<LoadSDNode>(E)->refineAlignment(MMO);
6997     return SDValue(E, 0);
6998   }
6999   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7000                                   ExtType, MemVT, MMO);
7001   createOperands(N, Ops);
7002 
7003   CSEMap.InsertNode(N, IP);
7004   InsertNode(N);
7005   SDValue V(N, 0);
7006   NewSDValueDbgMsg(V, "Creating new node: ", this);
7007   return V;
7008 }
7009 
7010 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7011                               SDValue Ptr, MachinePointerInfo PtrInfo,
7012                               MaybeAlign Alignment,
7013                               MachineMemOperand::Flags MMOFlags,
7014                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7015   SDValue Undef = getUNDEF(Ptr.getValueType());
7016   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7017                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7018 }
7019 
7020 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7021                               SDValue Ptr, MachineMemOperand *MMO) {
7022   SDValue Undef = getUNDEF(Ptr.getValueType());
7023   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7024                  VT, MMO);
7025 }
7026 
7027 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7028                                  EVT VT, SDValue Chain, SDValue Ptr,
7029                                  MachinePointerInfo PtrInfo, EVT MemVT,
7030                                  MaybeAlign Alignment,
7031                                  MachineMemOperand::Flags MMOFlags,
7032                                  const AAMDNodes &AAInfo) {
7033   SDValue Undef = getUNDEF(Ptr.getValueType());
7034   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7035                  MemVT, Alignment, MMOFlags, AAInfo);
7036 }
7037 
7038 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7039                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7040                                  MachineMemOperand *MMO) {
7041   SDValue Undef = getUNDEF(Ptr.getValueType());
7042   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7043                  MemVT, MMO);
7044 }
7045 
7046 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7047                                      SDValue Base, SDValue Offset,
7048                                      ISD::MemIndexedMode AM) {
7049   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7050   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7051   // Don't propagate the invariant or dereferenceable flags.
7052   auto MMOFlags =
7053       LD->getMemOperand()->getFlags() &
7054       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7055   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7056                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7057                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7058 }
7059 
7060 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7061                                SDValue Ptr, MachinePointerInfo PtrInfo,
7062                                Align Alignment,
7063                                MachineMemOperand::Flags MMOFlags,
7064                                const AAMDNodes &AAInfo) {
7065   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7066 
7067   MMOFlags |= MachineMemOperand::MOStore;
7068   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7069 
7070   if (PtrInfo.V.isNull())
7071     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7072 
7073   MachineFunction &MF = getMachineFunction();
7074   uint64_t Size =
7075       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7076   MachineMemOperand *MMO =
7077       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7078   return getStore(Chain, dl, Val, Ptr, MMO);
7079 }
7080 
7081 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7082                                SDValue Ptr, MachineMemOperand *MMO) {
7083   assert(Chain.getValueType() == MVT::Other &&
7084         "Invalid chain type");
7085   EVT VT = Val.getValueType();
7086   SDVTList VTs = getVTList(MVT::Other);
7087   SDValue Undef = getUNDEF(Ptr.getValueType());
7088   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7089   FoldingSetNodeID ID;
7090   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7091   ID.AddInteger(VT.getRawBits());
7092   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7093       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7094   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7095   void *IP = nullptr;
7096   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7097     cast<StoreSDNode>(E)->refineAlignment(MMO);
7098     return SDValue(E, 0);
7099   }
7100   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7101                                    ISD::UNINDEXED, false, VT, MMO);
7102   createOperands(N, Ops);
7103 
7104   CSEMap.InsertNode(N, IP);
7105   InsertNode(N);
7106   SDValue V(N, 0);
7107   NewSDValueDbgMsg(V, "Creating new node: ", this);
7108   return V;
7109 }
7110 
7111 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7112                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7113                                     EVT SVT, Align Alignment,
7114                                     MachineMemOperand::Flags MMOFlags,
7115                                     const AAMDNodes &AAInfo) {
7116   assert(Chain.getValueType() == MVT::Other &&
7117         "Invalid chain type");
7118 
7119   MMOFlags |= MachineMemOperand::MOStore;
7120   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7121 
7122   if (PtrInfo.V.isNull())
7123     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7124 
7125   MachineFunction &MF = getMachineFunction();
7126   MachineMemOperand *MMO = MF.getMachineMemOperand(
7127       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7128       Alignment, AAInfo);
7129   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7130 }
7131 
7132 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7133                                     SDValue Ptr, EVT SVT,
7134                                     MachineMemOperand *MMO) {
7135   EVT VT = Val.getValueType();
7136 
7137   assert(Chain.getValueType() == MVT::Other &&
7138         "Invalid chain type");
7139   if (VT == SVT)
7140     return getStore(Chain, dl, Val, Ptr, MMO);
7141 
7142   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7143          "Should only be a truncating store, not extending!");
7144   assert(VT.isInteger() == SVT.isInteger() &&
7145          "Can't do FP-INT conversion!");
7146   assert(VT.isVector() == SVT.isVector() &&
7147          "Cannot use trunc store to convert to or from a vector!");
7148   assert((!VT.isVector() ||
7149           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7150          "Cannot use trunc store to change the number of vector elements!");
7151 
7152   SDVTList VTs = getVTList(MVT::Other);
7153   SDValue Undef = getUNDEF(Ptr.getValueType());
7154   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7155   FoldingSetNodeID ID;
7156   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7157   ID.AddInteger(SVT.getRawBits());
7158   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7159       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7160   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7161   void *IP = nullptr;
7162   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7163     cast<StoreSDNode>(E)->refineAlignment(MMO);
7164     return SDValue(E, 0);
7165   }
7166   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7167                                    ISD::UNINDEXED, true, SVT, MMO);
7168   createOperands(N, Ops);
7169 
7170   CSEMap.InsertNode(N, IP);
7171   InsertNode(N);
7172   SDValue V(N, 0);
7173   NewSDValueDbgMsg(V, "Creating new node: ", this);
7174   return V;
7175 }
7176 
7177 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7178                                       SDValue Base, SDValue Offset,
7179                                       ISD::MemIndexedMode AM) {
7180   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7181   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7182   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7183   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7184   FoldingSetNodeID ID;
7185   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7186   ID.AddInteger(ST->getMemoryVT().getRawBits());
7187   ID.AddInteger(ST->getRawSubclassData());
7188   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7189   void *IP = nullptr;
7190   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7191     return SDValue(E, 0);
7192 
7193   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7194                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7195                                    ST->getMemOperand());
7196   createOperands(N, Ops);
7197 
7198   CSEMap.InsertNode(N, IP);
7199   InsertNode(N);
7200   SDValue V(N, 0);
7201   NewSDValueDbgMsg(V, "Creating new node: ", this);
7202   return V;
7203 }
7204 
7205 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7206                                     SDValue Base, SDValue Offset, SDValue Mask,
7207                                     SDValue PassThru, EVT MemVT,
7208                                     MachineMemOperand *MMO,
7209                                     ISD::MemIndexedMode AM,
7210                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7211   bool Indexed = AM != ISD::UNINDEXED;
7212   assert((Indexed || Offset.isUndef()) &&
7213          "Unindexed masked load with an offset!");
7214   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7215                          : getVTList(VT, MVT::Other);
7216   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7217   FoldingSetNodeID ID;
7218   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7219   ID.AddInteger(MemVT.getRawBits());
7220   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7221       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7222   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7223   void *IP = nullptr;
7224   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7225     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7226     return SDValue(E, 0);
7227   }
7228   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7229                                         AM, ExtTy, isExpanding, MemVT, MMO);
7230   createOperands(N, Ops);
7231 
7232   CSEMap.InsertNode(N, IP);
7233   InsertNode(N);
7234   SDValue V(N, 0);
7235   NewSDValueDbgMsg(V, "Creating new node: ", this);
7236   return V;
7237 }
7238 
7239 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7240                                            SDValue Base, SDValue Offset,
7241                                            ISD::MemIndexedMode AM) {
7242   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7243   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7244   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7245                        Offset, LD->getMask(), LD->getPassThru(),
7246                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7247                        LD->getExtensionType(), LD->isExpandingLoad());
7248 }
7249 
7250 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7251                                      SDValue Val, SDValue Base, SDValue Offset,
7252                                      SDValue Mask, EVT MemVT,
7253                                      MachineMemOperand *MMO,
7254                                      ISD::MemIndexedMode AM, bool IsTruncating,
7255                                      bool IsCompressing) {
7256   assert(Chain.getValueType() == MVT::Other &&
7257         "Invalid chain type");
7258   bool Indexed = AM != ISD::UNINDEXED;
7259   assert((Indexed || Offset.isUndef()) &&
7260          "Unindexed masked store with an offset!");
7261   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7262                          : getVTList(MVT::Other);
7263   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7264   FoldingSetNodeID ID;
7265   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7266   ID.AddInteger(MemVT.getRawBits());
7267   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7268       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7269   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7270   void *IP = nullptr;
7271   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7272     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7273     return SDValue(E, 0);
7274   }
7275   auto *N =
7276       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7277                                    IsTruncating, IsCompressing, MemVT, MMO);
7278   createOperands(N, Ops);
7279 
7280   CSEMap.InsertNode(N, IP);
7281   InsertNode(N);
7282   SDValue V(N, 0);
7283   NewSDValueDbgMsg(V, "Creating new node: ", this);
7284   return V;
7285 }
7286 
7287 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7288                                             SDValue Base, SDValue Offset,
7289                                             ISD::MemIndexedMode AM) {
7290   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7291   assert(ST->getOffset().isUndef() &&
7292          "Masked store is already a indexed store!");
7293   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7294                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7295                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7296 }
7297 
7298 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7299                                       ArrayRef<SDValue> Ops,
7300                                       MachineMemOperand *MMO,
7301                                       ISD::MemIndexType IndexType,
7302                                       ISD::LoadExtType ExtTy) {
7303   assert(Ops.size() == 6 && "Incompatible number of operands");
7304 
7305   FoldingSetNodeID ID;
7306   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7307   ID.AddInteger(VT.getRawBits());
7308   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7309       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7310   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7311   void *IP = nullptr;
7312   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7313     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7314     return SDValue(E, 0);
7315   }
7316 
7317   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7318   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7319                                           VTs, VT, MMO, IndexType, ExtTy);
7320   createOperands(N, Ops);
7321 
7322   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7323          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7324   assert(N->getMask().getValueType().getVectorElementCount() ==
7325              N->getValueType(0).getVectorElementCount() &&
7326          "Vector width mismatch between mask and data");
7327   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7328              N->getValueType(0).getVectorElementCount().isScalable() &&
7329          "Scalable flags of index and data do not match");
7330   assert(ElementCount::isKnownGE(
7331              N->getIndex().getValueType().getVectorElementCount(),
7332              N->getValueType(0).getVectorElementCount()) &&
7333          "Vector width mismatch between index and data");
7334   assert(isa<ConstantSDNode>(N->getScale()) &&
7335          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7336          "Scale should be a constant power of 2");
7337 
7338   CSEMap.InsertNode(N, IP);
7339   InsertNode(N);
7340   SDValue V(N, 0);
7341   NewSDValueDbgMsg(V, "Creating new node: ", this);
7342   return V;
7343 }
7344 
7345 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7346                                        ArrayRef<SDValue> Ops,
7347                                        MachineMemOperand *MMO,
7348                                        ISD::MemIndexType IndexType,
7349                                        bool IsTrunc) {
7350   assert(Ops.size() == 6 && "Incompatible number of operands");
7351 
7352   FoldingSetNodeID ID;
7353   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7354   ID.AddInteger(VT.getRawBits());
7355   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7356       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7357   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7358   void *IP = nullptr;
7359   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7360     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7361     return SDValue(E, 0);
7362   }
7363 
7364   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7365   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7366                                            VTs, VT, MMO, IndexType, IsTrunc);
7367   createOperands(N, Ops);
7368 
7369   assert(N->getMask().getValueType().getVectorElementCount() ==
7370              N->getValue().getValueType().getVectorElementCount() &&
7371          "Vector width mismatch between mask and data");
7372   assert(
7373       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7374           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7375       "Scalable flags of index and data do not match");
7376   assert(ElementCount::isKnownGE(
7377              N->getIndex().getValueType().getVectorElementCount(),
7378              N->getValue().getValueType().getVectorElementCount()) &&
7379          "Vector width mismatch between index and data");
7380   assert(isa<ConstantSDNode>(N->getScale()) &&
7381          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7382          "Scale should be a constant power of 2");
7383 
7384   CSEMap.InsertNode(N, IP);
7385   InsertNode(N);
7386   SDValue V(N, 0);
7387   NewSDValueDbgMsg(V, "Creating new node: ", this);
7388   return V;
7389 }
7390 
7391 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7392   // select undef, T, F --> T (if T is a constant), otherwise F
7393   // select, ?, undef, F --> F
7394   // select, ?, T, undef --> T
7395   if (Cond.isUndef())
7396     return isConstantValueOfAnyType(T) ? T : F;
7397   if (T.isUndef())
7398     return F;
7399   if (F.isUndef())
7400     return T;
7401 
7402   // select true, T, F --> T
7403   // select false, T, F --> F
7404   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7405     return CondC->isNullValue() ? F : T;
7406 
7407   // TODO: This should simplify VSELECT with constant condition using something
7408   // like this (but check boolean contents to be complete?):
7409   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7410   //    return T;
7411   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7412   //    return F;
7413 
7414   // select ?, T, T --> T
7415   if (T == F)
7416     return T;
7417 
7418   return SDValue();
7419 }
7420 
7421 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7422   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7423   if (X.isUndef())
7424     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7425   // shift X, undef --> undef (because it may shift by the bitwidth)
7426   if (Y.isUndef())
7427     return getUNDEF(X.getValueType());
7428 
7429   // shift 0, Y --> 0
7430   // shift X, 0 --> X
7431   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7432     return X;
7433 
7434   // shift X, C >= bitwidth(X) --> undef
7435   // All vector elements must be too big (or undef) to avoid partial undefs.
7436   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7437     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7438   };
7439   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7440     return getUNDEF(X.getValueType());
7441 
7442   return SDValue();
7443 }
7444 
7445 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7446                                       SDNodeFlags Flags) {
7447   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7448   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7449   // operation is poison. That result can be relaxed to undef.
7450   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7451   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7452   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7453                 (YC && YC->getValueAPF().isNaN());
7454   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7455                 (YC && YC->getValueAPF().isInfinity());
7456 
7457   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7458     return getUNDEF(X.getValueType());
7459 
7460   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7461     return getUNDEF(X.getValueType());
7462 
7463   if (!YC)
7464     return SDValue();
7465 
7466   // X + -0.0 --> X
7467   if (Opcode == ISD::FADD)
7468     if (YC->getValueAPF().isNegZero())
7469       return X;
7470 
7471   // X - +0.0 --> X
7472   if (Opcode == ISD::FSUB)
7473     if (YC->getValueAPF().isPosZero())
7474       return X;
7475 
7476   // X * 1.0 --> X
7477   // X / 1.0 --> X
7478   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7479     if (YC->getValueAPF().isExactlyValue(1.0))
7480       return X;
7481 
7482   // X * 0.0 --> 0.0
7483   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7484     if (YC->getValueAPF().isZero())
7485       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7486 
7487   return SDValue();
7488 }
7489 
7490 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7491                                SDValue Ptr, SDValue SV, unsigned Align) {
7492   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7493   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7494 }
7495 
7496 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7497                               ArrayRef<SDUse> Ops) {
7498   switch (Ops.size()) {
7499   case 0: return getNode(Opcode, DL, VT);
7500   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7501   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7502   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7503   default: break;
7504   }
7505 
7506   // Copy from an SDUse array into an SDValue array for use with
7507   // the regular getNode logic.
7508   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7509   return getNode(Opcode, DL, VT, NewOps);
7510 }
7511 
7512 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7513                               ArrayRef<SDValue> Ops) {
7514   SDNodeFlags Flags;
7515   if (Inserter)
7516     Flags = Inserter->getFlags();
7517   return getNode(Opcode, DL, VT, Ops, Flags);
7518 }
7519 
7520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7521                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7522   unsigned NumOps = Ops.size();
7523   switch (NumOps) {
7524   case 0: return getNode(Opcode, DL, VT);
7525   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7526   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7527   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7528   default: break;
7529   }
7530 
7531   switch (Opcode) {
7532   default: break;
7533   case ISD::BUILD_VECTOR:
7534     // Attempt to simplify BUILD_VECTOR.
7535     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7536       return V;
7537     break;
7538   case ISD::CONCAT_VECTORS:
7539     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7540       return V;
7541     break;
7542   case ISD::SELECT_CC:
7543     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7544     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7545            "LHS and RHS of condition must have same type!");
7546     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7547            "True and False arms of SelectCC must have same type!");
7548     assert(Ops[2].getValueType() == VT &&
7549            "select_cc node must be of same type as true and false value!");
7550     break;
7551   case ISD::BR_CC:
7552     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7553     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7554            "LHS/RHS of comparison should match types!");
7555     break;
7556   }
7557 
7558   // Memoize nodes.
7559   SDNode *N;
7560   SDVTList VTs = getVTList(VT);
7561 
7562   if (VT != MVT::Glue) {
7563     FoldingSetNodeID ID;
7564     AddNodeIDNode(ID, Opcode, VTs, Ops);
7565     void *IP = nullptr;
7566 
7567     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7568       return SDValue(E, 0);
7569 
7570     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7571     createOperands(N, Ops);
7572 
7573     CSEMap.InsertNode(N, IP);
7574   } else {
7575     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7576     createOperands(N, Ops);
7577   }
7578 
7579   N->setFlags(Flags);
7580   InsertNode(N);
7581   SDValue V(N, 0);
7582   NewSDValueDbgMsg(V, "Creating new node: ", this);
7583   return V;
7584 }
7585 
7586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7587                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7588   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7589 }
7590 
7591 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7592                               ArrayRef<SDValue> Ops) {
7593   SDNodeFlags Flags;
7594   if (Inserter)
7595     Flags = Inserter->getFlags();
7596   return getNode(Opcode, DL, VTList, Ops, Flags);
7597 }
7598 
7599 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7600                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7601   if (VTList.NumVTs == 1)
7602     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7603 
7604   switch (Opcode) {
7605   case ISD::STRICT_FP_EXTEND:
7606     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7607            "Invalid STRICT_FP_EXTEND!");
7608     assert(VTList.VTs[0].isFloatingPoint() &&
7609            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7610     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7611            "STRICT_FP_EXTEND result type should be vector iff the operand "
7612            "type is vector!");
7613     assert((!VTList.VTs[0].isVector() ||
7614             VTList.VTs[0].getVectorNumElements() ==
7615             Ops[1].getValueType().getVectorNumElements()) &&
7616            "Vector element count mismatch!");
7617     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7618            "Invalid fpext node, dst <= src!");
7619     break;
7620   case ISD::STRICT_FP_ROUND:
7621     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7622     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7623            "STRICT_FP_ROUND result type should be vector iff the operand "
7624            "type is vector!");
7625     assert((!VTList.VTs[0].isVector() ||
7626             VTList.VTs[0].getVectorNumElements() ==
7627             Ops[1].getValueType().getVectorNumElements()) &&
7628            "Vector element count mismatch!");
7629     assert(VTList.VTs[0].isFloatingPoint() &&
7630            Ops[1].getValueType().isFloatingPoint() &&
7631            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7632            isa<ConstantSDNode>(Ops[2]) &&
7633            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7634             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7635            "Invalid STRICT_FP_ROUND!");
7636     break;
7637 #if 0
7638   // FIXME: figure out how to safely handle things like
7639   // int foo(int x) { return 1 << (x & 255); }
7640   // int bar() { return foo(256); }
7641   case ISD::SRA_PARTS:
7642   case ISD::SRL_PARTS:
7643   case ISD::SHL_PARTS:
7644     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7645         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7646       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7647     else if (N3.getOpcode() == ISD::AND)
7648       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7649         // If the and is only masking out bits that cannot effect the shift,
7650         // eliminate the and.
7651         unsigned NumBits = VT.getScalarSizeInBits()*2;
7652         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7653           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7654       }
7655     break;
7656 #endif
7657   }
7658 
7659   // Memoize the node unless it returns a flag.
7660   SDNode *N;
7661   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7662     FoldingSetNodeID ID;
7663     AddNodeIDNode(ID, Opcode, VTList, Ops);
7664     void *IP = nullptr;
7665     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7666       return SDValue(E, 0);
7667 
7668     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7669     createOperands(N, Ops);
7670     CSEMap.InsertNode(N, IP);
7671   } else {
7672     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7673     createOperands(N, Ops);
7674   }
7675 
7676   N->setFlags(Flags);
7677   InsertNode(N);
7678   SDValue V(N, 0);
7679   NewSDValueDbgMsg(V, "Creating new node: ", this);
7680   return V;
7681 }
7682 
7683 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7684                               SDVTList VTList) {
7685   return getNode(Opcode, DL, VTList, None);
7686 }
7687 
7688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7689                               SDValue N1) {
7690   SDValue Ops[] = { N1 };
7691   return getNode(Opcode, DL, VTList, Ops);
7692 }
7693 
7694 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7695                               SDValue N1, SDValue N2) {
7696   SDValue Ops[] = { N1, N2 };
7697   return getNode(Opcode, DL, VTList, Ops);
7698 }
7699 
7700 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7701                               SDValue N1, SDValue N2, SDValue N3) {
7702   SDValue Ops[] = { N1, N2, N3 };
7703   return getNode(Opcode, DL, VTList, Ops);
7704 }
7705 
7706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7707                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7708   SDValue Ops[] = { N1, N2, N3, N4 };
7709   return getNode(Opcode, DL, VTList, Ops);
7710 }
7711 
7712 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7713                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7714                               SDValue N5) {
7715   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7716   return getNode(Opcode, DL, VTList, Ops);
7717 }
7718 
7719 SDVTList SelectionDAG::getVTList(EVT VT) {
7720   return makeVTList(SDNode::getValueTypeList(VT), 1);
7721 }
7722 
7723 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7724   FoldingSetNodeID ID;
7725   ID.AddInteger(2U);
7726   ID.AddInteger(VT1.getRawBits());
7727   ID.AddInteger(VT2.getRawBits());
7728 
7729   void *IP = nullptr;
7730   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7731   if (!Result) {
7732     EVT *Array = Allocator.Allocate<EVT>(2);
7733     Array[0] = VT1;
7734     Array[1] = VT2;
7735     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7736     VTListMap.InsertNode(Result, IP);
7737   }
7738   return Result->getSDVTList();
7739 }
7740 
7741 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7742   FoldingSetNodeID ID;
7743   ID.AddInteger(3U);
7744   ID.AddInteger(VT1.getRawBits());
7745   ID.AddInteger(VT2.getRawBits());
7746   ID.AddInteger(VT3.getRawBits());
7747 
7748   void *IP = nullptr;
7749   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7750   if (!Result) {
7751     EVT *Array = Allocator.Allocate<EVT>(3);
7752     Array[0] = VT1;
7753     Array[1] = VT2;
7754     Array[2] = VT3;
7755     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7756     VTListMap.InsertNode(Result, IP);
7757   }
7758   return Result->getSDVTList();
7759 }
7760 
7761 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7762   FoldingSetNodeID ID;
7763   ID.AddInteger(4U);
7764   ID.AddInteger(VT1.getRawBits());
7765   ID.AddInteger(VT2.getRawBits());
7766   ID.AddInteger(VT3.getRawBits());
7767   ID.AddInteger(VT4.getRawBits());
7768 
7769   void *IP = nullptr;
7770   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7771   if (!Result) {
7772     EVT *Array = Allocator.Allocate<EVT>(4);
7773     Array[0] = VT1;
7774     Array[1] = VT2;
7775     Array[2] = VT3;
7776     Array[3] = VT4;
7777     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7778     VTListMap.InsertNode(Result, IP);
7779   }
7780   return Result->getSDVTList();
7781 }
7782 
7783 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7784   unsigned NumVTs = VTs.size();
7785   FoldingSetNodeID ID;
7786   ID.AddInteger(NumVTs);
7787   for (unsigned index = 0; index < NumVTs; index++) {
7788     ID.AddInteger(VTs[index].getRawBits());
7789   }
7790 
7791   void *IP = nullptr;
7792   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7793   if (!Result) {
7794     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7795     llvm::copy(VTs, Array);
7796     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7797     VTListMap.InsertNode(Result, IP);
7798   }
7799   return Result->getSDVTList();
7800 }
7801 
7802 
7803 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7804 /// specified operands.  If the resultant node already exists in the DAG,
7805 /// this does not modify the specified node, instead it returns the node that
7806 /// already exists.  If the resultant node does not exist in the DAG, the
7807 /// input node is returned.  As a degenerate case, if you specify the same
7808 /// input operands as the node already has, the input node is returned.
7809 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7810   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7811 
7812   // Check to see if there is no change.
7813   if (Op == N->getOperand(0)) return N;
7814 
7815   // See if the modified node already exists.
7816   void *InsertPos = nullptr;
7817   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7818     return Existing;
7819 
7820   // Nope it doesn't.  Remove the node from its current place in the maps.
7821   if (InsertPos)
7822     if (!RemoveNodeFromCSEMaps(N))
7823       InsertPos = nullptr;
7824 
7825   // Now we update the operands.
7826   N->OperandList[0].set(Op);
7827 
7828   updateDivergence(N);
7829   // If this gets put into a CSE map, add it.
7830   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7831   return N;
7832 }
7833 
7834 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7835   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7836 
7837   // Check to see if there is no change.
7838   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7839     return N;   // No operands changed, just return the input node.
7840 
7841   // See if the modified node already exists.
7842   void *InsertPos = nullptr;
7843   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7844     return Existing;
7845 
7846   // Nope it doesn't.  Remove the node from its current place in the maps.
7847   if (InsertPos)
7848     if (!RemoveNodeFromCSEMaps(N))
7849       InsertPos = nullptr;
7850 
7851   // Now we update the operands.
7852   if (N->OperandList[0] != Op1)
7853     N->OperandList[0].set(Op1);
7854   if (N->OperandList[1] != Op2)
7855     N->OperandList[1].set(Op2);
7856 
7857   updateDivergence(N);
7858   // If this gets put into a CSE map, add it.
7859   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7860   return N;
7861 }
7862 
7863 SDNode *SelectionDAG::
7864 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7865   SDValue Ops[] = { Op1, Op2, Op3 };
7866   return UpdateNodeOperands(N, Ops);
7867 }
7868 
7869 SDNode *SelectionDAG::
7870 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7871                    SDValue Op3, SDValue Op4) {
7872   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7873   return UpdateNodeOperands(N, Ops);
7874 }
7875 
7876 SDNode *SelectionDAG::
7877 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7878                    SDValue Op3, SDValue Op4, SDValue Op5) {
7879   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7880   return UpdateNodeOperands(N, Ops);
7881 }
7882 
7883 SDNode *SelectionDAG::
7884 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7885   unsigned NumOps = Ops.size();
7886   assert(N->getNumOperands() == NumOps &&
7887          "Update with wrong number of operands");
7888 
7889   // If no operands changed just return the input node.
7890   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7891     return N;
7892 
7893   // See if the modified node already exists.
7894   void *InsertPos = nullptr;
7895   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7896     return Existing;
7897 
7898   // Nope it doesn't.  Remove the node from its current place in the maps.
7899   if (InsertPos)
7900     if (!RemoveNodeFromCSEMaps(N))
7901       InsertPos = nullptr;
7902 
7903   // Now we update the operands.
7904   for (unsigned i = 0; i != NumOps; ++i)
7905     if (N->OperandList[i] != Ops[i])
7906       N->OperandList[i].set(Ops[i]);
7907 
7908   updateDivergence(N);
7909   // If this gets put into a CSE map, add it.
7910   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7911   return N;
7912 }
7913 
7914 /// DropOperands - Release the operands and set this node to have
7915 /// zero operands.
7916 void SDNode::DropOperands() {
7917   // Unlike the code in MorphNodeTo that does this, we don't need to
7918   // watch for dead nodes here.
7919   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7920     SDUse &Use = *I++;
7921     Use.set(SDValue());
7922   }
7923 }
7924 
7925 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7926                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7927   if (NewMemRefs.empty()) {
7928     N->clearMemRefs();
7929     return;
7930   }
7931 
7932   // Check if we can avoid allocating by storing a single reference directly.
7933   if (NewMemRefs.size() == 1) {
7934     N->MemRefs = NewMemRefs[0];
7935     N->NumMemRefs = 1;
7936     return;
7937   }
7938 
7939   MachineMemOperand **MemRefsBuffer =
7940       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7941   llvm::copy(NewMemRefs, MemRefsBuffer);
7942   N->MemRefs = MemRefsBuffer;
7943   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7944 }
7945 
7946 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7947 /// machine opcode.
7948 ///
7949 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7950                                    EVT VT) {
7951   SDVTList VTs = getVTList(VT);
7952   return SelectNodeTo(N, MachineOpc, VTs, None);
7953 }
7954 
7955 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7956                                    EVT VT, SDValue Op1) {
7957   SDVTList VTs = getVTList(VT);
7958   SDValue Ops[] = { Op1 };
7959   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7960 }
7961 
7962 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7963                                    EVT VT, SDValue Op1,
7964                                    SDValue Op2) {
7965   SDVTList VTs = getVTList(VT);
7966   SDValue Ops[] = { Op1, Op2 };
7967   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7968 }
7969 
7970 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7971                                    EVT VT, SDValue Op1,
7972                                    SDValue Op2, SDValue Op3) {
7973   SDVTList VTs = getVTList(VT);
7974   SDValue Ops[] = { Op1, Op2, Op3 };
7975   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7976 }
7977 
7978 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7979                                    EVT VT, ArrayRef<SDValue> Ops) {
7980   SDVTList VTs = getVTList(VT);
7981   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7982 }
7983 
7984 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7985                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7986   SDVTList VTs = getVTList(VT1, VT2);
7987   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7988 }
7989 
7990 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7991                                    EVT VT1, EVT VT2) {
7992   SDVTList VTs = getVTList(VT1, VT2);
7993   return SelectNodeTo(N, MachineOpc, VTs, None);
7994 }
7995 
7996 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7997                                    EVT VT1, EVT VT2, EVT VT3,
7998                                    ArrayRef<SDValue> Ops) {
7999   SDVTList VTs = getVTList(VT1, VT2, VT3);
8000   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8001 }
8002 
8003 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8004                                    EVT VT1, EVT VT2,
8005                                    SDValue Op1, SDValue Op2) {
8006   SDVTList VTs = getVTList(VT1, VT2);
8007   SDValue Ops[] = { Op1, Op2 };
8008   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8009 }
8010 
8011 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8012                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8013   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8014   // Reset the NodeID to -1.
8015   New->setNodeId(-1);
8016   if (New != N) {
8017     ReplaceAllUsesWith(N, New);
8018     RemoveDeadNode(N);
8019   }
8020   return New;
8021 }
8022 
8023 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8024 /// the line number information on the merged node since it is not possible to
8025 /// preserve the information that operation is associated with multiple lines.
8026 /// This will make the debugger working better at -O0, were there is a higher
8027 /// probability having other instructions associated with that line.
8028 ///
8029 /// For IROrder, we keep the smaller of the two
8030 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8031   DebugLoc NLoc = N->getDebugLoc();
8032   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8033     N->setDebugLoc(DebugLoc());
8034   }
8035   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8036   N->setIROrder(Order);
8037   return N;
8038 }
8039 
8040 /// MorphNodeTo - This *mutates* the specified node to have the specified
8041 /// return type, opcode, and operands.
8042 ///
8043 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8044 /// node of the specified opcode and operands, it returns that node instead of
8045 /// the current one.  Note that the SDLoc need not be the same.
8046 ///
8047 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8048 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8049 /// node, and because it doesn't require CSE recalculation for any of
8050 /// the node's users.
8051 ///
8052 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8053 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8054 /// the legalizer which maintain worklists that would need to be updated when
8055 /// deleting things.
8056 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8057                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8058   // If an identical node already exists, use it.
8059   void *IP = nullptr;
8060   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8061     FoldingSetNodeID ID;
8062     AddNodeIDNode(ID, Opc, VTs, Ops);
8063     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8064       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8065   }
8066 
8067   if (!RemoveNodeFromCSEMaps(N))
8068     IP = nullptr;
8069 
8070   // Start the morphing.
8071   N->NodeType = Opc;
8072   N->ValueList = VTs.VTs;
8073   N->NumValues = VTs.NumVTs;
8074 
8075   // Clear the operands list, updating used nodes to remove this from their
8076   // use list.  Keep track of any operands that become dead as a result.
8077   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8078   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8079     SDUse &Use = *I++;
8080     SDNode *Used = Use.getNode();
8081     Use.set(SDValue());
8082     if (Used->use_empty())
8083       DeadNodeSet.insert(Used);
8084   }
8085 
8086   // For MachineNode, initialize the memory references information.
8087   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8088     MN->clearMemRefs();
8089 
8090   // Swap for an appropriately sized array from the recycler.
8091   removeOperands(N);
8092   createOperands(N, Ops);
8093 
8094   // Delete any nodes that are still dead after adding the uses for the
8095   // new operands.
8096   if (!DeadNodeSet.empty()) {
8097     SmallVector<SDNode *, 16> DeadNodes;
8098     for (SDNode *N : DeadNodeSet)
8099       if (N->use_empty())
8100         DeadNodes.push_back(N);
8101     RemoveDeadNodes(DeadNodes);
8102   }
8103 
8104   if (IP)
8105     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8106   return N;
8107 }
8108 
8109 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8110   unsigned OrigOpc = Node->getOpcode();
8111   unsigned NewOpc;
8112   switch (OrigOpc) {
8113   default:
8114     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8115 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8116   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8117 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8118   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8119 #include "llvm/IR/ConstrainedOps.def"
8120   }
8121 
8122   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8123 
8124   // We're taking this node out of the chain, so we need to re-link things.
8125   SDValue InputChain = Node->getOperand(0);
8126   SDValue OutputChain = SDValue(Node, 1);
8127   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8128 
8129   SmallVector<SDValue, 3> Ops;
8130   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8131     Ops.push_back(Node->getOperand(i));
8132 
8133   SDVTList VTs = getVTList(Node->getValueType(0));
8134   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8135 
8136   // MorphNodeTo can operate in two ways: if an existing node with the
8137   // specified operands exists, it can just return it.  Otherwise, it
8138   // updates the node in place to have the requested operands.
8139   if (Res == Node) {
8140     // If we updated the node in place, reset the node ID.  To the isel,
8141     // this should be just like a newly allocated machine node.
8142     Res->setNodeId(-1);
8143   } else {
8144     ReplaceAllUsesWith(Node, Res);
8145     RemoveDeadNode(Node);
8146   }
8147 
8148   return Res;
8149 }
8150 
8151 /// getMachineNode - These are used for target selectors to create a new node
8152 /// with specified return type(s), MachineInstr opcode, and operands.
8153 ///
8154 /// Note that getMachineNode returns the resultant node.  If there is already a
8155 /// node of the specified opcode and operands, it returns that node instead of
8156 /// the current one.
8157 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8158                                             EVT VT) {
8159   SDVTList VTs = getVTList(VT);
8160   return getMachineNode(Opcode, dl, VTs, None);
8161 }
8162 
8163 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8164                                             EVT VT, SDValue Op1) {
8165   SDVTList VTs = getVTList(VT);
8166   SDValue Ops[] = { Op1 };
8167   return getMachineNode(Opcode, dl, VTs, Ops);
8168 }
8169 
8170 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8171                                             EVT VT, SDValue Op1, SDValue Op2) {
8172   SDVTList VTs = getVTList(VT);
8173   SDValue Ops[] = { Op1, Op2 };
8174   return getMachineNode(Opcode, dl, VTs, Ops);
8175 }
8176 
8177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8178                                             EVT VT, SDValue Op1, SDValue Op2,
8179                                             SDValue Op3) {
8180   SDVTList VTs = getVTList(VT);
8181   SDValue Ops[] = { Op1, Op2, Op3 };
8182   return getMachineNode(Opcode, dl, VTs, Ops);
8183 }
8184 
8185 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8186                                             EVT VT, ArrayRef<SDValue> Ops) {
8187   SDVTList VTs = getVTList(VT);
8188   return getMachineNode(Opcode, dl, VTs, Ops);
8189 }
8190 
8191 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8192                                             EVT VT1, EVT VT2, SDValue Op1,
8193                                             SDValue Op2) {
8194   SDVTList VTs = getVTList(VT1, VT2);
8195   SDValue Ops[] = { Op1, Op2 };
8196   return getMachineNode(Opcode, dl, VTs, Ops);
8197 }
8198 
8199 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8200                                             EVT VT1, EVT VT2, SDValue Op1,
8201                                             SDValue Op2, SDValue Op3) {
8202   SDVTList VTs = getVTList(VT1, VT2);
8203   SDValue Ops[] = { Op1, Op2, Op3 };
8204   return getMachineNode(Opcode, dl, VTs, Ops);
8205 }
8206 
8207 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8208                                             EVT VT1, EVT VT2,
8209                                             ArrayRef<SDValue> Ops) {
8210   SDVTList VTs = getVTList(VT1, VT2);
8211   return getMachineNode(Opcode, dl, VTs, Ops);
8212 }
8213 
8214 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8215                                             EVT VT1, EVT VT2, EVT VT3,
8216                                             SDValue Op1, SDValue Op2) {
8217   SDVTList VTs = getVTList(VT1, VT2, VT3);
8218   SDValue Ops[] = { Op1, Op2 };
8219   return getMachineNode(Opcode, dl, VTs, Ops);
8220 }
8221 
8222 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8223                                             EVT VT1, EVT VT2, EVT VT3,
8224                                             SDValue Op1, SDValue Op2,
8225                                             SDValue Op3) {
8226   SDVTList VTs = getVTList(VT1, VT2, VT3);
8227   SDValue Ops[] = { Op1, Op2, Op3 };
8228   return getMachineNode(Opcode, dl, VTs, Ops);
8229 }
8230 
8231 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8232                                             EVT VT1, EVT VT2, EVT VT3,
8233                                             ArrayRef<SDValue> Ops) {
8234   SDVTList VTs = getVTList(VT1, VT2, VT3);
8235   return getMachineNode(Opcode, dl, VTs, Ops);
8236 }
8237 
8238 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8239                                             ArrayRef<EVT> ResultTys,
8240                                             ArrayRef<SDValue> Ops) {
8241   SDVTList VTs = getVTList(ResultTys);
8242   return getMachineNode(Opcode, dl, VTs, Ops);
8243 }
8244 
8245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8246                                             SDVTList VTs,
8247                                             ArrayRef<SDValue> Ops) {
8248   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8249   MachineSDNode *N;
8250   void *IP = nullptr;
8251 
8252   if (DoCSE) {
8253     FoldingSetNodeID ID;
8254     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8255     IP = nullptr;
8256     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8257       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8258     }
8259   }
8260 
8261   // Allocate a new MachineSDNode.
8262   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8263   createOperands(N, Ops);
8264 
8265   if (DoCSE)
8266     CSEMap.InsertNode(N, IP);
8267 
8268   InsertNode(N);
8269   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8270   return N;
8271 }
8272 
8273 /// getTargetExtractSubreg - A convenience function for creating
8274 /// TargetOpcode::EXTRACT_SUBREG nodes.
8275 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8276                                              SDValue Operand) {
8277   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8278   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8279                                   VT, Operand, SRIdxVal);
8280   return SDValue(Subreg, 0);
8281 }
8282 
8283 /// getTargetInsertSubreg - A convenience function for creating
8284 /// TargetOpcode::INSERT_SUBREG nodes.
8285 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8286                                             SDValue Operand, SDValue Subreg) {
8287   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8288   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8289                                   VT, Operand, Subreg, SRIdxVal);
8290   return SDValue(Result, 0);
8291 }
8292 
8293 /// getNodeIfExists - Get the specified node if it's already available, or
8294 /// else return NULL.
8295 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8296                                       ArrayRef<SDValue> Ops) {
8297   SDNodeFlags Flags;
8298   if (Inserter)
8299     Flags = Inserter->getFlags();
8300   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8301 }
8302 
8303 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8304                                       ArrayRef<SDValue> Ops,
8305                                       const SDNodeFlags Flags) {
8306   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8307     FoldingSetNodeID ID;
8308     AddNodeIDNode(ID, Opcode, VTList, Ops);
8309     void *IP = nullptr;
8310     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8311       E->intersectFlagsWith(Flags);
8312       return E;
8313     }
8314   }
8315   return nullptr;
8316 }
8317 
8318 /// doesNodeExist - Check if a node exists without modifying its flags.
8319 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8320                                  ArrayRef<SDValue> Ops) {
8321   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8322     FoldingSetNodeID ID;
8323     AddNodeIDNode(ID, Opcode, VTList, Ops);
8324     void *IP = nullptr;
8325     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8326       return true;
8327   }
8328   return false;
8329 }
8330 
8331 /// getDbgValue - Creates a SDDbgValue node.
8332 ///
8333 /// SDNode
8334 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8335                                       SDNode *N, unsigned R, bool IsIndirect,
8336                                       const DebugLoc &DL, unsigned O) {
8337   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8338          "Expected inlined-at fields to agree");
8339   return new (DbgInfo->getAlloc())
8340       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8341 }
8342 
8343 /// Constant
8344 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8345                                               DIExpression *Expr,
8346                                               const Value *C,
8347                                               const DebugLoc &DL, unsigned O) {
8348   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8349          "Expected inlined-at fields to agree");
8350   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8351 }
8352 
8353 /// FrameIndex
8354 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8355                                                 DIExpression *Expr, unsigned FI,
8356                                                 bool IsIndirect,
8357                                                 const DebugLoc &DL,
8358                                                 unsigned O) {
8359   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8360          "Expected inlined-at fields to agree");
8361   return new (DbgInfo->getAlloc())
8362       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8363 }
8364 
8365 /// VReg
8366 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8367                                           DIExpression *Expr,
8368                                           unsigned VReg, bool IsIndirect,
8369                                           const DebugLoc &DL, unsigned O) {
8370   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8371          "Expected inlined-at fields to agree");
8372   return new (DbgInfo->getAlloc())
8373       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8374 }
8375 
8376 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8377                                      unsigned OffsetInBits, unsigned SizeInBits,
8378                                      bool InvalidateDbg) {
8379   SDNode *FromNode = From.getNode();
8380   SDNode *ToNode = To.getNode();
8381   assert(FromNode && ToNode && "Can't modify dbg values");
8382 
8383   // PR35338
8384   // TODO: assert(From != To && "Redundant dbg value transfer");
8385   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8386   if (From == To || FromNode == ToNode)
8387     return;
8388 
8389   if (!FromNode->getHasDebugValue())
8390     return;
8391 
8392   SmallVector<SDDbgValue *, 2> ClonedDVs;
8393   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8394     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8395       continue;
8396 
8397     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8398 
8399     // Just transfer the dbg value attached to From.
8400     if (Dbg->getResNo() != From.getResNo())
8401       continue;
8402 
8403     DIVariable *Var = Dbg->getVariable();
8404     auto *Expr = Dbg->getExpression();
8405     // If a fragment is requested, update the expression.
8406     if (SizeInBits) {
8407       // When splitting a larger (e.g., sign-extended) value whose
8408       // lower bits are described with an SDDbgValue, do not attempt
8409       // to transfer the SDDbgValue to the upper bits.
8410       if (auto FI = Expr->getFragmentInfo())
8411         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8412           continue;
8413       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8414                                                              SizeInBits);
8415       if (!Fragment)
8416         continue;
8417       Expr = *Fragment;
8418     }
8419     // Clone the SDDbgValue and move it to To.
8420     SDDbgValue *Clone = getDbgValue(
8421         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8422         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8423     ClonedDVs.push_back(Clone);
8424 
8425     if (InvalidateDbg) {
8426       // Invalidate value and indicate the SDDbgValue should not be emitted.
8427       Dbg->setIsInvalidated();
8428       Dbg->setIsEmitted();
8429     }
8430   }
8431 
8432   for (SDDbgValue *Dbg : ClonedDVs)
8433     AddDbgValue(Dbg, ToNode, false);
8434 }
8435 
8436 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8437   if (!N.getHasDebugValue())
8438     return;
8439 
8440   SmallVector<SDDbgValue *, 2> ClonedDVs;
8441   for (auto DV : GetDbgValues(&N)) {
8442     if (DV->isInvalidated())
8443       continue;
8444     switch (N.getOpcode()) {
8445     default:
8446       break;
8447     case ISD::ADD:
8448       SDValue N0 = N.getOperand(0);
8449       SDValue N1 = N.getOperand(1);
8450       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8451           isConstantIntBuildVectorOrConstantInt(N1)) {
8452         uint64_t Offset = N.getConstantOperandVal(1);
8453         // Rewrite an ADD constant node into a DIExpression. Since we are
8454         // performing arithmetic to compute the variable's *value* in the
8455         // DIExpression, we need to mark the expression with a
8456         // DW_OP_stack_value.
8457         auto *DIExpr = DV->getExpression();
8458         DIExpr =
8459             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8460         SDDbgValue *Clone =
8461             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8462                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8463         ClonedDVs.push_back(Clone);
8464         DV->setIsInvalidated();
8465         DV->setIsEmitted();
8466         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8467                    N0.getNode()->dumprFull(this);
8468                    dbgs() << " into " << *DIExpr << '\n');
8469       }
8470     }
8471   }
8472 
8473   for (SDDbgValue *Dbg : ClonedDVs)
8474     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8475 }
8476 
8477 /// Creates a SDDbgLabel node.
8478 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8479                                       const DebugLoc &DL, unsigned O) {
8480   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8481          "Expected inlined-at fields to agree");
8482   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8483 }
8484 
8485 namespace {
8486 
8487 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8488 /// pointed to by a use iterator is deleted, increment the use iterator
8489 /// so that it doesn't dangle.
8490 ///
8491 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8492   SDNode::use_iterator &UI;
8493   SDNode::use_iterator &UE;
8494 
8495   void NodeDeleted(SDNode *N, SDNode *E) override {
8496     // Increment the iterator as needed.
8497     while (UI != UE && N == *UI)
8498       ++UI;
8499   }
8500 
8501 public:
8502   RAUWUpdateListener(SelectionDAG &d,
8503                      SDNode::use_iterator &ui,
8504                      SDNode::use_iterator &ue)
8505     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8506 };
8507 
8508 } // end anonymous namespace
8509 
8510 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8511 /// This can cause recursive merging of nodes in the DAG.
8512 ///
8513 /// This version assumes From has a single result value.
8514 ///
8515 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8516   SDNode *From = FromN.getNode();
8517   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8518          "Cannot replace with this method!");
8519   assert(From != To.getNode() && "Cannot replace uses of with self");
8520 
8521   // Preserve Debug Values
8522   transferDbgValues(FromN, To);
8523 
8524   // Iterate over all the existing uses of From. New uses will be added
8525   // to the beginning of the use list, which we avoid visiting.
8526   // This specifically avoids visiting uses of From that arise while the
8527   // replacement is happening, because any such uses would be the result
8528   // of CSE: If an existing node looks like From after one of its operands
8529   // is replaced by To, we don't want to replace of all its users with To
8530   // too. See PR3018 for more info.
8531   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8532   RAUWUpdateListener Listener(*this, UI, UE);
8533   while (UI != UE) {
8534     SDNode *User = *UI;
8535 
8536     // This node is about to morph, remove its old self from the CSE maps.
8537     RemoveNodeFromCSEMaps(User);
8538 
8539     // A user can appear in a use list multiple times, and when this
8540     // happens the uses are usually next to each other in the list.
8541     // To help reduce the number of CSE recomputations, process all
8542     // the uses of this user that we can find this way.
8543     do {
8544       SDUse &Use = UI.getUse();
8545       ++UI;
8546       Use.set(To);
8547       if (To->isDivergent() != From->isDivergent())
8548         updateDivergence(User);
8549     } while (UI != UE && *UI == User);
8550     // Now that we have modified User, add it back to the CSE maps.  If it
8551     // already exists there, recursively merge the results together.
8552     AddModifiedNodeToCSEMaps(User);
8553   }
8554 
8555   // If we just RAUW'd the root, take note.
8556   if (FromN == getRoot())
8557     setRoot(To);
8558 }
8559 
8560 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8561 /// This can cause recursive merging of nodes in the DAG.
8562 ///
8563 /// This version assumes that for each value of From, there is a
8564 /// corresponding value in To in the same position with the same type.
8565 ///
8566 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8567 #ifndef NDEBUG
8568   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8569     assert((!From->hasAnyUseOfValue(i) ||
8570             From->getValueType(i) == To->getValueType(i)) &&
8571            "Cannot use this version of ReplaceAllUsesWith!");
8572 #endif
8573 
8574   // Handle the trivial case.
8575   if (From == To)
8576     return;
8577 
8578   // Preserve Debug Info. Only do this if there's a use.
8579   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8580     if (From->hasAnyUseOfValue(i)) {
8581       assert((i < To->getNumValues()) && "Invalid To location");
8582       transferDbgValues(SDValue(From, i), SDValue(To, i));
8583     }
8584 
8585   // Iterate over just the existing users of From. See the comments in
8586   // the ReplaceAllUsesWith above.
8587   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8588   RAUWUpdateListener Listener(*this, UI, UE);
8589   while (UI != UE) {
8590     SDNode *User = *UI;
8591 
8592     // This node is about to morph, remove its old self from the CSE maps.
8593     RemoveNodeFromCSEMaps(User);
8594 
8595     // A user can appear in a use list multiple times, and when this
8596     // happens the uses are usually next to each other in the list.
8597     // To help reduce the number of CSE recomputations, process all
8598     // the uses of this user that we can find this way.
8599     do {
8600       SDUse &Use = UI.getUse();
8601       ++UI;
8602       Use.setNode(To);
8603       if (To->isDivergent() != From->isDivergent())
8604         updateDivergence(User);
8605     } while (UI != UE && *UI == User);
8606 
8607     // Now that we have modified User, add it back to the CSE maps.  If it
8608     // already exists there, recursively merge the results together.
8609     AddModifiedNodeToCSEMaps(User);
8610   }
8611 
8612   // If we just RAUW'd the root, take note.
8613   if (From == getRoot().getNode())
8614     setRoot(SDValue(To, getRoot().getResNo()));
8615 }
8616 
8617 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8618 /// This can cause recursive merging of nodes in the DAG.
8619 ///
8620 /// This version can replace From with any result values.  To must match the
8621 /// number and types of values returned by From.
8622 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8623   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8624     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8625 
8626   // Preserve Debug Info.
8627   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8628     transferDbgValues(SDValue(From, i), To[i]);
8629 
8630   // Iterate over just the existing users of From. See the comments in
8631   // the ReplaceAllUsesWith above.
8632   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8633   RAUWUpdateListener Listener(*this, UI, UE);
8634   while (UI != UE) {
8635     SDNode *User = *UI;
8636 
8637     // This node is about to morph, remove its old self from the CSE maps.
8638     RemoveNodeFromCSEMaps(User);
8639 
8640     // A user can appear in a use list multiple times, and when this happens the
8641     // uses are usually next to each other in the list.  To help reduce the
8642     // number of CSE and divergence recomputations, process all the uses of this
8643     // user that we can find this way.
8644     bool To_IsDivergent = false;
8645     do {
8646       SDUse &Use = UI.getUse();
8647       const SDValue &ToOp = To[Use.getResNo()];
8648       ++UI;
8649       Use.set(ToOp);
8650       To_IsDivergent |= ToOp->isDivergent();
8651     } while (UI != UE && *UI == User);
8652 
8653     if (To_IsDivergent != From->isDivergent())
8654       updateDivergence(User);
8655 
8656     // Now that we have modified User, add it back to the CSE maps.  If it
8657     // already exists there, recursively merge the results together.
8658     AddModifiedNodeToCSEMaps(User);
8659   }
8660 
8661   // If we just RAUW'd the root, take note.
8662   if (From == getRoot().getNode())
8663     setRoot(SDValue(To[getRoot().getResNo()]));
8664 }
8665 
8666 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8667 /// uses of other values produced by From.getNode() alone.  The Deleted
8668 /// vector is handled the same way as for ReplaceAllUsesWith.
8669 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8670   // Handle the really simple, really trivial case efficiently.
8671   if (From == To) return;
8672 
8673   // Handle the simple, trivial, case efficiently.
8674   if (From.getNode()->getNumValues() == 1) {
8675     ReplaceAllUsesWith(From, To);
8676     return;
8677   }
8678 
8679   // Preserve Debug Info.
8680   transferDbgValues(From, To);
8681 
8682   // Iterate over just the existing users of From. See the comments in
8683   // the ReplaceAllUsesWith above.
8684   SDNode::use_iterator UI = From.getNode()->use_begin(),
8685                        UE = From.getNode()->use_end();
8686   RAUWUpdateListener Listener(*this, UI, UE);
8687   while (UI != UE) {
8688     SDNode *User = *UI;
8689     bool UserRemovedFromCSEMaps = false;
8690 
8691     // A user can appear in a use list multiple times, and when this
8692     // happens the uses are usually next to each other in the list.
8693     // To help reduce the number of CSE recomputations, process all
8694     // the uses of this user that we can find this way.
8695     do {
8696       SDUse &Use = UI.getUse();
8697 
8698       // Skip uses of different values from the same node.
8699       if (Use.getResNo() != From.getResNo()) {
8700         ++UI;
8701         continue;
8702       }
8703 
8704       // If this node hasn't been modified yet, it's still in the CSE maps,
8705       // so remove its old self from the CSE maps.
8706       if (!UserRemovedFromCSEMaps) {
8707         RemoveNodeFromCSEMaps(User);
8708         UserRemovedFromCSEMaps = true;
8709       }
8710 
8711       ++UI;
8712       Use.set(To);
8713       if (To->isDivergent() != From->isDivergent())
8714         updateDivergence(User);
8715     } while (UI != UE && *UI == User);
8716     // We are iterating over all uses of the From node, so if a use
8717     // doesn't use the specific value, no changes are made.
8718     if (!UserRemovedFromCSEMaps)
8719       continue;
8720 
8721     // Now that we have modified User, add it back to the CSE maps.  If it
8722     // already exists there, recursively merge the results together.
8723     AddModifiedNodeToCSEMaps(User);
8724   }
8725 
8726   // If we just RAUW'd the root, take note.
8727   if (From == getRoot())
8728     setRoot(To);
8729 }
8730 
8731 namespace {
8732 
8733   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8734   /// to record information about a use.
8735   struct UseMemo {
8736     SDNode *User;
8737     unsigned Index;
8738     SDUse *Use;
8739   };
8740 
8741   /// operator< - Sort Memos by User.
8742   bool operator<(const UseMemo &L, const UseMemo &R) {
8743     return (intptr_t)L.User < (intptr_t)R.User;
8744   }
8745 
8746 } // end anonymous namespace
8747 
8748 bool SelectionDAG::calculateDivergence(SDNode *N) {
8749   if (TLI->isSDNodeAlwaysUniform(N)) {
8750     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8751            "Conflicting divergence information!");
8752     return false;
8753   }
8754   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8755     return true;
8756   for (auto &Op : N->ops()) {
8757     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8758       return true;
8759   }
8760   return false;
8761 }
8762 
8763 void SelectionDAG::updateDivergence(SDNode *N) {
8764   SmallVector<SDNode *, 16> Worklist(1, N);
8765   do {
8766     N = Worklist.pop_back_val();
8767     bool IsDivergent = calculateDivergence(N);
8768     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8769       N->SDNodeBits.IsDivergent = IsDivergent;
8770       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8771     }
8772   } while (!Worklist.empty());
8773 }
8774 
8775 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8776   DenseMap<SDNode *, unsigned> Degree;
8777   Order.reserve(AllNodes.size());
8778   for (auto &N : allnodes()) {
8779     unsigned NOps = N.getNumOperands();
8780     Degree[&N] = NOps;
8781     if (0 == NOps)
8782       Order.push_back(&N);
8783   }
8784   for (size_t I = 0; I != Order.size(); ++I) {
8785     SDNode *N = Order[I];
8786     for (auto U : N->uses()) {
8787       unsigned &UnsortedOps = Degree[U];
8788       if (0 == --UnsortedOps)
8789         Order.push_back(U);
8790     }
8791   }
8792 }
8793 
8794 #ifndef NDEBUG
8795 void SelectionDAG::VerifyDAGDiverence() {
8796   std::vector<SDNode *> TopoOrder;
8797   CreateTopologicalOrder(TopoOrder);
8798   for (auto *N : TopoOrder) {
8799     assert(calculateDivergence(N) == N->isDivergent() &&
8800            "Divergence bit inconsistency detected");
8801   }
8802 }
8803 #endif
8804 
8805 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8806 /// uses of other values produced by From.getNode() alone.  The same value
8807 /// may appear in both the From and To list.  The Deleted vector is
8808 /// handled the same way as for ReplaceAllUsesWith.
8809 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8810                                               const SDValue *To,
8811                                               unsigned Num){
8812   // Handle the simple, trivial case efficiently.
8813   if (Num == 1)
8814     return ReplaceAllUsesOfValueWith(*From, *To);
8815 
8816   transferDbgValues(*From, *To);
8817 
8818   // Read up all the uses and make records of them. This helps
8819   // processing new uses that are introduced during the
8820   // replacement process.
8821   SmallVector<UseMemo, 4> Uses;
8822   for (unsigned i = 0; i != Num; ++i) {
8823     unsigned FromResNo = From[i].getResNo();
8824     SDNode *FromNode = From[i].getNode();
8825     for (SDNode::use_iterator UI = FromNode->use_begin(),
8826          E = FromNode->use_end(); UI != E; ++UI) {
8827       SDUse &Use = UI.getUse();
8828       if (Use.getResNo() == FromResNo) {
8829         UseMemo Memo = { *UI, i, &Use };
8830         Uses.push_back(Memo);
8831       }
8832     }
8833   }
8834 
8835   // Sort the uses, so that all the uses from a given User are together.
8836   llvm::sort(Uses);
8837 
8838   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8839        UseIndex != UseIndexEnd; ) {
8840     // We know that this user uses some value of From.  If it is the right
8841     // value, update it.
8842     SDNode *User = Uses[UseIndex].User;
8843 
8844     // This node is about to morph, remove its old self from the CSE maps.
8845     RemoveNodeFromCSEMaps(User);
8846 
8847     // The Uses array is sorted, so all the uses for a given User
8848     // are next to each other in the list.
8849     // To help reduce the number of CSE recomputations, process all
8850     // the uses of this user that we can find this way.
8851     do {
8852       unsigned i = Uses[UseIndex].Index;
8853       SDUse &Use = *Uses[UseIndex].Use;
8854       ++UseIndex;
8855 
8856       Use.set(To[i]);
8857     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8858 
8859     // Now that we have modified User, add it back to the CSE maps.  If it
8860     // already exists there, recursively merge the results together.
8861     AddModifiedNodeToCSEMaps(User);
8862   }
8863 }
8864 
8865 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8866 /// based on their topological order. It returns the maximum id and a vector
8867 /// of the SDNodes* in assigned order by reference.
8868 unsigned SelectionDAG::AssignTopologicalOrder() {
8869   unsigned DAGSize = 0;
8870 
8871   // SortedPos tracks the progress of the algorithm. Nodes before it are
8872   // sorted, nodes after it are unsorted. When the algorithm completes
8873   // it is at the end of the list.
8874   allnodes_iterator SortedPos = allnodes_begin();
8875 
8876   // Visit all the nodes. Move nodes with no operands to the front of
8877   // the list immediately. Annotate nodes that do have operands with their
8878   // operand count. Before we do this, the Node Id fields of the nodes
8879   // may contain arbitrary values. After, the Node Id fields for nodes
8880   // before SortedPos will contain the topological sort index, and the
8881   // Node Id fields for nodes At SortedPos and after will contain the
8882   // count of outstanding operands.
8883   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8884     SDNode *N = &*I++;
8885     checkForCycles(N, this);
8886     unsigned Degree = N->getNumOperands();
8887     if (Degree == 0) {
8888       // A node with no uses, add it to the result array immediately.
8889       N->setNodeId(DAGSize++);
8890       allnodes_iterator Q(N);
8891       if (Q != SortedPos)
8892         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8893       assert(SortedPos != AllNodes.end() && "Overran node list");
8894       ++SortedPos;
8895     } else {
8896       // Temporarily use the Node Id as scratch space for the degree count.
8897       N->setNodeId(Degree);
8898     }
8899   }
8900 
8901   // Visit all the nodes. As we iterate, move nodes into sorted order,
8902   // such that by the time the end is reached all nodes will be sorted.
8903   for (SDNode &Node : allnodes()) {
8904     SDNode *N = &Node;
8905     checkForCycles(N, this);
8906     // N is in sorted position, so all its uses have one less operand
8907     // that needs to be sorted.
8908     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8909          UI != UE; ++UI) {
8910       SDNode *P = *UI;
8911       unsigned Degree = P->getNodeId();
8912       assert(Degree != 0 && "Invalid node degree");
8913       --Degree;
8914       if (Degree == 0) {
8915         // All of P's operands are sorted, so P may sorted now.
8916         P->setNodeId(DAGSize++);
8917         if (P->getIterator() != SortedPos)
8918           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8919         assert(SortedPos != AllNodes.end() && "Overran node list");
8920         ++SortedPos;
8921       } else {
8922         // Update P's outstanding operand count.
8923         P->setNodeId(Degree);
8924       }
8925     }
8926     if (Node.getIterator() == SortedPos) {
8927 #ifndef NDEBUG
8928       allnodes_iterator I(N);
8929       SDNode *S = &*++I;
8930       dbgs() << "Overran sorted position:\n";
8931       S->dumprFull(this); dbgs() << "\n";
8932       dbgs() << "Checking if this is due to cycles\n";
8933       checkForCycles(this, true);
8934 #endif
8935       llvm_unreachable(nullptr);
8936     }
8937   }
8938 
8939   assert(SortedPos == AllNodes.end() &&
8940          "Topological sort incomplete!");
8941   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8942          "First node in topological sort is not the entry token!");
8943   assert(AllNodes.front().getNodeId() == 0 &&
8944          "First node in topological sort has non-zero id!");
8945   assert(AllNodes.front().getNumOperands() == 0 &&
8946          "First node in topological sort has operands!");
8947   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8948          "Last node in topologic sort has unexpected id!");
8949   assert(AllNodes.back().use_empty() &&
8950          "Last node in topologic sort has users!");
8951   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8952   return DAGSize;
8953 }
8954 
8955 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8956 /// value is produced by SD.
8957 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8958   if (SD) {
8959     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8960     SD->setHasDebugValue(true);
8961   }
8962   DbgInfo->add(DB, SD, isParameter);
8963 }
8964 
8965 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8966   DbgInfo->add(DB);
8967 }
8968 
8969 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8970                                                    SDValue NewMemOp) {
8971   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8972   // The new memory operation must have the same position as the old load in
8973   // terms of memory dependency. Create a TokenFactor for the old load and new
8974   // memory operation and update uses of the old load's output chain to use that
8975   // TokenFactor.
8976   SDValue OldChain = SDValue(OldLoad, 1);
8977   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8978   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8979     return NewChain;
8980 
8981   SDValue TokenFactor =
8982       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8983   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8984   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8985   return TokenFactor;
8986 }
8987 
8988 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8989                                                      Function **OutFunction) {
8990   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8991 
8992   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8993   auto *Module = MF->getFunction().getParent();
8994   auto *Function = Module->getFunction(Symbol);
8995 
8996   if (OutFunction != nullptr)
8997       *OutFunction = Function;
8998 
8999   if (Function != nullptr) {
9000     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9001     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9002   }
9003 
9004   std::string ErrorStr;
9005   raw_string_ostream ErrorFormatter(ErrorStr);
9006 
9007   ErrorFormatter << "Undefined external symbol ";
9008   ErrorFormatter << '"' << Symbol << '"';
9009   ErrorFormatter.flush();
9010 
9011   report_fatal_error(ErrorStr);
9012 }
9013 
9014 //===----------------------------------------------------------------------===//
9015 //                              SDNode Class
9016 //===----------------------------------------------------------------------===//
9017 
9018 bool llvm::isNullConstant(SDValue V) {
9019   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9020   return Const != nullptr && Const->isNullValue();
9021 }
9022 
9023 bool llvm::isNullFPConstant(SDValue V) {
9024   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9025   return Const != nullptr && Const->isZero() && !Const->isNegative();
9026 }
9027 
9028 bool llvm::isAllOnesConstant(SDValue V) {
9029   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9030   return Const != nullptr && Const->isAllOnesValue();
9031 }
9032 
9033 bool llvm::isOneConstant(SDValue V) {
9034   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9035   return Const != nullptr && Const->isOne();
9036 }
9037 
9038 SDValue llvm::peekThroughBitcasts(SDValue V) {
9039   while (V.getOpcode() == ISD::BITCAST)
9040     V = V.getOperand(0);
9041   return V;
9042 }
9043 
9044 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9045   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9046     V = V.getOperand(0);
9047   return V;
9048 }
9049 
9050 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9051   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9052     V = V.getOperand(0);
9053   return V;
9054 }
9055 
9056 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9057   if (V.getOpcode() != ISD::XOR)
9058     return false;
9059   V = peekThroughBitcasts(V.getOperand(1));
9060   unsigned NumBits = V.getScalarValueSizeInBits();
9061   ConstantSDNode *C =
9062       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9063   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9064 }
9065 
9066 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9067                                           bool AllowTruncation) {
9068   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9069     return CN;
9070 
9071   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9072     BitVector UndefElements;
9073     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9074 
9075     // BuildVectors can truncate their operands. Ignore that case here unless
9076     // AllowTruncation is set.
9077     if (CN && (UndefElements.none() || AllowUndefs)) {
9078       EVT CVT = CN->getValueType(0);
9079       EVT NSVT = N.getValueType().getScalarType();
9080       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9081       if (AllowTruncation || (CVT == NSVT))
9082         return CN;
9083     }
9084   }
9085 
9086   return nullptr;
9087 }
9088 
9089 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9090                                           bool AllowUndefs,
9091                                           bool AllowTruncation) {
9092   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9093     return CN;
9094 
9095   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9096     BitVector UndefElements;
9097     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9098 
9099     // BuildVectors can truncate their operands. Ignore that case here unless
9100     // AllowTruncation is set.
9101     if (CN && (UndefElements.none() || AllowUndefs)) {
9102       EVT CVT = CN->getValueType(0);
9103       EVT NSVT = N.getValueType().getScalarType();
9104       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9105       if (AllowTruncation || (CVT == NSVT))
9106         return CN;
9107     }
9108   }
9109 
9110   return nullptr;
9111 }
9112 
9113 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9114   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9115     return CN;
9116 
9117   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9118     BitVector UndefElements;
9119     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9120     if (CN && (UndefElements.none() || AllowUndefs))
9121       return CN;
9122   }
9123 
9124   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9125     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9126       return CN;
9127 
9128   return nullptr;
9129 }
9130 
9131 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9132                                               const APInt &DemandedElts,
9133                                               bool AllowUndefs) {
9134   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9135     return CN;
9136 
9137   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9138     BitVector UndefElements;
9139     ConstantFPSDNode *CN =
9140         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9141     if (CN && (UndefElements.none() || AllowUndefs))
9142       return CN;
9143   }
9144 
9145   return nullptr;
9146 }
9147 
9148 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9149   // TODO: may want to use peekThroughBitcast() here.
9150   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9151   return C && C->isNullValue();
9152 }
9153 
9154 bool llvm::isOneOrOneSplat(SDValue N) {
9155   // TODO: may want to use peekThroughBitcast() here.
9156   unsigned BitWidth = N.getScalarValueSizeInBits();
9157   ConstantSDNode *C = isConstOrConstSplat(N);
9158   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9159 }
9160 
9161 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9162   N = peekThroughBitcasts(N);
9163   unsigned BitWidth = N.getScalarValueSizeInBits();
9164   ConstantSDNode *C = isConstOrConstSplat(N);
9165   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9166 }
9167 
9168 HandleSDNode::~HandleSDNode() {
9169   DropOperands();
9170 }
9171 
9172 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9173                                          const DebugLoc &DL,
9174                                          const GlobalValue *GA, EVT VT,
9175                                          int64_t o, unsigned TF)
9176     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9177   TheGlobal = GA;
9178 }
9179 
9180 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9181                                          EVT VT, unsigned SrcAS,
9182                                          unsigned DestAS)
9183     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9184       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9185 
9186 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9187                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9188     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9189   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9190   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9191   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9192   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9193 
9194   // We check here that the size of the memory operand fits within the size of
9195   // the MMO. This is because the MMO might indicate only a possible address
9196   // range instead of specifying the affected memory addresses precisely.
9197   // TODO: Make MachineMemOperands aware of scalable vectors.
9198   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9199          "Size mismatch!");
9200 }
9201 
9202 /// Profile - Gather unique data for the node.
9203 ///
9204 void SDNode::Profile(FoldingSetNodeID &ID) const {
9205   AddNodeIDNode(ID, this);
9206 }
9207 
9208 namespace {
9209 
9210   struct EVTArray {
9211     std::vector<EVT> VTs;
9212 
9213     EVTArray() {
9214       VTs.reserve(MVT::LAST_VALUETYPE);
9215       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9216         VTs.push_back(MVT((MVT::SimpleValueType)i));
9217     }
9218   };
9219 
9220 } // end anonymous namespace
9221 
9222 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9223 static ManagedStatic<EVTArray> SimpleVTArray;
9224 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9225 
9226 /// getValueTypeList - Return a pointer to the specified value type.
9227 ///
9228 const EVT *SDNode::getValueTypeList(EVT VT) {
9229   if (VT.isExtended()) {
9230     sys::SmartScopedLock<true> Lock(*VTMutex);
9231     return &(*EVTs->insert(VT).first);
9232   } else {
9233     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9234            "Value type out of range!");
9235     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9236   }
9237 }
9238 
9239 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9240 /// indicated value.  This method ignores uses of other values defined by this
9241 /// operation.
9242 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9243   assert(Value < getNumValues() && "Bad value!");
9244 
9245   // TODO: Only iterate over uses of a given value of the node
9246   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9247     if (UI.getUse().getResNo() == Value) {
9248       if (NUses == 0)
9249         return false;
9250       --NUses;
9251     }
9252   }
9253 
9254   // Found exactly the right number of uses?
9255   return NUses == 0;
9256 }
9257 
9258 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9259 /// value. This method ignores uses of other values defined by this operation.
9260 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9261   assert(Value < getNumValues() && "Bad value!");
9262 
9263   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9264     if (UI.getUse().getResNo() == Value)
9265       return true;
9266 
9267   return false;
9268 }
9269 
9270 /// isOnlyUserOf - Return true if this node is the only use of N.
9271 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9272   bool Seen = false;
9273   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9274     SDNode *User = *I;
9275     if (User == this)
9276       Seen = true;
9277     else
9278       return false;
9279   }
9280 
9281   return Seen;
9282 }
9283 
9284 /// Return true if the only users of N are contained in Nodes.
9285 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9286   bool Seen = false;
9287   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9288     SDNode *User = *I;
9289     if (llvm::is_contained(Nodes, User))
9290       Seen = true;
9291     else
9292       return false;
9293   }
9294 
9295   return Seen;
9296 }
9297 
9298 /// isOperand - Return true if this node is an operand of N.
9299 bool SDValue::isOperandOf(const SDNode *N) const {
9300   return is_contained(N->op_values(), *this);
9301 }
9302 
9303 bool SDNode::isOperandOf(const SDNode *N) const {
9304   return any_of(N->op_values(),
9305                 [this](SDValue Op) { return this == Op.getNode(); });
9306 }
9307 
9308 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9309 /// be a chain) reaches the specified operand without crossing any
9310 /// side-effecting instructions on any chain path.  In practice, this looks
9311 /// through token factors and non-volatile loads.  In order to remain efficient,
9312 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9313 ///
9314 /// Note that we only need to examine chains when we're searching for
9315 /// side-effects; SelectionDAG requires that all side-effects are represented
9316 /// by chains, even if another operand would force a specific ordering. This
9317 /// constraint is necessary to allow transformations like splitting loads.
9318 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9319                                              unsigned Depth) const {
9320   if (*this == Dest) return true;
9321 
9322   // Don't search too deeply, we just want to be able to see through
9323   // TokenFactor's etc.
9324   if (Depth == 0) return false;
9325 
9326   // If this is a token factor, all inputs to the TF happen in parallel.
9327   if (getOpcode() == ISD::TokenFactor) {
9328     // First, try a shallow search.
9329     if (is_contained((*this)->ops(), Dest)) {
9330       // We found the chain we want as an operand of this TokenFactor.
9331       // Essentially, we reach the chain without side-effects if we could
9332       // serialize the TokenFactor into a simple chain of operations with
9333       // Dest as the last operation. This is automatically true if the
9334       // chain has one use: there are no other ordering constraints.
9335       // If the chain has more than one use, we give up: some other
9336       // use of Dest might force a side-effect between Dest and the current
9337       // node.
9338       if (Dest.hasOneUse())
9339         return true;
9340     }
9341     // Next, try a deep search: check whether every operand of the TokenFactor
9342     // reaches Dest.
9343     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9344       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9345     });
9346   }
9347 
9348   // Loads don't have side effects, look through them.
9349   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9350     if (Ld->isUnordered())
9351       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9352   }
9353   return false;
9354 }
9355 
9356 bool SDNode::hasPredecessor(const SDNode *N) const {
9357   SmallPtrSet<const SDNode *, 32> Visited;
9358   SmallVector<const SDNode *, 16> Worklist;
9359   Worklist.push_back(this);
9360   return hasPredecessorHelper(N, Visited, Worklist);
9361 }
9362 
9363 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9364   this->Flags.intersectWith(Flags);
9365 }
9366 
9367 SDValue
9368 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9369                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9370                                   bool AllowPartials) {
9371   // The pattern must end in an extract from index 0.
9372   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9373       !isNullConstant(Extract->getOperand(1)))
9374     return SDValue();
9375 
9376   // Match against one of the candidate binary ops.
9377   SDValue Op = Extract->getOperand(0);
9378   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9379         return Op.getOpcode() == unsigned(BinOp);
9380       }))
9381     return SDValue();
9382 
9383   // Floating-point reductions may require relaxed constraints on the final step
9384   // of the reduction because they may reorder intermediate operations.
9385   unsigned CandidateBinOp = Op.getOpcode();
9386   if (Op.getValueType().isFloatingPoint()) {
9387     SDNodeFlags Flags = Op->getFlags();
9388     switch (CandidateBinOp) {
9389     case ISD::FADD:
9390       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9391         return SDValue();
9392       break;
9393     default:
9394       llvm_unreachable("Unhandled FP opcode for binop reduction");
9395     }
9396   }
9397 
9398   // Matching failed - attempt to see if we did enough stages that a partial
9399   // reduction from a subvector is possible.
9400   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9401     if (!AllowPartials || !Op)
9402       return SDValue();
9403     EVT OpVT = Op.getValueType();
9404     EVT OpSVT = OpVT.getScalarType();
9405     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9406     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9407       return SDValue();
9408     BinOp = (ISD::NodeType)CandidateBinOp;
9409     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9410                    getVectorIdxConstant(0, SDLoc(Op)));
9411   };
9412 
9413   // At each stage, we're looking for something that looks like:
9414   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9415   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9416   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9417   // %a = binop <8 x i32> %op, %s
9418   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9419   // we expect something like:
9420   // <4,5,6,7,u,u,u,u>
9421   // <2,3,u,u,u,u,u,u>
9422   // <1,u,u,u,u,u,u,u>
9423   // While a partial reduction match would be:
9424   // <2,3,u,u,u,u,u,u>
9425   // <1,u,u,u,u,u,u,u>
9426   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9427   SDValue PrevOp;
9428   for (unsigned i = 0; i < Stages; ++i) {
9429     unsigned MaskEnd = (1 << i);
9430 
9431     if (Op.getOpcode() != CandidateBinOp)
9432       return PartialReduction(PrevOp, MaskEnd);
9433 
9434     SDValue Op0 = Op.getOperand(0);
9435     SDValue Op1 = Op.getOperand(1);
9436 
9437     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9438     if (Shuffle) {
9439       Op = Op1;
9440     } else {
9441       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9442       Op = Op0;
9443     }
9444 
9445     // The first operand of the shuffle should be the same as the other operand
9446     // of the binop.
9447     if (!Shuffle || Shuffle->getOperand(0) != Op)
9448       return PartialReduction(PrevOp, MaskEnd);
9449 
9450     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9451     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9452       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9453         return PartialReduction(PrevOp, MaskEnd);
9454 
9455     PrevOp = Op;
9456   }
9457 
9458   // Handle subvector reductions, which tend to appear after the shuffle
9459   // reduction stages.
9460   while (Op.getOpcode() == CandidateBinOp) {
9461     unsigned NumElts = Op.getValueType().getVectorNumElements();
9462     SDValue Op0 = Op.getOperand(0);
9463     SDValue Op1 = Op.getOperand(1);
9464     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9465         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9466         Op0.getOperand(0) != Op1.getOperand(0))
9467       break;
9468     SDValue Src = Op0.getOperand(0);
9469     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9470     if (NumSrcElts != (2 * NumElts))
9471       break;
9472     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9473           Op1.getConstantOperandAPInt(1) == NumElts) &&
9474         !(Op1.getConstantOperandAPInt(1) == 0 &&
9475           Op0.getConstantOperandAPInt(1) == NumElts))
9476       break;
9477     Op = Src;
9478   }
9479 
9480   BinOp = (ISD::NodeType)CandidateBinOp;
9481   return Op;
9482 }
9483 
9484 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9485   assert(N->getNumValues() == 1 &&
9486          "Can't unroll a vector with multiple results!");
9487 
9488   EVT VT = N->getValueType(0);
9489   unsigned NE = VT.getVectorNumElements();
9490   EVT EltVT = VT.getVectorElementType();
9491   SDLoc dl(N);
9492 
9493   SmallVector<SDValue, 8> Scalars;
9494   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9495 
9496   // If ResNE is 0, fully unroll the vector op.
9497   if (ResNE == 0)
9498     ResNE = NE;
9499   else if (NE > ResNE)
9500     NE = ResNE;
9501 
9502   unsigned i;
9503   for (i= 0; i != NE; ++i) {
9504     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9505       SDValue Operand = N->getOperand(j);
9506       EVT OperandVT = Operand.getValueType();
9507       if (OperandVT.isVector()) {
9508         // A vector operand; extract a single element.
9509         EVT OperandEltVT = OperandVT.getVectorElementType();
9510         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9511                               Operand, getVectorIdxConstant(i, dl));
9512       } else {
9513         // A scalar operand; just use it as is.
9514         Operands[j] = Operand;
9515       }
9516     }
9517 
9518     switch (N->getOpcode()) {
9519     default: {
9520       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9521                                 N->getFlags()));
9522       break;
9523     }
9524     case ISD::VSELECT:
9525       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9526       break;
9527     case ISD::SHL:
9528     case ISD::SRA:
9529     case ISD::SRL:
9530     case ISD::ROTL:
9531     case ISD::ROTR:
9532       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9533                                getShiftAmountOperand(Operands[0].getValueType(),
9534                                                      Operands[1])));
9535       break;
9536     case ISD::SIGN_EXTEND_INREG: {
9537       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9538       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9539                                 Operands[0],
9540                                 getValueType(ExtVT)));
9541     }
9542     }
9543   }
9544 
9545   for (; i < ResNE; ++i)
9546     Scalars.push_back(getUNDEF(EltVT));
9547 
9548   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9549   return getBuildVector(VecVT, dl, Scalars);
9550 }
9551 
9552 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9553     SDNode *N, unsigned ResNE) {
9554   unsigned Opcode = N->getOpcode();
9555   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9556           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9557           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9558          "Expected an overflow opcode");
9559 
9560   EVT ResVT = N->getValueType(0);
9561   EVT OvVT = N->getValueType(1);
9562   EVT ResEltVT = ResVT.getVectorElementType();
9563   EVT OvEltVT = OvVT.getVectorElementType();
9564   SDLoc dl(N);
9565 
9566   // If ResNE is 0, fully unroll the vector op.
9567   unsigned NE = ResVT.getVectorNumElements();
9568   if (ResNE == 0)
9569     ResNE = NE;
9570   else if (NE > ResNE)
9571     NE = ResNE;
9572 
9573   SmallVector<SDValue, 8> LHSScalars;
9574   SmallVector<SDValue, 8> RHSScalars;
9575   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9576   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9577 
9578   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9579   SDVTList VTs = getVTList(ResEltVT, SVT);
9580   SmallVector<SDValue, 8> ResScalars;
9581   SmallVector<SDValue, 8> OvScalars;
9582   for (unsigned i = 0; i < NE; ++i) {
9583     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9584     SDValue Ov =
9585         getSelect(dl, OvEltVT, Res.getValue(1),
9586                   getBoolConstant(true, dl, OvEltVT, ResVT),
9587                   getConstant(0, dl, OvEltVT));
9588 
9589     ResScalars.push_back(Res);
9590     OvScalars.push_back(Ov);
9591   }
9592 
9593   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9594   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9595 
9596   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9597   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9598   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9599                         getBuildVector(NewOvVT, dl, OvScalars));
9600 }
9601 
9602 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9603                                                   LoadSDNode *Base,
9604                                                   unsigned Bytes,
9605                                                   int Dist) const {
9606   if (LD->isVolatile() || Base->isVolatile())
9607     return false;
9608   // TODO: probably too restrictive for atomics, revisit
9609   if (!LD->isSimple())
9610     return false;
9611   if (LD->isIndexed() || Base->isIndexed())
9612     return false;
9613   if (LD->getChain() != Base->getChain())
9614     return false;
9615   EVT VT = LD->getValueType(0);
9616   if (VT.getSizeInBits() / 8 != Bytes)
9617     return false;
9618 
9619   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9620   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9621 
9622   int64_t Offset = 0;
9623   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9624     return (Dist * Bytes == Offset);
9625   return false;
9626 }
9627 
9628 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9629 /// if it cannot be inferred.
9630 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9631   // If this is a GlobalAddress + cst, return the alignment.
9632   const GlobalValue *GV = nullptr;
9633   int64_t GVOffset = 0;
9634   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9635     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9636     KnownBits Known(PtrWidth);
9637     llvm::computeKnownBits(GV, Known, getDataLayout());
9638     unsigned AlignBits = Known.countMinTrailingZeros();
9639     if (AlignBits)
9640       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9641   }
9642 
9643   // If this is a direct reference to a stack slot, use information about the
9644   // stack slot's alignment.
9645   int FrameIdx = INT_MIN;
9646   int64_t FrameOffset = 0;
9647   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9648     FrameIdx = FI->getIndex();
9649   } else if (isBaseWithConstantOffset(Ptr) &&
9650              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9651     // Handle FI+Cst
9652     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9653     FrameOffset = Ptr.getConstantOperandVal(1);
9654   }
9655 
9656   if (FrameIdx != INT_MIN) {
9657     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9658     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9659   }
9660 
9661   return None;
9662 }
9663 
9664 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9665 /// which is split (or expanded) into two not necessarily identical pieces.
9666 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9667   // Currently all types are split in half.
9668   EVT LoVT, HiVT;
9669   if (!VT.isVector())
9670     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9671   else
9672     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9673 
9674   return std::make_pair(LoVT, HiVT);
9675 }
9676 
9677 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9678 /// type, dependent on an enveloping VT that has been split into two identical
9679 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9680 std::pair<EVT, EVT>
9681 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9682                                        bool *HiIsEmpty) const {
9683   EVT EltTp = VT.getVectorElementType();
9684   // Examples:
9685   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9686   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9687   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9688   //   etc.
9689   ElementCount VTNumElts = VT.getVectorElementCount();
9690   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9691   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9692          "Mixing fixed width and scalable vectors when enveloping a type");
9693   EVT LoVT, HiVT;
9694   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9695     LoVT = EnvVT;
9696     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9697     *HiIsEmpty = false;
9698   } else {
9699     // Flag that hi type has zero storage size, but return split envelop type
9700     // (this would be easier if vector types with zero elements were allowed).
9701     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9702     HiVT = EnvVT;
9703     *HiIsEmpty = true;
9704   }
9705   return std::make_pair(LoVT, HiVT);
9706 }
9707 
9708 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9709 /// low/high part.
9710 std::pair<SDValue, SDValue>
9711 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9712                           const EVT &HiVT) {
9713   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9714          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9715          "Splitting vector with an invalid mixture of fixed and scalable "
9716          "vector types");
9717   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9718              N.getValueType().getVectorMinNumElements() &&
9719          "More vector elements requested than available!");
9720   SDValue Lo, Hi;
9721   Lo =
9722       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9723   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9724   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9725   // IDX with the runtime scaling factor of the result vector type. For
9726   // fixed-width result vectors, that runtime scaling factor is 1.
9727   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9728                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9729   return std::make_pair(Lo, Hi);
9730 }
9731 
9732 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9733 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9734   EVT VT = N.getValueType();
9735   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9736                                 NextPowerOf2(VT.getVectorNumElements()));
9737   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9738                  getVectorIdxConstant(0, DL));
9739 }
9740 
9741 void SelectionDAG::ExtractVectorElements(SDValue Op,
9742                                          SmallVectorImpl<SDValue> &Args,
9743                                          unsigned Start, unsigned Count,
9744                                          EVT EltVT) {
9745   EVT VT = Op.getValueType();
9746   if (Count == 0)
9747     Count = VT.getVectorNumElements();
9748   if (EltVT == EVT())
9749     EltVT = VT.getVectorElementType();
9750   SDLoc SL(Op);
9751   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9752     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9753                            getVectorIdxConstant(i, SL)));
9754   }
9755 }
9756 
9757 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9758 unsigned GlobalAddressSDNode::getAddressSpace() const {
9759   return getGlobal()->getType()->getAddressSpace();
9760 }
9761 
9762 Type *ConstantPoolSDNode::getType() const {
9763   if (isMachineConstantPoolEntry())
9764     return Val.MachineCPVal->getType();
9765   return Val.ConstVal->getType();
9766 }
9767 
9768 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9769                                         unsigned &SplatBitSize,
9770                                         bool &HasAnyUndefs,
9771                                         unsigned MinSplatBits,
9772                                         bool IsBigEndian) const {
9773   EVT VT = getValueType(0);
9774   assert(VT.isVector() && "Expected a vector type");
9775   unsigned VecWidth = VT.getSizeInBits();
9776   if (MinSplatBits > VecWidth)
9777     return false;
9778 
9779   // FIXME: The widths are based on this node's type, but build vectors can
9780   // truncate their operands.
9781   SplatValue = APInt(VecWidth, 0);
9782   SplatUndef = APInt(VecWidth, 0);
9783 
9784   // Get the bits. Bits with undefined values (when the corresponding element
9785   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9786   // in SplatValue. If any of the values are not constant, give up and return
9787   // false.
9788   unsigned int NumOps = getNumOperands();
9789   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9790   unsigned EltWidth = VT.getScalarSizeInBits();
9791 
9792   for (unsigned j = 0; j < NumOps; ++j) {
9793     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9794     SDValue OpVal = getOperand(i);
9795     unsigned BitPos = j * EltWidth;
9796 
9797     if (OpVal.isUndef())
9798       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9799     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9800       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9801     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9802       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9803     else
9804       return false;
9805   }
9806 
9807   // The build_vector is all constants or undefs. Find the smallest element
9808   // size that splats the vector.
9809   HasAnyUndefs = (SplatUndef != 0);
9810 
9811   // FIXME: This does not work for vectors with elements less than 8 bits.
9812   while (VecWidth > 8) {
9813     unsigned HalfSize = VecWidth / 2;
9814     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9815     APInt LowValue = SplatValue.trunc(HalfSize);
9816     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9817     APInt LowUndef = SplatUndef.trunc(HalfSize);
9818 
9819     // If the two halves do not match (ignoring undef bits), stop here.
9820     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9821         MinSplatBits > HalfSize)
9822       break;
9823 
9824     SplatValue = HighValue | LowValue;
9825     SplatUndef = HighUndef & LowUndef;
9826 
9827     VecWidth = HalfSize;
9828   }
9829 
9830   SplatBitSize = VecWidth;
9831   return true;
9832 }
9833 
9834 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9835                                          BitVector *UndefElements) const {
9836   unsigned NumOps = getNumOperands();
9837   if (UndefElements) {
9838     UndefElements->clear();
9839     UndefElements->resize(NumOps);
9840   }
9841   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9842   if (!DemandedElts)
9843     return SDValue();
9844   SDValue Splatted;
9845   for (unsigned i = 0; i != NumOps; ++i) {
9846     if (!DemandedElts[i])
9847       continue;
9848     SDValue Op = getOperand(i);
9849     if (Op.isUndef()) {
9850       if (UndefElements)
9851         (*UndefElements)[i] = true;
9852     } else if (!Splatted) {
9853       Splatted = Op;
9854     } else if (Splatted != Op) {
9855       return SDValue();
9856     }
9857   }
9858 
9859   if (!Splatted) {
9860     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9861     assert(getOperand(FirstDemandedIdx).isUndef() &&
9862            "Can only have a splat without a constant for all undefs.");
9863     return getOperand(FirstDemandedIdx);
9864   }
9865 
9866   return Splatted;
9867 }
9868 
9869 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9870   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9871   return getSplatValue(DemandedElts, UndefElements);
9872 }
9873 
9874 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9875                                             SmallVectorImpl<SDValue> &Sequence,
9876                                             BitVector *UndefElements) const {
9877   unsigned NumOps = getNumOperands();
9878   Sequence.clear();
9879   if (UndefElements) {
9880     UndefElements->clear();
9881     UndefElements->resize(NumOps);
9882   }
9883   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9884   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9885     return false;
9886 
9887   // Set the undefs even if we don't find a sequence (like getSplatValue).
9888   if (UndefElements)
9889     for (unsigned I = 0; I != NumOps; ++I)
9890       if (DemandedElts[I] && getOperand(I).isUndef())
9891         (*UndefElements)[I] = true;
9892 
9893   // Iteratively widen the sequence length looking for repetitions.
9894   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9895     Sequence.append(SeqLen, SDValue());
9896     for (unsigned I = 0; I != NumOps; ++I) {
9897       if (!DemandedElts[I])
9898         continue;
9899       SDValue &SeqOp = Sequence[I % SeqLen];
9900       SDValue Op = getOperand(I);
9901       if (Op.isUndef()) {
9902         if (!SeqOp)
9903           SeqOp = Op;
9904         continue;
9905       }
9906       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9907         Sequence.clear();
9908         break;
9909       }
9910       SeqOp = Op;
9911     }
9912     if (!Sequence.empty())
9913       return true;
9914   }
9915 
9916   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9917   return false;
9918 }
9919 
9920 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
9921                                             BitVector *UndefElements) const {
9922   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9923   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
9924 }
9925 
9926 ConstantSDNode *
9927 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9928                                         BitVector *UndefElements) const {
9929   return dyn_cast_or_null<ConstantSDNode>(
9930       getSplatValue(DemandedElts, UndefElements));
9931 }
9932 
9933 ConstantSDNode *
9934 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9935   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9936 }
9937 
9938 ConstantFPSDNode *
9939 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9940                                           BitVector *UndefElements) const {
9941   return dyn_cast_or_null<ConstantFPSDNode>(
9942       getSplatValue(DemandedElts, UndefElements));
9943 }
9944 
9945 ConstantFPSDNode *
9946 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9947   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9948 }
9949 
9950 int32_t
9951 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9952                                                    uint32_t BitWidth) const {
9953   if (ConstantFPSDNode *CN =
9954           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9955     bool IsExact;
9956     APSInt IntVal(BitWidth);
9957     const APFloat &APF = CN->getValueAPF();
9958     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9959             APFloat::opOK ||
9960         !IsExact)
9961       return -1;
9962 
9963     return IntVal.exactLogBase2();
9964   }
9965   return -1;
9966 }
9967 
9968 bool BuildVectorSDNode::isConstant() const {
9969   for (const SDValue &Op : op_values()) {
9970     unsigned Opc = Op.getOpcode();
9971     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9972       return false;
9973   }
9974   return true;
9975 }
9976 
9977 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9978   // Find the first non-undef value in the shuffle mask.
9979   unsigned i, e;
9980   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9981     /* search */;
9982 
9983   // If all elements are undefined, this shuffle can be considered a splat
9984   // (although it should eventually get simplified away completely).
9985   if (i == e)
9986     return true;
9987 
9988   // Make sure all remaining elements are either undef or the same as the first
9989   // non-undef value.
9990   for (int Idx = Mask[i]; i != e; ++i)
9991     if (Mask[i] >= 0 && Mask[i] != Idx)
9992       return false;
9993   return true;
9994 }
9995 
9996 // Returns the SDNode if it is a constant integer BuildVector
9997 // or constant integer.
9998 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9999   if (isa<ConstantSDNode>(N))
10000     return N.getNode();
10001   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10002     return N.getNode();
10003   // Treat a GlobalAddress supporting constant offset folding as a
10004   // constant integer.
10005   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10006     if (GA->getOpcode() == ISD::GlobalAddress &&
10007         TLI->isOffsetFoldingLegal(GA))
10008       return GA;
10009   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10010       isa<ConstantSDNode>(N.getOperand(0)))
10011     return N.getNode();
10012   return nullptr;
10013 }
10014 
10015 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
10016   if (isa<ConstantFPSDNode>(N))
10017     return N.getNode();
10018 
10019   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10020     return N.getNode();
10021 
10022   return nullptr;
10023 }
10024 
10025 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10026   assert(!Node->OperandList && "Node already has operands");
10027   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10028          "too many operands to fit into SDNode");
10029   SDUse *Ops = OperandRecycler.allocate(
10030       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10031 
10032   bool IsDivergent = false;
10033   for (unsigned I = 0; I != Vals.size(); ++I) {
10034     Ops[I].setUser(Node);
10035     Ops[I].setInitial(Vals[I]);
10036     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10037       IsDivergent |= Ops[I].getNode()->isDivergent();
10038   }
10039   Node->NumOperands = Vals.size();
10040   Node->OperandList = Ops;
10041   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10042     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10043     Node->SDNodeBits.IsDivergent = IsDivergent;
10044   }
10045   checkForCycles(Node);
10046 }
10047 
10048 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10049                                      SmallVectorImpl<SDValue> &Vals) {
10050   size_t Limit = SDNode::getMaxNumOperands();
10051   while (Vals.size() > Limit) {
10052     unsigned SliceIdx = Vals.size() - Limit;
10053     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10054     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10055     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10056     Vals.emplace_back(NewTF);
10057   }
10058   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10059 }
10060 
10061 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10062                                         EVT VT, SDNodeFlags Flags) {
10063   switch (Opcode) {
10064   default:
10065     return SDValue();
10066   case ISD::ADD:
10067   case ISD::OR:
10068   case ISD::XOR:
10069   case ISD::UMAX:
10070     return getConstant(0, DL, VT);
10071   case ISD::MUL:
10072     return getConstant(1, DL, VT);
10073   case ISD::AND:
10074   case ISD::UMIN:
10075     return getAllOnesConstant(DL, VT);
10076   case ISD::SMAX:
10077     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10078   case ISD::SMIN:
10079     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10080   case ISD::FADD:
10081     return getConstantFP(-0.0, DL, VT);
10082   case ISD::FMUL:
10083     return getConstantFP(1.0, DL, VT);
10084   case ISD::FMINNUM:
10085   case ISD::FMAXNUM: {
10086     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10087     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10088     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10089                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10090                         APFloat::getLargest(Semantics);
10091     if (Opcode == ISD::FMAXNUM)
10092       NeutralAF.changeSign();
10093 
10094     return getConstantFP(NeutralAF, DL, VT);
10095   }
10096   }
10097 }
10098 
10099 #ifndef NDEBUG
10100 static void checkForCyclesHelper(const SDNode *N,
10101                                  SmallPtrSetImpl<const SDNode*> &Visited,
10102                                  SmallPtrSetImpl<const SDNode*> &Checked,
10103                                  const llvm::SelectionDAG *DAG) {
10104   // If this node has already been checked, don't check it again.
10105   if (Checked.count(N))
10106     return;
10107 
10108   // If a node has already been visited on this depth-first walk, reject it as
10109   // a cycle.
10110   if (!Visited.insert(N).second) {
10111     errs() << "Detected cycle in SelectionDAG\n";
10112     dbgs() << "Offending node:\n";
10113     N->dumprFull(DAG); dbgs() << "\n";
10114     abort();
10115   }
10116 
10117   for (const SDValue &Op : N->op_values())
10118     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10119 
10120   Checked.insert(N);
10121   Visited.erase(N);
10122 }
10123 #endif
10124 
10125 void llvm::checkForCycles(const llvm::SDNode *N,
10126                           const llvm::SelectionDAG *DAG,
10127                           bool force) {
10128 #ifndef NDEBUG
10129   bool check = force;
10130 #ifdef EXPENSIVE_CHECKS
10131   check = true;
10132 #endif  // EXPENSIVE_CHECKS
10133   if (check) {
10134     assert(N && "Checking nonexistent SDNode");
10135     SmallPtrSet<const SDNode*, 32> visited;
10136     SmallPtrSet<const SDNode*, 32> checked;
10137     checkForCyclesHelper(N, visited, checked, DAG);
10138   }
10139 #endif  // !NDEBUG
10140 }
10141 
10142 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10143   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10144 }
10145